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SUMMARY

A method is developed for sensitivity analysis and optimization of
nodal point iocations in connection with vibration reduction. A straight-
forward derivation of the expression for the derivative of nodal locations
is given, and the role of the derivative in assessing design trends is
demonstrated. An optimization process is developed which uses added lumped
masses on the structure as design variables to move the node to a
preselected location - for example where low response amplitude is required
or to a point which makes the mode shape nearly orthogonal to the force
distribution, thereby minimizing the generalized force. The optimization
formulation leads to values for added masses that adjust a nodal location
while minimizing the total amount of added mass required to do so. As an
example, the node of the second mode of a cantiiever box beam is relocated
to coincide with the centroid of a prescribed force distribution, thereby
reducing the generalized force substantially without adding excessive mass,
A comparison with an optimization formulation that directly minimizes the
generalized force indicates that nodal placement gives essentially é minimum

generalized force when the node is appropriately placed.

INTRODUCTION
The current trend in en.gineer'ing design of aircraft and spacecraft is
to incorporat;é in an integrated manner, various design requirements and to
do so at an early stage in the design process (refs. 1, 2). Incorporation
of vibration design r'equir'ementé is one example of this. The conventional
approach of meeting vibration requirements has been to "fix" a design for
vibration, sometimes after a serious problem has been detected. Technology

_advances'ar'e leading to more complicated aircraft and spacecraft with higher
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speed and performance requirements and, therefore, it is more important to
include vibration requirements early in the design process.

In helicopter rotor blade and fuselage design, stringent requirements
on rideAcomfort, stability, fatigue life of structural components, and

stable locations for electronic equipment and weapons lead to design
constraints on vibration levels (refs. 3-5). Some of the methods previously
used to control structural vibration in rotor blades include pendulum
absorbers (ref. 6), active isolation devices (ref. 7), additional dampihg
(refs. 5, 8), vibration absorbers which create "anti-resonances" (refs. 9,
10), and tuning masses to place frequencies away from driving frequencies
(refs. 5, 11-14). Efforts to incorporate the above concepts for vibration
reduction in systematic optimization techniques are described in references
10, 15-19. References 20, 21 contains surveys of applications of
optimization methods for vibration control of helicopters.

Recently, ﬁhe concept of "modal shaping" has been proposed as a method
to reduce structural vibration, especially in helicopters (refs. 3, 4). In
this method, vibration modes of rotor blades are altered through structural
modification to make them nearly orthogonal to the air load distribution ~
thus reducing the generalized (modal) fofce. This paper deals with the
concept of nodal point placement which is related to modal shaping and
consists of quifying the mass distribution of a structure to place the node
of a mode at a desirable location. Typical candidates for nodal point
placement are locations where low response amplitude is required such as
pilot or passenger seats, locations of sensitive electronic equipment,
weapon platforms or engine mounts. Nodal point placement also has the
potential for reducing overall response by placing a node at a strategic

_location of a force distribution to reduce the generalized force.




The objectives of this paper are to develop and demonstrate the concept
of nodal point placement and develop a mathematical optimization procedure
based on this concept to reduce vibration. An important ingredibent in the
optimization procedure is the derivative of the nodal point location with
respect to a design variable. This derivative quantifies the sensitivity of
a nodal location to a change in a design variable and is referred to as a
sensitivity derivative. The sensitivity derivative of the nodal location is
derived in this paper. The equation involves the derivative of the
vibration mode with respect to the design variable and the slope of the mode
shape at the nodal point and is easily implemented in a vibration analysis
program using available or easily-computed quantities. Analytical results
are presented for the sensitivity derivatives for a beam model of a rotor
blade and compared with finite differences for an independent check. The
sensitivit.y derivatives havé been employed in an optimizationi procedure for
p_lacing a node at a specified location by varying the sizes of lumped masses
while minimizing the sum of these masses. Optimization results are shown

f‘dr‘ placement of a node at a prescribed location on the beam model.

SENSITIVITY DERIVATIVE OF NODAL POINT LOCATION
- The modal deflection normal to the length of a one-dimensional
structure is denoted u(x,v) and represented by the solid line in figure

1.The deflection and the nodal point location denoted by xnp(v) are both

functions of a design variable, v, and when the design variable ‘is
perturbed, the deflection shape changes to the shape shown by the dashed
line. The derivative of the nodal location with respect to a design
variable gives information on how design changes affect nodal point

- locations and thus vibration response. As will be seen later in this paper,



the sensitivity derivative is an important ingredient in optimization of
nodal locations.

