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Abstract

As technology in digital hardware advances, commensurate advances in the

performance of digital compensators will be expected to follow. To meet these

performance demands, engineers are resorting to complex design configurations that

include multiple sensors and control effectors. For such a system, to obtain the best

performance at a fixed level of real-time computation load, it is often necessary to

sample the signals for the various sensors and control effectors at different rates.

Surprisingly, methods for synthesizing digital compensators are well-developed only

for the special case where all sampling rates are the same.

The successive loop closures synthesis method is the only method for multirate

(MR) synthesis in common use. It is an ad-hoc method in that cross-coupling effects

between control loops are dealt with as cross-loop disturbances.

For single-rate (SR) systems, algorithms that solve for steady-state optimal

quadratic regulators and steady-state Kalman estimators are popular for

synthesizing multivariable compensators. Recently, extensions of these algorithms

have been developed that handle MR sampling policies. A disadvantage of this

method is that the optimal compensators tend to be unnecessarily complex.

A new method for MR synthesis is introduced in this work. It requires a

gradient-search solution to a constrained optimization problem. Some advantages

of this method are that the control laws for all control loops are synthesized

simultaneously, taking full advantage of all cross-coupling effects (which is the

principal advantage of the optimal control law synthesis method), and that simple,

low-order compensator structures are easily accommodated (which is the principal

advantage of the successive loop closures synthesis method). An algorithm and an

associated computer program for solving the constrained optimization problem are

described.



The successive loop closures, optimal control, and constrained optimization

synthesis methods are applied to two example design problems. A series of

compensator pairs are synthesized for each example problem. Each pair consists

of one MR compensator and one SR compensator that are designed to satisfy the

same performance objectives with sampling rates such that the computation loads

for their real-time operation are the same. Except for cases involving very fast

sampling rates compared to the characteristic frequencies of the desired closed-

loop poles, the MR compensators are shown to consistently out-perform their SR

counterparts.

The successive loop closures, optimal control, and constrained optimization

synthesis methods are compared, in the context of the two example design problems.

For the mass-spring-mass problem, where good rejection of random disturbances is

the performance objective, the successive loop closures synthesis method is shown

to be ideal. For the two link robot arm problem, the constrained optimization

synthesis method is shown to be a good method for synthesizing a second-order

compensator to control the tip position.

For the two link robot arm problem, an optimal MR compensator provides the

best responses to tip positioning commands in terms of speed and overshoot. But

this compensator is periodically time varying and consequently the computation

load for its real-time operation is high. It is shown that such periodicity is not

a prerequisite for good performance. A time-invariant MR compensator with

virtually identical performance characteristics is synthesized using the constrained

optimization synthesis method.



Acknowledgements

I sincerely thank my advisor, Professor J. David Powell, for his support and

guidance throughout the course of my research at Stanford.

I also thank the other members of my reading committee, Professors Arthur

E. Bryson, Jr. and Gene F. Franklin, for their thorough review and constructive

comments.

For their financial support, I very much appreciate the help of the NASA

Dryden Flight Research Center under Grant NSG-4002.

For the unique research environment that they create, I wish to thank the

entire faculty of the Guidance and Control Laboratory at Stanford.

I especially thank my fellow students for their constant support and friendship.

My interactions with them have contributed more to my experiences here than they

will ever know.

For the support and encouragement that caused me to consider this opportunity

years ago, I thank Professor Kurt R. Galle at the University of Washington and Dr.

Uy-Loi Ly at the Boeing Company.

Finally, I thank my parents, whose support and encouragement I carry with

me always. This thesis is dedicated to them.

iii



Table of Contents

Page

Abstract ........................................................... i

Acknowledgements ..................................................

Table of Contents ....................... . ............... ............ v

List of Figures ...................................................... lx

List of Tables ............................... . ....................... xiii

Chapter 1. Introduction .............................................. 1

1.1 Purpose ..................................................... 1

1.2 Related Literature ........................................... 2

1.3 Thesis Outline ............................................... 5

1.4 Contributions .... ....... . .................................... 6

Chapter 2. Discretization ............................................ 8

2.1 Discretization of an Analog Plant .............................. 8

2.2 Closed-Loop BTP State Transition Matrix ...................... 13

2.3 Discretization of an Analog Performance Index .................. 14

v

PRECEDING PAGE BLANK NOT FUMEP



vi Table of Contents

Chapter 3. Review of Existing Synthesis Methods 17

3.1 Successive Loop Closures 17

3.2 Optimal Control 18

Chapter 4. The Constrained Optimization Synthesis Method 24

4.1 Motivation 24

4.2 Statement of the Constrained Optimization Problem 25

4.3 Solution Algorithm 27

4.4 Closed-Form Expression for the Performance Index 30

4.5 Closed-Form Expression for the Gradient 35

4.6 Linear Constraints on the Feedback Gains 47

Chapter 5. Mass-Spring-Mass Design Example 49

5.1 Open-Loop System Description 49

5.2 Compensator Designs 51

5.3 Steady-State Response to Process Noise 63

5.4 Performance Comparisons 66

5.5 Summary and Discussion 71

Chapter 6. Two Link Robot Arm Design Example 77

5.1 Open-Loop System Description 77

5.2 Compensator Designs 9

5.3 Performance Comparisons 92

5.5 Summary and Discussion 117

Chapter 7. Concluding Remarks 135

6.1 Conclusions 135

6.2 Recommendations for Further Research 137

Appendix A. Two Link Robot Arm Dynamical Equations 139



Table of Contents yii

Appendix B. Proofs for Theorems 1 and 2 142

Appendix C. User's Guide to AMS 152

C.I Optimization Phase of Execution 152

C.2 Input Phase of Execution 156

C.3 Output Phase of Execution 162

C.4 Example AMS Input File 163

C.5 Example AMS Output File * 166

C.6 Example AMS Save File 196

References 200



List of Figures

Page

Figure 2.1 Example MR Sampling Policy 9

Figure 5.1 Open-Loop MKM System 50

Figure 5.2 Case 1 MR Compensator xz/xz-to-u Loop Design 56

Figure 5.3 Case 1 MR Compensator zi/ii-to-u Loop Design 57

Figure 5.4 Case 1 SR Compensator Design 58

Figure 5.5 Closed-Loop Poles with Case 2 MR Compensator 59

Figure 5.6 Closed-Loop Poles with Case 2 SR Compensator 60

Figure 5.7 Closed-Loop Poles with Case 3 MR Compensator 61

Figure 5.8 Closed-Loop Poles with Case 3 SR Compensator 62

Figure 5.9 Ratios of Steady-State RMS Responses to Process
Noise with Case 1 Compensators 68

Figure 5.10 Ratios of Steady-State RMS Responses to Process
Noise with Case 2 Compensators 69

ix

PRECEDING PAGE BLANK NOT FilMED



List of Figures

Figure 5.11 Ratios of Steady State RMS Responses to Process

Noise with Case 3 Compensators 70

Figure 5.12 Ratios of Steady-State RMS Responses to Process Noise

Acting on Body A with Case 1 Compensators 73

Figure 5.13 Ratios of Steady-State RMS Response to Process Noise

with Optimal MR and Case 2 MR Compensators 74

Figure 6.1 Open-Loop TLA System 78

Figure 6.2 TLA Compensator Structure 80

Figure 6.3 Closed-Loop BTP Poles with Case 1 MR Compensator.

(Sampling Rate = 4.45 Samples/Second.) 93

Figure 6.4 Closed-Loop Poles with Tip Controller Portion of Case 1 MR

Compensator. (Sampling Rate = 35.56 Samples/Second.) 94

Figure 6.5 Closed-Loop Poles with Case 1 SR Compensator.

(Sampling Rate = 20 Samples/Second.) 95

Figure 6.6 Closed-Loop BTP Poles with Case 2 MR Compensator.

(Sampling Rate = 4 Samples/Second.) 96

Figure 6.7 Closed-Loop Poles with Tip Controller Portion of Case 2 MR

Compensator. (Sampling Rate = 16 Samples/Second.) 97

Figure 6.8 Closed-Loop Poles with Case 2 SR Compensator.

(Sampling Rate = 10 Samples/Second.) 98

Figure 6.9 Closed-Loop BTP Poles with Case 3 MR Compensator.

(Sampling Rate = 17.8 Samples/Second.) 99

Figure 6.10 Closed-Loop Poles with Tip Controller Portion of Case 3 MR

Compensator. (Sampling Rate = 142 Samples/Second.) 100

Figure 6.11 Closed-Loop Poles with Case 3 SR Compensator.
(Sampling Rate = 80 Samples/Second.) 101



List of Figures xi

Figure 6.12 TLA Servo Configuration 102

Figure 6.13 TLA Tip Positioning Commands 103

Figure 6.14 Tip Position Responses to Case 1 Tip Positioning
Command with Case 1 Compensators 104

Figure 6.15 Root Torque Responses to Case 1 Tip Positioning
Command with Case 1 Compensators 105

Figure 6.16 Wrist Torque Responses to Case 1 Tip Positioning
Command with Case 1 Compensators 106

Figure 6.17 Root Angle Responses to Case 1 Tip Positioning
Command with Case 1 Compensators 107

Figure 6.18 Wrist Angle Responses to Case 1 Tip Positioning
Command with Case 1 Compensators 108

Figure 6.19 Tip Position Responses to Case 2 Tip Positioning
Command with Case 2 Compensators 110

Figure 6.20 Root Torque Responses to Case 2 Tip Positioning
Command with Case 2 Compensators Ill

Figure 6.21 Wrist Torque Responses to Case 2 Tip Positioning
Command with Case 2 Compensators 112

Figure 6.22 Tip Position Responses to Case 3 Tip Positioning
Command with Case 3 Compensators 114

Figure 6.23 Root Torque Responses to Case 3 Tip Positioning
Ccommand with Case 3 Compensators 115

Figure 6.24 Wrist Torque Responses to Case 3 Tip Positioning
Command with Case 3 Compensators 116

Figure 6.25 Tip Position Responses to Case 1 Tip Positioning Command
with Case 1 MR and NXF MR Compensator 119



xii List of Figures

Figure 6.26 Root Torque Responses to Case 1 Tip Positioning Command
with Case 1 MR and NXF MR Compensators 120

Figure 6.27 Wrist Torque Responses to Case 1 Tip Positioning Command
with Case 1 MR and NXF MR Compensators 121

Figure 6.28 Closed-Loop BTP Poles with NXF MR Compensators.
(Sampling Rate = 4.45 Samples/Second.) 123

Figure 6.29 Closed-Loop Poles with Tip Controller Portion of NXF MR
Compensator. (Sampling Rate = 35.56 Samples/Second.) .... 124

Figure 6.30 Optimal Feedback Gain Cii(n) versus n 128

Figure 6.31 Optimal Feedback Gain Cu(n) versus n 128

Figure 6.32 Optimal Feedback Gain Ci3(n) versus n 129

Figure 6.33 Optimal Feedback Gain C^(n] versus n 129

Figure 6.34 Optimal Feedback Gain c(n) versus n 130

Figure 6.35 Tip Position Responses to Case 1 Tip Positioning
Command with Optimal MR, Optimal SR, and Constant
Gains MR Compensators 131

Figure 6.36 Root Torque Responses to Case 1 Tip Positioning
Command with Optimal MR, Optimal SR, and Constant
Gains MR Compensators 132

Figure 6.37 Wrist Torque Responses to Case 1 Tip Positioning
Command with Optimal MR, Optimal SR, and Constant
Gains MR Compensators 133

Figure A.I Open-Loop TLA System with Tip Mass 141



List of Tables

Page

Table 5.1 Fixed MKM Parameters 53

Table 5.2 Variable MKM Parameters 53

Table 5.3 MKM Compensator Feedback Gains 63

Table 6.1 TLA System Parameters 79

Table 6.2 Fixed TLA Design Parameters 82

Table 6.3 Variable TLA Design Parameters 83

Table 6.4 TLA Synthesis Parameters 89

Table 6.5 TLA Compensator Parameters for Case 1 : 90

Table 6.6 TLA Compensator Parameters for Case 2 91

Table 6.7 TLA Compensator Parameters for Case 3 91

Table 6.8 TLA NXF MR Compensator Parameters 122

Table A.I Format for the AMS Input File 160

Table A.2 Format for the AMS Input File Continued 161

xiii



xiv List of Tables

Table A.3 Format for the AMS Save File 162



Chapter 1

Introduction

This chapter contains four sections. Section 1.1 discusses the motivation for this

research. Section 1.2 is a summary of related works from the literature. Section 1.3

is an outline of the thesis. Section 1.4 lists the principal contributions of this

research.

§1.1 Purpose. As technology in digital hardware advances, commensurate

advances in the performance of digital compensators will be expected to follow.

To meet these performance demands, engineers are resorting to complex design

configurations that include multiple sensors and control effectors. For such a system,

to obtain the best performance at a fixed level of real-time computation load, it is

often necessary to sample the signals for the various sensors and control effectors

at different rates. Surprisingly, methods for synthesizing digital compensators are

well-developed only for the special case where all sampling rates are the same.

The purpose of this research was to develop new understanding in the area

of multirate (MR) synthesis. In this document, we consider three methods for MR

synthesis: (1) the successive loop closures synthesis method; (2) the optimal control

law synthesis method; and (3) the constrained optimization synthesis method.



1. Introduction

The one-loop-at-a-time successive loop closures synthesis method is virtually

the only method for MR synthesis in common use. It is an ad-hoc method

in that cross-coupling effects between control loops are dealt with as cross-loop

disturbances.

An advantage of the optimal control law synthesis method is that the control

laws for all control loops are synthesized simultaneously, taking full advantage

of all cross coupling effects. A disadvantage of this method is that the optimal

compensators tend to be unnecessarily complex.

The constrained optimization synthesis method is a new method that we

developed as part of this research. It requires a gradient-search solution to

a constrained optimzation problem. Some advantages of this method are that

the control laws for all control loops are synthesized simultaneously, taking full

advantage of all cross-coupling effects (which is the principal advantage of the

optimal control law synthesis method), and that simple, low-order compensator

structures are easily accommodated (which is the principal advantage of the

successive loop closures synthesis method).

§1.2 Related Literature. In an exhaustive survey of some 50 technical papers,

Walton (1981) describes advances in the analysis and synthesis of MR systems from

1953 to 1981. In the early fifties, digital control systems were invariably single-

input, single-output systems. Multirate sampling got its start at this time as an

analysis tool. The idea was to attach a "phantom" sampler to the input or output

port of such a system, and operate it at some integer multiple of the basic sampling

rate to detect inter-sample ripple.

Sklansky (1955a, 55b) developed the "frequency decomposition" method for

determining a transfer function that describes the input-output behavior of a such

a system. Shortly thereafter, Kranc (1955, 56, 57a, 57b, 57c) developed the "switch
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decomposition" method, which is an extension of the frequency decomposition

method that allows sampling rates with ratios that are rational numbers. Chapter 9

of Ragazzini and Franklin (1958) includes an excellent discussion of the frequency

decomposition and switch decomposition methods. A multi-input, multi-output

generalization of the switch decomposition method was recently developed by

Whitbeck and Didaleusky (1980, 81).

While, in principle, these methods provide a means to determine a transfer

function that describes the input-output behavior of MR systems, in practice they

axe extremely cumbersome. Ragazzini and Franklin (1958) discuss an application of

the switch decomposition method to a single-input, single-output system having two

samplers with sampling periods T and T/n. The resulting transfer function includes

n parallel forward paths, each with delay and advance operators. Rao (1979) uses

switch decomposition to design a compensator for a color videotape recorder, but

the applications are limited to single loops with two samplers and.sampling rates

related by a small integer. What Rao describes as a "heuristic" overall approach is

yet another example of the use of the successive loop closures synthesis method.

The first treatment of MR systems from a state-space perspective appeared in

an excellent paper by Kalman and Bertram (1959). This paper presents a method

for formulating a discrete state model to represent a MR sampled data system. For

the general case of multiple sampling rates, the discrete state model is time-varying.

For the special case where, for every pair of sampling rates, the ratio of the sampling

rates is a rational number, the discrete state model is periodically time-varying.

Amit and Powell (1980, 81) were the first to fully capitalize on Kalman and

Bertram's contribution. They developed a computer program to solve the steady-

state optimal quadratic regulator and the steady-state Kalman estimator synthesis

problems for a MR sampled data system using eigenvector decomposition.
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Glasson et al. (1979, 80, 81, 82) developed a computer program for determining

the same steady-state optimal regulator and steady-state Kalman estimator

solutions by a different method. They obtained the solutions by propagating

the Riccati difference equations to steady-state, which is a computationally costly

approach compared to eigenvector decomposition. As an example, they design an

optimal MR compensator to control the lateral dynamics of the space shuttle during

reentry (Glasson and Dawd, 1981).

A disadvantage of optimal MR compensators is that the steady-state regulator

and Kalman estimator gain matrices are periodically time-varying. However, in a

study involving a simple mass-spring-mass system and fifty different steady-state

optimal regulator designs, Amit and Powell (1980, 1981) found only a few cases

where the performance of an optimal MR regulator was significantly better than

that of its time-invariant averaged-gains approximation.

The successive loop closures synthesis method is an indirect approach to MR

synthesis in that a MR compensator is determined by successively closing a series

of SR control loops. It is an ad-hoc method in that cross-coupling effects between

control loops are dealt with as cross-loop disturbances. Except in connection

with applications, the successive loop closures synthesis method has received little

attention in the literature. Walton (1981) does not mention it. Albanes (1981),

Chretien (1982), Penchuck (1983), and Rao (1979) describe some applications of

the successive loop closures synthesis method to practical design problems.

The constrained optimization synthesis method, which is the new method that

was developed in connection with this work, is an outgrowth of the work of Amit and

Powell (1980, 1981) on optimal MR compensators. The idea is to solve the steady-

state optimal MR quadratic regulator problem, but with the solution constrained

to be a linear, constant-gain, state feedback control law.
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Broussard and Halyo (1984) developed an algorithm to solve an almost identical

optimization problem. A problem with their approach is that it cannot handle

control laws that fail to stabilize the closed-loop system. Thus, the designer must

determine a stabilizing guess for the control law before the numerical search can

begin and special logic must be used to (hopefully) avoid destabilizing control laws

during the search.

To avoid these difficulties, we chose a different approach. The algorithm that

we developed relies on a gradient search. The gradients are calculated exactly,

using a closed-form expression, and a finite-time performance index is used so that

a stablizing initial guess for the control law is not required. The idea of using a

finite-time performance index is due to Ly (1982), from his work developing the

SANDY algorithm for synthesizing robust analog compensators.

An important additional advantage of our method is that it accommodates

linear constraints on the elements of the feedback gain matrices. This is an

important feature because, by adding compensator states to the state vector

and constraining certain feedback gain elements to fixed values, compensators of

arbitrary structure and dynamic order can be synthesized.

§1.3 Thesis Outline. Chapter 2 deals with discretization. It is largely a review

of material in Amit (1980). Section 2.1 presents a method for generating a discrete

state model to represent a MR sampled data system. Section 2.2 presents a method

for generating the discrete equivalent to an analog quadratic performance index for

a MR sample data system.

Chapter 3 presents a review of the successive loop closures and optimal control

law synthesis methods. The successive loop closures synthesis method is discussed

in Section 3.1. We derive the equations for the steady-state optimal MR quadratic

regulator and the steady-state MR Kalman estimator in Section 3.2.
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The constrained optimization synthesis method is the subject of Chapter 4.

Section 4.1 discusses the motivation that led to the development of the method.

A formal statement of the constrained optimization problem is presented in

Section 4.2. An algorithm for determining a solution is presented in Section 4.3. The

solution algorithm requires explicit calculations of the value of a performance index

and of the gradient of this performance index with respect to the compensator

parameters. Closed-form expressions for calculating this value and gradient are

derived in Sections 4.4 and 4.5, respectively. Section 4.6 describes some features

of the constrained optimization synthesis method that make it a powerful tool for

synthesizing low-order compensators.

Chapters 5 and 6 deal with applications. Chapter 5 deals with a mass-

spring-mass (MKM) system, where good rejection of random disturbances is the

performance objective. Chapter 6 deals with a two link robot arm (TLA) system,

where fast servo control of the tip position is the performance objective. These

studies demonstrate: (1) some potential performance benefits of MR compensation

over SR compensation, for the same real-time computation load; and (2) some

relative merits of the three synthesis methods.

The conclusions of this research and the recommendations for further research

are presented in Chapter 7.

§1.4 Contributions. The primary contributions of this research are:

1. The constrained optimization synthesis method for synthesizing MR or SR

digital compensators. The advantages of this method are: (l) the control

laws for all control loops are synthesized simultaneously, taking full advantage

of all cross-coupling effects; and (2) the compensator structure is arbitrary,

and simple, low-order compensator structures are easily accommodated. The

constrained optimization synthesis method relys on a gradient search to



1.4 Contributions.

determine a control law that minimizes a quadratic performance index. The

gradients are calculated exactly, using a closed-form expression, and a finite-

time performance index is used so that a stabilizing initial guess for the control

laws is not required.

2. Design studies involving applications of the successive loop closures, optimal

control, and constrained optimization synthesis methods that demonstate:

(l) some potential performance benefits of MR compensation over SR

compensation, for the same real-time computation load; and (2) some relative

merits of the three synthesis methods. The design studies involve two

representative design problems, so that the results are applicable to a large

class of systems.



Chapter 2

Discretization

This chapter deals with discretization. It is largely a review of material in

Amit (1980). Section 2.1 presents a method for generating a discrete state model

to represent a MR sampled data system. Section 2.2 looks at the stability of the

resulting discrete state model. Section 2.3 presents a method for generating the

discrete equivalent to an analog quadratic performance index for a MR sampled

data system. The presentations refer to a particular MR sampling policy. As

presented, however, the methods are quite general and extensions to accommodate

more complicated sampling policies are noted.

