C.Y. Chang and K. Yao

Electrical Engineering Dept. i;;L'
University of California
Los Angeles, CA 90024

. i (3
ORIGINAL PAGE
OF POOR ‘QUALITY
o ABSTRACT

A systematic approach is presented for
designing systolic arrays and their equivalent
configurations for certain general classes of
recursively formulated algorithms. A new method is
also introduced to reduce the input bandwidth and
storage requirements of the systolic arrays through
the study of dependence among the input data. Many
well known systolic arrays can be rederived and
also many new systolic arrays can be discovered by
this approach.

I. INTRODUCTION

A systolic array is a network of processors
that rhythmically process and pass data among
themselves, It provides pipelining, parallelism,
and simple adjacent meighbor cell interconnection
structure so that it is suitable for VLSI
implementation. While most of the earlier systolic
array algorithms were discovered heuristically
[1-3], there has been various work on systematic
approaches to the design of systolic array
aslgoritmms [4-6)., Ian this paper, we shall present
8 systematic approach for designing systolic arrays
and especially focus on their equivalent
configurations for certain general classes of
recursively formulated algorithms. In order to
reduce the input bandwidth and storage requirements
of the systolic arrays, the dependence among the
input data is also investigated in details, It is
shown that many well known systolic arrays can be
rederived and also many mev systolic arrays can be
discovered by this systematic approach. For
simplicity of illustration, we mainly consider the
linear systolic array in this paper. The same ideas
can 8lso be generalized to the two dimensional
mesh-connected systolic arrays.

II. IMPLEMENTATION OF RECURSIVELY
FORMULATED ALGORITHMS

Consider tvo simple but important ways of data
flow pattern in & livear systolic array as shown in
Figure 1 and 2. 1Ibo these twvo figures, P., Q., and
b.. are three given input datsa aequenceslandJR. is
tdbe the output data sequence, where 0<i<m-] dnd
0<j<p-1. For the systolic array, ghown in Figure
1, Q. and R, sre stored in the j processor, where
R, vill be deated while P, is moving to the right
add b.. is moving down, For the BystoliEhAtray
shown*in Figure 2, P. is stored in the i
processor and R, will be updated as it is moving to
the right with d. wvhile b.. is moving down. All of
the dats movements are ly%éhronized. The R.'s will
successively bave the required ouvtput dsta dfter m
steps, For coovenience, according to the R.'s
behavior of these two systolic arrays, they-”are
respectively named as R-stay and R-move lipear
systolic arrays., There is great similarity between
these two systolic arrays. It can be shown that a
large class of interesting problems in the real

' ‘ON SOME EQUIVALENT CONFIGURATIONS
OF SYSTOLIC ARRAYS

—— ‘:£>l ;b

7.

cD14eo”

N8 6'IF007 0

“world can be implemented by thebe two types of

linear systolic arrays. Besides, various different
but equivalent configurations of linear systolic
arrays can also be derived from them.

Procedure 1 ¢ Given any problem which can be
formulated so that it has P., Q., and b.. as three
input dsta sequences and R.%as fhe outp&e data
sequence, where 0<igm-1 and 0<jsn-1, if R. can
be generated through the following recurrénce
equation
[i+1] _ . p [i)

nj = £(P;, Qj. bij' xj P (1)
vhere R.[o] contains some initial value, £ is £33
functitﬂlof four variables P., Q.» bi" and R, »
and R, is the required outputjdataJR.. thed this
problém can be implemented by the R-stay linear
systolic array of n processors and the R-move
linear systolic array of m processors. [

The complexity and the configuration of the
systolic array depend on the complexity of the
function f and the generation procedure of b...
Some regularity and dependence among bi"'
greatly simplify the whole system. 3

