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ROTOR INTERNAL FRICTION INSTABILITY
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Two aspects of internal friction affecting stability of rotating machines are dis-
cussed in this paper. The first role of internal friction consists of decreasin
the level of effective damping during rotor subsynchronous and backward precessional
vibrations caused by some other instability mechanisms. The second role of internal
friction consists of creating rotor instability, i.e., causing self-excited subsyn-
chronous vibrations. Experimental test results document both of these aspects.

1. INTRODUCTION

In rotating machines, damping effects are conventionally split into two categories:
external and internal damping. The term "external“ refers to the stationary ele-
ments and rotor environment, as they are "external” to the rotor. External damping
is related to energy d1ss1pat1on due to friction occurr1ng between stationary and
rotat1ng elements, and/or fluid dynamic resistance in the rotor environment (mostly
in fluid-lubricated bearings). External damping is also supplied by material damp-
ing of supports. External damping forces depend on the rotor absolute velocity of
vibration, and their effect on the rotor vibration is usually welcome -- they pro-
vide stabilizing factors.

The term "internal" refers to the rotating elements, including the rotor itself.
The same physical phenomena characterize internal and external damping. Internal
damping forces are due to material damping in rotating and vibrating elements (most-
ly shafts) and friction between rotating parts (such as joint couplings and shrink-
fitted disks on shafts). As internal damping occurs in the elements involved in ro-
tating motion, the internal damping forces depend on relative velocity, i.e., on the
difference between the absolute vibration velocity and the rotative speed. Thus the
relative velocity may be "positive" (following absolute velocity when rotative speed
~is Tow) or "negative" (opposing absolute velocity when rotative speed is high). The
corresponding internal damp1ng forces can, therefore, act as a stab111z1ng (adding
to the external damping to increase the tota] effect1ve damping in the system) or a
destabilizing factor (subtracting from the external damping to decrease the total
effective damping of the system).

The term "damping" is traditionally related to the stabilizing effects created by
the irreversible conversion of kinetic energy to heat. Being physically related to
the same mechanism, rotor internal damping plays an additional role in rotating ma-
chines -- it opposes the external damping and actually transfers the rotational
energy into vibrations. That is why the term "damping" does not fit well in this
situation; by contrast, the term "internal friction" does not introduce ambiguity
concerning stabilization.

Internal friction has been recognized as a cause of unstable rotor motion for more
than 50 years [1-7]. Since the first description of internal friction-related in-
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stability, many other rotor destabilizing factors have been identified, such as rub
or fluid dynamic effects in fluid-flow machines and/or bearings and seals. The lat-
ter effects are much stronger than the internal friction effects and very often ob-
served in the performance of rotating machines. They result in subsynchronous vi-
brations (rotative speed higher than vibrational frequency). Internal friction is
now very seldom identified as a main cause of rotor unstable motion. However, in-
ternal friction plays a negative role by reducing the system-effective damping for
forward subsynchronous and backward vibrations caused by other destabilizing
factors. ’

In this paper two aspects of rotor internal friction are discussed: the first, a
damping-reducing effect and the second, a cause of instability and self-excited vi-
brations. The experimental test results document both aspects.

2. ROTOR MODEL WITH INTERNAL FRICTION

To simplify the considerations, a symmetric rotor will be discussed. Dynamic behav-
jor of a rotor in its lateral mode of vibrations is usually represented by a set of
linear ordinary differential equations. For each mode, the set of equations reduces
to two, which for a symmetric rotor can be presented in the form of one complex
variable equation [8]:

M+ 03+ ke + EEEBE) 2 g at) = x(t) + dy(0), O, §= 47 €

where X, y are rotor horizontal and vertical deflections correspondingly, they de-
scribe the rotor precessional motion. M is the rotor mass; D is the external vis-
cous damping coefficient; K is the rotor stiffness, including the shaft and pedestal
stiffness. The rotor parameters M, D, K are generalized parameters corresponding to
each separate mode; w is rotative speed. The equation (1) may, in particular, de-
scribe rotor at its first mode. Eq.(1) contains frequency Q of the resulting pre-
cessional motion, unknown a priori; |Q-w| is the value of the shaft actual bending
frequency. It has been introduced to the rotor model (1) following the way by which
hysteretic damping is usually included in models of mechanical systems: a viscous
damping coefficient is replaced by a product Kn/Q*, where K is stiffness coeffi-
cient, n is loss factor, and O* represents the frequency of elastic element deforma-
tion. In the case of rotating shaft, the frequency of deformation is equal to a
difference between rotative speed and frequency of precession. Note that for for-
ward low frequency precessions, the frequency of shaft deformation is lower than
rotative frequency. For backward precessions, the frequency of shaft deformation is
a sum of rotative speed and frequency of precession. For circular synchronous pre-

