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1. INTRODUCTION

Least-squares (LS) estimation is a basic operation in many signal process
ing problems. Given y=Ax+v, where A is a mxn coefficient matrix, y is a
mxl observation vector, and v is a mxl zero mean white noise vector, a
simple least-squares solution is finding x which minimizes ||Ax-y||. It is
well known that for an ill-conditioned matrix A, solving least-squares
problems by orthogonal triangular (QR) decomposition and back substitution
has robust numerical properties under finite word length effect since
2-norro is preserved. Many fast algorithms have been proposed and applied
to systolic arrays. Gentleman-Kung (1981) first presented the triangular
systolic array for a basic Givens reduction. McWhirter (1983) used this
array structure to find the least-squares estimation errors. Then by
geometric approach, several different systolic array realizations of the
recursive least-squares estimation algorithms of Lee et al (1981) were
derived by Kalson-Yao (1985). We consider basic QR decomposition algo
rithms and find that under one-row time updating situation, the House
holder transformation degenerates to a simple Givens reduction. Next, we
derive an improved least-squares estimation algorithm by considering a
modified version of fast Givens reduction. From this approach, the basic
relationship between Givens reduction and Modified-Gram-Schmidt transfer
nation can easily be understood. We also can see this improved algorithm
has simpler computational and inter-cell connection complexities while
compared with other known least-squares algorithms and is more realistic
for systolic array implementation.

Minimum variance estimation (popularized by Kalman (I960)) is the general
ized form of a least-squares problem, where the state vector x is charac
terized by the state equation Xfc+î fXk4'*'' ̂ e system noise w and the
observation noise v are colored. The original algorithm presented by Kal
man can have poor numerical property. Some algorithms for improving
numerical properties, such as square-root co-variance and square-root
information methods have been studied. Now, we find that after the whi
tening processing, this minimum variance estimation can be formulated as
the modified square-root information filter and be solved by the simple
least-squares processing. This new approach contains advantages in both
numerical accuracy as well as computational efficiency as compared to the
original Kalman algorithm. Since all these processings can be implemented
by systolic arrays, high throughput rate computation for Kalman filtering
problems become feasible.



2. SIMPLE LEAST-SQUARES ESTIMATION

Given the equation b=Ax+v, it is well known that we can solve the least-
squares solution H by normal equation. However, this approach not only
requires tne computation of a matrix inverse but also doubles the condi
tion number when we form A'A. Although using singular value decomposition
for least-squares solution can improve numerical properties, the computa
tional complexity involved in SVD is not low. Besides, fast algorithm for
SVD is still underdevelopment. Lattice structure for least-squares solu
tion was proposed and studied by Lee et al (1981). This approach was
shown to have stable numerical property and regular hardware structure.
However, this method required shifting property of the coefficient matrix
and can not apply to all general cases. QR decomposition is another solu
tion to obtain x, since 2-norra is preserved by multiplying an orthogonal
matrix Q, then by letting QA=R be a upper triangular matrix, the x can be
obtained by using back substitution for the equation Rx=fc. This approach
has robust numerical properties since the 2-norm is fixed, the rounding
error caused by finite word length effect will not grow. Basically, there
are three ways for performing QR decomposition, namely, Householder trans
formation, Givens reduction, and Modified-Gram-Schmidt orthogonalization.
It can be shown that under one row time updating situation (as in the sys
tolic array implementation), the Householder transformation matrix will
degenerate to a simple Givens reduction case.

Systolic array implementation for QR decompositions in least-squares esti
nation was first explored by Gentleman-Kung and followed by McWhirter and
Kalson-Yao. By using a triangular systolic array, it was shown that the
estimation error for the last observation can be solved at every clock
period. The systolic array structure for least-squares estimation is
shown in Figure 2.1. To achieve fully pipelined operation, the input rows
are skewed and propagated like wavefronts in the diagonal direction. There
are only two basic processing units, boundary cell and internal cell, are
required by this systolic array. Communication between different process
ing units are all local. The properties of regularity and local communi
cation are consistent with the philosophy of VLSI implementation. Summary
of input/output formats and operation functions for two kinds of process
ing units are shown in Table 1 and Table 2 respectively.

Table 1. Input/Output format of systolic array algorithms
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The above symbols are for notations only, their physical meaning may
change for different algorithms.

Table 2. Operational functions of processing units
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From systolic array point of view, the difference between algorithms pro
posed by McWhirter and Kalson-Yao lies in the basic computations in two
kinds of processing units. Since these algorithms were derived from two
different approaches, specifically Givens reduction and Modified-Gram-
Schmidt orthogonalization, the basic relationship for these two QR decompo
sition methods under one row time updating can be compared as follows.
First, we derived the modified expression for the fast-Givens reduction as
given by
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the updating equation for this modified-fast-Givens algorithm becomes,
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By comparing the computational complexity between the fast Givens algo
rithm by Gentleman (1973) and that in II], we can see [1] has one multi



plication less than the original algorithm. And since we do not have
interest on the real rotated elements like (l/v3)dk. , we do not have the
risk of dividing by a very small d. The numerical properties of the modi
fied algorithm is then expected to comparable to the numerical properties
of the original one. By equation [1], the basic duality associations
between Givens reduction and Modified-Gram-Schmidt orthogonalization is
summarized in Table 3, which allows us to derive different algorithms for
least-squares estimation from different approaches with efficiency.

