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Gliding descent in autorotation is a maneuver used by helicopter pilots in case

of engine failure. It requires considerable skill, and since it is seldom practiced, it

is considered quite dangerous. In fact, during certification, a region of low altitude

and low velocity (the H-V restriction zone) is established where it is considered

impossible to make a safe descent.

The landing of a helicopter in autorotation is formulated as a nonlinear op-

timal control problem. A simplified point-mass model of an OH-58A helicopter

is used in the study. The model considers as its states the helicopter vertical and

horizontal velocities, vertical and horizontal displacements (from the point at which

engine-failure occurred), and the rotor angular speed. It provides an empirical ap-

proximation for the induced velocity in the vortex-ring state. The cost function of

the optimal control problem is a weighted sum of the squared horizontal and vertical

components of the helicopter velocity at touchdown. The control (horizontal and

vertical components of the thrust coefficient) required to minimize the cost function

is obtained using nonlinear optimal control theory.

A unique feature in the present problem formulation is the addition of path

inequality constraints on both the control and the state vectors. The control variable

inequality constraint is a reflection of the limitation on the rotor thrust coefficient.



The state variable inequality constraint is an upper bound on the vertical sink-rate

of the helicopter during descent. "Slack" variables are employed to convert these

path inequality constraints into path equality constraints. The resultant two-point

boundary-value problem with path equality constraints is successfully solved using

the Sequential Gradient Restoration Technique.

Optimal trajectories are calculated for entry conditions well within the H-V

restriction curve, with the helicopter initially in hover or in forward flight. Solu-

tions are essentially discontinuous, i.e., they consist of variable subarcs which are

connected at suitable corners. Subarcs are those which satisfy either the Eulerian

equations, the upper bound on the thrust coefficient, or the bound on the maximum

rate of descent. The optimal solutions exhibited similar control techniques as are

used by helicopter pilots in actual autorotational landings. The results indicate the

need to drop the collective pitch immediately after engine failure. During the land-

ing flare phase, the thrust vector is rotated to the rear in order to decelerate the

forward motion of the vehicle. The stored rotational energy of the rotor is traded

for additional thrust to cushion the landing at touchdown. The study indicates

that, subject to pilot acceptability, a substantial reduction could be made in the

H-V restriction zone using optimal control techniques, thus providing a benchmark

for comparisons with other control techniques.

These optimization techniques could also be used to:

(1) help instruct pilots on good autorotation technique.

(2) reduce the risk/time/effort involved in establishing the H-V restriction zones

by flight tests.



(3) provide an objective comparison of the autorotation capabilities of different

helicopter models.

(4) assess the influence of vehicle parameters on autorotation during preliminary

design.
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Abstract

Gliding descent in autorotation is a maneuver used by helicopter pilots in case

of engine failure. It requires considerable skill, and since it is seldom practiced, it

is considered quite dangerous. In fact, during certification, a region of low altitude

and low velocity (the H-V restriction zone} is established where it is considered

impossible to make a safe descent.

The landing of a helicopter in autorotation is formulated as a nonlinear op-

timal control problem. A simplified point-mass model of an OH-58A helicopter

is used in the study. The model considers as its states the helicopter vertical and

horizontal velocities, vertical and horizontal displacements (from the point at which

engine-failure occurred), and the rotor angular speed. It provides an empirical ap-

proximation for the induced velocity in the vortex-ring state. The cost function of

the optimal control problem is a weighted sum of the squared horizontal and vertical

components of the helicopter velocity at touchdown. The control (horizontal and

vertical components of the thrust coefficient) required to minimize the cost function

is obtained using nonlinear optimal control theo_'.

A unique feature in the present problem formulation is the addition of path

inequality constraints on both the control and the state vectors. The control variable

inequality constraint is a reflection of the limitation on the rotor thrust coefficient.

The state variable inequality constraint is an upper bound on the vertical sink-rate

of the helicopter during descent. "Slack" variables are employed to convert these

path inequality constraints into path equality constraints. The resultant two-point

boundary-value problem with path equality constraints is successfully solved using

the Sequential Gradient Restoration Technique.
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Optimal trajectories are calculated for entry conditions well within the H-V

restriction curve, with the helicopter initially in hover or in forward flight. Solu-

tions are essentially discontinuous, i.e., they consist of variable subarcs which are

connected at suitable corners. Subarcs are those which satisfy either the Eulerian

equations, the upper bound on the thrust coefficient, or the bound on the maximum

rate of descent. The optimal solutions exhibited similar control techniques as are

used by helicopter pilots in actual autorotational landings. The results indicate the

need to drop the collective pitch immediately alter engine failure. During the land-

ing flare phase, the thrust vector is rotated to the rear in order to decelerate the

forward motion of the vehicle. The stored rotational energy of the rotor is traded

for additional thrust to cushion the landing at touchdown. The study indicates

that, subject to pilot acceptability, a substantial reduction could be made in the

H-V restriction zone using optimal control techniques, thus providing a benchmark

for comparisons with other control techniques.

These optimization techniques could also be used to:

(l'i :hgJP instruct pilots on good autorotation technique.
, ,:,_. _ _: _ -_._;

(2)':__h_ _-isk/time/effort ! involved in establishing the H-V restriction zones

by flight tests.

(3) provide an objective comparison of the autorotation capabilities of different

helicopter models.

(4) assess the influence of vehicle parameters on autorotation during preliminary

design.
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Chapter 1

Introduction

§I.I Background and Motivations of Rese_

The unique autorotation capability of the helicopter is an inherent safety feature

which is heavily relied upon during power failure emergencies. However, the au-

torotation maneuver, which places great demands on pilot skill, is an unfamiliar

_::_t he!ico_ pilots. The vulnerability to power failure has received re-

ne_:_:-_'_rest:_ateiy:_due to the increased mil|tary tactical emphasis on nap-of-earth

(NOE) operations which require helicopter flight within the restricted areas of the

height-velocity curve.

Fig. (1.1.1) shows a typical height-velocity restriction diagram. The "avoid _ area

of this curve defines a region of height and speed combinations from which a given

helicopter, operated by a pilot of Saverage _ skill_ cannot make a safe landing should

the power source fail. Outside of the avoid area, the pilot has sufficient leeway to

bld, Lll_ LI_I_/.II, _,/.IU, d, zl _,l..,,¢g;s.L w_.,, u.A,a,,u.,.uo._a.,. ""'_'"IL _,J .....................

sink rate at touch down, and thus accomplish a safe landing.
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While the frequency of emergency autorotative landings has decreased over the past

several years due to improvements in the reliability and maintenance of helicopter

engines, the percentage of unsuccessful landings resulting from emergency autoro-

tations has remained high. United States Army Safety Center accident statistics

reveal that at least 27 percent of all autorotative landings involving single engine

helicopters result in some degree of vehicle damage or personnel injury [ Reference

1]. Fig. (1.1.2) shows that most of these emergency landings are related to engine

failure.

§1.2 The Autorotation Maneuver and Related Research

The transient dynamics and control of a helicopter after engine failure have been

studied both analytically !2,3!. and experimentally !4-10. The immediate and obvi-

ous effects of power loss are rotor rpm decay and out-of-trim rotational accelerations

(notably, left yaw). From the standpoint of minimizing rotor rpm decay, the collec-

tive pitch must be reduced immediately. This is especially true when collective pitch

_d:.co_quen_ _.._,_elare high. Heavy weight, high altitude, hover and vertical

_b _ tl_e _tca:! conditions.

Typically, the maneuver of the helicopter, from pilot recognition of engine failure

to touchdown, can be divided into three phases. The entry phase consists mainly of

the arresting angular motion of the vehicle and main-rotor rpm decay. During the

steady-state descent phase, air flows upward through the rotor disk. The increase

in angle of attack on the rotor blades offsets the reduction in the collective pitch

angle. Total aerodynamic force is increased and inclined forward so equilibrium is

established. Potential energy of the vehicle can also be traded for kinetic energy in

order to attain desired steady-state descent airspeed that correspond to minimum

sink rate or minimum descent angle.
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To perform the final phase of an autorotative landing, the pilot must reduce airspeed

and sink rate just before touchdown. Both of these actions can be accomplished by

moving the pilot's cyclic control stick to the rear. The rearward oriented rotor disk

allows a larger volume of air to flow through it, resulting in an increase in the total

lifting force. The increased aft-directed thrust will reduce both the airspeed and

sink rate. Kinetic energy of the vehicle has been converted into lift (in the forms of

profile and induced power losses), as well as rotor energy. Finally, the collective is

raised to convert the stored rotor energy into lift which further cushions the landing.

Various methods and devices have been proposed to improve helicopter autorota-

tional characteristics. One passive autorotation augmentation concept is to store

energy in the helicopter main rotor by using blades with high inertia. Flight demon-

stration of the concept, the High Energy Rotor System (HERS), was conducted by

Bell Helicopter and documented in references [11,12]. In addition to reducing the

H-V restriction curves, the HERS can also provide increased maneuverability and

performance. However, the high payload weight penalty makes HERS unattractive

for all single engine helicopters.

Active autorotation augmentation concepts have also been explored. References

11;13 and 14] list tip jets, flywheel and auxiliary turbines as the three most promising

concepts that can provide an additional source of energy to the system with payload

weight penalty of only 3 to 8 percent. Based upon simulation results, these authors

conclude that the autorotative characteristics of single engine helicopter can be

substantially improved.

In comparison with the concepts of active energy addition and passive energy stor-

age, the concept of optimal control management as a means of improving autoro-

tation characteristics of a helicopter has received relatively little attention. Here,
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improved autorotation performance is achieved only by the management of available

energy. No supplemental energy is used.

Johnson '15' used nonlinear optimal control theory to study the autorotative descent

and landing of a helicopter in hover. He found that the optimal descent is purely

vertical. A comparison of the optimal control procedure with flight tests showed

sufficient correlation to verify the basic features of the mathematical model used.

§1.3 Objectives of Research

The primary objective of the research is to study the possible reduction in height-

velocity restrictions for the autorotational landing of a helicopter using optimal

control techniques.

A secondary objective is to develop numerical optimization algorithms that incor-

porate the practical constraints that are involved in executing the maneuver.

§1.4 Outline of Thesis

In Chapter 2, the control of a helicopter after engine failure is formulated as an

optimal control problem using a simplified point mass model representing an OH-

58A helicopter equipped with high inertia blades. The formulation contains path

inequality constraints, reflecting limitations on the rotor thrust coefficient and vet-
o

tical sink rates acceptable to pilots.

In Chapter 3 the numerical optimization algorithms used to solve the problems

posed in Chapter 2 are described.
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In Chapter 4, results obtained for optimal autorotative landings of the modeled

helicopter with entry conditions both inside and outside of the height-velocity re-

striction curve are presented. These results are compared with those obtained from

the HERS flight tests 112, that used a similar helicopter to the one modeled for the

research.

Finally, in Chapter 5 we discuss the potential usefulness of the optimal procedure

in the reduction; or even elimination, of the height-velocity restriction curve. Areas

of further research are also recommended.

The major contribution of this research is in the formulation of a general optimal

autorotative descent problem with path inequality constraints, reflecting limitations

on the thrust coefficient and vertical sink rate. This problem was successfully solved

using the Sequential Gradient Restoration (SGR) technique.

In the course of the research, the potential usefulness of two other numerical op-

timization techniques was identified and algorithms developed. The Combined

Parameter and Function (CPF) optimization algorithm extends the capability of

FCNOPT [161 to include an unknown parameter vector in the formulation of the

optimal control problem. The algorithm SECOND computes neighboring feedback

control laws for optimal control problems with path equality constraints.

In addition to its potential usefulness in the reduction of height- velocity restriction

for helicopter flight, the optimal control procedure can also be used for:

(1) assessing the influence of basic parameters on the helicopter autorotation

characteristics during the preliminary design process;

(2) reducing the time and risk involved in the establishment of the I-I-V restric-

tion curves during the helicopter certification process;
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and (3) providing an objective comparison of the autorotation capability of

different helicopter designs.



Chapter 2

Problem

Formulation

In this chapter, the landing of a helicopter afterengine failureis formulated as a

dynamic optimization problem. The assumptions made in the derivation of the

dynamic model are stated first.The cost function of the optimal control problem

is formulated as a weighted sum of the square of sink rate and forward speed at

touchdown. Path inequality constraints,reflectinglimitationson the thrust coeffi-

cient and sink rate, are then introduced. Finally,the end conditions are added to

§2.1 The Need to Simplify

The solution of a high-order nonlinear optimal control problem is a difficulttask.

Practical engineering problems, likethis one, need to be simplifiedbefore current

optimization techniques can be applied. Practicalconsiderations suggest the use of

an approximate mathematical model of low order which can describe the dynamic

system within some tolerabledegree of error. Solutions obtained from a simplified

model of the system often provide a good physical understanding of the problem.

More accurate models can then be used, ifnecessary, to include secondary effects

which were ignored in the simplifiedmodel.
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§2.2 Basic Assumptions

We simplify the problem here by :

(A) considering only motion in a vertical plane:

(B) using a point mass model:

(C) using a simplified induced velocity model where:

(1) dynamics of induced velocity are neglected:

(2) triangular induced velocity distribution is assumed over the rotor disk:

(3) an empirical determination of induced velocity in the vortex ring

stale is used;

(D) modeling power losses as follows:

(1) compressibility and tail rotor power losses have been neglected;

(2) parasite drag of the fuselage is modeled as an equivalent flat plate area;

(3) mean profile drag coefficient is assumed constant and independent of the

angle of attack on the rotor's blades.

(4) ground effect is neglected;

(E) neglecting winds and variations in air density.

Motion in a vertical plane was assumed to keep the number of state variable low
o

for the optimization codes. Extension of the point-mass model to three-dimensional

motions would be straight forward and would include two additional states (heading

angle and lateral position), and two additional controls (lateral component of thrust

coefficient and yawrate).
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Justification of assumption (B) is made through a comparison of the experimentally

determined steady state sink rate of an OH-58A helicopter in autorotation :121 with

that computed using the point mass model (cf. Appendix A). Figure (2.2.1) shows

that the computed steady" state sink rate falls between the upper and lower bounds

of the experimentally determined data. Therefore the neglected pitching motion

of the helicopter in the point mass model does not enter the dynamic performance

equations in a significant way.

The modeling of induced velocity for a helicopter operating in the vortex ring state

is a difficult task. The approximate formula given by Johnson 1151, based upon

experimental results obtained by Washizu et al 117], is used in the present research

work. Since the vortex ring state is a condition with high induced power loss, it is

avoided during autorotation in any" event. The error introduced by the approxima-

tion should be minimal.

No attempt has been made to incorporate an equation to describe the time rate

of change of induced velocity. A simple first order inflow lag was developed in

relies :19_'0:: and}could be used to refine the present formulation.

It is welt known that the power required to hover near the ground is less than that

required for hover out of ground effect [21]. However, this performance benefit of

operating near the ground diminishes rapidly as the airspeed increases [22]. Ground-

based simulator experiments on the control of a helicopter after engine failure and

autorotation landings have shown only a minor role played by ground effect in the

overall autorotational performance of a helicopter [23]. Ground effect is therefore

neglected in the present study.

Finally, it is difficult to include the effect of atmospheric disturbances in an open-

loop optimal control problem. However, neighboring feedback control laws could
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be computed along the nominal optimal path, to convert the open-loop solution

into closed-loop feedback laws. Deterministic effects of steady wind could easily be

incorporated in the model.

§2.3 Equations of Motion

2.3.1 General Considerations and Coordinate System Used.

The problem considered here is to find the controls after engine failure to arrive at

the ground with acceptably small forward and vertical velocity. The helicopter is

assumed to be in equilibrium level flight at the time of engine failure, with rotor

speed n, forward speed u, and height h0.

It is convenient to define the aircraft position from the point of engine failure by

the coordinates h and x in the vertical and horizontal direction respectively. Fig.

(2.3.2) shows the coordinate system used. The point at which the engine fails is

therefore h= O, and h= ho is the ground.

,. ,' , ..

Va_ous' choices of eot_rol variables are possible. One choice is the rotor thrust

coefficient CT, and the angle the thrust vector makes with the vertical a. Since a

is not well defined when CT becomes very small, and in anticipation of the small

value of CT when the collective pitch is lowered after engine failure, it is preferable

to express the problem in terms of the vertical and horizontal components of CT:

CT, = CT cos a,

CT, = CT sin a.

(1)

The collective pitch control required to obtain this thrust may then be obtained

from blade element theory as in [24]:
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Figure 2.3.2 Coordinate system used
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where 0_5 is the rotor collectivepitch angle at 75 percent span, while o and a are

the rotor solidityratio and rotor blade two dimensional liftcurve slope respectively.

The quantities p and A are respectivelythe advance and inflow ratiosdefined in the

tip path plane. With reference to Fig. (2.3.2),the advance ratio p and inflowratio

A are defined as follows:

_coso + wsino
/2"--

aR
ttsina- wcosa + v

A=
f_R

Here w is the vertical velocity, and u is the forward velocity of the helicopter with

respect to the inertial frame. 12 is the rotor angular velocity, and v is the induced

velocity of the rotor disk. Note that A is defined positive in the positive direction
-_ .,- . •

o_i_::Wh_i# is, d$__ :positive in the negative direction of x.

It is not possible to obtain the longitudinal cyclic pitch control from CT and a

without considering the helicopter pitch attitude, and the rotor flapping also. But

the sign and magnitude of CTz provides information about the orientation of the

rotor disk in space.

2.3.2 Dynamic Equations.

With reference to Fig. (2.3.2) , vertical and horizontal force balances give:

rn@ = rag- Tcosa-e Dsin0,

rnfi= Tsino - Dcos0,

(3)
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Here T is the rotor thrust. The helicopter parasite drag D is defined by an equivalent

fiat plate area fe as:

1

D=  ov h,
1

(4)

The angle 0 which the resultant velocity vector V makes with the horizontal can be

eliminated from equation (2) by the relationships:

sin 8 -
_/tl 2 -r W2

U
COS 0 --

V/u 2 -k- w 2

(5)

:Note that 8 is undefined when both u and u, approach zero. However, the corre-

sponding components of parasite drag in the vertical and horizontal direction al_o

approach zero under these conditions:

1
DsinO= _pfewv/_ 2-ru, 2_0

1

Dcos0 = 2 ore u X/t_ 2 -:- w 2 ----, 0

(6)

2.3.3 The Energy Model.

A unique characteristic of the helicopter, as opposed to a fixed wing aircraft, is in

its ability to store energy in the main rotor. The main rotor will accelerate when

the torque supplied by the engine exceeds the torque required on the main rotor

shaft. The torque balance equation can be expressed simply as:

1Rfi = -Q,

= -[p(Tr R2)(flR) _R] Cv.

(6Q)

(6b)
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and the energy balance equation of the rotor system is given by:

IR = Ps -- PR (7)

Here IR is the total rotational inertia of the rotor system and CQ is the torque

coefficient. It can be shown that the torque coefficient CQ is the same as the power

coefficient Cp [24:. Therefore, we can substitute Cp into equation (6b) for the

torque balance equation. Ps is the power supplied by the engine and available on

the main rotor shaft, after losses associated with driving the tail rotor, gearboxes,

etc. have been deducted. In the event of complete engine failure, power supplied

to the main rotor is reduced to zero (in fact, shaft power may even be negative

due to mechanical losses or residual tail-rotor profile losses, etc.). PR is the power

required on the main rotor shaft to generate lift and propulsive thrust, and also to

overcome blade profile drag. The induced power (associated with the generation

of thrust) and propulsive power (power required to overcome parasite drag on the

fuselage and to accelerate the helicopter forward) can be computed using momentum

i i.:,'- : _ on the toCov blades be obtained blade element theory._ :_,..............._.......... must by

2.3.4 Momentum Theory.

In the momentum theory approximation, the rotor affects only the air passing

through the rotor disc. As the air flows through the rotor disc it experiences a

velocity increase tY perpendicular to the disc (the induced velocity). The thrust

generated by the rotor is equal to the rate at which momentum is imparted to the

flOW:

f = -p R Iv - (8)

since the total velocity imparted to the air flowing through the disc is 2z7 (cf. [25!).
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The momentum power, which is the sum of the induced and propulsive powers is

simply the rate at which energy is transmitted to the air due to the helicopter flight.

It is the scalar product of the thrust and the resultant velocity of the flow through

the actuator disk:

PM = T" (V - _) (9)

The first term in equation (9), Pp = T- I7, represents propulsive power. This is the

power required to accelerate or to climb against parasite drag. The term is negative

in autorotative flight. The rotor is then like a windmill, extracting energy from the

air as it sweeps through it.

The second term, Pt = -T" P, represents the induced power required to produce

thrust. It is always positive since the induced velocity vector is always oriented in

a direction opposite to the thrust generated.

,Momentum theory cannot account for induced power inefficiencies such as tip loss

(similar to a rotor with reduced blade size) and those due to non-uniform inflow

distribution. A tip loss factor of 0.97 has generally been assumed in helicopter

research and has been neglected in the present work for simplicity.

For a given thrust, a uniform inflow distribution minimizes the induced power loss.

A non-uniform inflow distribution raises the induced power by a factor of/Qn4 and

the actual induced power requirement becomes:

P, = -Km¢l T" _ (10)

where Kind is the ratio of non-uniform inflow to uniform inflow induced power

requirements. For a triangular downwash distribution, Km_ is given by } (_)3, or

approximately 1.13.
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2.3.5 Modeling the Induced Velocity.

The induced velocity, v is approximated by. Johnson rtl5_ as:

rf/- P = KmdVh fl fG. (11)

where the symbols are defined below.

The ground effect factor fG is taken to be unity in the present study.

constant, approximated by i191:

0.21
T--

l,XI no

r is a time

(12)

no is the nominal angular speed of the rotor and is on the order of 37.0 rad/sec for

OH-58A helicopters. A is the inflow ratio which is of the order of 0.04 (for example,

Ahot, er=0.039). The value of r calculated using equation (12) is on the order of 0.14

seconds and may be neglected in our analysis.

v_ is a reference velocity defined by:

= R2n2(-_-) (13)

Finally, the induced velocity parameter fl is defined as the ratio of the actual

induced velocity to the reference velocity defined in equation (13). For the deter-

mination of ]1, the following expression is used [15]:

z.0/V/(t_+ (t, ÷ f_)2), If (2_,+ 3)2÷ t] > 1.0,fl
[ _1(0.3732_ + 0.598_ - 1.991), otherwise.

(14)
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where the parameters xl and _2 are defined as follow:

•T2 =

u sin _ - u, cos

b, h

t/sin o -- t/' COS O

t/ COSO -- wsinQ

/I h

COS _r _ W sin o_

(15)

(16)

The first expression for fl is the familiar momentum theory result. The second

expression is an empirical approximation for the vortex-ring state (where the mo-

mentum theory breaks down). The region of roughness in the vortex-ring state is

defined approximately by (2_1 - 3) _ + _I _< 1.0 '17. An approximate three dimen-

sional picture of the variation of f! with xl and t_ is given in Fig. (2.3.3).

2.3.6 Profile Power and the Blade Element Theory.

Accurate descriptions of the profile power require extensive wind tunnel tests to

determine the effects of thrust coefficient, advance ratio, and angle of attack of

the rotor's blades on rotor performance. However, in hover and level unaccelerated

flight, a limited power series expansion of the profile drag coefficient in terms of mean

blade lift coefficient and advance ratio offers a convenient although approximate

description of the profile power requirement.

Following simple blade element theory, the profile power is traditionally referred to

by an equivalent profile drag coefficient:

P_o = C_o p _rR 2 (f_R)3 (17)
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The factor Cp, o is the equivalent profile drag coefficient which may be approximated

by 1241:

z (6cr
cmo= §at.d(1-" --o )2)(1-4"6p2) (18)

where Cd is the mean profile coefficient of the rotor's blades. With the assumed use

of the NACA 0012 Airfoil on the main rotor's blades of an OH-58A helicopter, the

value of _d may be taken as 0.0087 24 _ With values of # and err of the order of
* a

0.15 and 0.06 respectively, both squared terms in equation (18) have been neglected.

This is acceptable, as the profile power usually represents a small part of the total

power requirement for helicopters.

2.3.7 The Energy Equation.

The total power required on the main rotor shaft is obtained by adding the mo-

mentum and profile powers together:

PR = PM + P_'o

= f.17- K,.df._+ Ppro (19)

We next consider the force balance equation of the helicopter in accelerated forward

flight (see Fig. (2.3.4)):

L

,_v= f+ rag+ b

therefore rnV-V = ]F. 17 ,_ mr. 17 -r/). I7

(2o)

(21)

note that:

and

-- d(_m V V = _ mV 2) (22)

• d

rag. 17 = -d5 (mgH) (23)
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where H is the height of the helicopter measured in a direction opposite to that of

_" from an arbitrary datum.

By suitably combining equations (7). (19). (21). (22) and (23) and introducing the

fuselage parasite power as :

Ppa,a = - D. V

1

2 pl'3fe (24)

(where fe is defined in equation (4)), the time rate of change of the total energy is

obtained :

d (rngH --- lrnI'2 + llRfl2 ) = Ps - (P, + Pmo * P_ra). (25)
dt 2 2

and the corresponding torque balance equation is :

IRfi= -Q,

= --!p(rr R2)(f'IR)2R: Cp.

where Cp is given by:

(25a)

1

Cp = -80_d - CT A, (25b)

This energy conservation equation corresponds to the principle that any excess

power supplied by the engines that is not dissipated by the helicopter is stored as

internal potential, kinetic or rotational energy. Obviously, the internal energy level

of the helicopter can only increase if the engine power supplied on the main rotor

shaft exceeds the total power required. This excess power may be used to climb, to

accelerate, or to increase rotor speed.

Conversely, in the event of engine failure, the total power or energy will decrease

at a rate which depends on the helicopter's airspeed, main rotor thrust, angle of
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attack and rotor RPM. The pilot's task during autorotative flight is mainly one

of :Energy Management. This can be achieved through control of the thrust

vector during descent with the desired result that the aircraft can be landed at a

desired (achievable) location with small vertical and forward speeds. At the same

time, during the deceleration phase, the pilot must prevent the main rotor from

overspeeding which would lead to unacceptable blade centrifugal stresses. This

task is by no means easy.

2.3.8 Kinematical Relations.

The kinematical relations needed in the formulation of the optimal control problem

are given simply by :

_:--U

(26)

(27)

Note that these relations are coupled only one way to the dynamical relations. Since

h = _: is a hard terminal constraint on the optimal control problem, equation (26)

is al_s r_t_clecl in i_ formulation. Equation (27) may however be removed, unless

there is also a hard Constraint on the terminal horizontal distance (as in the case

where the helicopter is forced to land at a particular spot, perhaps due to terrain

considerations). The removal of equation (27) will reduce the order of the problem

and will facilitate the numerical solution. Information on the horizontal distance

travelled may be obtained through the forward integration of equation (27) after

the optima] time history of the forward speed has been found.

§2.4 Non-dimenslonalization and Scaling
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The efficiency and rate of convergence of numerical optimization methods depends

critically on the scales used for the variables invoh'ed. This is especially true in

nonlinear problems "26 I. A "well scaled" problem is one in which similar changes

in the variables lead to similar changes in the cost function. Now consider a typical

situation where the engine of the helicopter fails while it is cruising at a forward

speed of 40 Knots and at an altitude of 400 ft . The magnitude of the thrust

coefficient CT used just before engine failure is of the order of 0.003. Rotor speed

before engine failure is 354 rpm The different units used by the state/control

variables, and the range of magnitude that these variables will assume in subsequent

autorotative descent flight, clearly indicates the need to normalize and to scale.

The equations of motion may be non-dimensionalized using the quantities no and

R. Here fl0 is the nominal angular speed of the rotor before engine failure and R

is the radius of the helicopter's rotor. Scaling factors of 10, 100 etc. are used for

convenience. Non-dimensionalized and scaled quantities for the time, states, and

controls used in the analysis are defined as follow:

(a) Normalized time:

r = t, (2s).1-b-6 

Hence, one unit of r corresponds to about 16 rotations of the rotor.

From here onward, the notation ( )_ will be used to represent differentiation with

d 100 d
()'- - (28a)

dr f_o dt

(b) Normalized states:

W

x, = (o.olnoR), (20)

respect to the normalized time r, where:
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and

u

=2 = (0.0]n0R), (30)

• 3= (_o), (31)
h

•_= (1--_), (32)
2"

•5 = (1-5_). (33)

(c) Normalized controls:

therefore :

u_ = ]03cr,, (34)

u2 = ]o3cT=, (35):

lo_cr = (.= + _=2)_. (36)

The effects of these normalizations are first to convert the time, state and control

variables into dimensionless quantities, and second to scale them so that they all

have order of magnitude one.