I111. MAPPING INTO FAR-IN TYPE
LINEAR SYSTOLIC ARRAY

Note that for the two linear systolic arrays
shown in Figure 1 and 2,-the input bandwidth and
storage requirements are large in comparison to the
number of processors in the arrsy, which may be
either infeasible or inefficient for many
applications of interests. This is mainly because
the dependence among the b..'s is not efficiently
utilized so that each procedsor needs its own
external input connection due to tbe existence of
all the bi.'s. It is expected that under certain
circumstafides not all of these external input
connections are required. In this paper, we are
also very interested in the issue of reducing the
input bandwidth and storage requirements by showing
under wvhat conditions these external inmput
connections can be removed so tbat only the very
first processor is allowed to have such a
connection, i.e., the input sequences can only be
fanned in through the systolic array. It is shown
that the existence of certain patterns of
dependence among the bi.'s allovs themselves to be
fanned-ipn generated by llightly modifying the
operations involved in each processor witbout
losing the property of adjacent neighbor
interconnection structure. These conditions are
shown in the following two procedures.

Procedure 2 : For the R-stay linear systolic
array, if bi' can be determined through the
following deﬂendence equation

b.. = T(b.

i) x-l.j‘ b;

1.5-1= ui: vj). (2)

vhere u 1;'c“variable wvhich depends only on i, v;_—

is a variable which depends only on j, and T is a
function of four variables, them b.. can be
generated by the fan-in scheme ayatalic array as
shown in Figure 3 rather than being broadcast as
shown in Pigure 1. Also note that b_, . as well as
v.. vhich depends only on j, can be préioaded in
the j processor, and b. . as well as Ule vhich
depends only on i can be dséd ss a fsnned=in input
eequence. [

Note that for the R-stay linear systolic array
shown_in Figure 1, if b.. is the curreat input to
the j procesgpr, then i-1.3 is the previous-
input to the j processof ggd bi -1 is the
previous input to the (j-1) proééseor. It is
understandable that in order to avoid the violation
of the adjacent neighbor interconnection structure,
b.. can only depend on b._l . and b, . . as well as
tBd data that can be pre}oaaéd and £8d Aata that
can be fanped in, which is what Procedure 2 ie
about. 1Io general, the systolic array shown in
Figure 3 has two sets of imput data. One of them
consiste of three fanned-in data sequences, P,, use
snd b. ., vhich depend only on the i index, &nd
the offier set consists of three preloaded data
sequences, Q., v. and b_l .» which depend only on
the j index,lwhede u . v:idb. .y 8od b_, . are used
to generate all the B;"J’ P87 each protéssor,
four registers are teqaired. namely Q , V , B and
R, where registers Q a&nd V_ are usedPro Btore the
preloaded data Q. and v, regpectively. Initially
registet[alis lodded as b_, . and register R is set
to be R.'"7, both of which %111 be updated as the
systolic array start operation., The reason to
include so many data sequences is to take care of
the general cases, Hovever, it is expected that in
many applications, not all of these fanned-in and
preloaded data sequences are required, It is often
tbe case that the fan-in generation process of b, .
simply depends on two or three data sequences vhidn
can eitber be fanned-in or preloaded. Similarly
for the R-move linear systolic array, very similar
results can be obtained as follows, :

Procedure 3 ¢ For the R-move linear systolic
array, if bi' can be determined through the
folloving deﬂendence equation

b.. = T(b,

ij i-1,3° bi.j' (33

1; ui: vj).
vhere u. is & variable which depends only ob i, v,
is a variable which depends only on j, and T is a
function of four variables, then b,. can be
generated by the fan-in scheme sysfalic arrsy as
shown ipn Figure &4 rather than being broadcast as
shown in Figure 2. Also note tbat b. _, ss well as
V., W ﬁch depends only on i, can be ﬁfe}oaded in
the i~ processor, and b_, . as well as v, which
depends opnly on j, can be tded 8s & fanned-in input
sequence. 0

Note that for the R-move linesr systolic array
shovntgn Figure 2, if b.. is the current ioput to

the i procesgpr, then Q- is the previous
ioput to the i processor‘égé b. , ; is the
previous input to the (i-1)°" proceddor. What

procedure 3 says simply repeats the fact that in
order to aveid the violation of adjacent neighbor
ioterconnection structure, bi' can only depend on
b._, . and b, .1 &8 vell as’fhe data that can be
p%eléaded and’dhé dats that can be fanned in. In
geveral, the systolic array shown in Figure 3} has

