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ABSTRACT 

A pseudo-time method is introduced to integrate the compressible Navier-

Stokes equations to a steady state. This method is a generalization of a 

method used by Crocco and also by Allen and Cheng. We show that for a simple 

heat equation that this is just a renorma1ization of the time. For a 

convection-diffusion equation the renorma1ization is dependent only on the 

viscous terms. We implement the method for the Navier-Stokes equations using 

a Runge-Kutta type algorithm. This enables the time step to be chosen based 

on the inviscid model only. We also discuss the use of residual smoothing 

when viscous terms are present. 

Research was supported in part by the National Aeronautics and Space 
Administration under NASA Contract Nos. NASI-17070 and NASI-IBI07 while the 
second author was in residence at lCASE, NASA Langley Research Center, 
Hampton, VA 23665-5225. 
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I. INTRODUCTION 

The solution of the compressible Navier-Stokes equations for flow about 

two- and three-dimensional complex aerodynamic configurations is still a time 

consuming problem on today's supercomputers. The resolution of the boundary 

layers requires the use of very fine meshes in the neighborhood of solid 

bodies. For a typical viscous flow the mesh can be several orders of 

magnitude finer (depending on the Reynolds number) than that required for an 

inviscid calculation. As an example, using a C-type mesh about an NACA 0012 

airfoil, a typical mesh spacing near the body in the normal direction for an 

inviscid calculation is 1 x 10-2 chords. For a laminar viscous calculation 

with 3 Re = 5 x 10 , this minimum cell height would be about 

chords. For a turbulent calculation using an algebraic turbulence model and 

with Re ~ 3 x 106 , the minimum cell height would be about 8 x 10-5 

chords. In all 

airfoil is about 

cases a typical chordwise spacing at the midsection of the 

5 x 10-2 chords. 

Using an explicit method this fine mesh reduces the time step, due to 

stability requirements, that can be used. The time step restriction is caused 

by two factors. One contribution is due to the effect of the finer mesh on 

the inviscid portion of the calculation. When using an explicit method this 

reduction of the time step cannot be avoided without using a coarser mesh. It 

follows strictly from the need to include the entire domain of dependency in 

the numerical algorithm. Use of a local time step allows faster convergence 

to a steady state, but it does not remove the requirement to satisfy the 

convection stability condition in a local sense. A second difficulty is 

caused by the viscous terms. For an explicit method the time step is now 

dependent on the square of the mesh size rather than just the mesh size as 
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occurs for inviscid flow. Thus, even for a high Reynolds number flow the 

viscous time step will dominate when the mesh is sufficiently fine. In all 

these cases the use of an implicit scheme will alleviate the difficulties. In 

some ADI methods the Jacobian of the viscous terms is not used in the implicit 

portion of the code in order to improve the speed of the calculation [7]. We 

thus conclude that for both explicit and many implicit codes it is 

advantageous to account for the dependence of the time step on the viscous 

terms. 

In this study we shall only discuss steady state problems which are solved 

by a pseudo time-dependent method. Hence, we can change all time derivatives 

as long as the steady state solution is not affected. One common device is to 

use a different time step in each zone. It is easier to calculate this local 

time step based on the inviscid equations. This provides an additional reason 

to eliminate the dependence of the time step on the viscous terms. 

In this study we shall analyze a method used by Crocco [4] and also by 

Allen and Cheng [2]. They claim that the new scheme is unconditionally stable 

for a simple diffusion equation. 

standard Euler forward-in-time 

We will show that in effect the scheme is a 

central-in-space scheme. The time is 

artificially slowed down so as to satisfy the stability criterion. We then 

extend this scheme to the compressible Navier-Stokes equations using a Runge­

Kutta scheme [9]. This modification enables us to choose our time step based 

on the inviscid equations. The modification automatically reduces the local 

time step in regions where the viscous time step is of importance. Th"is 

enables us to use the inviscid time step in the far field while automatically 

accounting for viscous effects in the boundary layer. We will also look at 

residual smoothing for the heat equation. 
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II. SCALAR EQUATION 

In this section we analyze and extend a scheme for the Navier-Stokes 

equations proposed by Crocco [4] and Allen-Cheng [2]. This scheme was also 

analyzed by Peyret and Viviand [6] and Roache [8], and we will extend their 

analysis. 