If in addition, we also define the following dimensionless constants for the system:

:f i ¸_,¸ , , 104g

go = no;_---_

10p_rR 3
rn 0 --

m

20rR 2

pTrR s
io-

10IR

co = _Oed(lO 3)

K=nd

I,o= o.o1(_)

(37)

The resultant dimensionless equations of motion are then given by:
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(a) Dynamical relations (see equations (3) and (7)):

zl _ = go - mo(_)x32 -_ ]zl\":tl 2 -- x2_),

x2' = rno(u2x32 - ]x2X/X_ 2 -- x22) •

z3' = -ioz32(co + Av/ul 2 _ u22).

(39)

(40)

(40)

(b) Kinematical relations (see equations (26) and (27)):

2:4 r = 0.1Zl,

I
x5 = O.lx2.

(41)

(42)

(c) Supporting expressions:

(el) the inflow and advance ratios are (see equations (2a)):

tl sin o -- W COS Ot 1/

Rfl Rfl'

.T2tl 2 -- ZlU 1
= 0.01

,T3\/Ul 2 _- U2 2

u cosa + wsina

= Rfl '

,Z2ttl -'t- z] u 2
= 0.01

X3k,/Ul 2 _- U22

+ kofl(ul _ "r u2_) }. (43)

(44)

(c2) the induced velocity parameter h (see equations (14)-(16)):

X2u 2 -- 21U l
5:1 = P0 (45)

xs(ul 2 + uz2) _-'`
:r2Ul % 2:11/2

e2 = p0 (46)
23(ttl 2 -+- U22) s--'`

where once again, the value of the induced velocity parameter .[1, is determined

from the expressions given in equation (14):
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t

h = 1"0/\/(22 + (_1 + fl)2),

• , (0.373_ - 0.59s_I- 1.991).
if (2t] -_ 3) 2 _ 2_ _> 1.0;

otherwise.

§2.5 Cost Function

The optimization problem is to arrive at the ground with small vertical and horizon-

tal velocities subject to maintaining acceptable conditions during tha autorotative

descent. The cost function, or performance criterion of the problem can therefore

be taken as the weighted sum of the squared normalized sink rate and forward speed

at the time of touch down:

1 2 2

1= _(x]j + _;z2j ) (4T)

Here lYz is the weighting function of normalized horizontal speed relative to vertical

sink rate. Acceptable vertical sink rate at touch down that is compatible with the

shock absorption capability of typical landing gear design is of the order of 8 fps

[1!]:. reasonable value for forward speed at touch down is 3 knots (this is the
,--. ..... .

=__:__ta] airspeed:at touch down for a series of autorotative descent tests

on the HERS helicopter i11]). A suitable value of Wz is therefore:

8

"; = (3 × 1.6ss )2'

= 2.5. (4s)

§2.6 Terminal Constraints and Initial Conditions

The helicopter is assumed to be in equilibrium level flight at the time of engine

failure, with rotor speed Go, forward speed u0, and height of h0. The position of

the helicopter after engine failure is defined with respect to the point at which the
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enginefailure occurred. The coordinat(, systemusedis defined in Fig. (2.3.2)where

h is measured in the downward direction. Therefore, the initial conditions of the

state variables are:

2"10 = O,

3:20 = UO-

z3o = 1, (49)

X40 = 0,

and xs0 = 0

where fi0 is defined to be (_).u

The terminal constraints of the optimization problem include:

Z4l = hi,

xs t = it].

(so)

where:

hi - ho
10R'

dl
d!- IOR"

(51)

Note that, while the first equation of (50) is always needed, the second equation is

used only when there is a hard constraint on the terminal horizontal distance (to

land at a horizontal distance of d! ft away from the point at which engine failure

occurred).

§2.7 Path Constraints

The equivalent profile drag coefficient of the rotor (Cpro, as defined in equation (18)

) increases sharply when the thrust coefficient exceeds the rotor stall limit (_)aatt.

The immediate effect of this increase in profile drag is a drop in the rotor speed. This
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drop in rprn causes an increase in the- angle of attack on the rotor's blades and will

ultimately lead to rotor stall and the instability associated with it. This limitation

on the thrust coefficient requires a path inequality constraint in the optimal control

problem.

A typical value of (-Qr-),tat t for the OH-58A helicopter is 0.15. This value is used
. 8.

in the present study. The path inequality constraint, and its non-dimensionalized

form are:

( ),,.u>

or 7.2 > v/ul _ + u2_ (52)

where:

(103CT).talt = 103( CT ),tatl xo,
0

= 103 x0.15 ×0.048,

= 7.2.

(53)

This inequality constraint can be converted to a path equality constraint as shown

Since (_T.) 2 _>(ul _ + u22)

where C'Toisequal to 7.2.

therefore C'_-0- (ul2 + u22) - u32 = 0. (54)

where _3 is a "slack variable" or artificial control that has been introduced to convert

the inequality constraint into an equality constraint.

The upper bound on the vertical sink rate as an additional path inequality constraint

will be discussed in Section (3.3).
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§2.8 Further Time Normalization

The optimal control problem that has been posed thus far is one with an unspecified

terminal time r1. The problem may be converted into one with specified terminal

time through the following (further) normalization of the dimensionless time r:

7

,, = - (55)
rf

The transformation (55) converts the independent variable from r to ( where ,¢ now

varies from 0 to 1. This transformation introduces into the problem an additional

unknown parameter 7! that has to be optimally selected. We shall from here onward

denote the differentiation with respect to _ by:

( )v d

= rz( )'. (56)

§2.9 Final Form of Helicopter Optimization Problem

We are now in a position to write down the final form of the helicopter optimization

problem, Let:

2 = (zl x= z3 =:4 zs) T,

6 = (_ _= _3)r,

_= (r_).

(57)

(58)

(59)

denote the state, control, and unknown parameter vectors of the problem.
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The problem is to find [_(_) and ff t,o minimize:

1 2
x = _(zll * _;x2s 2) = _(-_s), (60)

subject to :

(1) equations of motion ( _v = f):

xJv = _s(go - mo("Iz3 2 - fx_ \ 'x12 -_ zF)),

x_ v = rlrno(uzx32 - ]x2_;.'x]2 + x22),

z3v = -rlio z3=(co + _x/ul _ + u2_),

z4 v = O.lrlzl,

z5 v = O.lrlz z.

(61)

(2) the initial condition of._ is given by:

-_o = (o, _0,1, o, o) r.

(3) pa_iequality Constraint (S(.X,U,_) = 0 ):

(62)

(u_= + u_2) - ( (u_* + u22)) = - u3z = o. (63)

(4) terminal constraints (t_(._l,_) = 0):

(64)

In the next chapter, a gradient-type numerical optimization technique that can be

used to solve this problem is described in detail. It requires the calculation of
aO



34 2. Problem Formulation

- of (1,,3 matrix), oo (1_5
(5x3 matrix), 03_°/-(5×5 matrix), _ (5_,1 matrix), _

or: (2 x 5 matrix) Detailed expressions of these matrices are given in
matrix ) and _

Appendix (B).



Chapter 3

Numerical

Optimization Techniques

In the previous chapter, the landing of a helicopter after engine failure was for-

mulated as a nonlinear optimal control problem with path equality constraints.

Numerical optimization algorithms that can be used to solve this problem are de-

scribed in this chapter.

This chapter begins with a revie,a" of algorithms for solving optimal programming

problems with bounded controls and 'or states. A combined function and parameter

optimization algorithm is then described. It is an extension of the ordinary gradient-

type numerical algorithm (FCNOPT) [16], to handle the presence of an unknown

parameter vector. In Section (3.3), we describe the Sequential Gradient Restoration

algorithm which can be used to solve optimization problems with nondifferential
o.

path equality constraints. Several transformation techniques are then presented

that convert problems with path inequality constraints to problem with equality

constraints. The chapter ends with a description of an algorithm that can be used

to compute neighboring feedback control laws for optimization problems with path

equality constraints.
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§3.1 Algorithms for Problems with Bounded Controls and/or States

One of the earliest attempts at numerical solution of optimal programming prob-

lems with control or state inequality constraints was made by Bryson et al [27-28.

see also chapter 3 of 29. Necessary conditions for extremal solutions to program-

ming problems with an inequality constraint on a function of the control or state

variables were given. It was shown that, in general, certain terms must be added

to the Hamihonian function during the interval in which the solution curve lies

on the constraint boundary. Furthermore, for inequality constraint functions not

explicitly involving the control variable, one or more functions of the state and time

must satis_" equality constraints at the beginning (the entry corner) of a constraint

boundary interval. The Lagrange multiplier functions are not uniquely defined on

state constraints. In the work reported in Reference 28, a modified version of the

steepest-ascent technique was used in the numerical solution of two atmospheric

entry trajectory problems. An advantage of the method is that improvements in

the control program are not required for the period on the constraint boundary,

making possible a more rapid convergence towards the optimal program. However.

the method requires prior assumptions concerning the number and location of the

junction points.

Inequality constraints on functions of control and/or state variables have also been

treated by several investigators through the use of integral penalty functions [31-331 .

One such scheme [31-321 uses an auxiliary state variable which is the integral of a

quadratic measure of the violation of the inequality constraint, which is brought as

close to zero as is necessary to provide a satisfactorily small violation of inequality

constraint. Rate of convergence to a satisfactory solution is usually slow [29].

McGill [33] developed a generalized Newton-Raphson algorithm based upon essen-
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tially the same idea of reducing the constraint problem to an unconstrained one

by the introduction of an additional state. His approach does not require assump-

tions as to the number and location of junction points. Computational experience

with one example problem (a modified version of the classical brachistochrone prob-

lem) suggests that it may be useful for obtaining solutions to the class of nonlinear

problems with bounds on the state space.

In an extension of the work given in references [27-281,Speyer and Bryson [341

gave a new set of necessary conditions for solution of an optimal programming

problem with a statevariableinequalityconstraint.Itwas shown that unconstrained

arcs must satisfy certain "tangency _ constraints; namely, these arcs must haw

zero values of the state variable constraint function and all of its time derivatives

that do not involve the control function, at both the entry and exit corners of

the constrained arc. These conditions are satisfied automatically if the necessary

conditions of reference [27] are used. However, if one uses the "direct-adjoining"

approach of reference f 1t35_, explicit use must be made of the tangency constraints

at both corners.

L: , ¢ .

_. refe_nce 136: ,. Mehra et a] showed that some of the difficulties associated with

nonlinear programming problems with state variable inequality constraints and sin-

gular arcs arise due to the exclusive use of control variables as the independent

variables in the search procedure. They proposed a conjugate-gradient algorithm

which based its choice of independent variables on the problem constraints. This

choice could result in different combinations of state and control variables as inde-

pendent variables along different parts of the trajectory. Four numerical examples

were successfully solved using this approach. Two of the solved problems had a state

variable inequality constraint and the other two had singular arcs. The inequality

constraint and singular arcs were handled in a regular fashion without explicit use
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of extra necessaryconditions of optimality. This is considered to be a special feature

and an advantage of the method.

In reference [3T_, Maurer e_ al distinguish between two main cases of optimal pro-

gramming problems with bounded state variables, depending on whether the control

variable appears nonlinearly or linearly. The distinction arises naturally from the

fact that a nonlinear optimal control in the first class must be continuous at the

junctions between the interior arcs and boundary arcs, whereas any linear optimal

control in the second class is discontinuous in general. Maurer et al exploited the

fact that the optimal control in the first case must be continuous and satisfy a

suitable augmented Two-Point Boundary-Value Problem (TPBVP). This consists

of the basic two-point boundary-value problem of the Maximum principle, and of

additional differential equations and boundary conditions constructed in such a

way that all the necessary conditions are automatically fulfilled by the solution.

The TPBVP's encountered were solved using the method of multiple shooting [38 I.

Three numerical examples were solved to illustrate the efficiency of the algorithm.

Once again, predetermination of the number and sequence of subarcs of the optimal

solution has to be made prior to the initialization of the algorithm.

Most of the above mentioned methods suffer from the following disadvantages:

(1) it is not known a priori, whether there will be more than one joining of

unconstrained and constrained arcs, and where in time these joining will

occur;

(2) the discontinuities in the Lagrange variables at the junctions of the

unconstrained and constrained arcs are, a priori, unknown, and have

to be guessed and iterated upon.
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To overcome these difficulties, Jacobson et a] 1391 suggested the use of a different

approach. A device suggested by Valentine was used to transform a control problem

with a state variable inequality constraint into an unconstrained one of increased

dimension. With a pth order state variable inequality constraint, it can be shown

that in the transformed unconstrained problem; the pth time derivative of the

slack variable becomes the new control variable. One feature of the transformed

problem is that any guessed nominal control results in a feasible state trajectory,

i.e., the inequality constraint is automatically satisfied. A second feature is that the

transformed problem exhibits singular arcs which correspond, in the original state

constrained problem, to arcs lying along the state constraint boundary.

However, a major difficuhy arises with Jacobson's approach when the number of

state bounds {r) does not equal the dimension of the control vector (rn). In partic-

ular, if m < r_ then one cannot express u as functions of the r slack variables unless

some of these variables are dependent upon each other. Thus one cannot use the

appropriate time derivative of the r slack variables as independent new controls.

Twq___ples without the above difficulty were given in [39 I.

In_d of _in$ the control u in the original problem formulation by appropriate

slack variables and its time derivatives, one can enforce the state/control bound

by the addition of path equality constraints to the original problem. These path

equality constraints are again obtained by the use of Valentine's device on path

inequality constraints. In this way, nonlinear optimal programming problems with

path inequality constraints can be transformed into ones with nondifferential path

equality constraints.

The solution to this class of problems with path equality constraints differs from the

solution without the constraints. The usual approach of backward integration of
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the adjoint-equations and forward integration of the equations of motion cannot be

employed here. This is due to the fact that the computation of the Lagrange mul-

tiplier p-(t) (associated with the path constraints if) over the time interval requires

the simultaneous solution of both the adjoint-equations and the equations of mo-

tion. Because of the coupling, the total system must be integrated simultaneously

in either the forward or backward direction. One way of solving the coupled, non-

linear, two-point boundary-value problem is by the Method of Particular Solutions

given in references 140-41

Miele et al !42 I. at about the same time as Jacobson, developed a Sequential Gra-

dient Restoration algorithm for the solution of optimal control problems with path

equality constraints. The algorithm made use of the method of particular solutions

of i401-i41i. Both the feasibility as well as the efficiency of the algorithm were il-

lustrated through the solutions of example problems given in 142 and other related

papers 143-45'. The approach taken in the present work on the optimal autorotation

trajectory of a helicopter is to combine these two mathematical tools (the Valen-

tine's device and the Method of Particular Solutions for the solution of a nonlinear

TPBVP) for the solution of the constrained optimization problem posed in Section

(2.9). The Sequential Gradient Restoration method is described in greater detail in

Section (3.3).

§3.2 Combined Function and Parameter Optimization Algorithm

Direct analytical solutions of dynamical optimization problems are only possible

when the system equations, the performance index, and the constraints of the prob-

lem are very simple. One of the more reliable methods for the numerical solution of

the dynamical optimization problem is the steepest-descent gradient method [301.

The method is characterized by iterative steps for improving estimates of the con-
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trol history, u(t), so as to come closer to satisfying the optimality conditions and

the boundary conditions. First-order gradient methods usually show great improve-

ments in the first few iterations but have poor convergence characteristics as the

optimal solution is approached. Second-order gradient methods have excellent con-

vergence characteristics as the optimal solution is approached but may have starting

difficulties associated with picking a "convex _ nominal solution !291. Variable Step-

size Gradient methods can improve the convergence characteristics of the first-order

gradient methods through the optimal selection of step-size at each iteration step.

Further information on the variable step-size gradient algorithm can be obtained

from r :.i26_

In this section, we wish to extend the gradient algorithm for function optimization

problems [16: so that it is capable of solving optimal control problems that also have

an unknown parameter vector. We assume that there are no inequality constraints,

that the initial time and state are fixed, and that functions of some of the state

variables and unknown parameters are specified at a given or an unspecified terminal

time. Thus we wish to consider the following optimization problem:

_0 t!_,_

),

= given,

and g(_f, if) = O.

(1)

Here _(n x 1), _(m × 1), and _7(p × 1) are the state, control and the unknown

parameter vectors. _(q x 1) are the terminal constraints of the problem. If the

end-time tl of the problem is unspecified, the problem may be converted to one

with a specified end-time through the use of the following transformation:

t

tl
(xa)
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The independent variable is now r which varies from 0 to 1 (therefore the subscript

"1" in equation (1) denotes terminal condition). The final time t! is included as

one of the components of zT. ]_ and f are replaced by L = t/fL and f = tlf.

If we adjoin the system differential equations and the terminal constraints to the

performance index I with multiplier function A(t)(n , 1) and multiplier/z(q × 1)

respectively, we get:

j = (¢ ÷ .r_,)_ ÷ [L-_ _r(f _ _)!d_. (2)

Now consider the variation in J due to variations in both the control and parameter

vectors:

fO6J = (-A T + Cz)l_xl + [ H_dr + (¢_)I]$_

+ [Hu_fi" + (Hz + AT)_e;dr,

(3)

where for convenience, we have defined scalar functions H (the Hamiltonian func-

tion) and ¢ as given below:

(4)

Therefore, first-order necessary conditions for the extremal solution are given by

the following relations:

A T "- --/']z ,

and

_1T= (¢_)1,

H,.= 0,

dr + (¢n)1 = 0.-

(5)

In the special case when the unknown parameter _ contains the unspecified ter-

minal time, the corresponding component in the last equation in (5) becomes the

transversality condition of the classical literature (cf. Appendix D).



3.2 Combined Function and Parameter Optimization Algorithm 43

Equations (1) and (5) contain all the conditions needed in the solutions of _(r) (n _,

1), _'(r) (rn × 1), ,_(r) (n × 1), _(p × 1) and _(q × 1).

Various methods have been suggested for the solution of this two-point boundary-

value problem. The method used here may be termed the Impulse Response method

[29].

The method involves making initial guesses for both the control time histoD" E(r)

and the unknown parameter _. The dynamic equations are integrated forward us-

ing the given initial conditions. In general: the terminal conditions are not satisfied.

To make improvements in the feasibility condition, we consider the following (q_ 1)

impulse response functions H_ {fl, where i = 0,1,... ,q. Note that Hu(°)(r) repre-

sents the variation in the cost function due to a unit impulse (Dirac Function) in 5ff

at time r, while holding _(0) and _7constant and satisfying the dynamic equations.

Similarly, Hu(i)(r) where i = 1,...,q corresponds to variations in the terminal con-

straints V7 due to a unit impulse in 5ff at time r. These impulse response functions

_eli_'en by the following expression:

.... HJ't(T) = rtOZ,,(r) i_t_)T- _ A(r), (e)

where

r(i)= _1 if i=0; (6a)
t 0 ifi _ 0.

for i = 0,1,...,q. The influence functions A(i)(r) are determined from the backward

integrations of the following adjoint equations using the time histories of ._ (r), E (r)

and the value of • from the forward integrations:

A(,I= -r(;)L,(r) - [_l'l]rf,(r), (7)
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where

¢0 = ¢(£/,_) (9)

In this way, the (q- 1) impulse response functions Hu b), where i = 0,1,...,q, for the

current iteration, can be computed.

The quantities if_ tt, O)(r) dr 4- (¢,_),!, where j = 0A,....q represent the variations

in either the performance index or terminal constraints due to a unit changes in

the elements of zY, while holding £(0) and ff constant and satis_'ing the dynamic

equation.

Therefore variations in the cost function and the terminal constraints due to small

variations in the control histories _ff(r) and the parameters 6ff axe given by the

following relations:

/0' /0l6J = H_(°)6_(_)dT-_ ! H.(°)(,)d_ ÷ (¢o).?_. (10)

and

/oI Jo'6t-'3 = H-C;)(r) 6ffdr ÷ [ H,(J)(r) dr - (t'3), 6='', (11)

where j = 1, .... q

If we adjoin equation (11) to (10) with q Lagrange multipliers p,, where i = 1,...,q,

we have:

q

6J = 6J + _ u,6¢,,

S=I

= [H,,(°) + _,Hu(i)]dfffdr

i=1

l q 1

z.,/.
_=1

q

i=l

(12)
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If we wish to obtain the largest change in 63, we would calculate the gradients

H, (i) and [f01H,(i)(r)dr + (t_,),] (i = 0,1,...,q) and then direct 6_ and dSff opposite

to their respective gradients as follow:

/0' '/0'6_= -K_,_ H_C°)d_+ (_o)_- _.,( _'Id_+ (_,).)ir,
i=I

'/o' ' /o'-- -K_,I (H_,'°l)rd_-_(,_,o)_r + _.,( (H.'O)rd_ ÷ (e,)_r)i, (13)
t=l

where K,r is a (p Y p) diagonal gain matrix that controls the stepsize of $ff.

Similarly,

,=l

(14)

where K= is an (m × m) diagonal gain matrix that controls the stepsize of _ff.

When we make these choices in _ and 6if, the predicted variation in the augmented

performance index J _ d - V'qz--t=l tz,_,,, is:

'/o' ' /o'6J = -._-_ : (Hr(°)) Tdr + (tb0)_ r + _/_,( (H_(')) rdr -_ (tS,)_r)i

t=l

[1 ..=: :,,.. ¢o_.r-. q (15)
'":::!i;f"-.to --If.,:In,,! "_ E#iCH" {O)T]dr <-O.

i=l

Here the weighted norm-function NK( ) is defined as:

(15a)

Similarly, the substitutions of equations (13) and (14) into (11) give the following

changes in the terminal constraints:

/o' '/o'_¢j "- - (Hu(Y))Ku(H,,(°))Tdr - Z #i (HuO))K,,(H,,(O) Tdr

i=l

[' ['-r H..(J}dr + (¢,)_}(K.)I (H.(°)) rdr + (¢o). T] (16)
'Jo ""Jo

/o'- #i[ H,, (y)dr + (¢y),r](K,,)[ (H,,(O) rdr -_ (t_,),T],

t=l
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where j = 1,...,q

One way to simpli_" expressions (16) and (17) is to "absorb" K., into Hu (]) and K_

into H_ (J). To do this, we first note that both Ku and K,_, being positive definite

matrices, can be expressed as products of their respective "square-roots":

Ii,r = S,rS,r T ,

Ku = St, Su T •

(17)

Let us define the following quantities"

H_Ol(_)= H (oI(_)S_,

H_')(_)= H_I')(T)S_.
(lSa)

where i = 1 .... ,q.

Therefore an expression for/_'u(r) is given by

q

i=l

q

[Y.(_)= H.(_lS. = _(o_(,.)__ .,.F/.(')(,-).
t=.]

(lSb)

Similarly, B_{) and (,_{))_ are defined as

_(o)(_) = n lo)(_)s. '

fil_')(r) = H,{')(r)S,_,

(_o), = (_o)_S,,

(_].), = (¢j) s,.

(19)

where i = 1,...,q and j = 1,...,q
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Substitutions of (17)-(19) into (15)-(16) give

' q /0'
q

t=l

/o ' /o''H21(_Y_)rd_ Z",
_=1

',/o /o- Z O,: H(_Y}dr+ (d3)xl [ (H(i))rdr -f (g.,) T] .

t=l

where j = 1,...,q

(20)

(21)

Equation (21) can be rewritten in a vector-matrix form after the introduction of

the following notation:

6_(q × 1)= (6_21,...,60q)T,

_(q >:1) = (_,l,...,_q)r, (22)

and _(q x 1)-- (gl,...,gq) T.

The ]_h component of _ is given by:

f' ....(.(o.)Tdr-- [fl H_("' drg¢
Jo Jo

l

(H(0))Tdr -4- (_0)_ T] (23)

where j = 0,1,...,q

Furthermore, let us define a (q x q) symmetrical matrix Q whose components are

Qtj= Q#,,

._ __ol_.i(i)(_.I{ui))Tdr - if01H{j)dr + (_$),][ fol(/:/{i))Tdr d. (_,) T]. (24)

where (i,j) = 1,-.-, q
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Using equations (22)-(24). equation (21) can be written in a more coml,act form:

_J= _- Q6. (25)

If we choose t;O = -t_,,,

evaluated as:

where 0< t <1, the Lagrange multiplier /Y can be

6= -Q-I(V _ t,7) . (26)

If Q-1 exists (the controllability condition, see also Chapter 2 of !29]), we can sub-

sti_ute the value of/7 found in equation (26) into both equations (13) and (14) and

express both bff and bfi" only as functions of the impulse response functions H,, (') (r)

and H, (i)(r) (that have been computed and stored during backward integrations):

jfO 1 q _01_=-s_i (H_°))re_-(_o)_, r-_., (H(:))re_
t----I

q

_ = -s_i(,_°))r -_Z '_'"))r]..,t-_
t'=l

+ (5,) r],

(27)

For the next iteration, the uses of new trial values

6_-._(r) = ¢_.(_) ÷ bff._-(r).

ff_'-_ = _" -+-b_-,

(2s)

(where N is the current iteration number)

•,,,'ill reduce the value of the performance index and bring the system closer to sat-

isfying the terminal constraints.

After many iterations of the above procedure, all the terminal constraints are sat-

isfied to a prescribed accuracy:



3.2 Combined Function and ParameterOptimization Algorithm 49

for j = 1,...,q, where e_.denotesthe feasibility condition (e.g. e,. = 10-4).

Using this procedure, a feasible path satisfying the constraints is determined. Hob--

ever, the performance index can still be decreased further. The procedure now

concentrates on minimizing the value of the performance index while keeping t'_

within the accuracy of (29). The procedure is repeated until

1 qxi(n °l) r • _<,. (30)
!=1

and

7. T q [l"+ (!P0). + Z/z,( (H{i))rd r + (_,)T)] _< '. (31)
.tO

where _u and e_ represent the optimality conditions (e.g. cu = _ = 10-s).

A numerical algorithm that implements the above procedures has been written.

The procedure is basically an extension of the program FCNOPT by Bryson 116 I.

Example Problems

Tw_le,_licatloas of the Combined Function and Parameter Optimization

Algorithm are gaven here. The first example involves a nonlinear first order system

with a specified control lab-. The second example considers the optimal landing of

a helicopter that is initially in hover.

(I) Specified Control Law Problem [46]

Consider the following optimization problem:

mini = 1 in

subject to the scalar nonlinear differential relation

_-- --Z2 -,- tl .
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The initial condition is

_(o) = lo.

There is no terminal condition.

In order to exercise the parameter optimizatiobn capability, the control law is spec-

ified to have the following form

?/ = {2.T_

where a is an unknown parameter whose value is to be optimally selected.

t ran s formed problem becomes

rain I = 1 []
° 2 Jo ix2-_a2 x2]dt'

The

with the following equation of motion

._= --X2÷ ax,

while the initial condition of x(0) remains unchanged.

The transformed problem now becomes a problem with an unknown parameter a

but without any control. The problem can be solved using the combined function

and parameter algorithm and the optimum value of a found is:

a = -0.10334.

The minimum value of the cost function is:

I = 4.5218.

The value of I is slightly larger than the minimum value when u(t) is open:

Im_'n = 4.5108.
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Time histories of both the state and control of the system, using either u (t) = e x(t)

or the open-loop optimal solution are given in Figure (3.2.1).

(2) Optimal Landing of a Helicopter in Hover

In reference [15], Johnson formulated an optimal, autorotative landing problem for

a helicopter initially in hover close to the ground. He showed that the optimal

descent is purely vertical. Under these conditions, the general landing problem

posed in Chapter 2 can be simplified.

