Semi-Annual Report
 to
 NASA-Ames Research Center Grant Award No. NAG 2-304
 NASA Technical Officer: Karl Anderson

for
 / A Survey of the State of the Art and Focused Research in Range Systems - Task II

Principal Investigator
King Yo

Electrical Engineering Department University of California Los Angeles, California 90024

June 1986

In the period from January to June 1986, the following research activities and publications performed under NASA-Ames Research Contract Grant Award Number NAG-2-304 are enclosed:

1. C. Y. Chang and K. Yao, "On Some Equivalent Configurations of Systolic Arrays," Proc. of the Twentieth Ann. Conf. on Information Sciences and Systems, Princeton, NJ, March 1986.
2. S. Kalson and K. Yao; "Results in Least-Square Estimation Algorithms with Systolic Array Architectures," in Digital Communications, edited by E. Biglieri and G. Prati, Elsevier Science Press, 1986, pp. 235-249.
3. K. Konstantinides and K. Yao, "Modeling and Equalization of Nonlinear Bandlimited Satellite Channels," Conf. Record of Inter. Conf. on Communications, June 1986, pp. 1622-1626.
4. M. J. Chen and K. Yao, "On Realizations of Least-Squares Estimation and Kalman Filtering by Systolic Arrays," Proc. of Inter. Workshop on Systolic Array, Oxford, England, June 1986。

ORIGINAL PAGE !S OF. POOR QUALM

C.Y. Chang and R. Mao

Electrical Engineering Dept.
University of California Los Angeles, CA 90024

ABSTRACT

A systematic approach is presented for designing systolic arrays and their equivalent configurations for certain general classes of recursively formulated algorithms. A new method is also introduced to reduce the input bandwidth and storage requirements of the systolic arrays through the study of dependence among the input data. Many well known systolic arrays can be rederived and also many new systolic arrays can be discovered by this approach.

I. INTRODUCTION

A systolic array is a network of processors that rhythmically process and pass data among themselves. It provides pipelining, parallelism, and simple adjacent neighbor cell interconnection structure so that it is suitable for VLSI implementation. While most of the earlier systolic array algorithms were discovered heuristically [1-3], there has been various work on systematic approaches to the design of systolic array algorithms [4-6]. In this paper. we shall present a systematic approach for designing systolic arrays and especially focus on their equivalent configurations for certain general classes of recursively formulated algorithms. In order to reduce the input bandwidth and storage requirements of the systolic arrays. the dependence among the input data is also investigated in details. It is show that many well known systolic arrays can be rederived and also many new systolic arrays can be discovered by this systematic approach. For simplicity of illustration, we mainly consider the linear systolic array in this paper. The same idea can also be generalized to the two dimensional mesh-connected systolic arrays.

II. IMPLEMENTATION OF RECURSIVELY FORMULATED ALGORITHMS

Consider two simple but important ways of data flow pattern in a linear systolic array as show in Figure 1 and 2. In these two figures, P_{i}, Q_{j}, and $b_{i j}$ are three given input data sequencesiand R_{i} is to ${ }^{0} j_{b e}$ are the output data sequence, there $0 \leq i \leq m-1$ did $0 \leq j \leq n-1$. For the systolic array $\mathrm{g}_{\mathrm{h}} \mathrm{hown}$ in Figure 1. Q_{j} and R_{j} are stored in the j th processor, where a will be dpdated while P_{i} is moving to the right and $b_{i j}$ is moving down. For the systolic ξ_{h} array shown in Figure 2. P_{i} is stored in the i th processor and m_{j} wilt be updated as it is moving to the right with Q while $^{\text {b }}$ if moving down. All of the data movements are synchronized. The $\mathrm{B}_{\mathrm{i}} \mathrm{A}_{\mathrm{s}}$ will successively have the required output data after m steps. For convenience, according to the R_{j} 's behavior of these two systolic arrays, they ${ }^{\text {jere }}$ respectively named as R -stay and E -move linear systolic arrays. There is great similarity between these two systolic arrays. It can be shown that a large class of interesting problems in the real
world can be implemented by thebe two types of linear systolic arrays. Besides, various different but equivalent configurations of linear systolic arrays can also be derived from them.

Procedure 1 : Given any problem which can be formulated so that it has P_{i}, Q_{j} and $b_{i j}$ as three input data sequences and $\mathrm{R}_{\mathrm{i}}{ }^{i}$ as the output data sequence, where $0 \leq i \leq m-1$ and $0 \leq j \leq n-1$. if R_{j} can be generated through the following recurrence equation

$$
\begin{equation*}
\mathbf{z}_{j}^{[i+1]}=f\left(P_{i} \cdot Q_{j} \cdot b_{i j} ; \mathbb{R}_{j}^{[i]}\right) \tag{1}
\end{equation*}
$$

where $R_{j}[0]$ contains some initial value, f is ${ }^{[0]}$ functipd ${ }_{[0}$ of four variables $P_{j}, Q_{j}, b_{i j}$ and $R_{j}{ }^{[1]}$.
 problem can be implemented by the $\mathrm{a}-\mathrm{staj}$ linear systolic array of n processors and the R-move linear systolic array of m processors.

The complexity and the configuration of the systolic array depend on the complexity of the function f and the generation procedure of $b_{i j}$. Some regularity and dependence among $b_{i j}$'s mit j
greatly simplify the whole system. greatly simplify the whole system.

III. MAPPING INTO FAN-IN TYPE LINEAR SYSTOLIC ARRAY

Note that for the two linear systolic arrays shown in Figure 1 and 2, the input bandwidth and storage requirements are large in comparison to the number of processors in the array, which may be either infeasible or inefficient for many applications of interests. This is mainly because the dependence among the $b_{i j}{ }^{\prime} s$ is not efficiently utilized so that each processor needs its own external input connection due to the existence of all the $b_{i j}{ }^{\prime \prime}$. It is expected that under certain circumstances not all of these external input connections are required. In chis paper, we are also very interested in the issue of reducing the input bandwidth and storage requirements by showing under what conditions these external input connections can be removed so that only the very first processor is allowed to have such a connection, ie.. the input sequences can only be fanned in through the systolic array. It is shown that the existence of certain patterns of dependence among the $b_{i j}$'s allows themselves to be fanned-in generated by lightly modifying the operations involved in each processor without losing the property of adjacent neighbor interconnection structure. These conditions are show in the following two procedures.

Procedure 2 : For the R-stay linear systolic array, if $b_{i j}$ can be determined through the following dependence equation

$$
\begin{equation*}
b_{i j}=I\left(b_{i-1, j}: b_{i, j-1} ; u_{i} ; v_{j}\right) . \tag{2}
\end{equation*}
$$

vere upis variable ubich depeads only on i, v_{j} is a variable which depends only on j, and T is a^{j} function of four variables, then $b_{i j}$ can be generated by the fan-in scheme systdic array as shown in Figure 3 rather than being broadcast as shown in Figure 1. Also note that $b_{-1} j^{\text {as }}$ vell as v_{j}. veith depends only on j, can be prestoaded in the $j^{\text {Et }}$ processor, and $b_{i,-1}$ as well as u_{i} : which depends only on i can be ded $_{-1}^{-1}$ as a fanned-in input sequence.

Note that for the f -atay linear syatolic array shown in Figure 1 , if $b_{i j}$ is the current ioput to the $j^{\text {th }}$ procesegr. then ${ }^{1} b_{i-1}$, is the previous input to the $j^{t n}$ processorited $b_{i} j^{i}$ is the previous input to the $(\mathrm{j}-1)^{8 \mathrm{t}}$ prodedisor. It is understandable that in order to avoid the violation of the adjacent neighbor interconnection structure, b_{j} can only depend on $b_{j-1} j^{\text {and }} b_{j} j-1$ as vell as tid data that can be pretiogdd and thedata that can be fanned in, which is what Procedure 2 is about. In general. the systolic array shown in Figure 3 bas two sets of input data. One of them consists of three fanned-in data sequences. P_{i}, u_{i}, and $b_{i,-1}$. which depend only on the i index. and ${ }^{i}$ the other set consists of three preloaded data sequences. Q_{j}, v_{j} and $b_{-1, j}$, which depend only on the j index, where $u_{i}, v_{j} j_{b_{j,-1}}$ and $b_{-1} j^{\text {are used }}$ to generate all the \dot{b}. $\dot{j}_{\text {. }}{ }^{-1}$ each protessor. four registers are reqdired, namely $Q_{p} \cdot \nabla_{B} \cdot B$ and R. Where registers Q_{B} and $\nabla_{\text {are }}$ ased $P_{\text {to }}$ Ptore the preloaded data $Q_{\text {jan }} \mathrm{v}_{\mathrm{j}}$ refpectively. Initially register $[B]$ is lodded as $j^{\text {b }}$ - , and register R is set to be $\mathbb{R}_{j}^{[0]}$. both of which ${ }^{-1}{ }^{1} 111$ be updated as the eystolid array start operation. The reason to include so many data sequences is to take care of the general cases. Hovever, it is expected that in many applications, not all of these fanned-in and preloaded data aquences are required. It is often the case that the fan-in generation process of b_{j}. simply depends on two or three data sequences whith can eitber be fanned-in or preloaded. Similarly for the B -move linear sybtolic array, very aimilar results can be obtained as follows.