‘two sets of input dsta., One of them consists of
three fanned-in dats sequences, Q.» V., 80d b_, .,
which depend only on the j index,JandJthe other'jet
consists of three preloaded data sequences, P., u.e
aud b, _., which depend only on the i index, where
U., vf: &. and b—l . are used to generate all
the b?.'lf'-}or each ﬁ)ocessor. three registers are
requi%ad. namely U , B and P, vhere registers P and
U_ are used to stofe the preloaded data P, and u..
Ihitially register B istbiaded as bi _, aud outpit
data R, is set to be R, -, both of ¢hdch vill be
updatea as the systolic array start operatiom.

The previous three procedures provide & rather
systematic approach to design the systolic array
erchitecture for the implementation of a given
problem. At first, by checking the existence of
the recurrence relationship as shown in equation
(1), ve are able to know if there exist any
systolic arrays as shown in Figure 1 and 2. Rext,
by checking the dependence among the b..'s as shown
in equations (2) and (3), wve are able td xnow the
existence of the fan-in type systolic arrays as
shown in Figure 3 and 4 so that only small input
bandwidth and storage are required. The key issue
is in bow to search for the recurrence function f
and the dependence function T, It is expected that
there may exist several different forms of
functions due to different possible approaches to
formulate. a given problem, Various forms of these
functions simply create many different but
equivalent configurations of systolic arrays. Also
pote that in the previous discussion, P, Q, b, u,
and v sre somewhat treated as single variables,
however it ie clear that they can be set of
variables and the same results still bhold. This
approach can be applied to design systolic arrays
for many interesting problems in the real world.
Various mew configurations of systolic arrays can
be derived. 1In the next section, we shall
illustrate this design approach by comsidering the
DFT algorithm,

IV, SYSTOLIC ARRAY ARCHITECTURE
FOR DISCRETE FOURIER TRANSFORM

Given n discrete data 8 in the time domsin,
vhere 0<i<n-]l, and n discreté frequencies W, =
(eiZWII)j J

‘n-}1
n-lvj

va WP L eraN, +a.

=8 n-2j 17 0

Y5
Let

f(Po Q. b; R) = (RXb) + P,

By induction, it can be shown that by letting
i+) i
y Ciedd . (Y.F]

[ol

x Hj) +a %)

and y. e then y.[n 1] = y.» is the
required output. The ex!stence of”a recurrence
function £ and the satisfaction of the recurrence
relationship guarantee that there exists systolic
arrays for the implementation of discrete Fourier
transform as shown in Figure 5 and 6.

n-i-2

It can be seen from Figure 5 and 6 that the
b..'s are not totally independent., Note that P, =
a i._ and b.. = W.. 1In order to see if b,. cad be
fgnées—in ge%étatea. let us examine the da

in the frequency domsin, where 0<j<n-1,
the discrete Fourier tranmsform (DFT) is to compute

ORIGINAL PAGE iS

OF POOR QUALITY

‘

“dependence among the b 's. Many different forms
of dependence function $ exist. For example,

Bij - I®ior,5® PaLgad it vy (s
B
vhere v, = W,. The pair of systolic arrays based

on equalions?(4) and (5) sre shown in Figure 7 and
8., The systolic array showvn in Figure 8 is the
wvell konown systolic DFT [2), whose discovery
appears to be beuristic rather than in a systematic
manner ss from our approach, For anotber example
of T function, note that

v, =wd:ygily

P35 2 %3 e W -
100.. ‘.j-l 1
b.. = T(b, b, Lt u.dwv,)
ij _ 4 d=lyi’ Tiej-1® Tit U
b;, S8, (6

vhere u. = Hl snd bi 4 =V -1. vhich can be either
used as” fanned-in seluences of the R-gtay linear

. . .t
systolic array or preloaded in the i processor of
tbe B-move linear systolic array. The pair of
systolic arrays based on equations (4) and (6) are
shown in Figure 9 and 10. : ‘