Imposing a purely vertical descent, the horizontal distance component z, velocity

component u, and control component CT= are omitted. The remaining states of the

problem are the vertical height h. vertical sink rate V and the angular speed of the

rotor f}. In addition, the induced velocity parameter .t"I in the vortex-ring state

and the momentum theory states is given by the following one-parameter family of

equations:

f! = -f'(0.373f "2 - 1.991) for 1 < V < 2
/ __

1 for2<
,i : 6-- ¥_"

(32)

.Note that the first and third expressions of equation (32) are solutions of the mo-

mentum quartic, while the second is an empirical expression given by Johnson I15]

for the vortex-ring state. The dimensionless parameter I_ is defined as the ratio of

the vertical sink rate and the induced velocity in hover vh:

--- R,

/]h
V

m

nR_ c/___ "

(33)

Figure (3.2.2) shows the variation of ,1"1with the parameter fT.
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Figure 3.2.1 Example Optimal Control Problem
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wi-
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Q

4

Figure $.2.2 Variation of Induced Velocity Parameter/! with I7"
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If we go through the normalization and scaling processes of Section (2.4), the non-

dimensionalized and scaled time, stales and control of the problem are given by the

following relations:
_ot

V

x] = (O.Olf_oR),

• 2 = (n--n0),
h

ul = IOaCT,.

(34)

In terms of these normalized quantities, the optimal autorotation from hover is

formulated as the minimization of the cost function 1, where

The equations of motion are given by

' mox_uz- foX_Xl = go --

' _ioz221co - ul(-O.O1 zl• 2 = - - l,ov%f_)i, (3s)
X2

F
X 3 = X 1 .

Here ( )' denotes time differentiation with respect to _ and the dimensionless quan-

tities go, m0, f0. co, and k0 are as defined in Section (2.4) (see equation (37)). The

induced velocity parameter .1"1is a function of 17, which is now given by the following

normalized expression:

XlV = p0_ (35_)
X2 V'_I '

where p0 is also defined in Section (2.4).

The optimization problem is constrained at the end-time by the "stopping" condi-

tion:

x3I - hi = o, (36)
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and the following one-sided path inequality constraint:

_] _<Or.. (37)

Further Time Normalization

Since the end-time of the problem is unspecified, further normalization of the inde-

pendent variable _ is needed. The problem is converted to one with fixed end-time

by the following change of independent variable:

= -, (3s)

The transformation (38) converts the independent variablefrom r to _ where _ now

varies from 0 to 1. This transformation introduces into the problem an additional

unknown parameter fl that must be optimally determined. From here on we shall

denote differentiation with respect to _ by:

()r=d

= _f( )'. (39)

Substitution Technique

The path inequality constraint (37) can be eliminated if we substitute for _] the

new control variable u2, where us is defined as :

ltl --C'T, COS2 it2" (40a)

Final Form of Optimal Autorotation Problem
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The state, control, and unknown parameter vectors of the problem are:

= (I1 X2 2:3) T,

U= (u2),

e= (TI).

(41)

(42)

(43)

denote the state, control_ and unknown parameter vectors of the problem.

The problem is to find t_(_) and _ to minimize:

1

X= _[xlS] 2 = _('_I)" (44)

subject to:

(1) equations of motion ( gv = f):

• 1v = T1[go- mox22(¢r, co_2u2) - fo_2j,

x2 x- = -rlio x22:c0 + (C'T, c°s_ u2)(-0.01 xl f-_x_ _ k°vCr" cos _2.6):,

:Z3 V : 7"fX 1 .

(45)

(2) the initial condition of ._ is given by:

£o = (0,1,0) r. (46)

(3) terminal constraint (¢(._i,_) = 0 ):

_31- hj. =0 (47)

The optimization problem (41)-(47) is now in a form that can be solved using

the combined function and parameter gradient algorithm. Several other example

applications of the algorithm are given in Appendix C.
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§3.3 Sequential Gradient ]Restoration Technique [42]

This section explains the Sequential Gradient Restoration (SGR) method given in

142. The SGR technique is one way that problems with bounded control may be

solved. The technique is employed in the solution of the optimal helicopter landing

problem posed in Section (2.9).

The problem is similar to the one in Section (3.2) except that here we consider

more general path constraints. Specii_cally, we consider the following problem with

unknown parameter vector _ and path equality constraints ,_:

minI,_,_= ¢(_I,_)+ fo_

3-- f(_, if,_,T),

_(0) = given,

_(_,_,_,T) = 0,

d(is, _) = o.

1,(_,_,_,_')d_',

and

(1)

W_e_ ,_{r × 1) a.__ the path equality constraints of the problem. The motivations

f0i' thls formulatmn are:

(1) .Many optimization problems arise directly in the form considered here. i.e.

with path equality constraints.

(2) Problems involving inequality constraints can be converted to the present

scheme through suitable transformations. This statement applies, for

instance, to the following situations:

(a) Problems with bounded controls.

(b) Problem with bounded states.

(c) Problems with bounded time rate of change of state.
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(d) Problems where some bound is imposed on an arbitrarily prescribed

function of the parameters, the control and the time rate of

change of the state.

The transformation techniques employed are of the Valentine-type [41]. The trans-

formation is performed by augmenting the dimension of the control space, with

or without augmentation of the state space. In the process, non-differential path

equality constraints relating the original control and the slack control are produced

that must be satisfied by the solution of the original optimization problem. Four

example problems with bounded control, state or time rate of change of state are

presented in Appendix (G).

3.3.1 First Order Conditions

If we adjoin the system differential equations, the path equality constraints and the

terminal constraints to the performance index I with multiplier functions X(r)(n x

1) and tY(r)(r _ 1); and multiplier ff(q >: 1) respectively, we obtain the following

augmented performance index J

1J = (0 + pr¢) 1 + [I., -+ AT( f - _) .+ ,aT ..q]dr,

/o'= (:x)0-_ (¢- _%)1 + (iT= + n)d_-,

(2)

(3)

where, for convenience, we have defined scalar functions H (the Hamiltonian func-

tion) and ¢ as given below:

n(_,¢,_,_,],r)=L(_,u,_r,r)+ATf(_,¢,_,r)-rpT$(_,¢,_,r), (5)

¢(E/, _,_) = _(_/,,v).uT¢(E/,_). (6)
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Now consider the variation in J due to variations in both the control and the

parameter vectors

6J = (AT_x)0. (-A T- ¢z)16xl - H,rdr-+ (cI,.)]]6_

+ [Hu$ff-_ (H..- ir),SE)dr.

Therefore, first-order necessary conditions of the problem are given by the following

relations:

_= f(_, _',,_,r),

g(_,,_, _, r)=o,
.T

= -/-/z,

Hu= 0,

E(0) = given,

(yr)_= (¢z)_,

_(_I,_)=0,

(4)

and O,), -_ lt, dr = O.

Summarizing, we seek functions E(r), _(r), • and multipliers A(r), _r) and p which

satis_' the first order necessary conditions (4).

3.3.2 Approximate Methods

In general, the problem posed in Section (3.3.1)isnonlinear and can only be solved

iteratively.In this connection, we definetwo scalarfunctionals

P = N[_-fldr + NiS]dr + N[(¢)l], (7)
Jo Yo

and

/o1 /olQ = N[A+H[]dr + N[Hr]dr + N[ (#r)] + /o I HT dr] + N[(A-{bT)1], (8)
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where the norm-function .N I I was defined in equation (15a) of Section (3.2).

P and Q are measures of the errors in the constraints and the optimality conditions.

respectively. For the exact optimal solution, one must have

(9)

For an approximation to the optimal solution, one must have

P _< el. (10a)

Q _< (lob)

where cl and _ are small pre-selected numbers.

S.3.3 The Sequential Gradient ]Restoration Algorithm

The Sequential Gradient Restoration algorithm involves a sequence of cycles, where

each cycle has a gradient phase and may or may not have a restoration phase.

The restoration phase is iterative and is started when the inequality (10a) is violated.

In each restoration step, the norm of the variations of the control and the parameter

is minimized, while the constraints are satisfied to first order; this has the effect of

reducing P, i.e. more closely satisfying the feasibility conditions. The restoration

phase is terminated when the inequality (10a) is satisfied.

The gradient phase is started when the inequality (10a) is satisfied. It involves a

single step, which reduces the functional I, while the constraints are satisfied to first

order; this has the effect of reducing Q, i.e. more closely satisfying the optimality

conditions.

The algorithm ends when both inequality (10a) and (10b) are satisfied.
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Notation

For steps in the gradient phase or the restoration phase, the following notation is

used: x(r). u(r), _r denote the nominal functions; }(r), fi(r), _r denote the varied

functions, and ,_x(r), __u(r), and _ denote perturbations of z(r), u(r) and r

about the nominal values, i.e.

(11)

_ _ ?T-._ .._'.

(Note the removal of the arrow on top of the symbols for the vectors £, ff and _ in

(11).)

Concerning the functionals I, J and P, the following terminology is used: I, J and

P denote the values associated with the nominal functions; I, J: and ]_ denote the

values associated with the varied functions; and AI, A J, and Ap denote the total

variations of these functionals caused by the perturbations Az(r), Au(r), and ATr,

i.e ..................................................

i_= I + AI,

(]2)

/_= p + Ap.

If the variations appearing in (11) are linear in the stepsize a, (where a > 0 ), they

take the forms

A(,'),

B(r),

Ar_=aC.

(13)

(14)

3.3.4 Desired Properties in the SGR Process
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The functions A(r), B(r), and C are determined so as to decrease the functional I.

and/or d, and "or P. (A]ternatively, the condition (lOb) on the value of Q can also

be used.) Thus, the following properties are required.

AI< 0,

and .or AJ < 0. (15)

and/or Ap < 0.

In turn. relations (15) can be enforced at every iteration providing the stepsize a is

sufficiently small and the functions A(r). B(r). and C are chosen so tha_

and /or

and/or

61 < 0, (16a)

6 J < 0, (16b)

6 P < 0, (17)

where 6(...) denotes the first variation. Inequalities (16a) and (16b) characterize

the gradient phase, and inequality (17) characterizes the restoration phase.

3.3.5 The First Variations

The first variations of the functionals I, J, and P are

6I=

6J=

6P=2

o'!LzAx+LuAu+L,,Ar]dr+ (¢zAx Cr..ST)l,

I' /o i'[AT + H,!Axdr + H,,Audr -+ [(0,)1 + H1rdr]Ar

](_- .f, Ax- f,,A,_- f,,,_,r)drI)T(A_-

+ 2 sT(SzAx + S,,Au + S,_ATr)dr

+ 2[_T(dy, Ax + ¢,A_r)]l ,

where (6x)o has been assumed zero in the expression for 6J.

(is)
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3.3.6 Gradient Phase

Suppose that nominal functions x(r), u(r): and 7r satis_'ing (1) are available (a

feasible solution). Let ._(r), fi(r), and _r denote varied functions also satisfying (1).

The varied functions are related to the nominal functions by (11), where Ax(r).

Au(r), and A_r denote the perturbations of x(r), u(r), and r about the nominal

values.

To first order, the perturbations Ax(r). ,Au(r). and Ar must satis_, linearized

constraint relations

A_ -- fxAx -- fu_u -- fxATr = 0,

SzAx + SuAu + S_A_ = O,

(lo)

with the following linearized boundary conditions

[A'X:O : O,

(20)

_ inspection of equation (!8) reveals that 6J can be made negative through the

fo]iow_g e_ce of _variations of the control u and the parameter vector ..

Au = -aHTu ,

(21)A_r = -a [(¢_)1 + H, dr] T.

where o denotes a scaling factor (gradient stepsize). The multipliers A(r), p(r), and

appearing in equation (21) must be consistent with the differential relation

_T = -Hz. (22a)

and the final conditions

= (::b)
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With the variations defined by (21), the first variation of the augmented functional

(18) becomes

_s = -_Q. (2z)

where Q is the error in the optimality conditions (8), which, with (22), reduces to

f01 cT _1 TQ = .h'_H,,r]dr _ N[( ,)1 _ H,_dr_ . (24)

Since Q > 0, (23) shows that 6J < 0. Hence. for sufficiently small a, the decrease

in the augmented functional J is guaranteed.

To simpli_" the problem, we can make use of the auxiliary variables A(r), B(r)

and C introduced in (13). Using these variables, the linearized relations (19)-(23)

become

A- hA-/.B- f,c = o,
(2s)

SzA -r S_,B _ S,_C = O,

with the following boundary conditions

(A)o= 0,
(26)

[I_,A "4- I]2.C]l = O.

The special variations are

B = -H T,

= _ 1(¢,,),+ ['C
Jo

(27)

where once again the multipliers A(r), a(r), and tt satisfy the following differential

relation

i T = -H., (28a)

and the terminal conditions

(_r), = (¢,),. (2sb)
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The descent property of the augmented functional (1SJ is

6J = -aQ ,

65

where Q is the error in the optimality condition (24). which reduces to

Q = BTBdr-cTc (29)

We note that the differential system (25)-(28) is linear and nonhomogeneous in the

functions A(r), B(r), and C and the multipliers A(r), p(r), and/_ and can be solved

without assigning a value to the gradient stepsize a. The selection of a is done a

posteriori in such a way that the descent requirement (15-2) (second equation-of

equation (15)) is enforced.

3.3.7 Solution Technique in the Gradient Phase

The usual approach of backward integration of the h-equations and forward inte-

gration of the A-equations cannot be employed with this class of problems since the

¢_m_ion _ pC'r)oyer _he interval 0 < r <_ 1 requires the simultaneous solution

0_'_i'_;the ,X and'A eq_atl0ns. Because of this coupling, the tote] system must

be integrated simultaneously either forward or backward. Forward integration is

chosen here.

Using the Method of Particular Solutions [39-40], the differential system consist-

ing of equations (25), (26-1), (27-1) and (28) may be integrated forward n + p ÷ 1

times. Given

.4 =hA + f.B + f.C, (,,)

(A)0=0, (c)

B -- -H T ,
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i T = -(L, + ATf, "- pTSz).

(d)

(_)

Substituting equation (d) into (b) and solving for p, we get

. = :s.sri-'(s.A- s,,:_ - s,,:_, s.,c), (f)

which is unique provided

detlS,,S[! :-o.

Therefore a necessary (but not sufficient) condition for the existence of a solution is

that all the components of the path equality constraint vector ff must involve some

components of the control vector ft. If this is not true, time derivative(s) of some of

the constraints have to be taken to involve the control ff in ft. In principle, p may

be eliminated by substituting (f) into (d), and (e) and B may then be eliminated

by substituting (d) into (a).

The initial conditions for the i th forward integration are

(A)o = O,

A,(O) = [6,1,'5,2.... ,6,,, 1r,.

C, -'- [6i(n+l), _,(n-+2) .... ,6i(n_-p}] T ,

(9)

(h)

where i = 1,2,...,[n +p+ 1] and 6tj is the usual Kronecker delta function. Values of

p and B can be computed using equations (f) and (g) respectively. The differential

system:

J = I,A + I.,B + AC,
(i)

can then be integrated forward.
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The solution of the system is given by

n-p-I

A(_)= __. k,.,,(,-),

I=1

n-p-I

c= z
t=l

.-p-I

k,C,, (30)

a(_)= _ k,a,(_).

Here (--.)i is the value of (...) obtained from the i _h iteration. The k, are unknown

coefficients determined from the simultaneous solution of the following equations:

,._, .: .

.-p-I

__. k,(t,:zA,

a-p'-I

t=]

n-,-p-_ 1 ]

z=l

n-p-1

kz=l,
z=l

-v'_C,}l = 0,

k,(A,), = (¢r),,

=_ Cr f0 ](f/A,.-$Tp=)dr+C,] [( _)]-_ LTdr:.

(3z)

where we have made use of the function

¢ = Cd-/2T_ ,,

defined earlier in equation (5).

Equation (31) is equivalent to [1 + q + n + p! scalar equations for the solution of

the in + p - 1] unknowns k_ and the q components of the multiplier/2. Using these

C-_-



68 3. Numerical Optimization Techniques

coefficients from equation (31), the solution (30) satisfies the end constraints of (26-

2), (27-2) and (28b). After the constants k, and the components of the multiplier/1

are known, the functions A(r), B(r), and C as well as the multipliers A(r) and p(r)

are computed according to equation (30). In this way, the linear TPBVP is solved.

3.3.8 Gradient Stepsize

The gradient stepsize a is selected in such a way that the following inequality is

satisfied.

< 2(o), (32)

subject to

and

< (33a)

tl > o. (33b)

The last equation in (33b) expresses the need to have the unspecified end-time t!

greater than zero.

Here e3 is a small, preselected number (e.g. e3 = 1). Satisfaction of (32) is guaran-

teed by the descent property of the gradient phase. Satisfaction of (33a) is desirable

in order to limit the constraint violation which is due to the use of the linearized

constraint equations (25)-(26). Satisfaction of (33b) is automatic for problems with

fixed terminal time, and is required in problems where the final time is free.

3.3.9 Restoration Phase

At the end of the gradient phase, the varied functions _(r), fi(r), and _ are known,

and the varied constraint error 15 can be computed with equation (7). In this

connection, two possibilities arise: either (i) Inequality (10a) is satisfied or (ii)

Inequality (10a) is violated.
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Case (i) occurs if the equations (1) are linear or if they arc _ nonlinear and the

gradient stepsize is sufficiently small. In this case, the gradient phase is repeated by

employing as nominal functions x(r), tJ(r), and 7r the varied functions ._(r)_ _(r).

and _ of the previous gradient phase.

Case (ii) occurs if the equations (1) are nonlinear and the stepsize is not small.

In this case. prior to repeating the gradient phase, a restoration phase is inserted

in such a way that (a) the constraint error is reduced to a level compatible with

inequality (10a) and (b) the descent property of the augmented functional J is

preserved.

While the gradient phase involves a single step, the restoration is iterative and

hence may involve several steps. This is due to the fact that the constraint equa-

tions (1) are considered only in their linearized form in the restoration phase. For

the first restoration phase, we employ as the nominal functions the varied functions

_(r), fi(r), /r of the previous gradient phase. For any subsequent restoration it-

eration, we employ as nominal functions the varied functions _(r), fi(r), _ of the

_,_s restoration iteratlon.

.Novc conside1" the generic restoration iteration. Let x(r), u(r): _r denote nominal

functions satisfying the initial condition x(0) = given, and let ._(r), fi(r), fr denote

the varied functions also satisfy the initial condition. The varied functions are

related to the nominal functions by (11). To first order, the perturbations Az(r),

A u(r), and ATr must satisfy the linearized constraint equations

A_ -- f, Ax -- f_Au -- I,A_ -k a(& -- f) = O,

(34)
$_A:r + S.,Au ÷ $_Az" _ aS = 0,

• , • _66 _6Al. _.pa,v vv AAa_ a66A'_ -_ .......... a7 ............

I =lo = o,
(3s)

[¢ Az + ¢,ATr + = 0,
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where a denotes a scaling factor (restoration stepsize) in the range 0 < a <_ 1. Its

function is to prevent the forcing terms in (34) -(35) from generating variations too

large for the linearized assumptions to hold.

When the variations defined by (34)-(35) are employed, the first variation of the

constraint error (7) becomes (use equation (18-3))

6P = -2aP, (36)

where P is as defined in (7). Since P > 0. equation (36) shows that t;P < 0. Hence,

for a sufficiently small a, the decrease in the constraint error P is guaranteed.

Since equations (34)-(35) admit an infinite number of solutions, the restoration

iteration is not uniquely defined, unless some additional requirement is introduced.

This added requirement is that the restoration be accomplished with the least square

change in the controls and the parameters. Hence we seek the minimum of the

following function

K = [A T  :dT + (37)

that also satisfies the linearized constraints (34)-(35).

3.3.10 Special Variations

The problem formulated in Section (3.3.9) is a linear-quadratic Bolza problem in the

calculus of variations. The Au and Ar that minimize (37) subject to the constraints

(34)-(35)are:
/_ = -a(._T f. + pT s,,)7",

(3s)

The multipliers ,_(r), p(r), and/_ appearing in equation (38) must be consistent

with the following differential relation

iT = + prS=), (39a)
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and the final conditions

(_r)l = (.r_,)1.

71

(3oh)

To simplify, we make use of the auxiliary variables A(r), B(r) and C defined in

(13). Using these variables, the linearized relations (34)-(35) become

A - hA- f,,B-f_C- (_- f)= o,
(40)

S_.4 + S_B _ S_C + S = O.

with the following boundary conditions

(_)o=o,

{_.A + _C -__]1 = 0.
(4])

The special variations are

B = -(Ar/u -_prSu)r,

C = -[ (Arf. + prsr)d r + (,:r¢,,)]]T
(42)

_n the multipliers A(r), p(r), and # satisfy the following differential

relation

_T .___(AT f= -r pr S,.), (43a)

and the terminal conditions

(43b)

We note that the differential system (40)-(43) is linear and nonhomogeneous in the

functions A(r), B(r), and C and the multipliers _(r), p(r), and/a and can be soh-ed

withmat -_signing a value to the gradient stepsize a. The selection of a is done

a posteriori in such a way that the descent requirement (15-2) is enforced. This

property is the same as in the gradient phase.
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3.3.11 Solution Technique in the Restoration Phase

Once again, because of the coupling due to the presence of p, the total system

must be integrated simultaneously either forward or backward. Using the method

of particular solutions, the differential system consisting of equations (40). (41-1).

(42-1) and (43a) may be integrated forward !n = p + 1! times. Given

A = hA- ruB- f,rC- (_- f),

0 = S_A -_ S,,B - S,_C + S,

(A)o= o.

B = -(/[_ + s[a).

_T = _(_TA + ar S,).

(a)

(b)

(c)

(d)

(e)

Substitution of equation (d) into (b) and solve for p. we get

• T-Ip= !s,s, _ (s,A - s,F_ - s_c -_s). (f)

Note as in the gradient case that the above admits an unique solution providing:

det:S_S[i_ O.

Back substitution of (f) into (d) give

B = -(f[_, Slp). (g)

where p is determined from equation (f).

The initial conditions for the l_h forward integration are as given before (by equation

(h) in the gradient phase). The differential system

A = hA _-I.,B ÷ Ac- (_ - f), (h)

= -(F,_+ sra), (i)
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can then be integrated forward. The solution of the system is given by equation

(30). The unknown coefficients k,, which differ from those in the gradient phase,

are determined from the simultaneous solution of the following equations:

n-_p" 1

F_,k,:]o'
t=l

n-. p-I

_ kl=l.

n_p--I

k,(t/zA, + '¢,,_C,), = -(W), ,
i=l

n-p--I

Z = [.T(v.)I,.

(EA,- $Tp,)dr + C,] = --[(_.r(_1)]] r

(44)

Equation (44) is equivalent to [1 + q ÷ n _- p] scalar equations for the solution of

the In - p - 1 _ unknown k, and the q components of the multiplier p. Using these

coefficients from equation (31), the solution (30) satisfies the end constraints of (41-

2), (42-2) and (43b). After the constants k, and the components of the multiplier

k_O_::n, the functions A(O" B(r), and C as well as the multipliers A(r) and p(r)
._,. :i_:.: =

ar_:i'_ii_puted according'to equation (30). In this way, the linear TPBVP is solved.

3.3.12 Restoration Stepsize

The restoration stepsize is selected in such a way that the following inequality is

satisfied.

/5(a) < P(0), (45)

subject to

t/(o) > 0. (46)

In summary, the restoration stepsize must be chosen so that the above inequality

constraints are satisfied. Should any violation occur, then a smaller value of a must
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be employed and can be obtained, for example, with a bisection process, starting

with a = 1.

3.3.13 Summary of the SGR algorithm

The SGR algorithm has cycles, composed of a gradient phase and (possibly) a

restoration phase. The objective of each cycle is to decrease the functional I, while

the differential and nondifferential constraints are satisfied to the predetermined

accuracy required by (10).

The gradient phase involves a single step, which reduces the functional J. It starts

with nominal functions x(r), u(r), r which satisfy the constraints (1) within the

preselected accuracy (10a). Using these nominal functions, the matrices fz, fu, fx;

Sz, S_, S_ etc. are evaluated at the integration intervals. The TPBVP (25)-(28)

is then solved using the method of particular solutions. The functions A(r), B(r).

C and the multipliers A(r), p(r), /_, are used in turn to compute the corrections

Ax(r), Au(r) and Ar after a suitable value of the stepsize a is found. The varied

functions _(r), fi(r), _ are given by equation (11).

The restoration phase is iterative, hence involves one or more steps: and reduces the

constraint errors to a level required by (10a). The nominal functions x(r), u(r), 7r

are those from the previous gradient phase in the first restoration iteration, or those

from the previous restoration iteration for any subsequent restoration iterations. In

either case, they satisfy the given initial condition x(0).

Using these nominal functions, the matrices fz, f_. Jr; Sz, Su, $_, as well as the

vectors S and [_- fl, are evaluated at the integration intervals. The TPBVP (40)-

(43) is then solved using the method of particular solutions, obtaining the functions

A(r), B(r), C and the multipliers A(r), p(r), and #u, which are used in turn to

compute the corrections Ax(r), Au(r), ATr after a suitable stepsize o has been
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found. The varied functions _(r). fi(r), _ can then be computed using equation

(11).

The satisfaction of the condition (10b) signals the termination of the process and

the converged solution is given by the varied function _(r), t](r), _ at the end of

the restoration phase.

A flow chart of the SGR algorithm is given in Figure (3.3.3).

3.3.1,1 Example Problem

The example given here is a modification of the autorotation problem that was

formulated in Section (2.9). Here we add an upper bound on the vertical sink rate.

Experience gained from the study on the optimal landing of a helicopter after engine

failure indicates that the optimal control program usually results in an unacceptably

high maximum sink rate. This upper bound on sink rate appears as a state variable

inequality constraint:

which:can be transformed to a path equality constraint by the use of a Valentine-

type slack variable. Since zl denotes the normalized vertical sink rate, we have

Xl- Xlm+X 2 = O, (48)

where x6 is an auxiliary state variable created to convert (47) to (48). Note that

the initial condition of x6 is given by

(4So)

where either the "+" or "-_ sign can be used.
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Restoration Technique
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The first time derivative of (48) is

77

Xl l+2x6u4 = 0, (49)

where ( )' denotes time differentiation with respect to the normalized time r. and

124 is an auxiliary control variable defined as

' (50)U4 ---X6.

Since

' mo(ul:r] ÷ + x2_),xl = go - fxl V/X12 (51)

we can substitute (51) into (49) and convert it into the following path equality

constraint that involves the two controls ul and u4:

go - mo(ulx] + fxlv/xl 2 + .2:22) + 2276124 "- O. (52)

The new form of the autorotation optimization problem with vertical sink rate

is _given below. Let

£ = (zl zz z3 z4 zs z6) r, (s3)

0 = (ul _,z,,3 ,_,)r, (54)

,_= %). (55)

denote the augmented state, control, and unknown parameter vectors.

The problem is to find [_(_) and _ to minimize:

1 2

z = _(zll + w_=zs_) = ¢(xs), (56)

subject to :
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(1) equations of motion ( ._v = f):

• lv = Tj(9o - mo(._zJ + ]z_ \."x_2- x_2)),

_r2v = r/,no(_2zJ - fz2\,'x]2-_ z2_),

z3 v = -rlio x32(co -" AX/_a ; - _22),

X4 V = O.lrfx 1.

(57)

x5 v = 0.1rfx2.

x6 V = r.ftt4.

(2) the initial condition:

20 = (0,_0,1,0,0, _v_T_)r (5s)

(3) path equality constraints (S(X, U, ff) = 0) are:

(_12_ _22)_ ((_2 _ _2_))2_ _32= o.,
CT.

go - ,'no(t_ z_ + ]z_ _,/z_2 + z22) - 2z6,_4 = o.

(59)

(4) terminal constraints (W(X/-,rT) = 0) are:

x4! - h I = O,

xsf-d! =0.

(60)

Simplification

Since the computational effort involved in obtaining the optimal control solution

using the SGR algorithm is approximately proportional to the square of the dimen-

sion of the state vector, the optimal landing problem in its "reduced" form is much

preferred.
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Since equation (48) is linear in the state _ri. we can find zl in terms of the other

state variables and eliminate it from equations (53)-(60). We first note from (48)

that

:2:1= xlm- z_. (61)

2- (232 Z3 24 /'5 X6) T,

= (_ _2.3.4) r.

,v: (,-j).

Substituting (61) into equations (53)-(60) gives the following reduced problem. Let:

(62)

(63)

(64)

denote the reduced state, control, and unknown parameter vectors of the problem.

The problem is to find U(_) and _ to minimize:

1 2 2
I= _[(z]m-z6/) +W,x,12] = ¢(2I), (65)

subject to :

(1) equations of motion ( 2 v =/):

z3v = -rlio z32(co+ _v"u_2_-u22),

x4v = 0.1Tl(x_m- x[),

zs v = O.lrlZ2,

x6 v = flu4.