Procedure 3 : For the R -move linear systolic array. if $b_{i j}$ can be determined through the following dependence equation

$$
\begin{equation*}
b_{i j}=T\left(b_{i-1, j} ; b_{i, j-1} ; u_{i} ; v_{j}\right) . \tag{3}
\end{equation*}
$$

vhere u_{i} is a variable which depends only on i, v_{j} is a variable whicb depends only on j, and I is a^{j} function of four varisbles, then $b_{i j}$ can be generated by the fan-in ocheme syotdic array as shown in Figure 4 rather than being broadcast as shown in Figure 2. Also note that $b_{\text {. }}$, as well as u_{i}, vhich depends only on i. can be ffeloaded in the $i^{\text {th }}$ processor. and $b-1$ as vell as v_{j}, which depends only on j. can be dided as a fanned-in input sequence.

Note that for the B -move linear systolic array shownin Figure 2, if $b_{i,}$ is the current input to the $i^{t h}$ proces ξ^{2}, then ${ }^{2}, j$ is the previous ioput to the $i{ }^{2 b}$ processor ${ }^{\frac{1}{d}}{ }^{-d} b_{i-1}$, is the previous input to the $(i-1)^{\text {st }}$ procestor. What procedure 3 says simply repeats the fact that in order to avoid the violation of adjacent neighbor interconnection structure, $b_{i j}$ can only depend on $b_{i-1} a^{\text {and }} b_{j} j$ as vell asidhe data that can be pretsided ando jīl data that can be fanned in. In general. the systolic array ahown in Figure 3 has
two sets of input data. One of them consista of
 which depend only on the j index. and the other set consists of three preloaded data sequences. $P_{i} \cdot \mathbf{u}_{i}$. and $b_{i,-1}$. which depend only on the i index, where $u_{i}, v_{j} f_{i,-1}$ and b_{-1} are used to generate all the b ${ }^{j}{ }^{\prime} \mathrm{s}^{1,}$ - For each${ }^{-1}$ processor, three registers ere requiřdd, namely U_{p}, B and P, vhere registers P and $D_{\text {are }}$ used to stofe the preloaded data P_{i} and u_{i}. Ifitially register B is \quad dgaded as $b,-1$ and output data R_{j} is set to be $R_{j}[0]$, both of ${ }^{i}$ bitch vill be updated as the systolid array start operation.

The previous three procedures provide ather systematic approach to design the systolic array architecture for the implementation of given problem. Δt first, by checking the existence of the recurrence relationship as shown in equation (1). we are able to know if there exist any systolic arrays as shown in Figure 1 and 2. Next. by checking the dependence among the $b_{j} \dot{'}^{\prime}$ a as shown in equations (2) and (3), we are able kd know the existence of the fan-in type systolic arrays as shown in Figure 3 and 4 so that only small input bandwidth and storage are required. The key issue is in bou to search for the recurrence function f and the dependence function T. It is expected that there may exist several different forms of functions due to different possible approaches to formulate a given problem. Various forms of these functions simply create many different but equivalent configurations of systolic arrays. Also note that in the previous discussion, P, Q, b, u. and vare somewhat treated as single variables. however it is clear that they can be set of variables and the same results still hold. This approach can be applied to design systolic arrays for many interesting problems in the real world. Various new configurations of systolic arrays can be derived. In the next section, we shall illustrate this design approach by considering the DFT algorithm.

IV. SYSTOLIC ARRAY ARCHITECTURE FOR DISCRETE POURIER TRANSFORM

Given n discrete data a_{i} in the time domain. vhere $0 \leq i \leq n-1$. and n discrete frequencies $W_{j}=$ $\left(e^{i 2 \pi / n}\right)^{j}$ in the frequency domain, where $0 \leq j \leq n-1$, the discrete Fourier transform (DFT) is to compute

$$
y_{j}=a_{n-1} N_{j}{ }^{n-1}+a_{n-2} W_{j}^{n-2}+\ldots+a_{1} N_{j}+a_{0}
$$

Let

$$
f(P, Q, b ; R)=(R \neq b)+P
$$

By induction, it can be shown that by letting
$y_{j}^{[i+1]}=\left(y_{j}{ }^{[i]} \times V_{j}\right)+a_{n-i-2}$
and $y_{j}^{[0]}=a_{n-1}$, then $y_{j}^{[n-1]}=y_{j}$, is the
required output. The existence of $j_{a}^{\prime \prime}$ recurrence function f and the satisfaction of the recurrence relationship guarantee that there exists systolic arrays for the implementation of discrete Fourier transform as hown in Figure 5 and 6.

It can be seen from Figure 5 and 6 that the $b_{i j}{ }^{\prime}$ are not totally independent. Note that $P_{i}=$ $a^{i j}$ and $b_{i j}=W_{i}$. In order to see if $b_{i j}$ can be fannea-in gendrated, let us examine the dati
degendence among the $b_{i j}{ }^{\prime} s^{\prime}$. Kany different forms of dependence function exist. For example.

$$
\begin{align*}
b_{i j} & =I\left(b_{i-1, j} ; b_{i, j-1}: u_{i} ; \nabla_{j}\right) \tag{5}\\
& \left.=\nabla_{j}\right)
\end{align*}
$$

where $\nabla_{j}=W_{j}$. The pair of systolic arrays based on equations (4) and (5) are shown in Figure 7 and 8. The systolic array shown in Figure 8 is the vell known ystolic DFT [2]. vhose discovery appears to be beuristic rather than in a systematic manaer as from our approach. For another example of I function, note that
i.e.e

$$
\begin{align*}
b_{i j} & =w_{j}=w_{1}^{j}=w_{1}^{j-1} w_{1} \\
& =b_{i, j-1} W_{1} \tag{6}\\
b_{i j} & =I\left(b_{i-1} j_{j}^{:} b_{i, j-1} ; u_{i} \% \nabla_{j}\right) \\
& =b_{i, j-1}{ }_{i} .
\end{align*}
$$

vhere $u_{i}=W_{1}$ and $b_{i}=u_{1}^{-1}$. which can be either
 systolic array or preloaded in the i processor of the f -move linear systolic array. The pair of syatolic arrays based on equations (4) and (6) are shown in Figure 9 and 10.

Another interesting issue is that the type of function f used in this example does not belong to the class of general matrix vector multiplication. This confirm the fact that the clasa of problems covered in the Procedure 1 really contains not only the class of general matrix vector multiplication. As vell known, there are two different waye to consider the discrete Fourier transform. One shows that the DFT is a secial case of the evaluation of a polynomial and the otber ahows that the DFT is a special case of general matrix vector
multiplication. The first vay vas just considered in this example. Let us see what can be obtsined by following the eecond vay. Let

$$
f(P, Q, b ; R)=R+(P \leq b) .
$$

By induction, it can be show that by letting

$$
\begin{equation*}
y_{j}^{[i+1]}=y_{j}^{[i]}+\left(a_{i} \geq w_{j}^{i}\right) . \tag{7}
\end{equation*}
$$

and $y_{j}^{[0]}=0$. then $y_{j}^{[D]}=y_{j}$, is the required out put. The existence of aju recurrence function f and the satisfaction of the recurrence relationsbip guarantee that there exists systolic arraye for the implementation of DFT as show in Figure 11 and 12.

From Figure 11 and 12 it can also be seen that the $b_{i j}{ }^{\prime}$ s are not totally independent. Note that the $b_{i j}{ }^{\text {s }}$ are not totally independent. Note the
$P_{i}=b_{i}{ }^{2} b_{i j}=W_{j}$ Let usexamine the data dépenaénce among the $\dot{b}_{i j}$'s. Note that
i.e..

$$
\begin{align*}
b_{i j} & =w_{j}^{i}=w_{i}^{j}=w_{i}^{j-1} w_{i}=w_{j-1} w_{i} \\
& =b_{i, j-1} w_{i} \tag{8}\\
b_{i j} & =T\left(b_{i-1} d_{j}{ }^{i} b_{i \cdot j-1}: u_{i} ; v_{j}\right) \\
& =b_{i, j-1}
\end{align*}
$$

where $u_{i}=W_{i}$ and $b_{i}=W_{i}^{-1}$. which can be either used as fannedtin sequences of the B-ftay linear systolic array or preloaded in the i processor of the a -move linear systolic array. The pair of cystolic arrays based on equations (7) and (8) are shown in Figure 13 and 14. Also note that
i.e.

$$
\begin{aligned}
b_{i j} & =W_{j}^{i}=W_{j}^{i-1} W_{j} \\
& =b_{i-1, j} W_{j}
\end{aligned}
$$

$$
\begin{align*}
b_{i j} & =T\left(b_{i-1} j ; b_{i, j-1} ; u_{i}: v_{j}\right) \tag{9}\\
& \left.=b_{i-1, j}\right)
\end{align*}
$$

where $v_{j}=W_{j}$ and $b_{h l} j^{=} W_{j}^{-1}$, which can be either preloaded in ${ }^{j}$ the j thl frocessor of the R-atay linear systolic array or used as fanned-in sequences of the R-move linear systolic array. The pair of systolic arrays based on equations (7) and (9) are shown in Figure 15 and 16.