§2.1 Discretization of an Analog Plant. In their excellent paper, Kalman and

Bertram (1959) describe a method for generating a discrete state model to represent

a MR sampled data system. For the general case of a linear, time-invariant, analog

plant and multiple sampling rates, the discrete state model is time-varying. For

the special case of a linear, time-invariant, analog plant and multiple sampling

rates where, for every pair of sampling rates, the ratio of the sampling rates is a

rational number, the discrete state model is periodically time-varying. We shall

deal exclusively with sampling policies that result in a discrete state model that
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is periodically time-varying. This class of sampling policies actually includes more

than just the special case where every sampling-rates ratio is a rational number; for

details see Kalman and Bertram (1959).

An example MR sampling policy is shown in Figure 2.1. The time lines show

the sampling schedules for four samplers. For sampler #1, the sampling period is

24T, and the first sample is taken at time IT. For samplers #2, #3, and #4, the

sampling periods are 4T, 3T, and T, respectively, and the first samples are taken

at time 0.

Sampler #1

L
25T

Time (Seconds)

Sampler #'<

T
j

T T T T T f
47 8T 12T 16T 20T 24T

Sampler #3

T T T T ? T T T T
0 3T 6T 9T 12T 1ST 1ST 2lT 24T

Sampler #4

T T T T T T T T T T T T T T T T T T T T T T T T T T
0 T 24T

f-^STP
_ - BTP

Figure 2.1 Example MR Sampling Policy.

When Kalman and Bertram's method is applied, the period of repetition of

the discrete state model is the same as the period of repetition of the sampling
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policy. We shall call this period of repetition the BTP (basic time period). For

the sampling policy in Figure 2.1, the BTP is 24T. Another characteristic time

of importance in MR sampling policies is the STP (shortest time period). For the

sampling policy in Figure 2.1, the STP is T. When Kalman and Bertram's method

is applied, the STP of the sampling policy is the time step for the discrete state

model. (For more complicated sampling policies, it may be advantageous to apply

Kalman and Bertram's method in a slightly different way, and split the BTP into

STPs of unequal lengths. For further information, see Kalman and Bertram (1959).)

To apply Kalman and Bertram's method to the sampling policy of Figure 2.1,

let P represent the number of STPs per BTP. A sampler is "fast" if it is active at

every STP. A sampler is "slow" if it is not active at every STP. We define P diagonal

"switching matrices" that describe the sampling schedules for the slow samplers.

The t'th diagonal element of the nth switching matrix is 1 or 0, depending upon

whether the t'th sampler is active or inactive, respectively, at the start of the nth

STP. For the sampling policy in Figure 2.1, the switching matrices are:

5(0) = 5(12) = Diag(0,1,1), (1)

5(l)=Diag(l,0,0), (2)

5(2) = 5(5) = 5(7) = 5(10) = 5(11) = 5(13)

= 5(14) = 5(17) = 5(19) = 5(22) = 5(23) = Diag(0,0,0), (3)

5(3) = 5(6) = 5(9) = 5(15) = 5(18) = 5(21) = Diag(0,0,1), (4)

5(4) = 5(8) = 5(16) = 5(20) = Diag(0,l,0), (5)

where Diag(di,... ,dn) is a diagonal matrix with diagonal elements di, di, ..., dn.

We assume that the analog plant is represented by the state equation

p(t) = Fp(t) + G u(t) + Gu(t) + Gw w( t ) , (6)
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for t > 0, where

u(t) = [ui(t) uz(t) u3(*)]T , (7)

and p(t) is the state vector, ui(*), uz(i), and uz(t) are scalar control inputs, u(t] is

a vector control input, and w(t) is the process noise input vector. The process noise

input vector w(t) is assumed to be stationary, zero-mean, gaussian white noise of

intensity W, so that

E{u>(f) WT(T)} = W 6( t—r) , (8)

where E{-} is the expected value operator, and £(•) is the Dirac delta function.

We assume that the sampling policy is applied such that ut-(t) is generated via

a zero-order hold according to the sampling schedule for sampler #i, for »'= 1, 2, 3,

and u(t) is generated via a vector zero-order hold according to the sampling schedule

for sampler #4. Let

(9)

A rT

= eF tdtG, (10)
./o

= f T e F t d t G . (11)
Jo

(For a numerical algorithm to solve for $, f, and f given values for F, G, G, and T,

see Van Loan (1978).) Let /a, /«, and Ip be identity matrices with the same number

of rows and columns as there are elements in u(t), u(f), and p(t), respectively. The

state equation for the discrete state model is then

i(m, n+1) = A(n) x(m, n) + B(n) u(m, n) + Bww(m, n), (12)

for m = 0, 1, ... and n = 0, 1, ..., P—1, where

z(m,n) = [p (fM, n) /II(TTI,TI) n2\jn tnj Ai3(f7i,Ti)] , (13)

u(m,Ti) = [ui(m,n) U2(m,i) U3(jn,n) u (T7i,n)j , (14)
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. r

, n) = /
J

(mP+n+l)T
ef((mP+n+l)T-t)GwW^dtt (15)

(mP+n)T

$ f(/a-5(n))l .

h 0 (7a - 5(n)) J ' llbj

• \ -pi

,)' o] • <17>
(18)

In (13), p(m,n) represents the state p(t) of the analog plant at the (mP+n)th

sampling instant. In the same equation, /i;(m, n) represents the analog control input

u,-(t), for »'= 1, 2, 3, at the (mP-hn)th sampling instant. In (14), u,-(m,n) is the

discrete control input that generates /it-(m, n), for f = 1, 2, 3. In the same equation,

u(m, n) represents the analog control input u(t) at the (mP+n)th sampling instant.

In (15), ttf(m, n) represents the effect of the analog process noise that occurs between

the (mP+n—l)th and (mP+n)th sampling instants on the state of the analog plant at

the (mP+n)th sampling instant. The sequence tu(m, n) is a stationary, zero-mean,

gaussian, purely random sequence with covariance Wo, where

WD = fT eF < Gw WGl ̂  < dt. (19)
•/O

(For a numerical algorithm to solve for Wo given values for F, Gw, W, and T, see

Van Loan (1978).)

The discrete state model in (12) through (19) is complete, except for the

measurement equation. Fortunately, a MR measurement scheme is no more difficult

to handle than a SR one, except that the sampling schedules for all samplers must

be taken into account when determining the STP and BTP of the sampling policy.

The discrete measurement equation that corresponds to the discrete state equation

in (12) is

y(m,rr) = H(n)x(m,n] +v(m,n), (20)
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where y(m,n) represents the discrete measurement vector at the (mP + n)th

sampling instant, and u(m, n) represents the discrete measurement noise vector

at the (mP + n)th sampling instant. If the sampler for the tth sensor is active at

the (mP+n)th sampling instant, to yield a scalar measurement

Vi (m, n) = Hi x(m, n) + ut- (m, n) , (21)

where «i(m, n) is measurement noise, then the ith row of H(n) is fl,-. If the sampler

for the tth sensor is inactive at the (mP + n)th sampling instant, then the »th

row of H(n) is zero. The discrete measurement noise vector v(m,n) is assumed

to be a periodically stationary, zero-mean, gaussian, purely random sequence with

covariance V(n), so that

(22)

where ,.;

§2.2 Closed-Loop BTP State Transition Matrix. For the discrete state model

in (12), suppose that the control input vector u(m,n) satisfies

u(m,n) = -C(n)z(m,n). (24)

Let

*(A(0)-B(0)C'(0)). (25)-1 *

We shall refer to the time-invariant matrix $BTP as the "closed-loop BTP state

transition matrix" for the system. The eigenvalues of $BTP indicate whether the

closed-loop system is stable in the BTP-to-BTP sense. Note that a time-invariant
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analog to $BTP for the STP-to-STP state transitions does not exist, because the

discrete state equation is time-varying from one STP to the next.

§2.3 Discretization of an Analog Performance Index. For the MR sampled

data system composed of the analog plant in (6) plus the MR sampling policy in

Figure 2.1, the analog performance index to be considered is

u(t) o R u ( t )
where

(26}(26)

(27)

In (26), E{-} is the expected value operator, T is the STP for the sampling policy, P

is the number of STPs per BTP for the sampling policy, Q is a symmetric, positive

semidefinite matrix, and R is a symmetric, positive definite matrix.

For the analog plant in (6) , let

p(m,n,*) = p((mP+n)T+t),

u(m,n,f) = u((mP+n)T+t),

u(m,n,t) = u((mP+n)r+t).

Using the properties of the expected value operator, (26) can be written

(28)

(29)

(30)

m=0 n=0
where

p(m,n,t)
u(m, n,

Q 0
0 R

p(m,n,t]
u(m,n,t) *}•

(31)

(32)
u(m,n, t)

But p(m, n,<), u(m, n,t), and u(m,n, t) are easily written in terms of the

discrete state, control input, and process noise input vectors in (12). Letting

(33)
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w(

(34)

(35)

(36)

we obtain

p(m,n,i)
u(m,n,i)
u(m,n,t)

+

=
'$(*) r(*)(I f i-5(n))"

0 (/a - 5(n))
0 0

'f(t)S(n) T(t)'
5(n) 0

0 la

r.r.f/ \ u;lu(m,n)+ v

•

x(m,n)

w((mP+n)T+t, (mP+n)T)
0 . (37)

for 0 < t < T.

Let

*H-
'*, °

0 (/a - v
0 0

r
>0

-$(t)
0
0

3(n)]

h
0

0 0 "
S(n) 0

0 75

0

,

T

[<? 91
[0 R\

r*w
0
0

7S 0
0 /&

(38)

(39)

(For a numerical algorithm to solve for Q0 given values for F, G, G, Q, R, and

T, see Van Loan (1978).) From (32), substituting for p(m,n,<), u(m,n,<), and

u(m,n,f) using (37), and taking advantage of the fact that

°' (40)

for 0 <t < T, we obtain

u(m,n)

where
Q(n) N(n)

NT(n) R(n) = KT(n)QDK(n)

-i
,(41)

J

(42)
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Except for multiplying QD by K^(n] and K(n), for n = 0, 1, . . . , P— 1, we see

from (42), (38), and (39) that it is no more difficult to determine the Q(n), N(n},

and R(n) than it is to determine the corresponding matrices Q, N, and R in the

SR case. (See Katz (1974) for the corresponding SR development.) Furthermore,

for the purpose of synthesizing a feedback control law that minimizes J(N), the

positive semi definite integral term in (41) can be dropped. This leaves the simpler

performance index

T

m=0 n=
JZ(n) u(m fn)



Chapter 3

Review of Existing Synthesis Methods

This chapter presents a review of two popular methods for MR synthesis. The

successive loop closures synthesis method is discussed in Section 3.1. It is virtually

the only method for MR synthesis in common use. The optimal control law synthesis

method is discussed in Section 3.2. The equations that define the steady-state

optimal MR quadratic regulator and the steady-state MR Kalman estimator are

derived from the corresponding equations for a time-varying SR problem.

§3.1 Successive Loop Closures. The successive loop closures synthesis method

is an indirect approach to MR synthesis in that a MR compensator is determined

by successively closing a series of SR control loops. To design the (n+l)th control

loop, the approximation is often made that the first n loops respond instantaneously.

This approximation is often not necessary: If the sampling rates for the different

control loops are integer multiples of one another, and if the control loops are closed

in order according to sampling rate, from fastest sampling to slowest, then it is a

simple matter to obtain an exact representation of the plant jwith the first n loops

closed for use in designing the (n+l)th loop.
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Consider an analog plant represented by the state equation

p( t )=Fp( t )+Gu( t ) + G*(t) t (1)

where p(t] is the state vector, and u(t) and u(t) are the control input vectors.

Suppose that the u loop is closed first, at a sampling rate 1/T, using the discrete

control law

u(k) = -Cp(k). (2)

If the u loop is to operate at a slower sampling rate 1/PT, where P is a positive,

nonzero integer, then the state model for the u loop design is

p(k+l) = (A - BC]P p(k) + B fl(jfc) , (3)

where

A ± e"1, B = / V< dtG , S = /""e" dtG . (4)
Jo Jo

Dynamic compensation is handled just as easily. For the analog plant in (1),

suppose that the state model that describes the u control loop is:

c(k+ 1) = Az c(k) + Ap p(k) + Ba u(k) , (5)

(6)

where c(fc) is the compensator state vector. The state equation for the u loop design

is then

[ A-BCP_ -BCS ] P \ p (k )
L £(*+!) J [A,-Bid, At-BtCtl [c(k)\ 0 (7)

§3.2 Optimal Control. In this section, the equations that define the steady-state

optimal MR quadratic regulator and the steady-state MR Kalman estimator are

derived. The developments are not rigorous. They are a useful supplement to the

works of Glasson et al. (1979, 80, 81, 82) and of Amit and Powell (1980, 81).
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We start with the finite-time optimal MR control law synthesis problem, because

the equations for the finite-time optimal MR quadratic regulator and the finite-time

MR Kalman estimator are easily determined from the corresponding equations for a

time-varying SR system. The equations for the steady-state optimal MR quadratic

regulator and the steady-state MR Kalman estimator are then easily determined

from the corresponding finite-time equations.

Finite Time Case. An open- loop MR sampled-data plant is assumed to be

represented by the discrete state model:

z(m,n+l) = A(n) x(m,n) + B(n) u(m,n) + to(m,n) , (8)

y(m,n) = H(n)i(m,n) + v(m,n) , (9)

for m = 0, 1, . . . and n = 0, 1, . . . , P-l, where P is the number of STPs per BTP

for the sampling policy, x(m,n), u(m, n), w(m, n), y(m, n), and v(m,n) are the

discrete state, control input, process noise input, measurement output, and sensor

noise input vectors, respectively.

The initial state x(0, 0) is assumed to be a zero-mean, gaussian random vector

with covariance XQ. The process noise and measurement noise vectors iy(m,n) and

v(m,n) are assumed to be zero-mean, gaussian, purely random sequences, with

covariances W(n) and V(n), respectively, so that

E{to(fc,OtoT(m,n)} = W(n) 6(kP+l,mP+n) , (10)

(11)

where E{-} is the expected value operator, and

1 if » =j;

The process noise, measurement noise, and initial state are assumed to be mutually

uncorrelated.
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Given the measurements y(0,0), y(0,1), ..., y(N-l,P-l), the finite-time

optimal control law synthesis problem is to determine a control sequence u(0,0),

u(0,1), ..., u(N—1,P — 1) that minimizes the performance index

Q(n) N(n) 1 fz(m,n)x ( m , n ) T,

where N is a positive, nonzero integer, QN is symmetric, positive semidefinite

matrix, each Q(n) is a symmetric, positive semidefinite matrix, and each R(n)

is a symmetric, positive definite matrix.

Except for the double indexing scheme for the independent variables, the finite-

time optimal MR control law synthesis problem looks just like a finite-time optimal

SR control law synthesis problem for a time-varying system. The equations for

the optimal MR regulator and the MR Kalman estimator can consequently be

determined by inspection of the well-known solution to this related problem. From

Section 14.7 of Bryson and Ho (1975), by incorporating the double indexing scheme

for the independent variables and making simple substitutions in notation only, we

obtain the equations for the finite-time optimal MR regulator and the finite-time

MR Kalman estimator:

u(m,n) = — C(m, n)x(m, n) , (14)

x(m,n) — x(m,n) + K(m,n)[y(m, n) — H(n)x(m, n)\ , (15)

x(m, n+ 1) = A(n)x(m, n) + B(n)u(m, n) , (16)

where

C(m,n) = [BT(n)A(m,n+l)B(n) + R(n)}~1

(n)], (17)

(m,n) + V(n)}-1, (18)
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and A(m, n) satisfies

A(m,n) = AT(n)A(m,n+l)^(n) - CT(m,n)[R(n)

+ BT(n)A(m,n+l)5(n)]C(m,n) + g(n), (19)

for A(JV,0) = (?N; and n(m,n) satisfies

n(m,n+l) = A(m,

V(n)]KT(m,n)}AT(m,n)+W(n), (20)

In fact, the discretization procedures of Chapter 2 are not quite compatible with

(14) through (20). To make the dimensions of u(m,n) and j/(m, n) the same for all

n, the discretization procedures of Section 2.1 add, for some values of n, dummy

control inputs to u(m,n) and dummy measurements to y(m, n). The R(n) in (17)

and the V(n) in (18) are consequently singular for some values of n. The required

fix is to delete the columns of zeros from each B(n) and N(n) and the rows and

columns of zeros from each R(n) that correspond to the dummy elements of u (m, n) ,

to delete the rows of zeros from each H(n) and the rows and columns of zeros from

each V(n) that correspond to the dummy elements of y(m, n), and to subsequently

deal with control input and measurement vectors that have dimensions that vary

with n. The resulting Q(n) and R(n) are guaranteed to be positive semidefinite and

positive definite, respectively, if the corresponding matrices Q and R in the analog

performance index are positive semidefinite and positive definite, respectively. The

resulting V(n) are guaranteed to be nonsingular if every physical measurement is

subject to noise.

Infinite Time Case. The numerical values for C(m,n) and K(m, n) can be

determined by propagating the matrix difference equation for A(m, n) in (19)
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backward and applying (17), and by propagating the matrix difference equation

for n(m, n) in (20) forward and applying (18). Amit (1980) describes conditions

involving the controllability and observability of the open-loop plant that guarantee

that these difference equations settle to unique steady-state values for large N. Not

surprisingly, these steady-state values are not constant in the usual sense, but are

functions of n. It follows, from (17) and (18), that the steady-state regulator gain

matrices and the steady-state Kalman estimator gain matrices are periodic in n as

well; that is that

C(m,n) -+ C(n) and K(m,n) -> K(n]

for large N. Substituting these steady-state gain matrices into (14) and (16), we

obtain the equations for the steady-state optimal MR regulator and the steady-state

MR Kalman estimator:

u(m,n) = -C(n)z(m,n), (21).

x(m, n) = x(m, n) + K(n) [y(m, n) - H(n)x(m, n)}, (22)

z(m,n+l) = A(n)x(m,n) + £(n)u(m,n). (23)

Amit and Powell (1980, 81) developed a computer program to solve for C(n)

and K(n) efficiently using eigenvector decomposition. In this approach, a discrete

state model and performance index are formed that describe the BTP-to-BTP

responses of the MR system. The BTP-to-BTP state model and the BTP-to-

BTP performance index are time-invariant and SR. They are used to determine

the steady-state values for A(m,0) and f1(m,0) directly, using an eigenvector

decomposition algorithm designed for a time-invariant SR problem. The steady-

state values for A(m,n) and n(m,n), for n = 1, 2, ..., P — 1, are then easily

determined by propagating the matrix difference equations for A(m, n) and n(m, n)

backward and forward, respectively, for P — 1 steps. The steady-state values for
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the gain matrices C(n) and K(n), for n = 0, 1, ..., P—1, are determined from the

steady-state values for A(m, n) and n(m,n) using (17) and (18).



Chapter 4

The Constrained Optimization Synthesis Method

This chapter describes a new method for MR synthesis. We shall call it the

constrained optimization synthesis method. Section 4.1 discusses the motivation

that led to the development of the method. Section 4.2 presents a formal

statement of the constrained optimization problem. A numerical search algorithm

for determining a solution is presented in Section 4.3. The search algorithm requires

explicit calculations of the value of a performance index and of the gradient of

this performance index with respect to the compensator parameters. Closed-form

expressions for calculating this value and gradient are derived in Sections 4.4 and

4.5, respectively. Section 4.6 describes some features of the method that make it a

powerful tool for synthesizing low-order compensators.

§4.1 Motivation. Amit and Powell (1980, 81) developed an efficient method for

synthesizing optimal MR compensators. The constrained optimization synthesis

method is an outgrowth of their work. An advantage of the optimal synthesis

methods is that the control laws for all control loops are synthesized simultaneously,

taking full advantage of all cross-coupling effects. A disadvantage of the optimal

methods is that the resulting compensators are periodically time-varying. However,
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in a study involving a simple mass-spring-mass system and fifty different steady-

state optimal MR regulator designs, Amit and Powell (1980, 1981) found only a

few cases where the performance of an optimal regulator was significantly better

than that of its time-invariant averaged-gains approximation. This suggests that

periodicity is often not a prerequisite for good performance in MR compensators.

The constrained optimization synthesis method was developed to bridge the

gap between the optimal control law synthesis method and the successive loop

closures synthesis method. Some advantages of the constrained optimization

synthesis method are: (1) the control laws for all control loops are synthesized

simultaneously, taking full advantage of all cross-coupling effects (which is the

principal advantage of the optimal control law synthesis method); and (2) simple,

low-order compensator structures are easily accommodated (which is the principal

advantage of the successive loop closures synthesis method). The basic idea behind

the constrained optimization synthesis method is to solve the steady-state optimal

MR regulator problem, but with the solution constrained to be a linear, time-

invariant, state feedback control law. In addition, linear constraints can be imposed

on the elements of the feedback gain matrices. This is important because, by

adding compensator states to the state vector and constraining certain feedback

gain elements to fixed values, compensators of arbitrary structure and dynamic

order can be synthesized.

§4.2 Statement of the Constrained Optimization Problem. An open-loop

plant is assumed to be represented by the periodically time-varying discrete state

equation

z(m, n+l) = A(n)x(m,n) + B(n) u(m,n) + w(m,n), (1)

for m = 0, 1, ... and n = 0, 1, ..., P — 1, where z(m,n), u(m,n), and tu(m,n)

are the state, control input, and process noise input vectors, respectively, and P is
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the number of STPs per BTP for the sampling policy. The initial state z(0, 0) is

assumed to be zero. Let
. ., A / 1 if t = j ;
''•>) = {o i f .Vj .