Table 3. Duality association for M-G-S and Fast-Givens reduction.
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With systolic array implementation, comparison of computational complexity
for algorithms discussed above can be made by comparing the number of
operations required in each processing unit. When the dimension of the
coefficient matrix becomes large, wavefront array processing of Rung
(1983) becomes more appropriate for the control scheme. In this case, the
speed of this "wavefront" will be decided by the slowest processing unit
along each wavefront. In modified fast Givens algorithm, equations for
boundary cell are non-recursive and can be done in parallel if we can
double the computational capability of each boundary cell. In this case,
the wavefront speed and then the throughput rate can be doubled. The sys
tolic array we discussed above will generate estimation error at each
clock period. While the estimated vector £ is not shown explicitly, £ can
be solved by back substitution which can be done by just appending a nxn
identity matrix after the coefficient matrix A.

3. MINIMUM VARIANCE ESTIMATIONS AND KALMAN FILTERING

Often tne signal vector x is a random process and can be modeled as a
first order recursive equation. In this case, a first order recursive
estimation (or Kalman filtering) problem can be stated as follows,

where F and C are time-varying coefficient matrices with dimension nxn and
mxn respectively, w. is a nxl and v. is a raxl zero mean noise vectors
with known co-variance matrices W. ana V. respectively. It is assumed that
noises w and v are uncor related and E [w. w . ] =E [v . v . ] =0 for all î j. Under
the minimum variance criterion, we want to find x? for all k, such that
E||(X. -xV) || is minimized. Kalman showed that xk can be obtained by the
recursive algorithm given as
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infonnation matrix is defined as the inverse of the error covariance
matrix P. Besides [31 , it is shown that instead of propagating the error
covariance matrix, the Kalman filtering problem can be solved by propagat
ing the information matrix during the iterations. Both covariance and
information filters are recursive since the current updating depends only
on results from previous stage. The choice between covariance filter and
information filter depends on the values of n and m. When n>ro, which is
usually the case, the original Kalman filtering is chosen to avoid the
inverse of the nxn matrix. However, Kalman algorithm is known for its
poor numerical properties, especially for non-observable coefficient mat
rices. The original Kalman filter needs an approximate 0(n ) multiplied
tion time for each iteration. If m>l, computation of a matrix inversion
is inevitable. Since all equations are sequential in manner, if real time
computation is required for a Kalman filtering problem, some modifications
must be done to insure the capability for parallel computation. Among
many possible modified algorithms, square-root filtering have been proved
to have computational efficiency and robust numerical properties under
finite word length effect (Kaminski 1971) . Hie main advantage of the
square root filter is that we can handle the covariance matrix by its
square root form which has condition number smaller than the original one.
Therefore, for ill-conditioned problems, when we used the square root f il
ter with a single precision machine, we can expect the same numerical
result as if we have used the original algorithm on a double precision
machine. Updating processings for both square root covariance filter and
Square root information filter can be expressed in matrix forms and
handled by the QR decomposition method which is capable of systolic array
ijnplementation. However, only square-root information filter allows us to
update the estimated state vector as well as the information matrix by
using the same transformation matrix Q. When both updated covariance mat
rix and state vector are important to us, we find square-root information
filter is a better solution for the systolic array implementation. The
Bquare-root information filter requires computation of the inverse of the
coefficient matrix F, which will cause bad numerical properties for F
being near singular. One version of the square root information matrix
method for Kalman filtering was considered by Paige and Saunders (1977) .
It is shown that by using whitening processing through Cholesky decomposi
tion, the Kalman filtering can be represented as a simple least-squares
problem. This approach does not require the computation of the inverse of
the matrix F and is more suitable for systolic array implementation.

processing can be briefly described as below. Assume
of covariance
can be proved that

=L 'v. vare whitened noises with

Denote F=L 'F, fc=L 'C, and y =L . 'y. . We can express the whitened
System equations in the matrix-vector form as

ity covar'ian'ce matrices.
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has zero mean and identity covariance mat
After

Since the noise vector in [4
rix, we can get X̂  =[*, f.xkJ by solving [4] as a LS problem.

QR decomposition to i41 at time k, we have
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We can see that R., i=l,2...k, in [5] are all upper triangular matrices,
and x., the opt imam estimated vector at time k, depends only on the last
line, i.e., J^x-sy. . Furthermore, at T=k+l, the updating equation
depends on the last row of [5] only. That is, the QR decomposition at
T=k+l only depends on a (2n-Hn)x(2n+l) matrix as in [61. When the QR
decomposition of I6J is completed, we have K , (upper triangular) and

ready for iteration of next stage.
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where * is the term used to compute the residue.