The formulation of the derivative of the nodal location is based on
expanding the perturbed mode in a Taylor series about the nominal nodal
point. Neglecting the higher order terms, we have the equation:

ou ou
,V) + T dxnp + w dv (j)
. X,V X,V
np np

u(x__ + dxnp,v + dv) = u(xn

np p

The term on the left side of the equation and the first term on the right

are displacements of the nodal points of the perturbed and nominal mode

-shapes; respectively which are zero. Since xnp = xnp(v), it follows that
dxnp
dxnp ol dv. Therefore, from (1)
' dx
.a_u dx +.a_l£ dv:.a_u_ ._12+_a.“1 dv = 0 (2)
9X np ov X dv ov
X,V X,V X,V X,V
np np np np

Noting that dv is arbitrary and solving for dxnp/dv leads to the formula for

*
the nodal point derivative

dxnp o - [ du/av ] (3)
dv ou/9x xnp,v

*Equation (3) is also applicable to nodal line movement in two-dimensional
structures. If a nodal line is parallel to the y-axis of a plate for
example, then equation (3) gives the change in the x-location with respect
to change in a design variable. For a nodal line parallel to the x-axis,
equation (3) applies; provided x 1s replaced by y in the equation. For the
general case where the nodal line is not parallel to the x or y direction,
equation (3) gives the derivative of the location of a nodal line in a
direction normal to the line,




The two ingredients in the formula are 3u/3v, the derivative of the mode
shape at the nodal point and 3u/9x, the slope of the mode shape at the nodal
point. The value of 3Ju/9x is obtained from the nominal mode shape; and the
value of 3u/3v is obtained by Nelson's method (ref. 22) which will be

described in the next section.

IMPLEMENTATION OF SENSITIVITY ANALYSIS
. GENERAL APPROACH

The calculation of derivatives of nodal point locations has been
implemented in a general purpose finite element program (ref. 23). 1In a
finite element analysis, the components of the vibration eigenvector are
generally available only at the grid points‘of the model. Linear
interpolation is used to locate the node between grid points. Once the node
location is found, interpolation is used to obtain the slope of the mode
shape 9u/3x at the node and the mode shape derivative du/dv at the node. It
is hoted that the modal deflection u is a subset of the eigenvector ¢ and
therefore the derivative 3u/9v is a subset of the eigenvector derivative

3¢/ av.

NELSON'S METHOD FOR EIGENVECTOR DERIVATIVES

A free-vibration problem with no damping, is governeq by the following
eigenvalue equation

(K- M¢ =0 , (4)

In equation (4) K is the stiffness matrix, M is the mass matrix, ¢ is
the eigenvector, and A is the eigenvalue equal to the square of the

frequency. The eigenvector is normalized such that the generalized mass is



unity

T B
$"Mp =1 (5)
By taking the derivative of equation (4) with respect to a design variable v

the following equation emerges:

- d¢ _dA . _ 4K aM
(X AM) dv dv Mo dv ¢+ A dv ¢ (6)
Because this equation is singular a direct solution for g%-is not possible.

"However, the general solution to equation (6) is expressible in the

following form:

g%=q+c¢ (7)

Wwhere q is a particular solution found by setting one component of the
eigenvector derivative equal to zero and deleting the corresponding row and
column from equation (6) and solving for the remaining components. The
constant ¢ is found by taking the derivative of the normalization condition

in equation (5) and substituting equation (7) into the resulting expression.

2¢TM%%-=- ¢T%¢ (8)
T dM
c=- oMa -3 o To (9

EXAMPLE PROBLEM
The example problem used for the sensitivity analysis study is a
cantilever beam representation of a rotor blade developed in reference 14
and shown in figure 2. The beam in figure 2(a) is 193 inches (4.9 m) long
and is modeled by 10 finite elements of equal length. The model contains
both structural mass and lumped (non-structural) masses. The beam has a box

.