We first consider the heat equation 

wt = EWxx • (1) 

The forward time centered space or Euler approximation to this scheme is given 

by 

n+l w. 
J 

n E~t (n n n) = w. + w 1 - 2w + w
j

_
1 

• 
J (~x)2 j+ j 

This scheme is stable if 

v = 

Crocco, and Allen/Cheng introduce the inconsistent scheme 

n+l n 
w. = w. + 

J J 

(2) 

(3) 

(4) 

This scheme is unconditionally stable. If we are only interes ted 1n the 

steady state, then (4) yields the correct steady-state solution. We now 

rewrite (4) as 



-.:.-

or 

( __ 1 + __ 1)( n+1 _ n) E: 
(w;+l -

n 
+ w;_1) (5) hT ht Wj Wj (hx)2 

2wj 

with 

hT = 
(hx)2 

(6) 
2E: 

Thus, for this model problem the Crocco scheme is identical with the Euler 

scheme (2) with an artificial time step ht e given by 

(7) 

Thus, the unconditional stability is achieved by slowing down the time 

process. Note that as 2 ht + m, ht + (hx) /2E:, i.e., the stability limit for 
e 

the Euler method. So choosing a large time step for (4) is equivalent to 

choosing ht 
e 

at the stability limit for (2), and we have merely scaled the 

time. This can also be derived from the modified equation given in [6]. If 

E: or hx is not constant, this also introduces a local time step. 

We next consider the convection-diffusion equation 

+ E:W • xx 

The Crocco scheme now becomes 

or 

( 1 1)( n+1 n) ""KT + li Wj - Wj 

a(w
n
J
"+1 - w

n
j _ 1) E: 

= + (n 2wn"+n) 2hx 2 wJ"+1 - wJ"-1 
(hx) J 

(8) 

(9) 

(10) 
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with 6T given by (6). Thus, again this is equivalent to the Euler scheme 

with a time scaling that depends only on the viscous terms. Allen and Cheng 

utilized this scheme within a time-marching scheme proposed by Brailovskaya 

[3J. We generalize this by considering a general N-stage Runge-Kutta scheme. 

Consider the two-dimensional equation 

(11 ) 

where Hw describes the hyperbolic or first-order terms. In [9J we describe 

a Runge-Kutta scheme where the viscous terms are frozen for all the stages. 

This is similar in philosophy to the Brailovskaya scheme. Using the Crocco 

formulation the (K + I)-st stage becomes 

(K+l) n 
£1 w. k - w. k (K) 

(w~+1 k -
J, J, 

l1> + = w. k a K+1 6t J, (6x)2 J , 

+ 
£2 

(w~ k+1 -
(6y)2 J, 

This reduces to a Runge-Kutta scheme 

(K+I) 
wj,k = 

2 (K+l) 
Wj ,k +w~-l,k) 

(12) 

2 (K+l) +w~,k-I), K=O,l,···,N-I. w. k J, 

(13) 

where HO' Po are the approximations to the hyperbolic and parabolic parts 

respectively and 

(14) 
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We slightly generalize (14) by redefining 

1 1 --=-+ 6t 6t 
e 

6t 
e 

by 

(15) 

where K is a constant that we can choose. The form of (15) no longer 

follows directly from the Crocco formulation. Ins tead K will be chosen 

based on a stability analysis. 

We choose 6t in (12) or (15) based on the hyperbolic " (inviscid) 

stability condition. We then find 6t from (15) and advance to stage 
e 

(K + 1) using the Runge-Kutta scheme (13). 

The constant K in (15) can be chosen so that we recover the parabolic 

stability limitation when Hn = O. The exact value of K depends on the 

coefficients a K in the Runge-Kutta formula. In order to see this more 

clearly we revert to the one-dimensional convection-diffusion equation (8). 

We replace all space derivatives by second-order central differences while the 

time derivative is kept continuous. We therefore have 

(16) 

We Fourier transform (16) to get 

(17) 

with 

A(O = 2e: ia 
--~ (1 - cos ~) + 6x sin ~ 
(6x)2 

(18) 

A Runge-Kutta scheme for (16) or (17) is stable whenever z(~) = A(~)6te lies 

within the stability domain that depends on a1 ,···,aN for all 0 ~ ~ ~ 2n. 
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We consider the stability domain for the four-step scheme with a 1 " 1/4, 

a
2 

.. 1/3, a
3 

.. 1/2, a 4 .. 1. This scheme has a stability condition along the 

imaginary axis of 

a/).t 

maxlzl ~ 212, i.e., for a hyperbolic problem 
~ 

(e: = 0) 

~< 212. ux - Along the negative real axis the stability condition is 

2e:M e 
(a .. 0) -----,,-2 ~ 2.8. 

