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Abstract 

Low Reynolds number homogeneous turbulence undergoing low Mach 
number isotropic and one-dimensional compression has been simulated by 
numerically solving the Navier-Stokes equations. 'fhe numerical simula- 
tions were carried out on a CYBER 205 computer using a 64 x 64 x 64 

mesh. A spectral method was used for spatial differencing and the 
second-order Runge-Kutta method for time advancement. A variety of 
statistical Information was extracted from the computed flow fields. 
These include three-dimensional energy and dissipation spectra, two- 
point velocity correlations, one-dimensional energy spectra, turbulent 
kinetic energy and its dissipation rate, Integral length scales, Taylor 
microscales, and Kolmogorav length scale. 

It was found that the ratio of the turbulence time scale to the 
mean-flow time scale is an important parameter in these flows. When 
this ratio is large, the flow is immediately affected by the mean strain 
in a manner similar to that predicted by rapid distortion theory. When 
this ratio is small, the flow retains the character of decaying iso- 
tropic turbulence initially; only after the strain has been applied for 
a long period does the flow accumulate a significant reflection of the 
effect of mean strain. In these flows, the Kolmogorov length scale 
decreases rapidly with increasing total strain, due to the density 
increase that accompanies compression. 

Results from the simulated flow fields were used to test one-point- 

closure, two-equation turbulence models. The two-equation models per- 
form well only when the compression rate is small compared to the eddy 
turn-over rate. A new one-point-closure, three-equation turbulence 
model which accounts for the effect of compression is proposed. The new 
model accurately calculates four types of flows (Isotropic decay, iso- 
tropic compression, one-dimensional compression, and axisymmetric expan- 

sion flows) for a wide range of strain rates. 
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Chapter I 

INTRODUCTION 

Turbulent flow undergoing compression is of great technological 
interest; understanding it is therefore of considerable importance. For 
example, the compression stroke in an internal combustion engine mod- 
ifies the turbulence in the cylinder in important ways and thereby 
influences the nature of the combustion process and overall engine 
performance. Compression of turbulence is also important in shock wave- 
turbulent boundary layer interaction and other applications. However, 
current turbulence models, including the popular k-& model, do not 
predict compressio.n effects accurately. This is evidenced by their poor 
performance in piston-engine flow calculations. Reynolds (1980) and 
Morel and Mansour (1982) pointed out defects in the existing model and 
proposed new model constants. Although the predictions of the modified 
model look reasonable, they have not been tested against experimental . 

data, thus leaving the model user in an uncomfortable position. 

1.1 Compression Effects on Turbulence in Engines 

The effects of compression on turbulence have been investigated 
both theoretically and experimentally. Rapid distortion theory (RDT) 
predicts the evolution of turbulence undergoing extremely rapid com- 
pression. Under the assumption that the strain is applied rapidly, 
nonlinear turbulence interactions are unimportant and the dissipation 
process is too slow to Be significant. Thus, RDT is a linear, inviscid 
analysis of turbulence. It was originated by Taylor (1935) and was 
extensively developed by Batchelor and Proudman (1954). 

Hoult and Wong (1980) applied RDT to the prediction of the evolu- 
tion of the turbulence undergoing rapid compression., Computations based 
on this theory were compared with the available hot-wire measurements 
(Witze, 1977; and Lancaster, 19761, and reasonably good agreement was 
obtained . 

Hunt (1978) reviewed RDT and applied it to various types of flows. 
He found that in rapid, one-dimensional compression the vorticity that 
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is aligned with the compression axis does not change, while the vortic- 
ity in the other two directions increases. He also worked out the 
evolution of the components of the turbulence kinetic energy for the 
rapid-compression case. RDT describes a limiting case; the conditions 
for its validity are not often met in practice. However, It does pro- 
vide a useful analytical solution against which models and simulations 
can be tested. 

Semenov (1958) measured turbulence in a motored, single-cylinder 
engine with a hot-wire anemometer. He found that the turbulence 
intensity at top dead center (TDC) was affected primarily by engine 
speed. Winsor and Patterson (1973) used a hot-wire anemometer to 

measure velocity fluctuations in a motored engine and found that the 
turbulence decayed during compression. Lancaster (1976) used a tri- 
axial, hot-wire anemometer to study turbulence in a motored single- 
cylinder engine; the measured turbulence intensity was found to decrease 
quite rapidly, reaching a minimum near D C .  He attributed this result 
to changes in flow orientation or pattern and viscous dissipation. He 
also found that the spectrum of the turbulence energy shifted to lower 
frequencies during compression. These results supported his argument 
that turbulence decays during compression. The hot-wire experiments of 
Witze (1977) were performed on a motored, single-cylinder engine. He 
found that turbulence intensity increases during the compression stroke, 
but later (1980) admitted that his data-reduction techniques overestima- 
ted the turbulence intensity. The problem stems from the fact that a 
hot wire does not measure the velocity directly, but responds to mass 
flux. As a consequence, it is necessary to account for the thermody- 
namic state of the gas when reducing the anemometer signal. There is 

reason t o  suspect that this problem is present in much of the published 
data taken with hot wires in engines. 

More recently, Investigators have used laser-Doppler anemometers 
(LDAs) to study in-cylinder fluid mechanics in Internal-combustion 
engines. The group at Imperial College did a series of Investigations 
on this subject. Morse, Whitelaw, and Yianneskls (1979, 1980) made LDA 

turbulence measurements in motored, piston-cylinder assemblies without 
compression; only the intake and exhaust strokes were allowed in their 
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apparatus. Arcoumanis, Bicen, and Whitelaw (1982) studied turbulence in 
a model four-stroke motored engine with a compression ratio of 3.5. 
They concluded that the turbulence level decays considerably in the 
early part of the compression stroke, while in the second half of the 
stroke the piston configuration becomes increasingly important, A flat 
piston produces an almost constant turbulence level. A cylindrical bowl 
has no significant effect on the flow, independent of the bowl depth 
within the practical range, However, the addition of a lip causes a 
substantial inward motion of the air toward the bowl but no apparent 

effect on the turbulence levels outside the bowl. The same authors 
(1983) also studied the squish effect on turbulence near TDC of com- 

pression in a motored model internal-combustion engine with compression 
ratio 6.7. They found that the squish did not alter the overall turbu- 

lence levels, which were comparable to those obtained with the flat 
piston. They claimed that squish is an important contributor to the 
mean motion rather than to the turbulence. 

At Stanford, Richman (1982) developed a Flow Diagnostics Engine 

(DE) which is a single-cylinder engine with a transparent cylinder made 
from single-crystal sapphire. The valve motion can be completely con- 
trolled by a minicomputer, A special Schlieren system was developed to 
visualize flows within the engine cylinder. His visualizations sugges- 
ted that the scale of the turbulent motions decreases as the flow is 
compressed. 

To model the effect of compression on turbulence, Watkins (1977) 
extended the k-e model for incompressible flows developed by Launder 
and Spalding (1974), by adding a dilatation term to the modeled dissipa- 
tion equation. The new term had a constant equal to unity, a natural 
outcome of the derivation. Gosman and Watkins (1977), Gosman and johns 
(1978, 19801, Gosman, Johns, and Watkins (1980J all employed this 
extended k-t: turbulence model to predict the flow in reciprocating 
engines. Grasso and Bracco (1983) also introduced this k-c model into 
a modified version of a code developed at Los Alamos by Butler et al. 
(19791, and used it to study the squish effect. Ahmadi-Befrui, Gosman, 
Lockwood , and Watkins (1981 ) made calculations with three different 
values of the model constant: 0, 1.0, and -0.373, Gosman and Harvey 
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(1982) used these constants t o  predict  the  behavior of a Diesel engine. 

Gosman and Jahanbakhsh (1981) reported tha t  the predictions of turbu- 

lence i n t e n s i t y  using -0.373 as the model constant are marginally b e t t e r  

than those found using the a l t e rna t ive  values. Ramos, Humphrey, and 

Sirignano (1979) used a purely "ad-hoc" turbulence model. 

Reynolds (1980) pointed out t ha t  Watkins' model pred ic t s  growth of 
the  length scale during compression independent of the rate of compres- 

sion. Morel and Mansour (1982) found tha t ,  i n  an engine simulation, the 
length scale predicted by the Watkins model reached values seve ra l  times 

the  cylinder height near TDC; t h i s  is c l e a r l y  incorrect.  Reynolds 
(1980) applied rapid-distortion analysis t o  the  i so t rop ic  compression 

case and suggested tha t  the model constant i n  the d i l a t a t i o n  term be 

-2/3. Borgnakke, Arpaci, and Tabaczynski (1980) independently found the 

same value. Morel and Mansour (1982) extended Reynolds' work t o  encom- 
pass three  d i f f e r e n t  "modes" of compression, i.e., i so t rop ic ,  one- 

dimensional, and two-dimensional compressions. This led  t o  a d i f f e ren t  

model constant f o r  each case. Mansour (1982) employed t h i s  modified 

k-e model t o  study dispersion i n  stratif ied-charge engine cylinders 
during the compression stroke. H i s  r e s u l t s  are model-dependent and, i n  

the absence of accurate data,  they cannot be r e l i e d  upon. 

E l  Tahry (1983) derived exact transport  equations f o r  turbulence 

k i n e t i c  energy and i ts  d i s s ipa t ion  rate. An order-of-magnitude analysis 
was applied t o  the  terms i n  these  equations, and the s m a l l  terms were 

neglected. It turned out t ha t  the  k-equation retains its usual form, 
while four new terms are added t o  the  d i s s ipa t ion  equation; t he  constant 

i n  the d i l a t a t i o n  term was found t o  be -1/3. Results of ca lcu la t ions  

using t h i s  modified d i s s ipa t ion  equation are more physically plausible 

than those obtained with Watkins' version of the model. However, t h i s  
does not answer the  question of whether t h e  present version of the 

k-e model is adequate f o r  use i n  engine flow computations. 
1. 

Dussauge, Gaviglio, and Favre (1978) suggested t h a t  production of 

turbulence can be broken in to  two par t s :  (1) a "d i la ta t ion"  production 

and ( i i )  an "isovolumetric" production r e l a t e d  t o  the incompressible 

component of the s t r a i n .  This suggestion w i l l  be used i n  the present 

work . 
4 



In summary, RDT provides a limiting solution demonstrating how com- 
pression affects turbulence. In attempts to understand the effects of 
compression on turbulence for the range of parameters encountered in 

engineering flows, people have looked to experiments. h e  to the 
complexity of the flows studied and the difficulties associated with 
measurements in complex flows, only qualitative results have been ob- 
tained. Model builders have suggested various turbulence models aimed 

at representing the effects of compression; these models differ, espe- 
cially with respect to the constant associated with the dilatation 
term. Users have employed these models in codes aimed at predicting 
fluid motion inside internal-combustion engines with only moderate 

success. It is difficult to identify the source of the discrepancy 
between the numerical predictions and the experimental results. A com- 
mon conclusion by model-users is that the turbulence models appear to 
predict the general behavior of the turbulence field, However, the 
quality of experimental data does not allow accurate evaluation of the 
models. 

1.2 'hrbulent Flow Simulation 

Newtonian fluid motion is governed by the Navier-Stokes equations. 

However, the wide range of length scales present in turbulent flows 
makes simulation of them via solution of the Navier-Stokes equations 
impossible at the Reynolds numbers of interest in engineering flows. 
However, full numerical simulation of turbulent flows at low Reynolds 
number in simple geometries has recently become feasible. In this 
approach, the only errors made are numerical ones which can be con- 
trolled. These simulations can be regarded as numerical experiments, 
and the results complement laboratory measurements. Such simulations 
can provide understanding of turbulence phenomena. A unique advantage 
of numerical simulation is that, with it, one can single out a particu- 
lar effect and study its influence on turbulence. Full simulations are 

currently limited to simple, low-Reynolds-number turbulent flows and 
require supercomputers; they are impractical 
applications. However, they can be used as a 
tigating both the physics of turbulence and the 

it. 
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We limit our discussion of full simulation to homogeneous flows. 
In these flows, the statistical turbulence quantities are independent of 
spatial position; they develop in time. In homogeneous flows without 
mean strain or shear, the turbulence decays with time; when mean strain 
or shear are applied, the kinetic energy of the turbulence may increase 
with time. 

Homogeneous isotropic turbulence has been simulated by Orszag and 
Patterson (19721, Schumann and Patterson (1978), Clark, Ferziger, and 
Reynolds (1979), and many other people. The results have been used to 
determine turbulence model constants associated with dissipation, and it 
is usually the first flow simulated by people doing full simulations. 

The next group of flows contains those in which there is energy 
exchange between the various components of the Reynolds stress (redis- 

tribution) in addition to dissipation, but no direct production of 
turbulence energy. There are two such flows: homogeneous turbulence 

with rotation (which has been simulated by Rogallo, 1981, and Bardina, 
Ferziger, and Rogallo, 1985) and homogeneous flow relaxing from the 

effects of strain or shear. Schumann and Herring (1976), Schumann and 
Patterson (1978), and Rogallo (1981) simulated turbulence undergoing 

relaxation from axisymmetric contraction strain. Lee and Reynolds 
(1985) studied the relaxation of turbulence after various types of 

strain; some details of their simulations will be given later. 

The final group of homogeneous flows contains flows in which all of 
the phenomena that are possible in homogeneous flows actually occur: 
production, dissipation, and redistribution. mere include homogeneous 
sheared turbulence and various types of homogeneous strained turbulence. 

Full simulation of homogeneous sheared turbulence was performed by 
Rogallo (1981). Shirani, Ferziger, and Reynolds (1981) added a passive 
scalar to homogeneous shear flow, and Feiereisen, Reynolds", and Ferziger 
(1981) studied the effects of compressibility on homogeneous sheared 
turbulence . 

Full simulation of homogeneous strained turbulence was performed by 

Rogallo (1981). He considered the axisymmetric contraction and plane 
strain cases. Dang (1985) simulated homogeneous turbulence subjected to 
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two successive plane strains. Lee and Reynolds (1985) did the most com- 

prehensive study of homogeneous turbulence subjected to plane , axisym- 
metric contraction, axisymmetric expansion strains, and combinations of 

them. 

1.3 Motivation and Objectives 

Turbulence undergoing compression is of considerable technological 

interest, but the effects of compression on turbulence are not well 
understood. RDT provides solutions for cases which are far from those 

that arise in engineering applications. Due to the limitations of 
measurement techniques, experiments have provided only a qualitative 
picture of the effects of compression, As the state-of-art of exper- 
imental techniques advances, it will shed more light on this subject. 

On the other hand, model-builders have developed various turbulence 
models intended to represent the effects of compression but have insuf- 
ficient data with which to validate the models. 

Full simulation of turbulent flows is a research tool which allows 

one to better understand the physics of turbulence and is a valuable 
supplement to laboratory measurements, In particular, full simulation 

of turbulence undergoing compression is a unique tool that can be ap- 
plied to answer some of the questions raised above. In this work, we 
perform full simulations of homogeneous turbulence undergoing isotropic 
and one-dimensional compression and use the resulting flow fields as a 

data base for turbulence model development. The simulations were per- 
formed on a CYBER 205 computer. 

1. 

2, 

3. 

Our objectives are: 

To simulate homogeneous turbulence subjected to isotropic and one- 
dimensional compression at low Reynolds number by solving the 
Navier-Stokes equations numerically. 

To study the effects of compression on turbulence using the data 
generated by full simulations. 

To test various turbulence models for compressed flow by comparing 
them with results of the full simulations. 
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4. To construct a turbulence model which accurately predicts compres- 
sion effects on turbulence, 

In Chapter I1 we present the mathematical foundations of these s i m -  
ulations. The numerical methods employed are discussed in Chapter 111. 
In Chapter IV we describe the data management and the performance of the 
code on a CYBER 205 computer. In Chapters V and VI we present the re- 
sults of isotropic and one-dimensional compression simulations, respec- 
tively. Turbulence model testing and a new model are presented in 
Chapter VII, Chapter VI11 contains the conclusions. 
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Chapter 11 

MATHEMATICAL FORMULATION 

This chapter describes the flows simulated and presents the mathe- 

matical formulation including the governing system of equations, the 
solution for the inviscid flow, and the coordinate transformation used 
to transform the governing equations from a Cartesian coordinate system 
to the Lagrangian coordinate system in which the simulations were per- 
formed @ 

2 . 1 Problem Statement 

In this section we describe the flows to be simulated numerically. 
Since the principal objective is to understand the effects of compres- 
sion on turbulence, we choose a flow to study which is not affected by 
the presence of solid boundaries. Homogeneous turbulence offers this 
possibility. In particular, we shall consider the case of a fixed mass 
of turbulent fluid contained within a, rectangular parallelepiped, the 
opposing sides of which can move inward or outward with time. 2he tur- 
bulence may undergo uniform isotropic compression if all three pairs of 
sides move inward at same rate; this case is illustrated in Figure 2-1, 
This case simulates the squish effect of an engine which has a cup-in- 
piston design, If only one pair of sides moves inward as shown in Fig- 
ure 2-2, the turbulence undergoes one-dimensional compression. This 
case simulates the compression stroke in an internal combustion engine 
with a flat piston and is also related to the compression of turbulence 
passing through a shock wave. 

