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Summary 
Hertzian contact theory is applied to a butt joint 

with specially mismatched bearing surfaces to devise 
a simple mathematical model of nonlinear axial force- 
displacement behavior in jointed members. Normal- 
ized tangent stiffness-force plots, for several values 
of a joint imperfection parameter, are presented for 
the sample case of solid structural members of circu- 
lar cross section. The results illustrate the potential 
problem of high joint compliance at low axial-force 
levels, as well as the generally desirable stiffening and 
“linearizing” effects of preload. A nonlinear oscillator 
problem based on the static model is also formulated 
and solved to illustrate the effect of amplitude on 
natural frequency. As expected, natural frequency is 
low when amplitude is small. The results call atten- 
tion to the important roles that tight tolerances and 
preload are expected to play in the design and fab- 
rication of deployable and erectable truss-type space 
structures. 

Introduction 
Controlling the shape and attitude of truss- 

type space structures requires knowledge of their 
force-displacement behavior, which is likely to be 
influenced by the behavior of mechanical joints. 
Most jointed members exhibit some nonlinear force- 
displacement behavior, especially when lightly 
loaded. Because of the complex geometries in- 
volved, as well as the “looseness” dictated by joint- 
articulation requirements, a general analysis of force- 
displacement behavior in jointed members is proba- 
bly infeasible. However, behavioral trends can often 
be identified through the study of simplified models 
that incorporate some of the salient features of actual 
joints. 

In this paper, a simple nonlinear model of a slen- 
der member containing an imperfect butt joint is de- 
vised and analyzed to obtain expressions for member 
compressive axial force and tangent stiffness as func- 
tions of overall axial strain for arbitrary values of a 
joint imperfection parameter. The model is also used 
as a basis for a simple nonlinear spring-mass system, 
the analysis of which may have implications for the 
dynamic response of truss-type space structures. 

Analysis 

Static Model 
Conceptual aspects of the nonlinear model are il- 

lustrated in figure l .  Two slender members of equal 
length meet at the butt joint, which, ideally, would 
involve two perfectly aligned flat surfaces. However, 
as in many practical situations, there is some surface 

mismatch. Hence, the amount of joint surface ac- 
tually in contact varies with compressive axial-force 
level and generally increases with the force, as does, 
therefore, the effective joint stiffness. In this paper, 
the nonlinear joint behavior is modele ding 
to a Hertzian contact law for the joint faces (e.g., 
see ref. l), which should be reasonable as long as 
the contact area is relatively small. Not illustrated 
in the figure is a hypothetical device which is as- 
sumed to keep the two members in axial alignment, 
thus assuring stability under axial force, without af- 
fecting the force-displacement behavior of the overall 
configuration. 

Detail A 

Figure 1. Sketch of static model. 

For simplicity, and consistent with the Hertzian 
contact assumptions, the mismatched joint faces are 
taken to be shallow paraboloids in contact over a 
circular interface, the extent of which depends on 
the axial force and the Young’s modulus of the joint 
material. The slender members, exclusive of the 
joint body, are assumed to shorten linearly with 
compressive axial force. The total dimensionless 
shortening of the jointed column of length L due to 
the applied axial force P is 

U P  
L & = - = - +  E A  [; (1 - v y  L 

where the second term on the right-hand side of the 
equation is the result of the local nonlinear behavior 
of the joint and where 

U total shortening 

E Young’s modulus 

A member cross-sectional area 

a member radius 



A total joint mismatch 

E overall axial strain 

v Poisson's ratio 

j joint properties 

The joint-body length is assumed to be small in 
comparison with the column length. 

The Euler buckling force for a simply supported 
column of length L and cross-sectional moment of 
inertia I is Pe = F, and the corresponding critical 
strain is = a. With the normalizations Z = & 

T 2 E I  

- 
P and '7s = K ,  equation (1) can be written 

-213 E = F + K P  

where 

Equation (2) describes the normalized nonlinear 
force-strain curve. Differentiation of equation (2) 
yields 

d'7s 1 
(4) 

When equation (2) is solved inversely for ' 7 s ( E )  and 
the results are combined with equation (4), the nor- 
malized tangent stiffness as a function of the nor- 
malized axial strain is obtained. Of primary interest 
here, however, is the solution to equation (4), which 
gives the tangent stiffness as a function of the axial 
force (or inversely, the amount of prestress needed to 
induce a particular effective stiffness). 

Two cylindrical member types of interest are rods 
and thin-walled tubes. For rods, A = 7ru2 and 
I = 9. For tubes with wall thickness t ,  A = 27rat 
and I = 7ru3t. Thus, equation (3) becomes 

For an illustrative example in the case of rods, we 
choose vj = 1 and Ej = E ,  in which case 

Therefore, equations (2)  and (4) become 

The solutions of equations (7) and (8) for A / L  = 
lod5, and are plotted in figures 2 and 3. 
In figure 2(b), the small-strain region of figure 2(a) 
is magnified to illustrate the nonlinear behavior at 
small force levels. 

.z 

(b) 0 5 F 5 0.01. 

Figure 2. Normalized axial force-strain plots. 