Another interesting issue is that the type of
function £ used in this example does not belong to
the class of general matrix vector multiplication.
This confirm the fact that tbe class of problems
covered in the Procedure] really contains mot only
the class of general matrix vector multiplication.
As wvell known, tbere are two different ways to
consider the discrete Fourier transform. One shows
that the DFT is & specisl case of the evaluation of
s polynomial snd the otber shows tbat the DFT is a
special case of genmeral matrix vector
multiplication. Tbe first way was just considered
in this example. Llet us see what can be obtsined
by folloving the second way. Let

£(P, Q. b; R) =R + (P x D),

By induction, it can be shown that by letting

(iel) [i] i

. sy, + (a. z W, 7
’J ’J (1 J). ()
and y.[°] = 0, then ’.[n] = y., is the required
outpue. The existencd of a néw recurrence function
f and the satisfaction of the recurrence
relationship guarantee that there exists systolic

arrays for tbe implementation of DFT as sbown in
Figure 11 and 12,

From Figure 11 and 12 it can also be seen that
the bi.'s are not totally independent., Note that
Pi = ag and bi' = W.”, Let us examine the data
dependénce amoﬂg the bi.'s. Note that

J
b.=wlrtawdawily oy iy
EES IR 1T
i.e., leJ-lid
b.. = T(b, s b. . St u.sv.)
ij 1-1,3° Ti.3-1° "1 73
= b, 518 (8)
where u, = W. and b. = H.-l. which can be either

used as’fanndd-in sédaenceslof the R-gtay linear
systolic array or preloaded in the i processor of
the R-move linear systolic array. The pair of
systolic arrays based on equations (7) and (8) are
shown in Figure 13 and 14. Also note that

b.. = H.' = W. w
Jopd oW, 3
i.e. i-l.37)
.. = T(b. s b. . .3 u.3 v.)
le - :(‘-!6?: i.j-1* it 7§ (9)
i-1,5)
vhere v, = W, and -1. wvhich can be either

.= W
preloaddd inlthe jkhlﬁ)ocesgor of the R-stay linear
systolic array or used as fanned-in sequences of
the R-move linear systolic array. The pair of
systolic arrays based on equations (7) and (9) are
shown in Figure 15 and 16.

This DFT example shows that under certain
circumstances it is possible to formulate a given
problem in several different ways to implement with
various different but equivalent configurations of
systolic arrays.

V. CONCLUDING REMARKS

A systematic approach is presented for
designing systolic arrays and deriving their
equivalent configurations for certain general
classes of recursively formulated algorithms. This
approach can be considered 88 8 tvo-stage design
procedure. In the first stage, the existence of
recursiveness is investigated., If it exists,
according to the same formulation the input data
are classified into three parts, tvo of them, P,
and Q., depend only on one index, and another ofie
of thdm, namely b.. depends on both index i and j,
so that the systoiic arrays shown in Figure 1 and 2
apply. However, for certain applications, it is
eitber infeasible or inefficient to store all of
the b..'s. Ibp the second stage, the dependence
among ¢he b,.'s is then investigated to see if it
can be used*fo fan-in generate the b..'s through
the data sequence that can either belﬂreloaded or
faoned in, For & given problem, various
formulations of the recursive property and the
dependence among the b..'s are possible, which
simply lead to many ditferent but equivalent
configurations of systolic arrays.

So far we mainly deal witb the linear systolic
arrays. Howvever, the same technique can be essily
generalized to the two dimensional mesh-connected
systolic arrays, since the mesb-counected systolic
arrays can be simply trested 8s the concatenation
of many livear systolic arrays.

V. ACKROWLEDGEMENT

This work was partislly supported by the
RASA/Ames research contract RAG-2-304.

VII. REFERENCES

1. H, T. Kung and C, E. Leiserson, 'Systolic
Arrays (for VLSI),' Proc., Symp. Sparse Matrix
Computations and Their Applications, Nov. 2-3,
1978, pp. 256-282.