The process noise is assumed to be a periodically stationary, zero-mean, gaussian,

purely random sequence, with covariance W(n), so that

E{u>(fc, /) u;T(m, n)} = W(n) 6(kP+l, mP+n) , (3)

where E{-} is the expected value operator. The process noise and initial state are

assumed to be uncorrelated.

The control input u(m, n) is constrained to be a linear, periodically time-

varying function of the state, so that

u(m,n) = — C(n) x(m,n) . (4)

The C(n) are further constrained to satisfy

M-i
ar(n)Cr, (5)

r=0

where M is a positive, nonzero integer less than or equal to P, each Cr is a constant

matrix, and the ar(n) are scalar functions of n that satisfy

ap(n)aq(n) = 6(p,q). (6)

The synthesis problem is to determine a set of feedback gains Cr, for r =

0, 1, . . . , M— 1, such that the performance index

T [ Q(n)
n) R(n] u(m,n)

l— 0

is minimized, where each Q(n) and R(n) is a symmetric, positive semidefinite

matrix.
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Remarks. Two points merit special attention:

1. In (5), M and the ar(n) are design parameters. For example, if

M = P and ar(n) = *(r,n), (8)

then

u(m,n) = -Cnx(m,n), (9)

and the control law is periodically time-varying, in the same manner as the

unconstrained optimal solution. On the other hand, if M = l, then

u(m, n) = —Co z(m, n), (10)

and the control law is time-invariant.

2. Although it appears that only full state feedback control laws are considered,

in practice this is not the case. As shown in Section 4.6, additional linear

constraints can be imposed on the elements of the CT. This is important

because, by including compensator states in the state vector and constraining

certain feedback gain elements to fixed values, compensators of arbitrary

structure and dynamic order can be synthesized.

§4.3 Solution Algorithm. The constrained optimization synthesis problem is

difficult to solve. A closed-form solution for the feedback gains is not known. One

approach is to invent an algorithm that conducts a numerical search for a set of

feedback gains that satisfies the necessary conditions

= 0, (11)
dCr

for r = 0, 1,..., M—1, where dJss/3Cr is the matrix whose (;, j)th element contains

the gradient of Jss with respect to the (t,y)th element of Cr.
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Broussard and Halyo (1984) developed such an algorithm, for the case of a

time-invariant (i.e., M = 1) output feedback control law. A problem with their

approach is that it cannot handle control laws that fail to stabilize the stable closed-

loop system. Consequently, the designer must determine a stabilizing guess for the

control law before the numerical search can begin and special logic must be used to

(hopefully) avoid destabilizing control laws during the search.

To avoid these difficulties, we chose a different approach. The key to this

approach is the finite-time performance index

T x(m>n)

where the <2(n), R(n), and N(n) are the same matrices as in (7). The performance

index J(N) is the finite-time analog of Jss, in that

Jss = lim J(N] . (13)
N— >oo

The advantage of working with J(N) instead of Jss is that the gradients

dJ(N)/dCr, for r = 0, 1, ..., M — 1, exist (and can be calculated) whether or

not the closed-loop system is stable. The ultimate goal of every optimization is

to determine a set of feedback gains Cr, for r — 0, 1, . . . , M — 1, such that (11) is

satisfied. This is easily accomplished using J(N) by setting N to a value that is

large enough that NPT, which is the finite time for the performance index J(N),

is very large compared to the characteristic times of the closed-loop system.

The computer program that we developed for solving the constrained

optimization problem is AMS (Algorithm for Multirate Synthesis). AMS reads the

analog state model, the analog performance index, the sampling rates, the initial

guess for the feedback gains, and the value of N from an input file. After forming

the equivalent discrete state model and the equivalent discrete performance jndex,

it conducts a numerical search to determine a set of feedback gains that minimizes
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J(N). The QNMDER algorithm is used for the numerical search. The QNMDER

algorithm is a gradient-type search algorithm developed by Gill and Murray (1972,

81). It requires explicit evaluations of J(N) and dJ(N)/8Cr, for r = 0,1, ..., M—1,

and uses these to determine an approximate Hessian matrix.

Once AMS has determined a set of feedback gains that minimizes J(N), the

gains are saved on a disk file and execution stops. The designer must then determine

whether the gains represent a steady-state solution. If not, it is a simple matter

to run AMS again, for a larger value of N, using the saved feedback gains from

the previous run as the initial guess. This cycle is repeated for larger and larger

values of N. A steady-state solution is obtained when NPT gets to be very large

compared to the characteristic times of the closed-loop system.

At the early stages of an optimization, when the initial guess for the feedback

gains is poor, N must be set to a small value to avoid numerical overflow. In each

subsequent run, as the quality of the initial guess for the feedback gains improves,

N can be increased by, say, a factor of 10. By re-optimizing for larger and larger

values of N, a steady-state solution is usually obtained after 4 or 5 runs. See the

User's Guide to AMS in Appendix C for further details.

The key to solving the constrained optimization problem by this method lies

in an efficient means for evaluating J(N) and dJ(N}/dCT. The expressions for

J(N] and dJ(N)/dCr that we developed for AMS are derived in Sections 4.4 and

4.5. These are closed-form expressions with the special property that the number of

machine operations per evaluation does not depend on N. For these expressions to

be valid, the single restriction is that the closed-loop BTP state transition matrix

must be diagonalizable (see Section 2.2 for a definition of the closed-loop BTP

state transition matrix). This is not a serious limitation, however, because a non-

diagonalizable closed-loop BTP state transition matrix rarely occurs.
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§4.4 Closed-Form Expression for the Performance Index. The derivation in

this section is modeled after similar developments for time-varying analog systems

by Kleinman, Fortman, and Athans (1968), Johnson and Athans (1970), and Levine

and Athans (1970). The key to the derivation is the following theorem, which treats

the general case of a time-varying system, and includes provisions for a random

initial state and a quadratic penalty on the terminal state. A proof of Theorem 1

is given in Appendix B.

Theorem 1. An open-loop plant is assumed to be represented by the time-varying

discrete state equation

x(t+l) = A(t)x(t) + B( t )u( t )+w(t ) , (14)

for t — tQ, *o+l» • • • > *i — lj where x(t), u(t), and w(t) are the state, control input,

and process noise input vectors, respectively. The initial state x(*o) is assumed to

be a zero-mean, gaussian random vector, with covariance XQ. Let

. .. A ( 1 if t = j;

The process noise w(t) is assumed to be a zero-mean, gaussian, purely random

sequence, with covariance W(t), so that

E{w(t)w-r(r)} = W(t}6(t,T), (16)

where E{-} is the expected value operator. The process noise and initial state are

assumed to be uncorrelated.

The performance index is assumed to be

where Q\ is a symmetric, positive semidefinite matrix, and each Q(T) and R(T) is

a symmetric, positive semidefinite matrix.
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The control input is assumed to satisfy

tt(0 = -C(*)*(«). (18)

Let

[A(t)-B(t)C(t)], (19)

for t = to> *o+lj • • •» *i — 1 and T = t-t-l, t+2, ..., ti, and let

*(*, 0 = Ix , (20)

where Ix an identity matrix with the same number of rows and columns as there

are elements in x(t). Let

i 1* r*

QM "W) \ I •« I (21)

Let

«1-1
) . (22)

Then: an equivalent expression for the performance index in (17) is

J = Ex T ( t 0 ) *(«o) x(«0) + "T(r) *(r + l) u,(r) . (23)

Now we apply Theorem 1 to the constrained optimization problem of

Section 4.2, where:

*o = 0, (24)

t i = N P , (25)

X0 = 0, (26)

Q i = 0 , (27)



32 4. The Constrained Optimization Synthesis Method

A(mP+n) = A(n) , (28)

B(mP+n) = B(n] , (29)

W(mP+n) = W(n) , (30)

Q(mP+n) = Q(n) , (31)

N(mP+n) = N(n) , (32)

R(mP+n) = R(n) , (33)

C(mP+n) = C(n) , (34)

for m = 0, 1, . . . and n = 0, 1, . . . , P-l, where P is the number of STPs per BTP

for the sampling policy.

From (17), using (27), (24), and (25), and substituting for the summation using

NP-l N-1P-1

E /w = EE/(mp+*)> (35)
r=0 m=0 n=0

and using (31) through (33), we obtain

2 l u(mP+n) ^(n) J2(n) u(mP+n)
m=0 n=0 L ' J u » / \ > J L V / j

so that, comparing (12) with (36),

J(N) = J . (37)

From (19) and (20), using (28), (29), and (34), we obtain

, mP+/) = $(n, /) , (38)

for / = 0, 1, ..., P and n = /, / + !, . . . , P, and

= *(n,0) [$(P,0)]m~*-1 $(P,/) , (39)

for fc = 0, 1, . . . , JV-2, m = Jk+1, Jfc+2, . . . , JV-1, / = 0, 1, . . . , P, and n = 0, 1, . . . , P.
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From (23), substituting for \&(r + l) using (22), and using (24) through (27),

(16), (37), and the properties of the expected value operator, we obtain

NP-l NP-l

. (40)
T=0 p=r

rjtNP-l

From (40), substituting for the double summation using

NP-l NP-l NP-l r-l

£ £ /(*')- £
*"

AT-1 P-l n

m=0 n=l i=l

N-lP-lm-l P

E E E E/(mp+n'A:p+/-1)' (41)
m=l n=0 Jk=0 /=!

we obtain

where

N-l P-l n

* = £££$T(r"p+n>mp+/)
m=0 n=l 1=1

1), (43)

N-l P-l m-1 P
• ••^ ^̂ "̂  \ " ' ̂  V" ^ T*

#2 = / / / / ^ (mP+n, kP+l)
^^^ /̂ ^^^^ ^^^^ ^^^J

m=l n=0 *=0 1=1

*Qc(mP + n)$(mP+n,kP+l}W(kP+l-l). (44)

From (43), substituting for $(mP + n,mP + /) using (38), and using (21) and

(30) through (34), we obtain

N-l P-l n

m=0 n=l 1=1
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Let

_ p-1

Qc(l) = 5»,/)Qb(n)*(nf/)f (46)
n=l

for / = 0, 1, . . . , P— 1. From (45), substituting for the triple summation using

N-l P-l n P-l P-l

M. (47)
m=0 n=l /=! /=!

and using (46), we obtain

P-l
(48)

From (44), substituting for $(mP + n,kP+l) using (39), and using (21) and

(30) through (34), we obtain

AT-l P-l m-l P

m=l 11=0 Jk=0 1=1
Njtl

* $(n,0) [$(P, O)]"1"*"1 $(P,/) W(l — 1). (49)

From (49), using (46), we obtain

P

l=i

where
N-l m-i

= V
Z-^
m=l k=0

Now we assume that the closed-loop BTP state transition matrix $(P, 0) is

diagonalizable, so that $(P, 0) can be written as

) = 5A5~1 , (52)
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where 5 is an nonsingular matrix and A is a diagonal matrix. Let A, represent the

t'th diagonal element of A. Let (-)t-y represent the operator that returns the (t,j)th

element of its matrix argument. From (51), using (52), we obtain

(53)

where
N-2 m

m-t Xrn-k < (g4)

m=0 *=0
Njtl

Together, (42), (48), (50), (53), (54), (46), (38), (39), and (52) represent

a formulation for J(N) that is ideally suited to the optimization algorithm of

Section. 4.3, In particular, the summation in (54), which is the only summation

with limits that depend on JV, can be evaluated in closed-form using formulas

in Gradhteyn and Ryzhik (1980), so that the number of machine operations per

performance index evaluation is independent of N.

§4.5 Closed-Form Expression for the Gradient. The derivation in this section

is modeled after similar developments for time-varying analog systems by Kleinman,

Fortman, and Athans (1968), Johnson and Athans (1970), and Levine and Athans

(1970). The key to the derivation is the following theorem, which treats the general

case of a time-varying system, and includes provisions for a random initial state

and a quadratic penalty on the terminal state. A proof of Theorem 2 is given in

Appendix B.

Theorem 2. An open-loop plant is assumed to be represented by the time-vary ing

discrete state equation

i(t+l) = A(t) x(t) + B(t) u(t) + w(t) , (55)
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for t = to, to+1, ..., ti — 1, where x(t), u(f), and w(t) are the state, control input,

and process noise input vectors, respectively. The initial state x(to) is assumed to

be a zero-mean, gaussian random vector, with covariance XQ. Let

if t = j;

The process noise w(t) is assumed to be a zero-mean, gaussian, purely random

sequence, with covariance W(f)> so that

E{w(t)wT(r)}=W(t)6(t , r ) , (57)

where E{-} is the expected value operator. The process noise and initial state are

assumed to be uncorrelated.

The performance index is assumed to be

R(T) u(r

where Q\ is a symmetric, positive semidefinite matrix, and each Q(T) and R(T) is

a symmetric, positive semidefinite matrix.

The control input is assumed to satisfy

tt(*) = -C(0*(0. (59)

The C(t) are further assumed to satisfy

Af-i
C(0=^M*)Cr, (60)

r=0

where M is a positive, nonzero integer less than or equal to t\— to, each CT is a

constant matrix, and the ar(t) are scalar functions of t that satisfy

(61)



4.5 Closed-Form Expression for the Gradient. 37

Let

[A(t)-B(t)C(t)] t (62)

for t = to> £o+l» ..., ti —1 and r = / + l, t+2,. . . , ti, and let

$(t , t )=Ix , (63)

where 7Z an identity matrix with the same number of rows and columns as there

are elements in x(t). Let

i T r s\i \ »T/ \ i r T

-CM ' (64)

Let

Let

V(T) = -NT(r) + R(r) C(r) - BT(r) *(r+l) [A(r)-B(r) C(r)] . (66)

Then: if dJ/dCr represents the matrix whose (i, j>)th element contains the gradient

of J with respect to the (t,j)th element of Cr,
4 1

dJ
dCr

r~ — " (67)

for r = 0, 1, ..., Af-1.

Now we apply Theorem 2 to the constrained optimization problem of

Section 4.3, where:

*o = 0, (68)
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(69)

X0 = 0, (70)

3i=0, (71)

A(mP+n) = A(n) , (72)

B(mP+n) = B(n) , (73)

W(mP+n) = W(n] , (74)

Q(mP+n) = Q(n), (75)

N(mP+n) = N(n) , (76)

R(mP+n) = R(n), (77)

ar(mP+n) = a r(n), (78)

C(mP+n) = C(n), (79)

for m = 0, 1, . . . and n = 0, 1, . . , , P-l, where P is the number of STPs per BTP

for the sampling policy.

From (61), using (71), (68), and (69), and substituting for the summation using

NP-l N-lP-l

E /M = E E /(«^+») . (80)
r=0 m=0 n=0

and using (75) through (77), we obtain

j- IE/V V [I(^+^)1J ~ 2 l^ ^ [u(mP+n)j

so that, comparing (12) with (81),

n) R(n) u(mP+n)

J(N] = J . (82)

From (62) and (63), using (72), (73), and (79), we obtain

$(mP + n,mP+/) = *(n,/), (83)

for / = 0, 1, ..., P and n = /, / + !, . . . , P, and
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Q(mP+n,kP+l) = $(n,0) [$(P,Q)}m~k~1 $(P,f) , (84)

forJfc = 0, 1, ...,N-2, m = Jfc+l, fc+2, .... JV-1, / = 0, 1, ..., P, and n = 0, 1, ...,P.

Let

C(r,M) = ar(r) [-ATT(r) + *(r)C(r)] *(r,/«+l) Wfo) $T(r,M + l) , (85)

and let

[A(r)-B(

(86)

From (67), substututing for V(T) using (66), and using (70), (68), (69), (82), (85),

and (86), we obtain

a T/ »r\ , ATP-l r-l
dJ(N) If V^ V^ r / N n/ \] (o>r\

r T=l U=0

To simplify the notation, we assume that P > 2. From (87), substituting for

the double sum over C (r, n) using

NP-l r-l AT-1 P-l n-1

£ E'(^) = E £E/(mp+
T=l /i=0 m=0 n=l J=0

JV-1 P-lm-lP-1

+ E E E E
m=l n=0 *=0 1=0

and for the double sum over P(r, /i) using

-l r-l P-2

r=l >i=0 /=0

+ E£/((tf-i)p+n,(*r-i)p+o+ E E
n=l i=0 m=l i=0

N-2 P-2 n-1 AT- 2 F-l

E EE/(mp+re 'mp+/)+ E ^
m=0 n=l 1=0 k=0 1=0
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P-2 N-2 P-l N-l m-2P-l

+ E E E/((^-1)p+»>fcp+o + £ ££
n=0 fc=0 J=0 m=2 fc=0 1=0

N-2 P-2m-lP-l

+ E E E E /(mP+»,*P+/) , (89)
m=l w=0 Jk=0 /=0

we obtain

<9C,

where

V) 1 / \
r2- = T7 ( Cl + €2 + Pi + 02 + fa + 04 + A> + A> + #7 + Ps ) , (90)
f JV \ /

AT-lP-ln-1

= E E E C(mP+n,mP+/) , (91)
m=0 n=l /=0
N-l P-lm-lP-1

= E E E E C(mP+n,*P+/) , (92)
m=l n=0 jfc=0 <=0

P-2

^^((N-l)P+P-l,(N-l)P+l), (93)
/=o
P-2 n-1

((*r-l)P + n,(JV-l)P+0. (94)
n=l i=

AT-1 P-2

E
m=l /=

N-2 P-2 n-1

Y^ E E 0(mP+n,mP+/) , (96)
m=0 n=l /=0

N-2 P-l

E E 0((tf-l)P+P-l,*P+0 , (97)
*=0 /=0

E E E /?((^-i)p+»,*p+o , (98)
n=0 *=0 /=0

Njtl
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^ = E E E P((m-l)P + P-l,*P+/) , (99)

N-2 P-2m-lP-l

= E E E E 0(mP+n, *P+0 . (100)
m=l n=0 Jfe=0 1=0

From (91), substituting for C(mP + n,mP + /) using (85) and for

$(mP+n,mP-)-/+l) using (83), and using (74) through (79), we obtain

r V^ V^ V^ ~ i~\ ( MT(~\-i-j?f*,\r'(*,\\ui — > > > cxrini i—yv IUI+jt iTiioin) I^__/ £_^/ £ ^ j • \ / ^ \ / V / V / y

m=0 n=l J=0

*$(n,/+l)W(/)$T(n,/+l). (101)

Let

n-l

W(n) = ^$(n,/ + l)PV(/)$T(n,/ + l), (102)
/=o

forn= 1, 2, ..., P. From (101), using (102), we obtain

P-i
Ci = N E ar(n)(-NT(n)+R(n)C(n))W(n). (103)

n=l

And (103) and (102) represent an ideal formulation for Ci in that all summation

limits are independent of N.

The corresponding development for Cz is only slightly more complicated. From

(92), substituting for C(mP+n,kP+l) using (85), and for $(mP+n, fcP+/+l) using

(84), and using (74) through (79), we obtain

N-l P-lm-lP-1
r V^ V^ V V i \ ( nT(~\-LBf~\r'{~,U2 = 7 / / / ttrlfll I — J V IMJ-(- / t lTl lCx IMZ_^ £-~4 Z__/ ^_^ \ v / v

m=l n=0 *=0 /=0

1 *T(n,0).. (104)
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From (104), using (102), we obtain

P-i
Cz = £ of(n) (-JVT(n) + fl(n)C(n)) *(n,0) C2i *

T(n,0) , (105)
n=0

where

Cn = £ Et$(p'°)]m"*"1^(p) I^ttO)]1"-*-1 • (106)
m=l jfe=0

Now we assume that the closed-loop BTP state transition matrix $(P, 0) is

diagonalizable, so that $(P, 0) can be written as

) = 5A5~1, (107)

where S is a nonsingular matrix and A is a diagonal matrix. Let A,- represent the

t'th diagonal element of A. Let (-)^- represent the operator that returns the (t,j>)th

element of its matrix argument. From (106), using (107), we obtain

(108)

where
_ N-1 m

m=0 k=0

And (105), (108), (109), and (102) represent an ideal formulation for C2 in that:

(l) the summation limits in (105) and (102) are independent of N] and (2) the

nested sum in (109) is a finite series that can be evaluated in closed-form using

formulas in Gradhteyn and Ryzhik (1980).

The corresponding developments for V\ through PS follow the same design.