There are several important assumptions on which the simulations 

are based. These are stated below. 

0 The -fluid is Newtonian and obeys the ideal gas law. 

0 Body forces are negligible. 

0 The compression is adiabatic. 

e The Mach number is sufficiently small that sound waves play no 
significant role. Under this assumption, the fluid is com- 
pressed so that the fluid density depends only on time, not on 
space . 
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0 Since there is no heat release and the Mach number is small, the 
fluctuations of temperature can be neglected which means that we 
can assume the fluid properties to be function8 of time alone. 

2.2 Mathematical Formulation 

The basic equations of motion for a Newtonian fluid are the Navier- 
Stokes equations: 

6 )  
2 + u  - -  % I e "ij + '(ui,j j , i  3 9 , k  ij (2-3 1 

where t, p,  u, Q, p, and p are time, density, velocity, stress, 
pressure, and absolute viscosity, respectively. Indices run from 1 to 
3, and a repeated index in any term Implies summation. Subscripts after 
commas denote partial differentiation, e.g., ui,j - aui/axj. 

All flow quantities may be decomposed into mean and turbulence 
components : 

Substituting these into the equations of motion, (2-l), (2-21, and 

(2-3), taking the ensemble average and applying the assumption of homo- 
geneity of the turbulence so that (u'u') we obtain the following 
equations for the mean components: 

- 
= 0 ,  

i j  9 3  

0 (2-8) 
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Subtracting the mean equations from the total equations, we obtain the 
basic equations of motion for the turbulent component of the flow field. 

2.3 Mean Flow 

The governing equations of the mean flow are Eqs. (2-7) and (2-8). 
The mean flow provides the driving force for the turbulence. Eq. (2-8) 
shows the mean flow is driven by its inertial force because the right- 
and side of the equation which represents the surface forces effect is 
zero . 

Due to the assumption of homoge2eity of the turbulence, the mean 

velocity field 5 must be linear in the spatial coordinates i 

(2-11) 

- 
where U depends only on time. The mean-deformation tensor 5 
has the form 

i ,j i 93  

In isotropic compression, S,(t) = S2(t) = S3(t); s2(t) = S3(t) = 0 in 
the one-dimensional compression case. S,(t) is Vp/Xp(t), where 

is the compression speed (assumed to be constant in all runs herein) and 
Xp(t) is the box length at time t. The mean velocity vanishes at one 
end of the box while at the other end of the box it is equal to the com- 
pression speed Vp. The mean velocity profile for one-dimensional com- 
pression case is illustrated in Figure 2-3. 

vP 

Ihe density of the fluid can be obtained by applying the mass con- 
servation law. For isotropic compression cases 
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(2-13) 

while, for the one-dimensional compression cases: 

where Lo denotes the initial box length. 

Due to the assumptions of adiabatic compression of the m a n  flow 
and the ratio of specfic heats, y, of the fluid being constant, the 
mean temperature can be obtained from thermodynamics: 

(2-15) 

The mean pressure can be obtained from the assumption of ideal gas beha- 
vior of the fluid, i.e., 

(2-16) 

where R is the gas constant. 

The absolute viscosity of the fluid ~(y) is assumed to have the 
following functional form In the range of the mean temperature we con- 
sider (Touloukian et al., 1975): 

-1 .5 145.8 T -8 
x 10 kg/(m-sec) for 250K < < 850K (2-17) - - -  lJ(% = 

110.4 + T 

Since the mean temperature is a function of time only, we can rewrite 
Eq. (2-17) as 

The second term on 

by : 

the right hand side of Eq. (2-18) can be approximated 

(110.4 + %O)) II (?t)) -0.75 - 
110.4 + %(t) T(0) 

(2-19) 
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Subst i tuthg Eq.(2-19) into  (2-181, we get the absolute v i scos i ty  as a 
function of time 

(2-20) 

We summarize the mean flow for each type of compression as follows: 

Isotropic compression : 
V 

V 
P - 

U2(X,t) = - x - x (t) 2 
P 

(2-21) 
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One-dimensional compression : 

V 

u(t) = v(0) 

These mean properties will be used in 

2.4 Ooordinate Transformations 

( +pg3 
the simulations. 

(2-22) 

The equations of motion for the turbulence field in the inertial 
laboratory frame are Eqs. (2-9) and (2-10) Periodic boundary conditions 
will be imposed in this coordinate system. Although these boundary con- 
ditions are not exact, they are the best that one can do in simulating 
homogeneous flows and allow the turbulence to develop with a minimum of 
external interference. Previous simulations (liogallo, 1981; Feiereisen 
et al., 1981; Shirani et al., 1981) showed the usefulness of periodic 
boundary conditions for simulating homogeneous turbulence. 

- 
in the convective term in Eq. (2-10) makes 

this term aperiodic in space and prohibits the application of periodic 
ui 

The presence of 
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boundary conditions to the equation as a whole. To overcome this prob- 
lem$ we need to introduce a coordinate transformation which eliminates 
the non-periodic terms, This new spatial coordinate system moves with 
the mean flow; it is essentially a Lagrangian coordinate system i,e, we 
are riding on the mean flow watching the evolution of turbulence. 

We define this transformation for the general case by 

x ’ = B x  fj j , t’ = t (2-23 1 i 

is a tensor relating the transformed coordinates to the where 
Cartesian coordinates, xi and t’ are the transformed coordinates, and 
xi and t are the Cartesian coordinates. Following Rogallo (19811, 
the transformation tensor Bij is the solution of the following set of 
ordinary differential equations: 

Bil 

(2-24) 

subject to the initial conditions : 

B = 6ij s at t = O  (2-25) 
lj 

For the isotropic compression case, the mean-deformation tensor 5 
is 

isj 

and 

0 0 

0 
vP’xP - 

vP/xP 
P 0 

0 
i s j  

U 

0 vP/xP 

where V is a constant and I#, is equal to Lo + Vp t. P 

(2-26) 

(2-27) 

(2-28) 
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Eq .( 2-23) then becomes 

LO 
= 'am- x2 

P 
(2-29 ) 

t' = t 

For the one-dimensional compression case, the mean-deformation tensor 

so 

Equation (2-23) then becomes 

(2-31) 

(2-32 ) 

xi = x2 

(2-33) 

x; = x3 

t' = t 
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Figure 2-4 shows how the new coordinate system moves with the mean flow. 
Transformation of the equations from the Cartesian coordinate system to 
the new coordinate system is done by using the chain rule. The result- 
ing equations will be given below. 

2.5 Isotropically Compressed firbulence 

The governing equations for the Isotropic compression cases in the 

Lagrangian coordinate system are obtained using 
rule. We get 

Eq. (2-29) and chain 

2 
Lo a2 

P -  

ax’ ax’ 
a2 

axlaxl x2(t) 1 1 
P 

,. - 2  n 

Substituting Eqs. (2-34) and (2-21) into (2-9) 

transformed continuity equation 
and (2-lo), we get the 

(2-35) 
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The momentum equations become 

2 2  au; L Lo a u; 
-+-uUj+-u'- x j axj = - ax; ax;ax; at x 

- -  O ap'+L- (2-36) au; v P LO 

P xPp P 

where Vp, Lo, and "p are the compression speed, initial box length, 
and the box length at time t respectively. 

Density and absolute viscosity can be related to the instantaneous 
box length by: 

Since the troublesome convection terms has been transformed away, the 

transformed equations admit periodic boundary conditions. 

2.6 One-Dimensionally Compressed firbulence 

The governing equations for one-dimensional compression cases in 

the Lagrangian coordinate system are obtained in much the same way as 
for the isotropic compression case. However, because the mean flow in 

these two cases are different, the transformed governing equations are 
not the same. We get: 

a a 
ax2 ax; 
- = -  

v x' 
L = a 
a t  x ax; arT 

P 
(2-37) 
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Substituting Eqs.(2-37) and (2-22) into (2-9) and (2-lo), we get the 
transformed continuity equation 

The momentum equations become 

where Vp, Lo, and xp are the compression 
and the box length at time t respectively. 

0 (2-38) 

(2.39) 

P 
speed, initial box length, 

Density and absolute viscosity can be related to the instantaneous 

box length by: 

There are no known analytical solutions of the equations of motion for 
the turbulence field, Eqs. (2-351, (2-36), (2-38), and (2-39).  Numeri- 
cal approximations are needed to solve these equations. The simulations 
will be carried out in a finite domain with specified boundary and ini- 
tial conditions. These are described in the next chapter. 
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1/2 x 1/2 x 112 
l x l x l  

Fig. 2-1. Schematic description of homogeneous, 
isotropic compression f l o w .  

c 

2 x l x 1  1/42 x 1 x .1 

, Fig. 2-2. Schematic description of homogeneous, 
one-dlraeraional compression f l o w .  
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Fig. 2-3. !l%e m e a n  velocity profile for one- 
dimensional compression flow. 

t t + At 

Fig. 2-4, Lagrangian coordinate system for one- 
dimensional compressiole simulations. 
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Chapter I11 

NUMERICAL METHOD 

In this chapter full simulation of turbulent flow is introduced, 

numerical methods used to perform the simulations are presented and 
techniques for removing aliasing error and method to generate initial 
velocity field are described. 

3.1 Introduction 

Since the equations of motion for the turbulence are highly non- 
linear, they are not amenable to classical analytical approaches. 
Numerical approximations are needed to solve these equations. Detailed 
simulations of turbulent flows can be used to both generate physical 
understanding and to improve the models. Full-turbulence simulation is 
the numerical solution of the exact Navier-Stokes equations. The only 
errors made are numerical ones which can be kept within a desired toler- 
ance . 

In full-turbulence simulations, the number of spatial grid points 

is determined by two constraints: the computational box has to be bigger 
than the size of the large eddies if the simulation is to capture them. 
On the other hand, the mesh size has to be smaller than the smallest 
eddies in order to resolve them. 

The smallest scale of importance is the Kolmogorov length scale 

which is defined as : 

3 114 
rl = (v /E) (3-1 1 

where v is the kinematic viscosity and E is the dissipation rate. 
Physically q is the size of the eddies for which viscosity is impor- 
tant. 

The scale of the energy-containing eddies is usually defined by 
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where q is turbulent velocity.  Therefore, the  number of mesh points 

required t o  resolve both the large and small scales along one d i rec t ion  

has t o  be roughly 

314 
Q 

314 
a = (F) = R e  
rl 

(3 -3)  

A t  a Reynolds number based on turbulence .quant i t ies  of 10,000, a 

mesh 1000 points on a s ide  is required. Clearly, t h i s  is  beyond the 

capacity of any ex i s t ing  computer. Full-turbulence simulations are 
current ly  l imited by computer resource a v a i l a b i l i t y  t o  l o w  turbulent 

Reynolds numbers. In our case, with 6 4  x 64 x 64 mesh points,  the 

Reynolds number based on q and Q has t o  be less than about 250. 

3.2 Amroximation of SDatial Derivatives 

Spectral  methods are o f t en  used i n  turbulent flow simulations, 

because, f o r  su f f i c i en t ly  smooth f i e l d s ,  they are very accurate. I n  
addi t ion,  the per iodic  boundary conditions used i n  homogeneous turbu- 

lence simulation make spec t ra l  methods based on Fourier expansions qui te  

na tura l  and easy t o  apply. We s h a l l  use the  pseudo-spectral method to  
compute the s p a t i a l  der iva t ives  i n  terms of the da ta  at mesh points. 

Use of t h i s  method i n  the simulation of turbulence was pioneered by 

Orszag and Pat terson (1972) and used by many others  since then. This 

method is made e f f i c i e n t  by the Fast Fourier Ransform (FFT) algorithm 

developed by Cooley and %key (1965)  which is most e f f i c i e n t  when the 

number of mesh points i n  each d i rec t ion  is a power of 2 .  Since t h i s  

method treats each d i rec t ion  independently, we s h a l l  consider only the 

one-dimensional case here. 

A. Spectral  Method 

To see how the arethod works, consider any function F(x) periodic 

w i t h  period L. !!'he values of such functions at equally epaced mesh 
points can be represented i n  terms of a d i sc re t e  Fourier series as 
follows : 

ik x N/2-1 
hn) e n J  ( 3-4 1 
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where N is the number of mesh points and 

= hj, j = 0, 1 ,  2 ,  3 ,  ...., N-1 "3 
h = L/N is the mesh size 

kn * 2 d L ,  n - -N/2, ....., 0, ...... N/2 - 1 

The coefficients of the Fourier series can be obtained from the inverse 
of Eq, ( 3 - 4 ) :  

(3-5 

Equation ( 3 - 4 )  can be rendered an interpolation scheme by replacing 
xj with a continuous variable X. Then the derivatives of P(x) with 
respect to x at x can be approximated by differentiating the inter- 
polant : 

j 

N/2-1 ik x 

dx n n  n-N/ 2 

N/2-1 ik x 
2 A  n j  

n j  
dF(xj 1 

= ik ;(lc ) e 

d2F(x ) 

dx 
= -k F(k ) e 2 n=-N/2 n n  

(3-6) 

( 3-7 1 

The results are an extremely accurate estimates of the derivatives. 

The nonlinear terms in the equations of motion (2-36) and (2-39) 

introduce the possibility of aliasing errors into the numerical simu- 
lations. To understand the problem, let us consider the one-dimensional 
case with period If two functions represented as discrete 
Fourier series of the form (3 -4 )  are multiplied, we obtain: 

L =  2n = Nh. 

isx N-2-N 
J isx N/2-1 -N/2-1+N 

= t ( S 1  e isxj + c t ( s )  e J +  2s) e 
s=-N/2 s=-N+N s=N/2-N 

v 
Aliasing Error 
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The product series contains wave-numbers in the range -N < s < N-2, 
which includes wavenumbers outside the range supported by the grid we 
are using. Fourier functions with wave-numbers outside che domain 
-N/2 - -  < s < N/2 - 1 are interpreted as waves that belong to the computa- 
tional domain. On the grid, the functions are identical, but their 
derivatives are not identical. This introduces an error called alias- 
iag. m e  alias error resulting from nonlinear terms can be removed by 
two different methods (Patterson and Orszag, 1971) which will be ex- 
plained below. 

- -  

B. Alias Removal By Runcation 

One alias-removal method is the "2/3 rule". It consists of the 

following : 

(1) Given G(n) and i(m)s where -N/2 - < n, m - < N/2 - 1, 
Truncate these Fourier representations, keeping only the central two- 

thirds of the spectrum. 

A { :(,n) In1 5 N/3 
Z(n) = 

, In1 > N/3 

h) 

(2) Compute a(x ) and F(x ) from the truncated Fourier repre- 
j j 

sentation. 
N 

(3) Form the product a(x ) %<x ) in physical space. 
j j 

(4) Take the Fourier transform of the result, keeping only the 
central two-thirds of the spectrum. 

With this method of removing alias error, one-third of the mesh 

points in each direction are wasted in the one-dimensional case. In the 
three-dimensional case, 19/27 of the total mesh points are wasted. Con- 

sequently, this method is costly to use, and an alternative method of 
removing alias error will be described next. 
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C. 

W e  can rewrite equation (3-8) as 

Alias Removal By Phase Shi f t ing  

A 

C(S) = &n> i ( m )  + C k n )  i ( m )  (3-10) 
*IF8 n+m..SiN 

The f i r s t  term on the  right-hand s i d e  is the alias-free par t  of the 

r e s u l t ,  while the second tern on the right-hand s ide  contains the terms 
t h a t  are a l i a sed  t o  wave-number s. 

