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Status Report for Summer 1985

Bruce D. Verner
Intelligent Systems Laboratory

Xerox Palo Alto Research Center
26 August 1985

This document is a brief summary and status report on my research at ISL/PARC during
the summer of 1985. It describes some of the research, software engineering, and other
activities I performed for the User System Research (USR) group of ISL. For information
on my work as a Research Intern at PARC during the previous summer, refer to the August
1984 technical mini-report entitled "A Brief Summary of My Work on TROOPS."

According to telephone discussions before my return to PARC, my primary project was to
be the augmentation of the Input/Output facilities of the Dandetiger computer through
electronic hardware and software extensions. Upon my arrival at PARC in early June,
Austin Henderson informed me that the information-space flyer project is receiving higher
priority and asked me to devote my efforts toward advancing that work. The
information-space flyer concept is similar to a flight simulator where one traverses overall
information topology (such as a semantic network) rather than a geographical terrain./He
explained (as Stuart Card had previously mentioned) that the Human Interface Program at
the Microelectronics and Computer Technology Corporation (MCC) has a similar research
project in progress and that we want to keep the lead in this area. In addition to advancing
the state-of-the-art in user interfaces and information display, our pursuit of this
hypermedia project is contributing to the formulation of a general comprehensive theory of
visual interfaces. (Hypermedia are presentational media which perform in
multidimensional ways. Some of our research is related to the pioneering ideas of Ted
Nelson such as the Fantics and Thinkertoys 3-D concepts.) Stu and Austin had completed a
considerable amount of work on the underpinnings for a net flyer environment for the
Dandeiris 3-D color graphics system, but much remained to be done.

Austin gave me a few pointers to the existing work which consisted of, the IRIS graphics
software library for Interlisp-D; the Intermediate-Displayable Network (ID-Net) package
for building, manipulating, and accessing object-oriented network data structures; the
Organization Chart (Org-Chart) package for generating visual representations of ID-Nets
on the Dandetiger; and the Whiteboard (White-Board) package for displaying the outputs
of Org-Chart in Euclidean 3-space on the Silicon Graphics IRIS terminal.

After discussing the desired future directions of this research, I proceeded to learn the
details of the high-performance, pipelined, custom VLSI-based I R I S graphics processor-- a
t ru ly remarkable machine. I supplemented my previous knowledge of computer graphics
theory and practice by reading Principles of Interactive Computer Graphics by Newman
and Sproull (both formerly of PARC) and various other relevant works. Then, I read the
I R I S documentation manuals to become intimately famil iar with the functioning of that
system. The hardware and software architectures of the I R I S seem to be heavily influenced
by the ideas of Newman and Sproull, and thus, I recommend their book to anyone
interested in the deeper and more formal concepts underlying this technology. (This



impression is not surprising when one considers that Silicon Graphics has several PARC
alumni.) Once acquainted with the research vehicles, I began modifying and extending
these systems in accordance with Stu's and Austin's requests and suggestions and my ideas.

The first software package I wrote adds a facility that generates and displays function calling
path trees on the IRIS in response to the issuance of a iMasterscope "Show paths ..."
command by an Interl isp-D user. This tool is called Master-Chart and is located in the file
{Phylum}<Verner>Lisp>Net>MasterChart(.dcom). When Master-Chart is loaded, it taps
into the Masterscope database by advising the appropriate functions in the Browser
package. In response to a user's "Show all paths from aFunction" query, Master-Chart
(when enabled by a flag) creates an ID-Network representing the calling paths. Each node
in the net contains information about the corresponding function. The resultant network is
then displayed on the Dandetiger screen in an Org-Chart browser window for manipulation
by the user. With the browser, various extractions (information organizations) and layouts
(extraction display formats) may be generated from the information net upon request. The
user then selects a menu command to create and display a whiteboard world on the IRIS
showing the desired net layout. A flyer may be used to explore the presented relationships
between functions. The Master-Chart package, in conjunction with Org-Chart, allows the
display of large and complex function interdependencies that exceed the viewing capacity
of the existing tools developed for the D-machine screen.

Having completed Master-Chart, I wanted a way to explore the network domain displayed
on the I R I S that is easier than the former method of typing coordinate and velocity codes
on the keyboard. I set out to design and implement a mouse-driven information space flyer
for White- Board. What resulted is a mouse-controlled vehicle that models an inertial mass
with thrusters in a frictional medium. The physical dynamics of this explorer are more
similar to those of a submarine or heavy aircraft than a spaceship -- the inclusion of friction
in the model serves to protect the flyer from wild and difficult to control movements that
are a famil iar annoyance to users of spacecraft simulators. The mouse controls for this flyer
are described in the document, "Summary of Controls for Info-Net Flyer

Lennart Lovstrand has recently suggested and plans to implement what he calls an impulse
flyer. I interpret this to be a sort of "hyper-warp" device that does not observe the physical
law that the second derivative of the position of a mass must be a continuous function. If
the velocity of the flyer is not "everywhere differentiate", then the vehicle is free to make
discrete jumps in space or halt in zero time. These behaviors should be carefully controlled
to avoid disorienting the user. Still, Lennart's impulse flyer seems an interesting idea and
will be useful for comparison with mine.

There are certainly many possible kinds of flyers for our information spaces, and we hope to
extract what makes a good flyer from our series of experiments. Toward this end, Stu has
suggested the separation of flyers from the rest of the White- Board system to facilitate the
rapid interchange of prototype vehicles. In my opinion, this test-bed approach to the
White- Board structure is woith pursuing. Perhaps the model for a modular flyer should be
a state-machine which interfaces to White- Board through state variables relering to physical
parameters such as position, velocity, acceleration, and coefficient of friction. Eventually,
the user should have a hanger of craft from which to select according to desired
performance properties.



With my completed (Iyer, 1 traversed the information space and discovered the need for
several refinements to the existing White-Board display paradigms. One problem was that
the field-of-view of the flyer could be rotated away from the board -- rendering the network
out of view. In this situation, one is left looking into empty space with no orientation clues
and li t t le chance of easily f ind ing the whiteboard. To solve this problem, I recalled the
relevant theorems of trigonometry and analyt ic geometry and derived constraint equations
on the rotation of the flyer to keep the whiteboard in view. The code for this feature is
included in Master-Chart and may be put into effect by setting a global flag.

Another shortcoming is that the "flashlight" (a dot which indicates a point of interest on the
whiteboard toward which to gravitate) was of constant size relative to the board. Thus, at
farther viewing distances from the board the flashlight would become vanishingly small -
leaving the user confused about the location of the current focus. To remedy this situation,
I modified the flashlight program code to make the beam diameter proportional to viewing
distance. Now, the flashlight is approximately a constant size relative to the IRIS viewport
and always readily visible without being obtrusive. It is interesting to observe that the
completion of a first flyer precipitated the discovery of the need for these refinements to
White-Board.

All of the previously described work was then demonstrated to Stu and Austin for feedback,
and they gave a positive response.

We wanted to demonstrate our hypermedia system to a group of visiting scientists, but it
was lacking a major capability - that of printing text in IRIS displays. Such a feature is
necessary for labeling the various network structures in the IRIS world space. Since the
need for text printing was immediate, I designed and implemented an object font package
which enables the generalized printing of text as graphical objects on the IRIS. During
White-Board initialization, this code reads a file of font data (previously generated by
Austin) and compiles that representation into a list of IRIS display library commands.
When EVA Led, this expression builds an object font display-list data structure within the
IRIS. A font table of characters, character codes, widths, kearns, and object numbers is
created for later use by my printing mechanisms. The compiler-based approach is efficient
because the translation of source data to library commands need only be perfomed once.
I R I S text display is then available through a transparent programmatic interface.
Parameters such as height, position, color, linewidth, and format can be easily modified on a
character basis. The Object-Font package was successfully completed and used to label
Master-Chart nodes with corresponding function names, to print mul t ip le text lables on
Xerox organizaton charts, and to paint numbers on the cards in Lennatt's arithmatic
problem mockup. The commented code of the object font package is avaliable in the file
{Phyluin}<Verner>LISP>Net>Object-Font.(dcorn).

As requested by Austin, I added to White-Board the capability to display a network of the
Xerox organization chart wi th scaled text labels on each node for post, title, and name.
Three different colors are used for the three label types al lowing easy identif ication of
information. When enabled by setting a flag, a labeled org-chart wi l l be automatically
generated from a text file representation. The default text file name is contained in a global
variable which may be reset by the user. Refer to the documentation in Object-Font and
Master-Chart for further details.