This DFT example shows that under certain circumstances it is possible to formulate a given problem in several different ways to implement with various different but equivalent configurations of systolic artaya.

ק. CONCLUDING REMARRS

A systematic approach is presented for designing systolic arrays and deriving their equivalent configurations for certain general classes of recursively formulated algorithms. This approach can be considered as a two-stage design procedure. In the first stage, the existence of recursiveness is investigated. If it existr. according to the same formulation the input data are classified into three parts, two of them, P_{i} and Q_{j}. depend only on one index, and another one of them, namely $b_{i j}$ depends on both index i and j. so that the systofic arrays shown in Figure 1 and 2 apply. However, for certain applications, it is either infeasible or inefficient to store all of the $b_{i j}$'s. In the second stage, the dependence among the $b_{i j}{ }^{\prime} s$ is then investigated to see if it can be used ${ }^{2}$ to fan-in generate the $b_{i j}$'s through the data sequence that can either be ijreloaded or fanned in. For a given problem, various formulations of the recursive property and the depencence among the b_{i} 's are possible, which simply lead to many diflerent but equivalent configurations of systolic arraye.

So far we mainly deal with the linear systolic arrays. However, the same technique can be easily generalized to the two dimensional mesh-connected systolic arrays, since the mesb-connected systolic arrays can be aimply treated as the concatenation of many linear aystolic arraya.

VI. ACRNOLLEDGEMENT

This work was partially supported by the KASA/Ames research contract NAG-2-304.

VII. References

1. H. T. Kung and C. E. Leiserson. 'Systolic Arraye (for VlSI).' Proc. Symp. Sparse Matrix Computations and Their Applications. Nov. 2-3. 1978. PP. 256-282.
2. H. T. Kung, 'Why Systolic Architectures,' Computer. Jan. 1982. Pp. 37-45.
3. H. T. Rung, 'Let's design algorithms for FLSI systems.' in Proc. Caltech Conf. on VSI. Pp. 65-90. Jan. 1979.
4. P. R. Cappello and R. Steiglitz, 'Unifying VLSI Array Design vith Geometric Transformations.' Proc. Int. Conf, on Parallel Processing. pp. 448-457. Bellaire, Michigan, Aug. 1983.
5. D. I. Moldovan, 'On the Design of Algorithme for VLSI Systolic Arrays,' Proc. IEEE, ∇ 71. B 1. PP. 113-120. Jan 1983.
6. W. L. Miranker and A. Winkler. 'Spacetime Representations of Computational Structures.' Computing. V 32. 1984.

Figure 1: The R-stay linear systolic array.

Figure 3: The fan-in scheme of R-stay linear systolic array. Note that the register B in the fth processor is initially loaded with b-1.j.

Figure 5: R-stay linear systolic array of discrete Fourier transform based on equation (4).

Figure 7: R-stay linear systolic array of discrete Fourier transform based on equations (4) and (5).

ORIGINAL PAGE' IS
 OF POOR QUALITY

Figure 2: The R -move linear systolic array.

Figure 4: The fan-in scheme of R-move linear systolic array. Note that the register B in the ith processor is initially loaded with bi,-1.

Figure 6: R-move linear systolic array of discrete Fourier transform based on equation (4).

Figure 8: R-move linear systolic array of discrete Fourier transform based on equations (4) and (5)

Wout $1 \leftarrow W_{i n l}$ Wout $2 \leftarrow$ Wini $_{\text {in }} \times W_{i n}$ $y \leftarrow(y \times W o u t 2)+a i n$ aout \leftarrow ain

Figure 9: R-stay linear systolic array of discrete Fourier transform based on equations (4) and (6).

Figure 11: R-stay linear systolic array of discrete Fourier transform based on equation (7).

Figure 13: R-stay linear systolic array of discrete Fourier transform based on equation (7) and (8).

$a n-1, \ldots, a_{1}, a 0$

Figure 15: R-stay linear systolic array of discrete Fourier transform based on equations (7) and (9). Note that in the jth processor, register V_{p} is preloaded with W_{j} and register B is initially loaded with $\mathrm{W}_{\mathrm{j}}{ }^{-1}$.

yn-1,..., y1, y0

Figure 10: R-move linear systolic array of discrete Fourier transform based on equations (4) and (6). Note that register U_{p} is preloaded with W_{1} and register B is initially loaded with $W_{1}-1$.

Figure 12 : R-move linear systolic array of discrete Fourier transform based on equation (7).

$B \leftarrow \mathrm{O}_{\mathrm{p}} \times \mathrm{B}$
yout $\leftarrow\left(\right.$ yin $\left._{\mathrm{n}} \times \mathrm{B}\right)+a$

Figure 14: R-move linear systolic array of discrete Fourier transform based on equations (7) and (8). Note that in the ith processor, register U_{p} is preloaded with W_{i} and register B is initially loaded with $\mathrm{W}_{\mathrm{i}}-1$.

Wout $1 \leftarrow W_{i n}$ Wout $2 \leftarrow$ Winl $_{1} \mathrm{WWin}_{\mathrm{in}}$

Figure 16: R-move linear systolic array of discrete Fourier transform based on equations (7) and (9).

K. Ya
Electrical Engineering Department
University of California
Los Angeles, CA 90024

Abstract

In this paper we consider the problem of modeling and equalization of a nonlinear satellite channel. The channel is assumed 10 be bandlimited and exhibits both amplitude and phase ponlinearities. A discrete time satellite link is modeled under both uplink and downlink white Gaussian noise. Under conditions of practical interest, a simple and computationally efficient design technique for the minimum wean square error linear equalizer is presented. The bit err probability and some numerical results for a BPSK system demonstrate that the proposed equalization technique outperforms standard linear receiver structures.

1. INTRODUCTION

The problem of nonlinear channel modeling and equalization is of analytical and practical interest. An important example of a nonlinear channel is a digital satellite communication link, which uses a Traveling Wave Tube (THT) amplifier operating in a neat saturation region. The THT exhibits nonlinear distortion is both amplitude (AM:AM conversion) and phase (AMPM conversion). In addition, at high transmission rates the channel's finite bandwidth causes a form of distortion known as Intersymbol Interference (ISI).

In this paper. we will examine the problem of modeling and equalizing this type of nonlinear satellite communication link. The observed data are corrupted by additive white noise. uncorrelated with the input data.

A number of other researchers have studied this problem. Fredriasson [1]. considered a QPSK system and specified an optimum linear receiver filter using a Mean Square Error (MSE) criterion. The channel nonlinearity in [1] was handled via successive number: of linearizations Mestiza et al. [2-3] analyzed the BPSK system. In [2] a maximum likelihood receiver was considered. While in [3] a simpler linear receiver, based on the MSE criterion. was presented. In both [2] and [3]. the nonlinearity of the THT is expressed in terms of Bessel function integrals. The MSE criterion was also applied try Biglieri et al. [4] in their derivation of an optimum linear receiver. In [1]. [3]. and (4). the authors work in the frequency domain. and the solution is given in terms of integral equations that usually have to be solved using numerical techniques.

In (5]. Elanayake and Taylor presented a suboptimum maximum-likelihood type decision feedback receiver. However. because of the analytical complexity of their solution, they approximate the TWT with a hard limiter. A different modeling approach was taken by Benedetto et al. [6]. First, they identify the whole channel using a Volterra Series expansion [7]. Then they suggest a nonlinear equalizer, based again on the MSE
criterion. Although at the output of a nonlinear equalizer the MSE is smaller than the MSE at the output of a linear equalizer, it is not completely clear if there is a significant improvement in the probability of error performance of the system to justify the complexity of the nonlinear receiver.

In this paper, we present the design and performance analysis of the optimum linear MSE receiver for a nonlinear satellite channel. While the methods considered here are applicable to various in-phase and quadri-phase modulation systems, for simplicity and lack of space we will illustrate this approach by using only BPSK examples. More generalized results will be presented elsewhere. There are two major differences between our design as compared to the above reviewed approaches. First, we use a very simple model for the input-output relationship of the TWT amplifier, proposed first by Saleh [8]. Second, by working in the discrete time domain we avoid the complex integral equations of the other approaches. In addition, a fast and simple iterative algorithm [9] permits the easy computation of the autocorrelation coefficients of the output of the nonlinear system. Thus, we are able to obtain a new simple and computationally efficient linear equalization technique under the MSE criterion. Based on the same modeling approach, a zero forcing type of linear equalizer was also presented in [10].