~cross section as shown in figure 2(b) and the material properties and cross




sectional dimensions are summarized in table 1. There are eight lumped
masses at various locations along the length of the beam. .The values of the
masses are the design'variables in this study and their values and locations
are shown in table 1. The values of the masses were generated in reference
14 in aﬁ optimization procedure to minimize mass subject to frequency
constraints and serve as nominal values for the current sensitivity study.
‘Sensitivity studies are performed in which the derivative of the nodal

location for the second mode is computed with respect to the lumped masses.

RESULTS OF SENSITIVITY ANALYSIS

Derivatives of the nodal point location for the second mode were
calculated using equation (3). For an independent check on the
implementation of equation (3), the derivatives were also calculated by
finite differences. The finite difference derivatives in contrast to the .
analytical derivatives (equation 3) require a precise determination of the
nodal location. The reason for this is that the quantities in equation (3),
du/9v and gu/9x, vary slowly in the vicinity of the node. Conversely the
finite difference method subtracts the nominal and perturbed node locations
to calculate the derivative and even small errors in these values can lead
to large errors in the derivatives. The finite difference calculations
begin with an eigenvalue analysis for the nominal design variables. From
examination of the eigenvector, the element containing the node is
identified. The displacements and slopes at the end points of this element
are extracted from the eigenvector and used to define a third order
polynomial. The root of the polynomial that lies in the element is the

nodal location. Next, the design variable is perturbed (by 0.1 percent) and



the process is repeated to find the perturbed nodal location. A forward

finite difference formula is then used to calculate the derivative.

The sensitivity results are shown in table 2. The two methods generally
agreed within about two percent. Examination of table 2 shows both positive
and negative values of the derivatives. A positive value indicates that an
increase in the mass moves the nodal point to the right of the nominal
location and a negative value indicates that an increase in mass moves the
node to the left. The derivatives in table 2 show that increases in the
masses at grid points 10 and 11 are the most effective ways (per unit mass)
to move the node to the right. Similarly, decreases in the masses at grid
points 10 and 11 or increases in the masses at grid points 6 and 7 have the

largest effects (per unit mass) in moving the node to the left.

OPTIMIZATION FORMULATION

In this section, we will show how node locations are adjusted using
mathematical optimization. The optimization problem is to place a node at a
desired location by varying the magnitudes of lumped masses while minimizing
the total lumped mass. CONMIN, a general-purpose optimization progranm,
(ref. 24) is utilized as the optimizer. The formulation of the problem
consists of defining an objective function (the quantity to be minimized);
the constraints (limitations on the behavior of the model); and the design
variables (the parameters of the model to be changed in order to find the
optimum design). The optimizer requires derivatives of both the objective
function and the constraints. The formulation for this problem is as
follows:

The objective function, f, is the sum of the lumped masses , i.e.




N
f =3I M (10)
i
The constraint, g, which must be negative or zero for an acceptable design,
expresses the requirement that the nodal point xnp be placed within a
distance 6§ from a desired location xo that is,
= - - <
g lxnp xol § 30 (jj)

The design variables consist of the sizes of the lumped masses. Constraints
on the largest and smallest acceptable values of the design variables are
required by the optimizer. These values are arbitrarily set. The

derivatives of the objective function with respect to the design variables

are
of of ' -
371 =,§'ﬁi=1'0 1=12,...,N (12)

and the derivatives of the constraints are equal to positive or negative

values of the nodal point sensitivity derivatives i.e.

8 np 13)

calculated from equation (3).

OPTIMIZATION PROCEDURE
The sequence of operations in the optimization procedure is illustrated
in figure 3. The overall procedure consists of two nested loops. Each pass
through the outer loop is referped to as a cyclg which involves a full
analysis and a sensitivity calculation. The first computation is to
generate the structural model of the beam, excluding the values of lumped
masses. As the first step in the outer loop the lumped masses (the current

'design variables) are inserted into the model. Next, the vibration analysis



is performed and the nodal location and the slope of the mode shape at the
nodal point are found by interpolation of grid-point eigenvector
displacements._ The s_ensitivity analysis block includes calculating the
vibr'at.ibn mode shape derivatives by Nelson's method and calculating the
nodal point derivative from equation (3). The inner loop is contained in
the optimizer block which consists of the optimizatioh program of referenge
24 and an approximate analysis for calculating the objective function and

the constraints (see ref. 25). The approximate equations are

f=f +I3% Ay (14)
(o} iavi i .
g=g +I8 Ay | (15)
o yoovy i A

These equations give the change in the objective function from fo to f and
the change in a constraint from go to g corresponding to a change in design