From (65), using (71) and (69), and substituting for the summation using

NP-i P-i
) ^ f (/i, mP-(-Ti) = [ ) ^ /(>7tP-|-<7, n

p=mP+n q=n
N-l P-l

(110)
p=m+l q=C
mjkN-1
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for m = 0, 1, ..., N-l and n = 0, 1, ..., -P-l, and using (64), (75) through (77),

and (79) we obtain

P-i

q=n

N-l P-l

E £ $(pP+9,mP+n) Qc(q) *T

p=m+l q=0

for m = 0, 1, ..., N— 1 and n = 0, 1, ..., P — 1, and

*(JVP)=0. (112)

From (93), substituting for P((AT-1)P+P-1,(JV-1)P+/) using (86), and for

using (112), we obtain

Pi=0 . (113)

Let

_ p~l

Qc(n) = £>T(<7,n)Qc(9)<%,n), (114)
q=n

for n = 0, 1, . . . , P-l. From (94), substituting for D((N-l)P+n, (N-l)P+l) using

(86), for ̂ ((^-l)P + n+l) using (111), and for $((N -l)P + n,(N-l)P + l + l)

using (83), and using (72) through (74), (78), (79), (102), and (114), we obtain

P-2 _ _
£>2 = - ar(n) BT(n) Qc(n+l) *(n + l,n)W(n) . (115)

n=l

From (95), substituting for P((m-l)P+P-l, (m-l)P+/) using (86), for #(mP)

using (111), and for $((m-l)P + P-l, (m-l)P+/ + l) using (83), and using (72)

through (74), (78), (79), (102), and (114), we obtain

Z?3 = -ar(P-l) 5T(P-1) AJI $(P,P-l)iT(P-l) , (116)

where

m=l p=
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From (117), substituting for $(P, 0) using (107), we obtain

D3i = S-TD3iS-1, (118)

where

m=0 p=m

From (96), substituting for D(mP+n, mP+/) using (86), for \P(mP+n+l) using

(111), and for $(mP+n,mP+/+l) using (83), and using (72) through (74), (78),

(79), (102), and (114), we obtain
P-2

n=l
PjtZ

*$(n+l,n)W(n), (120)

where
N-2 N-l

m=0 p=m-l-l
N?l

From (121), substituting for $(P,0) using (107), we obtain

P4i = 5-TP4i5-1, (122)

where

. X; E Af—Af". (123)
m=0 p=m

From (97), substituting for P((^V-1)P+P-1, kP+l) using (86), and for

using (112), we obtain

P5 = 0. (124)

From (98), substituting for D((N-l)P+n,kP+l) using (86), for ^((7\T-l)P+n+l)

using (111), and for $((N -l)P + n,kP + l + l) using (84), and using (72) through

(74), (78), (79), (102), and (114), we obtain
P-2

D6 = _£ ttf(n) BT(n) Qc(n+l) *(n+l,0) Pei $T(n,0) , (125)
n=0
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where
N-l

P61 = £ [^(P.O)]"-1-* W(P) [^(P.O)]"-1-* . (126)
Jfe=i
AT^i

From (126), substituting for $(P,0) using (107), we obtain

Au = SP6iST, (127)

where

foi) =(s-1W(P)S-'r} Y, Af-*'* A? -»-* . (128)
/t; V /tj J

From (99), substituting for P((m-l)P+P-l,/bP+/) using (86), for *(mP)

using (111), and for *((m-l)P+P-l, fcP+/+l) using (84), and using (72) through

(74), (78), (79), (102), and (114), we obtain

r>7 = -ar(P-l)ST(P-l)r>71$T(P-l,0), (129)

where

E E E[$T(p'°)]p"m

m=2 Jfe=l p=m

From (130), substituting for $(P,0) using (107), and letting z denote the number

of elements in i(m,n), we obtain

T, (131)

where

^-3 m N-Z

E E E
m=0 Jt=0 p=m
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From (100), substituting for D(mP + n,kP + l) using (86), for #(mP + i

using (111), and for $(mP+n,/:P+/+l) using (84), and using (72) through (74),

(78), (79), (102), and (114), we obtain

P-2

n=0

T(n,0), (133)

where
N-2 m

= E D*(p> °)]m~* ̂ (p) ($T(p> °)]m~* ' (134)
m=l k=l

E E E [
m=l Jk=l p=m+l

(P,0)]m-. (135)

From (134), substituting for $(P, 0) using (86), we obtain

P8 i=5P8 25T , (136)

where
W-3 m

E E Ar~* A?~k • (137)
m=0 Jfe=0

From (135), substituting for $(P, 0) using (86), we obtain

P82 = 5-TP825T, (138)

where

JV-3 m N-

m=0 fc=0 p=m
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Together, (90), (103), (105), (108), (109), (113),(115), (116), (118), (119),

(120), (122), (123), (124), (125), (127), (128), (129), (131), (132), (133), (136),

(138), (137), (139), (102), (114), (83), (84), and (107) represent a formulation for

dJ(N}/dCr that is ideally suited to the optimization algorithm of Section 4.3.

In particular, all summations with limits that depend on N can be evaluated in

closed-form using formulas in Gradhteyn and Ryzhik (1980), so that the number of

machine operations per gradient evaluation is independent of N.

§4.6 Linear Constraints on the Feedback Gains. An advantage of the solution

algorithm of Section 4.3 is that additional linear constraints can be imposed on

the elements of the feedback gain matrices. Let x and u_ represent the number

of elements in x(m, n) and u(m, n), respectively. If the elements of the Cr are

constrained to satisfy

Af-i « z..
i,. = [ E E E k«™ (Cm) } + /„•;• , (HO)
3 n

m=0 p=l q=\

for r = 0, 1, . . . , M- 1, t = 1, 2, . . . , u, and j = 1, 2, . . . , z, where each A;r:-ymp9 and

Ifi is a constant, then, from elementary calculus,

where dJ(N)/d(Cm)pq on the right-hand side is the gradient ignoring the

constraints, and (dJ(N)/d(Cr)ij)* on the left-hand side is the gradient with the

constraints in effect. In particular, if (CV),-y is to be constrained to be fixed, so that

(Cr) „ = !*,•, (142)

then, from (140) and (141),
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and we see that constraining a feedback gain element to be fixed is as simple as

zeroing the corresponding gradient element.

As indicated in Appendix C, AMS offers the designer the option to constrain

any feedback gain element to be fixed. This is important because, by adding

compensator states to the state vector and constraining certain feedback gain

elements to be fixed, compensators of arbitrary structure and dynamic order can

be synthesized.



Chapter 5

Mass-Spring-Mass Design Example

In this chapter we deal with an example design problem involving a simple

mass-spring-mass (MKM) system. The open-loop system is described in Section 5.1.

The compensator design work is described in Section 5.2. A method for determining

the steady-state state and control covariance responses to a prescribed process noise

is developed in Section 5.3. Performance comparisons for the different compensators

are presented in Section 5.4. Section 5.5 presents a summary and discussion of the

important results.

§5.1 Open-Loop System Description. The open-loop MKM system is shown

in Figure 5.1. Rigid bodies A and B have masses M and m, respectively, and are

connected by a linear spring with spring constant k. Generalized coordinate x\ is

the displacement of A with respect to a fixed point. Generalized coordinate x-z is

the displacement of B with respect to A. The control inputs u and u are forces

acting on A and B, respectively. The process noise wc is modeled as a force acting

on B that satisfies the state equation

wc(t) = -awc(t) + 2 a w ( t ) , (l)
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+-Xl+ ^xt +

~^T~ B
Wc

Figure 5.1 Open-Loop MKM System.

with wc(Q) = 0, where w(t) is stationary, zero-mean, gaussian white noise of unit

intensity, so that

E{w(t)} = 0, (2)

E{w(t+r)w(t)} = 6(r), (3)

where £(•) is the Dirac delta function. From (l) through (3), we obtain

E{u;c(t)} = 0,

lim E{wc(t+T)we(t)} =
t—>oo

(4)

(5)

so that, in the steady-state, wc(t) is a stationary, zero-mean, gaussian random

process of unit variance, with correlation time I/a.

The dynamics of the plant plus the process noise are represented by the analog

state equation

x(i) = F x(t) + G u(t) + G u(t) + Gw w(t), (6)

where

F=

~ A

*l(
•o
0
0

.0

t) Xl(t

1
0
0

0

) MO

0

~itf
0

0

X't

0
0
1

0

(t) u;c(«)]T , (7)
0 -I
0
0

— a.

(8)

0 - 0 (9)
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G = [0 0 0 1 0 ] T , (10)

Gw = [0 0 0 0 v/2a]T . (11)

§5.2 Compensator Designs. The section describes the compensator design work.

The coverage is in 5 subsections, although, in practice, the design process is not

so conveniently separable. The subsections describe the performance objectives,

the compensator structure, the sampling policies, and the synthesis of the different

compensators.

Performance Objectives. The performance objective was to minimize the

system's responses to the process noise we(t). This was to be accomplished using

reasonable levels of control, and the real-time computation load was to be as low

as possible.

Compensator Structure. The compensator was constrained to be a constant

gain control law, with u feeding back x\ and ii, and u feeding back 23 and x^.

Sampling Rates Selection. For sampling rates selection, we first expressed the

performance objectives in terms of the desired locations for the closed-loop poles in

the s-plane. We dealt with cases where M^>m and the spring is soft—soft enough

that the open-loop vibration frequency is substantially less than the characteristic

frequency of the high frequency closed-loop poles. Under these conditions, the

zi/ii-to-u and xz/xz-to-u control loops are primarily coupled to the low frequency

and high frequency closed-loop poles, respectively.

The following subsection describes the specific design cases that we considered.

One MR compensator and one SR compensator were designed for each design

case. Let SSR represent the sampling rate for a SR compensator. Let 5MRi

and 5MR2 represent the sampling rates for the xi/xi-to-u and xz/x^-to-u control
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loops, respectively, for a MR compensator. For real-time operation of either

compensator, the number of multiplications per u update is the same as the number

of multiplications per u update. Consequently, the computation loads for real-time

operation of the two compensators will be the same if SMm, 5MR2> and SSR satisfy

+ SMRZ — 2 SSR . (12)

For each design case, we picked 5SR such that

SSJL = &SR /CL2 > (13)

where /CL2 represents the characteristic frequency in hertz of the high-frequency

desired s-plane closed-loop poles, and kSR was either 5 (for a slow-sampling-rates

case) or 20 (for a fast-sampling-rates case). For the same design case, we picked

and SMR2 using

MR CL1 an MRS = *MR CL2 j

where &MR is a constant, and /CLI and /CL2 represent the characteristic frequencies

in hertz of the low-frequency and high-frequency desired s-plane closed- loop poles,

respectively. To ensure that the computation loads for real-time operation of the

two compensators are the same, we picked fcMR (and thus SMRI and SMR2) sucn that

(12) is satisfied.

Specific Design Cases. Tables 5.1 and 5.2 describe in detail the specific design

cases that we considered. There are three cases in all. One MR and one SR

compensator were designed for each design case. Table 5.1 lists the values of all

fixed parameters. The case-dependent parameters are in Table 5.2. The mass

ratio M/m is fixed at 10. The break frequency a for the process noise shaping

filter is fixed at a large value compared to the characteristic frequencies of the
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desired s-plane closed-loop poles, so that the process noise is effectively white. The

symbols / and f denote a natural frequency and a damping ratio, respectively, with

the subscripts OL or CL indicating open-loop or closed-loop, respectively, and the

trailing 1 or 2 indicating association with the low frequency or high frequency poles,

respectively. The parameter SSR represents the sampling rate for a SR compensator.

The parameters SMR1 and SWa represent the sampling rates for the x\/x\-tou and

X2/X2-to-u control loops, respectively, for a MR compensator.

Table 5.1 Fixed MKM Parameters.

PARAMETER

M

m

a

/OLl

?OL1

?OL2

/CL1

fcLl

<TCL2

VALUE

1kg

O.lkg

10007T sec"1

0 hertz

0

0

1 hertz

l/v/2

l/N/2

Table 5.2 Variable MKM Parameters.

PARAMETER

/OL2

/CL2//CL1

SIAKI! SMRI

SSR/ JCL2

StAR2/SsR

UNITS

hertz

—
—

samples/cycle

—

Nm
Case 1

4

8

8

5

1.78

rtERIC VA1

Case 2

2

4

4

5

1.6

,UE

Case 3

4

8

8

20

1.78

For Design Case 1, the desired s-plane closed-loop poles are critically damped

and have characterisic frequencies of 1 and 8 hertz. Taking 8 hertz as the desired
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closed-loop bandwidth for the xz/xz-to-u control loop, we picked SSR using (13)

at 40 samples/second, or 5 times this desired control bandwidth. For the MR

compensator, taking 1 and 8 hertz as the desired control bandwidths for the xi/ii-

to-u and xz/xz-to-u control loops, respectively, we picked SMR1 and SMR2 using (12)

and (14) at 8.89 and 71.1 samples/second, respectively, or 8.89 times the associated

desired control bandwidths.

Design Case 2 is the same as Case 1, except that the characteristic frequency

of the high frequency desired s-plane closed-loop poles is 4 hertz. Taking 4 hertz

as the desired closed-loop bandwidth for the xz/xz-to-u control loop, we picked

SSR using (13) at 20 samples/second, or 5 times this desired control bandwidth.

For the MR compensator, taking 1 and 4 hertz as the desired control bandwidths

for the ii/ii-to-u and xz/xz-to-u control loops, respectively, we picked SMRI and

^MR2 using (12) and (14) at 8 and 32 samples/second, respectively, or 8 times the

associated desired control bandwidths.

Design Case 3 is the same as Case 1, except that all sampling rates are

increased by a factor of 4. For the SR compensator, we picked 5SR using (13)

at 160 samples/second, or 20 times the desired control bandwidth for the xz/xz-

to-u control loop. For the MR compensator, we picked SMR1 and 5MR2 using (12)

and (14) at 35.6 and 284 samples/second, respectively, or 35.6 times the associated

desired control bandwidths.

Synthesis. All compensators were synthesized using the successive loop closures

synthesis method of Section 3.1. For each MR compensator, we synthesized the

control law for the xz/xz-to-u control loop first, then re-discretized the model at

the slower sampling rate with the xz/xz-to-u loop closed and synthesized the x\/xi-

to-u control loop. The same procedure was used for each SR compensator except

that the same sampling rate was used for both control loops. With only one position



5.2 Compensator Designs. 55

feedback gain and one rate feedback gain in each control loop, the feedback gains

were easily determined by trial and error using interactive computer displays of the

closed-loop poles.

Figure 5.2 is a z-plane plot of the x^/x^-to-u control loop design for the Case 1

MR compensator. The sampling rate is 71.1 samples/second. The os are the open-

loop poles. The Ds are the high frequency desired closed-loop poles. The xs are the

actual closed-loop poles. The Z2-to-u and xi-tou feedback gains are 91.8 N/m/sec

and 5.24 N/m/sec, respectively.

Figure 5.3 is a z-plane plot of the subsequent zi/ii-to-u control loop design

for the Case 1 MR compensator. The sampling rate is 8.89 samples/second. The

os are the low frequency (i.e., rigid body) open-loop poles. The Ds near the origin

are the high frequency desired closed-loop poles. The other D pair are the low-

frequency desired closed-loop poles. The xs are the actual closed-loop poles (the

final closed-loop poles with the Case 1 MR compensator), obtained for zi-to-u and

ii-to-u feedback gains of 25.4 N/m and 7.30 N/m/sec, respectively. In Figure 5.3,

the small movements of the high frequency closed-loop poles away from their desired

locations are due to the closure of the zi/ii-to-u control loop. These movements

are one consequence of the approximations inherent the application of the successive

loop closures synthesis method.

Figure 5.4 is a z-plane plot of the Case 1 SR compensator design. The sampling

rate is 40 samples/second. The os are the open-loop poles, the Ds are the desired

closed-loop poles, and the xs are the final actual closed-loop poles. The small

movements of the high frequency closed-loop poles away from their desired locations

are again due to the closure of the zi/ii-to-u control loop.

For completeness, the z-plane plots of the desired and final actual closed-loop

_poles for the Case 2 and 3 compensators are included in Figures 5.5 through 5.8.
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o

o'

O Open-Loop
D Desired
X Actual

-1 -0.75 -0.50 -0.25 0 0.25 0.50 0.75

Real Part{*}

Figure 5.2 Case 1 MR Compensator xz/xz-to-u Loop Design.
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o

o

O Open-Loop
D Desired
X Actual

-1 -0.75 -0.50 -0.25 0.25 0.50 0.75

Real Part{z}

Figure 5.3 Case 1 MR Compensator xi/ii-to-u Loop Design.
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m

d'

o

d'

O Open-Loop
D Desired
X Actual

-1 -0.75 -0.50 -0.25 0 0.25 0.50 0.75

Real Part{*}

Figure 5.4 Case 1 SR Compensator Design.
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D Desired
x Actual

-1 -0.75 -0.50 -0.25 0

Real Part{*}

0.25 0.50 0.75

Figure 5.5 Closed-Loop Poles with Case 2 MR Compensator.
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D Desired
X Actual

-1 -0.75 -0.50 -0.25 0 0.25 0.50 0.75 1

Real Part{z}

Figure 5.6 Closed-Loop Poles with Case 2 SR Compensator.
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in
d'

D Desired
X Actual

-1 -0.75 -0.50 -0.25 0 0.25 0.50 0.75

Real Part{2}

Figure 5.7 Closed-Loop Poles with Case 3 MR Compensator.
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D Desired
X Actual

-1 -0.75 -0.50 -0.25 0 0.25 0.50 0.75 1

Real Part {*}

Figure 5.8 Closed-Loop Poles with Case 3 SR Compensator.
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The feedback gains for the MR and SR compensators for all three design cases are

in Table 5.3.

Table 5.3 MKM Compensator Feedback Gains.

DESIGN

Case 1 MR

Case 1 SR

Case 2 MR

Case 2 SR

Case 3 MR

Case 3 SR

Il-tO-Ui

(N/m)

25.4

38.0

24.6

34.9

36.0

39.7

FEEDBAC

ii-to-ui
(N/m/sec)

7.30

8.96

7.19

8.58

8.60

9.07

:K GAINS
X2'tOU2

(N/m)

91.8

44.5

20.9

11.1

160.

140.

j2-tO-U2

(N/m/sec)

5.24

4.13

2.53

2.06

6.58

6.20

§5.3 Steady-State Response to Process Noise. We shall use the steady-state

root-mean-square (RMS) closed-loop state and control responses to the process

noise we(t) to compare the performance of the different compensators. For a MR

or SR compensator, let T represent the sampling period for the x^/x^-to-u control

loop. Let P represent the number of STPs per BTP for the sampling policy, so that

PT is the sampling period for the xi/ii-to-u control loop. Let

A ^ e

£ f T e F t dtG,
Jo

B± \ eF idtG.
Jo

(15)

(16)

(17)

For the system in (6), let i(m, n) represent the analog state vector x(t) at the

(mP+n)th sampling instant. Let u(m,n) and u(m,n) represent the analog control

inputs u(i) and u(<), respectively at the (mP+n)th sampling instant. Let w(m, n)

represent the effect of the analog white noise w(t) that occurs between the (mP+n)th
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. /•(

, ») = /
J

and (mP-fn+l)th sampling instants on x(t) at the (mP+n+l)th sampling instant;

that is, let
. /•(mP+n+lVT

/
(mP+n)T

The closed- loop state responses to the analog white noise w(t) then satisfy

x(m,n+l) = Ax(m,n) + JBu(m, n) + Ju(m, n) + u/(m, n) , (19)

for m=0, 1, ... and n = 0, 1, ..., P— 1.

The control inputs u(m,n) and u(m,n) are assumed to satisfy

tt(m,n) = -Cz(m,0), (20)

u(m,n) = — C(n) i(m,n) — c(n) u(m,n) . (21)

Let / represent an identity matrix with the same number of rows and columns as

there are elements in z(m,n). Let

$(1) = [A - B C(0)] $(0) - B C + B c(0) C ,

$(2) = [A - B C(l)| $(1) - B C + B c(l) C , (22)

= (A-BC(P-l}\$(P-l)-BC + Bc(P-i)C.

Let

(23)
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Let
iD(in,0) = tu(m,0),

, . A |"iu(m,0)
w^m' ' ~ [w(m,l)

tD(m,P-l) =

u;(m,0)
iy(m, 1)

(24)

From (19), substituting for u(m, n) using (20), and for £(m, n) using (21), and using

(22), (23), and (24), we obtain

x(m, 1) = $(1) x(m,0) + F(l) 0(m,0),

z(m, 2) = $(2) x(m, 0) + T(2) w(m, l),
(25)

x(m+l,0) =

From the last equation in (25), using

T(P)

E{x(m,0)tBT(m,P-l)}=0, (26)

we obtain

,0) zT(m+l,0)} = $(P) E{x(m,0) xT(m,0)} $

+ r(P)E{tD(m,P-l)tyT(m,P-l)}rT(P). (27)

Let

X(m, n) = E{x(m, n) zT(m, n)} ,

n) =E{tD(m,n)TDT(m,n)}

(28)

(29)

From (27), using (28) and (29), we obtain

X(m+l,0) = T(P) W(P-l) TT(P) (30)
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Assuming that the closed-loop system is stable, the unique steady-state solution to

(30) is easily determined by setting X(m+l,Q) = X(m,Q) and solving the resulting

set of simultaneous linear equations for the elements of X(m, 0). Let X(0) represent

this solution. The matrix X(0) is the steady-state closed-loop state covariance in

response to the analog white noise w(t) at the first sampling instant in a BTP. Let

X(l), X(2),..., X(P-l) represent the corresponding steady-state state covariances

at the other P-l sampling instants in a BTP. From (25), using (28), (29), and (31),

we obtain

X(2) = $(2) X(0) *T(2) + F(2) W(l) FT(2),
(31)

X(P-1) = $(P-1) X(0) $T(P-1) + F(P-1) W(P-2) FT(P-1).

The first 4 diagonal elements of X(n) are the steady-state variances of the

analog states *i(t), xi(t), x^(t), and ii(t), respectively, in response to the analog

process noise we(t), at the nth sampling instant in a BTP. From (20), the

corresponding steady-state variance of the control input a(t) is

lira E{a*(m,n)} = CX(0)CT. (32)
Ftt^^OO

From (21), using (25), (30), and (31), the corresponding steady-state variance of

the control input u(i) at the nth sampling instant in a BTP is

ta^ E{u2(m, n)} = C(n) X(n) &(n) - C(n) *(n) X(0) C* c(n)

- (<7(n) *(n) X(0) C* c(n))T + c(n) CX(0) & c(n). (33)

§5.4 Performance Comparison*. The performance of the Case 1 MR

compensator is compared with that of the Case 1 SR compensator in Figure 5.9.