In Section 2, a simplified model for a typical satellite link is presented and the corresponding BPSK discrete model is derived. The optimum MSE equalizer is presented in Section 3. In Section 4 , the probability of error performance of the receiver is derived. Finally in Section 5 some numerical examples. and comparisons with standard linear receivers are presented.

a. CHANNEL MODELING

Consider the simplified model of a digital satellite communication channel as shout in Figure 1. We will examine each one of the different subsystems composing this model. This study will enable us to derive an equivalent discrete model. By working in discrete time we will avoid the analytical problems arising with continuous signals. Our analysis is similar to that of Elanayake and Taylor [5].

The source output is a random sequence $\{\mathrm{U}(\mathrm{D})$ \} of equally: probable uncorrelated symbols. Thus. in a BPSK system. $U(n)=\{1,-1\}$ at $n=0, T, 2 T, \ldots$ where $P[U(n)=1]=P\{U(n)=$ $-1]=0.5$. $E[(n) U(n-k)]=0$ for $k \neq 0$, and T^{-1} is the signaling rate.

Let $p(1)$ denote a pulse shaping function. Often it can be a rectangular function of unit amplitude over a time period of length T . In any case, the output of the modulator can be expressed in the form

ORIGINAL PAGE IS OF POOR QUALITY

$I(1)=\sum_{a}^{\infty} U(n) p(1-n T) \cos \omega_{c} f$,
where at is the cerrier frequedcy.
We shall sasume that the transmission filter is the one which determines the channel bandwidth. This fller is also responsible for the creation of ISI. Let $G(t)=2 g(t) \cos \omega_{c} t$ be the impulse resporse of this filter, where $g(t)$ is the impulse. rexponce of a corresponding low pass filter. Then the output of this filter can be expressed as
$g_{0}(1)=\sum_{i=\infty}^{\infty} U(n) h(t-n T) \cos \omega_{c} t$,
where $h(t)=g(t)^{\bullet} p(t)$. The purpose of our analysis is the derign of a receiver structure for the estimation of the tranomitied source symbol during the D th signaling interval $n T \leq t \leq(n+1) T$. Thus during the nth signaling interval (2) can be rewritten as

$$
n T \leq i \leq(n+1) T
$$

The firy term in (3) represents the transmitted symbol we want to extmate, and the second term represents the LSI due to the Eilter.

Ot the uplink channel. $s_{4}(1)$ is corrupted by additive white Geuctian noise. Thus, using the narrow band model for the noise, the input to the TUT can be expressed as
$s_{0}^{\prime}(1)=s_{s}(1)+n_{m}(1) 000 \omega_{c} t-n_{\infty}(1) \sin \omega_{c} t$.
$n_{m}(t)$ and $n_{m}(t)$ represent the in-phase and quadrature components of the uplink noise, each with zero mean and veriance σ_{3}^{2}. From (3) and (4)
$s_{f}^{\prime}(t)=r_{g}(t) \cos \left(\omega_{c} t+\lambda(t)\right)$.
where
$r_{s}(t)=\left[\left(r(t)+n_{m}(t)\right)^{2}+n_{m}^{2}(t)\right]^{M}$.
$r(t)=U(n) h(t-n T)+\sum_{i=n} U(i) h(t-T T)$.
and
$\lambda(1)=\tan ^{-1} \frac{n_{m u}(1)}{r(1) \div n_{m}(r)}$.
The TWT is a nonlinear memoryless amplifier. It exhibits nonlinea: distotion in both the amplitude and the phase. Using - quadrature model. the output $58(1)$ of the TWT can be expressed is the form
$s_{d}(t)=P\left[r_{4}(1)\right] \cos \left(\omega_{f} 1+\lambda(1)\right) \cdot Q\left[r_{4}(1)\right] \sin \left(\omega_{s} t+\lambda(1)\right)$.
From Salch [8] an expression of $P(r)$ and $Q(r)$ is given by
$P(r)=a, \frac{r}{1+\beta, r^{2}}$
and
$Q(r)=a_{i} \frac{r^{3}}{\left(1+\beta_{q} r^{2}\right)^{Y}}$
The coefficients of (10) are obrained by a leas-square error curve fining procedure of the specific THT characteristics.

Figure 1: tetellite Con mieatice yrite Model
which are originally specified by the manufacturer. In Figure 2 the $P(r)$ and $Q(r)$ functions of (10) ars ploned for $\alpha_{p}=2.0922, \beta_{p}=1.2466, a_{q}=5.529$ and $\beta_{q}=2.7088[8]$ All input and output voltages were normalized.

Because of the downlink additive white noise no(t), the received waveform $s^{\prime} d(t)$ can be expressed as

$$
\begin{array}{r}
s_{d}^{\prime}(t)=s_{d}(t)+n_{d r}(t) \cos \omega_{c} t-n_{4}(t) \sin \omega_{c} t \tag{11}\\
n T \leq t \leq(n+1) T .
\end{array}
$$

The signal s^{\prime} (1) of (11) is now coberently demodulated by a carrier $200 \omega_{c} 1$. We assume that the banduidth of the receiving filters is wide enough so that no additional ISI distorts the signal The output $y(t)$ of the demodulator is sampled every T seconds to produce at the n th signaling interval the in-phase sample

$$
\begin{align*}
y(n)=y\left(t_{0}\right) & =P\left[r_{n}\left(1_{0}\right)\right] \cos \lambda\left(1_{0}\right)+ \tag{12}\\
& +Q\left[r_{m}\left(t_{0}\right)\right] \sin \lambda\left(t_{0}\right)+n_{\text {dic }}\left(t_{0}\right) .
\end{align*}
$$

I_{0} is an appropriately chosen sampling instant within the interval. $n T \leq 1 \leq(n+1) T$.

Under the assumption of high available power at the earth ations, the effects of the uplink noise can be considered negligible. Thus we can assume that $\lambda(1)=0$. Then $y(n)$ of (12), becomes
$y(n)=P\left[r\left(r_{0}\right)\right]+n_{d t}\left(t_{0}\right)$.
From (7) and (13) an equivalent discrete-time model for the communication channel of Figure 1 can be represented as in Figure 3. Nou. with $U(n)=\{1,-1\}$, the basic relationships are
$r(n)=A \sum_{i=N_{1}}^{n} h_{4} U(n-k)$.
$P(n)=P[r(n)]=\frac{\alpha r(n)}{1+\beta r^{2}(n)}$.
$y(n)=P(n)+w(n)$,
where a and β are specified constants that depend on the specific type of the TWT. $\boldsymbol{w}(0)$ is white Gaussian noise of zero mean and variance σ_{m}^{2}, and uncorrelated with the input data.

The vilues of N1 and N2 represent the memory of the tranmitting filter. The gain A depends on the specific operating point of the TWT.

II. THE MEAN-SQUARE ERROR EQUALIZER

Let the receiver output $z(n)$ be expressed as the output of a Tapped- Delay Line (TDL) filter in the form of
$z(n)=\sum_{i=1}^{\infty} c_{1} y(n-k)$,
where from (16), $y(0)=P(n)+w(0)$.
In the theory of the Mean-Squares criterion, the tap weight coefficients $\left\{c_{j}\right\}$ of the equalizer are adjusted to minimize the meas square error
$c^{2}=E\left[U(n)-\sum_{i=1}^{2} c_{i} y(n-k)\right]^{2}$.
Minimization of (16) with respect to the $\{c$,$\} coefficients, yields$ the linear system of $M=M 1+M 2+1$ equations
$\sum_{i=1}^{M} c_{1} R,(j-k)=R_{m}(j) . j=-M 1 \ldots . M 2$.
where $R,(k)=R,(-k)=E[y(n) y(n-k)]$ and $R_{n g}(k)=$ $E[U(n) Y(n-k)]$ for all values of k.

From the uncortelatedness of the input data and the noise. $\boldsymbol{R}_{\boldsymbol{\sigma}}(k)=\boldsymbol{R}_{\boldsymbol{\omega}}(k)$. for all values of k. Also. since the output $P(n)$ of the nonlinearity, and the noise $w(n)$ are independent
$R_{y}(k)=R_{p}(k)+\sigma \boldsymbol{j} \delta_{0 k}$.
where σ_{0}^{2} is the variance of the noise. Thus in ordet to solve (19) it is necessany to evaluate first the necessany $R_{p}(\cdot)$ and $R_{\text {ep }}(\cdot)$ coefficients. While in the case of a linear channcl the calculation for the $\boldsymbol{R}_{\boldsymbol{p}}(\cdot)$ cocfficients is straightforward, in the ponlinear case the evaluation may present some numerical difficulties.

Compuation of the Arrocorrelation cosficientr

The sequence $\{P(n)\}$ at the output of the nonlinearity and be coosidered st the cutput of a finite state sequeatisl machine. Since the ponlinearity has 00 memory, from (14) the atate sequence can be givea by
$\varepsilon(n)=[U(n+N 1), \ldots, U(n), U(n-1), \ldots, U(n+N 2)]$.
$\{U(0)\}$ is $s 0$ i.i.d sequeace, thus $\{(\mathrm{D})\}$ is fitelf a stationery Markov chin [9].