variables Av To assure that the linear approximations in egs. 14 and 15

i’

are valid, the size of Avi is limited to ten percent of v Use of these

i
approximations saves computational time and effort in the inner loop where
many evaluations of the objective function and constraints are required.
Development of these and other techniques and demonstration of their
benefits are described in reference 26. Once the inner loop iterations have
converged the next cycle of the outer loop begins using the current design
variables as the new values of the lumped masses. These masses are then

inserted in the structural model and the process continues until convergence

of the outer loop is achieved.
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NODAL PLACEMENT OPTIMIZATION
The model used in the optimization procedure is shown in figure Y4 and
is the same beam structure described in figure 2 and table 1. The node for
the second mode 15 to be placed within 6 = 1.0 inch (.0254 m) of

X, = 164 inches (4.16 m). The location X is chosen because it is the

centroid* of a representative air load distribution (fig. 5) given in
reference 3 for a rotor blade. The design variables are the masses at
joints 9, 10, and 11 having initial values of 5.21 1bm (2.36 kg), 6.55 lbm
(2.97 kg), and 6.60 1bm (2.99 kg) (from ref. 14) - a total of 18.36 pounds
(8.32 kg), and the initiai location of the node is 154.7 in (3.929 m). The
upper and lower bounds on the design variables are arbitrarily set at 50,
lbm (23 kg) and 0.5 lbm (.23 kg), respectively.

The optimization procedure converged to the final design shown in table

3, in which the masses were 0.5 lbm**(.23 kg), 3.70 (1.68 kg), and 20.25 1lbm
(9.19 kg) - a total of 24,45 1bm (11.10 kg), and the nodal point is located
at 163 inches (4,140 m). The optimization history is shown in figure 6.
The optimizer initially adds mass to bring the nodal point to within one
inch of the desired location (fig. 6a). For the remainder of the cycles, as
shown in figure 6b, the optimizer concentrates on minimizing the total mass
by shifting mass among the three locations, Basically, mass was shifted
from the two inboard locations to the tip where mass is most effegtive in
moving the nodal point. For example, the mass at grid point 9 is reduced

from 5.21 1bs (2.36 kg) to 0.5 lbs (.23 kg) while the tip mass is increased

*

As shown in Appendix B, placing the nodal point for the second mode of a
beam at the centroid of the force distribution results in a near-minimum
value of the corresponding generalized force.

T
Lower bound

1



from 6.6 1bs (2.99 kg) to 20.25 1lbs (9.19 kg). Excessive addition of mass
15 avoided (only 6 additional pounds were needed) because of the
effectiveness of relqcating mass to the tip.
EFFECT OF NODAL POINT PLACEMENT ON GENERALIZED FORCE

One of the potential applications of nodal point placement is the'.
reduction of overall vibration response by generalized force minimization.
In this section, the generalized force from a design based on nodal point
placement 1is compared with the true minimum obtained by a method which will

now be described.

FORMULATION OF GENERALIZED FORCE MINIMIZATION

In this formulation the objective function is the generalized force
given by

£ = ¢F (16)
where ¢ is the eigenvectqr and F is a vector of the distributed force. The
design variables are the same as those in the previous optimization example;
i.e., iumped masses. In order for the comparison of designs to be valid, a

constraint is imposed that the sum of the masses used as design variables be

*
less than or equal to M = 24,45 1bm (11.10 kg) - the mass that was required

in the nodal point placement optimization. Therefore, the constraint is

N *
g=I M -M 50 (17
i=1 .

The derivative of the objective function is

of T 9¢

- = F 22 (18)

av1 avi .
where the eigenvector derivative a¢/8vi is obtained by Nelson's method. The

4 derivative of the constraint is given by
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. 08 i =
e N = 170 i= 1,2,.ff,N (19)

This optimization formulation was used to minimize the generalized

force for the steady state air load distribution in figure 5.

COMPARISON OF DESIGNS

The results of this study are summarized in table 4, in which the
design variables, total mass, generalized force, and nodal point locations
are shown for three designs: the initial design, the final design from ﬁode
placement, and the final design from the direct minimization of the
generalized force. The node placement procedure is very effective in
minimizing the generalized force - giving 10.8 1bf (48.04 N), compared to
10.0 1bf (44.48 N) from the direct method when both were started at a design
with a generalized force of 20.8 1bf (92;52 N). The direct minimization
procedure, while not dealing directly with ﬁhe nodal location nevertheless
places the node essentially at the same point as the node placement design:

163.8 inches (4.161 m) vs. 163.0 inches (4.140 m).