At one of the discussion sessions, Stu suggested that we try to adapt to our system the
powerful "fish-eye view" display paradigm developed by George Furnas at Bell Labs.
Furnas had described the advantages of this algorithm during his visit to PARC. I obtained
a copy of Furnas' paper on the subject, "The FISHEYE view: a new look at structured
files", which I subsequently read. Lennart offered to write a static fish-eye view as another
Org-Chart layout option, while 1 volunteered to create a dynamic-incremental fish-eye view
that would reside in White-Board itself.

The existing structure of White-Board had all the arcs and nodes of the net grouped into
one IRIS display object - a configuration unsuitable for the implementation of dynamic
fish-eye views. To facilitate the construction of such views, I rewrote and extended much of
the White-Board code. One of the major changes was making the net constituents into
separate IRIS display objects. Now, each node can be edited to change its scale, color, or
other propeities independently of other nodes. The node selection behavior in Org-Chart
was changed to choose the closest node to a mouse click rather than reporting a miss, and
the node selection facility was extended to work on IRIS whiteboards. This fish-eye view
test-bed was exercised by adding code that displays the node nearest the flashlight in red at
an expanded size. The flashlight is used to select a node on the whiteboard in a manner
similar to the use of the mouse cursor in Org-Chart display windows. Text labels on the
node are also expanded accordingly. When a new point of interest is chosen, the previously
selected node is reverted to its former ordinary appearance and the desired node is
highlighted. The documented code for this work is mostly contained in the file
{Phylum}<Verner>LlSP>Net>Proto-Fish-Eye(.dcom), and other parts of it are in the -
Master-Chart package. With this solid foundation completed and demonstrated, I was
ready to attempt the creation of a full-fledged fish-eye view engine.

Stu suggested that we attend the Siggraph conference in San Francisco to gather
information on progress in the field of computer graphics. At that event, we observed many
interesting developments; although much of the exibited technology was imitative and
uninspired. Silicon Graphics ( IRIS) and Lucasfilm (Blitter machine) where among the
leaders in hardware. Abel Graphix, some of the smaller companies, and the universities
(Caltech, Tokyo,...) had the best software. The poor quality of the PARC/Apple-like
windowing user interfaces that I tried on various machines was disappointing. Obviously,
the developers of this hardware and software have ignored the well-refined paradigms
stated in the Smalltalk-80 books and fashioned their systems in an inconsistent, inelegant,
and ad-hoc manner. Yet this is still progress over the, previous conditions, and they will
eventually correct their errors. After much manuevering, we managed to obtain tickets for
the film and video show -- an enjoyable presentation that spotlighted some of the recent
advances in the art and science.

Around this time, we received from Silicon Graphics the new IRIS workstation upgrade for
the laboratory. The IRIS workstation has various significant increases in capacity and
capability over the old I R I S terminal , including the abi l i ty to run the U N I X environment.
Our intention is to reimplement the time critical segments of the White-Board main control
loop activities in the C language on the I R I S . The Dandetiger wi l l then send to an XNS
network daemon (process)on the I R I S any adjustments needed to keep information
consistency. We expect this restructuring of our software architecture to yield significant
performance gains.



After installing the workstation, we had severe difficulties with the multi tasking mode of
UNIX. I contacted Silicon Graphics, and with their assistance and Lennait's help isolated
the problem to the Ethernet board in the IRIS . After much persistence, the problem was
resolved by having SG replace the card. Lennart has configured user accounts for the
workstation and we are becoming proficient with the new features of the system.

The IRIS workstation requires the development of new communications and graphics
library software in Interlisp-D. This task has been almost finished by Greg Nuynes at
Xerox AIS; and he is continuing to debug the I R I S l i b package. I have sent him "bug
reports" describing the details of several fatal problems in the code. He is proceeding to fix
these and we await the completion of a f u l l y functioning release so that we can begin use of
the new IRIS. The work of Greg and Michel Desmarais (formerly at PARC) on the systems
related programming has been essential for our rapid progress.

While Greg perfects his software, 1 have designed and implemented a dynamic-incremental
fish-eye view package for the Dandetiger display. By setting a global flag the output of this
package may be viewed on the IRIS. (Testing of the IRIS version awaits completion of
debugging of the new IRIS software.) The Dandetiger portions of the package have been
tested and successfully generate the intended behavior (see the attached hardcopies). When
a point of interest is selected in the Org-Chait display (and the function FEV is called), the
node nearest that location becomes the focus of a dynamic fish-eye view which spreads
iteratively in a breadth-first fashion through the net. The effect of these transformations is
to visually emphasize the focus node and its nearby neighbors while eliding distant nodes.
The path from the focus to the root of the net is also spacially emphasized as suggested in
the Furnas formal description. Propagation is attenuated through a threshold mechanism
to improve time performance. A mouse click may be used to change the focus and a new
fish-eye formation will gradually result allowing a brief multi-foveal view. The fish-eye
function is highly isolated to permit easy modification or replacement for experimentation.
Currently, the function is based on the Furnas formal mathematical definition as stated in
his report. The structure of the fish-eye software is general to permit convenient
modifications for experimentation with new kinds of views. I have put the annotated code
file for the Fish-Eye package in {Phylum}<Verner>LISP>Net>Fish-Eye(.dcom).

While converting the software for the new IRIS, I discovered that the IXLATE translation
routine did not implement conversion of the old backslash form of IRIS commands. I
made a simple extension to accomplish this in the code, and saved the modified version for
future use in {Phylum}<Verner>LISP>Net>lXLATE(.dcom).

At our latest brainstorming sessions we have evolved many ideas for enhancing our
hypermedia system including putting a control panel on the IRIS display and tying logical
searches of the net to fish-eye views. Stu and Austin suggested devoting the bottom portion
of the IRIS screen to something ak in to a cockpit panel. One of the controls might be a
fill-in form that initiates a logical search for particular information in the net. In the case of
org-charts, a typical query could mean "Find and show me the Vice President of Research
and emphasize the surrounding posts in the chart back up to the CEO." A fish-eye view
would then be initiated with the located node(s) as a focus. These ideas are exciting and
very promising directions of exploration. In the remaining week before I return for my
senior year majoring in Electrical Engineering at the Universi ty of Rochester, I wi l l attempt
to make a start in their development.



I would like to thank Stuart Card, Austin Henderson, Tom Moran, and John Brown of ISL
for again sponsoring me as a Research Intern, and NASA for granting partial funding for
the Dandeiris-Hypermedia project. My activities at PARC with diverse projects, people,
and disciplines have been very enjoyable and provided me with a good learning experience.
The consulting related to PARC technology transfer, in which I have engaged for Xerox,
has contributed to my further development of practical industry-oriented knowledge, skills,
and abilities. The combination at PARC of high quali ty people, excellent facilities, and
creative freedom renders the place an extraordinary research environment.



Summary of Controls for Info-Net Flyer #1

Bruce D. Verner
Intelligent Systems Laboratory

Xerox Palo Alto Research Center
17 August 1984

This is a summary of the behavior and operation of the mouse-driven Whiteboard flyer.
The flyer is a craft that is used to navigate and explore an information space displayed in
3-D on the IRIS color graphics system. The flyer wil l gravitate toward a focus (or point of
intertest) indicated by a yellow "flashlight" beam displayed on the whiteboard. A user may
easily change the focus by aiming the beam with a "gunsight" located at the center of the
screen. When the mouse-driven flyer is in use. the old keyboard code controls remain in
effect. Although the mouse flyer provides linked control of all essential degrees of freedom,
the keyboard may be used for supplemental adjustments. Documentation is also provided
for additional keyed commands that were integrated into Whiteboard as an intermediate
measure before creation of the mouse flyer.

The mouse on the IRIS is used for the flyer, although with slight modifications to the code
the Dandetiger mouse could be the control. All mouse inputs are polled (rather than
queued) to provide the most immediate response to the current situation. The effect
generated by pressing a mouse button(s) is usually proportional to the interval of time it is
held. (Holding down longer increases velocity, continues focus selection, etc...)