Let us denote by II the transition probability matrix of the Martov chain $\{(x)\}$. A brute force evaluatico of $R_{p}(\cdot)$ involves multiplication of square matrices of dimension $2^{N 1+N 2+1}$ [9-10], which would be computstional impractical unless epecial consideration is given to the special properties of II. In [9] a perticularly effective and simple algorithm for the evaluation of autocorrelation coefficients of a sonlinear syatem was presented. The algorithon, ss applied to our specific problem is given below.

Algorithm for the computation of $R_{p}(k)$

1. Let $\mathrm{N}=\mathrm{N} 1+\mathrm{N} 2+1$, and tore in vector B_{0} (of dimension 2^{*}) the values at the output of the noolinearity for ench atate $s(j)$ of (21), for $j=1,2, \ldots, 2^{N}$.
2. Compute the vector a_{0} (of dimension 2^{N}), where the j th component is given by
$\quad 2(j)=\beta,(j) 2^{N}, j=1,2, \ldots, 2^{N}$.
3. For $k=0,1, \ldots, N-1$, do the following computations
a) $R_{p}(k)=\sum_{j=1}^{2 N_{1}} \alpha_{i}(j) \beta_{k}(j)$.
b) Store in the first 2^{N+1} positions of α_{λ}, the vector α_{1+1}, computed by
$\alpha_{k+1}(j)=\alpha_{k}(j)+\alpha_{k}\left(j+2^{N+-1}\right), j=1,2, \ldots, 2^{N-k-1}$.
c) Store in the first 2^{N+1} positions of of the β_{t} vector, the vector β_{k-1}, where
$\beta_{k+1}(j)=\frac{B_{k}(2 j-1)+B_{k}(2 j)}{2}, j=1,2 \ldots, 2^{N+1 \cdot}$.
4. $R_{p}(k)=0$, for $k \geq N$.

The above algorithm is easy to implement and requires only two vectors of size 2^{N} as basic computation storage.

Computation of Cross-correlations

Since for each state $s(j)$ of (21) the value of $P(s(j)]=B_{0}(j)$ has already been computed for the evaluation of the $R_{p}(\cdot)$ coefficients, a brute force technique can be easily applied for the evaluation of the cross-correlation terms. Thus from [10].
$\left.R_{m}(-k)=\left(1 / 2^{N-1}\right) \sum_{j, U(F-i)=1} P \mid s(j)\right], \quad-N 1 \leq k \leq N 2$,
where the summation in (22) is done over all those states where $U(n-k)=1$.

In summary, the design procedure for the optimum linear MSE equalizer is given as follows. First, compute the 2^{N} possible values of $P(n)$ at the output of the nonlinearity. Then use the algorithm to compute the $R_{p}(\cdot)$ coefficients and (22) to
compute the R ((\cdot) coefficients. Finally, solve the linear ayzem in (19). The colutico of (19) yields the tap-weight coefficients of the MSE receiver.

IV. EVALUATION OF BIT-PROBABD.TIY OF ERROR

Unfortuantely, there is no simple relationship berween the residual mean square error of the MSE receiver and the bit error probability (11]. For moderate channel and equalizer memories, a brute force meibod that yields an exat resuli could be applied. Denote by D_{i} ooe of the 2^{M-N-2} possible realizations at the input of the receiver, with $U(\mathrm{n})=1$, and by c the $\mathrm{M} \times 1$ vectors of the Eiter coefficients. Then from (16) and (17), the receiver output due to a specific input $\{(\mathrm{O})$) equence is given by
$y_{1}=D_{i} c+W c$.
where W is a $M=M 1+M 2+1$ row vector of noise smoples.
Let $\{\omega(\mathrm{n})$) be a white noise requence of zero mean and variance σ_{2}^{2}. Lei $\eta=W c$. Then $E[\eta]=0$ and $\sigma_{\eta}^{2}=\sigma_{E}^{2} \sum_{i=1}^{n} c_{1}^{2}$. Then with $U(n)=1$ and for a threshold of zero, the conditional enos probability
$P_{f}(i)=\operatorname{Pr}\left[D_{i} c+\eta<\alpha\{U(i)\}\right]$.
is fired, and
$P_{f}(i)=Q\left(D_{i} c / \sigma_{n}\right)$.
where
$Q(x)=\frac{1}{\nabla 2 \pi} \int_{x}^{0} e^{\frac{-2^{2}}{2}} d x$
Thed the average error probability P_{s} is given by

$$
\begin{equation*}
P_{r}=(1 / L) \sum_{i=1}^{1} P_{r}(i), L=2^{N-N \cdot 2} \tag{27}
\end{equation*}
$$

Io our numerical example the SNR is defined as
$S N R=1010 g_{10}\left(P_{2}^{2} / 2 \sigma_{n}^{2}\right)$,
where $P_{\infty}=(1 / L) \sum_{i=1}^{1} P\left[r^{(i)}(0)\right]$
If the exact error probability of (27) proves 100 cumbersome and too time consuming to evaluate because of the large number of terms. one can resort to a number of different approximate metbods that sield tight upper and lower bounds of Pe [11].

V. NUMERICAL EXAMPLE

The pu.pose of this section is to illustrate the application of our results in the design of a linear optimal receiver, and to compare its performance with other receivers for a digital satellite link.

In our model of the linear part of the satellite link. we assume that the ISI is introduced by a 3 -pole Burnerworth filter. The rwo sided banduidth B of the filter is the same as the minimum Nyquist rate (i.e.. $\mathrm{BT}=1$). The number of samples considered for the ISI is determined by those ISI samples whose magnitude are at least greater than 0.01 times the main sample. In our example, a channel memory $\left(\mathrm{N} 1+\mathrm{N}_{2}\right)$ of 3 ISI terms was considered adequate.

The characteristics of the TWT for this study are the same as those in Figure 2. Thus in the evaluation of $\mathrm{P} \mid \mathrm{r}(\mathrm{n})]$ in (15), the parameters of the TWT are $a=2.0929$ and $\beta=1.2466$. As
mentioned before, those values were taken from Saleh (18], Figure 5) and represent a specific satellite TWT. The gini factor A, of (14) was determined so that with no IN the TWT would operate at the 2 dB injut beckoff point. Because of the low ISI introduced by the transmission filter, a 4-tap (M1+M2+1=4) TDL linear receiver was considered to be adequate. Thus, $L=2(4+42)=64$.

Now we compare ous optimum linearly equalized MSE receiver with the conventional linear receivers. Using the brute force technique described in Section 4, the bit error probability for the various receivers was evaluated and plotred in Figures 4 and 5 , for values of SNR as defined in (28).

Figure 4 exhibits the P_{r} performance of the designed MSE filter, and the P. performance of two 3-pole Butterworth receiving filters. One receiving filter (with $\mathrm{BT}=1$) is identical to the transmitring filter, while the other coe has $\mathrm{BT}=0.75$. In Figure 5, the performance of the M.S receiver is compared with that of two 4-pole Butterworth receiving filters. One has BT=0.75 and the other one has BT=1. A numerical search procedure for Butterworth filters with different BT products, chowed that an increase in BT does not necessarily correspond to mimproved $P_{\text {e }}$ performance. In fact, filters with $\mathrm{BT}=2$ are ooly marginally better than filters with $\mathrm{BT}=1$.

For $P_{s}=10 \mathrm{E}-6$, the optimum MSE receiver is at least 0.8 dB better than the 3-pole Butterworth filters and 1.2 dB bene: than the 4 -pole Butterworth filters. The $P_{\text {g }}$ performance of a channel with no ISI. but with the identical TUT, carrier power and noise variance was evaluated. The numerical results showed that for these examples the bit error rate of the MSE equalizer is very close to that of the no ISI case [10].

V. SUMMARY AND CONCIUSIONS

In this paper we considered the problem of modeling and equalization of a digital atellite nonlinear and bandlimited channel. Starting from a typical satellite link, we developed the corresponding BPSK discrete-time model, and solved for the optimum linear MSE receiver. A simple and computatiocally efficient algorithm was derived for the evaluation of the equalizer coefficients, based oo the metnoryless poolinearity of the symem. Numerical examples for a typical satellite liak demonstrated that the optimum linear MSE receiver outperforms the cooventional linear type recejving filters. In general, our modeling and equalization tochniques provide a simple and compuntionally efficient alemative to existing appromebes.