(66)

The equation of motion for x,, which is not needed in the reduced formulation has

been removed. Note also that the inflow ratio A used in (66) is given by a modified

version of equation (43) (cf. Chapter 2) given below:

A = 0.01[x'u' - (z],.- x_)u,] + kofl("*' + u2')l • (67)

Z3VUl 2 + I/2 2
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_o = (a0,1,o-o, v_-_) r (6s)

(3) path equality constraint (S(X,U,'E) = O)

(_2 + _2_)_ ((_2, _22))2_ _32= o.,
(_r.

2 _./ _ _._)2_ _)_ 2_,,_= o.go- ,_oi,,,=_-/(x,,,, - =62)(=,,.,,

(69)

(4) terminal constraints (v'(X I,E) = 0) are:

x4! - h I = O,

xS ! - d$ = O.

On completion of the optimization process, xl (r) can be recovered from:

=,(,-)= =,,, - 4(T).

(7o)

(71)

Results obtained for this problem are given in Chapter 4.

§3.4 Neighboring Extremal with Path Constraints

The necessary conditions for optimal control problems with path equality con-

straints are given by equations (4)-(6) of the last section. The SGR algorithm

described in that section is one way that such a problem can be solved. However,

this solution is open-loop and even slight changes in the initial or final conditions

require a new computation of the entire control program.

A linear neighboring optimal feedback control scheme was developed by Breakwell,

$peyer, and Bryson for optimal control problems in which the state variables are

subjected to initial and terminal constraints [50 I. Their approach minimizes the
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second variation of the performance index. Kelley developed a similar feedback

control scheme using the second variation in an accessory minimization formation

[51'. Bryson and Ho 129i utilized a Riccati transformation with a backward sweep

method to obtain the feedback gains needed to approximate neighboring optimal

solution.

In this sub-section, we extend these earlier works to problems which include path

equaliLv constraints, and specifically to problems with both path equality con-

straints S and an unknown parameter vector _. The necessary conditions for this

class of problems are given by equations (4)-(6) of Section (3.3). These necessary

conditions are repeated here for easy reference:

and

:E: f(x,u, lr_ T) ,

_(_,_,_,r) = 0,
.T

= -- Hz,

H,, = O,

_'(0) = given,

(F)_ = (¢_)],

_(_1, _)=0,

L(_,)1 "+ tI_dr = 0.

(1)

(2)

Now consider small perturbations from the nominal optimal path produced by small

perturbations in both 8_(0) and 6_. These perturbations give rise to perturbations

8E(r), 6,_(r), 6G(r), 6_r), 8fi and 6_. The relationships among these perturbed

quantities are given by
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(1) Perturbed differential relations:

(2) Perturbed path equality relations:

H,,z Hu,, Hu_ fu T Su T 6ff -- ,

and

/o' fo- ( H_ti__dr)-= (

(3) End conditions

H..dr]6_

Hr, u6ff dr)- ( fool f,rT'SA dr)- ( fo I s rr r ts _ffd r ) .

6_(0) = specified,

(6_)1 = (t:'z)l(6i)l -(t:_,)lbr: = specified.

(_X)_= (¢.)_(6i)1 - (¢=_)]_ + (_. r)l_.

Note that these relations have been simplified using the following identities:

H=_ = f=T,

H=p= S_r ,

Huz = fu T ,

Sup = Su T ,

(¢,,,)_ = (¢ T)_,

It,r._ = f,r r ,

and H_p = S,r T.

(3)

(4)

(5)

(6)
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From equation (4), we can solve $ff" and 6/_ in terms of 6_, 5A. and 6r7 as follows:

( I,I
6p A2I A22 A23 ._ff

Equation (7) can be substituted into equations (3) and (5) and the result is the

following linear, time-varying differential equation

(")(6_) (C11 Cj2 C13)_,_ (8)
A = C23 C22 C23 6

with the integral path constraint

$10 + $116_÷/o

l

(S12 6 )dr = 0. (O)

Here Atj, C,j (/= 1.2 and j = 1,2.3) and $1o-$13 (not to be confused with the path

equality constraints S) are time-varying matrices evaluated on the nominal optimal

path. Detailed expressions of these matrices, as well as those of Huu, Hu_, Hzz,

He_)Hsz and Hsu are given in Appendix (E). Using the resultsgiven in Appendix

(_:_:We can easily establish that -Cll T = C_2 and that both C12 and C21 are

symmetrical matrices.

Note that the system of equations (3)-(6) admits an unique solution providing: (1)

H,_ is non-singular; and (2) $4 (r x r) (= S,, H,,,,-1S,, z) is also non-singular.

The first requirement is the usual convexity condition (or strengthened Legendre-

Clebsch condition). The condition is easily understood from the fact that g(r) is

determined by minimizing the Hamiltonian function (H) with respect to ff while

holding _, ,_ and _ fixed. For a smooth H-function with no constraint on g(r), it

requires that

H,, = O, and Huu > O.
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The secondrequirement (i.e. 5"4 > 0) can thus be interpreted as a modified form

of the convexity condition for problems with path equality constraints S. Note

that if any of the path equality constraints does not involve some components of

the control vector if, the determinant of SuH_u ] S T j is zero. A necessary (but not

sufficient) condition for the non-singularity of the 54 matrix is hence the involvment

of the control ff in S.

Simplifications

If 0. V, S and f_ are not functions of 77. some simplifications are possible. These

include:

(1) Simplified expressions for some of the S-matrices (of. Appendix (E)):

-l
52 = S,,H,,,, H,,,_ ,

S_ = S_o = O,

$11 = (Hu,_ Ss )dr ,

$12 = H,,z + H,,,Ss,

and $13 = H,r,,S7 - fT.

(2) Simplified end-conditions:

6£'(0) = given,

= +

(3) Simplified expressions for H( ):

Since H(£,ff, ff, A,_',r) = L(£,ff, ff, r)+ATf(z,,,lr, r)+pTs(E, ff, r),

therefore Hu = Lu + ATfu + pTsu,

Hz = L_ + AT Iz -4- pT sz ,

H, = L_ + AT /,.
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m

General expressions of H(.) are given by

With these simplifications, the linear TPBVP (given by equations (6)-(0)) is given

in Section (3.4.1).

3.4.1 Problem Formulation

(")SJ_ = C21 -Cll T C_3 6_
(lo)

with the following integral path constraints

$116ff- (SlZ6.r+ S136_)dr = O,

and subjected to the following end conditions

6_(0) = given,

(,5C)_= (¢,),(6=-')_= g;,,,,,,

(_,_)1 "--((I)=z)](6"_')l "}" ('_zr)l _j_'"

3.4.2 Solution by the Backward Sweep Method

6_ and 6_ can be expressed in terms of 6_,, 6fi and _ in the following form (cf.

Chapter (6) of reference [291)

(11)
6_ = RT 6_ + Q 6tY + H _ff .
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Here T(n , n), n(n >_q), P(n 7: p). Q(q _ q) and H(q , p) are matrices that satisfy

the following differential equations:

and

_'= -TC11- C T T- TC12 T-'-C2_ .

= -(C T -,- TC12)R,

1_ = C23 - C T P - T(C12P " C13),

= -RTc12 R,

/I = -RT(c12P- el3 ) •

(12)

The first three relations in equation (12) can be obtained as follows. We first take

the time differentiation of 6_ in equation (11) and substitute into the resultant

equation expressions of 6k and 6_ from equation (10) (noting that both 6fi and 6ff

are constant). The final equation has the form

If the above equation is to be identically true for all $i. _/Y and _, all the ; ] terms

must be zero. Thus, we obtain the first three relations of equation (12).

The last two relations in equation (12) are obtained in a similar way. Here we note

that _ is a constant when we take the time derivative of the second equation in

(11). Substitution into the resultant equation expression for _k from equation (10)

and the expression for _ from equation (11) give the differential relations for Q

and H.

The terminal conditions of the T, R, P, Q and H matrices are obtained in this
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manner and are given by the following relations:

T(1) = (¢,,)_,

R(1)= (_,r),,

P(1) = (¢,_.), = 0, (13)

Q(1) = O,

and H(1)= (_)1 = O.

Finally, to obtain the neighboring optimal feedback law, we can substitute equation

(11) into equation (7), yielding the following relation:

6_7= -._]6_- A26_- _36_, (14)

The time-varying neighboring optimal feedback gains, A, ( i = 1, 2 and 3) are given

by the following relations:

Al(m × n)= -[All+ Alz(T- RQ-1RT)I,

A2(m × q)= -A,2R Q-', (is)

,__,,_.......,..........and a3(_x p)= -[A,3+ A_(P - R Q-'/_')I.

Equation (14) is a continuous linear feedback law that will produce the desired small

changes in the terminal conditions _f_ starting from the revised initial conditions

of _(0) _- 6_(0). These end-conditions are met in such a way that the performance

index I (and hence J) is minimized. This method constitutes the Neighboring

Optimal Feedback Law.

-1 T
In addition to our earlier mention of the non-singularities of the Huu and S,_Ht, u S_,

matrices, we now note from equation (15) other necessary conditions for a local

minimum in J. These additional necessary conditions are that both

IT - RQ-' R T]
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and ;P- RQ-1H

be finite for 0 < r < 1.
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This is similar to the classical Jacobi condition, or the

condition that no conjugate points exist on the path. If either of these conditions

is violated, for example, IT - RQ-1R T_ approaches infinity, at time r t (where 0 <

r' _< 1)_ it is necessary that certain combinations of the components of EY at time r *

be zero. The set of all possible perturbations is now restricted to a dimension less

than n (the dimension of £). In fact, the path is not a minimum path if it continues

beyond r'.

Note from equation (13) that the matrix Q is identically zero at the terminal time.

All the gain matrices given by equation (13) approach infinity as the end-time

nears. This mathematical singularity can be bypassed if we adopt the strate_" of

"switching-off" the feedback law as the end-time is approached.

The value of 8_ is needed in the neighboring optimal feedback law. This value must

be determined by the simultaneous solution of both the linear TPBVP and path

equality constraints. Appendix (F) gives an iterative procedure that can be used to

find 6_ by taking advantage of the fact that 6_ enters both the differential equation

(10) and its initial condition linearly. A schematic diagram of the neighboring

feedback control is given in Figure (3.4.4).

3.4.3 Example Problems

Two example problems are given here to demonstrate the concept. The first is for

a dynamic optimization problem constrained by a path equality constraint S, but

without the variable parameter vector _. The second example includes both S and

g. The computer code that is used in the following computation is called Program

"SECOND". Furhter information about the computer program can be found in

Appendix (F).
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Example Problem (1)

Problem Statement

mini = -yl
0

The initial conditions of the problem are

•(o)= o,

y(o)= o,

and the terminal constraint

• (ts) = xf-

The end-time of the problem t I is fixed.

This is a simple two-dimensional problem of transferring between the initial and

final states of a vehicle with a constant velocity V. The objective is to control the

velocity orientation angle 0 in such a way as to maximize y(tl). The problem is

simple enough that analytical solutions for both the optimal control problem and

its neighboring optimal feedback law can be determined as shown below.

(A) Optimal Control Solution
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Using standard optimal control techniques (cf.

solution is given by the following relations:

Chapter (2) of [291), the optima]

1

sinO' = (1 -(i--_) 2) ,
J

x/

cosO' = (l--_f)

:_'(t) = (_/)

"Vtf"

Therefore the optimal orientation of the velocity vector 0 ° is fixed and is given by

the above expression. The optimal trajectory in space is a straight line and the

problem is well posed only when

Ix! !<_ Vt I.

(B) Ne|ghbor|bg"Opt|mal F_dback Control

The neighboring optimal feedback control law can also be determined in the usual

way (cf. Chapter (6) of [29:). The optimal feedback law is given by the following

equation:

,50' = -A]6_- A26¢.

Here A](1 × 2) and A__(1 x 1) are the feedback gain matrices associated with the

These gain matrices are given bystate and the terminal constraints respectively.

the following relations:

A,- o),

A2-- (-v(,,-:).,.,-).
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Substitutions of these gain matrices into the feedback law give

60" = -(x.(_ I _ t)sin0.)_ (_'(t: - t)sin0 ")

These "exact" analytical results are used as references for comparison with numer-

ical results.

The above problem can be re-formulated into one with path equality constraint as

follow

Alternative Problem Formulation

mini = -x2(t f)
6

-_1 = 2Ul ,

x,2 = 2u2.

The initial conditions of the reformulated problem are the same as those given

before

x, (o) = 0,

• 2(o) = 0,

The terminal constraint is

x(t/) = 1.

The new problem is the same as the original one with V = 2, tf = 1 and xf = 1.

Instead of using the orientation angle 0 as the control, we choose to use the sine
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and cosine of the same angle as the controls of the problem. That is,

Because of these control definitions, the problem is now constrained by a path

equality constraint

The neighboring optimal feedback law of the problem in its alternative form is solved

using the numerical technique described earlier. The procedure is started with the

solution of the nominal optimization problem and followed by the computations of

the neighboring feedback gain matrices AI and A2. The non-zero components of

these matrices are given in Figure (3.4.5).

These numerically obtained gain matrices should now be compared with those de-

termined analytically. With x I : 1. V = 2: and t! : 1, we have from the analytical

r_i .....

or

and

sin0"=
1

cos0" = (_),
6z _z!

_o" = -(v_(1 - t)) + (_(1 - t) )"

But since

therefore we have

Ul : COSO,

u2 = sinO.

6ul = ½
1_0'.
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Substitution into the last equation expression for 68" gives us the neighboring op-

tima] feedback law, (_ul , 6u2) T

These results agree with those obtained numerically (see also Figure (3.4.5)). Note

that the magnitudes of these gains approach infinity at the terminal time.

The usefulness of the neighboring optimal feedback law can be confirmed in sev-

eral ways. For example, the initia]and terminal conditions of the nominal control

problem may be "perturbed" simultaneously as follow

z_(o) = o.o-. +o.a ; ,5_(o)= +o.x,

_:2(o)= o.o _ -o.1; _x2(o) = -o.1,

• _(a) = a.o--. +o.9; _(x)= -o.a.

-----__ui|Oa tO this perturbed problem can be obtained numerically using

SECOND:The solution may also be determined analytically using the revised end-

conditions.

Figure (3.4.6) shows the results obtained numerically for both the nominal and the

perturbed problems. The former is obtained using the sequential gradient restora-

tion (SGR) technique while the later by SECOND. It can be seen from these figures

that the neighboring optimal feedback law has predicted substantial changes in both

u] and u2, resulting in large changes in the time history of z] (t) and x2(t).

Both the analytical and numerically computed results for the perturbed problem

are given in Figure (3.4.7). The figure shown indicates excellent agreement.

Example Problem (2)
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The second example is one with the terminal time unspecified. The problem state-

ment is

mjn I = {u_ -* x_i dt

:i I = 111_

i2 = (',2 - zl).

The initial conditions of the problem are

x,(o) = o, _2(o) = o.

The path constraint is given by the following equation

u_ + x_ = 1.

and the terminal constraints are

_1(tl) = 0.s, x,(tf) = 0.5.

,Note that the problem is linear except for the path constraint. The problem is

designed in such a way that both Huu and [S,,H_1ST! do not vanish for 0 __ t <_ t I.

_(2 × 1). _(2 _ 1)_ _(2 ,. 1) and $(1 × 1) are respectively the state, control, terminal,

and path equality constraint vectors of the problem.

The above problem can be transformed into one with fixed end-time with the fol-

lowing change of independent variable

t
T "- --

tl

The independent variable of the problem is now r which varies from 0 to 1.

The transformed problem is

1
mini = tIT ,
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Xl t = tfZt I ,

x2' = tl(u2- Zl).

The initialconditions of the problem are

z_(o) = 0, x2(0) = o.

Here ( )' denotes differentiation with respect to the new independent variable r.

The path constraint is given by the following equation

u22--_xl 2 = 1,

and the terminal constraints are

x,(i) = 0.s, _-2(1)= o.s.

We have introduced in the above process an unknown parameter t! into the problem.

The only Component of the vector ff is hence the unspecified end-time of the problem

t I

The nominal optimization problem is first solved and the neighboring optimal feed-

back gain matrices (A1, Az, 13) in the following feedback law are computed.

Here A1, Az and A3 are (2 × 2), (2 × 2) and (2 × 1) matrices respectively. The

non-zero components of these matrices are given in Figure (3.4.8). Note that (once

again) these gain components approach infinity near the end-time of the problem.

The nominal optimal control problem is being perturbed in the following ways
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R
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(1) Perturbed initial conditions

_(0) = (0.05,0.05)r

(2) Perturbed terminal conditions

_j(1) = (0.05,-0.0_) r

(3) Perturbed initial and terminal conditions

_(o) = (-0.03, o.o3)r , $v7(1) = (0,03,-0.03) T .

Since ana]ytical solution of the problem cannot be easily obtained, these problems

with revised end-conditions must be solved by using the SGR technique. The results

obtained in this way are considered to be "exact'. The neighboring optimal feedback

law is then used to solve the same problems. In this way, the accuracy of the results

obtained by using the feedback law can be gauged by a comparison with the "exact"

results.

The time history of both _(r) and if(r) in the nominal control problem are given in

Figure (3.4.9). Those for the perturbed problem with revised initial conditions, as

predicted by the feedback law are given in the same plots. The purpose of showing

these figures is to give some indication of the percentage changes in the state/control

vectors that have occurred due to the revision of the initial conditions.

By using the SGR technique, the end-times of the nominal and perturbed problems

are found to be 0.728 and 0.681 respectively. Therefore the change in the terminal

time t! is

_tl = 0.681 - 0.728 = -0.047
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Using the iterative procedure described in App(1_dix (F), the value of _tl is found

to be -0.045 (with c = 10 -6, see Appendix (F) for definition of e). The computed

bt I is in good agreeement with the "exact" value. Error between these values of

6tl is mainly due to the computational error incurred in the backward integration

of equation (12) and also due to the early' termination of the iterative procedure at

c = I0 -6.

The solutions to the perturbed problem obtained by using the neighboring optimal

feedback law and those obtained directly by using the SGR tecnnique are plotted

together in Figure (3.4.10). These plots shown excellent agreement between results

obtained from the two approaches.

(2) Perturbed terminal conditions

The perturbations of the terminal conditions are $_ = (0.05, -0.05) T. The neigh-

bo_i_ti_ feedback:law is once again used to compute the revised optimal

control program. By using the SGR technique, the end-times of the nominal and

perturbed problems are found to be 0.728 and 0.700 respectively. Therefore the

value of 6t I is given by

6t I = 0.700- 0.728 = -0.028.

Once again the iterative procedure of Appendix (F) is used to estimate the change

in the end-time 6t I and the value computed is -0.0278 (with e = 10-6). This value

agrees well with the "true" value of -0.028.

Since A1, Az and As approach infinity near the end-time, we adopt the strategy

that whenever 6if(r) is larger than a pre-determined amount, the neighboring op-
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timal feedback law should be turned "off". Figure (3.4.11) shot's the time history

of _(r) and if(r) of/he nominal control problem and those of the perturbed prob-

lem as predicted by the neighboring optimal feedback law. The usefulness of the

neighboring optimal feedback law can once again be confirmed by comparison of

the results obtained by these different approaches. Such a comparison is given in

Figure (3.4.12).

Other than the time history of ul(r), the results given in Figure (3.4.12) shot,

good overall agreement with the "exact" results. The prediction for 6ul(r) is very

good initially but deteriorates as the end-time is near. This error near the end-

time is quite common among neighboring extremal problems with revised terminal _,

conditions. In the present case, the difficulty is compounded by the the fact that

¢_t! has been "inaccurately" determined (6t/(estimated) = -0.0278 as compare with

-0.0280). This small error (-0.0002) in the determination of 6t] is being amplified

b.v the magnitude of A3( ul component ) which becomes very large as the end-time

is approached. Therefore the neighboring optimal feedback law over-estimates the

value of ul by a substantial amount near the end-time. Since A3( u2 component ) is

ident:_ty:::_mrci, the!_mlZimation of us is not being affected by this error in St].

(3) Problem with perturbed initial and terminal conditions

Here the initial conditions are perturbed by 6_(0) = (-0.03_0.03) T while the ter-

minal conditions are perturbed by 6_ = (0.03, -0.03) r. The neighboring optimal

feedback law is used to obtain the optimal program for the perturbed problem.

Using the SGR tecnhique, the end-times of the nominal and perturbed problems

are found to be 0.728 and 0.650 respectively. Therefore the value of _t! is given by

x_. -- n _n _ n "z")_ -- -0.078.

Using the iterative procedure of Appendix (F), the change in the end-times of



106 3. Numerical Optimization Techniques

|s

S

.y

J _P

o0 eo oo oe 4e oo o9 oo oo
aoO,alOd_l,JJlO0 _

,j ...... 11,

• . /st "_I S

a •

l= l=
oo a

s

s 0"
oo el oo el oo oo oB el oo

alOllinSl4_illlt

: Nominal Path

........ : Predlcttons o_ NeLgl_orlnqOptLmsl Feedback T.sv8

Figure 3.4.11 Nominal and Perturbed (terminal condition) Results

in Example (2)



3.4 Neighboring Extremal with Path Constraints 107

OF POOR QUALITY

s
o0 oo oo 9e oo oo cap oo eo

a /

• oo eo oo eQ oo ee oo uo eo

: DLrec_ Op_LmLzatLon Technique wi_h rovisod end-conditions

........ Predl¢_Lons o5 NeLqll_ov-Ln_l Opl:£mal Feedback taws

6_ 0 (DLroc_) = -0.0280

6t t (PredLctod) = -0 0278

Figure 3.4.12 "Comparison of Exact Results with those from

Feedback Law in Example (2)



108 3. Numerical Optimization Techniques

the nominal and perturbed problems is computed to be -0.077 (with _ = 10-6).

The estimation of _1 is once again good. Figure (3.4.13) shows the time history

for both the nominal control problem and the solution to the perturbed problem

obtained using the neighboring optimal feedback law. Figure (3.4.14) shows the

results obtained for the perturbed problem using either the neighboring optimal

feedback law or the SGR technique. The overall agreement between these results

is good. The cause of the discrepancy found in the time history of ul (r) was given

before.

3.4.4 Conclusions

Neighboring extremal paths for dynamic optimization problems with path equality

constraints and unknown parameter vector were considered in this section. With

certain simplifications, the problem can be reduced to one of solving a linear TPBVP

with integral path equality constraints. The solution technique employed is an

extension of the backward sweep method given in Bryson and Ho (cf. reference

!29:).

Two example problems are solved using a numerical algorithm called SECOND. Ex-

cellent agreement with the _exact" results can be obtained for problems with small

changes in the initial conditions. For cases with changes in the terminal conditions,

the agreement deteriorates when the end-time is approached. This problem near

the end-time is compounded by the multiplication of the small error involved in the

determination of _ and the large feedback gain (As) near the end-time. One prob-

able way of overcoming this problem is to switch from problems with hard terminal

constraints into problems with only soft constraints as the end-time is near. This

idea has not been investigated in depth and is recommended for future research.
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Chapter 4

Optimal Solutions and

their Interpretations

In this chapter, optimal solutions are obtained for the the helicopter autorotation_

problem without and with the descent velocity bound (cf. Sections (2.9) and (3.3))

using the algorithm developed in Chapter 3.

We begin with a description of an OH-58A helicopter modified with a High Energy

Rotor System (HERS). An autorotation flight test program i121 was conducted

by the Bell Helicopter Company using this helicopter in 1976 !77. The data from

this__i-m':!:_tl_ for comparison with analytical results of this research.

Sect,s:,.(4,2 ) and (4,3) describe the energy management considerations during au-

torotation, and the piloting techniques that were employed during the autorotation

maneuver. These techniques are compared with those associated with the optimal

control schemes.

Optimal solutions obtained for autorotation landings from hover, from forward

flight, and from forward flight with a descent velocity bound are given in Sec-

tions (4.4), (4.5), and (4.6) respectively. These results are presented using plots

^¢ +_,_ .;,-._++ _;=+_,,;,.c ,_+" _ +h_._a+ .-r._q_r_.*_t en|]++rt._vp p_t.e}_+ a_rl Itates of the

helicopter. In each case, the optima] results are interpreted physically and the ad-
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vantages and disadvantages of the optimal control scheme are discussed. We end

with some general comments on the effectiveness of the algorithms used in solving

dynamic optimization problems with path inequality constraints.

§4.1 Description of Test Vehicle

The helicopter model used in our study of autorotative landings is a point-mass

model of a modified OH-58A, shown in Figure (4.1.1). This helicopter was equipped

with an experimental High Energy Rotor System (HERS). and was constructed by

the Bell Helicopter Textron Company (BHT) as a concept demonstrator. The

inertia of the rotor system was increased by the addition of tip weights in the spar

cavity of the blades (hence the name "High Energy Rotor"). Flight evaluations [12

indicated that the high energy rotor could eliminate the usual height-velocity (H-

V) restriction, and that the rotor kinetic energy could be used to provide transient

power for better maneuverability. This model is used in our study because flight

test data of the helicopter in autorotation are available in references !11 I, !12 i and

1571.

The HERS consists of a two-bladed rotor with a diameter of 35.3 feet which operates

at 354 rpm. The rotor blades have 16 inch chords and were designed so that the

rotational inertia of the rotor system could be varied from the standard OH-58A

inertia to over twice this value. Four external steel doublers were added to carry

the increased centrifugal force. Lock numbers, "_, of 5.43, 3.19, and 2.61, which

correspond to blade inertias lb of 323,550, and 672 slug-ft 2 respectively, were used

in flight tests. The Lock number, "_, of the rotor is defined as

pacR 4

_l -- "[b ' (1)

which isa measure of the ratio of aerodynamic and inertiaforces on the blade.
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Here

p = density of air (slug,/fta),

a = lift curve slope of rotor airfoil (tad -1) ,

c = chord of blades (ft), (2)

R = rotor radius (ft),

Ib = rotational inertia of one blade and hub (slug ft2).

Another quantity, the rotor solidity a, is of importance to the autorotational per-

formance of helicopter. The rotor solidity is defined as the ratio of the total blade

area (NcR for constant chord blades) to the total disk area (TrR2). Therefore. the

rotor solidity is given by the following expression:

Nc
o = --. (3)

7rR'

where N is the total number of blades per rotor. The solidity of the HERS rotor is

0.048.

A detailed description of the helicopter is given in reference 1561. Table (4.4.1) gives

the values of the model parameters used in the point-mass model of this vehicle

that was developed in Chapter 2.

4.1.1 Height-Velocity Restriction Curves

Most helicopters have a region of operation from which a safe autorotational land-

ing cannot be executed. This area of limited autorotational capability exists for

both single and multiple engine helicopters and is described by the altitude above

the ground and the airspeed. It is commonly illustrated with a height-velocity re-

striction diagram (sometimes refered to as a deadman's curve). The height velocity

restriction curves for the standard OH-58A helicopter, as determined by flight tests

and reported in reference [57], are given in Figure (4.1.2). The two restriction re-

gions indicated in Figure (4.1.2) are typical for conventional helicopters. The low
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s

equlvalen_ fla_ pla_e ares (ft z)

g, acceleration duo Co gravity (f_/se¢ 2)
m,,

P, air densl_"y (slug/f_ 3)

VALUE USED

24.0

m,,

m. muss of helAcopter (slug)
(lb._.)

O, rotor solid£ty

K , induced velocity correc_lon factor

32.17

0.002378

93.16
(3000.0)

O. 048

1.13

5.73

17.63

11

8 I_, radius of maln rotor (ft)

(r_)

zo _'.................._,, p,'_ii' drag co,_lc_..t
• (NA_ 0012 a_rfotl assumed)

7, rob:or system Lock number

3540

0 0087

2.6

Table 4.1.1 System Parameters Used in Optimal Control Study
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speed region is usually described by three points: the high hover point, the low

hover point, and the knee or the highest speed point. The low speed region of the

I-I-V restriction curve indicates that autorotation from hovering is the most critical

case.

In the restricted high speed region there is insufficient clearance between the tail of

the helicopter and the ground to allow flare to decelerate and control rotor RPM

prior to ground contact. Since we model the helicopter as a point mass, we cannot

s_udy the high speed region. The restricted low speed region is of primary interest

in this work.

The restricted regions of the H-V diagram are traditionally determined by flight test.

Using a build-up technique, the pilot performs a series of simulated engine failures

starting at entry conditions expected to be well outside the restriction regions.