cession (Q=w), the shaft is "frozen" into a fixed bow shape, so that internal fric-
tion does not act.

In Eq.(1) F (assumed positive) is internal friction function. For shaft material
hysteretic damping F is constant and equal to Kn. For the synchronous precession F=0.
Generally, however, F can be a nonlinear function of z and z [4, 6, 9].
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For F = const and @ supposed constant, substituting z = zreSt, the
eigenvalue problem of (1) yields four eigenvalues (satisfying the degrees of
freedom of eq. (11))*:

s = -5 + (L/Y2)[Y62-K/M + B + jJK/M-62+JE] (2)
h
e < (0 + F/IQwl)/(2M), A= (82 - K/M)2 + F2u2/[M2(Q-w)2]

The real parts of (2) are non-positive, i.e., the system (1) is stable when

F2w2M/K < (DiQ-w| + F)2 &))
which for w > 0 yields the following conditions:

For w? < K/M the rotor pure rotational motion is stable.

For w? > K/M it is stable only if |F| < D|Q-w|/[w/yK/M-1] (4)

At a threshold of stability, i.e., when |F| = D|Q-w|/[w/JK/M - 1] the eigenvalues
reduce to

s =+ jJK/M (5)
The rotor motion is purely periodic with the natural frequency determined by stiff-
ness and mass (for the stable motion below the threshold of stability, the frequency
is slightly lower than JK/M, due to damping).

If the stability condition is not satisfied and F exceeds the limits (4), then rotor
pure rotational motion is unstable. The Tinear model (1) is not adequate anymore, as
for high lateral deflections nonlinear factors become significant. Nonlinear factors
eventually lead to a Timit cycle of self-excited vibrations. The latter usually oc-
cur with the lowest natural frequency determined by the linear model, as the non-
linearities have very minor influence on frequency. With high amount of probability,
the frequency Q can be, therefore, equal to the rotor first natural frequency:

=z JK17M]_ (6)

*Solving the quadratiec in s gives

2
_ (bt D+ &) K. tw
s"(zn)i‘/(zu) M N

Expanding \/a + jb = ¢ + jd and solving for (c,d) gives

i‘\/aijb =i%[Va+Vaz+b-z ij‘/—a+Va2+b2]

Substituting
D+o\ X ¢
a = ( oM ) - M and b = ”

gives four roots:

s = _(0_2;;_;#) 3-_}]—5 [Va + Vaz + bz. + j‘/—a +\/a2 + bz]
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where the index "1" refers to the first bending mode. If the model (1) describes the
first mode, the stability condition (4) reduces to

[F} < D{Kl;Ml = 2K1§1 (7)

where {, 7s the damping factor of the first mode. .
For the hysteretic damping, F = Kyn; and the inequality (7) yields

n1 < 284 (8)

i.e., for stability the shaft loss factor has to be lower than the double of external
damping factor.

The modal approach to the rotor modelization permits evaluation of the stability con-
ditions for several modes. For example, the inequality (4) for the i-th mode, (index

") is:
IFI < 03 IWKe7My = wl/[w/ARG7W - 1] (9)

Figure 1 illustrates the condition in which the same amount of internal friction may
cause the first mode to be stable and the third mode unstable. This condition takes
place when the modal damping ratio is sufficiently high, D,;/D3 > JK3/M3/JK, /My

and when the rotative speed exceeds a specific value, i.e.:

w D> 01/03‘1
014M3;K3/03 - 4M1;K1 (10)

3. ROTOR EFFECTIVE DAMPING REDUCTION DUE TO INTERNAL FRICTION

Assume that the rotor performs steady nonsynchronous precessional, self-excited vi-
bration with frequency Q. This vibration occurs due to any instability mechanism