Control Assignment on IRIS.mouse:

Mouse Chord Behavior

LB MB RB Quit the Whiteboard program
(exits into LISP)

LB -- RB Freeze ONLY Z-axis movement of flyer
(Z-axis movement may later be resumed)

-- MB RB Set Z-coordinate of focus (POI) to current
Z-position of flyer
(has effect of halting Z-axis movement)

LB MB -- Initiates auto-homing to a viewpoint encompassing
the entire whiteboard

LB -- - Select a new focus (POI) at the place on the
whiteboard in the gunsight
(since the flyer is attracted to the focus, changing
the POI w i l l affect X and Y-axis motion; just point
the flashlight where you want to go!)



MB -- more negative Z-thrust (toward the whiteboard)

RB more positive Z-thrust (away from the whiteboard)

mouse X-axis right-left head rotation
(used to look around)

mouse Y-axis up-down head rotation

[Refer to the program listing for information on new additional keyboard codes.]
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PROGRESS REPORT

COGNITIVE AND PERCEPTUAL PRINCIPLES OF
WINDOW-BASED COMPUTER DIALOGUES

Our approach to understanding window-based computer dialogues has

two main thrusts: (1) work on the theory of human-computer interaction and (2)

exploratory programming of new techniques for graphics dialogues. In this

reporting period we were able to construct a system for displaying trees on a

simulated "whiteboard" in 3-D space using the project's "Dandelris" (Xerox

1109 DandeTiger Lisp machine linked to a Silicon Graphics Iris 1300 through an

ethernet). The tree application chosen was to display an organization chart.

The user was able to zoom into ia particular node or to "fly" along the surface of

the whiteboard. Several algorithms were tried for laying out the tree. It was

found that (1) the size of the nodes could not be simply scaled to the size of the

whiteboard because very skinny tall nodes would likely result for most

whiteboard shapes. (2) If the nodes were scaled so that they had reasonable

shapes and separations, then a chart of around a thousand nodes was

indistinguishable from a straight horizontal line when the user zoomed back. We

therefore tried displaying the nodes in fish-eye form, where the size of the node

depends on its distance from some designated focus node and on some

specified function for calculating the falloff of interest with distance. When this is

done, the user must wait some time before the system can redisplay the tree after

he has indicated a new point of focus. We therefore worked out ways to

"pulverize" the algorithm, that is to have the fish-eye layout be changed node by

node. The major difficulty with the resulting system is response time. An

analysis suggested that the problem was in the buffering on both sides of the



ethernet. At this point we upgraded to an Iris 2400 workstation, which had the

advantage of more graphics primitives.

For the new Iris 2400, we built the Dandelris II, rewriting the Lisp Iris IO

functions and adding over a hundred primitives to the Lisp side of the

connection. We also programmed a system to compile from the C language

version of the graphics primitives into Lisp. We reran our programs in this

version, but determined that response time in this version was actually lowered

by one graphic primitives Silicon Graphics had discarded from the new library.

Experiments with C versions of our existing code showed that very good

response was possible by breaking the system into an animator than runs in C

and a network program that runs in Lisp. This version of the system is called

Dandelris III. With the help of the C version, we developed a new "impulse flier"

that allows the user to zoom in much more rapidly to portions of the tree than was

previously possible. We are now implementing this system. We will then have

worked out an architecture for an interface building toolkit in the advanced

graphics area.

Along with this progress, various theoretical issues are becoming more

clear. Particularly interesting is the interaction between window/advanced

graphics interfaces and intelligent systems. Application systems can be

described by a dialect of Sheridan's supervisory control model we call the "triple

agent model." Different sorts of intelligent systems can be got by applying

intelligence to different parts of the model. The triple agent model makes it

particularly clear that there are many different ways for the user to interact

with an system, differing principally according to who approves whose work and

who can take the initiative when. This calls out issues of the control structure of



dialogues and we have begun thinking about how these relate to window

systems under the name of visual discourse studies.

It is clear that for very cognitive tasks such as the so-called "idea

processing"/ "idea-browsing" systems now beginning to be seriously

researched, advances in windowing techniques along the lines investigated in

this project will be important.

Describing the interaction with the user for a graphical user interface is

quite difficult. We have therefore analyzed several interface techniques into a

small catalogue preliminary to making formal descriptions of them and as an

experiment in how to describe these.

Following are a set of papers that elaborate in various ways the themes

listed above. In this period, several students worked on the project for varying

amounts of time: Michel Desmarais, Roy Nakashima, Lennart Lovstrand, and

Bruce Verner.



HUMAN FACTORS AND THE INTELLIGENT INTERFACE

Stuart K. Card
Xerox Palo Alto Research Center

3333 Coyote H i l l Koad, Palo Alto, California 94304

By now, the average technical conference-goer is used to seeing the term artificial

intelligence paired with just about anything. Whereever in the world there is a task that

involves the least amount of human thought, someone in that profession (or his boss) has

probably thought of applying artificial intelligence to it: Artificial Intelligence Applications

for Business (the title of a recent book), artificial intelligence and economics (a recent

sabbatical in our laboratory), artificial intelligence and library science, artificial intelligence

and nursing, artificial intelligence and franchise fast foods, artificial intelligence and human

factors. By now, none of these sounds particularly odd, we seem lightyears from the Lighthi l l

report with its skepticism whether AI would ever amount to much. Partly, I suspect, this is

because economical computing power has finally arrived at the point where there was about

to be a large expansion in the number of computer applications anyway, and artificial

intelligence, as used by some people, is really just another name for applications

programming in new domains. But in the case of artificial intelligence and human factors,

the relationship is really more profound. The most interesting case is where the two come

together in the human-computer interface. Here, the boundaries between them break down

so fundamentally that a new subdiscipline is emerging. The consequence, I think, is that

human factors itself as a discipl ine w i l l be permanently altered.

Human factors is concerned with influencing the design of machines so that they art-

better operated hy their human users. It began during World War II when substantial

advances in the technology of war equipment had resulted in equipment complex enough that

only if expl ic i t attention were given to the human would the equipment be usable. Kor

example, in order for a P-51 pilot to reach the lever that retracts the landing gear, he had to

put his head down so far in the cockpit that he could not see out the window. This was not a

good idea. The maneuver occurred very near the ground, and the resulting air crashes tended

to support the idea that more attention placed on understanding the details of the pilot's task

would be helpful to airplane design. The upshot of this and like-problems was a new

systematic consideration of what the human operator could see and operate. Ins t rument dials

began to be made more reliably legible, controls more reachable and less confusing,



procedures less error prone. Of course human factors has moved on since then. There are

guidelines for displays, there are workload analyses, there are systematic anthropometry

tables and computer-generated reach curves. All this is fine help for that original set of

human factors concerns that were essentially sensory-motor in nature. But much as that help

might be, when applied to current systems it just is not good enough. The technology of

machines has taken an even faster leap.

THE CHANGED NATURE OF THE MACHINE

The development of microchip technology has led directly to a set of changes in the

machines with which humans interact. Collectively, these changes define a qual i tat ive

difference between these machines and those of thirty years ago. The new machines have

greater functionality (they try to allow the user to do more things), they address tasks that

are more cognitive, they are more complex, and they are more interactive. Rach of these

characteristics makes more difficult the human, factors problem of designing machines

operable by their human users.

Increased functionality. The historical increase in machine functionality can be

dramatically illustrated for jet plane cockpits. Fig. 1 shows the number of cockpit controls per

crew member in U.S. fighter aircraft from World War I on. As can be seen, the increase is

roughly exponential. The same picture occurs if instead we consider the number of cockpit

displays (Fig. 2). In fact, the trend is close to universal . One could count buttons on food

processors, functions on digital watches, or modes on video tape recorders.

My favorite example comes from a talk given a few years ago at the Human Factors

Society annual meeting. A thermostat company was designing a new thermostat. During

the arab oil embargo, people had been encouraged to turn their thermostats down at night to

save energy. Soon there arrived on the market thermostats with two settings, one for day and

one for night. Of course, in many households all the members work during the day, and so

there is no need to heat the house then either. That led the company to consider another set of

settings for the work hours dur ing the day. But people only work five days a week, and so yet

another set of settings is required to dist inguish between the daytime settings on work days

and on weekends. In fact, by the t ime the company had finished designing its prototype it had

a microprocessor, a fu l l QWKRTY alphameric keyboard, an L K I ) display, and they wore

beginning to wonder if people would accept it as a thermostat (it could equally well have

passed for a wall-mounted word-processor).
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And that is only the thermostat. The same garden path of reasoning could almost equally

well apply to the refrigerator, the coffee pot, the can-opener, the microwave oven. Of course, it

has not escaped us at Xerox that the same evolution can be expected for office computer

systems.