The s h i f t  theorem te l l s  us tha t  i f  F(x) has the Fourier trans- 

form i ( k ) ,  then F(x-h) has the Fourier transform eikh i (k ) .  This 

can be used as the bas is  of a method of removing a l i a s i n g  e r ror .  The 

bas ic  s teps  of phase s h i f t i n g  method are: 
N 

(1) Given i ( n )  and ;(m), form a(x ) and c (x  ) on the 
j. j 

sh i f t ed  mesh. 

a h j )  = ;(n> e 

N/2-1 N/2-1 
imh( j+l) 

k m )  e 
u 

P - N / ~  w-N/2 (3-11) 

where h is the  mesh s i z e .  
N 

(2) Form the  product e(x ) = G(x ) g(x ) i n  physical space. 
j j j 

(3) S h i f t  the r e s u l t  back t o  the o r ig ina l  mesh, The Fourier 

transform of r e su l t i ng  function is: 

(3-12) 

(4) Repeat s t eps  ( l ) ,  (2), and (3) with h replaced by h' = h + 
r / N .  Equation (3-12) becomes 

n+m=sfN 
(3-13) 



( 5 )  The a l ias - f ree  r e s u l t  is obtained by combining (3-12) and 

(3-13) 

(3-14) 

n+m=s 

The advantage of t h i s  method is tha t  it does not waste any mesh 

It doubles the computation but is f a r  more points as i n  the  "2/3 rule". 

e f f i c i e n t  . 
3.3 T i m e  Advancement 

I n  full-turbulence simulations we a r e  looking fo r  time-accurate 

so lu t ions  t o  the equations of motion. An e x p l i c i t  method of advancing 

the  solut ion i n  t i m e  is a na tu ra l  choice. In  pa r t i cu la r ,  we used a 

second-order Runge-Kutta method t o  advance the solut ion i n  t i m e .  The 

algorithm t o  advance the so lu t ion  of du/dt = f ( u )  from the t i m e  s t ep  

n t o  s t e p  n + 1 is 

(3-16) 

where A t  is the time s t e p  and * denotes the intermediate s tep.  

The accuracy of t h i s  method can be found by introducing the 

representat ive equation du/dt = xu. Replacing f(u)  by hu i n  (3-15) 

and (3-16) and subs t i t u t ing  (3-15) i n t o  (3-16), we obtain 

(3-17) 

Equation (3-17) shows t h i s  algorithm is indeed second order accurate. 

The s t a b i l i t y  l i m i t  of this method is the  locus of a l l  A 

sa t i s fy ing  the following re la t ionship  

(3-18) 
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where 

O < e < 2 n  - - 
Rewriting (3-18) 

The s t a b i l i t y  diagram f o r  t h i s  method is shown on Figure 3-1. The t i m e  

s t e p  is var iab le  and is determined by s e t t i n g  the Courant number t o  be 
0 .os * 

3.4 I n i t i a l  Conditions 

There are several  ways t o  generate the  i n i t i a l  ve loc i ty  f i e l d  (Bar- 
dina et al., 1983; Shirani  et al., 1981; and Rogallo, 1981). We follow 

Rogallo's method t o  produce an i n i t i a l  ve loc i ty  f i e l d  which is nearly 

i so t rop ic  i n  wave space, divergence-free, and has the desired spectrum. 

None of the i n i t i a l i z a t i o n  processes mentioned above produces the 

higher-order ve loc i ty  statist ics of real turbulence. We therefore l e t  

the  i n i t i a l  f i e l d  decay un t i l  the higher order statistics and the proper 

energy cascade were developed before introducing compression . 
The i so t rop ic  f i e l d s  produced a f t e r  the  i n i t i a l  development period 

were used as the starting conditions f o r  various s t ra in ing  runs. 
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-2 

-2 -1 0 

Fig. 3-1. The stability diagram for second- 
order Wunge-ICutta method. 
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Chapter IV 

COMPUTER PROGRAM DEVELOPMENT ON THE CYBER 205 

In t h i s  chapter, the CYBER 205 computer and the program used t o  do 

the  simulations are b r i e f l y  described. 'he data-management s t r a t egy  

chosen, which takes f u l l  advantage of t h i s  computer, i s  presented. The 

performance of the  computer code and the  va l ida t ion  checks made are 
described . 
4.1 The CYBER 205 Computer 

The simulations were done on two d i f f e ren t  Control Data Corporation 

CYBER 205 computers, one at Colorado S t a t e  University and a l a rge r  one 
with twice t h e  memory and number of processor un i t s  at  Control Data Cor- 

poration, Minneapolis. The CSU computer has two mi l l ion  64-bit words of 
cen t r a l  memory. Its c e n t r a l  processor u n i t  (CPU) contains a scalar pro- 

cessor and a vector processor with two pipelines.  

Figure 4-1 shows the  performance of a two-pipe machine f o r  addition 

and mul t ip l ica t ion  as a function of vector length. The asymptotic 
performance, which requi res  a vector length of 65535, is 100 mi l l ion  

floating-point operations per second (Mflops) f o r  64-bit a r i thmet ic  and 

200 Mflops f o r  32-bit arithmetic. 

It is obvious tha t  the performance improves with vector length. 

Vector length 1000 (64-bit case) or 2000 (32-bit case) is required t o  

reach 90% of the  asymptotic performance. Constructing a code which uses 

long vectors is therefore important i f  maximum performance is t o  be 
obtained from the  machine. 

4.2 Data Management 

Based on the  "longer vector gives better performance" philosophy, 

we chose to do the d i s c r e t e  Fourier transforms i n  pa ra l l e l .  This w i l l  

be explained i n  d e t a i l  later (a l so  see Wu e t  a l a  1983). 

In Figure 4-2, NX, NY, and NZ are the  number of mesh poin ts  of 
t h e  computational box i n  the  x, y, and z d i rec t ions ,  respectively; 

MY and MZ are ca l led  "pencil size". 
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On the f i r s t  sweep, MZ x-y planes of da t a  are Fourier transformed 

i n  the  y d i rec t ion ;  these are done i n  pa ra l l e l .  The transform length is  
NY, but by doing them i n  p a r a l l e l ,  a vector length of is 
achieved; the f a c t o r  3 is due t o  the simultaneous processing of three 

ve loc i ty  components, while the f ac to r  1/2 arises because only half  of 
the wave space modes are needed i n  order t o  represent a real function. 

To accomplish the  vec tor iza t ion ,  i t  is usefu l  t o  lump every dependent 

var iab le  i n t o  a s ing le  big array. (NX/2, 
NY, HZ, 4, 2); t h e  dimensions represent x,  y ,  z, a dependent variable 

index, and real and imaginary p a r t s  of a complex number. 

3 x NX/2 x MZ 

The main a r r ay  is ca l led  DATA 

On the second sweep, MY x-z planes are processed. Fourier trans- 

forms i n  the  z and x di rec t ions  are done on t h i s  sweep. The vector 

lengths are NX/2 x MY x 3 and NZ x MY x 3, respectively.  

A GYBER 205 vector is defined as a contiguous set of memory loca- 

t ions .  Since the  two sweeps are i n  d i f f e ren t  d i rec t ions ,  an a r r ay  

transpose has t o  be done between sweeps and within the second sweep i n  
order t o  keep processed da ta  i n  a contiguous set of memory locations.  

The transpose is done by using gather ins t ruc t ions ,  The gather instruc- 

t i on  puts a r ray  elements which are at various locations i n t o  a contig- 

uous set of memory locations.  An index vector is needed t o  pick up the 
desired elements, 'Ihe Q8VGATWR function (64-bit) o r  the  Q8VXTOV 

subroutine (32-bit), provided by the manufacturer, is used to  do the 
transposing. As t he  array g e t s  bigger, 80 does the  index vector 

length,  and an appreciable amount of overhead working space is needed. 
I n  the  64 x 64 x 64 run with penc i l  s i z e  32 x 16, the  index vector 

has 17,408 elements . 
4,3 Computer Performance 

The performance data based on a count of the  number of operations 

per time s t e p  are presented i n  Table 4.1. The mesh s ize  is given i n  
column 2 (each node requires seven words of da t a  storage). The pencil 

s ize  is given i n  column 3; t h i s ,  together with mesh size, determines the 
vector length shown i n  column 4. The computational precision is given 

i n  column 5, t he  CPU time i n  column 6, and the  CPU computation rate i n  
column 7. The 1/0 time per t i m e  s t e p  i n  seconds is meaningful only f o r  

32 



1.11 

U 
Q) 
rl 
*3 

d 

R 
V 
U 
4 
VI 
0 
N 

pc 

i! 
Iu 
0 

8 
i! 0 

ccc 
k aJ 
PI 

n a 
k 

3" 
U 
l4 a 
I 
U 
W 
c 
N 

5 
4 
3 
I 
Q) 
Q 
rl 
PI 

E 
U 

a 
U 

1 
8 

Q) 
k s 
C 
l4 

N 

0 
9 

t 

7 
m 
N 

3 
9 
0 

U 
\o 

N 

2 

00 
K 
00 

00 
X co x 
00 

1.11 

G 
0 
U 

c 
rl 

0 

0 
? 

I 

9 
1.11 m 

0 
Q, 

0 
'0, 

U 
\o 

U 
Q) 
(3 

U 
X 
U 

N m K 
N m 
K 
N m 

N 

a8 
k 

8 
c 
4 

Q, 

0 
? 

1 

9, 
m 
VI 

Q, m 

0 
@? 

U 
\o 

N 
h 

0 
0, 

N m 
X 
N m 

N m 
K 
N 
0 
K 
N m 

m 

Q) 
& 
0 
U 

C 
rl 

Q, 

0 
? 

I 

cv. 
Q, 
00 

0 
U 

0 
N. 

N ' m  

N 
t- 

m 
o, 

N m 
X 
N 
c3 

h3 
c3 
X 
N m 
X 
N m 

U 

3 
2 
rl 

a 

0 

N 
h. 

'0. 
\o 
VI 

? 
Q, 
VI 

00 
I- 

0 
@? 

U 
\o 

N 
h 

m 
0, 

W 
X 
\o 

r( 

4 

U 
\o 
X 
U 
rg K 
U 
W 

In 

9) 
& 
0 
U 
c 
rl 

0 

N 
h. 

I 

9. 
Q, 
6 3  

N 
N 

N 
s 

N 
0 

N 
h 

m 
0, 

SI: 
2 
K 

.* 
W K 
U 
\o 
K 
U 
\o 

\o 

0) 
& 

8 
c 
rl 

h 

m 
5 

I 

h. 
0, 
4 

0 
a0 
0: 
4 

N m 

00 
0 

* '0, 

W 
1.11 
K 
N m 

U 
\o 
K 
U 
W 
K 
U * 

h 

M c 
4 

a 2 

N 

m 
9 

h. 
00 

N. 
2 

5 
0: 

m 

4 

N m 

U 
5 
W 

N m 
K 
N 
0 

U 
\o 
X 
U 
W 
K 
U 
W 

I 

33 



runs with virtual memory paging. Explicit 1/0 would reduce I / O  time 
considerably, but we did not use it. 

Gomparing Runs 3 and 4, and Runs 5 and 6 in Table 4.1, it is found 

that the CPU time for a 32-bit (half) precision run is 60% of that for 
the corresponding 64-bit (full) precision run. We kept track of the 

timing in the transpose part of the code and found an interesting fact. 
In full-precision runs, the transpose takes 15% of the (=w time; 85% of 

the CPU time is spent in floating point operations. In half-precision 
runs, due to the lack of a half-precision gather utility, the transpose 
takes the same time as in full-precision runs, while the floating-point 
operations require only half of the full-precision 6 U  time, Conse- 
quently, for the half-precision run, the transpose takes 25% of the 
total time . 

Detailed timing from Run 8 shows that 51% of the CPU time is spent 
in the FFT subroutine, which contains 78% of the floating point opera- 
tions. In other words, the FFT operates at 157.6 Mflops. The remaining 
22% of the floating-point operations are executed at 95 Mflops, due 

mainly to shorter vector lengths and the occurrence of IF statements. 
\ 

Table 4.2 shows the performance data obtained from a CYBER 205 with 
four vector pipelines. The computation rate of a four-pipe machine is 
twice as fast as that of a two-pipe machine. Note that Run 13 is only 
1.7 times faster than Run 8, This is again due to the transpose taking 
the same amount of time on both machines. 

In summary, the present code is fully vectorized to take maximum 
advantage of the capabilities of the GYBER 205 computer. It can handle 
up to 64 x 64 x 64 mesh points in core while running at 100 Mflops on 
a two-pipe machine and 190 Mflops on a fourpipe machine. This compu- 
tation rate is among the fastest that can be obtained from present 
supercomputers. To obtain it, the vector length must be long enough and 
half-precision computation must be used. The slowness of taking the 
transpose is the key factor in preventing one from getting better per- 
formance from the computer. The slow 1/0 transfer rate prevented us 
from using a 128 x 128 x 128 mesh. 

34 



E 
U a 
In 
0 
N 
d 
W 

u 
w 
0 
al 

B 

i 
0 w 
& 
al 
p1 

n a 
& 

U 
V-I 
m 

I 
U 
\o 

E 
U 

5 
4 
3 
OD 
al a 
V-I a 
& 

cr g 
v 

v 

n 
OD 
al w 
0 
E 
v 

4 
(2: 
0 

2 
d 

a 
r( 

N m 

U 
3 
e 

cv m 
X w m 

U 
\o K 
U e K 
U 
\o 

m 
d 

9. 
d 

4 
o\ 

4 
In 
9 
4 

N m 

00 
00 
-, 
2 

U 
9 
K 
U 
\o 

U e M 
U 
\o 
K 
U e 

In 
4 

35 



4.4 Tests of the Code 

Several tests were performed in order to 
important checks are described below: 

A. Decay of Isotropic lbrbulence 

A 64 x 64 x 64 run was performed with the 
21 set equal to zero. The three-dimensional 
tained by summing the energy in spherical shells 

- 
i ,j 

qualify the code. Two 

mean strain rate tensor 
energy spectrum was ob- 
of inner radius k and 

outer radius k + Ak, where k is the magnitude of the wavevector and 

Ak is the difference between the magnitudes of the two nearest neighbor 
wavenumbers. The initial energy spectrum was a top-hat spectrum. The 
flow evolved from the artificial initial spectrum to a realistic low 
Reynolds number spectrum as the simulation proceeded. As can be seen 
from Figure 4-3, the normal Reynolds stresses are slightly anisotropic 
at low wavenumbers and isotropic at high wavenumbers. This is due to 
the small number of modes at low wavenumbers. lIhe 3-D dissipation 
spectrum spectrum D(k) is defined as 

D(k) = 1 k2E(k) 
P 

(4-1 1 

2 and its components Dora(k) = 1 k E(k) are shown in Figure 4-4. The 
peak of the dissipation spectrum is located well inside the resolvable 
wavenumber range. This means that the dissipation scale of the flow is 

resolved . 

P 

The longitudinal and lateral one-dimensional spectra of the veloc- 

The one-dimensional spectrum of the ity field are shown in Figure 4-5. 
velocity field in the kl direction is defined as 

As shown, the spectra drop several orders of magnitude frow low wave- 
number to high wavenumber. This again demonstrates that the dissipation 
scales are well resolved. That E22(kl) = E3s(kl) shows that the vel- 
ocity field is isotropic. 
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The two-point correlations and the one-dimensional spectra are 

Fourier transform pairs. They are defined as 

< Upx) u'(x + > 
< u;(x) u'(x) > (4-3) - j -  Q (y) = 

- 3 -  33 - 
The close agreement between the two lateral correlations, 

and Q33(xr ,O ,0) , 
Q22(x1 ,O,O) 

in Figure 4-6, shows that the flow is isotropic. 

The time evolution of the turbulent kinetic energy, dissipation 
rate, integral length scales, and Taylor micro-scales are all in good 

agreement with both experiments (Comte-Bellot and Corrsin, 1971) and 
previous simulations (Shirani et al., 1981). These results gave confi- 
dence that the code is capable of simulating homogeneous isotropic tur- 
bulence. The particular flow field shown in this section was also used 

as the initial condition for the three-dimensional straining runs. 

B. Plane Strain 

The second test of the code is isotropic turbulence subjected to 

uniform two-dimensional strain; one pair of sides of the computational 
box moves inward at the same rate a second pair moves outward, while the 

third pair remains stationary. This type of flow has been investigated 
experimentally by Townsend (1954) and by 'hcker and Reynolds (1968); and 

numerically by Rogallo (1981) . 
Three different strain rates and two different choices of strain 

axes were tested, namely: compression in the direction and stretch 
in the x3 direction, and compression in the x1 direction and stretch 
in the x2 direction. The time development of the components of the 
turbulent kinetic energy and structure parameters of a typical run are 
shown in Figures 4-7 and 4-8. Figure 4-9 shows the time development of 
the components of the turbulent kinetic energy for two different choices 
of strain axes. 

x2 

The simulated results are in good agreement with Rogallo's results. 
The differences can be attributed to different turbulence Reynolds num- 
bers. The close agreement between two different choices of strain axes 
shown in Fig. 4-9 demonstrates that the computer code does not have any 
direction preference . 
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From the r e s u l t s  of the t w o  tests described i n  t h i s  sect ion,  we 

have confidence that the computer code is operating properly and ready 

t o  use t o  simulate compressed turbulence. 