Subsequent entries are made at more critical conditions until the pilot feels a safe

landing could not be performed from conditions more critical than the last. These

tests are performed to establish limits at enough altitude and airspeed combinations

to allow construction of the H-V diagram. A pilot reaction time of two seconds

following engine failure is usually employed, along with landing at groundspeeds of

15 Knots or less.

Another important factor affecting the H-V restriction is the effect of wind. The

published restriction areas are shown for zero wind conditions. The presence of a

headwind when performing an autorotational landing will significantly reduce the

difficulty of the task. Optimal descents of a helicopter from power loss in hover,

as well as those with initial forward speed, are given in subsequent sections of this

chapter for cases with negligible wind effect.

Another factor that affects the restriction region is the technique used to perform the
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landings. For the tests reported in reference i12'., the pilot's prhnary objective was

to attain zero rate-of-sink and a safe horizontal speed at touchdown. The technique

was to level the helicopter 1 or 2 feet off the ground with no rate-of-descent and

then gradually sink to the ground as RPM continued to decrease. During this phase

of the maneuver, small amounts of aft cyclic were applied to reduce the horizontal

velocity. This technique yielded consistent zero rate-of-descent touchdowns while

the horizontal velocity varied somewhat.

§4.2 Energy considerations

Consideration of the helicopter energy state aids in understanding the pilot tech-

niques required during an autorotational landing, and also the optimal control solu-

tions given in subsequent sections. After an engine failure, the helicopter has three

sources of energy: (1) the potential energy of altitude, mgH, (2) the kinetic energy

of the flight path velocity, _mll -2, and (3) the rotational energy of the main rotor

IRi2z _. Here we have neglected the small contribution of the tail rotor. Therefore

the total energy (TE) of the helicopter after engine failure is approximately given

by

TE=PE + KE + RE,

(1)1
+  lRf , 2= rngH + -2

Not all the energy given in the above equation is available to the pilot. While

it is true that we can make "complete" use of the potential and kinetic energy,

the amount of rotational energy available to the pilot executing an autorotational

landing is limited. This is due to the fact that the rotor must at all times maintain

an angular speed above some minimum value flm,n. Any drop in rotor speed causes

an increase in the angle of attack on the rotor's blades. If not checked, this increase
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in tL,. angle of attack will ultimately lead to stall (first on the retreating blades)

of the rotor and the instability associated with it. The minimum rotor speed _,n,,

defines a bound on the maximum usable rotor energy. The maximum amount of

energy available to the pilot after engine failure is thus given by

Maximum Usable Energy = mgH - lml'_ 1I (12_ 22 - R - (2)

The importance of the various energy- terms in equation (2) varies with both the

(H,V) combination at the time of engine failure and the physical configuration of the

vehicle as represented by the parameters m and IR. For example, the importance of

the potential energy term increases with the altitude H at which power failure oc-

curs. Similarly, the rotational energy" term becomes more important either when the

rotational inertia of the rotor system is increased (such as in the HERS case) or when

the altitude and airspeed at the time of failure decrease. For a given helicopter model

(i.e. (m, IR) = fixed), one can expect the use of different pilot techniques with dif-

ferent (H,V) entry conditions. Similarly, under the same entry condition, pilots will

use somewhat different autorotationa] landing techniques with different helicopter

• (.,j,} ,-alues.

The time rate of change of the total energT of the helicopter in a typical flight

situation is given by equation (25) of Section (2.3):

1 rnV_d (moH + + In n2) Ps (P, + P_o ' P_ta) (3)
dt 2

where

Ps = power supplied to rotor shaft,

P, = induced power loss,

P_.o = profile power loss,
(4)

P_ra = parasite power loss,
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where the various power terms are defined in Section (2.3).

Equation (3) expressesthe energy conservation principle according to which any

excesspower supplied by the engines that is not dissipated by the helicopter is

stored as internal potential: kinetic or rotational energy.

In the event of engine failure (i.e. Ps = 0), the total power or energy will decrease

at a rate which depends on the helicopter configuration as defined by airspeed, main

rotor thrust, angle of attack and rotor RPM. The pilot's task when entering power-

off autorotative flight is mainly one of _Energy Management". He has to control

the energy losses such that the total amount of energy used from the time of engine

failure to the final touchdown does not exceed the maximum usable energy (MUE)

of equation (2). This can be achieved through control of the thrust vector during

descent in order to land the aircraft at the correct level attitude with small vertical

and forward speeds. At the same time, during the deceleration phase, the pilot

must prevent the main rotor from overspeeding which would lead to unacceptable

blade centrifugal stresses. This task requires considerable pilot skill.

§4.3 Autorotation Landing Techniques used by Pilots

For the standard OH-58A helicopter, the autorotation technique depends on the

flight condition before engine failure. At low altitude and airspeed, below the knee

of the curve, the pilot technique required for a safe landing is to use increased

collective to reduce the sink rate as the helicopter approaches 10 to 15 feet above

the ground. At about 10 feet above the ground, the fuselage is leveled and collective

is increased as the helicopter settles. At higher airspeeds (still below the airspeed

at the knee) the collective may be reduced somewhat to regain or maintain rotor

RPM while the helicopter is decelerated using a cyclic flare. In these conditions,

the rotor does not enter into a true condition of "autorotation'.
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For higher altitude entries (above the altitude at the knee of the curve), the collective

is reduced and the cyclic moved forward to pitch the nose down in order to gain

some forward airspeed. The objective is to increase airspeed to that required to

build rotor speed during a decelerating flare, usually close to the speed defined by

the knee of the curve. An additional objective of attaining a higher airspeed is

to establish an operating point at the airspeed corresponding to minimum drag.

thereby maximizing the amount of time the pilot has to select and maneuver to a

desired landing area. As the speed increases, altitude rapidly decreases until the

pilot initiates a flare. The purpose of this flare is to first reduce the rate of sink,

second, to reduce the forward airspeed before touchdown; and third, to maintain or

increase rotor RPM. As the helicopter slows down, forward cyclic is applied to level

the fuselage at the proper landing attitude and, simultaneously, the collective is

raised to cushion the landing. The techniques described above are taught to Army

pilots and are described in the OH-58A Flight .Manual [59 I.

From an energy point of view, the maneuver of the helicopter, from pilot recognition

of i._gi_:.fai,b_e _ touchdown, can be divided into three phases; entry, descent,

and flare. The _try phase consists primarily of arresting the RPM decay of the

main rotor by lowering the collective pitch angle. This reduces the induced power

loss P, and established an angle of attack distribution along the blade that results

in aerodynamic autorotative forces that maintain RPM within the desired range.

This is especially critical for entry conditions with large induced power loss such

as when the helicopter is in hover. However, if in hover very near the ground, the

collective can not be lowered and the rotor RPM will decay immediately. Under

these conditions, there will not be a steady-state descent phase, and the pilot must

rely on judicious timing to extract the last available rotor energy to arrest the sink

rate as ground impact approaches.
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During the stead.v-state descent phase, air flows upward through the rotor di_k.

The increase in angle of attack on the rotor blades offsets the drop in the collective

pitch angle. Total aerodynamic force is increased and inclined forward to establish

equilibrium. The maneuver in this phase typically consists of a longitudinal cyclic

"push over _ to a nose down attitude, followed by acceleration to a desired steady

descent speed (usually from 50 to 75 knots depending on the helicopter and its

gross weight). Given enough altitude, steady-state autorotation at this speed can

be established. Angle of descent is normally 17 to 20 degrees from the horizontal

(compare to 2 or 3 degrees used in powered descent). The center of attention of the

pilot in the steady state phase is on maintaining the equilibrium flight through uses

of the collective and cyclic pitch. In the steady descent phase, some of the potential

energy of the vehicle has been converted into kinetic energ3." of the helicopter fuse-

lage. In effect, the pilot gives up altitude at a controlled rate in return for energy

to maintain the rotor at a constant RPM.

During the flare phase, the pilot must reduce airspeed and sink rate just before

touchdown. Both of these actions can be accomplished by moving the cyclic control

to the rear. The rearward oriented rotor disk (or TPP) allows a larger volume of

air to flow through it, resulting in an increase in the total lifting force. The larger,

rearward pointing thrust will reduce both the airspeed and sink rate. At the same

time, an in-plane force component is created which causes the rotor to accelerate

so that some of the lost RPM can be regained. In this phase, kinetic energy of the

vehicle is converted into rotor energy which, in turn, is used to generate lift. During

the flare, collective control application may be necessary to prevent rotor overspeed

or to slow the vertical descent rate even further. Finally, the collective is raised to

convert the stored rotor energy into lift which further cushions the landing. The

center of attention of the pilot in the touchdown phase is split between the raising
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of ,.he collective to cushion the landing and the leveling of the fuselage. The latter

is performed to avoid striking the tail rotor just prior to touchdown.

The approximate variations of the various energy terms in the entry, steady descent,

and deceleration,;touchdown phases are illustrated in Figure (4.3.3).

§4.4 Optimal landing of a Helicopter Initially in Hover

The optimal descent of a helicopter after power loss in hover was considered by

Johnson [15]. Instead of having a hard bound on the thrust coefficient CT. Johnson '

chose to reflect this limitation on the thrust coefficient in another way. The profile

power loss of the rotor was modified to include a "penalty" term which increases

sharply as the loading is raised above the stall limit:

_'_ C---Z ) N")a atl*pro= -- ( )2÷ i(1÷4.6 2) (4)

i

wh_ii_{_)a,at is the rotor Stab limit and N, is an arbitarily selected large number

(e.g.,J_', =,20).

The last term in the square bracket of (4) is the "penalty _ term. Its function is to

increase the profile power loss manyfold when the loading is above the stall limit.

Its contribution to the profile power loss is insignificant when the rotor operates

below the stall limit.

The main advantage of Johnson's approach is that it avoids the use of path equality

constraints from the constrained optimization problem of Section (2.9). As a result,

an ordinary gradient-type, steepest descent algorithm can be used to solve the
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resultant TPBVP. The disadvantage of the penalty function approach is that the

(cr)stano limit is usually exceeded (b_'. as much as 13 percent) over the last 20 percent

of the trajectory as "ground contact" is approached [15].

4.4.1 A Pure Vertical Descent Path

This section establishes the fact that a pure vertical flight path from power failure in

hover satisfies the first order necessary conditions. (However, the possible existence

of a non-vertical flight path with high entry height is suggested by Figure (4.5.27)

of Section (4.5).) We define a Hamiltonian function H based upon the problem

formulation of Section (2.9).

1
--H = Alrgo - mo_,x] - _no/x,_/x,2 _ X22]
r!

÷ _2[m0_2_]- _no/x2_/x_2 -__22i (S)

Y • 2 _
-r- _3i--Z0X3(C0--. _X/tll 2-r 1122)] -r,_4:0.1Xli

Since neither the Hamihonian function nor the terminal payoff ¢ are functions of

z_ea|_'_ht); wee:an easily establish the fact that A4 is a constant (this is not

true if ground eff_t has been included in the formulation; in which case H will be

a function of height). Knowing this, the Hamiltonian function defined in equation

(5) can be simplified to

±H = _[g0- _o,,,_] - _of_, v% _+ _]
r!

"=k _3[--i0.T32(C0 -t- X/UI 2 -_ U22_)] -f" _4[0.IzI] .

(s)

The optimal controls ul and u2 are obtained from the optimality conditions of

H., = o, //._= 0. (7)
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Using equation (6), these optimality conditions become:

V/Ul -v 1/2 2

X//_I 2 --- 1/2 2

+ A,,_ \/tll _ - u2 2

!

_, + ._,,2 \, t_l 2 -r u2 2

=0,

=0.
(s)

From the Euler-Lagrange equations, the partial differential equation of A2 is given

by

A2V = --/'/z2 ,

1_v = -,_,_o]( :"'_' )- ,_,',,o/i,,:_,_- :,'_"
r[ X/Xl2 _ 2.2 2

--A31oz_IAx. \/ul 2 + tt22: . (9)

Using the optimality condition of (7), and the Euler-Lagrange equations, the optimal

controls ul and u2 can be solved for simultaneously with the Lagrange multipliers A,

where i = 1,..,3. The analytical solution of the problem cannot be easily obtained.

However, if we guess that the u2 component (i.e. the horizontal component) of the

optimal control [Y(() is zero,

,,_ = o, (lO)

we can proceed to show that the resultant solution of the Lagrange multiplier A2

satisfies the optimality condition of (8-2).

Substitution of (10) into the equation of motion of the normalized forward speed

x2 gives

:_ = _I,_o/_v/:_,_+ _:_, (11)

If we integrate this equation forward (in time _), using the initial condition of x2(0)

= 0 (i.e. hover condition), the result is

x2(¢)=o, for 0<_<a. (12)
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Knowing that both u2(() and x2(, c) are zero. the inflow ratio A defined by equation

(43) of Section (2.4) can be simplified to

=-0.01 zl- -_koflx/-_l , (13)
23

which is neither a function of u2 nor z2. Also, depending on whether it lies within

the vortex-ring state or the momentum theory state, the induced velocity parameter

fl is given by equation (14) of Section (2.3). Under assumptions (10) and (12), fl

is now only a function of .tl, since z2 is identically zero:

po_'l
21 -

:zs .r_] •

;iS= O.

(14)

Using equation (14), we can easily prove that both (fl)t,2 and (fl)z2 are zero.

Therefore. we have from equation (13) that the inflow ratio A is not a function of

either u2 or zs:

(15)

Making use of the fact that both z2(c) and _,=(c) are identically zero in equation

(_)!!i_'i_ foilowing homogeneous differentia] equation in As:

Since the terminal payoff¢_ is not a function ofzs (because zs(_) = 0 for 0 < _ < 1),

the terminal value of A2 is zero. The solution of the homogeneous equation (16) is

therefore

A2(_) = 0, for 0< _< 1. (17)

Finally, back substitution of equations (10), (15-1), and (17) into (8-2) establish the

fact that H. 2 = 0. Therefore the original assumption of u2 = 0 produces conditions
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that satisfy the optimality condition of Hu_ = 0. Optimal descent of a helicopter

after power loss in hover as formulated in this section is thus a pure vertical flight

path. The same conclusion was reached by Johnson in !15 _.

In practice, a small amount of forward speed is usually required, both to avoid a

vertical descent into the helicopter's own rotor wake, and also to keep the landing

point in sight.

4.4.2 Interpretations of Optimal Control Results

Both flight tests and analysis indicate that an initial forward velocity greatly im-

proves the autorotational characteristics of the helicopter. Therefore optimal control

results are first given for the most critical case of descent from power loss in hover.

This case was found in Section (4.4.1) to involve only a pure vertical descent. With

this knowledge, we can eliminate the states z2 (forward speed) and zs (horizontal

distance), and the control tt2 (horizontal component of the thrust coefficient, Cry)

from the problem formulated in Section (2.9). The simplified problem is given in

Section (3.2) and consists of only three state variables (vertical sink rate, vertical

height, and angular speed of rotor), and one control variable CT, (= Cr).

The simplified problem was solved here using the Sequential Gradient Restoration

Algorithm. The Lock number of the OH-58A helicopter considered is 2.61, which

corresponds to the heaviest blade inertia of 672 slug-ft 2. The entry heights of the

helicopter at the time of power loss, given in Figure (4.4.4), vary from 2,5 to 2,50

feet above ground level (AGL).

Figures (4.4.,5) to (4.4.8) present in detail the optimal solution of power-off descent

from hover from an initial altitude of h0 = 100 feet (Case (3) in Figure (4.4.4)).

The flight time for this case is 4.9 seconds. Figure (4.4.5) gives the collective pitch

control and the thrust coe_cient required as functions of time. Note that the initial
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value of the thrust coefficient just before engine failure is given by

CT =
T

pTrR2(f_R)2 "
3000

")" (17.65) 2 (37 ,_ 17.65) 2'0.00_,,78 r,

3.0226, 10 -3 • (is)

Therefore the initial values of c--z. the inflow ratio A. and the collective pitch angle
o

(at 75 percent chord) #rs are given by

CT
- 0.063,

O

, CT

(19)

= 0.03s9. (20)

07_ -- 6CT 3 A
aa 2

= 7.12 degrees. (21)

The results given in Figure (4.4.5) agree generally with those from reference 1121.

The initial drop in the collective is followed by a gradual increase for flare. In Figure

(4.4.5), the collective flare begins at about one second after engine failure, when the

helicopter is about 80 feet above the ground. Thereafter, the collective pitch starts

to increase, and its rate of change reaches a maximum of 6 degrees per second when

the helicopter is at about the mid-point (in time) of its travel. Because of the hard

bound on the thrust coefficient at (c_a)aatt --- 0.15, the increase in collective pitch

(or the thrust coefficient) levels off towards the end when touchdown is imminent.

The thrust coefficient is on the bound during the last one second of travel when

the helicopter is at about 4 feet above ground level. The results also demonstrate



4.4 Optimal landing of a Helicopter Initially in Hover 131

TiME (ll|O.)

Figure 4.4.g Optimal Time Variations of Thrust Coefficient

and Collective Pitch Control, h0 = 100 feet
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the effectiveness of the numerical algorithm used in the enforcement of the path

inequality constraint on the thrust coefficient.

Figures (4.4.6) and (4.4.7) show the variations of the vertical height, vertical sink

rate, and the angular speed of the rotor as functions of flight time.

When the rotor starts to descend, the flows inside and outside the slipstream (cre-

ated when the helicopter was in the hovering state) are in opposite directions.

Therefore, from hover to any subsequent windmill brake state, the flow has to first

go through the vortex-ring state. Figure (4.4.8) shows the variation of the induced

velocity with the rate of descent in the various states of the rotor in vertical descent.

The normal hover state and the windmill brake state are well described using mo-

mentum theory because a definite slipstream exists in these states. By convention

( see pp. 99 of reference 1541). the vortex-ring state is defined by P = T(I" - _) >

0 (velocity terms are defined positive in the upward direction), so that the power

extracted from the airstream is less than the induced power loss. The vortex-ring

state is also characterized by large recirculation and high turbulence. The region

with P = T(I" _ v) < 0 is called the turbulent wake state. Here, there is a net

extraction of energy from the airstream. The rotor in this state experiences some

roughness due to turbulence, but nothing like the high vibration in the vortex-ring

state. Note that the empirical fairing in Figure (4.4.7) intersects the ideal autoro-

tation line V 4- v = 0 at l'jlvh = 1.6 (see also Figure (3.2.2)).

In the optimal descent of the helicopter, the rotor is operating in the windmill state

when the vertical sink rate is increasing (except for a brief period immediately

after engine failure). It then operates in the vortex-ring state when the velocity is

decreasing. Maximum rate of descent is of the order of 2200 fprn and occurs when

the helicopter is at about 50 feet above ground level. The touchdown sink rate is
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Figure 4.4.8 Optimal Time Variations of Vertical Height and

Vertical Sink Rate [Case (3),ho = 100 feet]
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l_igure (.4.B Variation of Induced Velocity with Rate of Descent [54]
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of the order of a few feet per second.

Figure (4.4.8) shows the variation of the rotor RPM with the flight time. The initial

rate of the RPM decay is about 7 rpm per second. This low rate is due to the drop in

the collective pitch immediately after power loss. The rate of RPM decay gradually

increases and reaches a rate of 36 rpm per second at touchdown, when rotational

energy stored in the rotor is being traded for more lift to cushion the impact. The

RPM at touchdown is 247, which is about 70 percent of the nominal angular speed.

4.4.3 Comparison with :Flight Data

To investigate the effect of rotor inertia on autorotational landing performance, a

flight test program with more than 100 autorotational entries and landings was

conducted during the HERS flight test programs (cf. [12,57]). Results obtained for

autorotation landings of HERS from power loss in hover are given in Section (2.4)

of reference [121 . An optimal flight path was not flown in these tests, of course.

and in practice_ in order to avoid a vertical descent into the rotor's own wake, some

forward speed and cyclic flare were involved. Nevertheless, a comparison of flight

data with results calculated by the optimal programs will shed some light on the

differences in the piloting techniques involved.

However, there are difficulties associated with these comparisons. First, it is found

that the engine torque involved in these flight tests does not decrease to zero im-

mediately after the throttle is closed to simulate the engine failure. Instead, the

engine torque pressure decays exponentially with a time constant of approximately

one second. Second, the grid camera that was used to record the time history of

the vertical height during these flights covered only up to about 100 feet above the

ground. The initial portion of the maneuver for a simulated engine failure for a

hover at 300 feet altitude was therefore out of the range of the camera. We are
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forced to use results from the only other case. which is a low altitude autorotation

from an initial height of 50 feet AGL. Third, there is no record of the vertical sink

rate over time. Finally, for flight tests reported in I12], the pilot's primary objective

was to attain a zero rate of sink at touchdown and to accept any safe horizontal

velocity. The technique used is to level the aircraft 1 or 2 feet off the ground with

no rate of descent. The helicopter then gradually sinks to the ground while small

amounts of aft cyclic are applied to reduce the horizontal velocity. The technique

consistently yield_ a zero rate of descent at touchdown but the flight time is usually

much longer than that calculated from the optimal program.

Because of the second difficulty mentioned above, we only compare results from a

simulated engine failure for a hover at 50 feet AGL. The difference in flight times

obtained from flight data and from calculation make direct comparisons of time

histories of the rotor speed and the collective pitch control meanningless. The

problem can be overcome if we instead use height as the independent variable and

compare plots of rotor speed and collective pitch versus height. Figures (4.4.9)

and (4.4.10)present the resultsofthese comparisons. Table (4.4.2)summarizes-the

c?ndii,_=i_Wh_hi_he comparisons are made.

Figure (_.4:@['corrrpares time histories of the collective pitch calculated by the opti-

mal program (we shall from here onward call it the computed result) and recorded

from flight. The comparison is qualitatively good. Two distinct features emerged

from the comparison. First, relative to the smooth {with an almost uniform increase

in the collective pitch) computed result, the flight data are wavy. Over two intervals

in height, first from 5 to 20 and then from 35 to 45 feet, the recorded collective

pitch remains practically unchanged. The pilot has, perhaps subconsciously divided

the autorotational landing into phases within each of which his center of attention

changes. In the interval from 5 to 20 feet, his concentration is on stopping RPM
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pOp_Imal
rc_ram

Engine
Seizure

Gross Weight (lb.) 3000 3048

Rotational Inertia per 672 672
blade (slug-f_ 2)

Wind Condition (Knots) O (3

Entry Height (f_.) 50 50

Collective Time O O

Delay (seo.)

Flight Time (see.) 3.8 8.1

Use of Cyclic Pi_ch No Yes

Englne Condition Exponen=ial Decay
wi_h one second
_ime constant

Table 4.4.2 Conditions Used in Comparison of Calculated

Results with FUght Data [12]
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O : Flight Data [12]

Figure 4.4.9 Comparison of FUght Data with Optimal Results

: Collective Pitch Control
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decay by reducing the collective pitch control. When the helicopter is at about

10 feet above the ground (interval from 35 to 45 feet), his attention has shifted

to the use of aft cyclic to reduce both the forward speed and vertical sink rate.

Preparation is made at this stage for the subsequent raising of collective control to

cushion the touchdown. It is in such a rapidly changing, often confusing situation

that an automated control program, which pays attention to "all" aspects of the

landing maneuver, from the begining till the final touchdown, could be of assistance

to inexperienced pilots.

Second, the initial drop in the collective pitch recorded in flight data is only about

two degrees. This is substantially less than the computed result of five degrees.

Thereafter the time history of the collective pitch lies consistently below the com-

puted result. These observations might be explained as follows. In flight tests, the

engine torque does not drop to zero immediately after engine failure. Instead, it

decays exponentially with a 1-second time constant to a level which is 10-15 percent

of the full power output torque. Therefore the residual power available on the rotor

shaft at thebegin_ of the autorotational descent is significant. This may explain

why_::t,he :_al_:_in ¢olleaive pitch is not as much as the computed result. Af-

ter the ]nitiaI'I0we_ting of the collective pitch, the pilot applies a small amount of

forward cyclic to pitch the helicopter nose down and attain about 5 knots ground

speed. This forward motion reduces the induced power consumption of the heli-

copter which explains why recorded data lie consistently below computed results.

The gain obtainable with the use of forward cyclic is of course not without a price.

Aft cyclic must be applied in the landing flare phase of the descent to reduce the

forward speed of the helicopter to zero ground speed at touchdown. In addition

*_, .1_° ;.... _=°A ;._A,w_rt nnwwr ln_ _nr_t.pr] wlt.h thp 11_pn£ raft twelve the tnta]

flight time of the autorotation descent is lengthened.
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Figure (4.4.10) compares the recorded time history of rotor speed with that calcu-

lated by the optimal program. While one should not look for too much correlation

here, the comparison is surprisingly good. The rotor speed at touchdown is 220

rpm. This value is somewhat lower than the computed result of 268 rprn (see also

Table (4.4.3)). The total amount of energy spent in the optimal program is

Energy Used (Optimal Program)= rngH _ _IR(I2_- f121)

a(672× 2)(372- 2s2) (22)
= 3000 x 50--

= 54.3 _ 104 fl.-lb.wt.

This amount is about 24 percent less than that used by the pilot in achieving the

same zero rate of sink at touchdown from a 50 feet hovering throttle chop:

Energy Used (Pilot) = 3000 × 50 + _(672 × 2)(372 232),
(23)

= 71.4 × 104 ft.-lb.wt.

4.4.4 Effects of Entry Height

Figure (4.4.11) compares the time history of the collective pitch control calculated

by the optimal program at three different entry heights of 50, 100, and 200 feet.

Since the computed optimal flight time varies with the entry height, we change the

independent variable from time to the normalized time (_), where _ is defined as

= _t, (24)
t!

where t! is the flight time. Computed time histories of the thrust coefficient are

compared in Figure (4.4.12)

Figure (4.4.1I)shows that the optimal collectivepitch control program changes with

the entry height. From the 7.2-degree collectivepitch used before engine failure,

the initiaicollectivepitch reduction isin the range of 5-6 degrees for allthe entry
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Time of Touchdown (see.)

Max. Rate of Descent (fps.)

Touchdown vertical speed
(:ps.)

Rotor

(rpm)
Speed at Touchdown

Fligh_
Da_a [12]

8.1

15

O

221

Minimum Collective Pitch

(de e®S)
. ....= ,:

...... _'.'._,i_/i J,,i'ft_; if,,,,i,,_ j,

Touch_wn (degrees)

2.0

14.2

3.8

2O

0

268

14.8

Table 4.4.3 Comparison of Optimal Results with

Flight Data, ho = 50 feet [12]
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heights considered. The collective i_ lowered to minimize RPM decay. At the lowest

entry height of 50 feet, the collective is immediately raised again after the initial

drop in collective. At the higher entry heights of 100 and 200 feet, the lowered

collective pitch is maintained for some time before it is raised to reduce the rate

of descent. This delay allows a build-up in the rate of descent of the helicopter,

but with the high rotor inertia, subsequent collective increase provides a sufficient

deceleration to allow a safe landing.

4.4.5 Most Critical Entry Height

Figure (4.4.12) shows the time history of the thrust coefficient calculated by the

optimal program at three different entry heights of 25, 50, and 100 feet. The curve

for case (4) (with entry height of 200 feet) lies slightly to the right of that for case

(3) and has been omitted in the interest of clarity.

As the entry height is increased, Figure (4.4.12) shows a corresponding increase

in the amount of (normalized) time that the thrust coefficient spends on its stall

limit. This trend continues till the entry height of 100 feet is reached. Beyond the

_critical" height of 100 feet, any further increase in entry height reduces the time

that the thrust coefficient is on its stall limit. Since prolonged usage of the maximum

available thrust is an indication of an irrevocable extraction of the rotational energy

from the rotor system during the autorotational landing maneuver, the observed

results suggest the existence of a "Most Critical Entry Height" (MCEH). Above

or below this critical height, which in the present case is around 100 feet, the

autorotational landing procedure becomes progressively, easier to execute.

Further confirmation of this hypothesis can be found in the time history of the

rotor angular speed in Figure (4.4.13). Since the rates of descent at touchdown for

all entry heights considered are practically zero, we cannot use them to compare
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the criticality of the ]andin_-. However, we have learned from Section (4.4.3) that

the lower the rotor RPM at touchdown, the larger is the amount of energy (of the

helicopter) used in the landing maneuver. One easy way to show the existence of

the MCEH is to plot the rotor speed at touchdown against the corresponding entry

height of the autorotationa] descent. Such a plot is given in Figure (4.4.14).

Figure (4.4.14) shows that the .MCEH (denoted by he,) is at around 100 feet where

the rotor speed at touchdown is a minimum. Therefore the "Most Critical Entry

Condition" is one with engine failure in hover at he,. This conclusion agrees with

flight test results recorded in reference :11 I.