The numerator and denominator values above each bar are the steady-state RMS
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closed-loop responses to the process noise we(t) with the MR and SR compensators,

respectively, in units of meters for x\ and xz, meters/second for x\ and x?, and

newtons for ui and U2*. Each bar in the figure has a height equal to the value of

the ratio above it.

The performance of the Case 1 MR compensator is markedly better than that

of the Case 1 SR compensator. The steady-state RMS x\(m,n) and ii(m,n)

responses are about the same with the two compensators, while the steady-state

RMS X2(m,n) and Z2(m, n) responses with the MR compensator are markedly

reduced. Furthermore, the steady-state RMS control activities are less with the

MR compensator.

The same results for the Case 2 MR and SR compensators are plotted in the

same manner in Figure 5.10. Comparing the Case 2 responses with the Case 1

responses, we see markedly similar patterns in the steady-state RMS response

ratios. Evidently, for this system, under these conditions, the performance benefits

of MR compensation over SR compensation are markedly insensitive to the spectral

separation of the closed-loop poles.

The same results for the Case 3 MR and SR compensators are plotted in the

same manner in Figure 5.11. Comparing the Case 3 responses with the Case 1

responses, we see markedly different patterns in the steady-state RMS response

ratios. Evidently, for this system, under these conditions, the performance benefits

of MR compensation over SR compensation decrease with increasing sampling rates.

This is not surprising, however, since the corresponding steady-state RMS responses

* For a SR compensator, we define the steady-state RMS response to be the

square root of the steady-state variance at the sampling instants. For a MR

compensator, we define the steady-state RMS response to be the square root of

the mean of the steady-state variances at the P sampling instants in a BTP.
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Figure 5.9 Ratios of Steady-State RMS Responses to Process

Noise with Case 1 Compensators.
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Figure 5.11 Ratios of Steady State RMS Responses to Process
Noise with Case 3 Compensators.
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will be identical with MR and SR compensators designed in this way with very fast

sampling rates.

§5.5 Summary and Discussion. This section contains two subsections. The

first presents the basic results of the MKM design studies. In the second, we take

a second look at the use of other synthesis methods.

Basic Results. We dealt with the simple MKM system in Figure 5.1.

With the attenuation of the system's responses to the process noise wc(t) as

the performance objective, we experimented with different design conditions to

determine circumstances under which a MR compensator outperforms a comparable

SR compensator.

Three design cases were considered. The successive loop closures synthesis

method was used to synthesize one MR compensator and one SR compensator

for each design case. For each SR compensator, the sampling rate was picked to

be a multiple of the characteristic frequency of the fastest desired s-plane closed-

loop poles. For each MR compensator, the sampling rate for each control loop

was picked to be a multiple of the characteristic frequency of the desired s-plane

closed-loop poles most coupled to that specific loop. Furthermore, for each design

case, the sampling rates were picked such that the computation load for real-time

operation of the MR compensator is the same as that for real-time operation of the

SR compensator.

The process noise wc(t) was modeled as a stationary, zero-mean, gaussian

random process of unit variance, with a short correlation time compared to the

characteristic times of all closed-loop poles. The steady-state RMS state and control

responses to wc(t) were determined with the different compensators.

For the MKM system, under these conditions, we conclude that:
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1) For slow sampling (characterized by SR sampling at 5 times the characteristic

frequency in hertz of the fastest desired s-plane closed-loop poles), MR

compensation is superior to SR compensation, for ratios of the characteristic

frequencies of the desired s-plane closed-loop poles as low as 4-to-l.

2) The performance benefits of MR compensation over SR compensation are

sampling-rate dependent. At the fast sampling rates (characterized by SR

sampling at 20 times the characteristic frequency in hertz of the fastest desired

s-plane closed-loop poles), the relative reductions in the steady-state RMS state

and control responses with MR as compared to SR compensation were only

about 1/3 of those obtained at the slow sampling rates.

The insensitivity of the performance benefits of MR compensation over SR

compensation to the spectral separation of the closed-loop poles suggests that

faster sampling of the Z2/i2-to-u control loop at the expense of slower sampling

of the zi/ii-to-u control loop is desirable purely because the zz/xz-to-u control

loop is more directly coupled to the process noise we(t). Figure 5.12 presents

further evidence to this effect. The steady-state RMS state and control responses

in Figure 5.12 were obtained with the Case 1 MR and SR compensators, by the

same procedure that was used to generate Figure 5.9, except that the process noise

wc(t) was modeled as a force acting on body A instead of body B. Under these

conditions, the steady-state RMS x\ and xz responses are 52% more and only 17%

less, respectively, with the MR compensator.

Use of Other Synthesis Methods. Could further improvements in performance

be obtained if the optimal control law synthesis method or the constrained

optimization synthesis method were used? The results in Figure 5.13 indicate

that the answer is no. The denominator values in Figure 5.13 are the steady-

state RMS state and control responses to we(t) acting on body B with the Case 2
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Figure 5.12 Ratios of Steady-State RMS Responses to Process Noise
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MR compensator. The numerator values are the corresponding steady-state RMS

state and control responses with a MR compensator synthesized vising the optimal

control law synthesis method of Section 3.2. The sampling rates for the optimal

compensator were 8 samples/second for the xi/xi/xz/xi-to-fi control loop, and

32 samples/second for the x\/xi/X2/xz/u-io-u control loop. These are the same

sampling rates that were used in the Case 2 MR compensator, except that the

optimal MR compensator uses a full state feedback control law for each control

loop.

For the optimal compensator performance index, we chose

J=f qnxl(t)+q22xl(t) + rn&*(t) + rnu2(t)dt. (34)
Jo

We varied gn, 922 > rn> and r^ to obtain steady-state RMS closed-loop state

responses to we(t) that were less than those obtained with the Case 2 MR

compensator, for the same steady-state RMS closed-loop control activities. The

best results were obtained with

J= I 10 x\ (t) + 400 xl(t)+ 0.014 u2(i) + 0.1 iiz(t)dt. (35)
Jo

The corresponding optimal MR control laws are

u(m,n) = -Cz(m,0), (36)

u(m, n) = — C(n) z(m, n) — c(n) u(m, n), (37)

for m = 0, 1, ... and n = 0, 1, ..., 3, where

C = [16.6 5.75 4.94 -0.126], (38)

C(0) = [1.92 0.641 24.9 2.41],

C(l) = [ 0.335 0.0881 24.3 2.42],
(39)

C(2) = [ 0.390 0.121 24.3 2.41],

C(3) = [ 0.890 0.309 24.6 2.42],
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«(0) = 0,

c(l) = -0.0965,
(40)

c(2) = -0.0877,

c(3) = -0.0529.

The presence of the zi/ii/u-to-u and x^/xz-to-u cross-feed terms in the optimal

MR control laws implies that the computation load for real-time operation of the

optimal MR compensator is more than twice that for real-time operation of the

Case 2 MR compensator. In the light of this, the 13 and 14% reductions in the

steady-state RMS x\ and x\ responses in Figure 5.12 do not represent a significant

improvement in performance.

Finally, given the small reductions in the x\ and x\ responses in Figure 5.12,

it would be pointless to apply the constrained optimization synthesis method of

Chapter 4 to this problem, because the reductions in the steady-state RMS ii,

x\, xz, and x-i responses with a compensator synthesized using the constrained

optimization synthesis method will be less (for the same steady-state RMS control

activities) than those obtained with the optimal MR compensator.



Chapter 6

Two Link Robot Arm Design Example

In this chapter we deal with an example design problem involving a two

link robot arm (TLA). The open-loop system is described in Section 6.1. The

compensator design work is described in Section 6.2. Performance comparisons

for the different compensators are presented in Section 6.3. Section 6.4 presents a

summary and discussion of the important results.

§6.1 Open-Loop System Description. The open-loop system is shown in

Figure 6.1. It is a simplified model of an experimental arm studied by Chiang

(1986). Point O is fixed and the two links are rigid. The axes of the rotational joints

located at the.root and wrist are parallel, and are oriented so that all motions are

in a horizontal plane. Reference line R is fixed in the plane of motion and passes

through point O. Generalized coordinate 0 is the angle of rotation of the first link

with respect to R. Generalized coordinate 6 is the distance from the tip of the

manipulator to R. The wrist angle (f> is a redundant coordinate. The root angle

8 and the tip position 6 are measured, and the measurements are assumed to be

noise-free. Control inputs u\ and U2 are motor torques acting at the root and wrist,
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Figure 6.1 Open-Loop TLA System.

respectively.

A linear state equation that describes the motions of this system for small 6

and small 6 is derived in Appendix A. Let M and L represent the mass per unit

length and the length, respectively, of the first link. Let m and / represent the

corresponding quantities for the second link. The analog state equation is

where

S(t)

MOT,

0 01ro i
0 0 0 0
0 0 0 1

0 OJLO 0
r o

a
0
-c

6
A 1 r;3c = -mLr,

6

01
—6
0
d J

(i)

(2)

(3)

(4)

(5)

(6)

(7)

(8)



6.2 Compensator Designs. 79

d = -ml2(3L2 + LI) + \MLzl,
6 3

e = -
9

-m2L2/4 .
12

(9)

(10)

Table 6.1 TLA System Parameters.

PARAMETER

M
L

m

I

Ul

U2

MAX

MAX

VALUE

1.28 kg/m

0.965 m

0.977 kg/m

0.167 m

1.42 N-m

0.170 N-m

The values for M, L, m, and /, and for |ui|MAX and |u2|MAx> the maximum

motor torques at the root and wrist, respectively, are in Table 6.1. These are the

values for the experimental arm reported by Chiang (1986).

§6.2 Compensator Designs. This section describes the compensator design work.

The coverage is is in 5 subsections, although, in practice, the design process is not

so conveniently separable. The subsections describe the performance objectives,

the compensator structure, the sampling policies, the specific design cases, and the

synthesis of the different compensators.

Performance Objectives. The performance objective was to obtain the fastest

possible responses to tip positioning commands. This was to be accomplished using

reasonable levels of control, and the real-time computation load was to be as low

as possible.

Compensator Structure. The compensator structure that we chose is shown

in Figure 6.2. It is a double lead network with cross-feed terms. The symbol z"1

represents a one-sample delay. The symbol ZOH represents represents a zero-order
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hold. The sampling period for S and uz is T. The sampling period for 0 and ui is

P T, where P is a positive, nonzero integer. The synthesis problem is to choose the

compensator parameters a,-, /3t-y, and "y,-y, for t,j = l,2.

9(t) -

6(t)~

Figure 6.2 TLA Compensator Structure.

Sampling Policies. For sampling rates selection, we first expressed the

performance objectives in terms of the desired locations for the closed-loop poles in

the s-plane. We picked the sampling rates for Q ,u \ , 6 and U2 based on assumptions

regarding the coupling of the closed-loop 0, ui, 6, and U2 responses to the closed-

loop poles. The purpose of the wrist member (i.e., the combination of the wrist
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motor and the second link) is to compensate for the low-bandwidth control at the

root with relatively high-bandwidth control at the wrist (Chiang, 1986). Thus,

the 0 and ui responses will be primarily coupled to the low frequency closed-loop

poles, and the 6 and MZ responses will be primarily coupled to the high frequency

closed-loop poles.

The following subsection describes the specific design cases that we considered.

One MR compensator and one SR compensator were designed for each design case.

Let SSR represent the sampling rate for a SR compensator. Let SMRI represent

the sampling rate for 0 and ui for a MR compensator. Let SMR2 represent the

sampling rate for 8 and 1*2 for the same MR compensator. For real-time operation

of either compensator, the number of multiplications per ui update is the same as

the number of multiplications per uj update. Consequently, the MR compensator

will require the same average number of machine operations per unit time as the

SR compensator -if SUKI, 5MR2, and SSR satisfy

+ ^MR2 = 2 SSR • (11)

For each design case, we picked 5SR such that

SSR = ^SR /CL2 > (12)

where /CLS represents the characteristic frequency in hertz of the high-frequency

desired s-plane closed-loop poles, and A;SR was either 5 (for a slow-sampling-rates

case) or 20 (for a fast-sampling-rates case). For the same design case, we picked

SMRI an<i ^MR2 using

SMRI = ^MR /CLI and 5MR2 = A;MR /CLa , (13)

where A;MR is a constant, and /CL1 and /CL2 represent the characteristic frequencies

in hertz of the low-frequency and high-frequency desired s-plane closed-loop poles,
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respectively. To ensure that the computation loads for real-time operation of the

two compensators are the same, we picked JfcMR (and thus SURl and SMRS) sucn the

(11) is satisfied.

Design Cases. Tables 6.2 and 6.3 describe in detail the specific design cases that

we considered. There are three cases in all. One MR and one SR compensator were

designed for each design case. Table 6.2 lists the values of all fixed parameters.

The case dependent parameters are in Table 6.3. The symbols / and f denote a

natural frequency and a damping ratio, respectively, with the subscripts OL or CL

indicating open-loop or closed-loop, respectively, and the trailing 1 or 2 indicating

association with low frequency or high frequency poles, respectively. The parameter

SSR is the sampling rate for a SR compensator. The parameter SMRI is the sampling

rate for 8 and tti for a MR compensator. The parameter 5MR2 is the sampling rate

for 6 and U2 for a MR compensator.

Table 6.2 Fixed TLA Design Parameters.

PARAMETER

/OLl

foLl

foL2

/Ctl

fCLl

CCL2

VALUE

0 hertz

0

0

0.5 hertz

i/V5
1A/2

For Design Case 1, the desired s-plane closed-loop poles are critically damped

and have characteristic frequencies of 0.5 and 4 hertz. For the SR compensator, we

picked SSR using (12) at 20 samples/second, or 5 times the characteristic frequency

of the high frequency desired s-plane closed-loop poles. For the MR compensator,

we picked SMRI and SMRS using (11) and (13) at 4.45 and 35.6 samples/second,

respectively, or 8.89 times the characteristic frequencies of the low frequency and
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Table 6.3 Variable TLA Design Parameters.

PARAMETER

/CL2//CL1

^MR2/5MR1

SSR/ /eta

SMRZ/SSR

UNITS

—

—

samples/cycle

—

NU1S

Case 1

8

8

5

1.78

/[ERIC VA1

Case 2

4

4

5

1.6

LUE

Case 3

8

8

20

1.78

high frequency desired s-plane closed-loop poles, respectively.

Design Case 2 is the same as Case 1, except that the characteristic frequency

of the high frequency desired s-plane closed-loop poles is 2 hertz. For the SR

compensator, we picked SSR using (12) at 10 samples/second, or 5 times the

characteristic frequency of the high frequency desired s-plane closed-loop poles.

For the MR compensator, we picked SMR1 and 5MR2 using (11) and (13) at 4 and

16 samples/second, respectively, or 8 times the characteristic frequencies of the low

frequency and high frequency desired s-plane closed-loop poles, respectively.

Design Case 3 is the same as Case 1, except that all sampling rates are

increased by a factor of 4. For the SR compensator, we picked SSR using (12) at

80 samples/second, or 20 times the characteristic frequency of the high frequency

desired s-plane closed-loop poles. For the MR compensator, we picked S"MR1 and

SMRZ using (11) and (13) at 17.8 and 142 samples/second, respectively, or 35.6

times the characteristic frequencies of the low frequency and high frequency desired

s-plane closed-loop poles, respectively.

Synthesis. With ten compensator parameters to determine, including four cross-

feed terms, the compensator structure in Figure 6.2 is complicated enough that it

is difficult to apply the successive loop closures synthesis method of Section 3.1.

Furthermore, because the compensator structure in Figure 6.2 has a reduced
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dynamic order (i.e., a dynamic order that is less than that of the plant), the optimal

control law synthesis method of Section 3.2 cannot be applied. For synthesis, we

used the constrained optimization synthesis method of Chapter 4 because it easily

handles the compensator structure in Figure 6.2.

The constrained optimization synthesis method determines a feedback control

law that minimizes a performance index that is a quadratic sum of the state and

control responses to a prescribed process noise. It is the user's responsibility to

determine a suitable model for this noise; the method requires only that it takes

the form of a periodically stationary, zero-mean, gaussian, purely random input

sequence. Following Schmidt's suggestion (1985), from his work on a one-link

version of the Chiang arm, we used disturbance torques acting at the root and

wrist actuators to model the process noise. Let

w(*) = [«n(0 u*(*)], (14)

where wi(t) and wz(t) are the disturbance torques acting at the root and wrist

actuators, respectively. The torques wi(t) and wz (t) are assumed to be mutually

uncorrelated, stationary, zero-mean, gaussian white noise processes of intensities

W\ and Wi, respectively, so that

E{w(t)wT(r)} = W6(t-T) , (15)

where £(•) is the Dirac delta function, and

*-[**]' (16)

Adding the process noise w(t) to the state model of the analog plant in (1), we

obtain

p(t) = F-p(t) + Gu(t) + G w(t) . (17)
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Let p(m, n) represent the state of the analog plant p(t ) in (17) at the (mP-(-n)th

sampling instant. Let ci(m,n), c2(m, n), ui(m, n), U2i(m, n), t^^jw), uci(m,n),

and uC2(m, n) represent the signals so labeled in Figure 6.2 at the (mP + n)th

sampling instant. Let h\(m, n) and /i2(m, n) represent the states of the zero-order

holds for ui(m,n) and 1121 (m, n), respectively, in Figure 6.2, at the (mP + n)th

sampling instant. Let ty(m,n) represent the effect on p(t) at the (mP + n+l)th

sampling instant of the process noise that occurs between the (mP + n)th and

(mP+n+l)th sampling instants; that is let

f (
(m, n) = /

J

f(mP+n+l)T
wm, n = / e m + « + - G w t d t .

(mP+n)T

Let

e , (19)
A rT

= eFtdtG, (20)
Jo

and let B\ and B2 represent the first and second columns, respectively, of B. Let

Ip represent an identity matix with the same number of rows and columns as there

are elements in p(t). Then, for the closed-loop system made up of the analog plant

in (17) plus the compensator in Figure 6.2, the responses to w(t) satisfy

x(m,n+l) = A(n) x(m,n) + B(n) u(m, n) + Bww(m,n) , (21)

with

u(m, n) = -C z(m, n) , (22)

for m = 0, 1, ... and n = 0, 1, ..., P — 1, where

x(m,n) = [pT(m,n) /n(m,n) /*'2(m,n) ci(m,n) c 2 (m,n)]T , (23)

u(m,n) = [ui(m,n) u2i(m,n) u-n(m,n) uci(m,n) u c 2 (m,n)] T , (24)
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A.
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c =

[011
021
0
0

. 0

0
0
0
0
0

012
0

022
0
0

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

711
721
0
ttl
0

712'

0
722
0

CK2 -

(30)

If P = 1 the compensator in Figure 6.2 is SR. In this case, the formulation in

(21) through (30) simplifies to

with

z(m+l,0) = yl(0)x(m,0) + .8(0) u(m,0)

u(m,0) = -C x(m,Q),

(31)

(32)

for m = 0, 1, ..., where

z(m,0) = [pT(m,0) ci(m,0) c2(m,0)]T ,

u(m,0) = (ui(m,0) u22(m,0) uci(m,0) uC2(m,0)]T ,
0 01
0 0

A 0 0
0 0

1 0 0 0 0 0
LO 0 1 0 0 OJ

0 01
0 0
0 0

B

0 0
0 0 1 0

L 0 0 -0 U

B f±w —

0 0 0 0
LO 0 0 OJ

0 012 0 711

c =
712

021 0 022 0 721 722

0
L 0

0.
0

0
0

0
0

0=1
0

0

(33)

(34)

(35)

(36)

(37)

(38)
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The key point in each of these formulations is that the compensator parameters

appear exclusively as elements of the state feedback gain matrix C. The constrained

optimization synthesis method of Chapter 4 can consequently be used. We used the

constrained optimization synthesis method and applied the AMS computer program

to determine values for the compensator parameters at-, /?t-y, and -fry, for t,j = 1,2,

that minimized a performance index of the form

Jss= Urn J(N), (39)
N-HX>

where

"
y0

fl o . .
«(*) 1° R\ ' ( '

The discretization procedures of Sections 2.1 and 2.2 are part of the AMS

package. For each optimization, the discretization procedures were called first to

solve for the discrete state model of the plant, the covariance of the stationary, zero-

mean, gaussian, purely random input sequence w(m, n), and the discrete equivalent

to the analog performance index, given the sampling rates, the analog state model

of the plant, the compensator structure, and the synthesis parmeters W\, W^, Q,

and R.

Because each optimization requires a gradient search to determine the

compensator parameters, a considerable effort went into determining reasonable

values for W\, W%, Q, and R -prior to the first optimization for each design case.

For the process noise levels W\ and W%, we picked values such that

where the values for |ui|MAX and |u2JMAX were obtained from Table 6.1. For Q and

R, we used an approach suggested by Parsons (1982) and substituted values from

analog linear quadratic regulator designs that obtained analog closed-loop poles that
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matched the appropriate set of desired s-plane closed-loop poles from Tables 6.2 and

6.3.

For the analog regulator designs, we used a performance index identical to Jss

in (39). We constrained the performance index weighting matrices Q and R to be

diagonal. We constrained the 02 and 52 elements of Q to be zero. Let R\ and RZ

represent the u2(£) and u?>(<) elements, respectively, of R. Let Qg and Qg represent

the 02 and £2 elements, respectively, of Q. For RI and RZ, we picked values such

that

I/|UI!MAX

where the values for |UI|MAX and II^MAX were obtained from Table 6.1. For Qg

and Qg, we used trial-and-error to determine values for each design case such that

the closed-loop analog regulator poles matched appropriate set of desired s-plane

closed-loop poles from Tables 6.2 and 6.3.

Table 6.4 TLA Synthesis Parameters.