4.5 General Description of the Simulations 

As described i n  Section 3.4, t he  simulation starts with an arti- 
f i c i a l  init ial  f i e l d .  Therefore, there  is an i n i t i a l  period i n  which 

the  simulated flow f i e l d s  cannot be t rea ted  as t rue  turbulence. During 
t h i s  period, an energy cascade is gradually developed; the spec t ra  be- 

come realistic, and higher ve loc i ty  statistics reach asymptotic values. 

After the in i t ia l  **relaxation" period, the ve loc i ty  f i e l d  is stored 

for  l a t e r  use as the  i n i t i a l  condition f o r  s t r a in ing  runs. During the 

s t r a i n i n g  process, the simulated flow f i e l d s  can be regarded as t rue  

turbulent flows . S t a t i s t i c s  are extracted from these flow f i e lds .  

These w i l l  be discussed extensively i n  Chapters V and V1. This simula- 

t i on  is stopped when the scales of motion grow too large f o r  the compu- 

t a t i o n a l  box. 

Beyond t h i s  point ,  the  flow f i e l d s  do not accurately represent t rue  

turbulence, because the eddies are influenced by the imposed periodic 

boundary conditions. The region of v a l i d i t y  of the simulation can a l so  

be monitored by examining the d i s s ipa t ion  spectra.  If the peak of the  

spec t ra  moves beyond the resolvable wavenumber range o r  energy accumu- 
lates a t  high wavenumbers, the  small scales are no longer being accu- 
r a t e l y  resolved. When reso lu t ion  of either the  la rge  o r  small scales is 

l o s t ,  the  simulation is stopped. 

In the  next chapter we discuss  the simulated r e s u l t s  f o r  isotropic-  

a l l y  compressed turbulence. 
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Chapter V 

HOMOGENEOUS ISOTROPIC TURBULENCE UNDERGOING ISOTROPIC COMPRESSION 

In t h i s  chapter we present r e s u l t s  f o r  homogeneous i so t rop ic  turbu- 
lence undergoing i s o t r o p i c  compression. Numerical simulation r e s u l t s  

are compared with the predictions of rapid d i s t o r t i o n  theory. Results 

f o r  four d i f f e r e n t  compression rates are presented and discussed, 

5.1 Rapid Dis tor t ion  Theory 

Rapid d i s t o r t i o n  theory (RDT) is a l i n e a r  theory which describes 

the response of turbulence t o  a rapidly applied mean f i e l d .  This theory 

was originated by Taylor (1935) and was extensively developed by Batch- 

e l o r  and Proudman ( 1 9 5 4 ) .  It is  va l id  only i n  the l i m i t  of extremely 

rapid d i s to r t ions .  A measure of r a p i d i t y  is the r a t i o  of the turbulence 

time scale (q2/E) t o  the mean flow time scale (l/S). RDT is va l id  

when 

where S, q ,  and E are the mean s t r a i n  rate, turbulent velocity,  and 

d i s s ipa t ion  rate respectively.  

When turbulence is d i s to r t ed  by a rap id ly  applied mean flow, i.e., 
the  time scale of the  applied s t r a i n  is much shor te r  than the turbulence 

time scale, nonlinear turbulence in t e rac t ions  are unimportant, so t he  

turbulence energy cascade cannot come t o  equilibrium with the applied 

s t r a i n .  Also, t he  d i s s ipa t ion  process is too slow to be important dur- 

ing the s t ra in ing .  Under these conditions the nonlinear i n t e rac t ion  and 

viscous d i s s ipa t ion  terms i n  the  momentum equations may be neglected. 

Thus, RDT is a l i n e a r  inv isc id  analysis of turbulence. 

RDT ana lys i s  discussed i n  t h i s  s ec t ion  follows Reynolds' work 

(1984); we are g ra t e fu l  f o r  permission t o  use h i s  r e su l t s .  In RDT, i t  

is more convenient t o  work with v o r t i c i t y  f i e l d  than the  ve loc i ty  

f i e l d ,  The v o r t i c i t y  is defined as 
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where ui# Eijk, and % are the vorticity vector, the completely 
antisynanetric tensor of rank three (the Levi-Civita symbol), and the 
velocity vector, respectively. We can relate the velocity field to the 
vorticity field by taking the curl of Eq. (5-1). 

= u  'U (5-2) 

The dynamic equations for the vorticity can be derived by taking 

E P9iW i, Q QSPP P a w  

the curl of the momentum equations: 

+ U  and p and p are functions where Sij = T (ui, 
only. The first two terms on the right-hand side of Eq. (5-3) 

1 
j ,iJ 

(5-3 1 

of time 
are the 

vortex stretching terms and the last term accounts for viscous diffu- 
sion . 

All flow quantities in Eq. (5-3) can be decomposed into mean and 
fluctuating parts, that is 

= W + w '  
@i i i  

- 
u = u + u t  i i i  

Substituting Eq.(5-4) into (5-3) and taking the ensemble average, we get 

- - w s  - w z  (5-5 1 + i i W  awi 
j ij i kk + +i,jj at 3 i , j  

The equations €or the fluctuating vorticity (Eq. (5-6)) are obtained by 

subtracting Eq. (5-5) from (5-3). Note that, in deriving Eq. (5-6), we 
have assumed (1) that nonlinear interactions and viscous dissipation may 
be neglected, (2) that the mean strain is irrotational and (3) that the 
turbulence is homogeneous. These assumptions are applicable 
tropic compression case. 

in the iso- 
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Eq. (5-6) can be transformed to Lagrangian coordinates using the trans- 
formation of Chapter 11. In the isotropic compression case, Eqs. (2-21) 
and (2-34) are used to reduce Eq. (5 -6)  to: 

aw; 2v - P --w* P (5-7 ) 
at x (t) i 

P 

where Vp is the compression speed and xp(t) is the box length at 
time t. lhe solution of Eq. (5-7) is 

where Lo is the initial box length, and xp(t)/Lo is the instantane- 
ous total strain ratio. 

The turbulent velocity field is found from the turbulent vorticity 
field via Eq.(5-2). 

U* i ,kk = -  Eikjw; ,k (5 -9 )  

where continuity constraint u' = 0 is applied. Transforming 
9 %  

Eq.(5-9) to Lagrangian coordinates, we get 

2 2 
P 

a a L ,,+-) 
ax; ax' 2 

P 3 

L 
0 - 

X 
P 

(5-10) 

Equations (5-10) are solved by using Fourier transforms. Taking the 
Fourier transform of Eq.(5-10), we get, 

A A A 

(5-11) 

A 

qwi(&' ,t J - kiwiE' ,t J 

-i(x /LoJ 
2 2 kisi@'9tJ - 

(ki + k; + k; 
kiwi[k' - ,tj - kiwig' ,t J 
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where k' is the Fourier wave vector corresponding t o  x' e We define 

Eij(&',tJand +ij(l-c',tj as the  spec t ra  of u'u' and w'w' , respec- 
_. - - - 

i j  $ 1  
t ive1y e 

E ( k ' , t )  E u i r , t J  u F,tJ 
i j  - 3 

(5-12) 

e --f +ije',tJ E w i L ' J  k' t w j F , t j  

where * d-notes the complex conjugate. From Eq~~(5-1 
(5-131, Ell@',t) can be expressed as 

(5-13) 

I s  (5-12), and 

and from Eq~~(5-8) and (5-13) +ije',tJ can be expressed as 

(5-15) 

+22@',0) is obtained from Eqs.(5-13), and (5-12) 

+22@',0) = k3 2 Ellc',Oj + ki 2 E33@'.0J - 2kikjE13[&',0J (5-16) 

I f  the  i n i t i a l  turbulence is i so t rop ic ,  then 

(5-17) 

Combining Eqs.(5-14), (5-15), (5-16), and (5-17) we obtain 
-2 [k$(k' 2 2  -k' J + k' 2 2 2  (k' -k' J + 2kq2kV2 ] 

E (k ' , t J  = E(k',;) ( p ) 2 2 3 2 3  x (t) 

2 2  + kq2 + le1 1 
2 3 

11 - 4nk' 

(5-18) 
The spec t ra  of E22 and E33 can be found by permuting the indices.  

Equation (5-18) is t h e  most important result of RDT analys is  f o r  

i so t rop ica l ly  compressed turbulence. It provides the spectrum of the  
turbulence i n  terms of the  i n i t i a l  spectrum and the  instantaneous t o t a l  

s t r a i n  r a t i o .  Any other quant i ty  dependent upon the spectrum can be 
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deduced from Eq.(5-18). For example, the evolution of the three- 

dimensional dissipation spectrum D(k',t) is derived as follows: 

D(k',t) i s  defined as in Equation (4-1). 

D(k',t) E ~(EJ v(t) kg2(t) E(k',t) 

Substituting Eqs, (2-21), (5-19) and k'(t) = (2r k'(0) into Eq. 

(4-11, we get 

-0.9-(-3)+(-2)+(-2) 
D(k',t) = ($) p# kW2(0) E(k',O) 

E ( >I1*' D(k',O) 
0 

Other important results from RDT aDalysis for isotropic compressed tur- 
bulence are summarized below : -2 

Three-dimensional energy spectrum: E(k',t) = ($) E(k',O) 
-1.9 

Three-dimensional dissipation spectrum: D(k*,t) 5 ( p )  D(k',O) 
-2 

energy spectrum: E [kq t = (t) E lk' 0 
jj i' I ti i' 

One-dimensional 

Two-point 

Turbulent 

auto-correlation: Qij(xA,tJ Qij tXA*O J 

-2 

kinetic energy: k(t) = (2) k(01 
-1.9 

Dissipation rate: c(t) = (2) d o )  

Kolmogorov length scale: n(t) = 

(5-19) 

X 
Taylor microscales : hii(t) = 9 Aii(0) 

LO 
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Integral length scales: L (t) = 3 L (0) 
ij ,m Lo ij*m 

-4.2 
Turbulent Reynolds number : Rea( t) 

5.2 Simulation Results 

Four simulations of isotropically compressed turbulence were per- 
formed. All started with the same isotropic turbulence initial csndi- 
tion, but the compression rate differed in each case. Some details of 
the isotropic turbulence initial condition are shown in Table 5.1 . 
Three independent dimensionless parameters can be formed from the time 

t, the strain rate S(t), and the turbulence velocity and time scales, q 
and q2/,, respectively, These are taken to be 

which are the total strain ratio, the ratio of the turbulence and strain 

time scales, and a turbulence Reynolds number, respectively. Since 
homogeneous turbulence is a time-developing flow, these dimensionless 
parameters change during a simulation. Table 5.2 shows the range of 
these parameters covered in each simulation. 

Run SQF had the fastest compression rate among these four cases. 
The ratio of turbulence and strain time scales is sufficiently high that 
the rapid distortion limit is applicable. The results of run SQF agree 
with RDT analysis (Eq.(5-19)); this is demonstrated below. 

A. Description of the Rapid Distortion Run 

In this section, we present results obtained from the rapid distor- 
tion run (SQF). The mean strain-rate tensor is 

where 
5-11 and discussed below. 

S(t) = V,/Xp(t). The results are shown in Figures 5-1 through 
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Table 5.1 

Some Details of the Initial Condition 
of the Isotropically Compressed Ibrbulence Simulations 

(consistent units) 

Turbulence Velocity q 0,2856 

Dissipation Rate g 0.0324 

Integral Length Scale L11,1 0.9791 

Taylor Microscale ~ 1 1  0 ,3444 

Kolmogorov Length Scale q 0,07454 

Kinematic Viscosity v 0 -01 
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Figures 5-1 through 5-4 show the evolution of the lateral and long- 

i t ud ina l  one-dimensional spec t ra  of the ve loc i ty  f i e ld ;  these are de- 
fined by Eq.(4-2). Zhe i n i t i a l  lateral  and longitudinal spectra are 

shown i n  Figures 5-1 and 5-3, respectively. The spec t ra  obtained from 
the simulation and RDT ana lys i s  when the  t o t a l  strain r a t i o  is 0.552, 
are shown i n  Figures 5-2 and 5-4, respectively. The agreement is excel- 
l en t .  

Figures 5-5 and 5-6 show the longitudinal and lateral two-point 

auto-correlations at the i n i t i a l  t i m e ,  and when the  t o t a l  s t r a i n  r a t i o  

is 0.779 and 0.552. !they are given i n  the Lagrangian coordinates. 

These f igu res  show t h a t ,  i n  accord with RDT analys is  (Eq.(5-19)), the 

two-point auto-correlation i n  Lagrangian coordinates does not change 

during the simulation. 

Figures 5-7 and 5-8 show the  t i m e  evolution of twice the turbulent 

k i n e t i c  energy (q2) and the  d i s s ipa t ion  rate (E) from the simulation 

and RDT analysis.  Again, t he  agreement is excellent.  

The time evolution of the  in t eg ra l  length scale, Taylor microscale, 

and Kolmogorov length scale from the simulation and RDT ana lys is  are 

shown i n  Figs. 5-9, 5-10, and 5-11. The i n t e g r a l  length scale, which is 
t he  i n t e g r a l  of the  two-point ve loc i ty  auto-correlation, shrinks l ine-  

a r l y  with t i m e  i n  Cartesian coordinates. So does the Taylor microscale. 
However, t he  Kolmogorov length  scale decreases much f a s t e r  than the  in- 

t e g r a l  length scale. This is due t o  the rapid decay of the  kinematic 
v i scos i ty ,  which is, i n  turn ,  due t o  the  increasing dens i ty  and temper- 

a t u r e  during compression. This r e s u l t s  i n  the  small length scale 
decreasing very rapidly during the  compression and is important i n  

understanding some of the  r e s u l t s  presented later. 
In  summary, t he  agreement between the r e s u l t s  of RDT ana lys i s  and 

computer run SQF is excellent.  This demonstrates t ha t  run SQF indeed is 
a simulation of rapid d i s t o r t i o n  and, taken together with the  r e s u l t s  of 
the  i so t rop ic  decay run, t h a t  the code is performing cor rec t ly .  
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B. Summary of I so t ropic  Compression Simulations 

Important da ta  from a l l  four  i so t rop ic  compression simulations are 
compiled i n  Table 5.2 and discussed i n  t h i s  section. These simulations 

cover a wide range of i n i t i a l  values of from 0.1 t o  47.04. 

As shown above, t he  f a s t e s t  compression simulation agrees with rapid 

d i s t o r t i o n  ana lys i s  . On the o ther  hand, f o r  extremely slow compressiozl 

t h e  e f f e c t  of s t r a i n  becomes negl ig ib le  and the flow 

2 lSlq /e, 

(ls1q2/E + 01, 
behaves l i k e  the  i s o t r o p i c  turbulence decay of Chapter N. 

In the region between these two extremes, there are no known ana- 

l y t i c a l  solutions.  The e f f e c t  of {S/q2/E on the various turbuleace 

statistics i n  t h i s  region is discussed below. During the  compression 

s t roke  of an i n t e r n a l  combustion engine, t he  value of ISlq2/e is i n  
the range 0.05-0.5. So, runs SQH and SQI are i n  a range applicable t o  

engines 

Figures 5-12 and 5-13 show the  behavior of the Reynolds number and 

t i m e  scale r a t i o  as functions of the t o t a l  s t r a i n ,  which is  an approp- 

r ia te  nondimensional t i m e  f o r  t h i s  flow, f o r  the four simulations. The 

four simulations have the same i n i t i a l  condition shown i n  Table 5.1 but 

d i f f e r e n t  compression speeds. Both the Reynolds number and t i m e  scale 
r a t i o  increase with t i m e .  For cases with s m a l l  i n i t i a l  lSlq /e, the  

rate of increase of the Reynolds number is less than f o r  cases with 
l a rge r  i n i t i a l  t i m e  scale r a t i o .  As can be seen from Fig. 5-13, a wide 

range of 

2 

2 
lSlq /e has been covered by these four simulations. 