More Cognitive Tasks. Comput ing systems are increasingly heing applied to tasks that

are more inherently cognitive in nature. Whereas a few years ago it was novel to apply

computers to "word processing," now systems are beginning to be applied to so-called "idea

processing." John Seeley Brown in my laboratory calls this the trend of moving from the

processing of form to the processing of content.

More Complex Applications. The applications we are now attempting to perform with the

aid of computers are just plain more complex than those attempted before, especially the

applications in daily life. The management of a flexible computer tutor, the automating of

office work, the computer-based flight of aircraft, are all very complicated things to do. It is

true that aircraft with complicated equipment on board have flown for years, but the way in

which aircraft systems were constructed was to produce information in isolation and to make

the pilot the integrating element in the system (National Research Council, 1982). Now we

are seeking to build systems in svhich the automation wi l l itself do part of the lower-level

decision making and users w i l l interact at a higher level with the system.

More Interactive. Bitmapped displays support a higher bandwidth of interaction between

the user and the system than the previous generation of alphanumeric displays. In the Xerox

Star system, the memory bandwidth is about 50 MHz. The entire screen is repainted out of

memory 39 times/sec. This would swamp most computer memories (Smith, Irby, and

Kimbal l , 1982). The earlier Xerox Alto bitmapped display, in fact, required 60% of the

machine processing. The consequence of providing high bandwidth to the user can be seen in

the high t ime-densi ty of user interaction we observe in laboratory videotapes of users. Those

higher rates of interaction are used to involve the machine more intimately in a cooperative

process. As a user moves the mouse, the node of a tree structure displayed on the screen may

also move, the links to other nodes turning and stretching so as to maintain the proper

connections. This mode of interaction contrasts quite sharply with the turn-taking of older

aphanumcric systems.

There is no obvious-extension of results that appear in any human factors text that I know

that would suffice for doing the human engineering of such systems. Advances in the human

engineering of the computing systems we are now building really require additions to the

discipline of human factors itself. It has been said that the most progress in science takes



place along the boundaries where one discipline meets another. Just as the combination of

engineering and psychological concepts laid the basis on which human factors was originally

founded, so too it now seems that the absorption of concepts from artificial intelligence,

intell igent computer-aided instruction, linguistic discourse theory, interactive computer

graphics, and general cognitive science are likely to help lay the basis for human-computer

interaction. In order to make this point more concretely, it is useful to examine the notion of

the "intelligent interface."

INTELLIGENT INTERFACES

The generic form of human-computer interaction is most evident in the case of an

embedded computer, such as a computer used to help control an aircraft. In such a system, the

potential for separating one part of the system that (partially autonomously) controls the

flight of the airplane and another part of the system that mainly handles the users' f l ight

displays and controls is easy to see. An abstract representation of such a system is

represented in Fig. 3 and wi l l be termed the Triple Agent Model. This model is a derivative of

Sheridan's "supervisory control" model (Sheridan, 1984). In the diagram, the computing

system comprises four parts: the user, a User Discourse Machine interacting with the user, a

Task Machine interacting with the task, and the task. In a system having embedded

computers, such as an airplane or an underwater robot, both the User Discourse Machine and

the Task Machine may be independent computers and may, in fact, be physically separate

from each other (e.g., Sheridan and Verplank, 1978). In a personal workstation computer,

both could be modules within the same machine. The drive wi th in computer science to

separate the code for a "user interface management system" from general application code

shows the movement toward the kind of logical separation implied in Fig. 3 (SIGGKAPII ,

1983). This model illustrates what Young (1984) has called the Third Law of Expert Systems

(he did not propose a First or Second Law):

Third Law of Expert System*. Kuery expert system has to contain knowledge about two

domains, (I) the xuhjt'.ct area of the expert system, and(2) how to communicate with the.

ttxer.



TASK TASK
MACHINE

USER
DISCOURSE
MACHINE

USER

Fig. 3. Triple Agent Model of Human-Computer Interaction. Control loops possible: (1) Task is
observed directly by human user. (2) Task is observed indirectly through sensors, computers, and
displays. This Task Machine feedback interacts with User Discourse Machine feedback. (3) Task is
controlled within Task Computer automatic mode. (4) Task is affected by the process of being
sensed. (5) Task affects actuators and in turn is affected. (6) Human user directly affects task. (7)
Human user affects task indirectly through controls, User Discourse Computer, and actuators. This
control interacts with that from the Task Computer. (8) Human user gets feedback from User
Discourse Machine. (9) Human user adjusts control parameters. (10) Human user adjusts display
parameters. (Inspired by Sheridan, Fischhoff, Posner, and Pew, 1983, Fig. 4-1.)



In fact, as illustrated in the Tr ip le Agent Model, the "Law" is much broader than Young

suggested and ought better be called the Third Law of Interactive Application Systems ( l i k e

Young, we leave the First and Second Laws until some other t ime):

Third Law of Interactive Application Systems. Every interactive application system

has to contain knowledge about two domains, (I) the subject area of the application

system, and (2) how to interact with the user.

The term application system is taken here very broadly. It includes not only the usual

applications of interactive computers (including expert systems applications) but also

continuous process control, vehicle control, and embedded systems containing any of these.

There are three agents in Fig. 3 (hence the model's name): two computational agents ( the

Task Machine and the User Discourse Machine) and the user. Each of these agents

potentially can have models of the other agents, including, conceivably, models of the other

agents' models (and their models of the other agents' models (and their models of . . . ) ) . The

existence of a well-developed User Discourse Machine for a system leads to the fo l lowing

observation:

Observation I. Human-computer interaction with a system having a developed

User Discourse Machine is less like the use ofa tool by a human than it is like the

conversation between intelligent agents.

A partial consequence of Observation I is that the potential control and data flows in Fig.

3 arc complicated and range all the way from a direct connection betwcn the user and the task

(the pilot looks out the window and moves the wing control surfaces manually); to subservient

interaction in which the machine proposes a course of action then asks the user for approval:

to complete automation where the Task Machine acts autonomously, taking action on its own

initiative and not informing the user (the lower level control loops for the stabilization of the

aircraft in advanced planes). Hither the computer or the user can act as slave to the other or

can act autonomously.

Sheridan and his colleagues (Sheridan and Ferrcll, 1967: Sheridan and Verplank, 1978;

Sheridan, Fischoff, Posner, and Pew, 1983, Sheridan, 1984) were led to a partit ioning of the

processing of operator feedback control loops between a task-oriented part and a user oriented

part by considerations of how lower-level control tasks could be autoinated leaving the



operator higher-level control tusks, hence their name "supervisory control" as opposed to

"manual control," the control paradigm it replaced. But we can come to similar conclusions

based on considerations of how computer code that interacts wi th the user is to he

modulari/.ed so as to obtain a neat separation from the application code, or based on how to

implement user interface management systems (SIGGKAPH, 1983; Hartson, Khr ich , and

Johnson, 1984).

We are now ready to observe an obvious, but still fundamental, fact about the application

of artificial intelligent techniques to application programs:

Ohseruation 2. Intelligence may he applied at different sites of the Triple Agent Model,

thereby resulting in different classes of intelligent systems.

Artificial intelligence can be applied to the Task Machine of the system, or it can be applied to

the User Discourse Machine both giving intelligent systems, but of very different sorts. And

within these main approaches, different techniques could be emphasized. One system might

play on its strength for knowledge representation, for example, whereas another might

concentrate on rules for discourse. The difference between intelligence in the Task Machine

and intelligence in the User Discourse Machine can be illustrated by the difference between

MYCIiV (Shortl iffe, 1974; Davis, Buchanan, and Shortliffe, 1977) and WKST (Burton and

Brown, 1982).

MYCIN: Example of an Intelligent Task Machine

M Y C I N is an example of an Al program where the major emphasis is on the Task

Machine. M Y C I N is an expert system developed to provide advice on the diagnosis and

treatment of infectious blood deseases. The program encodes expert knowledge as a set of

rules, such as

PREMISE: (SAND (SAME CNTXT GRAM GRAMNEG)

(SAME CNTXT MORPH ROD)

(SAME CNTXT AIR ANEROBIC))

ACTION: (CONCLUDE CNTXT IDENT 8ACTEROIOES TALLY .6).

which roughly translates into English as



If: 1) The stain of the organism is gram-negative, and

2)~he morphology of the organism is rod, and

3) the aerobicity of the organism is anerobic,

then: there is suggestive evidence (.6) that the identify of the organism is

baceteroides.