PARAMETER

Wi

Wz

Q9

Qs

Ri

R*

UNITS

(N-m)2

(N-m)2

—

m-2

(N-m)-2

(N-m)-2

NU»

Case 1

69.4

1.

21.

1850.

1.

69.4

rtERIC VA1

Case 2

69.4

1.

21.3

115.

1.

69.4

LUE

Case 3

69.4

1.

21.

1850.

1.

69.4

The final values for the synthesis parameters for the three design cases are in

Table 6.4. For the MR compensators, the performance index weighting on uz(t)

was handled in a special way. From Figure 6.2, if P ^ 1 the analog control uz(t) is

the sum of a slow-rate component uzi(t) and a fast-rate component «22(0- ^
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case, it is convenient to separate uz(t) into these components at the analog-model

level. The equivalent R element is then a 2-by-2 block, with R^ at every position,

since

The corresponding solutions for the compensator parameters are in Tables 6.5

through 6.7. The peformance characteristics of these compensators are compared

in the following section.

Table 6.5 TLA Compensator Parameters for Case 1.

PARAMETER

QI

Pn
012

711

712

02

021

/?22

721

722

UNITS

—
N-m

N

N-m

N

—
N-m

N

N-m

N

NUMERIC

MR

0.485

11.3

0.393

-13.5

1.07

0.553

0.0976

13.4

-0.121

-16.9

: VALUE
SR

0.618

60.7

7.81 .

-91.7

-13.3

0.687

0.559

7.04

-0.849

-9.13

Figure 6.3 is a z-plane plot of the closed-loop BTP poles (see Section 2.2 for

the definition of a closed-loop BTP pole) with the Case 1 MR compensator. The

Ds are the eapT transformations of the desired s-plane closed-loop poles. The xs

are the actual closed-loop BTP poles. The two real xs are the compensator poles.



6.2 Compensator Designs. 91

Table 6.6 TLA Compensator Parameters for Case 2.

PARAMETER

<*i

0n

012

7ll

712

«2

021

fa

721

722

UNITS

—
N-m

N

N-m

N

—

N-m

N

N-m

N

NUMERIC

MR

0.332

8.75

0.970

-9.13

-0.192

0.577

0.0527

3.03

-0.0695

-3.83

3 VALUE

SR

0.625

29.3

4.78

-42.1

-7.22

0.684

0.234

1.78

-0.348

-2.30

Table 6.7 TLA Compensator Parameters for Case 3.

PARAMETER

<*i

0u
012

711

712

az

021

022

721

722

UNITS

—
N-m

N

N-m

N
—

N-m

N

N-m

N

NUMERIC

MR

0.0705

37.2

8.05

-36.0 .

-8.05

0.354

0.327

54.0

-0.323

-67.4

: VALUE
SR

0.373

213.

23.6

-287.

-35.5

0.412

1.94

30.7

-2.63

-38.2
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Since pole assignment is not the objective of the constrained optimization

synthesis method, an exact match of the desired and actual closed-loop poles is not

expected. It is encouraging, however, that the low frequency complex-conjugate

closed-loop BTP poles in Figure 6.3 are close to their desired locations.

But the BTP poles in Figure 6.3 are a poor indicator of the system's high

frequency behavior because the BTP is large compared to the characteristic times

of the high frequency closed-loop poles. Figure 6.4 provides some indication of this

high frequency behavior. The sampling rate for Figure 6.4 is the fast 1/T sampling

rate for the Case 1 MR compensator. The Ds are the e'T transformations of the

high frequency desired s-plane closed-loop poles for Case 1. The xs are the actual

closed-loop poles with just the 6-to-uz tip controller portion of the Case 1 MR

compensator (i.e., with the Case 1 MR compensator, but with ai, /?n> /?12> /?2i.

7n> "Yi2> and 721 set to zero). The real x in the left half plane is the pole associated

with the tip controller portion of the Case 1 MR compensator.

Figure 6.5 is the corresponding z-plane plot of the closed-loop poles for the

Case 1 SR compensator. The Ds are the eaT transformations of the desired s-plane

closed-loop poles. The xs are the actual closed-loop poles. The two real xs are the

compensator poles.

For completeness, the z-plane plots of the closed-loop poles for the Case 2 and

3 compensators are shown in Figures 6.6 through 6.11.

§6.3 Performance Comparisons. The performance comparisons in this section

are based on the closed-loop responses to a reference tip positioning command. The

servo configuration that we chose is in Figure 6.12. The command input is 6C(0>

in meters. The feed-forward operator l/(L+l) generates a 0 command that yields

a (nearly) zero steady-state wrist angle, for any steady-state 6e value that is small

compared to L+l.
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Li

6

D Desired
X Actual

-0.75 -0.50 -0.25 0 0.25

Real Part{s}

0.50 0.75

Figure 6.3 Closed-Loop BTP Poles with Case 1 MR Compensator.
(Sampling Rate = 4.45 Samples/Second.)
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D Desired
X Actual

-1 -0.75 -0.50 -0.25 0 0.25 0.50 0.75 1

Real Part{z}

Figure 6.4 Closed-Loop Poles with Tip Controller Portion of Case 1 MR
Compensator. (Sampling Rate = 35.56 Samples/Second.)
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o
m

D Desired
x Actual

-1 -0.75 -0.50 -0.25 0 0.25 0.50 0.75 1

Real Part{«}

Figure 6.5 Closed-Loop Poles with Case 1 SR Compensator.
(Sampling Rate = 20 Samples/Second.)



96 6. Two Link Robot Ann Design Example

D Desired
X Actual

-1 -0.75 -0.50 -0.25 0 0.25

Real Part{z}

0.50 0.75

Figure 6.6 Closed-Loop BTP Poles with Case 2 MR Compensator.
(Sampling Rate = 4 Samples/Second.)
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D Desired
x Actual

-1 -0.75 -0.50 -0.25 0 0.25

Real Part{z}

0.50 0.75

Figure 6.7 Closed-Loop Poles with Tip Controller Portion of Case 2 MR
Compensator. (Sampling Rate = 16 Samples/Second.)
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D Desired
X Actual

f8
a

'So
rt
E

-1 -0.75 -0.50 -0.25 0.25 0.50 0.75

Real Part{z}

Figure 6.8 Closed-Loop Poles with Case 2 SR Compensator.
(Sampling Rate = 10 Samples/Second.)
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rt
0-

rt
a
'to

Desired
X Actual

-1 -0.75 -0.50 -0.25 0 0.25 0.50 0.75 1

Real Part{z}

Figure 6.9 Closed-Loop DTP Poles with Case 3 MR Compensator.
(Sampling Rate = 17.8 Samples/Second.)
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'Sort in
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Î ;

0
I

D Desired
x Actual

-1 -0.75 -0.50 -0.25 0 0.25 0.50 0.75 1

Real Part{*}

Figure 6.10 Closed-Loop Poles with Tip Controller Portion of Case 3 MR
Compensator. (Sampling Rate = 142 Samples/Second.)



6.3 Performance Comparisons. 101
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D Desired
X Actual

-1 -0.75 -0.50 -0.25 0 0.25 0.50 0.75 1

Real Part{z}

Figure 6.11 Closed-Loop Poles with Case 3 SR Compensator.

(Sampling Rate = 80 Samples/Second.)
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The reference tip positioning command is

0. m if t <0;
6c(t) = { 0.01(1-cos 27T/f) m if 0 < t < 1/2/;

0.01 m if 1/2/ < t.
(43)

It is a 0.01 meter step command, but with the transition defined as one half of

a cosine wave. The smooth transition avoids the impulsive control responses that

would otherwise occur with lead compensation. For each design case, we set the

frequency / of the cosine wave to the characteristic frequency of the high frequency

desired s-plane closed-loop poles for that case from Table 6.3. The resulting tip

positioning commands are shown in Figure 6.13.

6e(t)

1
L + l — ̂

H

Arm
9(t)

Figure 6.12 TLA Servo Configuration.

The closed-loop responses to the Case 1 tip positioning command with the

Case 1 MR and SR compensators are shown in Figures 6.14 through 6.18. These

responses were obtained by simulating the nonlinear equations of motion for the

TLA system that are derived in Appendix A. The dot-dashed curves are the

responses with the MR compensator. The dashed curves are the responses with

the SR compensator. The solid curves are the responses with an equivalent fast-

sampling-rate SR compensator. The fast-sampling-rate compensator has the same

structure as the Case 1 MR and SR compensators and was synthesized using AMS

for the same process noise levels and performance index. Its 500 samples/second

sampling rate is so fast compared to the characteristic frequencies of the closed-loop
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Figure 6.16 Wrist Torque Responses to Case 1 Tip Positioning
Command with Case 1 Compensators.
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Figure 6.17 Root Angle Responses to Case 1 Tip Positioning

Command with Case 1 Compensators.



108 6. Two Link Robot Ann Design Example
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Figure 6.18 Wrist Angle Responses to Case 1 Tip Positioning
Command with Case 1 Compensators.
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poles that the solid curves represent, in effect, the responses with the analog

equivalent to the Case 1 MR and SR compensators.

The performance of the Case 1 MR compensator is markedly better than that of

the Case 1 SR compensator. In Figure 6.14, the peak overshoot of the steady-state

6 value is 21% less with the MR compensator than with the SR compensator. In

Figure 6.16, the delay time for the initial control response to the command input is

44% less with the MR compensator than with the SR compensator. If the responses

with the analog compensator are ideal, then the increase in the peak overshoot of

the steady-state 6 value in Figure 6.14 is 56% less with the MR compensator than

with the SR compensator. As indicated by the MR and SR control responses

in Figures 6.15 and 6.16, the performance benefits with the MR compensator as

compared to the SR compensator were obtained at virtually no additional cost in

terms of the control effort required.

The corresponding 6(t), ui(t), and uz(t) closed-loop responses to the Case 2

tip positioning command with the Case 2 MR and SR compensators are shown in

Figure 6.19 throuh 6.21. The solid curves in these figures are the responses with

a 250 samples/second SR compensator that has the same compensator structure

as the Case 2 MR and SR compensators and was synthesized for the same process

noise levels and performance index, so that these curves represent, in effect, the

responses with the analog equivalent to the Case 2 MR and SR compensators.

Figures 6.19 through 6.22 show the the (slight) effects of a factor-of-two

reduction (compared to Case l) in the spectral separation of the closed-loop poles.

In Figure 6.19, the peak overshoot of the steady-state S value is 25% less with

the MR compensator than with the SR compensator. In Figure 6.21, the delay

time for the initial control response to the command input is 38% less with the

MR compensator than with the SR compensator. If the responses with the analog
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Figure 6.19 Tip Position Responses to Case 2 Tip Positioning
Command with Case 2 Compensators.
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Command with Case 2 Compensators.
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Figure 6.21 Wrist Torque Responses to Case 2 Tip Positioning

Command with Case 2 Compensators.
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compensator are ideal, then the increase in the peak overshoot of the steady-state

8 value in Figure 6.19 is 50% less with the MR compensator than with the SR

compensator. As indicated by the MR and SR control responses in Figures 6.20

and 6.21, the performance benefits with the MR compensator as compared to the

SR compensator were obtained at virtually no additional cost in terms of the control

effort required.

The corresponding 6(t), ui(<), and uz(t) closed-loop responses to the Case 3

tip positioning command for the Case 3 MR and SR compensators are shown in

Figures 6.22 through 6.24. The solid curves in these figures are the responses with

a 500 samples/second SR compensator that has the same structure as the Case 3

MR and SR compensators and was synthesized for the same process noise levels

and performance index, so that these curves represent, in effect, the responses with

the analog equivalent to the Case 3 MR and SR compensators.

Figures 6.22 through 6.24 show the effects of a factor-of-four increase (compared

to Case 1) in all sampling rates. In Figure 6.22, the peak overshoot of the

steady-state 6 value is only 3% less with the MR compensator than with the

SR compensator. In Figure 6.24, the delay time for the initial control response

to the command input is 44% less with the MR compensator than with the SR

compensator. If the responses with the analog compensator are ideal, then the

increase in the peak overshoot of the steady-state 6 value in Figure 6.22 is 56% less

with the MR compensator than with the SR compensator. As indicated by the MR

and SR control responses in Figures 6.23 and 6.24, the performance benefits with the

MR compensator as compared to the SR compensator were obtained at virtually no

additional cost in terms of the control effort required. But the absolute reductions

in the delay time and the peak overshoot are so small that the performance of the

MR compensator is, for practical purposes, the same as that of the SR compensator.
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Figure 6.24 Wrist Torque Responses to Case 3 Tip Positioning
Command with Case 3 Compensators.



6.4 Summary and Discussion. 117

§6.4 Summary and Discussion. This section contains 3 subsections. The first

presents a summary of the important results from Sections 6.1 through 6.3. The

second and third take a second look at the use of the successive loop closures and

optimal control law synthesis methods, in the light of the results from Sections 6.1

through 6.3.

Basic Results. We dealt with the TLA system in Figure 6.1, and the compensator

structure in Figure 6.2. The performance objective was to obtain the fastest possible

response to tip positioning commands. We experimented with different design

conditions to determine circumstances under which a MR compensator out performs

a comparable SR compensator.

Three design cases were considered. The constrained optimization synthesis

method was used to synthesize one MR compensator and one SR compensator

for each design case. For each SR compensator, the sampling rate was picked at

either 5 or 20 times the characteristic frequency in hertz of the fastest desired s-

plane closed-loop poles. For each MR compensator, the sampling rate for each

measurement or control variable was picked to be a multiple of the characteristic

frequency of the desired s-plane closed-loop poles most coupled to that specific

variable. Furthermore, for each design case, the sampling rates were picked such

that the computation load for real-time operation of the MR compensator is the

same as that for real-time operation of the SR compensator.

Performance comparisons were conducted for the different compensators. The

comparisons were based on the closed-loop responses to a reference tip positioning

command.

For the TLA system, under these conditions, we conclude that:

1) For slow sampling (characterized by SR sampling at 5 times the characteristic

frequency in hertz of the fastest desired s-plane closed-loop poles), MR
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compensation is superior to SR compensation, for ratios of the characteristic

frequencies of the desired s-plane closed-loop poles as low as 4-to-l.

2) The performance benefits of MR compensation over SR compensation are

sampling-rate dependent. At the fast sampling rates (characterized by SR

sampling at 20 times the characteristic frequency in hertz of the fastest desired

s-plane closed-loop poles), the performance of the MR compensator was, for

practical purposes, the same as that of the SR compensator.

Use of the Successive Loop Closures Synthesis Method. We stated in

Section 6.2 that the compensator structure in Figure 6.2 is complicated enough that

it would be difficult to apply the successive loop closures synthesis method. It would

be easy to apply the successive loop closures synthesis method if the compensator

cross feed terms (3iz, /?2i, 712, and 721 could be neglected. The simulation results

in Figures 6.25 through 6.27 indicate, however, that the cross-feed terms (or some

of them) are essential for good closed-loop performance. The solid curves in these

figures are the closed-loop responses to the Case 1 tip positioning command with

the Case 1 MR compensator. The dashed curves are the corresponding responses

with a MR compensator that uses the same sampling rates and was synthesized

using AMS for the same process noise levels and performance index, but with the

compensator cross-feed terms set to zero.

The values for the compensator parameters for the NXF MR compensator are

in Table 6.8. The z-plane plots for the NXF MR compensator that correspond to

those for the Case 1 MR compensator in Figures 6.3 and 6.4 are in Figures 6.28

and 6.29.

The responses in Figures 6.25 through 6.27 clearly indicate that the

compensator cross-feed terms are important for good compensator performance.

Furthermore, for determining values for the cross-feed terms, the z-plane plots in
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Figures 6.28 and 6.29 are of no use whatsoever. This is because the cross-feed

terms are primarily associated with the zeros of the closed-loop 6e-to-6 transfer

function. Unfortunately, a means for determining the locations that correspond to

the intuitive notion of these zeros is not known, because the closed-loop system is

time-vary ing.

Table 6.8 TLA NXF MR Compensator Parameters.

PARAMETER

<*i

0u
012

111

712

«2

/?21

022

721

722

UNITS

—
N-m

N

N-m

N

—
N-m

N

N-m

N

NUMERIC VALUE

0.471

11.1

0.

-13.2

0.

0.552

0.

13.5

0.

-16.9

It would be difficult to apply the successive loop closures synthesis method to

the compensator structure of Figure 6.2 directly. It may be possible to reformulate

the design problem such that a MR compensator with acceptable cross-feed terms

can be determined using a slightly different approach suggested by Bryson (1986).

For the analog state equation in (1), if we let

= Gu(t) , (44)

(45)

we obtain

p(t) = Fp( t )+u( t ) .

And the 0(t) and 6(t) state equations are

(46)
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Figure 6.28 Closed-Loop BTP Poles with NXF MR Compensators.
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Figure 6.29 Closed-Loop Poles with Tip Controller Portion of NXF MR
Compensator. (Sampling Rate = 35.56 Samples/Second.)
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*(*) =«»('}. (47)

where ui(t) and U2(0 are the first and second elements, respectively, of u(i).

The successive loop closures synthesis method could easily be used to determine

a MR compensator for the ui(t) and U2(t) system in (46) and (47). We speculate

that, with some simplifying assumptions, a MR compensator for the ui(t) and uz(t)

system with adequate cross-feed could be determined from the MR compensator for

the &i(t) and U2(*) system. This is a matter for further research.

Use of the Optimal Control Law Synthesis Method. Another interesting

topic is the consistent overshoot of the steady-state 6 value, in the responses in

Figures 6.14, 6.19, and 6.22. For a SR system with 2 critically damped poles and

1 zero, Franklin and Powell (Section 2.4, 1980) discuss the effect of zero location

on peak overshoot in response to a step command. For any real zero location

between —1 and +1, it is shown that an overshoot always occurs and that its

magnitude decreases with increasing sampling rate. This is entirely consistent with

the responses in Figures 6.14, 6.19, and 6.22. The sampling rate for 8 and U2 is

consistently higher in the MR compensators than in the SR compensators. Thus,

the peak overshoot of the steady-state 6 value should be consistently lower with the

MR compensators than with the SR compensators.

What other compensator structure could be used to reduce this overshoot?

One possibility is to add rate sensors that measure 0 and 8. This yields a full state

feedback compensator structure, to which optimal control law synthesis method of

Section 3.2 can be applied. We used the optimal control law synthesis method of

Section 3.2 to synthesize optimal compensators comparable to the Case 1 MR and

SR compensators of Section 6.2. For the optimal SR compensator, we picked the

same sampling rate that was used in the Case 1 SR compensator. For 0, 0, 8, 8, and

U2 sampling in the optimal MR compensator, we picked the same sampling rate that
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was used for 6 and U2 sampling in the Case 1 MR compensator. For ui sampling

in the optimal MR compensator, we picked the same sampling rate that was used

for & and u\ sampling in the Case 1 MR compensator. Finally, we synthesized the

optimal MR and SR compensators using the same performance index that was used

to synthesize the Case 1 MR and SR compensators.

Let P represent the ratio of the fast sampling rate to the slow sampling rate

in the optimal MR compensator. The optimal MR control laws are

, (48)

u2i(m,n) = 0, (49)

, n) — c(n) ui(m, n) , (50)

for m = 0, 1, ... and n = 0, 1, . . . , P — 1, where ui(m,n), U2i(m, n), 1*22 ("*, n), and

p(m, n) have the same meanings as in (21) through (30), and

C = [2.79 1.61 0.535 0.295], (51)

C(0) = [ 0.0196 0.0147 3.15 0.230], (52)

C(l) = [-0.00734 -0.000952 3.15 0.227], (53)

C(2) = [ -0.00819 -0.00157 3.15 0.227], (54)

C (3) = [ -0.00930 -0.00232 3.15 0.227], (55)

C(4) = [ -0.0102 -0.00295 3.15 0.227], (56)

C(5) = [ -0.00978 -0.00247 3.15 0.227], (57)

C (6) = [ -0.00620 -0.000109 3.15 0.228], (58)

C (7) = [0.00294 0.00540 3.15 0.229], (59)

c(0)=0., (60)

c(l) = -0.00982, (61)

c(2) = -0.0103, (62)
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c(3) = -0.0108, (63)

c(4) = -0.0112, (64)

c(5) = -0.0108, (65)

c(6) = -0.00915, (66)

c(7) = -0.00557. (67)

The elements of C(n) are plotted versus n in Figure 6.30 through 6.33. The c(n)

are plotted versus n in Figure 6.34.

The corresponding optimal SR control laws are

ui(m,0) = -Cp(m,0), (68)

u2i(m,n) = 0, (69)

u22(m,0) = -C(0)p(m,0), (70)

for m = 0, 1, ..., where

C = [4.09 1.95 -0.599 0.267], (71)

C(0) = [ 0.0337 0.0180 2.17 0.192]. (72)

The closed-loop responses to the Case 1 tip positioning command with the

optimal MR and optimal SR compensators are shown in Figures 6.35 through

6.37. These responses were obtained by the same simulation procedures as were

used to obtain Figures 6.14 through 6.24. In Figures 6.35 through 6.37, the solid

curves are the responses with the optimal MR compensator. The dashed curves are

the responses with the optimal SR compensator. The dot-dashed curves are the

responses with a constant gains approximation to the optimal MR compensator.