(for instance, it may be oil whip). It means that the rotor motion can be presented
in the form

z= Ae']Qt (11)

where A is an ampiitude of the self-excited vibrations. Introducing (11) into (1)
gives

-M02 + DjQ + K + F (Q-w)/|Q-w| = 0

The real part of this expression yields the frequency. The imaginary part relates
to the system damping. The external damping term, DQ, is now completed by the term
expressing internal friction:

0Q » DQ + F (Q~w)/|0-w|
or
D~ { D + F/Q for w<Q (supersynchronous precession)
D - F/Q for w>Q (subsynchronous and backward precession) (12)

For supersynchronous precession internal friction adds to external damping and in-
creases its level. For subsynchronous and backward precession, the internal fric-
tion reduces the level of "positive" stabilizing damping in the rotor system by the
amount F/Q. Taking into account that Q@ = JK/M, for subsynchronous precession the
rotor effective damping factor decreases by the following amount:
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£->C - F/(2K) (13)
It also means that the Amplification Factor Q increases:
Q » Q/(1-FQ/K) (14)

If, for instance, the Synchronous Amplification Factor is 5 and internal friction is
due to shaft material hysteretic damping with loss factor n = 0.06 (F=Kn), then the
Subsynchronous Amplification Factor increases to 7.14 (the Supersynchronous Ampli-
fication Factor decreases to 3.85).

Note that the decrease of the "positive" external damping for rotor subsynchronous
vibrations does not depend on the form of the function F (constant or displacement
dependent).

In practical observations of rotating machine dynamic behavior, it has very often
been noticed that subsynchronous vibrations are characterized by much higher ampli-
tudes than any super-synchronous vibrations. There are many different causes of
subharmonic vibrations in rotating machines. In each case, however, the role of
internal friction opposing and decreasing the level of external, stabilizing damping
is very important. Although not a primary cause of instability, internal friction
often promotes subsynchronous vibrations and causes an increase of amplitudes.
Figures 2, 3, and 4 illustrate dynamic responses of some unstable rotating machines.
The self-excited, subsynchronous vibration amplitudes are much higher than ampli-
tudes of synchronous and supersynchronous vibrations. More examplies are given in

[8].

The rotor model considered in this paper is symmetric; therefore, the synchronous
precession is expected to be circular. In the case of circular synchronous preces-
sion at constant rotative speed, the bent shaft precesses "frozen" and is not a sub-
ject of periodic deformation. The internal friction does not act. The regular cir-
cular synchronous precession of real rotors very seldom occurs, however; usually
nonsymmetry in the rotor and/or supporting system results in the elliptical syn-
chronous precession. In this case, the bent shaft is not "frozen," but deforms

with the frequency two times higher than the rotative speed. The internal friction
then brings a "positive" effect: it adds to the external damping.

4. SELF-EXCITED VIBRATIONS DUE TO INTERNAL FRICTION

If in the equation (1), F is given in the form of a nonlinear function of the rotor
radial displacement |z|, velocity of the radial displacement d|z|/dt and relative
angular velocity w-8, [4,6] where

8(t) = arctan [y(t)/x(t)], [z] = Jx%+y? (15)

‘i.e., F=F(lzl, dlz|/dt, w-8) then the rotor model (1) allows for the following
particular solution

jat
2(t) = Be!
where B and Q are constant amplitude and frequency of the circular precessional
self-excited vibrations correspondingly. They can be found from the following
algebraic relation yielded by (1) and (16):

(16)

-Ma2 + DjQ + K + jF(B,0,w-2)(Q-w)/|Q~w| = 0 an
The nonlinear differential function F becomes nonlinear algebraic function.
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Bolotin [9] quotes several forms of internal friction fungtion F;.for instance,
for a shrink-fitted disk on the shaft, the internal friction nonlinear function has
the following form:

n
F (121, dizl/dt, wé) = —=xl2l_ (18)
Co+(w-0)
where C,>0, €»>0, n, m are specific constant numbers. In case of the function (18)
equation (17) for the first mode yields

Q= JK /My, B = {[C + (u~yKi/M™ DJKI/My / C1}1/n (19)

Since C, and C, are positive, the solution (16) with amplitude (19).exists for
w>JKi/M; only. This means that the self-excited vibrations (16) exist for suffi-
ciently high rotative speed.

