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WHY HAVE HYDROSTATIC BEARINGS BEEN AVOIDED AS A
STABILIZING ELEMENT FOR ROTATING MACHINES?

Donald E. Bently and Agnes Muszynska
Bently Rotor Dynamics Research Corporation
Minden, Nevada 89423

The paper discusses the advantages of hydrostatic, high pressure bearings as provid-
ing higher margin of stability to the rotor/bearing systems.

INTRODUCTION

Despite the fact that the hydrostatic bearing was invented in 1862 by L. Girard, it
appears to have been carefully avoided as a means of stabilizing rotor systems.

This is very interesting because it is perfectly obvious that if a cylindrical
bearing could provide a higher Direct Dynamic Stiffness term (see Appendix) in the
Tow eccentricity region, then the stability of a rotor system is, in normal situa-
tions, greatly enhanced. The hydrostatic principle not only provides this stiffness
term easily, it may also supply its controllability.

It is an interesting exercise to examine the history of rotor dynamics and lubrica-
tion theory to guess what went right and what went wrong, and for what reasons. 1In
this instance, as is typical in other such histories, there appears to be other
engineering considerations which caused the path to go in the wrong direction.

Very early in lubrication theory (in 1919), Harrison correctly pointed out that a
fully lubricated cylindrical bearing is inherently unstable. As a result of this
natural behavior, Newkirk and Kimball introduced the pressure dam modification in
order to provide a static load to the bearing to alleviate the instability when
they showed the basic rules of oil whirl and oil whip in 1924. Numerous research
since that time deals with stabilization by means of static loading, and this
method of static load to a seal or bearing to hold it at high eccentricity
position. At high eccentricity position, of course, the Direct Dynamic Stiffness
term is always very high, thus providing stability to the system.

In addition to internal static loading (the pressure dam) and external static
loading (by whatever means, such as gravity or deliberate misalignment), there has
been a great deal of work on various modifications of the cylindrical form of
bearings. It is the author's observation that all of these modifications are
helpful for the simple reason that they provide a modification of the flow pattern,
as a pure cylinder inside a cylinder is the worst possible situation, if stability
is desired. There are lobe bearings, offset halves, tapered land, and hundreds of
other helpful geometric modifications of bearings. These methods, however, cannot
be applied to seals.

With all these studies and designs, surely someone must have tried .hydrostatic
principles on the basic bearing. Even so, the only known high pressure lubrication
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systems for rotating machinery are very successful designs by a few manufacturers
using a combination of tapered land bearings plus high pressure supply. Beyond
these, the field appears barren.

As nearly as can be reconstructed, the blockade against hydrostatics occurred in

the 1950s. Papers published in this period noted that the sleeve bearing went
unstable if the bearing was 360° (fully) lubricated, but was stable with partial
lubrication. (This is more or less correct; there usually is wider stability margin
with partial lubrication.) The obvious and unfortunate conclusion, however,

appears to have been that high pressure o0il supply can cause 360° lubrication,
therefore, use only low pressure oil supply!

Thus, while correct in its own context, this conclusion apparently blocked the use
of Girard's great invention. It is interesting to note that Rayleigh followed upon
the original hydrostatic bearing to make the first of the more widely used hydro-
static thrust bearing, but no one applied this idea to oil and gas-lubricated radial
bearings [1]. .

HIGH PRESSURE BEARING RESULTS

The plots of the Direct Dynamic Stiffness as a function of static load-related
eccentricity ratio (a) for a bearing with "normal" oil supply, i.e., with hydro-
dynamic pressure or about 20 psi, and (b) for the same bearing with four oil supply
ports and four hydrostatic segments generating pressure about ten times high is
shown in Figure 1. The increase of the Direct Dynamic Stiffness, especially for Tow
eccentricity ratios, is very significant, as this increase powerfully increases the
stability margin of the rotor system if the values are significant, especially for
low eccentricity ratio.

The Quadrature Dynamic Stiffness (see Appendix) is virtually unaffected by the
addition of the hydrostatic bearing, exhibits very regular relationship with the
eccentricity ratio for various values of rotative speed and circular preloads, as
shown in Figure 2. '

For a more dramatic presentation of the extent of control over instability at the
bearing, the Direct Dynamic Stiffness as a function of perturbation frequency
yielded from perturbation testing is shown for the same bearing at low, medium, and
high oil supply pressures in Figure 3a.

Figure 3b shows the Quadrature Dynamic Stiffness. It is, as in the steady-state
tests, essentially independent of 0il supply pressure.