CONCLUDING REMARKS

This paper has described sensitivity analysis and optimization methods
for adjusting mode shape nodal point locations with application to vibration
reduction. The paper begins with a derivation of an expression for the
derivative of the nodal location with respect to a design variable.
Sensitivity analyses were performed on a demonstration problem which
consisted of a box beam model of a helicopter rotor blade. 1In these
analyses, the derivatives of the nodal location for the second mode with

respect to the magnitudes of lumped masses on the beam were calculated. It

13



was shown that these derivatives gave useful information on the effect of
the masses on the node location and indicated which masses were most
effective in moving the nodal point. Next, the ﬁaper'described an
optimizétion procedure to place a node at a prescribed location by adjusting
the magnitudes of lumped masses while minimiiing the sum of these masses. A
general-purpose optimization program was used and the nodal point
derivatives were a key ingredient in the procedure. This optimization
procedure was then used in an example whefe the nodal point for the second
made of a cantilever beam model of a rotor blade was pladed at a location
close to the centroid of a force distribution. This location was chosen as
a result of a numerical study (described in an appendix) where it was shown
that this choice for the nodal location gave a minimum generalized force.
We were successful in moving the node to the desired location requiring only
six pounds of lumped mass on a 193-inch (4.90 m) beam that weighed 117
pounds (53.1 kg). |

Finally, to evaluate the potential for nodal placgment to reduce
vibration, the generalized force for the second mode was calculatedland-
compared to the minimum generalized force obtained in this paper by a
separate optimization procedure. It was found that the nodal placement
procedure gave a generalized force which was very close to the minimum.
The results in this paper suggest that adjusting the mode shapes of
structures by relocating nodal points has potential for reducing both

overall and local response levels in vibrating structures.

14
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APPENDIX A: NOMENCLATURE

b width of box cross section
c constant used in Nelson's method (eq. 9)
d side wall thickness of box cross section (fig. 2)
E Young's modulus
F force vector
f objective function
g constraint function
h height of box cross section
I identity matrix
K stiffness matrix
L length of beam
M mass matrix
Mi lumped mass equal to ith design variable
M* sum of design variables (mass)
N number of design variables
q particular solution in Nelson's method
t upper and lower wall thickness of box c¢ross section
(fig. 2)
u modal deflection
v,vi design variable
X coordinate along one-dimensional structure
xnp nodal point location
xo desired nodal point location
é allowable distance from desired nodal point location
A eigenvalue, square of fréquency
p weight density
"¢ eigenvector
T (superscript) transpose of matrix
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APPENDIX B - EFFECTIVENESS OF LOCATING NODE AT CENTROID OF FORCE

" DISTRIBUTION TO REDUCE GENERALIZED FORCE

At ah edrly stage in this work, a numerical study was performed to
iniveéstigdte the effect on the generalized force of placing the nodal point
of the second mode shape of a simply-supported beam at the centroid of a

force distribution. Given the force distribution (fig. 7(a)) with its

centroid at 52 percent of the length of the beam, the generalized force ¢TF
was calculated for 11 arbitrary shape functions (fig. 7(b)) having different

nodal locations xnp which varied between 25 percent and 75 percent of the

beam lengthf As shown in figure 8, the smallest generalized force in fact

occurs when the node is placed beween 50 and 55 percent of the beam length

(essehtially at the centroid of the force distribution). While this is not
a proof, it does show that the centroid of the force distribution is a good
choice for the location of a nodal point to obtain a low value of

generalized force.
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TABLE 1. DETAILS OF FINITE-ELEMENT MODEL OF ROTOR BLADE
Lo (see figure 2)

Material Properties and Cross—-Sectional Dimensions

Element. E P R E t';
0.490x107 (psi) .07 (1b/in?*)  3.75 (in) 2.5 (in) .8 (in)
3.378x10° (Pa) 1938.00 (kg/m®)  .0953 (m)  .064 (m) .0203 (m)

2-10 0.585x107 (psi) .07 (1b/in®)  3.75 (in) 2.5 (in) .8 (in)
4.033x10t° (Pa) 1938.00 (kg/m?) .0953 (m) .064 (m) .0203 (m)