The program has no explicit model of medical knowledge. Reasoning is done by backward

chaining through its rules, eventual ly arriving at a diagnosis and suggested treatment. This

part of the program, the Task Machine in our terms, has been shown in formal evaluations to

perform at expert level ( Y u , Buchanan, Shortliffe, Wraith, Davis, Scott, and Cohen, 197.9a;

Yu, Pagan, Wraith, Clancey, Scott, Hannigan, Blum, Buchanan, and Cohen, 19796).

Since MYCIN has to communicate with physicians somehow and since it is important for

physicians to he able to understand how the program arrived at its conclusions, it also has a

User Discourse Machine portion that could, in addition to asking the user to supply it with

various laboratory and other data, respond to queries of why it had reached some conclusion.

For example, if the system said:

23) IS J. SMITH A COMPROMISED HOST?

the user could query,

'WHY

to which the system would reply

[3.0] THIS WILL AID IN DETERMINING WHETHER J. SMITH IS IMMUNOSUPPRESSED.

IF

[3.1] J. SMITH IS NOT A COMPROMISED HOST

THEN

IT IS DEFINITE (1.0) THAT J. SMITH IS NOT IMMUNOSUPPRESSED

[RULE343]



While this attempt at a User Discourse Machine was clever and did make it possible to

examine part of the machine's reasoning, there are severe l imits to what users could learn

about the machine's reasoning that now have become clear in retrospect (Clancy, 1983, Young

1984). For example, the machine can not justify its rules or explain why it considers some

hypotheses before others. But the main point for our present concern is that MYCI.V is an

example of a system where the main effort at intelligence is directed at the Task Machine

portion of the system.

WEST: Example of an Intelligent User Discourse Machine

By contrast, in WEST, the main effort at intelligence is directed at the User Discourse

Machine portion of the program and relatively little at the Task Machine. WEST is designed

to help children practice arithmetic. The program displays a route between two cities (see

Fig. 4). On each turn, the program spins three spinners, generating three numbers for a

player. The player can combine these numbers using parentheses and the four arithmetic

operators. Because there are shortcuts and bonuses for landing exactly on intervening towns,

it is often advantageous for the player to combine the digits he spins so as to make a shorter

move than the m a x i m u m obtainable number. As part of the User Discourse Machine, from

time to t ime, a "coach" pops up and gives unsolicited advice on strategy, or the player may

himself request a hint . For example, the coach might say:

Perhaps you have forgotten that it's OK to rearrange the numbers. You could get to

be really good if you tried using other orderings. One good example would be the

expression: (2*4) + 1, which would have resulted in a TOWN! YOU would have

ended up at 70 with the COMPUTER finishing up the turn at 54.

Would you like to take your turn over?

= > YES NO

The User Discourse Machine for WEST addresses the problems of (1) when to break into the

game to offer advice and (2) what to say. To do this it uses an "Issues and Examples"

paradigm. Issues are characterizations of where the user is weak. Examples are possible

moves that could be made on a particular turn . The program accumulates evidence from the

8



Sl«v«MClit turn
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Your mow '2*1+ 2
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Town 20 21 22 23 24 25 26

39 38 37 36 35 34 33 32 31 30 Town

Town 40 41 42 43 44 45 46 47 48

L L I I I ^Vl I

56 55 54 53 52 51 50 Town

Town 60 61 62 63 64 65 66 67 68 69

Fig. 4. Game display for WEST. (Burton and Brown, 1982, Fig. 2.) The gamboard above shows two
tokens moving along a number line from starting to ending towns. If the player lands on the
beginning of a shortcut, his token is advanced to the end of the shortcut. If the player lands on a
town, his token is advanced to the next town.



player's behavior over several turns for which issues characterize his weaknesses. It decides

when to break in and gives advice to the user based on which issues it has evidence for and

what opportunities for making dramatic points about these issues are presented by the

possible moves the current tu rn provides as examples. If, on previous turns, the player has

rather consistently missed short cuts to his disadvantage, then SHORTCUTS becomes an issue. If

later, the player has the opportunity to beat the computer by taking a shortcut, but fails to see

it, the machine seizes on this example as an excellent and memorable opportunity for

coaching the player about shortcuts.

The issues in WEST are elements of the ski l ls required for playing the game, such as

SHORTCUTS, PARENTHESES, SUBTRACTION, etc. On each turn, recognizers for each issue examine the

player's move to see whether the student could have gotten a better score if he had used the

tactic associated with the issue. As a result of these recognizers, the system tallies statistics

in its model of the student (Fig. 5). Evaluator routines work on the student model to decide on

which issues the system can determine that the student is weak (the evidence on a particular

issue may be inconclusive at a given time). Given the issues on which the student can be

shown to be weak and given the possible moves available on a given turn as examples, the

system proceeds according to a number of principles (Burton and Brown, 1982):

Principle I. liefore giving advice, he sure the Issue used is one in which the student in weak.

Principle 2. When illustrating an Issue, only use an Kxample Ian alternative move) in

which the result or outcome of that move is dramatically superior to the move

made by the student.

Principle^]. After giving the student advice, permit him to incorporate the Issue

immediately hy allowing him to repeat his turn.

Principle 4. If a student is about to lose, interrupt and tutor him only with moves that will

keep him from losing.

Principle 5. Do not tutor on two consecutive moves, no matter what.

Principle 6. Do not tutor before the student has had a chance to discover the game for

himself.

Principle 7. Do not provide only criticism when the Tutor breaks in! If the student makes

an exceptional move, identify why it is good and congratulate h im.

Principle tf. After giving advice to the student, offer him a chance to retake his turn, but do

not force him to.

Principle 9. Always have the Computer Kxpert play an optimal game.
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Fig. 5. WEST Model of Student.



Principle 10. If the student asks for kelp, prouide several leuels of hints.

Principle 11. If the student in losing consistently, adjust the level of play.

Principle 12. If the. student makes a potentially careless error, be forgiving. But prouide.

explicit commentary in case it was not just careless.

WEST thus represents the invention of a considerable amount of mechanism in the service of

the User Discourse Machine: conversational turn-taking (when it should hreak in),

explanation, diagnosis from user behavior of the state of user knowledge, and even user

motivation and emotions. By contrast the Task Machine (computing the best move on each

turn) is relatively straight forward.

The application of intelligence to the User Discourse Machine is my provisional choice for

what we mean by an intelligent interface. Such systems can come in a variety of forms:

intelligent front-ends to powerful, but hard to use, applications programs; advisor programs:

coaching programs; programs that allow natural language interaction. Whatever the exact

form, the clear intent of all such applications of AI to the User Discourse Machine is to make

systems easier for people to use, largely by attempting to deal with the cognitive or l inguistic

content of the communication task with AI tools. But making machines easier to use lies in

the center of human factors as a discipline, as well . For this reason, progress on the AI end

wil l not leave human factors unchanged. Either human factors wi l l absorb into itself the

concepts from AI that make interactive machines more possible, or it wi l l cease to be the

major discipline concerned with this area, or, an interesting possibility, there w i l l emerge a

new subdiscipline of human-computer interaction at the intersection of the several disciplines

with potent contr ibut ions to make in this area. This latter is an attractive possibility because

there are other disciplines whose recent results are also important: Interactive computer

graphics is concerned with algorithms underlying graphics interfaces, computer science itself

is concerned with developing "user management dialogue systems," linguistic discourse

analysis is concerned with conceptual analyses of conversational interaction.

PROBLEMS OF THE INTELLIGENT INTERFACE

It must be said that the design of intel l igent interfaces is difficult and not well

understood. We have said that instead of t h i n k i n g of a human operating a machine, it is now

appropriate to t h i n k of communication between inte l l igent agents. This means the machine
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no longer does necessarily what it is told to do, but what it thinks the user's intention is, or

even what it thinks ought to be done if it knows the user's intention is otherwise. 1 have

stressed the impact of developments in artificial intelligence and intel l igent tutoring systems

may have on human factors. Young (1984) has made the other side of the case, arguing that

interactive AI programs need to pay more attention to the human factors of their interfaces.