§4.5 Optimal Landing of a Helicopter in Forward Flight

The autorotational landing of a helicopter in forward flight has been formulated as

an optimal control problem in Section (3.3). Unlike the case when power loss occurs

in hover, the present case involves more than a pure vertical descent. As such. we

have to consider the "full state" problem with five states

z] = normalized verticalvelocity,

x2 = normalized horizontal speed.

x3 = normalized rotor speed, (24o)

z4 = normalized vertical height,

zs = normalized horizontal distance.

and two controls
u i = vertical component of thrust,

uz = horizontal component of thrust.

(2s)

If the helicopter is not constrained to land at a particular spot on the ground, the

state xs may be removed from the list in (24). Optimization is then performed on a
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problem with only four states and _wo controls. After the optima] solution has been

computed, information on the horizontal distance (xs) may be recovered through

the forward integration of the kinematical relation:

= (26)

where _ is the normalized flight time.

4.5.1 Flight Program

Once again, the High Energy Rotor System (HERS) described in Section (4.1) is

used as the basis for the analytical model. However, we note in reference [12! that

the highest inertia rotor (with "/= 2.61) allows complete elimination of the height-

velocity restriction curves. For the mid-inertia rotor (with "_ = 3.19), only a small

restricted region remains between 75 to 125 feet altitude with airspeed less than 5

knots. Therefore it is more interesting to investigate optimal landings of the HERS

with its lowest inertia rotor. We have chosen, rather arbitarily, a rotor with Lock

Number 3 of 4.38 which corresponds to a rotor inertia (per blade) of 400 slug-ft 2.

The low-speed height-velocity restrictions for the HERS with rotor inertia at three

different levels are given in Figure (4.5.15) along with the diagram for the standard

OH-58A helicopter.

Entry conditions studied are summarized in Figure (4.5.16). We have chosen to

analyse entry conditions that are within or close to the height-velocity restriction

curve of the HERS with its low-inertia rotor. Note also that entry conditions 1, 2 and

6 are at the same altitude of 100 feet but with different forward speeds. Similarly,

entry conditions 1, 5 and 4 have (approximately) the same forward speed of 8 knots

but are at different entry heights. In this way, effects of both the forward speed and

altitude at entry can be studied. Optimal landings of the HERS studied at these
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g

entry conditions are with,,ut any terminal constraint on the horizontal distance.

The only exception is entry condition 5, where the helicopter is constrained to land

at various horizontal distances from the point of engine failure.

4.5.2 Interpretation of Results

Figures (4.5.17) to (4.5.19) present in detail the optimal solution of power-off descent

from an altitude of 100 feet and at 12-knots forward speed (entry condition 1 in

Figure (4.5.16)). Figure (4.5.17) gives the collective pitch control and the thrust

coefficient as functions of time. Since the parasite drag on the fuselage of the

helicopter in level flight is small compared with the weight of the vehicle, equation

(18) is still approximately true and the value of the thrust coefficient divided by

the rotor solidity before engine failure is given (approximately) by 0.063.

The induced velocity in level flight can be found from the momentum quartic"

- 2_'p3sin a ÷ _'_z) _ - (T) 2 = 0./p4
W

(27)

where the normalized induced velocity (z)) and the normalized flight path velocity
. . " •

(¢ ..............• .... .....i green"

B

I/

W

V (2s)

In level flight, the angle which the flight path velocity V makes with the TPP, a,

is approximately zero. Equation (27) can thus be simplified and the value of _ is

given by the following equation



154 4. Optimal Solutions and their Interpretations

The value of the induced velocity at hover, vh. is given by

/; w

b'h _- _/ 2pA '

= 25.38 fps.

(30)

Values ofl-" and _ can then be computed from equa,ions (28-2) and (29) respectively.

Their values are
f" = 0.79s.

(31)
I) = 0.855.

Therefore the inflow and advance ratios are given by

p = 0.031,

= 0.0332.

(32)

The collective pitch used before engine failure can then be computed from the

following relation
3. 2_¢6C__(1÷ _. j_ .o )÷ _(1 - ½.2)

075 :
(1- u2÷ _u')

_ 6CT 3 (33)

act 2

--6.63 degrees.

As expected, this value is smaller than the value used in the hover case (7.72 de-

grees).

The optimal solution is similar to that found in the hover case. Initially the collec-

tive is lowered to maintain rotor speed, and nose-down cyclic is used to maintain

airspeed. The results of these control actions are an initial build-up of the verti-

cal sink-rate as well as an increase in the forward airspeed. However, the rate of

RPM decay is being curtailed. In fact, the angular speed of the rotor stabilizes at

around 332 rprn until a rearward, nose-up cyclic flare is used to slow both the rate

of descent and forward airspeed.
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Because of the bound on thrust coefficient at (co-q]-) = 0.15, the steady increase in

the collective pitch levels off towards the end when touchdown is imminent. The

thrust coefficient stays on its bound during the last second of the travel when the

helicopter is very near to the ground. Once again, the path inequality constraint on

the thrust coefficient has been effectively enforced by the optimization algorithm.

Nose-up cyclic is initiated 2 seconds after the engine failure when the helicopter is

at about 50 feet above the ground. This occurs later than was the case for hover,

yet there will be sufficient kinetic energy available for the landing flare on account

of the initial forward speed. With a rearward tilt of the TPP, the projected area

of the TPP in the direction perpendicular to the air flow has increased. More air

now flows through the rotor disk. The resultant increase in the angle of attack of

the rotor blades increases the thrust. This effect, together with the steady increase

in the collective pitch, bring about the desired reductions in the forward speed and

rate of descent approaching touchdown.

The time variation of rotor speed is given in Figure (4.5.19). The figure clearly shows

that some of the lost RPM can be regained if a nose-up cyclic flare is initiated with

sufficiently high helicopter forward speed. Effects produced by a rearward (nose-

up)cyclic flare are illustrated in Figure (4.5.20). Because of the increased lift force

(i.e. L >> D in Figure (4.5.20)), the resultant thrust vector R is tilted forward

and produces a net force component in the plane of the rotor's blades. This force

component generates a torque that accelerates the rotor. During the touchdown

phase, the collective is raised to cushion the impact. The rotor speed is reduced to

225 rprn at touchdown, indicative of extracting most of the available rotor energy.

The touchdown is made at a near zero horizontal speed.

4.5.3 Comparison with Flight Data
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In this sub-section, techniques used by pilots are compared with those computed

from the optimal program. We use flight data obtained from a simulated engine

failure of the low-inertia version of the HERS at the "knee" of the height velocity

restriction curve i12. Flight data obtained from this entry condition (with 115 feet

altitude and 45 knots forward speed) are compared with those computed by the

optimal program for the entry condition at 100 feet altitude and 38 knots forward

speed. Therefore, one must note the small differences in both the entry height and

speed when making comparisons. Additionally. because of the strong emphasis on a

zero vertical sink-rate at touchdown, pilots tend to neglect the horizontal component

of the velocity in their landing maneuver (both military and civil criteria permit

this). In this particular case. the touchdown horizontal speed of the helicopter is

20 fps. This pilot priority is quite different from the cost function used in the

formulation of the optimal control problem. Other differences in flight conditions

are summarized in Table (4.5.4).

Because of the difference in flight times obtained from flight data and that from

calculation, direct comparisons of the time histories of the collective pitch and the

rotor angular speed are not meaningful. The previously used technique of converting

the independent variable from time to height is not applicable here because of the

difference in entry heights. Therefore we choose to use the normalized time (_, see

equation (24)) as the independent variable in making comparisons. Figures (4.5.21),

(4.5.22) and (4.5.23) present results of these comparisons.

Figure (4.5.21) compares time histories of the collective pitch calculated by the

optimal program and from flight data. The comparison is qualitatively good. The

most obvious differences in these time histories are the undulating nature of the

flight data, as well as the fact that the collective pitch control used in flight tests

is lower than that calculated. One of the reasons for the observed difference in
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Cross Weigh_ (lb.]

Rotational Iner_Aa per
Blade (slug-ft z)

3OOO

4OO

Flight

Data [12]

3040

323

Wlnd Condition (Knots) 0 ¢3

Entry Height (ft.) 100 115

Entry Speed (Knots) 38 45

Collective TAme Delay
(sec.] 0 0

Touchdown Vertical
Speed (fps.) 0 0

Touchdown Horizontal

Speed (fps.) 0 20

Rotor Speed a_
Touchdown (rpm) 224 280

Flight Time (sec,) 8,7 10.8

Engine Condition

Exponential
Decay with
l-second time
constant

Table 4.5.4 FHght Test Conditions
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Figure 4.S.21 Comparison of Flight Data with Optimal Results

: Collective Pitch Control
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collective pitch controls is the availability of the residual power to the helicopter

in flight tests. The difference is also partly due to the fact that the touchdown

horizontal speed of the helicopter in the flight test is 20 fps (as compared with the

near zero value in the optimal result). With reference to Figure (4.5.18), we can

see that the calculated vertical sink-rate of the helicopter over the last 1//3 of the

flight time is practically zero. Over the same period of time, the forward speed

of the helicopter is being steadily reduced to its near zero value at touchdown.

Therefore the touchdown condition of the flight test (zero rate of descent and 20

fps forward speed) has been achieved in the optimal program at around 2/3 of the

flight time. If we now compare the value of the computed collective pitch at around

2/3 of the flight time with that from flight data at touchdown, their values become

comparable. Unlike the flight test, the optimal program will not land the helicopter

with high forward speed. Instead it will try to reduce the forward speed to as near

to zero as possible. This is done over the last 1/3 of the flight time where both the

collective pitch and rear cyclic are used to further decelerate the helicopter. The

above reasoning helps to explain the difference in collective pitch controls shown in

Figure (4.5.18).

Figure (4.5.22) compares the recorded time history of the rotor speed with that

calculated by the optimal program. The comparison is again qualitatively good.

Notice that the pilot had placed much greater emphasis on maintaining a constant

rotor RPM than that reflected in the optimal results. Consequently, the collective

pitch is maintained at a minimum for as long as possible. This helps to explain the

discrepancy found in Figure (4.5.22). Since the optimal program decelerates the

forward speed of the vehicle to near zero while flight test to 20 J'ps, the computed

TULUJ- 2[Ik.._iYJ. at _bUU_/IUUI_'II _/D.UUIII, _OU T_TfI_ ID IUtn/_l bll_ll tlll_,t IULIIIU 111 _11_ _I_{:LLI/_I.I

flight test (280 rpm).
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A comparison of the optimal traj_,c_ory with that found in flight tests is shown in

Figure (4.5.23). Flight data show a 535 ft horizontal distance at touchdown: which

is larger than that from the optimal program (400 ft). The extra distance was used

by the pilot in the reduction of forward speed through the use of cyclic control.

In order to maintain the helicopter at its level attitude for the final touchdown.

only small amount of rearward cyclic was used in the deceleration of the vehicle.

This pilot actions results in a prolonged touchdown and a longer horizontal distance

travelled.

Landing Techniques

The most critical phase of the autorotation descent of a helicopter is the final

approach to a landing flare. Figures (4.5.24) and (4.5.25) show the pilot control

motions and flight profiles from the flight data, and those obtained by the optimal

program, respectively. Both records are for an autorotation entry condition of about

40 to 45 knots airspeed, and level flight at around 100 feet altitude. Superimposed

on the flight profile are reference lines indicating the orientation of the helicopter's

pitch attitude at one-second intervals. Close spacing of the reference lines indicates

a slow maneuver while largerspacing indicatesa fastermaneuver. As the helicopter

ismodelled as a point mass, pitch attitude of the vehicle isnot availablefrom the

optimal program. In Figure (4.5.25),we have substituted for itthe orientation of

the TPP in space. Also, since the longitudinal cycliccannot be determined from

the optimal program, itisnot shown in Figure (4.5.25).

As can be seen from the flight data, a cyclic flare is initiated just below 100 feet

and held to about 20 feet above the ground. This results in a nose-up attitude

^.'_ I Q ..1...... _I'_I_ ,.,..ll,_,_*_,t_ _c _,_._:_ cl_ahtlv rl_-_._o *h,_ R,_.,_ *,_ _-,_v,_n* _._t,_,.

overspeed. Only after reaching about 15 feet does the final collective pull begin. In
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Figure 4.5.23 Comparison of Flight Data with Optimal Results

Flight Trajectory
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contrast, the computed results given in Figure (4.5.25) show that the collective is

pulled earlier at an altitude of about 30 feet and is raised almost continuously until

touchdown. Rear cyclic is applied at about 70 feet altitude to reduce the horizontal

velocity. The maximum deviation of the TPP from horizontal during the descent

is 24 degrees (in the nose-up direction). This angle is reduced progressively as the

end-time is approached. The return of the thrust vector to the vertical is done

because most of the forward speed of the vehicle has already been reduced as the

end-time is approached. It also provides additional lift to cushion the touchdown.

In an actual landing, the vehicle must be rotated to its landing attitude so as to

provide sufficient clearance between the tail-rotor and the ground. This particular

constraint is not included here because of our use of a point mass model.

4.5.4 Effects of Entry Height

Time histories of optimal thrust coefficient for entry conditions with approximately

the same forward speed (8-12 knots), but at three different entry heights of 100,

230. and 420 feet, are compared in Figure (4.5.26). Since the computed flight time

varies with the entry height, we change the independent variable from time t to the

normalized time _. Figure (4.5.26) shows that the optimal thrust program changes

with the entry height. In all three cases considered, cr drops from its initial value
• G

of 0.063 (used before engine failure) to a lower value in order to reduce the initial

RPM decay. This initial drop in .q.z: is most severe at the lower entry height of 100
a

feet. The reduction is relatively mild at higher entry heights of 230 and 420 feet.

After the initial reduction, the thrust coefficient then increases monotonically. The

rate at which cr is increased is again a function of the entry height. At the lower
U

height of 100 feet, there is a relatively rapid increase in the thrust coefficient. Be-

cause of the upper bound on ce-_:, the rate of increase levels off when the end-time
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is approached. The thrust coefficient stays on its stall limit (va-_z-= 0.15) over the

last second of its travel in the optimal control program.

The same trend is followed in cases when engine failure occurs at the higher altitudes

of 230 and 4,20 feet. However, the larger potential energy which is now available to

the helicopter makes it unnecessary to have a large increase in thrust coefficient.

This is because some of the potential energy of the helicopter can be traded for

kinetic energy, and that the same increase in collective pitch produces a larger

thrust at a higher forward speed than at a lower speed. Al._o. throughout the

complete descent process, the stall limit is never reached. These observations agree

with those found in the hover cases. In these cases, a "most critical entry height"

(MCEH) exists from which the autoroational descent is more difficult to execute

than from any other entry heights. This concept of MCEH can be extended to entry

conditions with the same entry speed but different entry heights. As is indicated

in Figure (4.5.26), with approximately the same entry speed of 8-12 knots, the

autorotational landing from the entry height of 100 feet is more difficult to execute

than from any other entry height.

Further insights from the optimal programs can be gained if we resolve the thrust

coefficient into its horizontal and vertical components and plot these thrust compo-

nents against the normalized time. Such a plot is given in Figure (4.5.27). Variation

of CT, with the normalized time is qualitatively similar to that of the thrust co-

efficient shown in Figure (4.5.26). In all three cases considered, the horizontal

component of thrust coefficient is positive for the first half (in time) of the de-

scent, indicative of the use of forward cyclic to accelerate the helicopter to a higher

speed. This forward acceleration, of course, cannot be continued for too long, and

o+ ...... ,_ ,_;,___mo ,.,_- ryellr {_ A_rJlipd to decelerate the helicopter and prepare

it for the final touchdown. Time histories of the forward speeds obtained with such
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an acceleration/deceleration optimal control program are shown in Figure (4.5.28).

In Figure (4.5.28), the forward speed first increases, reaches a peak at around mid-

time and then decreases to zero at touchdown: the higher the entry height, the

larger the peak speed. The higher forward speed in turn increases the effectiveness

of the rearward (nose-up) cyclic flare (i.e. with negative Cry). This explains why

touchdown is made with progressively- lower Cr value in Figure (4.5.26) as the entry

height is increased.

4.5.5 Effects of Entry Speed

Time histories of optimal thrust coefficient with entry speeds of 12, 38, and 57

knots, all at an entry height of 100 feet, are compared in Figure (4.5.29). Entry

height of 100 feet is selected because of the "criticality" of this height discussed

previously. Optimal time variations of the horizontal and vertical components of

the thrust vector are given in Figure (4.5.30). Time variations of forward speed for

these entry conditions are given in Figure (4.5.31).

Figure (4.5.29) shows the effect that entry speed has on the thrust program. The

time variation of cr in entry condition 1, which is the case considered in Section
G

(4.5.4), consists of an initial drop in c,__, followed immediately by a steady increase

that levels off as the end-time is approached. Variations in cases with higher entry

speeds are qualitatively similar to that of the first case. The higher the entry speed,

the larger is the kinetic energy available to the helicopter in its execution of the

autorotation landing. Since the effectiveness of the rearward cyclic flare increases

with flight path velocity, there is no need for a large increase in collective at the

end of the maneuver for entries with high forward speed. Hover, a condition with

zero forward speed, is therefore the most critical case to execute an autorotation

landing for any given entry height.
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An interesting feature of the optimal program is observed in Figure (4.5.30). With

the same entry height of 100 feet, we note the change in the CT_-program with

entry speed. If the forward speed at the time of power loss is relatively low (e.g. 12

knots): forward cyclic must be used to accelerate the helicopter to a higher forward

speed before the aft cyclic is initiated to slow it down for the touchdown. At an

intermediate speed of 38 knots, there is but a brief period of forward acceleration.

At the highest forward speed considered (57 knots), aft cyclic must be applied

immediately after engine failure in order to decelerate the helicopter in time for the

final touchdown. Time variations of forward speeds in these three cases considered

are given in Figure (4.5.31).

4.5.6 Best Endurance Speed

The need to accelerate the helicopter to a higher forward speed when engine failure

occurs at low entry speeds and to decelerate it when power is lost at high speeds

indicates the existence of some intermediate speed at which the helicopter is neither

accelerated nor decelerated. To reduce workload; a pilot might prefer to initiate an

autorotation landing from this speed.

This "preferred" speed can be better understood if we study the effect of forward

speed on the energy consumption of a helicopter in level, powered flight. Total

power consumption is the sum of induced power loss of the rotor, blade profile

power loss, fuselage parasite power loss, and tail rotor power. Tail rotor power and

blade profile power are not strong functions of the forward velocity. In contrast,

induced power loss decreases drastically with increased forward velocity while the

parasite power loss increases with the third power of the forward velocity. Figure

the characteristic "buckeC shape. The speed for best endurance is the speed at
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which the power-required curve is at its minimum. Th_ speed for best range, which

is usually slightly higher than the speed for best endurance, is the speed at which

the power-required curve is tangent to a line drawn through the origin. This is also

the point at which the ratio of speed to power (and therefore, of distance to fuel)

is greatest.

In autorotation, steady flight can be achieved only by descending. The rate of

steady autorotative descent is once again a strong function of the forward speed

of the helicopter. Appendix (A) presents a way to compute the rate of steady

descent at different forward speeds. The rate of steady descent in autorotation of

the OH-58A helicopter considered here is shown in Figure (4.5.33). Again, we see

the characteristic "buckeC shape, indicative of some intermediate speed at which

the rate of descent is a minimum. The forward speed with the minimum rate of

descent is the same as the speed for best endurance shown in Figure (4.5.32). This

speed for the OH-58A helicopter is at around 45-50 knots.

From the point of view of energy mangement, the optimal control program tries to

fly the helicopter at a speed which minimizes the power loss. The optimal program

achieves this by accelerating or decelerating the helicopter to a higher or lower

forward speed as the case may be. However, we note that results shown in both

Figures (4.5.32) and (4.5.33) are obtained with the helicopter in a steady state

condition. Since the optimal results are in the transient state, we cannot compare

these optimal results with those shown in the figures directly. Nevertheless, it is

still not too surprising to see that the optimal program has avoided both high and

low forward speed with very high power consumption.

§4.6 Optimal Descent of a Helicopter with a bound on Vertical Sinkrate

In the last section, we presented and interpreted some of the results obtained from
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computations of optimal descents of a helicopter in forward flight. The optimal

descents of the HERS from entry conditions either with a high forward speed or at

a high altitude result in peak rates of descent that are unacceptably high to pilot.

and to overspeeding of the rotor during the rearward cyclic flare.

To remedy this problem, we add an upper bound on the vertical sink-rate of the

helicopter to the optimal landing problem. The new problem, with an additional

state variable inequality constraint is given in Section (3.3). An entry condition

with a 7.7-knot initial speed at an initial altitude of 423 feet was selected for the

present study. This entry condition was used because the optimal descent of the

HERS with this particular entry condition results in unacceptably high peak descent

velocity. Results obtained with the optimal descent of the HERS from this entry

condition and subjected to a descent velocity bound are presented in this section.

4.6.1 Optimal Descent of a Helicopter with a Descent Velocity Bound

If the optimal rate of descent of the helicopter in the unbounded solution exceeds

the upper bound, it is reasonable to assume that the optimal time variation of the

descent velocity in the solution to the new problem will resemble that shown in

Figure (4.6.36). The helicopter starts initially with a zero rate of descent. This rate

then increases, touches and stays on its upper bound for a period of time. Finally.

the rate of descent is reduced so as to allow for a soft touchdown. Typically, this

time variation of the descent velocity consists of three phases. These phases of

entry, steady descent, and landing flare are shown in Figure (4.6.36).

The amount of time that the helicopter spends in each of these phases depends

on the magnitude of the descent velocity bound, [VD]maz" Generally speaking, the

higher the descent velocity bound, the shorter the time spent in the steady descent

phase. As illustrated in Figure (4.6.37), the steady descent phase ceases to exist
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when the iI'Dimaz-bound is chosen too high. In this ca-e, the variation of the

descent velocity becomes essentially that without the descent velocity bound. The

other extreme is when the :, Djrnaz-t)ouna selected is too low, e.g., at around 1200

fpm. As can be seen from Figure (4.6.38), the horizontal line iUD_,naz = 1200 fpm

does not intersect the curve which shows the variation of the steady autorotative

sink-rate of the HERS with its forward airspeed. Therefore, no feasible control

exists that will allow the helicopter to autorotate at a steady sink-rate of 1200

f prn.

An intermediate value of 1800 fpm was selected as an upper bound on the vertical

sink-rate of the helicopter in autorotative descent. From here on we shall use the

term "nominal case" to represent the autorotative descent of the HERS from an

entry condition with a ?.7-knots forward airspeed, at an initial altitude of 423 feet,

and having a 1800 fprn bound on its vertical sink-rate.

The time variations of the CT, CT,, .q.r_ and the collective pitch for the nominal
' a '

case are given in Figure (4.6.39)-(4.6.40). With reference to the CT,-curve, one can

see a natural division of the autorotative landing maneuver into the three phases

mentioned earlier. Similar divisions can also be observed in both the time histories

of the collective pitch and the thrust coefficient.

An approximate Solution of the Cr,

During the steady descent phase, when the sink-rate of the helicopter stays close

to the value [VD]maz, the vertical component of the thrust coefficient CT,, can be

determined using the following approximations. During the steady descent phase,

the time rate of change of the helicopter's sink-rate is near zero. By equating the
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l_igure 4.6.40 Time Variation of the Collective Pitch

with a Descent Velocity Bound
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LHS of the first equation of Appendix (A) to zero. we obtain

go = u]z3- ]z]\ - x22.
(34)

Since -_- = 3.02. f = 0.0306, and magnitudes of both x], x2 and x3 are of the order
m0

equation (34) (i.e., the parasite-drag term, fx] \//_xl2 - x_)of 1. the second term in

may be neglected. Therefore, we obtain the approximate relation:

go
- 3.02.

m0 (35)

which can be used to estimate the value of the normalized vertical thrust coefficient

t/1 .

If the angular speed of the main rotor does not vary too much during the steady

descent phase, the normalized rotor speed x3 can be approximated by its mean

value [x31,nea,_. Therefore the approximate value of u] in the steady descent phase

is given by:

Ul "-
gO

rrtO(X3)2mean '

3.02

(oo512'
= 3.33. (36)

where we have used a value of 0.95 for the average normalized rotor speed ((x3)mea.)

in the steady descent phase (see also Figure (4.6.43)). The computed value of 3.33

for the vertical component of the thrust coefficient in the steady descent phase

agrees well with the value 3.7 found in the optimal solution (see Figure (4.6.41)).

4.6.2 Comparisons between Results Obtained With and Without
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Figure (4.6.41) compares the time variations of the thrust coefficient obtained from

optimal control programs with and without a descent velocity bound. The latter

consists of an initial drop in the collective pitch control. This is followed by a

gradual, steady increase in the thrust coefficient till the final touchdown. The case

with the descent velocity bound is characterized by phases:

(1) The entry phase consists of a similar sharp drop in the thrust coefficient

to preserve the rotor RPM. This is followed by a steady increase in the

thrust until the steady state value of 0.08 is reached.

(2) In the steady descent phase, the thrust coefficient is maintained at a

constant value of 0.08.

(3) The landing maneuver ends with a rapid increase in the collective pitch

when touchdown is imminent. This rapid control movement is a special

feature in the landing flare phase of the optimal, autorotative descent of a

helicopter with a descent velocity bound.

As was found in the case without a descent velocity bound, the horizontal component

of the thrust coefficient CT=, shown in Figure (4.6.39) is initially positive for this

particular case with a low entry speed. The helicopter is initially accelerated to a
o

higher forward velocity. The thrust vector must eventually be rotated backward to

decelerate the vehicle for a safe landing. This reversal in the sign of the horizontal

thrust component has been delayed when compared with results found in the case

without the descent velocity bound.
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The time histories of the descent velocity, forward speed, rotor RPM, as well as

the optimal trajectory obtained for the nominal case are given in Figures (4.6.42)-

(4.6.43).

The time histories of the helicopter's descent velocity obtained from optimal control

programs with and without an upper bound on the descent velocity is compared

in Figure (4.6.44). Those for the helicopter's forward speed and the angular speed

of the main rotor are compared in Figure (4.6.45). It is apparent from Figure

(4.6.44), that "peaking _ of the descent velocity has been effectively suppressed

after the introduction of an upper bound on the descent velocity. To cover the

same vertical distance of 423 feet, the flight time in the case with a [VD]max-bound

has been lengthened. The touchdown time has increased from 11.3 seconds in the

V Icase without the [ D_maz-bound to 16.3 seconds in the case with the bound.

The time variations of the helicopter's forward speed with and without the descent

velocity bound are compared in Figure (4.6.45). These variations are qualitatively

similar. In both cases, the forward speed of the helicopter first increases, reaches a

maximum before it is decreased to near zero at touchdown. The time at which the

maximum forward speed is reached in the case with the descent velocity bound has

been delayed when compares with that without the descent velocity bound. This

is due mainly to the late rotation of the thrust vector to the rearward direction as

explained before.

Differences in the time variations of the main rotor RPM in cases with and without

the [VD]maz-bound are most significant. In the case witlaout the [VD]ma=-bound, the

peak angular speed of the rotor is about 30 percent higher than its nominal value

of 353 rprn. Figure (4.6.45) clearly shows that this "peaking _ in the angular speed

of the rotor has been suppressed as a result of bounding the vertical sink-rate. The
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peak value of the angular speed in the nominal case is actually less than the nominal

value. This suggests that the peaking of the rotor RPM found in the solution of the

problem without a descent velocity bound can be eliminated in two different ways.

The overspeeding of the rotor can be removed either directly by the addition of an

inequality constraint on the rotor RPM or indirectly through the use of an upper

bound on the descent velocity.

4.6.3 Some Generalizations

If we impose path inequality constraints on both the descent velocity of the heli-

copter and the angular speed of the main rotor, the time variations of the descent

velocity and the rotor angular speed in the optimal results might look like those

shown in Figure (4.6.46). A plot of the angular speed of the rotor with respect to

the descent velocity of the helicopter in the resultant optimal solution is as shown

in Figure (4.6.46). Depending on values of [VD]rnaz and firnaz, the VD-fl plot might

consist of one or more "corner _ points. In Figure (4.6.46), the entry phase starts

from the initial entry condition (point 0) to the point when the upper bound on

the descent velocity is reached (point 1). Thereafter, the descent velocity is main-

tained at a constant value while the angular speed of the rotor is increased till it

reaches its upper bound lima,, at point 2. The angular speed of the rotor remains

unchange from point 2 to 3 while the descent velocity of the helicopter is dropped.