Values of Lumped Masses at Grid Points

Grid Pt. No. 3 4 6 7 8 9
Mass 1bm 3.04 1.67 6.40 7.46 10.75 5.21
(kg) (1.38)  (0.757) (2.90) (3.38) (4.88) (2.36)

21

d

.1 (in)
.00254 (m)
.1 (in)
.00254 (m)

11
6.60
(2.99)



TABLE 2. COMPARISON OF ANALYTICAL AND FINITE DIFFERENCE DERIVATIVES
OF NODAL POINT LOCATIONS FOR SECOND MODE OF CANTILEVER BEAM

OF FIGURE 2
dx
np
dv
Mass at
Grid Point - Analytical* Finite Difference*
3 - 0.0278 (- 0.156) - 0.0277 (-
4 - 0.0881 (~ 0.493) - 0.0880 (-
6 - 0.231 (- 1.29) - 0.230 (-
7 - 0.237 (- 1.33) - 0.236 (-
8 - 0.166 (- 0.930) - 0.165 (-
9 - 0.00380 (- 0.0213) - 0.00361 (-
10 0.309 ( 1.73) 0.309 (
11 0.828 ( 4.64) 0.826 (

*
in/1bm (cm/kg)
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TABLE 3. INITIAL VS. FINAL DESIGNS FOR NODAL POINT
OPTIMIZATION (see figure 1)
X, = 164.0 in. (4,166 m); 6 = 1.0 in. (.0254 m)

Initial Final
Design Design
M1 lbm at Grid Point 9 5.21 0.50
© (kg) (2.36) (0.23)
M2 lbm at Grid Point 10 : 6.55 3.70
- (kg) (2.97) (1.68)
M3 lbm at Grid Point 11 ‘6.60 20.25
(kg) (2.99) . (9.19)
* - ' :
M 1lbm 18.36 24 .45
(kg) : . (8.32) (11.10)
Node Location xnp (in.) 154.7 163.0
(m) (3.929) (4.140)
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TABLE 4.

FINAL DESIGNS, NODE LOCATIONS AND MODAL FORCES FROM

NODE PLACEMENT VS.

DIRECT FORCE MINIMIZATION

- SECOND MODE OF CANTILEVER BEAM (see figure 2)

PARAMETER DESIGN
Initial Final From Final From
Node Placement Direct
Minimization
M1 1bm 5.21 0.50 0.50
" (kg) (2.36) (0.23) (0.23)
M2 1lbm 6.55 3.70 1.75
(kg) (2.97) (1.68) (0.79)
M3 lbm 6.60 20.25 22.20
(kg) (2.99) (9.19) (10.07)
M 1lbm 18.36 24,45 24,45
(kg) (8:32) (11.10) (11.10)
Generalized
Force 1bf 20.8 10.8 10.0
(N) (92.52) (48.04) (N45H8)
Node location
xnp in. 154.7 163.0 163.8
(m) (3.929) (4.140) (4.161)
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Figure 1.- Nominal and perturbed mode shapes and nodal points
for one-dimensional structure.
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(a) Finite element model of rotor blade
(10 equal elements of Tength 19.3 in. (.490 m))

/.

(b) Cross-sectional detail of rotor blade showing dimensions of box beam
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Figure 2.- Rotor blade model.



Generate structural model
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loop Compute node location and slope at node
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Lumped masses = Sensitivity analysis
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Figure 3.- Optimization procedure for nodal placement.
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193 in. —3

e Desired node location: X o= 164.0 in. (4.166 m)
® Allowable distance: &= 1.0 in. (.0254 m)

e Design variables: M1 M2 M3

e Upper bounds on design variables; 50 Ib (23 kg)

e Lower bounds on design variables; 0.5 Ib (.23 kq)

Figure 4.- Optimization problem specifications.
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Figure 5.- Sketch of air load distribution for generalized force minimization study.
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Figure 6.- Convergence of optimization procedure for nodal placement.
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F0= 1 Ibf (4,448N)
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Nor malized
force, F_
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(a) Force distribution, F
(centroid at x/L = .52)
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(b) Typical mode shape, ¢ having nodal location, x np

Figure 7.- Mode shape and force distribution used to study the effect
of nodal location on generalized force (see Appendix B).
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