(/).x) 
Izl ~ 2.8 and for a parabolic problem Hence for this 

case we would choose K in (15) as K = 1.4. We define the cell Reynolds 

number as 

a/).x 
~ - -e:-. (19) 

The previous analysis shows that the Runge-Kutta scheme is stable for 

and Rh = =. We do not have any proof that the scheme is stable for all Rh • 

III. NAVIER-STOKES EQUATIONS 

We now discuss the implementation of these ideas to the two-dimensional, 

compressible, Navier-Stokes equations. The extension to three dimensions is 

straightforward. We first consider the conservation form in Cartesian 

coordinates. We express the equations in the following form 

Pt 
= HI 

2 2 a2u (pu)t H2 + (A + 211) ~+ (A + ll) ~+ 
ax2 axay II al 

2 2 . 
a2v (pv)t H3 + a v + (A + ll) ~+ (A + 211) = 11-2 al ax axay 

(20) 
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2 2 
() + 'YU (~+~) pE t = H4 2 2 

Pr ax ay 

e 

2 2 
+ (A + )[ a u + a v ] U v axay u axay 

{pu)2 + {pv)2 
E - 2p 

and Hj denote first derivative terms (including the artificial viscosity and 

also the viscous dissipation function). The coefficients of viscosity (U 

and A), 'Y the specific heat ratio, and the Prandt1 number Pr are all 

assumed (for the analysis) to be locally constant. 

In deriving our results we shall ignore all cross derivatives (see, e.g., 

[1], [2]). Based on our previous analysis we add the following terms to the 

standard Runge-Kutta scheme. 

IIp K1 

A{pu) K - 2[A + 2u + U ] ll{pu) allt 
2 {Ax)2 (lly)2 p 

A{pv) K - 2[ U + A + 2U] A{pv) allt = 3 {llx)2 (lly)2 p 

(21) 

A(pE) K _ 2u [_ ~ ( 1 + 1 ) + (A + 2u) + U 2]Il(pu)aAt 
4 p 2Pr {llx)2 {lly)2 {IlX)2 (Ay) 
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2v Yll 1 1 II (A + 211) 
- - [- - ( + 2) + + 2 ]l1(pv).al1t 

P 2Pr (l1x)2 (l1y) (l1x)2 (l1y) 

where n+l n l1w = w - w and denote the usual space derivative terms. 

For simplicity we have chosen K = 1, and a denotes the constant in the 

Runge-Kutta scheme (28). Thus the density equation is unchanged. The second 

and third equations can be solved directly for l1(pu), l1(pv). Once l1(pu), 

l1(pv) are known the last equation can be solved for l1(pE). As before these 

corrections imply an effective time step which automatically accounts for the 

viscous time step. In this case the effective time step differs for each 

equation. 

We finally consider the Navier-Stokes equation in body fitted 

coordinates. This can be done either in a finite volume scheme or by using 

transformations. The result is the same in either case [9], and so we shall 

use a transformation for ease of presentation. Let ~ = ~(x,y), n = n(x,y) 

be the body fitted coordinates. We choose the coordinate scaling so that 

l1~ = l1n = 1. The Navier-Stokes equations (20) now become 

2 2 
+ (). + ll)~ ~ a V

2 
+ (A + ll)n ny a V

2 
+ crossterms 

x y a~ x an 
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2 2 
+ (A + u)~ ~ ~ + (A + ~)n n ~ + crossterms (22) 

x y a~2 x y an 2 

2 2 a2
u + [(A + 2~)un + (A + ~)vn n + ~un ] -

x x Y Y an2 

2 2 a2v 
+ [~vn + (A + ~)un n + (A + 2~)vn ] - + crossterms 

x x Y Y an2 

where are first derivative terms and we have ignored all second cross 

derivative terms. As before this generates an appropriate correction term to 

the Runge-Kutta scheme. Equation (21) is now replaced by 

flp = K 
1 

fl(pu) 2[(A + 2~)~2 + ~2 + 2 2] fl(pu) 
= K - (A + 2~)n + ~n aflt 

2 x ~ Y x Y P 

- 2(A + ~)(~ ~ + n n) 
fl(pv) aflt 

x Y x Y P 

fl(pv) = K - 2(A + ~)(~ ~ + n ny) 
fl(pu) 

aflt 
3 x y x P 

2 O. + 21I)~2 + 2 . 2 fl(pv) 
- 2[U~ + lIn + (A + 21I)n ] aflt 

x y x y p 

(23) 
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- 2y~ (2 2 2 2) ~(pE) = K4 - --P-- ~ + ~ + n + n ~(pE)·a~t 
p r x y x y 

