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SUMMARY

An algorithm 1s presented which can be used to develop compliance matrices
for cracked bodies. The method relies on the numerical solution of singular
Integral equations with Cauchy-type kernels and provides an efficient and accu-
rate procedure for relating applied loadings to crack opening displacements.
The algorithm should be of Interest to those performing repetitive calculations
1n the analysis of experimental results obtained from fracture specimens.

INTRODUCTION

Two dimensional problems 1n linear elastic fracture mechanics are often
reduced to a singular Integral equation (or system of Integral equations) of
the form

f ft±Mr * f K(x,t) f(t) dt = g(x) -1 < x < 1 (1)J1 T - x J1

where f(t) 1s a function to be determined, and K(x,t) and g(x) are known
functions related to the geometry of the cracked body and the loading on the
crack surface(s), respectively. The function f(t), which 1s called the dis-
location density, 1s the slope of the crack profile, and, 1f the crack 1s
closed at Its tips, satisfies the consistency condition

/] f(t) dt = 0 (2)

In this paper an algorithm 1s presented which can be used to develop a compli-
ance matrix for a cracked solid when such a formulation 1s used. This matrix
relates the stresses at the collocation points arising from the applied loads
(Including those applied to the crack surfaces) to the values of the opening
of the crack at the Integration points. The method relies on the numerical
procedure developed by Gerasoulls (ref. 1), which 1s used to reduce
equation (1) to a system of algebraic equations for unknown values of f(t)
at discrete points 1n the Interval [-1,1].

FORMULATION

The algorithm 1s best explained through a simple example. For the cracked
plate'shown 1n figure 1 the governing equations for the dislocation density are



2u f f(t) dt = a i < x < 1 (3)
«(* + 1) I, t - x = a» -1 X ] (3)

/[ f(t) dt .-0 (4)

where y 1s the shear modulus, K = 3 - 4w for plane strain, and v 1s
Polsson's ratio.

The crack opening displacement 1s given by

u* - u" = x
] f(t) dt (5)

The exact solution to this problem 1s

Following [1], (after nond1mens1ona!1z1ng by setting 2v/ira09(ic + 1) equal
to unity), f(t) 1s expressed by

f(t) = o(t) (1 - t*)-"< (8)

and <|>(t) 1s approximated as plecewlse quadratic 1n [-1,1]. The result 1s
that equations (3) and (4) are reduced to a system of algebraic equations
through quadrature formulas. The details of the quadrature can be found 1n
reference 1 and are omitted here. The results are

2N+1
£ w.(x. ) 4>(t.) =1 k = 1.2N (9)
1=1 1 K n

2N+1
Z v^t^ = 0 (10)

We note that the unknown values <t> are those at the Integration points t^,
while the stresses on the right hand side of equation (9) are at the colloca-
tion points Xfc.

For Illustration we take five points for the quadrature, and equations (9)
and (10) become
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In equation (11), matrix G 1s characteristic of the geometry of the prob-
lem and matrix L represents the loading and crack closure condition. What 1s
usually of Interest 1h such a problem 1s the stress Intensity factor, and since
the stress Intensity factor 1s proportional to the value of 4* at the end-
points (ref. 1), equation (11) 1s solved for the unknown vector <t>.

Instead of doing this, 1n this paper the Inverse of matrix G 1s obtained,
and the product of this matrix and (1-t2)"1/2 1s Integrated term by term
to obtain a matrix C which 1s called the compliance matrix for this particu-
lar geometry. The Integration of each term 1s performed using the weights for
the Lagrange Interpolation polynomials, since the function <t> 1s approxi-
mated 1n this manner. The results of the Integration lead to the following

(12)
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We note that matrix C 1s not a square matrix. This 1s because the number of
Integration points 1s one more than the number of collocation points. Matrix
C^k relates the displacement of the crack faces at the point t^ to the
stress at point X|<.

For the present problem the applied loading vector 1s unity, and premultl-
plylng Vt by the compliance matrix leads to
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The above displacements agree with the exact solution.



The usefulness of the compliance matrix becomes evident when one 1s Inter-
ested 1n Investigating the effects of many loading cases, and 1n particular,
1f the stresses along the crack surfaces depend on the crack opening displace-
ments. Such loadings are used 1n models for fiber reinforced concrete, rocks,
ceramics, and other materials where mlcrocracklng, fiber bridging, and other
nonlinear effects are modeled as nonlinear springs along the crack surfaces
(refs. 2 to 5). For these models equation (1) becomes nonlinear, and an Iter-
ative solution 1s needed. With the use of the compliance matrix, this Iterat-
ion procedure 1s efficient and fast.

As an example, let us assume that the crack surfaces are bridged by fibers,
and that the stresses transmitted by the fibers to the crack depend on the
opening of the crack. The displacements along the crack will be governed by

(u* - u"). = C..x o (applied loads) + a (u+ - u")
t1 1K |_ xk xk

(14)

where now the stresses are decomposed Into those arising from the applied
loads, and those due to the fiber bridging. The function o(u+ - u-) 1s
determined from experiments (ref. 6). For the first Iteration the stresses due
to fiber bridging are assumed to be equal to zero. Premult1ply1ng the stresses
arising from the applied loading by the compliance matrix results 1n the first
approximation to the crack opening displacements. From these displacements the
first approximation to the fiber bridging stresses are determined, and these
are applied to the crack surfaces. The procedure 1s repeated until convergence
1s reached. This procedure was used 1n reference 4 (where experiments per-
formed on concrete and fiber reinforced concrete were analyzed) and convergence
was observed to be very fast (only several Iterations were needed for three and
four point bending specimens).

CONCLUSIONS

An algorithm has been presented which can be used to develop compliance
matrices for cracked bodies. The usefulness of the matrices becomes evident
when one Is Interested 1n performing parameter studies to Investigate the
effects of various loadings on crack opening displacements. Even though the
example presented 1n this paper Involved Mode-I loading, the method can be
extended to Include mixed mode problems (Including three-dimensional problems).
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FIGURE 1.- CRACKED PLATE SHOWING INTEGRATION AND COLLOCATION
POINTS FOR FIVE POINT QUADRATURE.
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