[6]

theThe upper triangular matrix R, can be shown to be the sguare-root of th
inverse of the error covariance matrix P. =E[(x.-x, ) (x.-x. )']. That is,
this algorithm, which propagates the squire root information matrix for
next iteration, is actually a modified square-root information filtering

4. SYSTOLIC ARRAY IMPLHffiNIATIONS FOR KAI/4AN FILTERING

From last section, we can see that the basic operations for square root
Kalman filtering can be described in two parts. The first one, whitening
processing includes operations such as Cholesky decomposition, inverse of
triangular matrix, and matrix multiplication. Secondly, the QR decomposi
tion is applied. Obviously, these two parts can be operated in parallel.
That is, we can start the whitening processing for the (k+l)st iteration
as well as the QR decomposition for the k-th iteration at the same time in
a pipelined manner.

The original square-root information filter involves the computation of
the inverse of the coefficient matrix F which not only increases the com
putational complexity but also causes bad numerical properties when coef
ficient matrix F is singular or near singular. This shortcoming can be



recovered by choosing the raodifled square root information filtering in
[41. As shown from [4]-l6Jf formulation of the modified square-root
information filter involves only multiplication between coefficient mat
rices and the inverse of the square root noise covariance matrices. For
noise with positive definite covariance, square root covariance matrix
always exists.

4.1 Whitening Processing

The whitening processing is done by multiplying the coefficient matrix
with a whitening operator L' where (LL1) is the given covariance matrix
of the additive noise. Since a covariance matrix is a positive definite
symmetric matrix, the square root matrix can be obtained by the Cholesky
decomposition. A triangular systolic array for Cholesky decomposition is
designed for this purpose with outputs skewed to match the input format of
the QR systolic array.

The inversion of a upper triangular matrix is simple after we built the
basic systolic array for QR decomposition. The idea for the inversion of
a upper triangular matrix is the same as solving the back substitution.

With UU*~ =1, let u" =tu-r J12' ••• 1LJ» with ji- being a nxl column
vector. A matrix inversion can be oivided into n sets of linear equa
tions, each having the form of tii-re., i=l,2,...n, where e. is a nxl
column vector with i element equals to 1, and all others being 0, and
can be solved by a systolic array.

4.2 QR Decomposition for Kalman Filtering

Equation [6] suggests that x. can be solved as a least-squares solution by
a 2nx2n QRjsystolic array. However, serious delay will be caused by the
fact that R. and R. +. are not in-glace computations. That is, we have
trouDle to move the newly formed R from the upper-right corner to the low
er-left corner in our triangular array for the next iteration. That is/
the computation at stage k-fl can not start until the last element of R̂  is
completed. In this "waiting" period, most of processing units are idle
and the pipeline is empty. It will cause delay for at least 2n clock
periods.

This disadvantage can be overcome by in-place computations for R. and
R.+,. This can be done by partitioning the original matrix into two
strips, and perform the partitioned QR decomposition by the systolic array
structure proposed in Figure 2. In this approach, a nxn QR systolic array
as well as a rotation array which consists of nx(n+l) internal cells are
used. Once elements of R, are formed, it is ready to be used for
computations at stage k+1. Here we need only to pass transformed elements
generated by the first strip to the rectangular rotation array for the
pre-processing of the second strip. This input format is shown in Figure
3. Since all these can be done in fully pipelined manner and in-place
computations are obtained, complicated inter-cell connection and control
scheme can both be avoided. To obtain the estimated value x., we can
just append an identity matrix I after the second strip, and we get result
every 3n+m clock periods.



5. CONCLUSION

In this paper, we first survey existing algorithms for least-squares esti
nations by systolic arrays. Basic comparisons are made based on connputa
tion and inter-cell connection complexities of elementary units. Finally,
by choosing the square-root information filtering algorithm, we showed a
simple way to solve the Kalman filtering as a least-squares problem that
can be processed by systolic arrays. Systolic array for Cholesky decompo
sition is also proposed for whitening processing. By manipulating the
data properly, the Kalman filtering can be processed under fully pipelined
manner. There is no special constraint on our system equations and stan
dard time-varying coefficient matrices and non-stationary colored noises
are assumed in our model. Most of the processing units we need for this
square root information filter do not involve square-root computations.
The only exception is the computations for the Cholesky decomposition.
However, for pipelined operation between whitening processing and QR
decomposition, the later certainly involved more computational work than
the former. Since there is only n square-root computations required in
each iteration as compared with the operations required for QR decomposi
tion, Cholesky decomposition will not become the bottleneck for this algo
rithm. For many real life problems where we can assume noises are sta
tionary, then covariance matrices W and V are fixed during our operation.
In this case, inversed square-root covariance matrices can be obtained by
pre-processing and our Kalman filtering can be solved as a simple least-
square problem. Since all operations can be performed by the designed
systolic array processing, which have the input/output formats matched to
each other, the entire hardware design can be viewed as a pipelined struc
ture. The estimated vector can be obtained with the 0(n) in time while
compared with the 0(n ) for the original Kalman filter. Finally, since
this is a square root matrix operation, good numerical property can also
be obtained.
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Figure 1: Systolic array for least-squares estimation.
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Figure 2: QR systolic array for Kalman filtering
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Figure 3: Input format for systolic array Kalman filtering