+ (A + ~)v(~ ~ + n n) + ~u(~2 + n2)] ~(pu) a~t 
x y x y y y p 

_2[_!.ll(t'2+t'2+ 2+ 2)+ v(t'2+ 2) 2 Pr ~x ~y nx ny ~ ~x nx 

+ (A + p)u(~ ~ + n n) + (A + 2p)v(~2 + n2)] ~(pv) .a6t 
x y x y y y p 

where K
j 

represents the standard finite difference terms. 

As before the density equation is unchanged by the viscous correction. 

Now, however, the two momentum equations are coupled together, unless the 

coordinate system is orthogonal. As we have two equations for ~(pu) and 

~(pv), and we can easily solve these. To simplify the notation we define 

(24) 

and 

Then 
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IIp = K 
1 

6(pu) 
K2 z4 -~ z2 

(25) = D 

K3 zl - K z2 
ll(pv) = 2 

D 

As before given 6(pu) and ll(pv) we can solve for 6(pE) directly from the 

energy equation in (23). We also note that if one uses the thin layer 

approximation (dropping all second ~ derivatives and cross derivatives in 

(22» then these terms simplify slightly. In this case IIp, llpu, llpv are 

still given by (25) with 

z2 = 2allt (~ + p)n p x ny 

(26) 

J = x Y - x Y r; n n r; 

and 

[ 1 + 2ypallt (n 2 + n2 )]Il(PE) = K4 
pPr x y 

- 2[- ~ (yp)(n2 + n 2) + (A + 2p)un2 + (A + p)vn n + pun2 ] ll(pu) 
2 Pr x y x x y y p 

v yp 2 2 2 2] ll(pv) - 2[- - (-)(n + n ) + pvn + (A + p)un n + (A + 2p)un ~~ ·allt. 
2 Pr x y x x y y p 
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IV. RESIDUAL SMOOTHING 

As an alternative method of reducing the effect of the parabolic terms on 

the stability of the scheme we consider residual smoothing. With this 

technique one post-processes an explicit method with an implicit method. In 

practice one post-processes each equation separately and each direction 

separately so that only scalar tridiagonal matrices need be inverted. When 

using a multistage Runge-Kutta method, one can apply the residual smoothing 

after each stage, or at the end of the entire process, or' any intermediate 

permutation. 

In [10] it is shown that one can construct such a scheme for a hyperbolic 

equation so that the total method is unconditionally stable. It is further 

shown in [10] that it is not efficient to use a very large 6t even ignoring 

splitting errors. An optimal 6t is about two to three times larger than the 

explicit time step. We now consider the process for a parabolic problem in 

order to see the effect of viscous terms. 

We, therefore, consider the heat equation 

(27) 

We solve this equation by a k-stage Runge-Kutta scheme 

(1) n + a 1 AtQu u ... U 

· • • 

(.HI) n + a 6tQu(1) u = u 1+1 (28) 

• 

n+l (k) u = u 
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where a
1 

, ••• ,ak are given coefficients with a
k 

= 1. Q is a difference 

approximation to llxx. The amplification factor corresponding to (28) is 

(29) 

where and is the Fourier 

transform of Q. Hence, for second-order central differencing 

Q 
4b sin2(e/2) 

(fix) 
2 

Residual smoothing consists of updating a stage (t) by 

(1 - aD ) flu (.t) 
2 

(t) n 
u - u 

(30) 

(31) 

where D2 is again a second-order central difference approximation to uxx ' 

i.e., D2 -+- (1,-2,1). We now consider two possibilities. In the first we 

apply (31) only after the final stage. Then the new amplification factor is 

51 6tQ + B
2

(6t)2 Q2 + ••• + 5
k

(6t)k Qk 
= 1 + --------------------~---------------

1 + 4a sin2
(6/2) 

(32) 

The second case we consider is applying (31) after every stage. The resultant 

amplification factor is 

(33) 

with 

Q R = ---...:!.---:2°---- • 
1 + 4a sin (e/2) 