Figure 5-14 shows the three-dimensional energy spectrum at  t o t a l  

s t r a i n  r a t i o  0.785 i n  run SQH. The 3-D energy spectrum evolves as the  
simulation proceeds. No i n e r t i a l  subrange (a region of t he  spectrum 

with slope -5/3) appears i n  the 3-D energy spectrum because the Reynolds 

number is low. The flow f i e l d  remains i s o t r o p i c  throughout the  simula- 

t ion.  Ihe corresponding spectrum from the rapid d i s t o r t i o n  simulation 
i s  p lo t ted  f o r  comparison. The difference between these two spec t ra  can 

be a t t r i b u t e d  t o  the  e f f e c t s  of viscous d i s s ipa t ion  and nonlinear inter-  

ac t ions  . 
Three-dimensional d i s s ipa t ion  spec t ra  f o r  runs SQII and SQF at t o t a l  

s t r a i n  r a t i o  0.785 are shown i n  Fig. 5-15. The peaks of the spec t ra  are 
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located w e l l  ins ide  the resolvable wavenumber range. This means tha t  

t he  d i s s ipa t ion  scale of the  flow is resolved. The d i f fe rence  between 
these two spec t r a  can be a t t r i b u t e d  t o  the  f a c t  t ha t  run SQH is f a r  from 

rapid d i s t o r t i o n  l i m i t  . 
The lateral and longitudinal two-point cor re la t ions  of runs SQH and 

SQF a t  t o t a l  s t r a i n  r a t i o  0.785 are shown i n  Lagraslgian coordinates, i n  

Figs, 5-16 and 5-17. As can be seen, curves from run SQH are f a t t e r  

than those from the rap id  d i s t o r t i o n  simulation (run SQF). Conse- 
quently, the  i n t e g r a l  scales from t h i s  simulation are bigger than those 

from the  rapid d i s t o r t i o n  simulation. In  other words, nonlinear and 

viscous e f f e c t s  cause the  in t eg ra l  scales t o  decrease less rap id ly  than 

i n  the rapid d i s t o r t i o n  case. 

Figures 5-18 and 5-19 show the h i s to ry  of the turbulent k ine t i c  

energy and i ts  d i s s ipa t ion  rate. When the compression r a t e  is l a rge ,  as 
i n  runs SQF and SQG, the  flow is immediately a f fec ted  by the  mean s t r a i n  

and both quan t i t i e s  increase throughout t he  simulation. If the i n i t i a l  

value of is 0.1 o r  less, the mean s t r a i n  is not strong enough 

t o  immediately alter the s t ruc tu re  of the flow and the flow r e t a i n s  the 

character of decaying i so t rop ic  turbulence during the  i n j t i a l  period, 

After the  s t r a i n  has been applied for  a longer period, the  flow grad- 

u a l l y  r e f l e c t s  the e f f e c t  of mean s t r a i n .  There is a t r a n s i t i o n  region 

i n  which the  decay and s t r a i n  e f f e c t s  are approximately balanced. I n  

a l l  cases, when the s t r a i n  has been applied f o r  a long enough period, 

both the  turbulent k i n e t i c  energy and i ts  d i s s ipa t ion  rate increase. 

2 
lSlq /E 

Figures 5-29 through 5-22 show the  evolution of i n t e g r a l  length 

scale, Taylor microscale, and Kolmogorov length scale, respectively.  

These length scales a l l  behave i n  roughly the  same way. If the com- 
pression is f a s t  enough, the  length scale immediately begins t o  

decrease; i f  the  mean s t r a i n  is weaker, the length scale may grow 
i n i t i a l l y  as i n  the case of decaying turbulence. In the l a t t e r  cases, 

a f t e r  the s t r a i n  has been applied f o r  a while, the  length scales start 
decreasing. Note tha t  the  Kolmogorov length scale decreases most rap- 

id ly .  The increasing dens i ty  is responsible fo r  t he  dramatic decrease 

of the kinematic v i scos i ty .  In  most cases, the  simulations had t o  be 

stopped because the small scales could no longer be resolved. 
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Chapter VI 

RESULTS FOR HOMOGENEOUS TURBULEN& UNDERGOING 
ONE-DLNENS IONAL COMPRESS ION 

Ln this chapter we present the results for homogeneous turbulence 
undergoing one-dimensional compression and expansional, irrotational, 
axisymetric strain. Four one-dimensional compression and three axisym- 
metric strain simulations are presented and discussed in some detail. 
The axisymmetric strain simulations were carried out by Lee and Reynolds 
(1985); we are grateful for permission to use their results prior to 
publication. 

6.1 Description of The Flows 

In this section we describe the flows that are simulated numeric- 
ally. We consider a fixed mass of turbulent fluid contained within a 
rectangular parallelepiped. If one opposed pair of sides of the paral- 
lelepiped moves inward, as illustrated in Figure 2-2, the fluid in the 
box undergoes a one-dimensional compression similar to that experienced 
in an engine cylinder with a flat piston. If one opposed pair of sides 
moves inward at twice the rate the other two pairs move outward, the 
fluid experiences an expansion type of axisymmetric strain. This case 
is illustrated in Figure 6-1. Both flows are axisymmetric. Indeed, the 
one-dimensional compression can be considered as a combination of the 
axisymmetric strain and the isotropic compression studied in the preced- 
ing chapter. Formally, one can decompose the strain-rate tensor for the 
one-dimensional case into those for the other two cases: 

0 0 2 s l 3  0 0 

o -513 0 (6-1) 
0 -513 

S I  3 
0 

Tables 6.1 and 6.2 present the range of independent dimensioaless 
parameters covered in each simulation. The run identification is given 
in Column l e  The initial and final lS[q2/~ are given in Columns 2 and 
3, respectively. A wide range of lSlq /E was covered in each type of 2 
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simulation so that the effect of strain rate on turbulence could be 

studied. Columns 4 and 5 show the initial and final turbulent Reynolds 
numbers for each simulation. Each run covers much the same range of 
Reynolds number. The anisotropy tensor bij is defined as 

ij where Rij is the Reynolds stress tensor and 
delta. Three'invariants can be formed from bij: 

I - bii 

-211 = bijbji 

3111 bij bj kbki 

(6-2) 

is the Kronecker 

(6-3 1 

(6-4) 

( 6-5 ) 

The first invariant (Eq. (6-3)) is zero as a consequence of the defini- 

or the tion of b 
The initial and final values of I1 and I11 are shown magnitude of b 

in Columns 6 through 9 of Tables 6.1 and 6.2. Since both types of strain 
are axisymmetric, The final total strain ratio is 
shown in Column 10. 

I1 and I11 are measures of the anisotropy of Rij fjC 
ij . 

b22 = b33 = -b11/2. 

The same initial state was used for every simulation and was taken 
from a simulation bf decaying, homogeneous, isotropic turbulence that 
had been run long enough to allow the energy cascade to become estab- 
lished. The one-dimensional, compressed turbulence simulations were 
performed on a grid of 64 x 64 x 64 mesh points. Initially, the com- 
putational cell has Ax1 = 2nx2 = 2nx3, where x1 is the compression 
axis. "he total strain ratio achieved is approximately 0.25; higher 
strains result in inadequate resolution, because the box becomes too 
small in the compression direction. The expansional, axisymmetric 
strain simulations were done by Lee and Reynolds (1985) and were per- 
formed on a grid containing 128 x 128 x 128 mesh points. At the ini- 
tial state, the computational cell has The 
total strain ratio achieved is close to 2. Results of these two types 
of simulations are described and discussed in the following sections. 

ox1 = 2,&x2 = 21?nx3. 
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6.2 Simulation Results 

A, 

Four simulations of one-dimensional, compressed turbulence were 
performed. All started with the same isotropic turbulence initial 
condition, but differed in compresssion rate. Some details of the 
initial field are shown in Table 6e3. Some overall data characterizing 
the four one-dimensional compression simulations are compiled in Table 
6.1 and discussed in this section. 

The mean strain-rate tensor for one-dimensional compression is 
0 

0 

0 

where §(t) = Vp/xp(t), Vp is the compression speed, and xp(t) is 
the instantaneous box length. Summarized results are shown in Figures 
6-2 through 6-15 and discussed below. 

Figures 6-2 and 6-3 show the behavior of the Reynolds number and 

time-scale ratio as functions of the total strain, which is an approp- 
riate nondimensional time for this flow, for the four simulations. A6 

can be seen in Figure 6-3, the time-scale ratio increases with time in 
each case. A wide range of lSlq /e was covered by these four simula- 
tions to allow study of the effect of time-scale ratio on turbulence. 
As shown in Figure 6-2 for the cases with small initial lSlq2/E (runs 
ODD and ODE), the Reynolds number decreases in the initial stages of the 
simulation, and then increases. In the large initial lS1q2/€ cases 

(runs ODB and ODC) the Reynolds number increases monotonically with 
time . 

2 

The evolution of the three-dimensional energy and dissipation spec- 
tra of a typical run are shown in Figures 6-4 and 6-5. These particular 
spectra are taken from run ODD at the initial time and at total strain 
0.494, The 3-D energy and dissipation spectra evolve as the simulation 
proceeds. Apparently, viscosity is dissipating the small scales while 
the large scales are absorbing energy from the applied strain, 

Figure 6-6 shows the three-dimensional spectra of the three compo- 
nents of the turbulent kinetic energy in run ODD at total strain ratlo 
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0.494. Anisotropy occurs at the low and moderate wavenumbers. The 3-D 

energy spectum of Ell is grea te r  than tha t  of the  other two compo- 

nents,  due t o  the fact tha t  x1 is the compression axis. E22 and E33 

are almost equal, as expected. 

Figure 6-7 shows two 3-D energy spec t ra  of runs ODB and ODD a t  

t o t a l  s t r a i n  0,847. Run ODB has a higher compression rate than run ODD. 

Both spec t ra  evolve from the  same i n i t i a l  spectrum, but differences 

develop. The d i f fe rences  can be a t t r ibu ted  t o  the  viscous d i s s ipa t ion  

of the small scales and nonlinear in te rac t ions .  

For runs ODB and ODD at t o t a l  s t r a i n  r a t i o  0.847, the longi tudina l  
two-point cor re la t ions  i n  Lagrangian coordinates are shown i n  Figures 

6-8 and 6-9. Note tha t  x1 is the  compression ax i s  and x2 is a non- 
compression axis.  As can be seen, curves from run ODD are s l i g h t l y  

broader tha3 those from run ODB. Consequently, the in t eg ra l  scales from 
run ODD are l a rge r  than those from run ODB i n  a l l  th ree  directions.  

Nonlinear and viscous e f f e c t s  cause the i n t e g r a l  scales t o  decrease less 
rap id ly  i n  the small l S l q 2 / ~  than i n  the l a rge  lSlq 2 / E  ease. 

Figures 6-10 and 6-11 show the h is tory  of twice the turbulent kin- 

et ic energy (q2) and i t s  d i s s ipa t ion  r a t e  (E) .  Both quan t i t i e s  show 

the  same behavior as i n  i so t rop ica l ly  compressed turbulence. When the  

compression rate is l a rge ,  as i n  runs ODB and ODC, the  flow is immedi- 

a t e l y  a f fec ted  by the  mean s t r a i n  and both quan t i t i e s  increase through- 

out  the simulation. I f  the i n i t i a l  value of ISlq2/E is 0.5 or  less, as 

i n  runs ODD and ODE, the mean s t r a i n  is not strong enough t o  immediately 

alter the  s t r u c t u r e  of the flow and the flow re t a ins  the  character of 

decaying i s o t r o p i c  turbulence during the i n i t i a l  period. After the 
s t r a i n  has been applied f o r  a longer period, the flow gradually r e f l e c t s  

the e f f e c t  of mean s t r a i n  and both quan t i t i e s  increase. 

Figure 6-12 shows the  evolution of bl19 which is defined by Eq. 

(6-2). It appears t ha t  there may be an asymptotic value of t h i s  quant- 

i t y  i n  each simulation, although the asymptote is not reached i n  the  

time covered by the  simulations. The asymptotic value of bll de- 
creases as IS I q2/E increases . Furthermore, f o r  f ixed t o t a l  s t r a i n ,  

bll increases as time scale r a t i o  (lS1q2/c) decreases. The reasons 
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for these results, which appear to conflict with intuition, are not 
known at present . 

Figures 6-13 through 6-15 show the evolution of integral length 
scale, Taylor microscale, and Kolmogorov length scale, respectively. 
These length scales all behave in roughly the same way and are similar 
to those in isotropically compressed turbulence. If the compression is 
fast enough, the length scale immediately begins to decrease; if the 
mean strain is weaker, the length scale may grow initially as in the 
case of decaying turbulence. 'In the latter case, after the strain has 
been applied for a while, the length scales start decreasing. Note that 
the rate of decrease of the Kolmogorov length scale in this flow is 
smaller than in the isotropic compression cases, due to the fact that 
the density increases linearly with the inverse of the total strain in 
this flow rather than cubically, as in the isotropic compression cases. 

B. Summary of Incompressible Axisymmetric Expansion Simulations 

One-dimensional compression can be considered as a combination of 

isotropic compression and axisymmetric expansion (see Eq. (6-1)). If S 
is negative, the left-hqnd side of Eq. (6-1) is the mean strain-rate 
tensor for one-dimensional compression flow. The first term on the 
right-hand side is the mean strain-rate tensor for the isotropic com- 

pression, and the second term is the mean strain-rate tensor for axi- 
symmetric expansion. Although the mean strains are related by Eq. 
(6-l), the turbulence they generate may not be related to each other. 
The isotropic and one-dimensional compression simulations were described 

in detail in Chapter V and the preceding section. The relationship 
among the mean strains for the three flows suggests that there might be 

a relationship among the turbulence generated in the two compression 
flows and the one generated by the application of the mean strain cor- 
responding to the last term in Eq. (6-1). Tb study this, we need the 
data from the results of the axisymmetric expansion simulations of Lee 

and Reynolds (1985); they will be introduced in this section. The re- 
sults introduced in this section will be used later in turbulence model 
testing . 
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The mean s t ra in- ra te  tensor f o r  axisymmetric expansion flow is 

where S is  a pos i t ive  constant. x1 
d i rec t ion  at twice the  rate tha t  it is s t re tched  i n  the other two direc- 

t ions.  The mean ve loc i ty  is divergence-free, so the densi ty  remains 

constant throughout the simulation. Figure 6-1 i l l u s t r a t e s  t h i s  type of 
flow. In  Section 6.1 we present a general descr ip t ion  of the simula- 
t ions.  Table 6.2 shows the range of independent, dimensionless param- 

eters covered i n  each run. Some d e t a i l s  of the isotropic-turbulence 
i n i t i a l  condition are shown i n  Table 6.4. Summarized r e s u l t s  a r e  shown 

i n  Figures 6-16 through 6-23 and discussed below. 

The turbulence is compressed i n  the 

Figure 6-16 shows the behavior of the Reynolds number as a function 

of the t o t a l  s t r a i n  r a t i o  fo r  each run. In the lows t r a in - r a t e  run (run 

EXO) the  Reynolds number decreases i n  the i n i t i a l  period of the simula- 

t i on  and later increases.  In the l a t e  s tages  of the simulations, the 

highest  s t ra in- ra te  run (run EXQ) has the  lowest Reynolds number and the 

lowest s t ra in- ra te  run has the highest  Reynolds number. This cont ras t s  

with the 1-D compression flow. 

The behavior of the time-scale r a t i o  ( lS lq2/g)  as a function of 
the  t o t a l  s t r a i n  r a t i o  is shown i n  Figure 6-17. A s  can be seen, a wide 

range of lS1q2/e is covered i n  these simulations. Since the mean 

s t r a i n  rate (S) remains constant throughout each simulation, the 
change of the time-scale r a t i o  is caused by the  change of the turbulence 

time scale (q2/E) only. It I s  found t h a t  the turbulence time scale 
increases  during run EXO, which has the lowest s t r a i n  rate. The turbu- 

lence time scale decreases slowly i n  the highest  strain-rate run (run 

EXQ), and it is approximately a constant throughout run EXPO 

Figures 6-18 and 6-19 show the  time evolution of twice the turbu- 
l e n t  k i n e t i c  energy (q’) and i ts  d i s s ipa t ion  rate (e). The behavior 

of both quan t i t i e s  is  s imi la r  t o  tha t  i n  one-dimensional compression 
cases. I f  t he  mean s t r a i n  is strong enough, t he  s t ruc tu re  of the  flow 
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is immediately altered and both quantities increase throughout the 

simulation. Otherwise, the flow retains the character of decayis 
isotropic turbulence until it reflects the effect of mean strain, 

The evolution of bll is shown in Figure 6-20, Its behavior is 
also very similar to that found in the one-dimensional compression case. 
The asymptotic value of in run EXQ is 1/6, which agrees with RDT 
analysis. At the same total strain ratio, the flow which has the 
smaller value of is more anisotropic than the one that has 
larger 

bll 

lS]q2/~ 
I s I q’/ E 

Figures 6-21 through 6-23 show the evolution of integral length 
scale, Taylor microscale, and Kolmogorov length scale, respectively. 
The behaviors of these three length scales are similar to each other and 
to those of the one-dimensional compression flow. The behavior of the 
Kolmogorov length scale is closer to that of the other length scales in 
this flow (in contrast to the case of the one-dimensional compression 
flow), because the kinematic viscosity remains constant in this flow. 