Vibration Model 

To simplify the construction of a numerical ex- 
ample, the forcestrain relation of equation (2 )  is 
taken to be symmetric about the origin in the - E 
plane. This should be a reasonable assumption 
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Figure 3. Normalized stiffness-force plots for solid cylindri- 
cal members. 
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for many lightly loaded pin joints with negligible 
free play. For sufficiently small axial displacements 
(i.e., 0 5 I $ K 3 ) ,  equation (2) (before normal- 
ization) can be solved to yield 

where 
a! = cos-1 (1 - -) 27U 

2 ~ 3 ~  
If the entire jointed member is envisioned as a mass- 
less spring supporting a mass m, and the axial force 
P is replaced by its inertial equivalent i.e., P = 

- m g ) ,  then the equation of motion for the non- 
linear spring-mass system is 

( 

+ a s i n  - a! - 1)3 (10) EA dt2 27 3 

The initial conditions are taken to be 

(11) 
d U  
dt U ( 0 )  = 0 -(O) = vi 

where Vo is an arbitrary positive quantity consistent 
with the restriction 0 I & I A. The quantity 
of interest here is the fre uency of the nonlinear 

(1 1) become 

oscillator. Defining p = =, % equations (10) and 

and 
p(O) = 0 X(0) E -(O) dP = XO (13) 

dt 

I I I I I I 
0 .2 .4 .6 .8 I .o 

P 
Figure 4. Frequency-amplitude plot for small oscillations. 

where wl = @ is the frequency of the correspond- 
ing linear oscillator. One integration of equation (12) 
and use of the initial conditions in equation (13) yield 

2 2 I.L (g )  = X i  - -w; J’ (cos + h s i n  ‘u 3 - 1)3 dt 
27 0 

(14) 
where 

Xg=-w;J’ 2 B ( c o s ’ u t h s i n z - 1 )  3 dt 
27 0 3 3 

and j2 is the maximum value of p. This maximum 
excursion occurs at the quarter period (i.e., p (a) = 

j2); hence, integration of equation (14) gives 

where 

(15) 
dP 

3 
G(j2) = J’fi 

(cos $ + f i s in  $ - 1) dt 

Finally, 

2 7r2 ( 0 5 6  I $) (16) 

54 [G(j2>l2 

where w is the frequency of the nonlinear oscillator. 
Numerical integration of equation (15) for numerous 
values of j2 in the range 0 I j2 5 & and substitution 
into equation (16) yields the plot shown in figure 4. 
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Results and Discussion 
Static Model 

Figure 3 contains plots of as a function of ‘iis for 
three values of +, the joint imperfection parameter. 
In general, the plots may be thought of as yielding 
the axial preload needed to induce a desired stiffness 
level. Clearly, the greater the preload, the greater 
the axial stiffness and, concurrently, the more nearly 
linear the force-displacement behavior of the jointed 
member. Also, the tangent stiffness reaches a partic- 

A ular level sooner (Le., at lower axial force), when 
is smaller. In fact, in the limiting case = 0, the 
normalized tangent stiffness graph becomes simply 
the line = 1 for all values of p .  Hence, attaining 
a particular stiffness level (or “degree of linearity”) 
requires lower preload when joint imperfections are 
smaller. 

A in the example are some- 
what arbitrary. However, though it may be comfort- 
ing that even modest preload greatly enhances struc- 
tural stiffness, the model dictates very low stiffness 
at near-zero axial-force levels for any nonzero value 

whose force-displacement behavior is reasonably ap- 
proximated by a Hertzian contact law, high compli- 
ance can be expected whenever the forces transmit- 
ted by such joints are small. This often undesirable 
tendency can be mitigated by the addition of preten- 
sioned diagonals or local joint-loading devices, but 
there will be attendant penalties in terms of mass 
and complexity. 

The values chosen for 

of A Therefore, in truss structures containing joints 

(See fig. 4.) Such behavior is likely to impact ad- 
versely on the ability to control shape and attitude 
of a large, multijointed truss structure. As in the 
static case, however, this undesirable tendency can 
be mitigated by the introduction of preload through 
pretensioned diagonals or local joint-loading devices. 

Although this highly simplified vibration model 
clearly does not incorporate all the important dy- 
namic features of a complex truss structure, it does 
call attention to the potentially troublesome charac- 
teristic of high compliance in the absence of preload, 
which must be dealt with in the design and fabrica- 
tion stages. 

Concluding Remarks 
Hertzian contact theory has been used to de- 

vise a simple nonlinear model of the axial force- 
displacement behavior of a truss member contain- 
ing an imperfect joint. The nonlinear joint model 
employed here, although too idealized to yield quan- 
titative design information, highlights a behavioral 
trend which is likely to be exhibited by a variety 
of truss-type space structures, that is, high compli- 
ance at relatively low applied load levels. Similarly, 
very low natural frequencies can be expected when 
vibration amplitudes are small. Clearly, one means 
of moderating this tendency is to build joints with 
tighter tolerances, an approach which citn have un- 
desirable implications for fabrication costs and ease 
of erection or deployment. Another approach is to 
design to less demanding tolerances and “linearize” 
the truss behavior with pretensioned diagonals or lo- 
cal joint-loading devices. 

Vibration Model 
As noted in the static case, the Hertzian contact 

model dictates very low stiffness when axial force 
(hence, displacement) is small. In the case of the 
nonlinear oscillator, this characteristic leads to very 
low natural frequencies when vibration amplitudes 
are small. This result is also consistent with the 
nonlinear force-strain Plot in figure 2(b)- For very 
small amplitudes, the square of the frequency varies 
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