REFERENCES

1. S.A Fredriosson, Oprimum Receiver Fibers in Digital Quadrature Phare. Shijf. Kejed Systems with a Nonlinear Repeater. IEEE Trans. oD Comm., Vol. COM-23, No.12, pp.1389-1399. Dec. 1975.
2. M.F.Mesya, P.J. McLane and L.L. Campbell, Maximum Likelihood Sequence Esnimation of Binan Sequences Transminted Over Bandlimized Nonlinear Channels, IEEE Trans. on Comm., Vol. COM-25. No. 7.pp. 633-643, July 1977.
3. M.F.Mesiya, P.J. McLane and L.I Campbell, Optimol Receiver Fillers for BPSK Transmission over a Bandlimited Nonlinear Channel, IEEE Trans. on Comm., Vol. COM-26. Pp. 12-22, Jan. 1978.
4. E.Biglieri, M.Elia and L. L. Presti, Optimat Linear Receiver Fiker for Digial Transmission over Nonlinear Channels. Proc. 1983 litem. Tirrenia Workshop on Dig. Commun., pp. F.3.1F.3.13, Sept. 1983
5. E.Eranayake and D.P. Taylor, A Decision Feedback Receiver Strucrure for Bandlumited Nonlinear Channets. IEEE Trans. on Comm. Vol. COM.29, No. S. pp.539-548. May 1981.
6. S.Benedetto and E.Biglieri. Nontinear Equalization of Digial Satellite Channels. IEEE Joumal on Select. Areas in Comm. Vol. SAC-1, No. 1, pp.57-62. Jan. 1983.
7. S.Benedetto. E. Biglieri. R. Daffara. Modeling and Performance Evaluation of Nonlinear Sarellite Links. A Volierta Series Approach. IEEE Trans on Aerospase and Elec. Systems. Vol. AES 15, No.4. pp. 494. 506. July 1979.
8. A.A.M. Saleh. Frequent Independent and Frequenc: Dependen: Nonlinear Models of TUT Amplifiers. IEEE Trans on Comm. Vol. COM.29. No i1. pp :715-1720. Nor. 1981.
9. R.Padovani and G.L.Pierobon. Specria: Analysis of Digital Messages Through Finule-Memon Transformations. IEEE Trans. on Comm. Vol. COM.32. No. 11. pp. 1214-1218, Nov. 1984.
10. K.Konstantinides. Channel Modeling and Equali:ation Algorithms Based on Leart Squares Techniques. Ph.D Disseration. Un. of Calif., Lor Angeles, 1985
11. J.G. Proakis. Diginal Communications. Mc. Graw-Hill. 1983.

On Realizations of Least-Squares Estimation and Kalman Filtering by Systolic Arrays

1. introduction

Abstract

Least-squares (LS) estimation is a basic operation in many signal process ing problems. Given $y=A x+v$, where A is a man coefficient matrix, y is a mol observation vector, and v is a mol zero mean white noise vector, a simple least-squares solution is finding \hat{x} which minimizes $\|A x-y\|_{\text {. }}$. It is well known that for an ill-conditioned matrix A, solving least-squares problems by orthogonal triangular (QR) decomposition and back substitution has robust numerical properties under finite word length effect since 2-norm is preserved. Many fast algorithms have been proposed and applied to systolic arrays. Gentleman-Kung (1981) first presented the triangular systolic array for a basic Givens reduction. Mowhirter (1983) used this array structure to find the least-squares estimation errors. Then by geometric approach, several different systolic array realizations of the recursive least-squares estimation algorithms of Lee et al (1981) were derived by Ralson-Yao (1985). We consider basic QR decomposition algo rithms and find that under one-row time updating situation, the House holder transformation degenerates to a simple Givens reduction. Next, we derive an improved least-squares estimation algorithm by considering a modified version of fast Givens reduction. From this approach, the basic relationship between Givens reduction and Modified-Gram-Schmidt transfor mation can easily be understood. We also can see this improved algorithm has simpler computational and inter-cell connection complexities while compared with other known least-squares algorithms and is more realistic for systolic array implementation.

Minimum variance estimation (popularized by Ralman (1960)) is the general ied form of a least-squares problem, where the state vector x is charac terized by the state equation $x_{k+1}=F x_{k}+w$, the system noise w and the observation noise v are colored. ${ }^{k+1}$ The original algorithm presented by hal man can have poor numerical property. Some algorithms for improving numerical properties, such as square-root covariance and square-root information methods have been studied. Now, we find that after the whit tening processing, this minimum variance estimation can be formulated as the modified square-root information filter and be solved by the simple least-squares processing. This new approach contains advantages in both numerical accuracy as well as computational efficiency as compared to the original Ralman algorithm. Since all these processings can be implemented by systolic arrays, high throughput rate computation for Ralman filtering problems become feasible.

2. SIMPLE LEAST-SQUARES ESTIMATION

Given the equation $b=A x+v$, it is well known that we can solve the leastsquares solution $\&$ by normal equation. However, this approach not only requires the computation of a matrix inverse but also doubles the condi tion number when we form A'A. Although using singular value decomposition for least-squares solution can improve numerical properties, the computa tional complexity involved in SVD is not low. Besides, fast algorithm for SVD is still underdevelopment. Lattice structure for least-squares solu tion was proposed and studied by Lee et al (1981). This approach was shown to have stable numerical property and regular hardware structure. However, this method required shifting property of the coefficient matrix and can not apply to all general cases. $Q R$ decomposition is another solu tion to obtain \hat{x}, since $2-n o m$ is preserved by multiplying an orthogonal matrix Q, then by letting $Q A=R$ be a upper triangular matrix, the \hat{x} can be obtained by using back substitution for the equation $\mathrm{Rx}=\mathrm{p}$. This approach has robust numerical properties since the $2-n o m$ is fixed, the rounding error caused by finite word length effect will not grow. Basically, there are three ways for performing $Q R$ decomposition, namely, Householder trans formation, Givens reduction, and Modified-Gram-Schmidt orthogonalization. It can be shown that under one row time updating situation (as in the sys tolic array implementation), the Householder transformation matrix will degenerate to a simple Givens reduction case.

Systolic array implementation for $Q R$ decompositions in least-squares esti mation was first explored by Gentleman-Kung and followed by Mowhirter and Ralson-Yao. By using a triangular systolic array, it was shown that the estimation error for the last observation can be solved at every clock period. The systolic array structure for least-squares estimation is shown in Figure 2.1. To achieve fully pipelined operation, the input rows are skewed and propagated like wavefronts in the diagonal direction. There are only two basic processing units, boundary cell and internal cell, are required by this systolic array. Communication between different process ing units are all local. The properties of regularity and local communi cation are consistent with the philosophy of VLSI implementation. Sumnary of input/output fomats and operation functions for two kinds of process ing units are shown in Table 1 and Table 2 respectively.

Table 1. Input/Output format of systolic array algorithms

	BI_{1}	BI_{2}	BO_{1}	BO_{2}	II_{1}	II_{2}	IO_{1}	IO_{2}
Givens	0	\mathbf{x}	σ^{\prime}	d/d', x / d^{\prime}	d/d', x/d	b	d/d', $/ / 口^{\prime}$	b^{\prime}
F-Givens	σ	x	σ^{\prime}	$\alpha_{x}^{\prime}, \sigma x / d^{\prime}$	$\underset{x}{d / d^{\prime}, \sigma x / d^{\prime}}$	b	$\mathrm{d}_{\mathrm{d}} \mathrm{~d}_{\mathrm{x}}, \sigma_{\mathrm{x}} / \mathrm{d}^{\prime}$	b^{\prime}
M-G-S (I)	σ	x, e	σ	$\underset{d}{x / d, x /(1-\sigma)}$	$\underset{d}{x / d, x /(1-\sigma)}$	b, e	$\underset{\alpha}{x / d, x /(1-\sigma)}$	b^{\prime}, e^{\prime}
M-G-S (II)	σ	x	${ }^{\prime \prime}$	x/d', $\mathrm{x} /(1-\sigma)$	$x / d^{\prime}, x /(1-\sigma)$	b	$x / d^{\prime}, x /(1-\sigma)$	

The above symbols are for notations only, their physical meaning may change for different algorithons.

Table 2. Operational functions of processing units

	Boundary cells	Internal cells
Givens	$\begin{aligned} & d^{\prime}=\left(d^{2}+x^{2}\right)^{V / 2} \\ & B O_{2}\left(\frac{d}{} d^{\prime}, x / d^{\prime}\right. \\ & \sigma^{\prime} \underline{\underline{\prime}}\left(d / d^{\prime}\right) \star_{\sigma} \end{aligned}$	$b^{\prime}=\left(d / d^{\prime}\right) \star b-\left(x / d^{\prime}\right) \star_{k}$ $k^{\prime}=\left(x / d^{\prime}\right) * b+\left(d / d^{\prime}\right) * k$
F-Givens	$\begin{aligned} & d^{\prime}=d+\left(\sigma^{*} x\right) * x \\ & B_{2}<-\left(\sigma^{*} x\right) / d^{\prime}, d / d^{\prime} \\ & \sigma^{\prime} \underline{\sigma^{*}\left(d / d^{\prime}\right)} \end{aligned}$	$\begin{aligned} & b^{\prime}=b-x^{\star} k \\ & k^{\prime}=\left(d / d^{\prime}\right){ }^{\prime} k+\left(\sigma^{*} x / d^{\prime}\right){ }^{\prime} b \end{aligned}$
M-G-S(I)	$\begin{aligned} & \mathrm{d}=\mathrm{e} \\ & \mathrm{BO}_{2}<\mathrm{x} / \mathrm{d}, \mathrm{x} /(1-\sigma) \\ & \sigma^{\prime} \underline{\underline{\sigma}}_{\sigma}+(\mathrm{x} / \mathrm{d}){ }^{2} \end{aligned}$	$\begin{aligned} & k^{\prime}=k+b^{*}(x /(1-\sigma)) \\ & b^{\prime}=b-k^{\prime}(k)(x / d) \\ & e^{\prime}=e-k^{\prime} / d \end{aligned}$
M-G-S (II)	$\begin{aligned} & \mathrm{d}^{\prime}=\mathrm{d}+(x /(1-\sigma)) \star_{x} \\ & \mathrm{BO}_{2}<-\mathrm{x} / \mathrm{d}^{\prime}, \mathrm{x} /(1-\sigma) \\ & \sigma^{\prime}=\sigma+\left(\mathrm{x} / \mathrm{d}^{\prime}\right){ }^{\prime} \mathrm{x} \end{aligned}$	$\begin{aligned} & k^{\prime}=k+b^{*}(x /(1-\sigma)) \\ & b^{\prime}=b-k^{\prime *}\left(x / d^{\prime}\right) \end{aligned}$