5. INTERNAL FRICTION EXPERIMENT

During balancing of the three-disk rotor rig (Fig. 5), an appearance of self-excited
vibrations at the rotative speed above third balance resonance have been noticed
(Fig. 6). The frequency of these self-excited vibrations exactly equals first natu-
ral frequency. The self-excited vibrations disappear for higher rotative speed.

It was noted that when balancing weights, which affect the balance state for the
third mode, were removed, causing a significant increase of the amplitude of the
synchronous vibration at the third mode, the self-excited vibrations nearly disap-
peared (the amplitude decreased from 1.8 to 0.4 mils p/p, compare Figs. 6 and 8).

It appeared that the energy from self-excited vibrations was transferred to the syn-
chronous vibrations. Higher rotor deflection due to unbalance evidently caused some
substantial modifications in the self-excitation mechanism. :

Since there was no other obvious reason for the self-excitation, internal friction
(of the shaft material and disk/shaft joints) was blamed for the appearance of these
self-excited vibrations. To prove this supposition, an increase of the rotor inter-
nal friction was attempted. Half of the shaft was covered with a 4-mil-thick layer
of damping material, commonly used for vibration control (acrylic adhesive I1SD-112,
3M Company). Applied to the rotating shaft, the damping material increases the in-
ternal friction and magnifies the self-excitation effect. The expected result was
confirmed: the amplitude of the self-excited vibrations increased from 0.4 to 0.7
mils p/p (compare Figs. 8 and 9).

The self-excited vibrations disappeared completely when the disks were eventually
welded to the shaft, and the damping tape was removed.

The question of why the self-excited vibrations occur at the rotative speed ~7150
rpm and disappear in the higher range of speeds has not been answered. Nor was the
internal damping function identified. The analysis presented in Section 2 gives,
however, some indications that a nonlinear internal damping function may cause rotor
instability in a limited range of rotative speeds. Figure 10 presents the stability
chart for three modes.

6. CONCLUDING REMARKS

This paper discusses two important aspects of internal friction in rotating ma-
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chines. Firstly, the internal friction in rotating elements causes a decrease of
the amount of effective damping in the rotor system. This effective damping reduc-
tion occurs during rotor subsynchronous and backward precessional motion, which may
be caused by any instability/self-excitation mechanism (such as rub or fluid flow
dynamic forces). While usually not a primary cause of instability, internal fric-
tion promotes unstable motion and affects the value of self-excited vibration
amplitudes.

Secondly, the internal friction occasionally is a major cause of rotor self-excited
vibrations due to incorrect shrink fits, loosening of shrink fits by differential
thermal growth, or by mechanical fatigue. Known for more than 50 years as a con-
tributor to rotor instability, the internal friction analytical model has not,
however, yet been adequately identified.

This paper documents experimentally these two aspects of internal friction in rotat-
ing machines and gives a qualitative description of the dynamic phenomena associated
with rotor internal friction.

SYMBOLS
A,B -~ Amplitudes of self-excited 3 ~-- Eigenvalue
vibrations z=x+jy ==~ Rotor radial deflection
D -- External damping coefficient (x-horizontal, y-vertical)
F -- Internal friction function s -- External damping factor
j=4J1 : n -- Loss factor
K,M -- Rotor generalized (modal) ] -= Angle of precessional motion
stiffness and mass coefficients w -- Rotative speed
Q -- Amplification Factor Q == Angular speed of precession
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Figure 1. - Regions of stability for rotor first and third modes.
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Figure 2. - Cascade spectrum of steam turbine vibrational response, indicating high subsynchronous

vibrations.

Data courtesy of J.C. Wachel [10].
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Figure 3. - Time histories of six-stage compressor at 9220 rpm. Subsynchronous vibrations due to
destabilizing dynamic forces generated on last stage. Data courtesy of P.L. Ferrara [11].
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Figure 4. - Cascade plot of electric motor response during shutdown. At running speed of 510 rpm
(below first balance resonance), high half-speed vibrations present due to electromagnetic
field unbalance [12].
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