(34) 
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We now investigate the possibility that either of these schemes is 

unconditionally stable. To investigate this we need only consider ~t 

sufficiently large. We thus consider ~t + ~ with a +~. Then (32) becomes 

(35) 

We thus see that for keven, G1(a) > 1 and so (28) - (31) cannot be stable 

for ~t large. For k = 1 the scheme is identical with backward Euler for a 

scalar one-dimensional equation and, hence, unconditionally stable. For the 

second case we see that (33) has the same form as a standard Runge-Kutta 
... 

method with Q replaced by R, (34). Hence, it follows that the scheme is 

stable whenever ~tR is within the stability region of the scheme. As 

~t + =, so does a and so there is a cancellation between the numerator and 

denominator; thus, ~tR remains bounded as ~t increases. We thus conclude 

that applying the residual smoothing after each stage can make the scheme 

unconditionally stable even for a Runge-Kutta method with an even number of 

stages. 

We also see from the above argument that as ~t increases so must a. In 

[9], [10] we show that for a hyperbolic equation 

that a is proportional to (a~t/ lY.x)2. For the parabolic problem (27) it 

follows from (35) that a should be proportional to Mt/(~x)2. For the 

combined convection-diffusion equation a will be related to the sum of two 

such contributions. 
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It follows from (33), (34) that if we apply residual smoothing after every 

stage then the stability polynomial has the same form as the original 

polynomial (29). The only difference is that Q is now replaced by R. From 

(34) it follows that the ratio of Q to R is real. Hence, if Q is any 

complex number then R lies along the same ray in the complex plane but with 

a different amplitude. We therefore have shown that if the original scheme 

was unstable for a given direction then residual smoothing cannot stabilize 

the scheme. Furthermore, if the original scheme was conditionally stable then 

by choosing a = a(~t) sufficiently large we can make the scheme 

unconditionally stable. We have thus shown 

Theorem: Let Q be the amplification factor for any approximation to the 

convection-diffusion equation and let (29) be the stability polynomial for a 

k stage Runge-Kutta scheme. We now apply residual smoothing, (31), after 

every stage of the scheme. If the original scheme was unconditionally 

unstable then the new scheme is still unconditionally unstable. If the 

original scheme was conditionally stable then the scheme with residual 

smoothing can be made unconditionally stable by choosing a(~t) sufficiently 

large. 

Hence, if the smoothing is applied at the end when solving a parabolic 

equation, then the scheme can be unconditionally stable only when using a 

multistage scheme with an odd number of stages. When the smoothing is done 

after each stage, the scheme can be stabilized for a large. For a system 

with a hyperbolic portion and a small parabolic contribution, e.g., high 

Reynolds number Navier-Stokes, the residual smoothing is most effective with a 
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time step about twice that of the explicit convective portion. Hence, the 

question of unconditional stability is somewhat academic. In practice [8} the 

Runge-Kutta scheme for the Navier-Stokes equations is used with four stages 

and with the residual smoothing applied after each stage. 

v. RESULTS 

In this section we present some results for viscous flow obtained using 

the analysis of Sections II and III. We used a Runge-Kutta code to s~lve the 

Navier-Stokes equations for two flows about an airfoil section. The details 

of this code are discussed i~ [5], [9], [10], [11]. In these cases we 

considered only the thin-layer form of the Navier-Stokes equations. 

For the first case we computed laminar flow over an NACA 0012 airfoil with 

a free-stream Mach number M 
00 

of 0.5 and a Reynolds number Re 
00 

of 

5 x 103 • The angle of attack (a) of the airfoil was zero degrees. Ha1£-

plane calculations were performed using a C-type grid consistin~ of 64 cells 

in the streamwise direction and 64 cells in the normal-like direction. The 

grid spacing at the airfoil surface was about 6 x 10-4 chords. The mesh 

spacing in the streamwise direction over the central part of the airfoil was 

~x = 0.05 chords. Results for this case are shown in Figures la - Ie. As 

indicated in Figure lb, the flow separates at X = 0.817 chords. The size of 

the recirculation zone is displayed in Figure Ie. The results are all 

independent of the time step procedure used to reach the steady state. 