2. B. T. Kung, ‘'Why Systolic Architectures,®
Computer, Jan, 1982, pp. 37-45.

3. H. T. Kung, 'lLet's design algorithms for VLSI
systems,' in Proc, Caltech Conf. on VLSI, pp.
65-90, Jan. 1979. .

4. P. R. Cappello and K. Steiglitz, 'Unifying VLSI
Array Design with Geometric Transformations,'
Proc. Int. Conf. on Parallel Processing, pp.
448-457, Bellsire, Michigan, Aug. 1983.

«

s, p. I.

Moldovan, '0n the Design of Algorithms
for VLSI Systolic Arrays,' Proc. IEEE, V 71, B
1, pp. 113-120, Jan 1983, . :
6. W. L. Miranker and A, Winkler, 'Spacetime
Representations of Computational Structures,'
Computing. V 32, 1984.

bm-1,n-1

+ AL C

ORIGINAL 'PAGE s

bin . bm-1,n-1
Qin P » Qout bi,n-1 .
Rin > Rout bo,n-1,
o . bm-1,1
Route= f(P,Qin,bin;Rin), . ° bm-1,
QO\.I'.Q.QXD bii . ¢
. boy bio l
boo | :
@-1,...,Q,Q Po P + = Pm-1
Rn-1, Ri1,Reo — ool

Figure 2: The R-move linear systolic

bin .
¥ . .
Pin Q.R> Pout bn-1,1 .
bm".o .
. . , b1,n-1
Pout€-Pin . ° . bo,n-1
Re£(Pin,Q,bin;R) b1y . l
bio bo1 .
boo l .
Qo %)) Q-
Pm-1,...,P1,Po —3 Ro Ri oo Rn-1
Figure 1: The R-stay linear systolic
array.
wn j Vp =+ uout B«—T(B;bin;uin;Vp)
bin B,Qpl— bout R—f(Pin,Qp .,B;R)
Pin R > Pout Uoute- Uin , boute B
Poutée Pin
um-1 R 1 | » U0 Vo Vi - Vn-1
bm-l.-l....,bl,-l,bo,-lj Qe fe-4{Qn-1
Pm-1 y e P1 , Po Rot+Ri f+-+oRn-1

Figure 3: The fan-in scheme of R-stay
linear systolic array. Note that the
register B in the jth processor is
initially loaded with b-1,34.

Win Wn-1
. ¢ L4
ain —» Y }>» aocut Wi .

Wo .

. . . Wn-1
aoute—~ ain . . Wn-1
Ye(yxWin)+ain w1 P l

Wo W1 .

Wo | .

) '
a0,...,8an-3,an-2 —» Y0 3 ¥yl | ¢¢ ~—nYyn-1

Figure 5: R-stay linear systolic array of
discrete Fourier transform based on

equation (4),

.array.

vin —sUp I vout Be-T(bin;B;Up;vin)
bin - B,P s bout Route f(P,Qin,B;Rin)
Qn —» —> Qout Vouté—Vvin ', boute B
Rin —» — Rout QouteQin

vn-1 Y ,vo —s Uo}a{Ur |s.Um-1
b-1,n-1, ..,b-x.x,b-x,o{ PolsP1 {a.4Pm-1
Qn-1 R 4.1 ’ L’"ﬁ

Rn-1 P 31 » Ro - -

Figure 4: The fan-in scheme of R-move
linear systolic array. Note that the
register B in the ith processor is
initially loaded with bi, -1.

Win Wn-1

[4 * .

¥Yin = a > yout ¥Wn-1 .
Wn-1 .

. " . W

Yout«—(yinxWin)+a . Wo

W1 P l

Wi Wo .

Wo] l

yn-1,..,¥1,¥50 E lan - 3f—» +» —p 80

Figure 6: R-move linear systolic array of
discrete Fourier transform based on
equation (4).

ain —3 ¥p }» aout 8out ¢ A&in

y Y& (yxWp)+ain
\ Wo W Wn-1
a0 ,...,an-3,a8n-2 3 YOI~ ¥1 > —»yn-1

Figure 7: R-stey linear systolic array of
discrete Fourier transform based on
equations (4) and (5).