From systolic array point of view, the difference between algorithms pro posed by MCWhirter and Kalson-Yao lies in the basic computations in two kinds of processing units. Since these algorithms were derived from two different approaches, specifically Givens reduction and Modified-GramSchmidt orthogonalization, the basic relationship for these two $Q R$ decompo sition methods under one row time updating can be compared as follows. First, we derived the modified expression for the fast-Givens reduction as given by
Q $\left[\begin{array}{ccc}(1 / \sqrt{d}) d,(1 / \sqrt{d}) d k_{2}, \ldots(1 / \sqrt{d}) d k_{k} \\ \sqrt{\sigma} x, & \sqrt{\sigma} b_{2}, & \ldots \\ \sqrt{\sigma} b_{k}\end{array}\right]$
$=\left[\begin{array}{cccc}\left(1 / \sqrt{d}^{\prime}\right) d^{\prime},\left(1 / \sqrt{d}^{\prime}\right) d^{\prime} k_{2}^{\prime}, \ldots\left(1 / \sqrt{d}^{\prime}\right) d^{\prime} k_{k}^{\prime} \\ 0, & \sqrt{\sigma}{ }^{\prime} b_{2}^{\prime}, & \ldots & \sqrt{\sigma}{ }^{\prime} b_{k}^{\prime}\end{array}\right]$,
the updating equation for this modified-fast-Givens algorithm becomes,
Boundary cell: $\quad d^{\prime}=d+x^{2} /(1 / \sigma)$
$\left(1 / \sigma^{\prime}\right)=(1 / \sigma)+x^{2} / d$
Internal cell: $\quad b^{\prime}=b-(x / d) * d k \quad d^{\prime} k^{\prime}=d k+b^{*} x /(1 / \sigma)$
By comparing the computational complexity between the fast Givens algo rithm by Gentleman (1973) and that in [1], we can see [1] has one multi
plication less than the original algorithm. And since we do not have interest on the real rotated elements like $(1 / \sqrt{d}) d k_{k}$, we do not have the risk of dividing by a very small d. The numerical properties of the modi fied algoritrm is then expected to comparable to the numerical properties of the original one. By equation [1], the basic duality associations between Givens reduction and Modified-Gram-Schmidt orthogonalization is summarized in Table 3, which allows us to derive different algorithms for least-squares estimation from different approaches with efficiency.

Table 3. Duality association for M-G-S and Fast-Givens reduction.

M-G-S(II)	$k_{\text {mgs }}$	$\sigma_{\text {mgs }}$	$x_{\text {mgs }}$	$b_{\text {mgs }}$	$d_{\text {mgs }}$
F-Givens	$d_{f g}{ }^{* k_{f g}}$	${ }^{1-\sigma_{f g}}$	${ }^{\sigma_{f g}{ }^{*} x_{f g}}$	$\sigma_{f g}{ }^{* b_{f g}}$	$d_{f g}$

With systolic array implementation, comparison of computational complexity for algoritrms discussed above can be made by comparing the number of operations required in each processing unit. When the dimension of the coefficient matrix becomes large, wavefront array processing of Kung (1983) becomes more appropriate for the control scheme. In this case, the speed of this "wavefront" will be decided by the slowest processing unit along each wavefront. In modified fast Givens algorithm, equations for boundary cell are non-recursive and can be done in parallel if we can double the computational capability of each boundary cell. In this case, the wavefront speed and then the throughput rate can be doubled. The sys tolic array we discussed above will generate estimation error at each clock period. While the estimated vector $\mathbf{8}$ is not shown explicitly, 8 can be solved by back substitution which can be done by just appending a nxn identity matrix after the coefficient matrix A.

3. MINIMUM VARIANCE ESTIMATIONS AND KALMAN FILTERING

Often the signal vector x is a random process and can be modeled as a first order recursive equation. In this case, a first order recursive estımation (or Kalman filtering) problem can be stated as follows,

where F and C are time-varying coefficient matrices with dimension nxn and mxn respectively. w_{k} is a $n \times l$ and v_{k} is a mxl zero mean noise vectors with known covariance matrices W_{k} and V_{k} respectively. It is assumed that noises w and v are uncorrelated and $E\left[w_{i} w_{j}\right]=E\left[v_{i} v_{j}\right]=0$ for all $i \neq j$. Under the minimum variance criterion, we want ${ }^{i}$ to find \hat{x}_{k}^{j} for all k, such that $E\left\|\left(x_{k}-\hat{x}_{k}\right)^{2}\right\|$ is minimized. Kalman showed that \hat{x}_{k} can be obtained by the recuisive algorithm given as

The information matrix is defined as the inverse of the error covariance matrix P. Besides [3], it is shown that instead of propagating the error covariance matrix, the kalman filtering problem can be solved by propagat ing the information matrix during the iterations. Both covariance and information filters are recursive since the current updating depends only on results from previous stage. The choice between covariance filter and information filter depends on the values of n and m. When $n>m$, which is usually the case, the original kalman filtering is chosen to avoid the inverse of the nxn matrix. However, Kalman algorithm is known for its poor numerical properties, especially for non-observable coȩfficient mat rices. The original kalman filter needs an approximate $O\left(n^{3}\right)$ multiplica tion time for each iteration. If $m>1$, computation of a matrix inversion is inevitable. Since all equations are sequential in manner, if real time computation is required for a Kalman filtering problen, some modifications must be done to insure the capability for parallel computation. Among many possible modified algorithns, square-root filtering have been proved to have computational efficiency and robust numerical properties under finite word length effect (Kaninski 1971). The main advantage of the square root filter is that we can handle the covariance matrix by its square root form which has condition number smaller than the original one. Therefore, for ill-conditioned problens, when we used the square root fil ter with a single precision machine, we can expect the same numerical result as if we have used the original algorithm on a double precision machine. Updating processings for both square root covariance filter and square root information filter can be expressed in matrix forms and handled by the $Q R$ decomposition method which is capable of systolic array implementation. However, only square-root information filter allows us to update the estimated state vector as well as the information matrix by using the same transformation matrix Q. When both updated covariance mat rix and state vector are important to us, we find square-root information filter is a better solution for the systolic array implementation. The square-root information filter requires computation of the inverse of the coefficient matrix F, which will cause bad numerical properties for F being near singular. One version of the square root information matrix method for Kalman filtering was considered by Paige and Saunders (1977). It is shown that by using whitening processing through Cholesky decomposi tion, the Kalman filtering can be represented as a simple least-squares problem. This approach does not require the computation of the inverse of the matrix F and is more suitable for systolic array implementation.

The whitening processing can be briefly described as below. Assume $W=\tilde{L}^{\prime} \tilde{L}^{\prime}$ ' and $V=\tilde{L}^{\prime} \tilde{I}_{V}$ ' are the Cholesky decomposition of covariance

 icentity covafiance matYices.

Denote $\tilde{F}=L{ }^{\prime} F, C=L$ ' C, and $\tilde{y}_{k}=L^{\prime} y_{k}$. We can express the whitened system equations in the matrix-vector form as
[4] Since the noise vector in [4] has zero mean and identity covariance mat rix, we can get $X_{\text {min }}=\left[\mathrm{K}_{1} \ldots . . \hat{X}_{k}\right]$ by solving [4] as a LS problen. After applying $Q R$ decomposition to [4] at time k, we have

$$
\left[\begin{array}{llll}
R_{1} & R_{12} & 0 \tag{5}\\
\cdot & R_{2}^{12} & R_{23} & \\
\bullet & & R_{k-1} & R_{k-1, k} \\
0 & & & \\
R_{k}
\end{array}\right]\left[\begin{array}{c}
x_{1}, k \\
x_{2, k} \\
! \\
\cdot \\
x_{k-1, k} \\
x_{k, k}
\end{array}\right]=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
\vdots \\
\frac{y_{k}-1}{y_{k}}
\end{array}\right]
$$

We can see that $R_{i}, i=1,2 \ldots k$, in [5] are all upper triangular matrices, and \tilde{x}_{k}, the optimam estimated vector at time k, depends only on the last line, $k_{i . e ., ~}^{R_{k}} \hat{x}_{k}=\bar{y}_{k}$. Furthermore, at $T=k+1$, the updating equation depends on the last row of [5] only. That is, the QR decomposition at $T=k+1$ only depends on a $(2 n+m) x(2 n+1)$ matrix as in [6]. When the $Q R$ decomposition of $[6]$ is completed, we have $\overline{\bar{k}}_{k+1}$ (upper triangular) and Y_{k+1} ready for iteration of next stage.
where * is the term used to compute the residue.
The upper triangular matrix \bar{R}_{k} can be shown to be the square-root of the inverse of the error covariance matrix $P_{k}=E\left[\left(x_{k}-\hat{x}_{k}\right)\left(x_{k}-x_{k}\right)\right.$ ' $]$. That is, this algorithm, which propagates the square root Infomation matrix for next iteration, is actually a modified square-root information filtering.