In Figure ld convergence histories for this case for two calculations are 

shown. The residual displayed in this graph is the root mean square of the 

residual of the continuity equation. The calculations were started 
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impulsively by inserting the airfoil into a uniform flow and immediately 

enforcing the appropriate boundary conditions. Local time stepping and 

enthalpy damping, (see [9]) were employed in each computation; no residual 

smoothing was used. For history A the Runge-Kutta scheme with the time step 

(~t) limitation determined by convection was used; this required choosing a 

CFL = 1.0. For curve B a larger Courant-Friedrichs-Lewy (CFL) number was 

used by accounting for the diffusion limit on ~t with the pseudo-time 

algorithm. This allowed choosing CFL = 2.5 based on an inviscid 

criterion. There is additional work with the pseudo-time scheme. 

Nevertheless, the computational time required to reach a satisfactory level of 

convergence was reduced by a factor of 1.7. 

In the second case we solved for turbulent flow over an NACA 0012 airfoil 

with M= = 0.5, Re= = 2.89 x 106 , and a = 0 degrees. A 60 x 50 half-plane 

grid was used in the computations. The grid spacing at the surface was about 

-5 8.5 x 10 chords. The chordwise spacing at the midsection of the airfoil 

was about ~x = 0.036 chords. Numerical results for this case are presented 

in Figures 2a and 2b. 

Figure 2c shows two convergence histories for this turbulent flow case. 

As in the laminar flow problem, the histories were obtained by computing 

without and with the effects on ~t due to diffusion. The pseudo-time 

algorithm was about 1.4 times faster in reaching steady state. This is close 

to the factor expected, since we were able to increase the CFL from 1.5 to 

2.7, a factor of 1.8. We do not achieve this speedup of 1.8 since there is 

some reduction of the effective time step due to the diffusion terms. 
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VI. CONCLUSIONS 

The use of the Crocco scheme for a scalar convection-diffusion equation 

introduces a scaling of the time step. This reduces the effective time step 

so that the viscous stability limit is automatically satisfied. As such the 

scheme cannot introduce any fundamental acceleration 1n reaching the steady 

state. The advantage of the scheme is that we "do not need to explicitly 

account for the viscous time step restriction; it is done automatically. This 

can be done efficiently using Runge-Kutta type schemes. In addition, for 

variable coefficients or nonuniform meshes this introduces an effective local 

time step. 

Using this scheme for a system of equations, e.g., Navier-Stokes, has the 

additional benefit that a different scaling is chosen for each equation. Thus 

each equation has its own appropriate (viscous) time step. This is equivalent 

to using a diagonal preconditioning [10] to accelerate the equations to a 

steady state. Computations demonstrate that we can gain a factor of between 

1.5 and 2 with little programming effort. 

We further show that if one uses residual smoothing to increase the time 

step then one must also account for the viscous terms. When the smoothing 1s 

applied after the completion of a Runge-Kutta cycle then unconditional 

stability is possible only if an odd number of stages is used. Applying the 

smoothing after each stage allows for unconditional stability for all 

multistage schemes provided a is chosen sufficiently large. 
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FIgure Captions 

Figure lao Surface pressure distribution for laminar flow over an NACA 0012 

airfoil (M = 0.5), Re 
"" "" 

= 5 x 103 , a = 0 degrees). 

Figure 1 b. Skin-friction (based on free-stream conditions) distribution for 

laminar flow over an NACA 0012 airfoil (M = 0.5, Re = 5 x 103 , 
"" "" 

Figure Ie. 

a = 0 degrees). 

Streamlines for upper surface at the trailing edge 

Re = 5 x 103
, a = 0 degrees). 

"" 

(M = 0.5, 
"" 

Figure Id. Convergence histories for laminar airfoil flow calculations. 

A -- Runge-Kutta scheme without pseudo-time algorithm (CFL number 

of 1.0). 

B -- Runge-Kutta scheme with pseudo-time algorithm (eFL number of 

2.5). 

Figure 2a. Surface pressure distribution for turbulent flow over an NACA 0012 

airfoil (M = 0.5, Re = 2.89 x 106 , a = 0 degrees). 
"" "" 

Figure 2b. Skin-friction (based on free-stream conditions) distribution for 

turbulent flow over an NACA 0012 airfoil (M = 0.5, 
"" 

Re 
"" 

6 
= 2.89 x 10 , a = 0 degrees). 
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Figure 2c. Convergence histories for turbulent airfoil flow calculations. 

A -- Runge-Kutta scheme without pseudo-time algorithm (CFL number 

of 1.5). 

B - RUnge-Kutta scheme with pseudo-time algorithm (CFL number of 

2.7). 
" 
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