Important results from three types of simulated flows-isotropic 
compression, one-dimensional compression, and axisymmetric expansion 
flows-have been given and discussed in this and the previous chapters. 
In the next chapter we shall use these results to test the validity of 
turbulence models. 
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Table 6,3 

Some Details of the Initial Condition 
of the One-Dimensionally Compressed Turbulence Simulations 

( cons is t ent units ) 

Turbulence velocity q 

Dissipation rate E 

Integral length scale L l l , l  

Taylor microscale A l l  

Kolmogorov length scale n 

Klnematic viscosity v 

0,9447 

1 e5369 

0 -3227 

0.2146 

0.0385 

0*0150 

Table 6,4 

Some Details of the Initial Condition 
of the Axispmetric Expansion Flow Simulations 

(cons is tent unit 8) 

mrbulence velocity q 

Dissipation rate Q 

Integral length scale L1l , l  

Taylor microscale x1 
Kolmogorov length scale r\ 

Kinematic viscosity v 

0,4688 

0.1931 

0.2271 

0.1556 

0.0253 

0.0043 
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Chapter V I 1  

k-e TURBULENCE MODEL TESTING AND MODIFICATIONS 

Results from isotropic compression, axisymmetric expansional 
straining, and one-dimensional compression simulations are used to test 
the validity of k-E turbulence models in this chapter. The model is 
found to be defective. To correct the deficiency, a three-equation 
(k-c-T) turbulence model which models four types of flows (isotropic 
decay, isotropic compression, axisymmetric expansional straining, and 
one-dimensional compression flows) with a wide range of strain rates 
is proposed. A method of determining the model constants is developed 
and discussed e 

7.1 Introduction 

Since turbulence phenomena are highly nonlinear, they are not 

amenable to classical analytical approaches, and modeling needs to be 
used. As technology advances, greater accuracy is needed and more 
complex prediction methods, including more sophisticated turbulence 
models, are required. 

Methods of simulating turbulent flows can be classified according 
to the following scheme (Kline et ale, 1981) : 

1 Correlations 
2. Integral methods 
3. One-point closure methods 
4. Ttso-point closure methods 
Se Large-eddy simulation 
6. Full simulation 

As one moves down the list, each method requires less modeling than 
those above it. The range of flows that may be simulated with a single 
model broadens as the level increases. Turbulence models at each level 
can be validated using results from higher levels. Two-equation models 
(and k-e models in particular) based on one-point closure are among 
the most popular turbulence models at present. They are able to simu- 
late a wide variety of flows with reasonable accuracy, including flows 
that are difficult to treat with other one-point closure models. 



The isotropic and one-dimensional compression simulations described 
in the preceding chapters are full simulations, i.e., numerical solu- 
tions of the exact Navier-Stokes equations. These results will be used 

to investigate both the physics of turbulence and turbulence models. In 
the next section we shall use the simulation results to test the valid- 
ity of k-€ two-equation turbulence models; they will be shown to be 
inadequate. In Section 7.3, a new one-point-closure, three-equation 
turbulence model is proposed to overcome the shortcomings of k-c mod- 
els. The rationale for constructing the three-equation model is dis- 
cussed, a method for evaluating the model constants is described, and 
the performance of this three-equation model I s  presented. 

7.2 Testing k-E Turbulence Models 

A. Background 

The k-E two-equation model was developed by Jones and Launder 
(1972) and has been used in many applications. In addition to the 
equations for the mean flow, this model uses two partial differential 
equations which describe the evolution of the turbulence kinetic energy 
(k = q2/2) and its dissipation rate (E). In this model, the length 
scale is taken to be k3/2/c. 

The equation which describes the turbulence kinetic energy can be 
derived by: taking the scalar product of Eq. (2-10) with the fluctuating 
velocity (u;) and taking the ensemble average. For homogeneous turbu- 
lence, the result is : 

where P = - R u is the rate of production of turbulence energy and 

is the rate of viscous dissipation of turbulent kin- 
ij i,j 

;,j u:,j 
€'VU 

- PRij etic energy; all quantities are per unit mass. R = ; 

is the Reynolds stress tensor. 
ij i 3 

One can derive an equation for the dissipation rate (E) from the 
Navier-Stokes equations. The resulting equation is so complicated .(El 

Tahry, 1983) that one has to model all of the terms in it. For homogen- 
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eous turbulence, the most commonly used model equation fo r  the dissipa- 

t i on  rate (E) has the following form: 

2 
af: de = - c2 Ex + c1 k pe + C3"Skk (7-2 1 

where the Ci are model constants. The f i r s t  term on the right-hand 
s ide  of Eq. (7-2) is the only one ac t ive  i n  i so t rop ic  decaying turbu- 

lence, and the  constant, can be fixed by f i t t i n g  it  t o  tha t  flow. 
The second term accounts f o r  production by incompressible s t r a i n  and/or 

shear, and is  adjusted t o  produce the cor rec t  behavior f o r  incom- 
p res s ib l e  homogeneous s t r a i n i n g  and shearing flows (Reynolds, 1976). 

The th i rd  term accounts f o r  production due t o  d i l a t a t ion ;  the evalution 

of C3 requires da ta  f o r  compression flow; t h e  r e s u l t s  of Chapter V 
provide the  necessary da ta  (Reynolds, 1980). 

C2, 

C1 

Watkins (1977) suggested tha t  the constant C3 be unity as a natu- 

ral outcome of h i s  derivation. Hoult and Wong (1980) argued t h a t  the. 

angular momentum of the turbulence should be conserved i n  rapid compres- 

sion. Using t h i s  notion, Reynolds (1980) suggested t h a t  the the product 
of the turbulence length and ve loc i ty  scales should remain fixed during 

f a s t  compression, i.e.: 

k2/E = constant (7-3) 

!b obtain the  proper behavior of turbulent length scale i n  rapid iso- 

t rop ic  compression, Reynolds proposed Icj = -2/3. 

2'wo sets of model constants are tabulated i n  Table 7.1. One w a s  
proposed by Launder and Spalding (1974) and extended by Watkins (1977) 

(hereaf te r  denoted by LSW), and the  o ther  was proposed by Reynolds 

(1980). Note tha t  not only are the magnitudes of model constant C3 

d i f f e ren t  i n  the two sets, but the s igns  disagree. Resolution of t h i s  

discrepancy was one of the  o r ig ina l  goals of t h i s  work. 
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Table 7.1 

The Values of the Model Constants in the k-e Models 

Launder, 

Watkins 
Spalding , (LSW) 1.44 1.92 1.00 0 009 

Reynolds 1 .o 11/6 -213 0.09 

To close equations (7-1) and (7-2), additional equations must be 

Rij. In the k-E model, Rij is provided for Reynolds stress tensor 
assumed to obey the Boussinesq constitutive equation: 

Rij = "CF k6 ij .. 2vt(sij - 3 l s  kk ti ij j (7-4) 

4-5 1 -  
where 2k = Rii, Sij = P tUi,j j,i)~ ut is the eddy viscosity, 

- .  

and tsij is the Kronecker delta. The eddy viscosity ut is given by: 

k2 - c -  
Vt L I E  

(7-5) 

where is chosen to be 0.09 t o  fit the ratio of shear stress to tur- 
bulence kinetic energy in local-equilibrium free shear layers, in which 
production and dissipation are equal. 

C,, 

Tests of k-c models for isotropic compression, axisymmetric ex- 
pansion, and one-dimensional compression flows will be described below. 
In these tests, Eqs.  (7.1) and (7.2) were solved with given initial 

values of k and E and the strain-rate tensor (Sij) was prescribed 
as a function of time. The model (Eqs. (7-4) and (7-5)) for the Rey- 
nolds stress I s  used to compute the production. 

B. Isotropic Compression Flow 

The strain-rate tensor SiJ for isotropic compression is 
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where S < 0. The model (Eqs. (7 -4)  and (7-5)) fo r  the  Reynolds stress 

is not needed, because the turbulence remains i so t rop ic  throughout the 
sirnulation. Predict ions of the two k-E models described above for  

four d i f f e ren t  s t r a i n  rates, which correspond t o  runs SQF through SQI of 
Table 5.2, are shown i n  Figures 7-1 through 7-4, respectively.  I n  the 

high s t ra in-rate  test (run SQF), both models predict  k correc t ly  but 
E is  badly predicted. In  t h i s  case, the production dominates the dis- 

s ipa t ion ,  so the predict ion of energy is good because the production is  

cor rec t ly  computed ( the Boussinesq r e l a t ion ,  Eq. ( 7 - 4 ) ,  is not needed i n  

t h i s  flow). Re d iss ipa t ion  is poorly predicted but has no e f f e c t  on 
the predict ion of the k i n e t i c  energy. I n  the moderate s t ra in- ra te  runs 

shown i n  Figures 7-2 and 7-3 ,  Reynolds' model pred ic t s  too high a d iss i -  
pation rate causing the predicted energy (k) to  be low.  The L S W  model 

predicts  too low a d iss ipa t ion  rate and overpredicts the energy. In the 
slow compression rate test  (run SQI), Reynolds? model produces good 

r e s u l t s  while the LSW model overpredicts the energy. In these cases 
(except run SQF) , the energy production and d iss ipa t ion  are near ly  

equal, so accurate prediction of d i ss ipa t ion  rate is  required f o r  a good 
simulation . 

The turbulence length scale is defined i n  k-E model as 

a - k3'2/, (7 -7)  

and is supposed t o  represent the in t eg ra l  length scale. Figure 5-20 

shows the behavior of the  in t eg ra l  length scale i n  t h i s  flow. Figures 

7-5 and 7-6 show the behavior of the model length scale ( a )  predicted 

by the LSW and Reynolds' models, respectively.  Re LSW model predicts  
growth of the  length scale during compression no matter how fast the 

flow is compressed. Morel and Mansour (1982)  found t h a t ,  i n  an engine 

simulation, the length scale predicted by the LSW model reached values 

several  times the cylinder height near top dead center.  This is c l ea r ly  

incorrect.  The behavior of the length scale predicted by Reynolds' 

model is much more plausible.  However, i n  order to get proper length 

scale behavior, Reynolds' model pred ic t s  too much d iss ipa t ion  i n  the 

f a s t  compression case. 
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C. Incompressible Axisymmetric Expansion Flow 

The strain-rate tensor Sij for incompressible axisynrmetric expan- 
sion flow is 

where S is a positive constant. The Reynolds stress model, Eqs. (7-4) 
and (7-5), is needed to model the production. Results for three differ- 
ent strain rates, which correspond to runs EXQ, EXP, and EX0 of Table 
6.2, are shown in Figures 7-7 through 7-9, respectively. In the high 
and intermediate strain-rate tests (runs EXQ and EXP), predictions of k 
and E by both models behave badly. This is mainly due to overpre- 
diction of the production which is, in turn, due to overprediction of 
the Reynolds stress in the high and intermediate strain-rate cases. 'Ihe 
Reynolds stress model, EqSo (7-4) and (7-5), causes the production of 
energy to be proportional to the square of the instantaneous strain rate 
and predicts a sudden jump in Reynolds stress when strain is turned on; 

neither of these predictions is correct. In the low strain-rate test 
(run EXO), the predictions of both models are good and there is almost 
no difference between them. 

Figures 7-10 and 7-11 show the behavior of the turbulence length 
scale, defined by Eq. (7-7), predicted by the It-€ models. Again, both 

k-c models predict growth of the length scale during the straining pro- 
cess no matter how large the strain rate. Figure 6-21 shows the evolu- 
tion of the integral scale in this flow. As can be seen, both models 
perform poorly. 

' 

D. One-Dimensional Compressiozl Flow 

The strain-rate tensor S for one-dimensional compression is ij 
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where S is negative. The Reynolds stress model (Eqs. (7-4) and (7-5)) 
is. used t o  ca l cu la t e  the production. Results f o r  four s t r a i n  rates, 
which correspond t o  runs ODB through W E  of Table 6.1, are shown i n  Fig- 

ures 7-12 through 7-15, respectively.  In the high s t ra in- ra te  test (run 

ODB), both k and are badly missed due t o  incor rec t  modeling of the 

Reynolds stress. In the intermediate s t r a i n  r a t e  case (run ODC), Rey- 

nolds' model p red ic t s  too much d i s s ipa t ion  but the energy is i n  good 

agreement with the simulation r e su l t s .  The LSW model does not behave as 

w e l l  as Reynolds' model. I n  the slow s t ra in- ra te  tests (runs ODD and 

ODE), Reynolds' model does an excellent job  of predicting the turbulence 

energy ( a ) ,  d i s s ipa t ion  rate (E),  and Reynolds stress (R1l). The 

LSW model behaves be t t e r  than i n  the high s t ra in- ra te  tests, but is not 

as good as Reynolds' model. 

The evolution of the  i n t e g r a l  length scale fo r  t h i s  flow is shown 

i n  Figure 6-13. Figures 7-16 and 7-17 show the behavior of the turbu- 

lence length scale predicted by the two models. The LSW model pred ic t s  

growing length scales during compression which is not cor rec t ,  while 

Reynolds' model shows p laus ib le  turbulence length-scale behavior (except 

i n  case ODB). 

E. 

The turbulence length scale, which is supposed t o  represent the 

in t eg ra l  length scale, is modeled as Figures 7-18 through 7-20 
show the evolution of k3/*/c, based on the exact quan t i t i e s  obtained 

from the  f u l l  simulations, as a function of t o t a l  s t r a i n  i n  i s o t r o p i c  

compression, axisymmetric expansion, and one-dimensional compression 

flows, respectively.  The longitudinal i n t eg ra l  length scale i n  the com- 

pression d i r ec t ion  fo r  each flow is shown fo r  comparison. As can be 

seen, t h i s  turbulence length-scale model behaves more o r  less co r rec t ly  

only i n  the axisymmetric expansion flow. For the compression flows, 

t h i s  model does not represent the i n t e g r a l  length scale, because of the 

decrease i n  the  d i s s ipa t ion  i n  compression flows. 

Comments on Turbulence k n g t h  Scale Model 

k3/2/~. 
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F. Testing Constants in Modeled Dissipation Equation 

The following is a method of deriving the model constants in the 
dissipation equation from the data. For homogeneous turbulent flows, 
the model equation for the dissipation rate is Eq. (7-2). In the iso- 
tropic compressio,? flow, Eq. (7-2) can be rewritten: 

(7-10) 

While in incompressible axisymmetric expansion flow, it can be rear- 

ranged to 

(7-11) 
L 

We can use the simulation results to evaluate the validity of the model, 
The turbulence kinetic energy, dissipation, and production rate are 
obtained from the full-turbulence simulations . The time derivative of 
the dissipation is obtained by spline fitting the dissipation and dif- 
ferentiating the result; the derivatives obtained in this way contain 
considerable uncertainty. Despite the uncertainty, we should be able to 
discern trends; however, quantitative results need to be accepted with 
care , 

k dE Equations (7-10) and (7-11) suggest that plots of - 7 
against P/E should be straight lines if model constants a& indeed 
pure constants. Figures 7-21 and 7-22 show this kind of plots for iso- 
tropic compression and incompressible axisymmetric expansion flows. The 
high strain-rate simulations (runs SQF and EXQ) are not used here, due 
to unacceptable uncertainty caused by too few data points. As can be 
seen from Fig. 7-21, for isotropic compression, the slopes (-261 + 3C3) 
are the same for the various tuns, but the intercepts (C2) are not. 
We conclude that the model needs modification. Figure 7-22 shows that 
the situation is even worse for incompressible axisymmetric strain flow. 