4. SYSTOLIC ARRAY IMPLEMENTATIONS FOR KALMAN FILTERING

From last section, we can see that the basic operations for square root Kalman filtering can be described in two parts. The first one, whitening processing includes operations such as Cholesky decomposition, inverse of triangular matrix, and matrix multiplication. Secondly, the QR decomposi tion is applied. Obviously, these two parts can be operated in parallel. That is, we can start the whitening processing for the ($k+1$) st iteration as well as the QR deconmosition for the k-th iteration at the same time in a pipelined manner.

The original square-root information filter involves the computation of the inverse of the coefficient matrix F which not only increases the com putational complexity but also causes bad numerical properties when coef ficient matrix F is singular or near singular. This shortcoming can be
recovered by choosing the modified square root infomation filtering in [4]. As shown from [4]-[6], formulation of the modified square-root information filter involves only multiplication between coefficient mat rices and the inverse of the square root noise covariance matrices. For noise with positive definite covariance, square root covariance matrix always exists.

4.1 Whitening Processing

The whitening processing is done by multiplying the coefficient matrix with a whitening operator L^{\prime} where (LL') ${ }^{-1}$ is the given covariance matrix of the additive noise. Since a covariance matrix is a positive definite symmetric matrix, the square root matrix can be obtained by the Cholesky decomposition. A triangular systolic array for Cholesky decomposition is designed for this purpose with outputs skewed to match the input format of the $Q R$ systolic array.

The inversion of a upper triangular matrix is simple after we built the basic systolic array for QR decomposition. The idea for the inversion of a upper triangular matrix is the same as solving the back substitution.
With $U U^{-1}=I$, let $U^{-1}=\left[u_{1}, y_{2}, \ldots u_{n}\right]$, with y_{i} being a $n x l$ column vector. A matrix inversion can be \&ivided into n sets of linear equa tions, each having the form of $U_{y_{i}}=e_{i}, i=1,2, \ldots n_{p}$ where e_{i} is a $n x l$ column vector with i element eqdals to 1 , and all others ${ }^{2}$ being 0 , and can be solved by a systolic array.

4.2 QR Decomposition for Kalman Filtering

Equation [6] suggests that x_{k} can be solved as a least-squares solution by a $2 n \times 2 n Q R$ systolic array. However, serious delay will be caused by the fact that R_{k} and \bar{R}_{k+1} are not in-place computations. That is, we have trouble to fove the newly formed R from the upper-right corner to the low er-left corner in our triangular array for the next iteration. That is, the computation at stage $k+1$ can not start until the last element of R_{k} is completed. In this "waiting" period, most of processing units are idle and the pipeline is empty. It will cause delay for at least 2 n clock periods.

This disadvantage can be overcome by in-place computations for \bar{R}_{k} and \bar{R}_{k+7}. This can be done by partitioning the original matrix into ${ }^{k}$ two strtps, and perform the partitioned $Q R$ decomposition by the systolic array structure proposed in Figure 2. In this approach, a nxn QR systolic array as well as a rotation array which consists of $n x(n+1)$ internal cells are used. Once elements of R_{k} are formed, it is ready to be used for computations at stage $k+1$. Here we need only to pass transformed elements generated by the first strip to the rectangular rotation array for the pre-processing of the second strip. This input format is shown in Figure 3. Since all these can be done in fully pipelined manner and in-place computations are obtained, complicated inter-cell connection and control scheme can both be avoided. To obtain the estimated value \hat{x}_{k}, we can just append an identity matrix I after the second strip, and we get result every $3 \mathrm{n}+\mathrm{m}$ clock periods.

5. CONCLUSION

In this paper, we first survey existing algorithms for least-squares esti mations by systolic arrays. Basic comparisons are made based on computa tion and inter-cell connection complexities of elementary units. Finally, by choosing the square-root information filtering algorithm, we showed a simple way to solve the Kalman filtering as a least-squares problem that can be processed by systolic arrays. Systolic array for Cholesky decompo sition is also proposed for whitening processing. By manipulating the data properly, the Ralman filtering can be processed under fully pipelined manner. There is no special constraint on our system equations and stan dard time-varying coefficient matrices and non-stationary colored noises are assumed in our model. Most of the processing units we need for this square root information filter do not involve square-root computations. The only exception is the computations for the Cholesky decomposition. However, for pipelined operation between whitening processing and $Q R$ decomposition, the later certainly involved more computational work than the former. Since there is only n square-root computations required in each iteration as compared with the operations required for OR decomposi tion, Cholesky decamposition will not become the bottleneck for this algo ritmm. For many real life problems where we can assume noises are sta tionary, then covariance matrices W and V are fixed during our operation. In this case, inversed square-root covariance matrices can be obtained by pre-processing and our Kalman filtering can be solved as a simple leastsquare problem. Since all operations can be performed by the designed systolic array processing, which have the input/output formats matched to each other, the entire hardware design can be viewed as a pipelined struc ture. The estimated yector can be obtained with the $O(n)$ in time while compared with the $O\left({ }^{3}\right)$ for the original kalman filter. Finally, since this is a square root matrix operation, good numerical property can also be obtained.

This work is partially supported by NASA/Ames Research Contract NAG-2-304

REFERENCES

Bierman G 1977 Factorization Methods for Discrete Sequential Estimation, Academic Press, NY
Bieman G 1982 Square-Root Information Filtering and Smoothing for Preci sion Orbit Determination, Math. Programming Study 18
Bjorck A 1967 Solving Linear Least Squares Problems by Gram-Schmidt Ortho gonalization, BIT 7 1-2l
Duncan D B and Horn S D 1972 Linear Dynamic Recursive Estimation from the Viewpoint of Regression Analysis, J. ASA 67 815-821
Dyer P and McReynolds S 1969 Extension of Square-Root Filtering to Include Process Noise, J. Opt. Theory and Appl. 6 444-459
Gentleman W M 1975 Error Analysis of QR decompositions by Givens Transfor mations, Linear Algebra and Its Applications, 10 189-197
Gentleman W M 1973 Least Squares Computation by Givens Transformations Without Square Roots, J. Inst. Math. Appl. 12 329-336

Gentleman WM and Kung H T 1981 Matrix Triangularization by Systolic Arrays, Proc. SPIE, Real-Time Signal Processing IV, 298 19-26
Hammarling S 1974 A Note on Modifications to the Givens Plane Rotation, J. Inst. Maths Appl. 13 215-218
Kalman R E 1960 A New Approach to Linear Filtering and Prediction Prob lens, J. Basic Engineering, 82 35-45
Ralson S and Yao K 1985 Systolic Array Processing for Order and Time Recursive Generalized Least-Squares Estimation, Proc. SPIE, Real-Time Signal Processing VIII, 564 28-38
Kaminski P G et al 1971 Discrete Square Root Filtering: A Survey of Our rent Techniques, IEEE Tran. on Auto. Control, 6 727-736
Kung H T 1982 Why Systolic Arrays, IEEE Computer, 15 37-46
Kung S Y 1983 VLSI Design for Massively Parallel Signal Processors, Micro processors and Microsystems
Lawson C and Hanson R 1974 Solving Least Squares Problems, Prenticemall, N
Lee D T, Morf M and Friedlander B 1981 Recursive least square ladder esti mation algoritrms, IEEE Tran. ASSP, 3 627-641
Ling F and Proakis J 1984 A Recursive Modified Gram-Schmidt Algorithm with Application to Least Squares Estimation and Adaptive Filtering, Int. Sym. on Circuit and System
Mead C and Conway L 1980 Introduction to VLSI systems, Addison-Wesley, Mass.
MoWhirter J G 1983 Recursive least-Squares Minimization Using a Systolic Array, Proc. SPIE, Real-Time Signal Processing VI, 431 103-112
Paige C C and Saunders M A 1977 Least Squares Estimation of Discrete Lin ear Dynamic Systems Using Orthogonal Transformation, SIAM J. Numer. Anal., 14 180-193

Figure l: Systolic array for least-squares estimation.

Figure 2: QR systolic array for Kalman filtering

Figure 3: Input format for systolic array Kalman filtering