Very similar to the high pressure bearing effect was described in the paper [2]
reviewing the Lomakin effect. A1l that is required to match up to Lomakin effect

is that the fluid pressure to the seals (or other rotor/stator periphery) goes up
with the square of rotative speed, because the hydrostatic stiffness increases
linearly with 0il pressure. Obviously this creates a Direct Dynamic Stiffness

which increases with square of speed, therefore looks 1ike the Lomakin effect of the
"negative mass."

CONCLUSIONS
The conclusions are as follows:
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1. It is readily apparent that deliberate use of hydrostatic bearing high pressure
lubricated (any gas or liquid) can easily be used to build higher stability margin
into rotating machinery, in spite of the thirty years bias against high pressure
lubrication.

2. Since this supply pressure in controllable, the Direct Dynamic Stiffness at
Tower eccentricity is also controllable, so that within some rotor system limits,
the stability margin and dynamlc response of the rotor system is more readily
controllable.

3. It may be possible to take advantage of this effect in the various seals, as
well as the bearings, to assist with stability margin and dynamic response of
rotating machinery.

4. The stability of the bearing can be additionally improved by taking advantage

of the anti-swirling concept. The high pressure fluid supply inlets should be

located tangentially at the bearing circumference and directed against rotation.

The incoming fluid flow creates stability by reducing the swirling rate.
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APPENDIX

It is the easiest to explain Dynamic Stiffness terms on the example of a one-degree-
of freedom mechanical oscillator, modelled by the equation:

M% + DX + Kx = Fed®t ., =1 (1)
where M is mass, D is damping coefficient, K is stiffness coefficient, x is
vibrational d1sp1acement and F represents the amplitude of the per1od1c exciting
force with frequency w. Dots indicate derivation with respect to time, t.

The forced response of the oscillator has the following form:

X = Aej(wt+u) (2)
where
jo F
Ae™ = ? + 0jw 3

In the expression (2) A is the amplitude of the vibration response, a is the phase

of response with respect to the forc1ng function F. The product Aed? has a name of
the Complex Response Vector. It is proportional to the excitation amplitude F and
inverse proportional to the Complex Dynamic Stiffness:
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Complex Dynamic Stiffness = K - Mw2 + Djw (4)

Compiex Dynamic Stiffness has the components:

Direct Dynamic Stiffness = K - Muw? (5)
and

Quadrature Dynamic Stiffness = Dw (6)
The equation (3) yields

Direct Dynamic Stiffness = % cos a (7)

Quadrature Dynamic Stiffness = - % sin a (8)

The expressions (5) through (8) are used for the identification of the system
parameters.

Plotted versus excitation frequency w the Direct Dynamic Stiffness js a symme@rjc
parabola; the Quadrature Dynamic Stiffness is a straight line crossing the origin
of the coordinates.

Similar formulation of the Dynamic Stiffness terms can be applied to the systems
modelled by more sophistic;ted equations.

In particular, for a symmetric rotor supported in one rigid and one fluid
lubricated bearing the model is as follows:

MZ + Mf(i-ijRi-Aszzz) + n(i-ijz) +Kz+Kz= pedut (9

z=x+Jy =41
where M, K are rotor mass and stiffness respectively, M., D, Kb are bearing fluid
inertia, radial damping, and radial stiffness correspongingly, wo is rotative

speed, A is the average o0il swirling ratio, w is perturbation (excitation)
frequency. The variable z = z(t) represents the rotor radial displacement composed
with the horizontal (x) and vertical (y) displacements.

For the steady-state periodic response

L = pedwt+a) (10)

¥h$]Direct and Quadrature Dynamic Stiffnesses for the rbtor model (9) are as
ollows:

Direct Dynamic Stiffness = % cos a = K - Mu2 - Mf(m-)\mR)2 + Ky (11)

Quadrature Dynamic Stiffness = - % sina = D(mPAmR) (12)
The Direct Dynamic Stiffness versus frequency w is a parabola shifted from the
symmetric origin due to fluidic inertia. The effect of higher pressure, which

causes an increase of K_ is shown in Figure 3. For small values of K + Kb the
Direct Dynamic Stiffnesg at zero frequency w can be negative (Fig. 3).
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The Quadrature Dynamic Stiffness versus frequency w is a straight qu crossing the
vertical axis at its negative side. This value is equal to the bearing "cross”

stiffness coefficient, -DAmR, Fig. 3b.
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ECCENTRICITY RATIO

Figure ). - Direct dynamic stiffness versus eccentricity ratio for a hydrodynamic bearjng (a) and a
hydrostatic bearing (b). (Eccentricity ratio = ratio of journal displacement to radial clearance).
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ECCENTRICITY RATIO

Figure 2. - Experimentally obtained quadrature

dynamic stiffness versus eccentricity ratio, indicating
insensitivity to oil pressure. :
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Figure 3. - Dynamic stiffnesses versus frequency for several values of oil supply pressure, indicating
stability margins.
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