These two arguments are not incompatible. As we have seen, it is possible to build AI systems

that concentrate on the Task Machine giving l i t t le attention to the human interaction. I w i l l

now argue that there are st i l l a considerable number of problems to overcome in the

technology of constructing intelligent interfaces. These problems are important l imi ters of

what presently can be done. Work on them forms part of the research agenda for human-

computer interaction. Three examples are: the role problem, the automation problem, and

the communication problem.

The Role Problem. Young (1984) has pointed out that an expert system can be designed to

function in a number of roles vis-a-vis the user. For example, he points out that M Y C I N is

strongly committed to being the partner who actually makes the decisions. This choice of role

may influence the acceptance of the program by users quite independently of the programs

actual performance expertise. WKST explici t ly adopts the role of coach; in fact, the research

question for WKST is rea l ly , how can the role of coach be modeled and implemented in a

machine? The question of role is related to the question of persona. How should the system

present itself? Should it have the persona of a person or a tool or an environment? M Y C I N

and WEST both try to establish personae as artificial people. MYCIN' uses natural language

dialogue and a heavy dose of medical mannerisms to establish the persona of a consulting

physician. WEST uses a small cartoon picture and breezy English dialogue to establish the

persona of an athlet ic coach.

The Automation Problem. There is a long history of problems that have arisen under the

name of automation (National Research Council, 1951; National Research Council , 1982),

especially in connection with the automation of aircraft control systems, since it was in this

area that systems of limited intelligence first occurred. The problem is often stated in the

form of, which tasks should the human do, and which the machine? As automation work

spread to underwater robots and teleoperation, similar sets of problems began to be studied

under the term "supervisory control." In the case of intel l igent tu tor ing systems, AI expert

systems, and even the general human-computer interface, we again see a fami l iar set of

problems arising, this time in the context of discrete symbolic systems. The possibilities

inherent in the combinations of control loops in Fig. 3 result in a fair-si/.ed design space of

11



automation alternatives. This space has much more structure than the simple d iv is ion into

machine-initiative, user-init iative, and mixed-initiative categories (Carbonell , 1970). One

set of possibilities identified by Sheridan and Verplank (1978) is given in Fig. 6. The list runs

the gamut from direct control by the human (corresponding to paths I and 6 in Fig. 3), to

complete control by the machine (path 3 in Fig. 3), to some of the many combinations of other

paths.

The list serves to indicate how complex the possibilities are. In fact, even more

possibilities are possible that are not on the list: The words human and computer can be

reversed. WEST presents still another possibility, the human selects the option, but the

computer gives advice if a sample of the user's decisions suggest it is needed. ( M Y C I N is'an

example of option 4 above, the computer selects the action and the human may or may not do

it.) If we distinguish the computer (or human) explaining why it did something from mere

telling that it did it. we have yet another set of possibilities. This puts us beyond the older

form of the automation question, which tasks should the human do and which the machine?

and into the much more complex consideration of how should they cooperate? The question is

not dissimilar from the question of how can humans be organized to cooperate on a task?

The Communications Problem. It is not surprising that many issues of the intel l igent

interface end up under the category of commications problems. First, there is the issue of

trying to find a framework of interacting with the user that is open, but natural and

predictable. This desire leads naturally to attempts to apply and generalize l inguis t ic

discourse theory so that it applies to computer interfaces. For example, Grice (1975) has put

forward the notion that human conversation takes place in a number of "conversational

moves," each taking the conversation to a new state in the discourse. Grice formulates a

number of maxims and defines inappropriate conversational moves as moves that violate

these maxims. Keichman-Adar (1984) has taken this approach fur ther and attempted to

describe, using an augmented transition-state network, a way in which conversational moves

may be mechani/.ed. Such discourse notions as conversational focus; control of tu rn - tak ing ;

opening, narrowing, and closing a conversational context; time scale; and deictic (po in t ing)

reference need to be examined in the context of computer-based dialogue.

Second, there needs to he more work on modeling the dynamic, communicat ion- induced,

changes in the user. In order to carry on an inte l l igent conversation wi th the user the system

must be able to diagnose in an approximate way the user's state of knowledge about the topic

of conversation (WKST spends considerable effort a t t empt ing to do th is ) and the system must

contain the implementation of a theory of explanation.

12



TA8E? IS
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1. Human does the whole job
up to the point of turning it
over to the computer to
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2. -Computer helps by
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3. Computer helps determine
options and suggests one.
which human need not
follow.

4. Computer selects action and
human may or may not do
it.

5. Computer selects action and
implements it if human
approves.

6. Computer selects action.
informs human in plenty of
time to stop it.

7. Computer does whole job
and necessarily tells human
what it did.

8. Computer does whole job
and tells human what it did
only if human asks.
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and tells human what it did
if it decides it should tell.
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should be told.
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Fig. 6. Alternative levels of automation possible in human-computer dialogue. (Redrawn from
Sheridan and Verplank, 1978)



Third, the way in which communication with the user interacts with the constant visual

presentations available to him needs to be better understood. The graphics display allows the

system to make ̂ conceptual model compelling to the user and to give memory support for the

components of that conceptual model. Furthermore, the user can specify by point ing or

gesture things to the system that would otherwise be di f f icul t to express.

HUMAN FACTORS AND ARTIFICIAL INTELLIGENCE

Communications with future systems wi l l surely be more subtle than with today's

systems. Mouse-pointings, gestures, command buttons, typed commands, voice, voice

intonations, and eye gaze are all input modes wi th in the current state-of-the-art.

Explanation, diagnosis, and negotiated information retrieval are some of the modes of

interaction desired. The human engineering of these systems wil l only be possible by

collecting the results from sciences outside the traditional sphere of human factors.

Both human factors and artificial intelligence have disciplinary interests in human-

computer interaction. In artificial intelligence this interest has been expressed in work on

the inte l l igent interface. Theoretical work in the related disciplines of intel l igent computer-

aided instruction, computer graphics, discourse linguistics, cognitive psychology, and

computer science also look relevant.

Just as the combination of engineering and psychological concepts laid the basis on which

human factors was original ly founded, it may now be appropriate to attempt to lay a new base

for human-computer interaction based on these cognitive and computer sciences above. This

could be done wi th in the human factors discipline, but it could also occur largely outside of it,

in a new subdiscipline of human-computer interaction. Whichever is the final choice, AI and

the intel l igent interface are sure to have permanent affects on human factors as a field of

study.
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INTRODUCTION

The technology of bit-mapped graphics and mouse pointing devices has made possible the

development of a mode of interaction which is clearly different from interfaces based on

teletypewriter technology. This new interaction style relies heavily on the use of graphic symbols

such as icons, metaphors such as windows, and command selection by pointing at menus.

Recently, the public's acceptance of the Apple Macintosh personal computer has made it clear

that this new style of user-interface design is becoming more universally accepted (MarkofT, 1984).

Systems based on this style have been in use at PARC since 1974. Many years of independent

development has resulted in a surprising amount of diversity among them. New systems are

continually being developed through a combination of innovation and the borrowing and

adapting of ideas from existing systems.

Designers of new user interfaces face several problems, mostly related to communication. One of

these problems is maintaining an awareness of what has already been designed. Ignorance of

existing design solutions can result in wasted effort in "reinventing the wheel". Deviations from

existing conventions can create compatibility problems with other systems. On the other hand,

exposure to the work of other designers can act as a stimulus to creativity.

The second problem is that designers need to be able to communicate the stylistic aspects of a

proposed user interface design without having to implement it on a live system. There are several

reasons why this is useful. During the early stages of a project, it is desirable to generate and

evaluate a large number of designs economically. The generation of a large quantity of

preliminary design ideas increases the probability that a good idea will be found. The

performance of at least preliminary evaluation of ideas or concepts before implementing them can

reduce the amount of effort wasted pursuing inappropriate design directions. Once an idea or

concept has passed preliminary evaluation, they must be communicated to programmers for

implementation. All the stylistic, interactive aspects of the design must be described completely,

yet concisely. After a system has been implemented, designers may want to document what has

been done. Documentation specialists may wish to describe the operational aspects of the

implemented system to novice users. Clearly, a method of efficiently communicating the stylistic

aspects of user interface designs would be valuable to many computer professionals.