Win— a > Wout Wout<e Win

yin — > Yout Yout ¢ (YinxWin)+a
Wn-1,...,M1 ,Wo —>an-2 an-3p—-- ao
yn-1,...,¥,y0 —u e ¢ ¢]

Figure 8: R-move linear systolic array of
discrete Fourier transform based on
equations (4) and (5)

Wout 1~ Win1
Wout 26~ Wini1xWin2

Win1 — L > Wout1
Winz—> ¥y > Wout2

ain — aout y< (yxWout2)+ain
8out¢— 8in
Wi —» — i
Wi-1— yo* v1p®»*+ —yn-1
a,...,an-3% ,a8n-2 —» |t > o ¢ =

Figure 9: R-stay linear systolic array of
discrete Fourier transform based on
equations (4) and (6).

Win . Wn-‘n‘l
¢ L]
ain—» Y t=» 8out Win-1 .
Won-1 .
s Wn-11
- . ° °
Boute— &iN Wn-1
yé-y+(ainxWin) Wil . |
Wol W10 .
Woo | .
J 4)
an-1,...,81,80 — Y0 | V1 e —plyn-1

Figure 11: R-stay linear systolic array
of discrete Fourier transform based on
equation (7).

Wini -+ Wout1 Woutile Wini

Winz = y | Wout2 Wout2¢~Win1xWin2

ain — |+ aout vé y+(ainxWout2)
aouté 8in

Wn-1 ,...,wl .Wo =a =il .

Wn-1-1,..,,W1-1 ,Wo-1y yo|ryr |+reedyn-2

an-1 ,...,al , 80 ! b+ o~

Figure 13: R-stay linear systolic array
of discrete Fourier transform based on
equation (7) and (8).

Vp 8oute &in
B Be VpxB
ain — ¥y t{—»a8cut Ye— (8inXB)+y

Wo L} Wn-1
;41 , 80 3 YO | 1 —p> ¢ ¢ o —p{YD~1

an-1,...

Figure 15: R-stay linear systolic array
of discrete Fourier transform based on
equations (7) and (8). Note that in the
jth processor, register Vp is preloaded
with W3 and register B is initially
loaded with W3-1.

B BeUpxB
¥in - & |» yout yout ¢ (yinxB)+a

Wi w1 w1
-3¥1,¥0 —slan-2l—»an- e e —3 ao

Figure 10: R-move linear systolic array
of discrete Fourier transform based on
equations (4) and (6). Note that register
Up is preloaded with W1 and register

yn-1,..

B is initially loaded with Wi-1,

Win Wn-10-1
L]
L[]
Yin—sl @ }» Yout Wn-11 :
Wn-310
Win-1
Youte Yin+(axWin) :) *, Won-1
Wil . |
w10 Wol .
Woo© | .
YA-1,...,¥1,Y0 — 80 |»| @1 t» . . —dan-1
Figure 12 : R-move linear systolic array

of discrete Fourier transform based on
equation (7).

Up :
B B« UpxB .
yin — a }s yout yout ¢ (yinxB)+a
Wo Wi Wn-1
Yn=1,...,Y1,Y0 —p 80 Lp 8l jugp » ¢ wp{Bn-1

Figure 14: R-move linear systolic array
of discrete Fourier transform based on
equations (7) and (8). Note that in the
ith processor, register Up is preloaded
with Wi and register B is initially
loaded with Wi-1.

Winl — - Wout Wout 1&—Win1

Winz — & |» Wout2 Wout 2¢~ Win1 xWinz2
Yin L Yout Youte Yin+(axWout 2)
Wn-1 v e oo W2 » Wo —> =
Wn-1-1,...,W1-1 Wo-l aof|dar }e..—slan-1
yan-1 ,...,¥1 ,y0 —» - EPE—

Figure 16: R-move linear systolic array
of discrete Fourier transform based on

equations (7) and (9).