Thus, the parameters in modeled dissipation equation cannot be pure 

constants if these data are to be fit. Dependence of the parameters 
on PIE is precluded by the linearity of Fig. 7-21. We considered the 
possibility that the model constants depend on Reynolds number. 
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However, the Reynolds number is large enough that the model constants 

should not depend on this parameter . Furthermore, when the "constants" 
were plotted VS. Reynolds number, the variation of 5 was opposite 
what o m  would expect. The remaining possibility is that the parameters 
are functions of the total strain ratio. 

To test this possibility, we re-sorted the data from the various 
runs according to the value of the total strain. For each total strain, 
a least squares fit to the data was made. Good fits were obtained, 
indicating that the model constants can be considered functions of total 
strain. k-E models that incorporate this dependence would require 
solution of several additional differential equations which describe the 
evolution of model constants. This procedure is cumbersome and not good 
modeling practice. 

We have now tested the k-c models as thoroughly as we can. Ihe 

summarized results will be presented in the next section. 

G. Summary of k-E Model Testing 

We found that k-c models perform well in low strain-rate flows in 
which the production of energy is of about the same order of magnitude 
as the dissipation, i.e., the turbulence is in an "equilibrium" state. 
When the strain I s  so strong that the flow etructure is out of equilib- 
rium, k-E models do not perform well. Furthermore, the model turbu- 
lence length scale does not represent the integral length scale well in 
the compression cases. Finally, the "constants" in the modeled dissipa- 
tion equation cannot be pure constants. 

zhus k-e models do not perform well for high strain rate. A tur- 
bulence model capable of predicting flows accurately with a wide range 
of strain rates is needed. In the next section we shall propose a 
three-equation turbulence model which meets this need. 
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7-3 A me-Point-Closure Three-Equation Turbulence Model 

A. Motivation 

In two-equation (k-e) models, the turbulence kinetic energy de- 
termines the turbulence velocity scale, while the dissipation plays two 

roles: it is the rate of destruction of turbulence kinetic energy, (Eq, 
( 7 - l ) ) ,  and it determines the turbulence length scale (Eq. (7-7)). The 
dissipation cannot do both jobs simultaneously in high strain-rate flows 
in which the flow structure is out of equilibrium. To decouple the dis- 
sipation and the length and time scales and introduce the minimum of 
additional complexity, a one-point-closure, three-equation turbulence 
model is proposed. In particular, a model equation for a turbulence 
time scale ( 7 )  is introduced. It is to be solved together with the 
dynamic equations for the turbulence kinetic energy and its dissi- 
pation rate (E). At present, this model equation is limited to homo- 
geneous flows. The method of evaluating the constants of this model is 
discussed and tests of the performance of the model are presented below, 

(k) 

B. Homogeneous Isotropic Decay Flow 

We begin by looking at the model as applied to isotropic decay, 
The three-equation model consists of three differential equations. For 
isotropic-decay, the exact dynamic equation of the turbulence kinetic 
energy (Eq. (7-1)) reduces to: 

(7-12) 

The 

new 

model equation for the dissipation rate is modified to include the 

time scale: 

- dc P - E  (7-13) 
dt t 

where 7 is the new turbulence time scale; this equation replaces Eq. 

(7-2) . 
We need a model equation for t to close this set of equations; 

for isotropic decay it can be derived as follows. 
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The turbulence kinetic energy decays according to the power law 

(Reynolds, 1976): 

k N it - to)'n (7-14) 

The exponent (n) is reasonably well established as 1.2 at high Reynolds 
number; to is an effective origin. The dissipation rate (e) then 
decays as 

dk -n- 1 
dt - E N - - N  

Then Eq. (7-13) requires 

1 
r = -  n +  1 it - toJ 

or, in differential form: 

dr n 5 
dt n +  1 11 
- - - = -  

(7-15) 

(7-16) 

(7-17) . 

Equations (7-12), (7-13), and (7-17) give the correct behavior of the 
turbulence in isotropic-decay. Of course, the added complication is 
unnecessary in this case. Also the constant in Eq. (7-17) should be a 

function of Reynolds number; this function could be evaluated using the 

data of Shirani et al. (1981). 

C. Return to Equilibrium 

When strain is applied to the flow, all the turbulence quantities 

are modified. In particular, the turbulence time scale (T) is pushed 
away from equilibrium, (cf . Eq. (7-16)) . After the strain is removed, 
the turbulence tends to return to an equilibrium state. Ihe simplest 
modification of the time-scale equation that w i l l  accomplish this (and 
be dimensionally correct) is: 

(7-18) 

The form of the second term is selected because, in  isotropic turbu- 
lence, Er/k = 6/11. Defining e = cT/k and manipulating Eqs. (7-121, 
(7-13), and (7-18), we obtain 
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e 5 = ii; (1 + cs, \z - -  11) 
dz 
d t  
- (7-19) 

In  isotropic-decay, Eq. (7-19) becomes t r i v i a l .  ThU89 i n  the  (z,dz/dt) 

phase plane (6/11,0) is an equilibrium point. 

I f  z is perturbed from i ts  equilibrium point i n  the  d i r ec t ion  of 
l a rge r  z and 1 + C5 > 0, then d d d t  w i l l  be pos i t ive  and z w i l l  

be driven away from the equilibrium state; i f  z is  displaced i n  the 

opposite d i r ec t ion  and 1 + C5 > 0, z w i l l  a l so  be driven away from 
the  equilibrium state. Therefore, 

c5 < - 1  (7-20) 

is required to  assure re turn  t o  equilibrium. 

D. I so t rop ic  Compression Flow 

When turbulence is subjected t o  s t r a i n ,  the la rge  eddies in t e rac t  

For with the mean flow and extract k i n e t i c  energy from the mean motion. - 
isotropic-compression flows, t he  mean-deformation tensor U is 

i ,j 
shown i n  Eq. (2-26). The turbulence energy production is P = 

DIL 
In  the presence of homogeneous i so t rop ic  compression, the  - k UkSk. . 2  

three-equation model can be wr i t t en  

dk 
d t  'DIL - e 
- E  

6,ISO 'ISO' 
- dT = -+ 5 c5 [T-x) ET + c  
d t  11 

(7-21) 

(7-22) 

(7-23) 

The addi t iona l  terms r e f l e c t  t he  e f f e c t s  of the  mean flow on turbulence 

quant i t ies .  Note t h a t  one could use l / ~  i n  place of g/k in the  last 
term of Eq. (7-22). The choice used i n  Eq. (7-22) was t r i e d  f i r s t  and 

worked; other authors may wish to  t r y  the other poss ib i l i t y .  
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The three model constants (C4, C5, and c6,IsO) can be evaluated 
frdm the results of isotropic-compression simulations . A method of 
accomplishing this follows. The turbulence kinetic energy, dissipation 
rate, and production used here are obtained from full-turbulence simula- 
tions. 'IAe time derivative of the dissipation is obtained by spline 
fitting the dissipation and differentiating the result. The slope of the 
curves in Fig. 7-21 suggests C4 = 1. If this value is accepted, the 
turbulence time scale ( 7 )  is the only remaining unknown in Eq. (7-22) 
and can be evaluated. 

The model constants C5 and c6,IsO, are then evaluated from Eq. 
(7-23). The turbulence kinetic energy, dissipation rate, and mean 

strain rate (SISO) are obtained from full-turbulence simulations . The 
turbulence time scale (T)  is obtained from Eq. (7-22) as described 

above, and its time derivative is obtained by spline fitting the time 

scale and differentiating the result. The model constants C5 and 

c6,1s0 
Keeping in m i n d  that model constant C5 must be less than -1 (Eq. 
(7-20)), we find that C5 = -1.1 and C6,1so 5 - 0.5, 

are the remaining unknowns in Eq. (7-23) and can be evaluated. . 

The performance of the three-equation model for isotropic compres- 
sion with four different compression rates (runs SQF through SQI) is 

shown in Figures 7-23 through 7-26, respectively. The predictions of 
the Et-€ models are plotted for comparison. The evolution of the model 
time scale for each simulation is shown in Figure 7-27. As can be seen, 
the three-equation model is better than both the L S W  aad Reynolds' mod- 
els at all strain-rates. nis is not surprising, because we fit the 
model constants to this flow. 

E. Incompressible Axisymmetric Expansion Flow 

In incompressible axisymmetric expansion flow, the mean-deformation 
tensor is 

0 0 

S 

0 0 S 

- 
U 

2 9 j  

(7-24) 
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where S is a positive constant. The turbulence energy production 

through mean motion is The three-equation model in 

the presence of homogeneous incompressible mean strain can be written 

- 
PINC = - R U 

ij Lj. 

dk 
pINc - E 

- I  
dt 

INCE 
€ + C  - P 

dc 
dt ? 1 k  
- I - -  

CT 6 - - -  + c  d.r 5 
- dt ' 5  k 111 6,AXIs' 

(7-25) 

(7-26) 

(7-27) 

The constants multiplying the strain terms are allowed to differ from 

those used in the isotropic compression case. The model constant C5 
was determined to be -1,1 in the preceding section, The remaining two 

unknown model constants (C1 and c6,mI) can be evaluated from the 
results of homogeneous, incompressible, axisymmetric, expansion flow 

simulations. 

The method used to evaluate the model constants C1 and c 6 , a 1  is 
similar to that presented in the preceding section. The turbulence 
kinetic energy, dissipation rate, and production are obtained from full- 
turbulence simulations. The time derivative of the dlsslpation I s  ob- 
tained by spline fitting the dissipation and differentiating the result. 

This leaves two unknowns (Cl and T) to be determined in Eq. (7-26). 
It was found that, for incompressible axisymmetric expansion flows, the 
"production of dissipation" predicted by k-e models is too weak and 
the dissipation is underpredicted in high strain-rate flows. This means 
that must be larger than 1.44 (the value in the LSW model) for this 
type of flow. By numerical experiments, we found C1 - 2. Equation 
(7-26) then provides r. Given the evolution of turbulence kinetic 
energy, dissipation rate, strain rate (from full-turbulence simula- 
tions), turbulence time scale (from Eq. (7-26)), and the time derivative 
of the turbulence time scale (from numerical differentiation), model 
constant c6,m1 of Eq. (7-27) is found to be -2. 

C1 
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Since the model constants are evaluated from the  "actual produc- 

tion", one needs an accurate Reynolds stress model t o  have a sa t i s f ac -  
tory prediction. The Boussinesq Reynolds stress model does not work 

w e l l  when the s t r a i n  rate is high; i ts  drawbacks were discussed i n  the 
preceding section. Therefore, a Reynolds stress model has been devel- 

oped f o r  t h i s  flow. It w i l l  a l so  be applied t o  the  one-dimensional 
compression flow i n  the next section. 

E'. Reynolds S t ress  Model 

An exact t ranspor t  equation f o r  the  components of the Reynolds 

stress tensor can be obtained by multiplying Eq. (2-10) by adding 
the r e s u l t  t o  the  equation obtained by switching the  subscr ip ts  i and 

uj, 

j ,  and averaging the r e s u l t :  

(7-28 ) 

- 
where pR = p u'u' is t h e  Reynolds stress tensor. is i s  

%e f i r s t  term on the r i g h t  s ide  of Eq. (7-28), ca l led  the "produc- 

t i o n  tensor", is the c rea t ion  of Reynolds stress from the  m e a  flow. 

(7 -29 )  

1 -  + J is the mean s t r a i n  rate tensor and 1213 ic 

i j  = P t u i , j  j , i  
here S 
1 -  - - u  is  the mean ro t a t ion  tensor. 2 t u i , j  j , i J  

is  the  " t ransfer  tensor" , 

(7-30) 

It has zero trace i n  an incompressible turbulence f i e l d  and is suppos- 

edly responsible f o r  intercomponent r ed i s t r ibu t ion  of the Reynolds 

stress. It has the form of a co r re l a t ion  between the  f luc tua t ing  pres- 

sure  and the f luc tua t ing  s t r a i n  rate. 

Dij is the  "d iss ipa t ion  tensor", 

It d i s s ipa t e s  turbulent k i n e t i c  energy through 
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viscous a c t  ion . 



The tensor Jijk is the diffusive flux of RiJ , 

By definition, homogeneous flows have no convection or diffusion, 
and Eq. (7-28) reduces to 

(7-33) 

Pili 
needed for Tij and Dij. 

is explicitly determined from the Reynolds stress, but models are 

We first address the pressure-strain terms. A? exact equation for 
the fluctuating pressure, p', can be derived by taking the divergence 
of E q .  (2-10). We get 

(7-34) 

The source term in this Poisson ,equation can be split into two parts, 
giving rise to two components of the pressure: a "rapid" part p(') 

. given by 

and a "slow" part p (*) given by 

(7-35) 

(7-36) 

Note that the "rapid" pressure, p('), involves the mean deformation 
explicitly. Bence the imposition of a mean deformation immediately 
changes the "rapid" pressure. Solving Eq. (7-35) for p(') (see 
Reynolds, 19841, we get 

(7-37) 

where 
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have been proposed by various modelers ij PQ Models for M 
Launder, 1972; Launder, Reece, and Rodi, 1975; Hanjalic 

(7-38) 

(Hanj alic and 
and Launder, 

1976; Lumley, 1978; and Lumley, 1979). The particular model we use was 

proposed. by Reynolds (1984) and is similar to the others. It has the 
following form for divergence-free turbulence field, 

1 4  
+ 6  b J + \ . ? - - A J 6  b 

+ V6ipbjq + %qbjp + 6jpbiq jq i p  3 1 PQ 2.l 

(7-39) 

where q2 = 2k, bij, defined in Eq. (6-2), Is the Reynolds stress 
is the Kronecker delta, and A1 is the model anisotropy tensor , 

constant, The rapid part of the pressure-strain term is then modeled as 
ij 

+ 4 A S  b - 6 A ( b  S 
(1) 2 
ij 1 kk ij 1 ik kj + bjkSki T 

(7-40) 

By insisting that this model agree with rapid distortion theory, the 
constant A1 is found to be -2/7 (Reynolds, 1984). For slower mean 

to deformation rates, Reynolds (1984) added quadratic terms in 
Mijpq. This complicates the model. 

hili 

In order to keep the model simple without losing the essence of 
T ( l )  by using linear terms in bij only modeling philosophy, we model 

(Eq. (7-40)), but allow the coefficient A1 to be a function of the 
ratio of production to dissipation to compensate. 

ij 

In one-dimensional compression or axisymmetric expansion flow, 
T(l )  i s  diagonal. Furthermore, since T i t )  I: T i t )  and Tij ( l )  is 
ij 

( l )  for T1l * traceless, the entire tensor can be expressed in terms of 
which the model (Eq. (7-40)) becomes: 

8 = - - kS + 4A (3R - 2k) S 
T1 1 5 1 11 

(7-41) 
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where S is the mean s t r a i n  rate of Eq. (7-24). Full-turbulence simu- 

l a t i o n  (Lee and Reynolds, 1985) provides the  ac tua l  rapid pressure- 

and mean s t r a i n  rate (S). These da ta  allow us t o  evaluate  the model 

coef f ic ien t  as a funct ion of the r a t i o  of energy production t o  dis- 

s ipa t ion  (P/a = (3Rll - 2k)S/~). We found 

s t r a i n  \Tl1 (1) J, turbulence k i n e t i c  energy (k), Reynolds stress (Rll), 

A1 

4 = - Ob34 + 0.12 exp(-0.3 P/c) (7-42) 

Figure 7-28 shows how Eq. (7-42) f i t s  the full-turbulence simulation 

data.  As can be seen, Reynolds' value (Al = -2/7) is good f o r  moder- 
ate and high s t r a i n  rates (runs EXP and EXQ), t o  which rapid d i s t o r t i o n  

theory may be applied. 

It 

s t r a i n  

Newman, 

1984). 

is customary t o  model the combination of the slow pressure- 

term and d iss ipa t ion  anisotropy tensor together (Lumley and 

1977; Iumley, 1978; Lumley, 1979; Rogallo, 1981; and Reynolds, 

This tensor +ij is defined as 

is modeled by +u where %k = 2 ~ .  

(7-44) 

where bij is the  anisotropy tensor of Rij and A,, is a model con- 
s t a n t .  In  t h i s  flow, +11 is the  only independent component of +ij. 

We evaluated A. from +11 and bll obtained from f u l l  simulations. 