The third problem is that there does not yet exist a comprehensive, generic vocabulary of user

interface techniques. Because of this, it is difficult for system designers from different companies

or backgrounds to converse or discuss user interfaces without having to refer to specific products.

It is hoped that, by cataloguing the many techniques which have been employed to date and

determining a taxonomy for these techniques, we can move one step closer to the development of

a generic vocabulary. Other possible benefits of such a taxonomy include the development of a

methodology for selecting the best interaction technique for a given application and a directed

exploration of the design spaces which are found to be underrepresented in the taxonomy.

This document contains a partial catalogue of interactive graphic techniques presently used to

implement user interfaces in a variety of commercial and research computer systems, including

Interlisp-D, Star, Smalltalk, Cedar and Apple Macintosh. It combines text and graphics in an

innovative way to provide an effective means of communicating the interactive, stylistic aspects of

window system designs, both existing and proposed. It has also proven to be a useful tool for

documenting user/computer dialogues for further study by interaction languate analysis.

The catalogue was compiled during the summer of 1984 while the author was employed as a

summer research intern at Xerox Palo Alto Research Center. It is by no means complete and is

intended mainly as a demonstration of an effective communication and documentation

methodology. The author wishes to thank Stuart Card and Bill Verplank for their guidance and

the initial idea of writing this document



DESCRIPTION OF THE CATALOGUE

Organization

The catalogue was organized around relatively high level goals such as "copying a document" or

"moving an icon" because it was felt that the quality of the user interface is determined more by

the way in which elemental acts combine to form a command sequence than by the elemental acts

themselves. The approach was taken that the best user interfaces are designed so that the sequence

of events or actions required to specify a particular command form a gestalt which enables the user

to fuse them into a single act

Presentation

The catalogue has both graphic and written content. Although it is obvious that graphic content is

necessary to communicate the graphic quality of an interface, supplementary written explanations

are also required to keep the overall format as concise and economical as possible. A picture is not

always worth a thousand words and it is sometimes easier to communicate a message with words

than with pictures.

The catalogue shows both sides of the human/computer dialogue. The idea of conversational

interaction with computers has been around for some time (Nickerson, 1981). In order to

accurately depict and evaluate the quality of this collaboration, it must be possible to show with

equal clarity and detail the actions and responses of both the user and the computer.

Grain of Analysis

The temporal grain of analysis was selected to match the experiences of the user. Each command

sequence was broken down into a number of sequential frames, similar to those used in comic

books or cinematographic story boards. One frame was provided for each distinct visual event

experienced by the user. E.g., if two visual events occur so close together in time that they are

perceived to occur simultaneously, then both of these events are depicted in a single frame.



The spatial grain of analysis was selected to match the visual characteristics of the user. It was

assumed that the user's attention would be focussed on a relatively small portion of the screen,

therefore in most cases only a fragment of the screen is depicted in each frame. Judgements

regarding frame content were based purely on the subjective experiences of the author. For

example, when describing the operation of the Star system, the function key pad is shown each

time a function key must be pressed because the author never acquired enough proficiency with

the system to memorize the position of the keys and manipulate them by touch, whereas the

mouse is not shown each time a mouse button is pressed because the author never felt the need to

look at the mouse.

The narrative content of the each of the frames is numbered to correspond to the exchange of

conversational control between user and computer. Each numbered narrative segment describes

the events which take place during one complete exchange of conversational control. Each

narrative segment begins with a decision or task to be performed by the user and ends with the

response provided by the system. The narrative segment begins at the point in time just after

conversational control has been transferred from computer to user, includes the events proceeding

and following the transfer of control back to the computer and ends at the moment the computer

relinquishes control again.

As might be expected, there are a few exceptions to the rules described above. In order to

accurately depict the subtleties of mouse techniques, it was necessary to choose a finer grain of

temporal analysis during mouse buttoning activities. Although most users experience the clicking

of the mouse button as a single event, in some cases it was necessary to illustrate this action with

two frames in order to show events occurring while the button was being held down. Occasionally

it was necessary to provide separate frames for visual events which occurred simultaneously, but

were spatially separated. This can be justified by considering that only one of them is in the user's

field of view and is obviously perceived first. The other is seen only when the user shifts his gaze

and is therefore perceived as temporally separated from the first visual event, even though the two

events occurred simultaneously. When this type of situation is presented to the user, it is depicted

using two frames instead of just one. During cursor positioning tasks, the user is obtaining

essentially continuous feedback from the computer throughout the performance of the task.

Strictly speaking, there are hundreds of interactions occurring between user and computer.

However, in order to keep task descriptions as concise as possible, and because it can be argued

that the task is experienced as a single event, throughout this catalogue, cursor positioning tasks

are illustrated with a single frame.



NOTES

1. Because of problems of compatibility of screen graphics data between the many different

computer systems, it was decided that traditional graphic design techniques would be the

most efficient way to generate this document (as opposed to more advanced electronic

publishing methods). These include the creation of original artwork by hand, the use of

variable reduction photocopiers to produce repetitive images of the required size,

modification of photocopied images by hand to save time using opaque white paint and

black felt tip markers, cutting and pasting photocopied images.

On the other hand, it was found that the use of hardcopied bitmap representations can

greatly speed up the process of screen depiction, especially when the images are repetitive or

finely detailed such as pop-up menus, reverse video images, or window contents. If

possible, hardcopy bitmaps should be printed at larger than full scale, since most of the

frames are depict screen images at greater than full scale and because reducing photocopiers

are easier to get access to than enlarging photocopiers.

2. Commercially available dry transfer media such as "Zip-a-tone" should be used to render

"gray" textures used in backgrounds or scroll bars. Hardcopy of the actual bitmap used for

the texture can also be used. Gray felt tip markers are not recommended for this purpose

since they do not reproduce well.

3. When composing frames, the same care and principles should be followed as in composing

a painting or photograph. Whenever possible, contextual cues should be included in the

frame to provide the observer with some sense of the scale and screen location of the

depicted view. The cursor and the edge of the screen are examples of good contextual cues.

4. Although the technique used in this catalogue is an effective means of communicating the

interactive and graphic aspects of direct manipulation window systems, it has the

disadvantages of being time consuming and requiring a certain amount of artistic skill.

Clearly, a more efficient, "short-hand" version of this methodology would be useful to

computer professionals as a quick and informal way of recording observations of

user/computer interactions.

One example of how this might be accomplished is shown in Appendix A. In this example,



provided by Stuart Card, a keystroke model is used to record interactions between user and

computer. Once the interactions have been reduced to this form, they can be further

studied using interaction language analysis. These analyses allow researchers to make more

meaningful comparisons between window systems and may lead to new insights into the

nature of interaction languages.

These notations can be generated either by direct observation of a user or from inspection of

the diagrammatic representations of user/computer interactions contained in this catalogue.

In the example, P refers to a cursor positioning task, K refers to a keystroke, M3 refers to

the third mouse button.
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WINDOW DESIGNS
84.0816 S. Card

(USER)

1. Op an V/indow 4:

Star:
P[ icon]
K[M3]
K[OPEN]

Mac intosh:
jcon]
Ml

(ra)

Lisp:
P[icon]
KD[M3]
P2[Expand]
KU[M3]

--or--

P[icon]
K[M2]

(SYSTEM)

Expand Icon)

Cursor arrow follows mouse,
Icon reverse video.
Icon turns into hole;
Cursor «- Hourglass;
Empty window appears
Cursor <- Normal arrow;
Window f i l l s

Cursor arrow follows mouse.
Icon reverse video.
Icon turns dark gray;
Copy of icon outline shrinks to dot as it moves to
center;
Dot expands to window.

Cursor arrow follows mouse.
Menu pops up.
Reverse video bar follows mouse
Window appears.

Cursor arrow follows mouse,
Menu expands.

2. Close Window ( = Shrink to Icon)

Star:
PfCLOSE]
K[M1]

Lisp:
P[wi ndow]
KD[M3]
P2[Shrink]
KU[M3]

Cursor arrow follows
"CLOSE" box reverses
Cursor «- Hourglass;
Titlebox shrinks;
Window disappears and

mouse.
video;

icon outline fi l l s

Curor arrow follows mouse.
Menu pops up.
Reverse video bar follows mouse,
Window disappears;
Icon appears.