The sampling rates for the constant gains compensator are the same as in the

optimal MR compensator, except that the sampling rate for 0 and 6 is the same slow

l/PT sampling rate that is used to sample only ui in the optimal MR compensator.
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The constant gains compensator has the same full state feedback compensator

structure as the optimal compensators, and it was synthesized using AMS for the

same process noise levels and performance index. The constant gains MR control

laws are

ui(m,n) = -Cp(m,0), (73)

u2i(m,n) = -Cip(m,0), (74)

u22(m,n) = -C2p(m,n), (75)

for m = 0, 1, ... and n = 0, 1, ..., P—1, where

C = [2.79 1.61 0.535 0.293], (76)

Ci = [ 0.0201 0.0121 0. 0.] , (77)

C2 = [0. 0. 3.16 0.228] . (78)

From the responses in Figures 6.35 through 6.37, we conclude that:

1) The peak overshoot of the steady-state 6 value is markedly less with the optimal

MR compensator than with the Case 1 MR compensator. The same can be said

for the optimal SR compensator as compared to the Case 1 SR compensator.

2) The performance of the constant gains MR compensator is, for practical

purposes, the same as that of the optimal MR compensator. That a constant

gains MR compensator could be synthesized that is capable of performance so

close to that of the optimal MR compensator is presumably a consequence of

the fact that the optimal MR feedback gains Cis(n) and C\^(n] (in Figures 6.32

and 6.33) are virtually independent of n.



Chapter 7

Concluding Remarks

The conclusions of this research and the recommendations for further research

are the subjects of Sections 7.1 and 7.2, respectively.

§7.1 Conclusions. This section contains three subsections. The first deals with

the constrained optimization synthesis method of Chapter 4. The second and third

present the conclusions of the mass-spring-mass design study of Chapter 5 and the

two link robot arm design study of Chapters 5 and 6.

The Constrained Optimization Synthesis Method. The constrained

optimization synthesis method was shown to be a powerful tool for synthesizing MR

or SR digital compensators. The advantages of this method are: (1) the control

laws for all control loops are synthesized simultaneously, taking full advantage of all

cross-coupling effects; and (2) the compensator structure is arbitrary, and simple,

low-order compensator structures are easily accomodated. The method requires a

gradient search to determine a control law that minimizes a quadratic performance

index. The gradients are calculated exactly, using a closed-form expression, and

a finite-time performance index is used so that a stabilizing initial guess for the

control laws is not required.
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MR or SR Compensation? The performance characteristics of MR and SR

compensators were compared in the context of the mass-spring-mass and two

link robot arm example design problems. The comparisons were objective in

that they involved MR and SR compensators that were designed to satisfy the

same performance objectives and required the same average number of machine

operations per unit time for real-time operation. We conclude that:

1. For the slow sampling rates (characterized by SR sampling at 5 times the

characteristic frequency in hertz of the fastest desired closed-loop poles),

the MR compensators markedly and consistently out-performed their SR

counterparts, for ratios of the characteristic frequencies of the desired closed-

loop poles as low as 4-to-l.

2. For the fast sampling rates (characterized by SR sampling at 20 times the

characteristic frequency in hertz of the fastest desired closed-loop poles), the

MR compensators out-performed their SR counterparts, but the performance

benefits were much less than in the slow-sampling-rates cases.

Which Method for MR Synthesis? We compared the successive loop closures

synthesis method of Section 3.1, the optimal control law synthesis method of

Section 3.2, and the constrained optimization synthesis method of Chapter 4 in the

context of the mass-spring-mass and two link robot arm example design problems.

We conclude that:

1. For the mass-spring-mass system, autonomous operation of each control effector

is adequate to obtain good closed-loop performance and the successive loop

closures synthesis method is ideal.

2. For the two link robot arm system, the control effectors must cooperate to

obtain good closed-loop performance and it is difficult to apply the successive

loop closures synthesis method.
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3. For the two link robot arm system, the best closed-loop responses to tip

positioning commands were obtained with an optimal MR compensator. A

problem with this compensator is that it is periodically time-varying. Such

periodicity is not a prerequisite for good closed-loop performance. A time-

invariant MR compensator with performance characteristics virtually identical

to those of the optimal MR compensator was synthesized using the constrained

optimization synthesis method.

4. The advantages of the constrained optimization synthesis method were clearly

demonstrated in that:

1) For the two link robot arm system, the constrained optimization synthesis

method was shown to be a good method for synthesizing a second-order

compensator to control the tip position.

2) For the two link robot arm system, the constrained optimization synthesis

method was shown to be the only method suitable for synthesizing a time-

invariant compensator with performance characteristics comparable to the

best optimal MR compensator.

§7.2 Recommendations for Further Research. The following subsections

present topics for further research in 4 areas.

Sampling Rates Selection. We chose compensator sampling rates based on the

characteristic frequencies of the desired closed-loop poles. A better approach would

take the performance objectives into account more directly. The need for this was

clearly demonstrated when it was shown that, for the mass-spring-mass system,

fast sampling of the z^/xz-to-uz control loop at the expense of slow sampling of the

xi/xi-to-ui control loop is desirable purely because the xi/x^-to-u^ loop is more

directly coupled to the disturbance source.

In short, MR synthesis offers the designer the flexibility to choose more than
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one sampling rate, but the task is also greater, and more research is needed in this

area.

High Frequency Characteristics of MR Systems. As pointed out in

Section 6.2, the closed-loop BTP poles of a MR system are generally a poor indicator

of its high frequency behavior. This is because the BTP is generally large compared

to the characteristic times of the high frequency closed-loop poles.

The idea of Thompson, Stein, and Athans (1983) is to treat the combination of

the control law, the analog-to-digital converter, and the digital-to-analog converter

as an analog device, and then assess stability of the closed-loop system in the analog

sense. This is a promising approach, but many details remain to be worked out.

MR Discrete Approximations to Analog Compensators. For SR sampling

there are numerous schemes for determining a discrete approximation to a

single-input, single-output analog compensator. For MR sampling, an algorithm

for determining a discrete approximation to a multi-input, multi-output analog

compensator would be useful. More research is needed in this area.

Improved Optimization Schemes. A more computationally efficient algorithm

for solving the constrained optimization problem would utilize a simpler

performance index for the early stages of an optimization. See Ly's discussion (1982)

of the optimization algorithm for the SANDY program and Sun's discussion (1985)

of an improved optimization algorithm for the SANDY program for additional ideas

for research in this area.
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Two Link Robot Arm Dynamical Equations

The open-loop system is shown in Figure A.I. It is a simplified model of an

experimental arm studied by Chiang (1986). Point O is fixed and links A and B are

rigid. Body C is a point mass at the tip of the manipulator. The axes of rotational

joints located at the root and wrist are parallel, and are oriented so that all motions

are in a horizontal plane. Reference line R is fixed in the plane of motion and passes

through point O. Generalized coordinate 0 is the angle of rotation of A with respect

to R. Generalized coordinate <f> is the angle of rotation of B with respect to the A.

The tip position 6 is a redundant coordinate. Control inputs u\ and U2 are torques

acting at the root and wrist, respectively.

The full nonlinear dynamical equations for this system were determined via a

straightforward application of Kane's (1972) method. Let M and L represent the

mass per unit length and the length, respectively, of A. Let m and / represent the

mass per unit length and the length, respectively, of B. Let T represent the mass

of C. The dynamical equations are:

6[-ML3 + ml(L2 + -I2) + T(L2 + I2) + (ml + 2T)Ll cos 6]
O «i

+ 4>\-mlz + Tl2 + (.-m/ + T)Ll cos <f>\
O £t
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2T)Llsm<t>] =

0[-ml3 + Tl2 + (ml + T)Ll cos 4] + m/3 + Tl

(1)

(2)

Now we assume that 0 and 4> are small enough that cos B = 1, sin 8 = 6, cos <j> = 1,

and sin 0 = <£, and that 0 and <£ are small enough that terms in products of 9 and <j>

in (1) and (2) are negligible compared to terms in 6 and <£. From (1) and (2), we

obtain

1
- 0 1 0 0 -
0 0 0 0
0 0 0 1

. 0 0 0 0 .

• B -
6

.4.

4-1 1
\ad — be)

• o o •
d -b
0 0

.— c a .

where

a = \MLZ + ml(L2 + LI + i/2) + T(L + 1)2 ,
O O

d £ -ml3 4- Tl2 .

From (3), transforming to B and 6 coordinates using

B
6 —

• i o o o -
0 1 0 0

L + l 0 / 0
. 0 L + l 0 /.

B

.*.

we obtain

where

= 6(t) S(t) 6(t)\T ,

U2
(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)
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G =

• 0 1 0 0 -
0 0 0 0
0 0 0 1 '

. 0 0 0 0 .

( * ^\ad-bc)

0
d
0

0
-6
0

-(L + l)b + la.

(11)

(12)

Figure A.I Open-Loop TLA System with Tip Mass
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Proofs for Theorems 1 and 2

An open-loop plant is assumed to be represented by the time-varying discrete

state equation

x(t+l) = A(t)x(t) + B(t)u(t) + w(t) , (1)

for t = to, *o+l> • • • > t\ — 1, where x(t), u(t), and w(t) are the state, control input,

and process noise input vectors, respectively. The initial state x(to) is assumed to

be a zero-mean, gaussian random vector, with covariance XQ. Let

,,. ., A l if t = j; {,

The process noise is assumed to be a zero-mean, gaussian, purely random sequence,

with covariance Jy(i)> so ^a*

V{w(t)wT(T}} = W(t)6(t ,T), (3)

where E{-} is the expected value operator. The process noise and initial state are

assumed to be uncorrelated.

The performance index is assumed to be
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where Q\ is a symmetric, positive semidefinite matrix, and each Q(T) and R (T) is

a symmetric, positive semidefinite matrix.

The control input is assumed to satisfy

u(t) = -C(t)x(t). (5)

Let 7j represent an identity matrix with the same number of rows and columns

as there are elements in x(t). Let

(A(t)-B(t)C(t)}, (6)

for t = t0, t0+l, ..., ii-1 and r = * + l, f+2, ..., *i, and let

*(*,*) = '», (7)

so that the $(r, t) satisfy

$(r + l,t) = (Ol(r)-.B(r)C(r)Wr,t). (8)

Let
r T T r *i r n

O,(t) = [ •*" I ^ (O AT( t ) | 1^1 fg)
T&HV —Cftl JV ft) 5ft) —Cft) '

Let

* T V^ T= $ (ti,t) Qi $(ti,t) + y. $ (i"»0 Qc(T) ^(r»0 » • (10)
r=f

for t = fo, *o + l, • • • , ti, so that the ^(i) satisfy

+Qc(t) , (11)

Theorem 1. An equivalent expression for the performance index in (4) is

(12)
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for t = t0>

Proof. From (4), using (5) and (9), we obtain

T=t

for i = to, *o + l, • • • , * ! • From (1), using (5), (8), and (7), we obtain
T-l

X(T) = $(r,f) x(t) + 52 *(r,M + l) «>(/*), (14)

for * = to> ^o+l> • • • > * ! and r = t, f+1, ..., t\. From (13), substituting for x(t\] and

z(f) using (14), we obtain

- T

tl-l T-l* > r \ r
\ I w l T /I T l / l -i- > OlT/ I ar l * « l ' l r f * l f r l t^ / * I ' s^_^ ^ \ / \ / ^_^ \ '

T=t U=t

T-l

n=t

for < = to, *o+l, . . . , ti . Most of the product terms in (15) are zero, and we obtain

/«=«

T=f p=t
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for t = io>

From (16), substituting for the double summation using

l-l T-l tl-l tl-l

•*) = E E /('•*).
T=t fj.—t fl=t T=

we obtain

for t = <o» <o+l» • • • ) * ! • And from (18), using (10), we obtain

for t = <0)

(18)

Now let ui(t) = -Ci (*)*(*) and u2(t) = -C2(<)z(<) be two different control

laws. Let

i(r,0 = (A(r-l)-JB(r-l)C<(r-l))(A(r-2)-JB(r-2)C<(r-2))

i ...,*i-l and T = t + l, t+2, .... *i, and let

Let

/ new

(20)

(21)

(22)
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Let

*i-i
**(*) = *?(*i,0 Qi *i(*i, 0 + E *?M OMO *<M , (23)

for t = to, to + 1, ..., *i, so that the ^i(t) satisfy

Qot(t) , (24)

for ¥,-(*!) = Qi.

From Theorem 1 and the properties of the expected value operator, the

difference in the performance index if u^(t) is applied instead of ui(t) is

J(t;u2(-)) - J(*;u!(.)

(25)
r=t

Lemma 1. The %(£) —%(t) in (25) satisfy

t i — i

0, (26)

for t = <o, *o+l, • •-, t\-

Proof. From (24) and (22), the ty(r) in (25) satisfy

(27)
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for r = t, t + 1, . . . , ti — 1. From (27), substituting for A(r) — B(T)C\(T) using

A(r] - B(r)d(r) = A(r) - B(r)C2(r} + B(r)(c2(r) - d(r)) , (28)

we obtain

+ QW - C-^MJV^r) - JV(r)d(r) + CfM/ZMdW . (29)

But, on the other hand, the ^(r) in (25) satisfy

+ l) (^(r)-B(r) C2(r))

- N(r)C2(r) + C2
T(r)^(r)C2(r) , (30)

for r = t, t + 1, ..., ti-1. Subtracting (30) from (29), and using

= (c,(r)-Ci(r))T12(r)(Ca(r)-Ci(r))

, (31)

we obtain

)] (C2(r)-Ci(r)) . (32)

And (26) is the solution to (32) that satisfies the boundry condition ̂ 2(fi)-*i(fi) =

0.
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Now assume that the C(t) in (5) satisfy
M-i

C(t)= £>r(*)CV, (33)
r=0

where M is a positive, nonzero integer less than or equal to t\ — to, each CT is a

constant matrix, and the ar(t) are scalar functions of t that satisfy

}. (34)

Let

= -NT(r) + R(T) C(r] - BT(T) *(r + l) (^(r)-B(r) C(r)) . (35)

Theorem 2. If dJ(to;u(-))/dCT represents the matrix whose (:,j)th element

contains the gradient of J(to;u(-)) with respect to the (*,j)th element of Cr, then

E

tl-l T-l

for r = 0, 1, ..., Af-1.

Proof. Let
M-l

J^OiWCi (37)
t=0

Or(t)€* r (38)

where M, the C,-, and the a,-(t), are in accordance with (33) and (34), 0 < r < M— 1,

e is a scalar, and Ar is an arbitrary matrix with the dimensions of Cr.

From Theorem 1 and the properties of the expected value operator, the

difference in the performance index if u^(t) is applied instead of ui(t) is

£w(r)(*j,(r+l)-4i(r+l))}, (39)
T=t0
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where tr{-} is the trace operator. From Lemma 1, the ^(t) — Vfi(t) in (39) satisfy
h-i

T=t

(C2(r)-d(r))

«), (40)

for t = to,

Let (•),;• represent the operator that returns the (t',j)th element of its matrix

argument. From (20) and (21), using (37) and (38), we obtain
r-l

i=t • __

for t = to, to+l> • • • > * ! a-nd T = t, t+1,..., ti, where 9J(e, T, t) is a matrix all of whose

elements satisfy

lim LJ—^ = 0. (42)

From (40), substituting for C2(r) using (38) and for $2(r,t) using (41), we

obtain
r-l

t=t

) + R(T)CI(T)

T-l

i=t

] (ar(r)e Ar) }

OarfOAr*!^,*)) +»(e,r,t)j , (43)
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for £ = to> *o+lj • . . ,<!• From (43), combining terms of second and higher order in

e, we obtain

<^ ,, xT

T=t

* (ar(r)eAr)}*i(r,o] +»(«,*). (44)

for t = <o> *o+l> • • • > * ! > where 3?(e, t) is a matrix all of whose elements satisfy

=0. («)
V 'e-»0 C

Letting

(46)

(44) can be written

+ »(€,*), (47)

From (39), substituting for ^(*o)-ty(<o) and ^(7- + l)-¥i(r + l) using (23),

we obtain

T=t0

(48)
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From (48), substituting for the double summation using
tl-l tl-l tl-l T-l

T=t0+l M=tO

toT^l-1

and using the properties of the trace operator, and combining terms of second and

higher order in e, we obtain

r=t0

, (50)

where DJ(e) is a matrix all of whose elements satisfy

.o. (si)v ;«->o e

Equation (50) is of the form

J(*o; uj(0) - ^(*o; !»!(•)) = tr{e K Ar + 5R(e)} , (52)

where

K =

( E«rW*i(»-./«+i)w(M)»r('.M+i)^Tw), (53)
T=tQ+l /*=<0

£
T=tQ+l /*=<

to^i-1
and it is easy to show (let Ar be a matrix of zeros except for a one at position i-j,

then take the limit in (52) as e — > 0) that

ti-1 r-1
(54)

forr = 0, 1, .... Af-1.
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User's Guide to AMS

The three phases of AMS execution are: (1) input, (2) optimization, and

(3) output. A summary of the three phases and a description of all input and

output data formats are presented in the following sections. For further information,

a listing of the AMS Fortran program will be furnished upon request.

§C.l Optimization Phase of Execution. The optimization phase of AMS

execution consists of a series of iterations to determine a set of feedback gains

that minimizes the discrete performance index. An iteration consists of a linear

search and a subsequent step in the linear search direction. For each iteration, the

linear search direction is determined based on the value of the performance index,

the gradient of the performance index with respect to the feedback gains, and

the approximate Hessian matrix (which contains second derivative information).

The linear search determines a step length that yields a set of feedback gains

that approximately minimizes the performance index. The step is executed and

the values for the feedback gains, performance index, gradient, and approximate

Hessian matrix are updated to complete the iteration.

The iterations continue until the normalized gradient with respect to every
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feedback gain element is less that or equal to the specified tolerance TOL.

Specifically, if J(NN) represents the performance index and PGM(r)ij represents

a feedback gain element, then convergence is assumed when

a(flGM(r))ii/(KM(T))ii

for every feedback gain element (PGM(r))ij.

The parameters for the optimization phase fall into five catagories: (1) the

parameters that regulate the numerical search; (2) the state model description of

the plant; (3) the constraints on and the initial guess for the state feedback gains;

(4) the finite time for and the weighting matrices for the performance index; (5) the

parameters associated with the initial guess for the approximate Hessian matrix.

The parameters that regulate the numerical search are:

NITPMX: The upper bound for the number of iterations.

TOL: The tolerance parameter in (l).

COST: The estimated lower bound for the value of the performance index.

STEPMX: The upper bound for the step length for any linear search step.

The state model description of the plant is

x(m,n+l) = ASM(n] x(m,n) + BSM(n) u(m,n) + tu(m,n) , (2)

for m = 0, 1, ... and n = 1, 2, . . . , IT, where x(m, n) is the IX-by-1 state vector,

u(m, n) is the IU-by-l control input vector, w(m, n) is the IY-by-1 process noise

input vector, and each ASM(n) and BSM(n) is a constant matrix. To simplify the

programming, we avoided the TT — 1 case so that TT must be at least 2*.

* The TT = 1 case represents SR sampling. A SR sampling policy is easily

accommodated, however, by setting TT = 2 and stipulating that all control inputs

are sampled at every STP.
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The state feedback control law is

u(m,n) =-C(n)x(m,n), (3)

where each C(n) is a constant matrix. Each C(n) is constrained to satisfy

MM

c(n) = V (ALPHA) * FGM(T} , (4)
/ nr

where MM is a positive, nonzero integer less than or equal to 2T, (ALPHA) ij is the

(i,j)th element of the matrix ALPHA all the elements of which are either 1 or 0,

and each FGM(r) is a constant matrix.

The elements of the PGM(r) are the independent variables for the optimization.

The (i,j)ih element of FGM(r) is unconstrained or constrained to be fixed

depending upon whether the (t,j)th element of the matrix NOGKDF(r) is 1 or

0, respectively.

The process noise vector w(m,n) is assumed to be a periodically stationary,

zero-mean, gaussian, purely random sequence with covariance GWG(n), so that

E{to(m,n) tyT(fc,/)} = GWG(n) * 6(mTT+n,kTT+l) , (5)

where

* I
-\

1 if * = J5
0 i f t ^ j .

The performance index is

* (m,n ) T QCST(n) NCST(n)] fx(m,n)
n) BCST(n)\ [u(m,n) '

where NN is a positive, nonzero integer, and each QCST(n), NCST(n), and PCST(n]

is a constant matrix. To simplify the programming, we avoided the NN = 1 case so

that NN must be at least 2.

The approximate Hessian matrix is stored in a factored form in the two vectors

HESS and HESFAC. At the end of every run, HESS and HESFAC are saved on a
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disk file so that they can be used as the initial guess for the approximate Hessian

matrix in a subsequent run. The parameters for the optimization phase that are

associated with the approximate Hessian matrix are:

HESFIG: The logical parameter that indicates whether an initial guess for

the approximate Hessian matrix is available. If HESFIG is true, HESS and

HESFAC are used as the approximate Hessian matrix for the first iteration. If

HESFIG is false, an identity matrix is used as the approximate Hessian matrix

(i.e., a steepest decent search algorithm is used) for the first iteration.

HESS: The lower triangular factor of the cholesky factorization of the

approximate Hessian matrix, stored as an (N*(N — l)/2)-by-l vector, where

N = IU*IX*MM.

HESFAC: The diagonal elements of the diagonal factor of the cholesky

factorization of the approximate Hessian matrix, stored as an ./V-by-1 vector,

On the AMS Output File, the first section of printout from the optimization

phase of execution is a simple echo of the parameters for the optimization phase.

This is followed by the printout from the numerical search. The printout from

each iteration gives the status of the numerical search immediately before the linear

search step for that iteration is taken. This status is indicated by the values of the

following variables:

FGM (r): The rth feedback gain matrix, for r = 1, 2, . . . , MM.

GKDF(r): The gradient of the performance index J(NN) with respect to FGM(r),

for r = l, 2, ..., MM.