During this landing flare phase (from point 3 to 4), the descent velocity is being

continuously reduced to its near zero value at touchdown. During the same period

of time, the rotor RPM is also being reduced, indicative of the extraction of the

stored rotational energy to cushion the landing.

4.6.4 Effects of Perturbed Initial or Terminal Conditions

The nominal case considered in the above subsections is with a 7.7-knots forward
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airspeed and at an initial al_i'ude of 423 feet. To investigate effects that initial

and terminal conditions have on the control scheme, we consider the following three

cases:

(1) The initial airspeed is increased from 7.7 knots to 15 knots.

(2) An additional terminal, horizontal distance constraint of 623 feet is added

to the nominal problem (which is without a terminal distance constraint).

(3) The entry altitude is increased from 423 feet to 460 feet.

Results obtained for the first case are given in Figures (4.6.47)-(4.6.49). Those

obtained for the second case are presented in Figures (4.6.50)-(4.6.53). Results

obtained for the case with a change in the entry height are shown in Figures.(4.6.54)-

(4.6.57).

The optimal results obtained for these three cases agree qualitatively with those

found in the nominal case. In all the cases considered, the path inequality con-

straint on the vertical sink-rate of the helicopter has been effectively enforced by

the optimization algorithm. Since the perturbations in initial and terminal condi-

tions are relatively small, only minor control adjustments are needed to accomodate

these changes. It is also interesting to note that most of these control adjustments

are made in the entry and/or landing flare phases of the descent maneuver. Both

the horizontal and vertical components of the thrust coefficient in the steady descent

phase of the maneuver remain practically unchanged with the perturbed boundary

conditions.

The nominal problem (without a terminal, horizontal distance constraint) has a

touchdown distance of about 560 feet. This horizontal distance has been extended

to 635 feet in the second case. This extension in the horizontal distance has been

achieved by an increase in the forward speed of the helicopter (see Figure (4.6.52)).
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Figure 4.6.53 Optimal Results obtained with

a Horizontal Distance Constraint
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and by an increase in th_ _ overall flight time of the descent.

profile is shown in Figure (4.6.53).

The resultant flight

A summary of the optimal results obtained in these three cases are given in Table

(4.6.5) together with that found in the nominal case.

4.6.5 General Conclusions

One of the distinct features in the optimal_ autorotative control of a helicopter

with a descent velocity bound is a clear division of the landing maneuver into

phases. These control phases: resemble those practiced by helicopter pilots in their

autorotationa] training. Therefore, this control scheme should be more acceptable

to helicopter pilots.

A second feature of the control scheme is the suppression of the overspeed of the

angular speed of the main rotor during the rearward cyclic flare. The increased

flight time of the autorotational maneuver is an added benefit of putting a bound

on the rate of descent.

One of the major disadvantages of the control scheme considered is the high rate of

collective pitch input observed during the landing flare phase. Another disadvantage

of the control scheme is in the use of a large amount of cyclic pitch during the last

few seconds of the landing maneuver. This will cause a loss of all the ground

references during the final touchdown. However, this will not create too much of a

problem in a practical situation since the helicopter must always be rotated to its

level attitude before a touchdown can be made.
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Chapter 5

Conclusions and

Recommendations for Further Research

§5.1 Summary

5.1.1 Adequacy of a Point Mass Model in the Optimal Helicopter Landing

Study

A point-mass model of an OH-5SA helicopter was used in the optimal helicopter

landing study. The states were vertical and horizontal velocities, vertical and hori-

zontal displacements, and the rotor angular speed. The cost function was a weighted

sum of the squared horizontal and vertical components of the helicopter velocity

at touchdown. The controls were horizontal and vertical components of the thrust

coefficient.

Optimal trajectories were calculated for entry conditions well within the H-V restric-

tion curve, with the helicopter initially in hover or in forward flight. The optimal

solutions exhibited control techniques similar to those used by helicopter pilots in

actual autorotational landings. The results confirm the need to drop collective pi_ch

immediately after engine failure. During the landing flare phase, the thrust vector
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is rotated to the rear in order to reduce t],_ forward velocity and, just before touch-

down. the stored rotational energy in the rotor is traded for additional thrust to

reduce the vertical velocity. The correlation between flight data and the optimal

results establishes the adequacy of the use of a point mass model in the optimal

helicopter landing study.

5.1.2 The Need for Path Inequality Constraints on Both the Control and

the State Vectors

In order to minimize the cost function defined above, a larger rate of descent and

a larger rotor RPM at the point of flare are desirable. However, a high rate of

descent over a substantial period of time is unacceptable to helicopter pilots, while

a large rotor RPM threatens the structural integrity of the rotor system. A unique

feature of the present formulation is the addition of path inequality constraints

on components of both the control and the state vectors. The control variable

inequality constraint is a reflection of the limited amount of thrust that is available

to the pilot in the autorotational maneuver without stalling the rotor. The state

variable inequality constraint is an upper bound on either the vertical sink rate of

the helicopter or the rotor angular speed during the descent.

With these bounds on the control and the state vectors, the optimal solutions

obtained will realistically reflect the limitations of the helicopter and its pilot. The

optimal solutions consist of subarcs which are connected at suitable corners. The

subarcs are either unconstrained, or are on the upper bound of the thrust coefficient,
o

or are on the bound on the vertical sink rate. The results exhibit division of the

landing maneuver into entry, steady descent and landing flare/touchdown phases.

This resembles the techniques taught to helicopter pilots, and so should be more

acceptable to them.
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5.1.3 Comments on the Sequential Gradient Restoration Technique

Slack variables were employed to convert the path inequality constraints men-

tioned above into path equality constraints. The resultant two-point boundary-

value problem with path equality constraints was solved using the Sequential Gra-

dient Restoration Technique. The effectiveness of the SGR technique for problems

with of both control and state variable inequality constraints was demonstrated by

the present study.

In general, the amount of computation involved with the use of the SGR algorithm

is proportional to the square of the dimension of the state vector [42]. Therefore,

the use of by auxiliary states in problems with state variable inequality constraints

increases the computational requirements. In this regard, a transformation tech-

nique for optimal control problems with partially linear state variable inequality

constraints is strongly recommended [43!. The transformation technique takes ad-

vantage of the partial linearity of the state inequality constraint so as to yield a

transformed problem characterized by a new state vector of minimal size. Substan-

tial savings in computer time can be achieved with this transformation technique.

5.1.4 Reduction in the H-V Restriction Curve and Other Potential Ap-

plications

Even though effects of the pilot time delay and other factors have not been taken

into account, the present study indicates that a substantial reduction might be

achievable in the H-V restriction zone using optimal control techniques. Results

computed using the optimal technique thus provide a benchmark for comparisons

with other control techniques. These optimization techniques could also be used to:

(1_ hpl_ i_t1"llct ni]nt$ nn unnd mlltnrntAtinn t_chn_n,l_

(2) reduce the risk/time/effort involved in establishing the H-V restriction
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zones by flight tests.

(3) provide an objective comparison of the autorotation capabilities of

different helicopter models.

(4) assess the influence of vehicle parameters on autorotation during

preliminary design.

§5.2 Recommendations for Further Research

5.2.1 Refinements of the Mathematical Model

The accuracy of studies like this one could be improved by adding the following

refinements to the mathematical model:

(1) induced velocity dynamics (cf. references [151: [19:, [20] and [70:);

(2) ground effect (cf. references [15: and [71]):

(3) variation of the profile drag coefficient with rotor blade angle of

attack (cf. reference [24]);

(4) rigid body dynamics, which would show the effects of pitch

attitude during descent and at touchdown.

These refinements increase the dimension of the state vector (refinements (1) and

(4)) and also the complexity of the analysis (refinements (2) and (3)). They are

considered to be of secondary importance (cf. Section (2.2)), and should be included

only if improvement in the accuracy of the optimal programs is required.

5.2.2 The Effects of the Engine Failure Mode (cf. [5])

The nature of the power reduction transient affects pilot technique and the response

of the helicopter. Common causes of power loss are fuel starvation, fuel control mal-

functions, engine deterioration, and damage from an external source. The transient

nature of the power reduction varies greatly with the cause and directly influences
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the necessary corrective pilo_ actions. The pr_._ent study considered the most crit-

ical case of a sudden complete power loss: caused as a result of an engine seizure.

disintegration: or drive system failure. It would be of interest to study other "less

critical" cases.

5.2.3 The Effects of Pilot Time Delay (cf. [5])

The term "time delay _ defines the time lag between the instan_ of power loss_ and

the time recovery action is initiated by the pilot. It consists of the recognition time

and the reaction time of the pilot. Therefore, the amount of time delay involved is

a strong function of both the engine failure cues (either audio, visual or kinesthetic

signals) available to the pilot and the experience of the pilot involved.

A time delay on the order of 1.5-2 seconds is typically used in the establishments of

the H-V restriction curves. It is recommended that effects of the pilot time delay on

the autorotational landing of a helicopter from critical flight conditions be studied.

This can be studied through the incorporation of a time delay into the helicopter

landing problem formulated in Section (2.9).

5.2.4 Pilot-in-the-loop Simulation

The importance of pilot-in-the-loop simulations for helicopter research has been

emphasized in references [4, 10, 15 and 65]. The usefulness of simulations in autoro-

tation research has been confirmed in reference [15]. Simulations provide important

information about pilot workload, pilot ability to track a given optimal flightpath.

limitations of hardware involved, and the structural integrity of the vehicle. They

may provide other information, such as whether a particular sink rate or pitch

l"mt_ i_ mer_tmhlo tn hp|it-nntpr nilnt_, l")ztz ,_cn11_lrpr_ frnm fh_ Rieht Eim111_t_n_

and comments from helicopter pilots should be studied carefully and appropriate
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modifications made in the formulation of the optimal h¢.licopter landing problem.

Only through iterative cycles of this kind can a realistic optimal control program

be established and implemented.
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Appendix A

Verification of

Point Mass Helicopter Model

§A.1 Introduction

A simple point mass helicopter model is used in the study of optima] autorozazive

control of the OH-58A helicopter. It includes the effects of gravity force, main rotor

thrust, parasite drag (on the fuselage) and profile drag (on the rotor blades). The

effects of increased induced power loss when the helicopter operates in the vortex-

ring state have also been included. Secondary effects, such as induced velocity lag.

ground effects etc. have been neglected.

Experimental data describing the steady state sink rate of the standard OH-58A he-

licopter in autorotation are given in References [12,18 I. Fig.(A.l.1) (from Reference

[181) shows the steady autorotationa] sink rate of the standard OH-SSA helicopter

at a constant rotor speed of 354 rpm.. A comparison of these flight data with those

computed by the simplified point mass model is made to establish the validity of

the point mass model, at least in the steady state. The result of such a comparison

is given here.
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§A.2 Analysis

Table (A.2.1) contains a list of parameters and their values used in the point mass

model. Other than the estimated values of 24 #2 for the equivalent flat plate area

of the fuselage re, and 0.0087 for the mean profile drag coefficient of rotor blades

_eo, all the other values were taken from Reference 18. These two estimated values

were obtained by fitting the flight data for steady sink rate with the steady sink

rate from the point mass model.

In the steady state, the angular speed of the rotor, as well as the forward and

vertical speeds of the helicopter are constant. We can therefore equate the first

three of the five equations of motion derived in Chapter (2) to zero. The resulting

equations are :

go - mo(CTz_. '2 _- fw_c/w 2 -t- u 2) -- 0,

CT,_ '2 - fuV/w 2 + u2 = O,

co - 0.05( CT'_ - Crzw) s* kofl(C_': + C_,)' = O.
'.,d

where the definitions of the constants are :

2000g

fro- fl02R ,

2pTr R 3
rl20 --

5h
f- 47rR 2 ,

prR 5
iO--

IOIR '

1 3

co= §oc-a(1o),
Kind

ko - : 20_ '

po = o.o5(_).
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_. no:_.nal _-oc:_" speed (_'l_)

_o. prafAle drag cootfLc_on:
(RAe..AOOlZ aArfeL1 assu=ed)

_. ro_or eye:ca Lock n_llDer

VAZ,.UZ US[D

24.0

32.17

0.0023"78

93.16
(3000.0)

O. 048

1.13

S.73

17.63
I

3S4 .Q

0.008?

2.6

I

Table A.2.1 System Parameters
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These three nonlinear algebraic equations, with their five unknown (u, w, ul, CT,,

and Cy,). must be solved simultaneously. By fixingthe rotor speed at a constant

value of 354 rpm., then for any given value of forward speed, u, the above system

admits an unique solution for w, CT,, and CTz. Alternatively,the airspeed of the

helicopter can be fixed a_ a constant value of 45 Knots and the variation of the

stead)" state sink rate with the rotor rpm. can be studied. Computer programs

have been written to solve these simultaneous nonlinear equations. The resuhs are

given in Tables (A.2.2)-(A.2.5).

§A.3 Comparison of Computed Results with Flight Data

The elects of parasite and profile drag on the steady-state sink rate of the OH-58A

helicopter are given in Figs.(A.3.2) and (A.3.3) respectively. The profound effect of

increased parasite drag at high speed can be seen clearly in Fig.(A.3.2). Fig.(A.3.3)

shows the rise in the stead)" stale sink rate needed to balance the higher profile

power loss as the mean profile drag coemcient is increased.

By trial and error, it was determined that a good fit between the computed and

measured sink rate is obtained with $c0 = 0.0087 and fe = 16.0 ft _. A comparison

of the computed results with the flight data is given in Fig.(A.3.4). The scatter of

the experimental data shown in the figure is possibly due to the variation of the

side-slip angle of the helicopter during the tests. As can be seen, the computed sink

rate falls within the range of the experimental data.

Further confirmation of these results can be obtained by fixing the forward speed

at a constant value of 45 Knots, and computing the steady sink rate at different

rotor speeds. The computed results, plotted in Fig.(A.3.5), compare well with those

found experimentally (see also Fig.(A.l.1)).
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SFEG:) SZl_n¢: P.A'I'Z
(KNOTS) (_M)

15. • 23.38
3.7.4 2010
lg. 3 3.914
23.. 2 1825
23.2 1749
25. % 3.683
2"7.0 3.628
29.0 1583.
30.g 1S41
32.8 1_8
34.8 1483.
36. "7 3.459
38.6 3.442
40.6 3.429
42.5 1421
44.4 1417
46.4 1•17
48.3 1421
SO. 2 142g
52.2 1440
$4.3. 3.4S4
56.0 14"72
58.0 1494
Sg .g 1slg
61.9 1548
63.8 1583.
6S.7 161"/
67. "7 ].657
6g. 6 1"700
71 .S 1748
73. S 1800

(z) (x)

0.062
0.O62
0.062
0.O62
0.062
O.O62
0.062
0.062
0.062
0.062
0.062
0.062
0 06;I
0 O62
0 O62
0 O62
0 O62
0 O62
0.062
0.062
0.062
0.062
0.062
0.062
0.062
0.062
O. 062
0.062
0.0452
0.061
O. 061

0._:0 0.062
0.003. 0.O62
0.003. 0.O62
0.003. 0.O62
0.001 0.O62
0.003. 0.O62
0.001 O.O6;t
0.001 0.O62
0.001 0.O62
0.003. 0.062
0.001 0.062
O.O0;t 0.062
0.O02 0.O62
0.002 0.062
0.002 0.062
0.002 0.062
0.003 0.062
0.003 0.062
0.003 0.062
0.003 0.062
0.003 0.062
0.004 0.062
0.004 0.062
0.004 0.062
0.004 0.062
0.C05 0.062
O.COS 0.062
0.005 0.062
0.006 0.062
0.006 0.062
0._6 0.062

Table A.2.2 Variations of Steady State Sink Rate With Forward Speed

at Constant Rotor Speed of 354 rpm [ fe = 16 ft 2, 6e = 0.0087 ]
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trot (rt 
D[,.o.oo, t t=o.oos? Dt=o.ozo

O. CO 2801 ,1843 20"74

3.86 2760 2803 2834

7.73 2632 2679 27:13

11.60 2409 2M4 2503.

15.47 2053 2138 320;I

].9.34 1808 1914 1993

23.21 1632 1749 1837

27.08 1505 IS;ill 1721

30.9S 1415 1541 1637

34.81 1352 1M1 1579

38.68 1311 1442 154_

42. $5 1290 1421 15;12

46.42. 1284 1417 ISlg

SO. 29 :.295 1429 1531

54.16 1319 1454 1557

58.03 1359 1494 1598

61.90 1412 1S44 1653

65. "76 1480 1617 1722

69.63 1562 1701 1007

73. SO 1660 1800 1907

Table A.2.$ Variation of Steady State Sink Rate With Forward Speed at

Constant Rotor Speed of 354 rpm [ constant .f. : to It" J
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E'A=16.0 E'A=24. O E'A= 32.0

0.00 2843 2835 2805

3.86 2803 2TgS 278T

7. ?3 26Tg 2671, 2663

11.60 2464 2455 244T

15.47 2],38 2134 2131

19.34 ].91.4 1916 2918

23.21 1749 ].757 1"766

2T. 08 1628 1645 2662

30. gS ].541 IS69 259?

34.81 148]. 1Sal ].563

38.68 1442 1.498 1556

42. SS 3.421 14gT 15T6

46.42 14].7 15].7 1621

.r_. 2g 142g 2556 1692

$4.16 1,454 161,6 ],786

$8.03 1494 1695 190g

61. gO ].S4di 2Tgs 2061

65.76 ].6].'7 19].7 2246

6g. 63 ].?01 2063 2468

i 73. SO IlKX) 2335 2733

Table A.2.4 Variation of Steady State Sink Rate With Forward Speed at

Constant Rotor Speed of 354 rpm [ constant 6e = 0.0087 ]
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S'?[_:) SINX PATE

300 115S
303 1170
30? 1185
310 1201
314 1217
317 1_33
321 1250
325 126T
328 1284
332 1302
335 1320
339 1339
342 1358
346 13";?
349 ).39?
353 ].4),?
356 ].431
360 ].459
363 1480
36? 1502
3?0 ].524
374 ].54'7
376 ].5?0
38]. ].593
385 16).?
388 ).642
392 ].667
395 ].692
399 ].?).8
402 ].?44
406 1771

c':(z)

0.044
0.044
0.043
0.040
O. O?S
0.077
0.075
0.074
O.0?2
0 070
0 O69
0 04?
0 046
0 045
0 043
0 042
0 06].
0060
0.059
O. 05?
0.056
0.055
0.054
0.053
0.052
0.05].
O.OSO
0.049
O. 049
0.046
0.04?

or(x} cr

O. 003 O. 084
0.003 O.044
0.003 0.04_
0.003 O.080
0.003 0.0?9
O. 003 O. 077
O. 0O3 O. O?S
0.0O3 O.0?4
0.0O3 0.O?2
O. OO3 O. 070
0.003 0.049
0.003 0.048
0.003 O.046
0.0O3 0.045
0.C02 0.043
0.0o;t 0.042
0.002 0.061
0.002 0.060
O. 002 O.OSg
O.O0_t 0.057
0.003 0.056
0.O02 0.055
0.OO2 0.054
0.002 0.053
0.002 0.052
0.002 0.05].
0.002 0.050
0.00_ O.04g
0. O02 0.049
0 .O011 0.0441
0.O02 O.O47

Table A.2.5 Variation of Steady State Sink Rate With Rotor Speed

at Constant Forward Speed of 45 Knots
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I

i n

t!
|

I
• ,O IO IO 40 IO go W'O go

IwO RW AIIID IIPIilID(KNOTll)

Figure A.3.2 Effects of Parasite Drag on Steady State Sink

Rate of Standard OH-58A Helicopter
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§A.4 Conclusions

The Flight test data were used to validate the point mass model and also to provide

a basis for establishing values for certain parameters in the model. The confidence
i

that can be placed in the results of the optimization programs is considerably en-

hanced.
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Supporting Analysis

_B. 1 Introduction

The landingofahelicopter after engine failure has been formulated as an optimal

control problem with a path equality constraint (cf. equations (57-64) in Section

{2.9)). The problem is repeated here for ease of reference:

min I 1
o,, 2(='I2 + w'z212) = ¢ (gl ),

= (:1 ===3 =, =5)r,

0 = (-I -2 -s)r,

f= (_/). -

where 0,_ and f are the control ,state and parameter vectors.

subjected to :
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(I) equations of motion { _v = f):

=zv = ,/(go- _('+I=32+/zlx/=12+ =22)),

=2v = ,-/mo(.2=_2-/=_/:12 + z22),

=v = -_'lio =3+(co+ Ax/'+l2 + "+2m),

X4 V = O. lr/zl,

Z$v = 0.I¢/z2.

The initial condition of JC is given by:

J_o=(O, eo, l,O,O) T.

(2) path equality constraint ( g(J_, U, _) = 0):

("I 2 + "+22)_ (('+1_722)21..)2_ "+a2 O.

(3) terminal constraints (_( J_l, ,Y) = 0 ):

In this appendix, detailed expressions for _-_ (5x3 matrix), _ (5x5 matrix),

(5xl matrix), ag a
(Ix3 matrix), _ (lx5 matrix) and _ (2x5 matrix) are given.

§B.2 Determination of (+fl)+

The induced velocity parameter j'.r is a function of 4_t and its which in turn are

funtions of "+1, "+2, =1, =2, and =a. J'j' is thus a function of these variables and the

partial derivatives of J'! with respect to "+1,'+2,=1,=2 and =a are given below.
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Let us first define 8 and -/as follows:

:_2U2 -- Zlu 1

= zl = _Z3(UI2+ u22_L,, (1)
:C2UI 4" :_lU2

= _2= poz3(u,2+ u_2-"); (2)

Once again, the value of the induced velocity parameter//, is determined from the

expressions:

1.0/_/(_ 2 + (8 +/_)2), (3)
t _(0.373_ 2 + 0.598_12 - 1.991),

If (28 + 3) _ + _ >_ I;

otherwise.

In the region where the momentum theory is applicable, (i.e. when (28 + 3)2+_ _>

1) expressions for fl_ and ft_ are given by the following expressions:

where

z

/z# = (i--__,:), (4)

/,, = (]____z)(p+___). (5)
(_+/z)

Z= 1'
('I2+ (8 + f_)2),

= -(/3 + fz)fzs. (6)

In the vortex-ring state, the expressions of J'19 and J'l-i are given simply by:

J'l_ = 1.11982+ 0"598"/2 - 1.991,

,fl'l = 1.1968"/.

(7)

(S)

We can then use the chain-rule:

(b)() = hp(8)( ) + b_(_)( ) (9)
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where ( ) stands for =z, us, =z, =2 or =s. To determine (fl){),expressions of

_( ) and 7( ) are therefore needed. These expressions, which are identicalfor both

the vortex-ring and momentum theory states,are as given below:

/_=,= _( p0uz
:3(=12 + u2_),L)'

_-2 = +( P0=2
=3(=1_+ =22),_)'

_., = -(_),

.a,, = (=3(u12p°+ =_2)z)(-=l - l.su=

P,, = (=3(u12P° )(+== - 1.522+ ,,=2)÷

(]o)

similarly the expressions for 7( ) are given by:

72, = +( p0u2
=3(u,2+ ,==_)'-,)'

%= = +( pouz
=3(u=_+ ,,=_)'-,)'

7., =-(_),

Po )(+== - 1.5=z
_" = (=_(=,2 + ,,22),z

Po

7,2 = (=3(=1_+ ==2)z)(+=l - 1.522

(x2uz + =z==)

(=22+ =22)

)J

!

(I1)

Expressions of (.fZ)=, , (.fZ)_= , (]'Z),= , (.lrz),, and (/Z),, can therefore be computed

using equations (4-II) for either the vortex-ring or momentum theory state. These

resultswillbe needed in equations (12) and (13) in the next two sections.

§B.S to, a[/aO, a[/a,£ ,,,d a[/a 
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is a (5×3) , .t___ a (5x5) and =I_ a, (5xl) matrix. Detailed expressions of these

matrices are as given in the following sub-sections. An individual element of z

m:_trix is indicated (in the usual way) by its row and column position in the matrix.

An element which is identically zero is not given.

B.a.! Expre.lon. for 0f/a0 .

_is a (5x3) matrix. Non-zero elements of _-_ are given below:

(l, l) = -r/mozs =,

(2,2}= +rlmozs 2,

0.01zl
(3,I) = -fSio=3_(

Z3

0.01z2
(3, 2) = -r/ioz3_(d

:r3

+ ].skoh(

+ ].5koh(

(12)

UI

(,,l=+ ,,=2)t) + _1"1=+ "2=)l(h)")'
u=

1=1=+ ,,2=1,_) + _(,,,= + ,,2=)'=(f,.).,).

B.3.2 Expressions for a,_/a._ .

oASis a (5x5) matrix. Non-zero elements of o_ are given below:

(1,1) = -mor/,f(_/== _+ ==2+

_IZ2 ')t
(],2) = -mot//( _/=_=+ ==2

(l, 3) = --2r/m0uzza,

ZlZ2

(2,]) = -_'t/( _/=,=+ =;==),

Z2 2

(2,2) = -,,=o,.//(_/=,2+ =_=+ V=I2+ ==2"
(2, 3) = 2r/mou=za,

13,z}= -rs_oz3:Z(-°'°z=_ + _(hl.,(uJ + =2b'=),
Z3

I').11! u_ _ ,I
13,_)=-r/ioza=(4 ..... " + _(.fl),, 1,,,z + ,,2=1_),

za

(z3)
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(3,3) : -,fio(2co:s + o.o1(=_.=- =,.,1) + ko:dufl + u22),L(2/i+ :3(h).,)),

(4,1) =o.1 V,

(s,2) =o.lr I.

B.3.3 Expressions for cgf/O_.

_-_is a (Sx I matrix). Non-zero elements of flare given below:

(1,1) = go- m0(ul=fl +/:,x/zfl + =a2),

(2, 1) = m0(u_:32 -/=2x/=l 2+ :=2),

(3, 1)= -io zfl(co + ,_/ufl + ,,22),

(4,1) = O.lzl,

(5, 1) = 0.1z2.

(15)

Expressions for the inflow ratio (A) and advance ratio (p) are given by the following

expressions:

A = 0.01(

= 0.01(

=2uz- =lu, :)+ k0/s(ufl + .22)'L,
X3'_UI 2 "k U2 2

=3_/,,, 2+ ,_i )"

(16)

The first equation of (16) on A is needed in equation (15). The second expression

on p will be needed in equation (19) of Section (B.6).

§B.4 Expression-, for Off/O_

The path equality constraint S is not a function of either • or _ but only a function

of 0. Expressions for _ and -_ are therefore identically zero. _ is a (Ix3)matrix.
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Non-zero element of a.¢ are as given below:

(1,]) = 2ulil - 2(ul_ + u22)),

_(ul= + uQ)_
(1,2) = 2u2(] - _. ,,,

(1,3) = -2u3.

(iT)

§B.5 Expressions for O0/OX! and 0_/0_!

The terminal cost (_) (a scalar) and the hard terminal constraints (_) (qx I vector)

are usually combined to form a ((q+l)×l) vector _. @ is not a function of either

[_ or _ but only a function of ._/ o_ and o6 o6• o--d _bT are therefore identically zero. _ is

a (3×5) matrix. Non-zero elements of _ are given below:

(l, l) = Zl,

(18)

(3, 5) = 1.

§B.6 Determination of Collective pitch setting, 075

The collective pitch setting required to obtain a given amount of thrust may be

obtained from blade element theory as [241:

075 "-
(I + |+,,)

where 07s isthe rotor collectivepitch angle at 75 percent chord, while a and a are

the rotor solidity ratio and rotor blade two dimensional lift curve slope respectively.
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The quantities, _a and ,_ were defined by equations (16) of section (B.3.3). The

collective pitch angle e¢s is therefore given by the following expression:

1 -/j2

s ,,'(l + _1,2)(e_°-,_) + _(l - _ ),_
--. qa

1 - p2
(19)
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Example Problems

Solved Using the CPF Algorithm

In the following section, three examples are described, all pertaining to problems

with an unknown parameter. Problem (1) is a minimum time and energy problem

with an unspecified terminal time. Problem (2) is a specified control law prob-

lem and Problem (3) is the classical Brachistochrone problem. These problems

are solved numerically using the Combined Parameter and Function Optimization

Algorithm developed in Section (3.2).