3. Move window.

Star:

EFl!5q]
K[MOVE]

P3[loc]
KO[M1]
KU[M1]

Curor arrow follows mouse.
Irsq box *- reverse video.
Instruction message appears in message wi
1 rwq box <- normal video;
Cursor «- arrov; with box;
Cursor boxarrow follows mouse.
Bottom of box dotted l i n e follows mouse.
Cursor <- hourglass;
Bottom of box reappears in new position;

ndow



Macintosh:
?

Cursor *-
1rsq box

arrow;
«- reverse video (to indicate selected)

Lisp:
P[window] Curor arrow follows mouse.
KD[M3] Menu pops up.
P2[Move] Reverse video bar follows mouse.
KU[M3] Cursor «- Square;

Dotted window outline appears;
P3[loc] Dotted l i n e box follows movement of cursor.
KD[M1] Cursor *- Crosshair,.
KL)[M1J F u l l window appears in outine;

Cursor *- Arrow.

4. Adjust size of window.

Star:
"Irsq]
•Ml]
>10VE]

P3[loc]
KD[M1]
KU[M1]

Lisp:
Pfwindow]
KD[M3]
P2[Shape]
KU[M3]

Curor arrow follows mouse.
Irsq box «- reverse video.
Instruction message appears
1 rwq box «- normal video;
Cursor
Cursor
Bottom
Cursor

in message window;

*- arrow with box;
boxarrow follows mouse,
of box dotted line follows mouse

hourglass;
Bottom of box reappears
Cursor *• arrow;

in new position;

P3
KD
P3
KU

[loc]
'Ml]
hloc]
"Ml]

Irsq box <- reverse video (to indicate selected)

Cursor arrow follows mouse.
Menu pops up.
Reverse video bar follows mouse.
Cursor <- Arrow and pointything;
Smal1'dotted rectangle outline appears;
Dotted l i n e box follows movement of cursor.
Cursor *- LRCorner.
LR Rectangle corner follows mouse.
Blank window appears, size of rectangle
Window fills in;
Cursor «- Arrow.

-- Alte r n a t i v e to last action --

KD
KU
P3
KD
KU
P3
KU

M3] Cursor «- Tongs.
Ml] Cursor *• Open tongs.
locj Tongs follow mouse.
Ml]
M3] Cursor «- UL corner.
loc] UL corner of box follows mouse.
Ml] Blank window appears, size of rectangle

Window fi11s in;
Cursor *- Arrow.

Maci ntosh:
P[lrsq]
KDfMl]
P3[loc]
KU[M1]

Curor arrow follows mouse.
Dotted l i n e appears on bottom and right side.
Dottttd bottom and right follow mouse.
Bottom and right side of window fram disappears
and reappers in new position.



Layout 4: The Fisheye View - A Short Description
By: Lennart Lovstrand
Filed in: {Phylum}<Lovstrand>Chait>Layout4.tedit
Date: 24-Ju!-8515:47:30

The Layout 4 displays an IDN tree in a fisheye view. It scales all nodes according to their distance from a
chosen point or level of focus, keeping the proportions of each node's box constant. In order to closer
describe how the scaling is performed, a piece of mathematical framework is needed. Assume a world
concisting of a two-dimensional plane where a tree is being displayed as a collection of rectangles and
connecting lines. Besides its "natural" vertical order ranging from root to leaf, it is also considered to have a
horizontal order - here represented by branch numbers - ranging from a node's leftmost branch to its
rightmost. We are now ready to define our basic entities:

A branch number is a non-negative integer, representing the n* leftmost branch relative to some node in the
tree, with 0 denoting the far leftmost branch on each level.

A node position is a sequence of branch numbers, representing a specific node in the tree. The node is found
by walking along each of the branches relative to the root of the tree, with the empty sequence denoting
the root of the tree.

The level of a node position is the length of its sequence, with 0 denoting the root level.
Finally, we need the function least upper bound (lub) of two nodes, which have the normal meaning of

denoting the closest node that is "above or equal" to both of them.

This framework lets us to continue by defining something more useful, such as the walking distance (d^) from
one node to another, informally described as the number of levels to pass in going from one of the nodes via
the level bcneith their lub to the other node. We also want the branching distance (d^), which is the absolute
difference between the two node's branch numbers relative to their lub:

d^Ka, b) - level(lub(a, £))-!- level(a) + level(lub(a, b)) - 1 - level(b)\

d£a, b) = | branch(lub(a, b), d) - branch(lub(a, b\ b)\

In Layout 4, the sizes of the displayed boxes have been calculated as sv
d» * Shdb, i.e. the vertical scaling factor

(i>) raised to the power of the walking distance (dw) multiplied by the horizontal scaling factor (sh) raised to
the branching distance (<4); all measured from the focus to each of the nodes. This formula makes nodes
appear exponentially smaller the further they are away from the focus. A small example might give a better
idea of what is being performed:

"P..dnrari
a

Fig. 1: Normal Layout

Figure 1 shows an "normally" formatted tree, where each node is scaled to half of it's parents six.c (scaling
factors being s/,=0.7, sy=0.5; the /in the figure markcs the focus; nodes a and b arc for future reference).
The view was actually produced using Layout 4 with the FOCUS property set to 0 (the root). Now we
continue to something more spectacular in figure 2.



9 Si

in Focus)
Fig. 2: Fisheye Layout (Subtree

Here, the point of focus have been set to (1 1), but with no change in scaling factors. [Remember: Branch numbers
start with zero.] The walking distance between the focus and node a (path being boldfaced) is 0 (/"lies on the
level under their lub)+l (a is one level further down), while the branching distance is 3 (a's branch is three
branches away from /s branch). This makes the ratio between the size of the node in focus and the size of
node a be 0.50+1 * 0.73 = 0.1715. Node 6's size is similarily calculated as 0.51+1 * 0.71 = 0.175, making it
appear about same the size of node a. Using Layout 4, one may also select a complete Ivel of the tree as focus
by setting the FFOCUS property to a single number instead of a list (mathematically by keeping the branching
distance constant at 0). Previously this was done to produce the "normal" kind of view in figure 1; now we set
it to a couple of levels further down the tree, giving a resulting view that in like figure 3.

: a b c5~
Boa

b cb * b
Fig. 3: Fisheye Layout (Level in Focus)

Here, the focus has been set to level 2, while still keeping the scaling factors to their original values. Usually,
this method does not give a very good display unless it is applied to a level with a modest amount of nodes.

It is also possible to change the view by adjusting the horizontal and vertical scaling factors. If you, for
example, would like to «cmphasize» the path from the root to the focus while almost ignoring the
surrounding nodes, setting sh to a high value (close to one) and sv to a low (round zero) will «accomplish»
something like this. Following arc a couple of different samples produced using Layout 4 with the differing
parameters attached to each figure. They are all produced using the O R G . F A K E . A . C H A R T function of
O R G - C H A R T with the parameters max node count set to 80, average branching factor set to 3, and substructure
probability set to 0.8).

P.
rrflt yTlBBB no ODD a a OaaOtt on a aatt a aauaa dODb aaauatt no aatfaa

Fig.4a:/=0;sA=0.7:v=0.5

? A OVwtn ffnott UDDaDB

Fig. 4b: /=(2 0); sh=0.1; sv=0.5

C -



cb'i
Fig. 4c: /=(000): 5A=0.7; i,=0.5

Fig. 4d: /=(000): 5A=0.3; ^=0.8

a
6

aaaa

Fig. 4e: /=(0 3 2); 5A=0.3; i,=

t 0 . ^ " 0 ^
a

Fig. 4f: /=(0 3 2); s),=0.8; Jv=o.3

The Properties



Layout 4, as well as the other layouts of ORG-CHART, is driven by network properties, put on the root. The
most interesting ones are the following:

Name
PCT.BORDER.SPACE
HORIZONTAL.SCALING.FACTOR 0.5
VERTICAL.SCALING.FACTOR
BOX.HEIGHT/BOX.WIDTH.RATIO 0.67
SIBLING.SPACE/BOX.WIDTH.RATIO
FAMILY.SPACE/BOX.WIDTH.RATIO
FOCUS
focus

«motivationcr, applikationcr?»
«mer volym»
«perhaps including multiple focuses»

Dfllval Description

0.1 same as Layout 3
see above
0. 7 see above
same as Layout 3
0. 5 same as Layout 3
1. 0 same as Layout 3
0 the node (LISTP) or level (SMALLP) of