GNORM(r): The normalized gradient of the performance index J(NN] with

respect to FGM(r), for r = 1, 2, . . . , MM. The (:, j)th element of GNOPM(r)

contains the quantity on the left hand side of (l).
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CONVERGENCE PARAMETER: The absolute value of the largest (in an absolute

value sense) single element of GNORM(r), for r = 1, 2, ..., MM. This value

is compared with the value of TOL after each iteration to determine whether

convergence as defined in (1) has occurred.

NUMBER OF COST EVALUATIONS: The number of performance index

evaluations for the iteration.

NUMBER OF GRADIENT EVALUATIONS: The number of gradient evaluations

for the iteration.

LINEAR SEARCH STEP SIZE: The step size for the linear search step for the

iteration.

PERCENT COST REDUCTION: The percent reduction in the value of the

performance index for the iteration.

The last section of the printout from the optimization phase shows the final

statistics for the optimization. This includes a table of the final closed-loop BTP

poles.

Example AMS Input, Output, and Save Files are included at the end of this

appendix. These files are from a final AMS run for the Case 1 MR compensator of

Chapter 6. The printout from the optimization phase of execution begins on page

7 of the example output file.

§C.2 Input Phase of Execution. The sole purpose of the input phase of

execution is to establish the values for the parameters for the optimization phase.

The parameters that regulate the numerical search, the constraints on and the

initial guess for the state feedback control law, the finite time for the performance

index, and the parameters associated with the approximate Hessian matrix are

read directly from the AMS Input File. The discrete state model description of the

plant and the weighting matrices for the discrete performance index are generated
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by discretizing the analog state model description of the plant and the analog

performance index.

The analog state model description of the plant is

p(t) = F p(t) + GU u(t) + GW w(t) , (8)

where p(t) is the iXA-by-1 state vector, u(t) is the IUA-by-1 control input vector,

w(t) is the IWA-\*y-\ process noise input vector, and F, GU, and GW are constant

matrices. The initial state p(0) is assumed to be zero.

The process noise vector w(t) is assumed to be stationary, zero-mean, gaussian,

white noise of intensity WA, so that

E{w(t)wT(T)} = WA*6(t - r ) , (9)

where 6(t) is the Dirac delta function.

The STP (shortest time period) for the sampling policy is TSEC, in seconds,

and TT is the integer number of STPs per BTP (basic time period) for the sampling

policy. To simplify the programming, we avoided the TT = 1 case so that TT must

be at least 2*.

The analog control input vector u(t) is assumed to be partitioned so that

where Ui(t] is the 7Z7l-by-l vector that includes all control inputs that are not

sampled at every STP, and uz(t) it the 7^2-by-l vector that includes all control

inputs that are sampled at every STP. The sampling schedules for the elements of

ui(t) are defined by the TT-by-IUl switching matrix STBL. The (t,j)th element of

* The TT = 1 case represents SR sampling. A SR sampling policy is easily

accommodated, however, by setting TT = 2 and stipulating that all control inputs

are sampled at every STP.
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STBL is 1 or 0 depending upon whether the jth element of ui( f ) is sampled and

held or just held, respectively, at the start of the tth STP in a DTP.

The analog performance index is

J(NN) = E{ /
Wo (11)

where NN is a nonzero, positive integer, and QA and RA are constant matrices. To

simplify the programming, we avoided the NN = 1 case so that NN must be at least

2.

In addition to accommodating standard discretizations of an analog plant and

an analog performance index, the AMS program is designed so that partitions can

be added to the coefficient matrices for the discrete state model, the covariance

matrices for the discrete process noise, and the weighting matrices for the discrete

performance index. Such partitions can be used to model the interactions between

the analog plant and a dynamic compensator, so that compensators of arbitrary

structure and dynamic order can be synthesized.

For the input phase of execution, the state vector z(m,n) for the discrete state

model in (2) is partitioned so that

z(m,n) =
p(m, n)
h(m,n) (12)
c(m,n)

where p(m, n) is an ZXA-by-1 vector, h(m,n) is an 71/1-by-l vector, and c(m,n)

is an IXC-by-1 vector. Similarly, the control input input vector u(m, n) for the

discrete state model is partitioned so that

u(m, n) =
ui(m,n)
u2(m,n) (13)

where ui(m,n) is an IUl-by-1 vector, U2(m,n) is an JC/2-by-l vector, and uc(m, n)

is an IUC-by-I vector.
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In (12), the vector p(m,n) represents the state vector p(t) of the analog plant

in (8) at the (mIT+n)th sampling instant. The vector h(m, n) is the state vector of

zero-order hold states for the ui(m, n) controls in (13), so that h(m, n) represents the

analog control input vector ui(t) in (10) at the (mTT-l-n)th sampling instant. The

vector c(m,n) is the state vector for the dynamic compensator at the (mlT+n)th

sampling instant.

In (13), the vector ui(m,n) is the discrete control input vector that effects the

state vector h(m,n) in (12). The vector U2(m,n) represents the analog control

input vector u^(t) in (10) at the (mTT+n)th sampling instant. The vector uc(m, n)

is the discrete control input vector that effects the state vector c(m,n) in (12).

Let IU = IU1 + IU2 + IUC. Let IX = IXA + IUl + IXC. For the input phase

of execution, each coefficient matrix ASM(n) for the discrete state model in (2) is

partitioned so that

^ASMP(n)
ASM(n) = ASMH(n] (14)

BSM(n) =

_ASMC(n)_

where ASMP(n] is an IXA-by-IX constant matrix, ASMH(n) is an IXH-by-IX

constant matrix, and ASMC(n) is an IXC-by-IX constant matrix. Similarly, each

coefficient matrix BSM(n) for the discrete state model is partitioned so that

''BSMP(n) 0
BSMH(n) 0 (15)

0 BSMC(n) \

where BSMP(n) is an IXA-by-IUA constant matrix, BSMH(n) is an IXH-l>y-IUA

constant matrix, and BSMC(n) is an IXC-by-IUC constant matrix.

The ASMC(n) partition of each ASM(n) and the BSMC(n) partition of each

BSM(n) are read directly from the AMS Input File. The ASMP(n) and ASMH(n]

partitions of each ASM (n) and the BSMP(n) and BSMH(n) partitions of each

BSM(n) are generated automatically, given the coefficient matrices for the analog
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state model, and the sampling policy as defined by the parameters TSEC, IT, and

STBL.

The weighting matrices QCST(n), NCST(n), and RCST(n), for n= 1,2,..., IT,

for the discrete performance index are generated automatically, with all partitions

involving c(m,n) and uc(m, n) set to zero, given the coefficient matrices for the

analog state model, the weighting matrices for the analog performance index, and

the sampling policy.

Finally, each covariance matrix GWG(n) for the discrete process noise is

generated automatically, with all partitions involving c(m, n) set to zero, given the

coefficient matrices for the analog state model, the intensity matrix for the analog

process noise, and the sampling policy.

Table C.I Format for the AMS Input File.

Parameter

W
NITPMX

TOL
COST

STEPMX
HESFIG

DCA
IXC
mi
IU2
IUC
IWA
IT

MM

TSEC

Type

Integer
Integer
Real
Real
Real

Logical

Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer

Real

Range

>2
>o
>o
>o
>0
—

>1
>o
>o
>o
>o
>1
>2
>1

>0

Format

(2I13,3D13.5,L13)

(813)

(D13.5)

The format for the AMS Input File is given in Tables A.I and A.2. The

parameters in these tables are read in the given order, using the indicated Fortran
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formats. All matrices are read by rows, with each row starting on a new line.

The elements of each of the vectors HESFAC and HESS are read consecutively, six

elements per line.

Table C.2 Format for the AMS Input File Continued.

Parameter

F

GU

GW

WA

QA

RA

ASMC(1)

•

ASMC(TT)

BSMC(1)

\

BSMC(TT)

STBL

ALPHA

FGM(l)

\

FGM(TT)

NOGPDF(l)

•

NOGRDF(TT)

HESFAC

HESS

Type

Real

Real

Real

Real

Real

Real

Real

I

Real

Real

:

Real

Integer

Integer

Real

|

Real

Integer

;

Integer

Real

Real

Dimensions

IXA-by-IXA

IXA-by-IUA

IXA-by-IWA

IWA-by-IWA

IXA-by-IXA

lUA-by-IUA

IXC-by-IX

\

IXC-by-IX

IXC-by-IUC

•

IXC-by-IUC

TT-by-IUl

TT-by-MM

lU-by-IX

'.

lU-by-IX

lU-by-IX

\

lU-by-IX

N *-by-l

(N*(N-I))-by-r

Format

(6D13.5)

(6D13.5)

(6D13.5)

(6D13.5)

(6D13.5)

(6D13.5)

(6D13.5)

•

(6D13.5)

(6D13.5)

•

(6D13.5)

(5012)

(5012)

(6D13.5)

:

(6D13.5)

(5012)

:

(5012)

(6D13.5)

(6D13.5)

Column 3 of Table A.I lists the restrictions on the dimension parameters. The

= IU*IX*MM.
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AMS Main Program uses these dimensions to automatically allocate storage space

for all parameters and work space for all calculations in a single vector Z. The

vector Z is currently dimensioned at 20000 elements. This dimension of will have

to be increased to accommodate problems with dimensions substantially larger than

those of the example design problems of Chapters 5 and 6.

The printout from the input phase of execution consists of a simple echo of most

of the data read from the AMS Input File. On the AMS Output File at the end of

this appendix, this printout starts on page 1.

§C.3 Output Phase of Execution. The sole purpose of the output phase of

execution is to save the final values for the feedback gains and the approximate

Hessian matrix so that they can be used as the initial guess for these variables

in a subsequent run. During the output phase, the final values for FGM(r), for

r = 1, 2, ..., MM, and for HESFAC and HESS are written to the AMS Save File.

The format for this file is given in Table A.3. All matrices are written by rows, with

each row starting on a new line. The elements of each of the vectors HESFAC and

HESS are written consecutively, six elements per line.

Table C.3 Format for the AMS Save File.

Parameter

FGM(1)

I

FGM(7T)

HESFAC

HESS

Type

Real

\

Real

Real

Real

Dimensions

IU-by-IX

\

lU-by-IX

AT*-by-l

(AT*(AT-l))-by-l*

Format

(1P6D13.5)
•

(1P6D13.5)

(1P6D13.5)

(1P6D13.5)

A copy of the AMS Save File from the example AMS run discussed above is

included at the end of this appendix.

* N = IU*IX*MM.
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O•f
Q

I 8 8888

8

+ + + +
QQQQ

OOHO

88888080+ + + » + + *+
OOQQQQQQ
OOOOOOOf*"

8 8 8 8 8 8 8 8 8 8 8•» + •» + + + » + + + +
a a a a a a o a Q a Q

O O O O O O O O O O O

8 8 8 8 8 8 8 8 8 8 8+ » • » • » + + + + + •»• +
Q Q Q D Q Q Q Q Q Q Q

d d d d d d d d d d d

8888 8 8 8 8 8 8 8 8 8 8 8+ + * + + + + + + + + + + + +
GOOO 0 0 0 0 0 0 0 0 0 0 0

dddd d d d d d d d d d d d

88S88SS8 8 8 8 8 8 8 8 8 8 8
8SS8§§§8 8 8 § § i i § 8 § 8

CD

_

Q.
I™

bo
£ 2^ 88888S8S8S8S8S88888SS8888888888888888888888

0000000000000000000000000000000000000000000

,8888888888883838883888888888888888888888888
00000000000000000000000000000000000000000000
O Q Q Q Q Q ^ Q v O O rH O v O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O Q Q
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,

8 8 8 8 8 8 8
3 3 3 3 3 a o

O O O O O O O

8 8 8 8 8 8 8
A .a. ,«. J. .». ^̂  ^̂+ + * + » * +
3 3 3 3 3 o o

U . O O O O O O O

1 8 8 8 8 8 8 8
C + + * * + + +

•—i Q Q Q O Q O Q

^ O O O O O O O

I ? ? ? f ? ? ?
W^ Q O Q O Q Q Q

9 9 2 9 8 v o o— y Q C C 5 mo
<n
(T>

« ^ 0 ^ 0 ^ M O

88888888888888888888888888 8888
QQQQQQQQQQQQQQQQQQQQQQQQOQ . QQQQ

dr^do

88888888888888888888888888
00000000000000000000000000^m§m§m§mis§§8§§^ -O O O O O Q O O O O O O O O O O C O O O O O O O O O woofOM

»-< O O O O O O O -H •-! -I •-( <H r-l r-( r-( I I
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8 8 8

o o o

8 8 8

o o o

8 8 8CL

C/2

_Q> O O O

I 3 8 8re
X

W

*o
n
4) t-t O O
bo

^ 838883
QQQQQQ

888o88oOOOO
» + + i + +
OQOQQQOOOOO

( (TiooOOOOO

ooooo
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JJ
£
<j9
15

C/3

2
f»\
yg

1
X
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^^
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rt
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8 fS
0+ i

00

d'H

38i +
o o

8888
Q O Q O
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8838
O OQ Q

O O LO O
p p oo p

dd^d

8888
O O O Q

"8888

dddd

3888i + + +

88» +
QO

GO O O
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88* +
0 0

o d

88+ +
0 Q

do

88
Q O

o O
. .

o o

88
Q Q

*"8 8
88
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Q Q Q O Q

O ^* ^* Q O
O O| O> O O

O ^ vD O »H
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OOQ 00

N8|| M88

O ^ vO O O

<NO O QQ
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OOQ OQ
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O O

QO O O
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o o
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o o

*88
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Q Q10 8 8
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O O
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Q Q

* 8 8
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p p
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Q Q

^ X X
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OQ
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0

00 O

d
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Q

p* Q

t-i

8
+
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\£) O

d
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Q

IT) Q

§
.

O
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Q

* 8
8
d
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o

r> o

o
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Q
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8
Q
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o O

SO I

•H f-4 O O Oi

88888
QQQQQ

10 i

n «H o <^ Oi

88888+ + •» + +
OOOOQ

OOOOO OOOOO OOOOO

Q.

O
CO

o.
i
X
U

in

§
I—IH

B

II

Z

§
tu

CQ
U
l-i
H
CQ

CO

Pi
(U

ex

88888
+ * 4- + +
QQQQQ

m O O O O O

OOOOO

88888
QQQQQ

OOOOO

«H O «H O Oooooo
QQQQQ

<^ O ̂ O O

88888+ •»•» + •»
Q Q O O Q

OOOOO

88888

888OO
+ I + + *
QQQQQ

~ ~
(N
Hf"> I

•H O» O O O

< vn

5
Iw

(u

OOOOO

88888
* + + -f +
QQQQQ

OOOOO

i + i »
QQQQQ

o 10 o ̂ * g g
^« O ̂ H g g

\f) O m O O

O^ O C^ O O

88888+ + + +
Q QQ Q I

OOOOO

,̂888

O O

t-t M M ^> in

88888+ * + * +
O Q Q Q O

OOOOO

88888
QQQQQ

OOOOO

88888i * i * +
QQQQQ

f*} I** O O O O

md -* 66

88888•» + + + +
Q Q Q Q Q

ooooo

8B888• i + + +
QQQQQ

i-lt^ t^ (in fs<

> in

§



C.5 Example AMS Output File 193

Q.
«j
S

O
C/2

Q.

rt
X

o
oo

w
u

bo

O
u
en
o
(u

H
W

O
U4
M
(U



194 C. User's Guide to AMS

88080+ + + + i
Q Q Q Q O

oo co o m O r**
O O *& O *"**

*•« o «-• O m

I •» I » I
O O O O O

00 O O Cft O 00
^* o oo O f)

m o «•> o «-i

o» o P- Q oo
O O O O O1 + 1 * 1
O O O O O

oo r» o ••> Q v\o o m o *H
o w ̂ * o f**
QO o ^ o ̂ *
p» o oh o ^

*0<

•H iH O *•• O
O O O O O

Q Q QQQ

GO cs o o 5
c^ 04 O GO O

^ r^ O ̂ * O
I I

88888* + + + •»
Q Q QQQ

00 <J> O Cf» O
O O O O O
I I + I +
O O O O O
**) ^* O O Oo ^ o r** o
M O* O vO O
O ^) O *Q O

88888
+ + + » »
O Q Q O O

88888•
Q

• O
GO

8 1

Q O O O O
• O O O <N O

GO fS O O O
O* O

OJ r4 O ^O O
I

88888
QQ QQQ

O O O O O O O O O O O O O O O

3
Q. in <

88888* •«• + + +
Q Q Q OO

in i

88888
+ + + •»• +
Q QQ Q Q

in i

88888+ + * +»
Q Q Q Q Q

o
en

Q.

rt

O O O O O

88888
QQ Q QQ

O O O O O

O O O O O

88888
•* + + + +
QQ Q QQ

O O O O O

O O O O O

88888
+ 4 + + +

O Q O O Q

O O O O O

bO

£

08088
i + + + +

O O O O O
t̂  ^p ^5 ^^ ^5 ^5

^ o <*^ o o
to O ^* O O
^^ ^5 '̂  ^5 ̂ 5
<O O «H O O

28S88i + i + +
OQ Q Q Q

t^ o\ O M O O

\£ O ̂  O O
f) o dO O w
oo o n o O

i + i + *
QQ QQQ

co r* o o o o

f o t- d o

ii

§
bu

CO
U
IH
H
10

I
co

w

o<

z
IH
(U

8
Q
co

I (N
>0

II O«5-

I r-So

< (N
(XOr-
w 5*
U O
Z en
W •
O vC
OA
W II

O O
UU

88888* + * + +
O Q O O O

O O O O O

t-4 tN Q O O
O O O O O
+ I + * *
QQQ Q Q

*H P* ̂ * O O O
Cft to O O O
P*J vO O O O

•^ ON O O O

A i-t IN n ̂  in

88888
Q Q Q Q Q

66666
co 03 O O O
OOOOO
I I + + +
OOQQO

^4 00 ̂ H O O O
*H CO Q W O
M O O O O
^* 0^ O O O

fNHodd

> in

88888+ + * * +
O Q 00 Q

ooooo

88888
I I -f 4- -f
OOOOO

r^ U> i-t O O O
Oi 00 O O O
*O C* O O Q
0^ \£ O O O

m n» o O O

o1

6



C.5 Example AMS Output File 195

Q.

o
OJ

e.
rt

O
CO
<u
bo
PSa,

M

w
s
3

338888i i + + + +a a a a a a
CD CO *̂ iH *H [**

»r »r ^ oo co -i
«H tH VO O O V

in in <N <•> ro in

ao oo n <N r>» o
)̂ }̂ 10 ^ ^^ ^5

•H >H (N 00 CO O

ddddoH

883888+ + + + + +
o a a a a a
<N <N m 10 i
in in VD ^*'
N r>« ro co cb i

P4 <N iH CO CO O

O O O «-i «-i —i
O O O OO O
a a a a a a
GO 00 ^^ ^* ^* vO
CD 00 »H <N <N CT*
O O ^ <N fs cy»
ro ^^ *£ ^^ ^^ oo

<N <N CO «H ^H PI
1 1 1 1 1 1

8
M
M

&m

§ji
Q
M

§
u

(LI

1
8 O «-l «H O (N <N O

O 00 O OOO
+ + I C + I I +a a a a a a a a

oo oooo
+ + I I I t I I
aaaaaaaa



196 C. User's Guide to AMS

8 8 8 8 8 888883 88888888888888888888888888888
OOQOQO QQOOOQQQOQOQOQOQQQQQQOOQOOOOO

O O O O O ^H^H^HO* OOOOOOOOOOOOOOOOOOOOOOOOOOOOO

8 8 8 8 8 838888 8888888S8888S8888888888888888
a o o Q o 38||g§ §§§§|§§§p888§§8M̂ ^̂ ^

<^QQQQ QQQQ5QQ a >QQQQ" '<
gjOOOO OOOOOQOi«OOOOO<

£ O O O O O iH o> tH t-i tH t-i OOOOOOOOOOOOOWOOOOOOOOOOOOOOOO

I 8 8 8 8 8 88888338888888S888888888888888888888~ + + + + + + + + + +i i+ + +•»*• + +i+ + + + + + + + + + + + + » + + + + + + +
CD 0 0 0 0 0 OQOQOQOQQOOOOOOOOOOQOaQQQQQQQQQQQQOQ

jj 6 6 6 6 6 'i*i*i'4ri<or*6666666n666666666666666666666

I 3 8 3 8 8 888888888888888888888888888888888888
• - '

g, o O -H O O ̂ -n-H^H^rHOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

£ 8888838883388883S88888888888388888888888888888
OQOQQQOOOOQQQOQOaOQQQQOOOQOOOOOQOOOOQQQOQOOQOQ

t-( .H <•>» .H888388383883838888888888388888888888888888
+ +i i+ + + i + + i - t - i + - f i + i + ' f - f ' f + 'f'f + + +

»-i.-iO»-iOOO<)<OOa>'-»«HH,-ico-i'-tOOOOOOOOOO<«)OOOOOOOOOOOOOOOOO



C.6 Example AMS Save File 197

888

oooooooooooooooooooooooooooooooooooooooooooooo

8888888888888888888888888888888888888888888S88•*•* + + + + * + •»• + *••»• + » + •*• + + + •*• + + + + + +• + + + + + + *•*+• + +• + + + + •»•+1 + +
QQQOQQOQOQQQQDQQOQQQaaaQaQQQQQQQQQQQQQQQQQClQOO-

)OD<
>co<
)0<

£« .OOOOOOOOOOOOOOOOOOOOoOOOOOOOOOOOOOOOOOOOOOO'-iOO.

I 8888888888888888888888888888̂

.Sj dddddddddddddddddddddddddddddddddddddddddddvfldc*

I 8888888888888888888888888888888888888888888888

oooooooooooooooooooooooooooooooooooooooooooooo

88888888888888888888888§8888§888888888888888$8
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