Figure 7-29 shows the evolution of f o r  flows with a wide range of 
s t r a i n  rates. As can be seen, there  is a considerable scatter. How- 
ever ,  +11 is not important i n  moderate and high s t ra in- ra te  cases 

(runs EXP and EXQ), because the mean s t ra in  rate is so high tha t  mean 
flow d i c t a t e s  the evolution of turbulence. % = 1 t o  f i t  the 

low strain-rate  flow. Note t h a t  t h i s  choice might not give accurate  
modeling of the relaxat ion following removal of s t r a i n .  For fu r the r  

r e s u l t s  on modeling t h i s  term, see Lee and Reynolds (1985), 

A,, 

W e  chose 

Combining Eqs. (7-33), (7-29), and (7-43), the modeled Reynolds 

stress transport  equation f o r  homogeneous flow is writ ten as 
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(7-45) 

where Pij, Ti). Qij are given by Eqs. (7-291, (7-401, and (7-441, 
respectively. When this Reynolds stress model is applied to incompress- 

ible axisymmetric 
in mind that only 

flow, it further reduces to the following form (bear 
dR11 /dt is needed) . 

2 - -  (1) 
dR 
- = P  11 

11 + - “411 3 E dt 

where 

8 = - 7 kS + 4A1(3R11 - 2k) S T1 1 

Al = - 0.34 + 0.12 exp(-0.3 P/c)  

P = \3Rll - 2k) S 

$11 = Ao(R11/2k - 1/3j 

(7-46) 

A. = 1 

Note that R22 - = (2k - R11)/2 in this type of flow. 

The performance of this model (Eqs. (7-25), (7-26), (7-271, and 
(7-46)) for axisymmetric expansion flow at three strain-rates (runs EXQ 
through EXO) are shown in Figures 7-30 through 7-32, respectively. The 
predictions of the k-E models are plotted for comparison. The evolu- 
tion of the model time scale for each simulation I s  shown in Figure 7- 
33. In high and moderate strain-rate flows (runs EXQ and EXP), the 
better performance of the k-c-T model can be attributed largely to the 
introduction of the new Reynolds stress model. In l o w  strain-rate flow 
(run EXO), the k-e-r model is slightly better than k-& models, and 
there is no distinct difference between the L S W  and Reynolds’ models. 
Again, the k-c-T model is tuned to the full simulation results for 
this flow. It is expected to perform well. 
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G. One-Dimensional Compression Flow 

The mean-deformation tensor for one-dimensional compression is 

0 

0 

0 

0 0 

- 

i'j = 

U (7-47) 

where S is negative. One-dimensional compression can be considered as 
a combination of the isotropic-compression and axisymmetric expansion. 

Formally, 

0 0 2S/3 0 (! ," 3 = ( 3  s r  ;3)+( 0 0 -s/3 0 -s/3 ) (7-48) 

Both the dilatation and divergence-free parts of the mean flow contrib- 
ute to the energy production. The k-c-r model has the following form 

(7-49) dk 
'mc + 'DIL - - =  

dt 

- de = - P + c l T  'INF 'DILL 
+ '4 b dt T 

(7-50) 

where PING.= (2k - 3R11)S/3 and PDIL = -2kS/3. !&e model constants 
obtained from the isotropic-compression and axisprnnetric expansiotl flows 
will be used without modification. They are given in Table 7.2. The 
Reynolds stress model tuned to incompressible axispmetric expansion 
flow (Eq. (7-46)) is also employed here, Since the dilatation part of 

the production, PDIL, does not contribute to the rapid pressure-strain 
tensor, the production in the expression for the model coefficient Al, 
Eq. (7-42), should be PIwc. This model (Eqs. (7-46), (7-49), (7-50), 

and (7-51)) reduces to those for the two preceding cases in the approp- 
riate llmits. 
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Table 7.2 

The Values of the Model Constants i n  the  k = e y  Model 

C1 2 00 

c4 1.0 

c5 -1 . I  

' 6 ,  I S 0  -0.5 (for i s o t r o p i c  Compression flow) 

'6 ,AX1 -2.0 ( for  axisynnnetric expansior! flow) 

The three-equation model (Eqs . (7-49) through (7-51 )) and the  Rey- 

nolds stress model (Eq. (7-46)) were used t o  pred ic t  one-dimensional 

compression simulations with four s t r a i n  rates (runs ODB through ODE). 

'Ihe predictions are shown i n  Figures 7-34 through 7-37. The predictions 

of the two-equation models are plotted for comparison. The evolution of 
the  model t i m e  scale fo r  each siimulation is shown i n  Figure 7-38. I n  

the  rapid d i s t o r t i o n  case (run ODB), the  k-L-7 model is superior t o  
&he k-E models, due t o  the introduction of an accurate Reynolds stress 
model. In moderate s t r a in - r a t e  cases (runs ODC and ODD), the three- 

equation model r e f l e c t s  the behavior of the turbulence b e t t e r  than do 

the  two-equation models. In slow s t r a in - r a t e  case (run ODE), there  is  
l i t t l e  d i f fe rence  between the k-e-7 and k-E models. 

It is encouraging tha t  a model derived from other flows can be used 

t o  predict  these flows and, i n  pa r t i cu la r ,  t ha t  t he  e f f e c t s  of the 

various s t r a i n s  appear to be additive.  

H. Summary 

In  t h i s  sec t ion  we summarize the one-point-closure, three-equation, 

turbulence model. For homogeneous flows, t h i s  model is 

db 
d t  'INC + 'DIL - E 
- I  

ds E 'INC' 'DIL€ - I - - + c  - + c  - 
d t  1 l . k  4 b  

(7-49) 

(7-50 ) 
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2 -  S is the = - R  (5 - - U  1 -  6 J ,  P D I L = - - k U  
'INC 13 i , 3  3 k,k 53 3 k,k' 

where 

strain rate, and the Ci are the model constants tabulated in Table 
7.2, Equation (7-49) is an exact equation for turbulence kinetic 

energy. 

Equation (7-50) is a model equation for the dissipation rate (E). 

The first term on the right side of Eq, (7-50) is the destruction term. 
The second and third terms are the "production of dissipation" due to 
the incompressible and dilatation parts of the mean flow. The model 
constants C1 and C4 are evaluated from the results of axisymmetric 
expansion and isotropic-compression flow simulations, respectively, It 
was found that C1 = 2 and C4 = 1. 

Equation (7-52) describes the evolution of the turbulence time 

scale (f). The first term on the right gives the correct behavior of 
the turbulence quantities in isotropic-decay flow, The second term is a 
return-to-equilibrium term, and the rest of the terms represent the in- 
fluence of the mean strain on the turbulence time scale. Stability 

analysis shows that model constant Cs must be less than -1. We chose 

Cs to be -1.1 from numerical experiments. The new model constants are 
= -0,5 and c 6 , m I  = -2. Three independent strain flows are '6, IS0 

needed to complete the model of the effect of strain on the turbulence 

time scale. In this work we covered two independent strains (isotropic 
compression and incompressible axisymmetric expansion), so one addi- 
tional term may be needed in Eq. (7-52) to produce a complete model. 
The effects of the strains appear to be additive. One more building- 

block flow such as axisymmetric contraction or plane strain is needed to 
calibrate the remaining model constant in the turbulence time-scale 
equation. 

A new Reynolds stress model was developed by fitting the simulation 

results for incompressible axlsymmetric expansion flow. It has the form 

(7-45) 
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S 6 + 4A S b - 6Al(bikSkj + bjkSki 2 
ij = ' (f 'ij -E kk ij 1 kk ij 
T 

2 4 14 
- - b  S 6 j - ( ~ + - A ) ( b  Q + b  sl 1) 3 mnmij  3 1 ik kj jk Id 

(7-40) 

(7-42) 
Al = - 0.34 + 0.12 e~pl-0~3 Pmc/g) 

k 
bid Q 3 

R 
= --  

A = 1  
0 

(7-44) 

Model constants 90 and AI are tuned to fit incompressible axisymmet- 
ric expansion flow; they were also used in predicting one-dimensional 
compression flow, and their performance was good. This model has not 
been tested in flows with rotation, and so should be used with caution 
in shear flows e 

'ihe performance of the k-c-T model is slightly better than that 
of the k-& models in low strain-rate flows. In high strain-rate 
flows, the flow structure is out of equilibrium and the k-g-T model 
reflects the changing physics much better than do the k-g models. 
Some engineering flows occur in the range in which the differences of 
the models are significant. In summary, a one-point-closure, three- 
equation turbulence model which accurately calculates four types of 
flows-isotropic decay, isotropic compression, axisymmetric expansion, 
and one-dimensional compression flows--for a wide range of strain rates 
has been developed, 
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Chapter V I 1 1  

CONCLUSIONS AND RECOMMENDATIONS 

Conclusions and recommendations d i s t i l l e d  from the results and 

discussion presented i n  the preceding chapters are given i n  t h i s  chap- 

ter. 

8.1 Conclusions 

Numerical methods f o r  solving the three-dimensional, t i m e -  

dependent, Navier-Stokes equations f o r  homogeneous turbulence undergoing 

i so t rop ic  and one-dimensional compression have been presented along with 

r e s u l t s  obtained from such simulations. The simulations were carried 

out a t  low Reynolds number; the l imi ta t ion  on t h i s  parameter derives 

from computer resource ava i l ab i l i t y ,  The r e su l t s  obtained f o r  f a s t  
compression rates have been compared with rapid d i s to r t ion  theory, and 

good agreement was  obtained. 

The r a t i o  of the  turbulence t i m e  s ca l e  t o  the imposed mean-flow 

t i m e  sca le  was found t o  be the most important s ing le  parameter i n  these 
flows. When t h i s  r a t i o  is l a rge ,  the  flow is immediately affected by 

the mean s t r a i n  i n  a manner similar to  tha t  predicted by rapid dis tor-  

t i o n  theory; i.e., the turbulence k i n e t i c  energy and i ts  d iss ipa t ion  

rate increase,  while the in t eg ra l  length scales immediately decrease. 
When t h i s  r a t i o  is small, the  flow i n i t i a l l y  r e t a ins  the character of 

decaying i so t rop ic  turbulence; only a f t e r  the s t r a i n  has been applied 
f o r  a long period does the flow begin t o  r e f l e c t  t he  e f f e c t  of mean 

s t r a i n .  In these flows, the Kolmogorov length scale, which is the  s i z e  
of the eddies in which viscous d iss ipa t ion  occurs, decreases rapidly 

with decreasing t o t a l  strain,  due t o  the density increase tha t  accom- 
panies compression. This means tha t  these flows have more turbulence 

energy i n  the small scales than would be expected on the  basis  of the 
models usually used t o  simulate these f l o w s .  

Results from i so t rop ic  compression, incompressible axisymmetric 
expansional s t r a i n ,  and one-dimensional compression simulations were 

used to  test one-point-closure, two-equation (k-E) turbulence models. 

It was found tha t  k-~. models perform w e l l  at low s t r a i n  rates. When 
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t h e  s t r a i n  is  so strong tha t  t h e  flow s t ruc tu re  is out of equilibrium, 

these models do not perform well. The parameters i n  the model dissipa- 
t i o n  equation cannot be pure constants i f  the model i s  t o  f i t  the 

computer-generated data.  It was a l so  found tha t  the model turbulence 

length scale, which is supposed t o  represent the  in t eg ra l  length sca le ,  

does so very poorly i n  these flows. In compressed turbulence, the rap- 

i d l y  decreasing Kolmogorov scale caused by the  density increase  drives 

the  flow out of equilibrium. The d iss ipa t ion  can no longer sa t i s f ac to r -  

i l y  f u l f i l l  the two functions tha t  k-c models require of it; it cannot 

simultaneously be both the  rate of destruction of turbulence k i n e t i c  

energy and the length scale determiner. 

To decouple the d i s s ipa t ion  and the t i m e  scale, a one-point, three- 

equation turbulence model including a model equation fo r  t he  turbulence 

t i m e  scale is proposed. The time-scale equation contains terms which 

account f o r  the decay of i so t rop ic  turbulence, the re turn  t o  i so t rop ic  

turbulence a f t e r  a s t r a i n  has been removed, and the e f f e c t s  of various 

types of s t r a in .  The other two equations of the model govern the  evo- 

l u t i o n  of the turbulence k i n e t i c  energy and its d iss ipa t ion  rate and are 
similar t o  those i n  k-E models. Ihe e s s e n t i a l  change is tha t  the  time 

scale i n  the  des t ruc t ion  t e r m  i n  the modeled d iss ipa t ion  equation i s  

replaced by the  new t i m e  scale.  It is encouraging tha t  the e f f e c t s  of 

various strains appear t o  be addi t ive ,  i.e., only few building-block 

flows are needed t o  c a l i b r a t e  the  model constants. The new model 

accurately ca l cu la t e s  four types of flows--isotropic decay, i so t rop ic  

compression, axisymmetric expansion, and one-dimensional compression 

flows--for a wide range of s t r a i n  rates. 

8 02 Recommenda t ions 

As the speed and memory s i z e  of supercomputers advance, i t  w i l l  

become possible t o  do simulations of turbulence on a 256 x 256 x 256 

grid. This w i l l  allow us t o  study the evolution of turbulence which has 

an i n e r t i a l  subrange i n  the spectrum and may eliminate the  questions 
associated with the  low Reynolds numbers of the present simulations. 

Not a l l  of the  flows needed t o  c a l i b r a t e  the new three-equation 

turbulence model were simulated i n  t h i s  work. The present code (with 
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s l i g h t  modifications) could be used t o  simulate a l l  the building-block 

flows needed t o  ca l ib ra t e  the new model. The model should a l so  be 

tes ted  by applying it to  the  simulation of inhomogeneous flows. 

Swirl is del ibera te ly  generated i n  the intake stroke by design 
i n l e t  port shape and or ien ta t ion  and persists through to top-dead-center 

(TDC) of the compression stroke, a t  which point the mean flow pa t te rn  

approximates solid-body rotat ion.  "%e e f f e c t  of swirl on turbulence is 
not w e l l  understood. It could be studied by modifying the present code 
t o  include a Coriolis force term i n  the Navier-Stokes equations. 

Final ly ,  homogeneous turbulence undergoing expansion could be simu- 

l a t ed  with the present code with minimum modifications. Results from 

such simulations could help explain the turbulence behavior during the 

expansion s t roke  i n  an internal combustion engine. 
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Appendix 

TABULATED DATA 

Data tabulated in this appendix were obtained from computed turbu- 
lence fields described in Chapters V and VI. Fields from the followi2g 
runs are included. 

Run ID 

S QF 
SQG 

SQH 
SQI 
EXQ 
EXP 
EX0 
ODB 
OD C 

ODD 
ODE 

Strain Tppe 

sotropic compression 
* 

u * 

.I I 

acomp, axisym. exp. 
.* .I 

1. .I I 

-I) compression . 
.. I 

I .. 

- 
Mean-Deformation Tensor U 1  

(2-26) 
11 

I 

I* 

(7-24) 
*. 

I 

(2-30) . 
* 

.I 

with .. 
I. 

I. 

with 

I 

with 
.I 

* 

Lo = 0 . 3 ,  Vp = -5.6 

Lo = 1.0, vp = -1-0 

Lo - 0 . 3 ,  vp = -0.01 
Lo = 0 . 3 ,  Vp -0.06 

S - 35.87 

s = 3.587 

S = 0.3587 

Lo = 0 . 3 ,  Vp = -24.3 

Lo = 0 .3 ,  Vp = -1.29 

Lo = 0 . 3 ,  Vp = -0-26 

Lo = 0 . 3 ,  V, -0.05 

The following data are presented for each field: 

t = time with units [TI 

S = mean strain rate [ T - l l  

S(t')dt') dimensionless 

[ L2TS1 1 

TS = total strain = exp[ 

u = kinematic viscosity 0 

Strain Type 

Csotropic compression 

[ncompressible, axi- 
symmetric expansio 

1-D compression 

S 

V 
S(t) = L," 

P 

constant 

V 
S(t) = 

P 

TS 

L +v t 
2-L 

LO 

exp(S( t-to) 1 
to = 0.58789 

L +v t u 

U 

u(t) = u(O)(TS)*" 

cons tan t 



- 
R = u'u' (no Summation) 
ii i i  

(no summation on i) Dii 2v %,jUi,j 

with units [L2Ta2] 

[ L2 T"3 ] 

q2 - Rll + %2 + R33 - twice the turbulent [ L2 T-2] 
kinetic energy 

E = (Dll + D22 + D33)/2 = dissipation rate [ L2T-3 1 

L ) dxm (h = half the computational box) with units [L] 
ij ,m 

longitudinal 

lateral 
P integral length scales in %-direction 

(no summation) 

* Taylor microscales 

The following data are presented for incompressible, axisymmetric expan- 
sion simulations only : 

dR1 l/dt with units [L2T-3] 

2 -3 I L T  I 
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