§C.1 Example Problems

PROBLEM (1) MINIMUM TIME/ENERGY CONTROL

Consider the following minimum time/energy problem:

if0"rain I = t l Q .+ u2dt,,t, -_Z

The equation of motion is given by
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The initial condition is

The terminal condition is

_(o)-- i.

=(ts) =o.

Values of o and _ are chosen to be

B=I.

Initial guesses for u (t) and t I are

,,(t) = o,

tl=l.

for O <_ t <_ t !

The problem is first converted to one with fixed end-time (cf.

Section (3.2)). The transformed problem with a=/_=l is

'/0'mini = t! + u_dr
_,,ts -2t I

The independent variable is now r which varies from 0 to 1.

The modified equation of motion is given by

.

=tlu ,

where ( ) now denotes time differentiation with respect to r.

The initial condition of z(O) remains unchanged.

equation (38) of
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The transformed problem is one with an unknown parameter t 1. The problem can

be solved using the Combined Parameter and Function optimization algorithm and

the optimum solution found is

l

,,(t) =
1

tf =2-3

The minimum value of the cost function is given by

1

I,n,, = 2_ = 1.4141.

PROBLEM (2) SPECIFIED CONTROL LAW PROBLEM

Consider the following optimization problem:

mini = 1 fl
2 Jo (z12+ u')dt

subject to the following equations of motion

Initial conditions are

Xl = 2"2 _- 0.01x23

5"2 = -4x1 - 5x2 + 4u.

There is no terminal condition.

The control law is specified to have the following form

tt -- bxl ,

where b is an unknown constant whose value is to be optimally selected. The

transformed problem becomes
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minIb = 21[j01

with the following equations of motion

• ÷ b2idt

xl = x2 ÷ 0.01x 3,

x2 = 4xl(b - 1) - 5x2.

while the initial conditions of xl (0) and x2(0) remain unchanged.

The transformed problem is a problem with an unknown parameter b but with-

out any control. The problem can be solved using the Combined Parameter and

Function optimization algorithm and the optimum value of b found is:

b = -0.23387

The minimum valuv of the cost function determined is:

Isoc = 1.14284.

Note that the value of Isoc is (slightly) larger than the minimum value of the original

problem, where u(t) is open, which is:

Imp. = 1.13289.

PROBLEM (3) BRACHISTOCHRONE PROBLEM

Consider the Classical Brachistchrone Problem

rain I "- t l0

The equations of motion are given by
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The initial conditions are given by

The terminal condition is given by

•_'1 _- X3 COS 0,

x2 = x3sin0,

&3 = sin 0.

x_(o)=o,

• 2(o)= o,

x3(o)= o.

This problem with an unspecified terminal time can be transformed into one with

t! as the unknown parameter (cf. Problem (1)). The transformed problem can be

solved using the Combined Parameter and Function Optimization Algorithm. The

minimum value of the cost function determined is

Imm = 1.7724

which is very close to the exact solution of %._.
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Generalized Transversality Condition

§D.1 Introduction

In the classical calculus of variations problem, we seek to minimize a cost function

3 subject to a set of differential equations and terminal constraints: problem:

minJ,_= ¢_(£I,tl)- f0 ts

£'(0) = given,

and _(_I, tl) = o.

r (_,,z,t)dt,

Here .ff(n x 1), ff(m x 1), and ff(p x 1) are the state, control and parameter vectors.

q_{q x 1) are the terminal constraint functions, t! is the specified or unspecified

end-time of the problem. If t I is unspecified, first-order necessary conditions of

the problem are given by the following relations:
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and

_= f(i,_,t),

$(0) = given,

i T = - H_ ,

,iT(is) -- (,i>,h_-_:, (I)

H,,= O,

.,,7(is,ts) =o.

(-D-7- -o,_ -,-/l)t___ts

where for convenience, we have defined scalar functions H (the Hamiltonian func-

tion) and • as :

.H(i. _, ._,#)-- L(£_fi-,t) ÷ ATf(_,IZ,t) ,

The last condition in (1) is the so called " transversality condition _ in the classical

literature. It determines the value of the unspecified terminal time, t I.

The above problem with unspecified end-time can be converted into one with fixed

end-time with the following change of independent variable:

t
T -- _ .

ts

The transformed problem becomes:

= ¢>_(._s,ts) .-,-[_rain ,,]

12,t/ Jo

(_'- t/l(£,_, tsr),

_(0) = given,

_d _7(_s,ts)= O.

tlL(ff, _, tit )tiT,
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Here ( )' denotes differentiation with respect to the independent variable 7.

The characteristics of the transformed problem are that the end-time is now fixed

at r = 1 but we have introduced into the problem an unknown parameter tl thai

is to be "optimally" selected.

The first-order necessary conditions of the transformed problem are similar to those

given for the original problem. If we define the following "transformed" functions:

;9 T
H(i, ff,,(',t/, r) = tlL(i, ff, tit ) + (A) tlf(_,ff, t/r ),

= tl[L(_,ff, t/r)+(_') r f(i, ff, tlr)],

_,(i.f,t/,_')= o(i/;t/)+ (_')r,_(s/,t:).

Here _'(r) and /7' are the Lagrange multiplier function and Lagrange multiplier

associated with the transformed problem.

The necessary conditions are given by the following relations:

(z-')' = tlf(_,ff, t/r ) ,

_,(0) = given,

and

(z) T= -_x,

(zl)r= (_)_,

[-I_ = O,

G(_/,ts)=o,

/o'

(2)

In this appendix we prove that necessary conditions (1) and (2) are equivalent to

each other and that the last equation in (2) is a generalized transversality condition.
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§D.2 Proof

The proof consists of four parts. The first two parts of the proof establish the

facts that A' = ,_ and fit = ft. The last two parts prove that in the special case

when F = tf. the last equation of necessary conditions (2) becomes the classical

transversality condition.

Part (1)

From the optimality condition of (2), we have:

H(_,_,_',t;,_) = o,
8

tl_u[L(_,_, rt/)+ (A')rf(e, tT, rt/)] = O.

Since t/is non-zero, we must have:

_iZ(e:_,rtj)_(A')r/(e,_,rtl) = 0 (3)
Ou

From the optimality condition of the original problem, we have the following rela-

tion:

a_u = 0_

c_[L(2S,tT,t) ÷ ATf(_,_,t)]= 0

A comparison of equation (3) and (4) leads to the conclusion that:

(4)

_'= _ (4a)

The same conclusion can be reached by comparing the adjoint equation:

_T __ __ Hz,

with _-8 (A')T = -_r=.
or

Part (2)
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To prove that _' = /7, we can compare the terminal conditions of the adjoint

equations (i.e. the A-equation and the A'-equation). From Part (1) of the proof, we

have:

(X')r = (_1)r,

= (a¢)_
,

= [_(O(_s ,ts) "- (fi_)Tg'(£l,t]) )i
r=l

(5)

Whereas the terminal condition of the A-equation is given by

Ar(t = t I) = i_(6(£1,tl)- ur_'(il.tl)l'j
t=t I

(6)

a comparison of equation (5) and (6) leads to the conclusion that

-4

p =,7 (6a)

Part (3)

Here, we prove an intermediate result that is needed in part (4). To express f0 ] J_tj

in terms of H, we note that:

But since:

/oI ,._Itjdr = tlH(£,ff, rtl)]dr,

= iH(e, ff, rtl) -+-,t I H(£,ff, rtl)idr,

= [ O Ot,
'iH (:L ff, rt s ) ÷ t i-_(H(e, ff, t) )-_l Jdr .Jo

and

t
r _ _ _

t I
Ot

Ot-'-I = r,

dt
dr _- _ o

t!

dr
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Therefore the above equation can be simplified to:

/0 otl OH dt

= _ (H.t )et.
_ ] [tj 0
- t-IJo -_(tHl_,.

= 1--(tH)_,
t!

= (H)t=t I .

(7)

This result is needed in the next parl of the proof.

Part (4)

To express (¢tI)1 in terms of (0¢_)t=tj, we note that:

O,i,
(¢t,,)1 = (_-/)=],

= [o--_i(¢(._j,tl)- _,%.(il.tl))i,:_,

=1__O
'at (¢(_f.t) -- gTw(:_l.t))it=ts .

0¢

= (_-T),=_,,.

(s)

From equations (7) and (S), we obtain the final result:

1(,i,,:)_+ (_',:)d_-,

0¢

= (_-i " H),=,,,

--" O.

(9)

which completes the proof.
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§D.3 Conclusion

In section (D.2). we have proved that the necessary conditions (2) for the general

problem with fixed end-time (r=l) but with an unknown parameter vector (r-)

are equivalent to the necessary conditions (I) for problems withou_ the unknown

parameter vector ffbut with an unspecified end-time Ii. The necessary condition

/0'(_r,)_ - Hr, dr = 0

in equation (2) that determines the value of ff is in effect a more general form of

the classical " transversali_y condition."



Appendix E

Definitions

of Matrices used in Section (3.4)

§E.I Introduction

In Section (3.4), we formulated a linear, time-vaD'ing Two-Poin_ Boundary-_,'alue

Problem with integral path constraints. The problem was formulated in terms of

the matrices S, (where i = 1,...,13), A:_ and C,j where i = 1,2 and j = 1, 2 and

3. These matrices themselves are functions of Huu, H,,,T, Hzz, Huz. Hr.= and H_.

Detailed expressions of S,, A,_, B,j as well as those of Hu,,, Hun, Hzt, Huz, H,_z

and H_u are given in this appendix.

§E.2 Expressions for H( )

Expressions for Huu, Hun, Hzz, Hut, H_z and H,u are given in this section. For

brevity, we assume that the integral payoff L is zero. Cases when L is not zero

can be treated in either of the following ways. The problem may be converted to

one with only terminal payoff by the addition of an auxiliary state whose integral

L:z(p × n) and L,,,(p × m) must be computed and added to the the appropriate H( )
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matrix. We have also a,sumed here that the path constraints S are not functions

of ft. Genera] expression of H C) is given by the following expression [29]:

a (aH)r

Without the integral payoff L, the Hamihonian function H is given by the following

expression:

H = ATf - pTs

The Huu, H_, Huz, H.z, H_, and Hzz matrices are given by the following expres-

sions: Hutt(m x m)

a T

8= f. rv-., a_S: 82

"'" P._a-G"d'_
t=l - i=l J=l

t=l J=l

n.,,,(_ x p)

¢3 T
B.. = _(f_ _),

= I=1 1 1

n,,z (,',',× ,',)
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a T sTp)

n 82 . 82S_

t=l J=]

t=l j=l

• " ,_ a,,_a,. + P:a-_a-_,,

• o

"*°

n a _ - c__ S:

• " " _ * O_mnOZn

t= 1 i= ]

n,,(p × .)

a

H,, = _(f[_),

i%'" Oz_,Olhi% Dzz Olrl -.. "=

-- i

H,,,,(px _)

H_ru = (HuTr) r

Hz,(n × n)

Hzz

a
sTp) ,

i_=1 =a t z"_+ ...

"- : rl _o . : • ^_ - "

symrrletry _ i_'z_ + _P,
i=l $=1
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Here the tirne-varying functions A(r), if(r), ____(f,_)T O_p__(s_)T ___(fu)T aP¥(fu)T '

_(Su) T, and _--i(f,r) T are evaluated on the nominal optimal path.

§E.3 Expressions for S()

The dimensions and detailed expressions of S,, where i = 1,...,13 (note that $9 is

not defined) are given by the following relations:

S1(r x n) = S.H_H,,= - S_.

S2(r × p) = SuH[,_H.; - St,,

S3(r x n)= SuH 2 f[,

&(r×r)=S.H2 s[,

Ss(p x p)= (¢=_)1 + Hx,_dr,

$6(rn x n) H_J(H.. r -= - -S_S4 1S1),

S,;.(rn x n) H_2(fT T -]5'3)= - - S,_ S4 ,

Ss(rn x p)= -H;,,](H,,_- S[$4-'$2),

S,o(,× _)= (¢.,),(_), + (¢_),(_),,

$n(p x n) = H_ + H._S6 - sTs4-1SI,

,..d s,_(p×,,) = H..S=+ I[ - SyS,-'S_.

Note that $1 to 5'4 are defined only when the matrix Huu is non-singular. This

is referred to as the convexity condition (or strengthened Legendre- Clebsch

condition) in calculus of variations. The existence of the matrices $6 to Ss and

S11 to S13 also depends on the non-singularity of both Huu and $4 (= SuHu u-I S,,T ).

The latter condition is in effect a modified form of the convexity condition for

problems with path equality constraints S. It requires that all the path equality
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constraints ff must involve some components of the control vector ff so as to ensure

that det(S4) # O.

§E.4 Expressions for A u

In terms of the matrices St defined in the last section, expressions for A u are given

below :

All(m × .) = &,

An(m × n) = ST,

A13(r × n) = -$4 -1S1,

a21(r x n) = -$4-Is3,

An(rn x p) = Ss,

and A23(r × p) = -S4-IS2.

These expressions for A u are needed in the computations of the neighboring optimal

feedback gains, Ai (where i = 1, 2 and 3) in Section (3.4).

§E.5 Expressions for C u

In terms of the matrices S, defined in section (E.3), expressions of C U are given by

the following relations:

C,,(- × n)= h + AS6,

Cn(n x n)= f.ST,

C,3(n x p) = A + Ass,

c,,(-x .)= -I_..- n..& + sr s4 -' s, ,

c,,(. × .) = _it _ n..s, + srs,-'s_.

and C2a(,,x p)= -1-I,.- H,.S. + sr s4-'s2.
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These expression_ for Csj are needed in the solution of time- varying Two-Point

Boundary-Value Problem formulated in Section (3.4).



Appendix F

Iterative Solution for TPBVPs

with Integral Path Constraints

In Section (3.4), we consider small deviations from a nominal path produced by

small perturbations in 6_(0) and 6¢. These perturbations give rise to 6_(I"), 6_(r),

6_(_), 6p"(I") and 6_. The perturbed quantities are determined by _ linear, time-

varying Two-Point Boundary-Value Problem (TPBVP) with integral path equality

constraints. The general form of the problem is given by equations (3-6) of Section

(3.4).

When _, t_, S and J', are not functions of f, the TPBVP can be simplified and solved

using the Backward Sweep Method of reference [29]. The resultant neighboring

optimal feedback law has the form

The values of 6f needed in the above feedback law can be obtained from the solution

of integral path equality constraints. An iterative procedure which imbeds the

solution of 6_ in the solution of the TPBVP is described in this appendix.
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§F.I Problem Formulation

The TPBVP consists of the following differential relations:

ke2z-e. C. _6_J

and path equality constraints

The end-conditions of (1) are

(6_)z = (¢.),(6_)_ = _ren,

(l)

(2)

(3)

Here 6_(r)(rL x 1), 6,_(r)(n x 1) and 6_(p x 1) are variations in the state z(r),

Lagrange multiplier J_(r), and the unknown parameter _ from their nominal values.

The matrices C,j(r) and ,g;(r) are defined in Appendix (E).

Solution of the TPBVP with path equality constraints can be obtained using a

modified form of the backward sweep method. The solution of the problem is given

by the following relations:

6_= Rr 6_+Q6_+ B6_.
(4)

where T(n x n), R(n x q), P(n x IP), Q(q x q) and H(q x p) are matrices that satisfy

the following differential equations
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= -TC. - C_ r- TC,2r + c2,,

= -(c_ + TC,2)e,

P = c23- CT e - T(C_=P+ C,3),

¢= -STC,=_,

and H = -RT(CI2P + Cla).

and with the following terminal conditions

T(l) = ((I)=.)],

e(l) = (¢T),,

P(;) = (_.), = o,

Q(l) = o,

and H(1)= (_b,)i= O.

Using these terminal conditions, the matrix time histories can be obtained by back-

ward integrations of the differential equations given above. The task remains to

find the value of 6_ that also satisfies the integral path equality constraints

f0 -"
= S;,6_+ (S,26x+ S_a6A)d,= O.

Once determined, 6_ can be used in the neighboring optimum feedback law
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where the time-v'4rying gains, A_ ( i - 1, 2 and 3) are given by the following relations:

^l(m x n) = -[A_l + Al_(T-/_Q-IRr)],

A2(m × q) = -AI2RQ -1,

and Aa(m x p) = -[AIs + AI2(P - R Q-IH)].

§P.2 Solution method

An iterative procedure can be constructed for the solution of the problem posed in

the last section. We first note from equation (4) that

Therefore the initial conditions needed for the forward integration of equation (1)

are given by the following relations:

(65)0= g/_en,
(6)

(6_)0 = [r- RQ-_Rr]0(6_ 0+ [RQ-_]06_+ [P- SO-_H]0_.

If we denote the value of B_ at the i th iteration by 5_,, we can substitute this

value of B_ into equation (6) and integrate equation (1) forward to obtain time

histories of [6_(r)]i and [6,_(r)]i of the i th iteration. These time histories can then

be substituted into equation (2) to obtain the value of l'_ at i th iteration

I'fli = $_[6_1_+ ($_2(rl[6ff(r)]_+ $_3(r)[6,_lr)]i)dr.

If all the components of f_ is less than _, i.e. [ [f_,]j I<_ E, where ./" = I,...,p and

is a small, pre-selected quantity (for example _ - 10-4), then the value of 6_ used

in the present iteration is close enough to the correct value and can be used in the

feedback law. Otherwise, [5_i must be improved to better satisfy path equality

constraints in the next (i.e. (i + l) th) iteration.
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To construct an iterative procedure, let us define the following vectors/matrices:

F= (6_),

A = \ Ca C_ '

fc, )B = \C23 '

( (6=')0 )c = IT- Rq-UZr]0(6_0+ [Rq-q06,; '

( 0 )D = [p_ sq_ _#]0

Equations (I) and (6) can now be written in more compact forms as follow:

(8)

from which we note that i_ (=6_) enters into both the differential equation and its

initial condition linearly.

Now consider the effect of variation in I_ i.e.

f--. f+A_

(where Af is not small) on the solution of equation (8).

change in _ be

_--. i+Af.

Let the corresponding

If we substitute the last two equations into equation (8), we obtain the following

relation between the A-quantities

af = l(r)af, (9)



274 F. [terative Solution for TPBVPs with Integr_tl Path Constraints

where/It) is a (2_ x p) matrix that satisfiesthe following first-order,linear,time-

vatting differentialequation

] = A(f).f + B(r), (I0)

and with the following initial condition

.f(0) = [DI.

The result given in equation (9) is needed in our subsequent analysis.

§P.8 Iterative Procedure

If we denote the value of f at the i th iteration by 1_, and if p_ does not meet the

path equality constraints, then

£'_i = Slig + ( Sis, $i_) _dr # 0,

To come closer to satisfying the congtraints, we change p_ by Ap_ in our next

iteration. The corresponding change in 17i is given by equation (9). The path

constraints at the (i + 1) t_ iteration are

0 = f]i+1= $_(_ + An} + ( ,S'_2,S_31[_+.f(r)Af,ldr, (Ill

_here AI_ is selected in such a way that path equality constraints at the (i + 1) th

are satisfied exactly.

If we substract the f_i+l- equation from the f_i" equation, we get the following

relation that can be used to solve for AI_:

-_i = [Sll+ (S12,S13}f(rldrl(A_},

therefore AI_' ---KiWi.

(12)
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where

_o 1K = [S i + (Sl2,Sl )j'( )dT]-I (13)

Since 511(1"), $12(I"), and $13(I") can be computed (cf. Appendix (E)) and J'(l") is

the solution of equation (I0), the (p x p) gain matrix K can be computed.

Once the value of A_ is computed, the value of _ for the (i + I) th iteration can be

computed as

(14)

The path constraints are satisfied "exactly" if we use this value of _ for the (i + I) th

iteration.

Alternatively, an iterative procedure can be constructed as follow. Here instead of

finding the value of K from equation (13) and using it in the computation of _'+l

for the (i + I) th iteration, we choose to compute the value of l_+l as follow:

= - kill,.

or =
(13)

Equation (13) states that the correction that has to be made after the ith iteration

is proportional to the negated value of the constraint violation t_. _'(p x p) is

an arbritarily selected, positive gain matrix. Now instead of meeting the path

constraints in one single step (with substantial amount of calculation in that one

step), we meet them iteratively in several steps. The iterative procedure ends when

the conditions i [_i]j I_ _ for j - l,...,p are met (this also means that the correction

to _ in the next iteration is going to be insignificantly small). A flow chart of this

iterative procedure for the case when p - 1 is shown in Figure (F.3.1).
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Once determined,the v_lue of 6_ can be used in the neighboringoptimal feedback

law and the TPBVP with path equalityconstraintsissolved.
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J_sAqlt'_ va1=es "'[

to K and _.
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Example Problems

Solved Using the SGR Technique

Four example applications of the Sequential Gradient Restoration Optimization

Algorithm are given in this chapter. Example (1) has a state variable inequality

constraint. Example (2) has a bound on the control. Example (3) is one with

multiple path constraints involving both the state and the control vectors. Lastly,

Example (4) involves a situation where there is a bound on the time rate of change

of one of the states. Whenever necessary, the path inequality constraints are first

converted to equality constraints that involve the controls. The Sequential Gradient

Restoration (SGR) method is then used to solve the optimal control problem with

nondifferentia] constraints.

§G.1 BOUNDED BRACHISTOCHRONE PROBLEM [29]

Consider the following optimization problem:

rain I = t I
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.:..__

The equations of motion are given by

l? = gsin'),

= V cos'),

= 1" sin'_,

The initial conditions are :

v(0) = 0,

=(0) = 0,

y(0) = 0.

The terminal condition is :

=(tl) = 1.

The minimum time problem is further subjected to a state variable inequality con-

straint of the following form :

x

y< -_+o.2.

The above problem is the same as the one posed in Chapter (3) of Reference 129:_

(pps 119-120) with h = 0.2 and tan0 = ½.

The inequality constraint can be converted into a path constraint with the use of a

Valentine-type auxiliary state z

X z2--+0.2 y = O.
2

The initial condition of the auxiliary state z is given by

z(O)= +_ .
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If we take the first time derivative of the path constraint and substitute for k the

dynamic equation of x, we obtain a path equality constraint which involves the

control

lI" Vcos_- sin_-2zu, = O,
2

where the auxilliary control w is defined as the time derivative of the auxiliary state

Therefore the transformed problem is given by

x' = tlVcos_,

y' = t lV sin-y,

z I -- t]W,

V' = rig sin's.

Since the end-time ofthe problem is not specified, we have made a change in the

independent variable from t to r where

t

tl

The "new _ independent variable of the problem is now r (which varies from 0 to

1); and ( )_ denotes differentiation with respect to r.

The initial conditions of the transformed problem are

x(o) = o,

y(0) = 0,

z(0) = ÷_0/_.2,

v(0) = 0,

and the terminal condition is

• (1) = I.
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The path equality constraint of the transformed problem is

It' cos'y-Vsin'_-2zw = 0
2

The minimum-time of this problem for the special case when g = 1 and ! = 1 is

found to be 1.7741. This minimum time ¢_mpares well with that computed using

the formula given in [29 (ty = 1.7795}.

The optimal trajectory of the above problem is given in Figure (G.I.1).

§G.2 BOUNDED CONTROL OF DOUBLE INTEGRATOR PLANT

[_9]

rain I = t/
tL

The equations of motion are given by

:/: =- y,

--- U.

The initial conditions are :

z(0) = 0,

y(o)= o.

The terminal conditions are :

•('I)= I,

y(ts)= o.

The minimum-time problem is subjected to a bound on the control u

-l<u<l.
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II 6.1 18 06 eO 0,0 Q_ 06 @.0

X-AXiS

l_igure G.I.1 Bounded Brachistochrone Problem

i
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The above problem is the same as the one posed in Chapter (3) of Reference [291

(pps 112-114). Solution of this optimization problem involves "bang-bang _ control,

i.e. the control "bang" from u = -1 to u = ÷1 and vice versa.

The inequality constraint on the control can be converted into a path equality

constraint with the use of an auxilliary control t'

u2+v2-1 = 0.

Therefore the transformed problem is given by

x I = fly,

yl =tlu.

Once again, since the end-time of the problem is not specified, we have made a

change in the independent variable like the one used in Example (1).

The initial conditions of the transformed problem are

x(0) = 0,

y(0) = 0,

and the terminal conditions are :

x(1) = 1,

y(1) = 0.

The path equality constraint of the transformed problem is

u_+v_-I = O.

The minimum-time of this problem is found numerically to be 2.0041. This mini-

mum time compares well with that obtained analytically (el. [29], t! = 2.0000).
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The "Bang-bang" control of the problem and the optimal trajectory in the distance-

velocity phase-plane is given in Figure (G.2.2).

§(;.3 A GEODESIC PROBLEM [42]

The equations of motion are

min I = t I
u

Z _- tL _ .

The initial conditions are :

x(o) = 1,

v(o) =0,

z(o) =0

The terminal condition are :
1

:,:(tl)= v-_'
2

v(tl)- v3'
3

Here u, v, and w are the components of the velocity vector in a 3-D Cartesian space.

The idea here is to transfer between end points on an ellipsoid, moving at constant

velocity, in minimum time without leaving the surface of the ellipsoid.

Thus, the minimum-time problem is subjected to the following state and control

path equality constraints
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]Figure G.2.2 Bounded Control of _ Plant
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I/2 .+ V2 + W2 = 1,

y2 Z 2
x2÷--÷-- = 1.

4 g

The first constraint states the fact that the magnitude of the velocity is unity. The

second constraint requires that the travel be made on the surface of an ellipsoid

with semiaxes a =1, b =2 and c = 3.

Since the first constraint of the problem is already a path equality constraint, further

transformation is not necessary. If we take the time derivative of the second con-

straint equation and substitute into the resultant equation dynamic relations given

by the equations of motion, we obtain an alternative form of the path equality

constraint

xu q- yt, zw _ 0

4 9

Therefore the tranformed problem is given by

X t =tlu ,

I

y = tfl',

z' = tlu'.

Note the change in the independent variable from t to r for the reason explained

before.

The initial conditions of the transformed problem are

• (0) = 1,

y(0) = o,

z(0) = 0,
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and the terminal conditions are :

1

2
y(1)-

3
_ _ °

V5

In view of the need to stay on the surface of the ellipsoid at all times, one of the

above three initial and terminal conditions is redundant.

The path equality constraints of the problem are

u 2_- v 2 _ w 2- 1 = 0,

ZW
xu ÷ yv _ m = 0

4 9

The minimum-time of this problem is found to be 2.1443. this minimum time com-

pares well with that obtained using the quasilinearization technique of References

[49-50:(tf = 2.1439).

Optimal trajectories in the x - y, x - z and y - z coordinate planes are given in

Figure (G.3.3). Note that the first two trajectories are part of an ellipse while the

last one is a straight line. This result is analogous to the shortest path "great-circle"

travel on the surface of a sphere.

§G.4 BOUNDED TIME RATE OF CHANGE OF STATE

mini = t/ :
U

The equations of motion are given by

_: -- it,

= u - z2 - 0.5.
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Figure G.3.3 A Geodesic Problem
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The initial conditions are :

The terminal conditions are :

=(o) = 0,

y(0) = 0.

x(tl) = z.

y(tI) = -._ .

This minimum-time problem is subjected to a bound on the time rate of change of

the state y from below

_>-0.5

The inequality constraint can be converted into a path equality constraint by the

use of the dynamic equation of y. The result is

u2-x 2 >0.

The inequality can be further transformed into a path equality constraint with the

use of an auxiliary control v

t_2 -- X 2 -- V 2 = 0.

Therefore the transformed problem is given by

x I = tlu,

y' = tl(u2 _ =2 _ 0.5).

Note the change in the independent variable from t to r for the reason given before.

The initial conditions of the transformed problem are :

=(o),= o,

y(o)= o,



290 G. Example Problems Solved Using the SGR Technique

and the terminal conditions are :

z(1) = 1,

7t
y(1) -

4

The path equality constraint of the transformed problem is

t/2 -- 2: 2- v 2 = O.

The minimum-time of this problem is found to be 1.8191, which compares well

with that computed using the quasilinearization technique of Referene [49-501 and

reported in Reference [481 (t I = 1.8222).

The optimal time history of the state and the control of the problem are given in

Figure (G.4.4). Note that in order to satisfy the bound on the time rate of change

of y, the control u must at all times be larger or equal to x.
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Figure G.4.4 Bounded Time-rate-of-change of State Control


