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The plan of this report on our knowledge of

galactic cosmic-ray composition as it stands after the La

Jolla Conference (August 1985) may seem somewhat odd to
the reader. This is why I felt it prudent to give an

explicit table of contents, which might help him to find
his way in this maze.

In Part I, I Just highlight various key new ob-
servations brought up at the conference. In Part II, I

specify what I think we know on the cosmic-ray elemental

composition at the sources, and on its correlation with
first ionization potential (FIP). In P_rt III, the most

important in my view, I discuss the various areas where
the correlation with FIP is, really or apparently, insuf-

ficient to explain the data as they stand. The isotopic
anomalies will be discussed in this context. It might
also sound a bit bizarre to the reader to find the entire

problem of cosmic ray propagation (compositional aspects)

treated as kind of a long parenthesis in the discussion
of the source abundance _f Nitrogen i In Part IV, I summa-
rize the situation and make recommendations on key points
for future work.
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PARTI

HIGHLIGHTOF KEYNEWOBSERVATIONS

I-1. ABUNDANCEOF SUB-IRONNUCLEIUP TO 200 GeV/n

It has been known since Juliusson's (1974) first study that

the abundance ratios of secondary to primary nuclei decrease with energy
between % 2 and at least % 30 GeV/n. But there was as yet no unambi-

guous evidence that this trend was continued beyond _ 30 GeV/n (e.g.
Webber 1983a; Garcla-Munoz et al., 1984; Juliusson et al., 1983). Taking
advantage of the relativistic rise of ionization chambers to resolve high

energies, the HEAO 3 Heavy Nuclei Experiment (HEAO-C3) team has shown
that the purely secondary/prlmary ratios in the Fe region definitely con-
tinue to decrease, at roughly the same rate, up to at least 200 GeV/n

(Jones et al. _, 28; fig. i) i.

The approximate constancy of the primary/primary Ni/Fe ratio in

fig. I shows that the data are not affected by any large systematic bias.
As regards Ar and Ca, both the secondary and the primary component are

significant. Accordingly, the Ar/Fe and Ca/Fe ratios decrease with
energy, but less steeply than the purely secondary/prlmary ratios.

Beyond % 200 GeV/n the observed ratios are however strange, with an appa-
rent trend to rise again. The authors are very prudent as regards these
highest energy points, which Just represent the present state of their
data analysis. It must however be noted that a preliminary analysis of

balloon gas Cerenkov data by the Goddard group also suggests an increase
of sub-Fe/Fe ratios somewhere beyond % I00 GeV/n (Balasubrahmanyan et

al. 2, 44). But here also the authors are prudent (and their Cr does
not fit well into the picture) l

In principle, composition observations reaching energies where
the secondary component is much reduced can yield most accurate values

for the source abundances. Based on the data up to % 200 GeV/n, Jones et

al. (_, 28) have indeed derived estimates of the primary Ar/Fe and Ca/Fe
ratios, corresponding to source ratios Ar/Fe _ 0.023 ± 0.003 and Ca/Fe

0.085 ± 0.004 (fig. I) (these source ratios are % 12 and 10% lower than

the surviving primary ratios given by the authors). I feel however that
these estimates cannot be considered really solid as long as the highest
energy points puzzle is not solved, one way or another.

1 Throughout this report, the papers presented at the La Jolla Conference will be
quoted directly by their volume and page number in the proceedings. They are not
listed at the end of the paper.



145

200GeV/imu 200r'eV/amu

" ' " ' ' ' ' ' ' 'Ar'P:S/
",,, t

q'bNI I '4 t

" ._ "r]-IO.

' I i, .... .ti..t. T l
. i I i

_- _- _:-PI ] high _nez_y, as measured by the

O'TIIII I 0.2Q" r,.,,....,.,ep¢_, 1 HEAO-C3 team., together _$h theI# *, [ Sower energy rat4o8 from the
* 'l,, .,o_ ,,AO--C,team (from gonee et el.o. I 0 s=,,c,,,_,,t. 2, 28 ; ]44. slightly adapted).

o.o . ., , _ !l. oo'[ , ,, , ., ; , 1 -Eef¢ ool_enn :purely seoonda_/
pr_nax.d rat4os. R4_3ht ool_,n :

0.2( ' " " I Ni/Fe = pr4mul_/pr_mu2_ Patio 1
',,: • I ' ' TiS # ENGELHANNof at (1983) Ar.C_Fe -- mizsd _zt_o8. Also

"" F-e'P I HEAO-C2

O.K_ .,,, J JONESet at (2,28) plotted are the author's fit to
"':'|I HEAO-C3 the data on Ar .Ca/Fe below

0.0_ I I I S=Secondaryelement 800 GeWn., a_ the der.,4ved

o._ , , i , , i l ; P=Primaryelement souroe _atios.

O.K_ , , I ' ' I ' ' J

',, I11
I " 1%1110el
",'., F"e-P' o.o t,,'",

I POll o

• 1 °211 Ni. p, ,_-P
I l , , I , , 0 .... ' 'O.Cll • I0 !00 <X..O" I ;0 IO0 ICCO

ENERGY(G_v/omu)

I-2. ISOTOPICCOHPOSITIONOFHEAVYNUCLEI

The mass resolution now achieved by Webber et al. ([, 88) in the

400 to 700 MeV/n range for elements between N and Ca is very impressive

(fig. 2). Of particular significance are the well resolved N, Mg and Ca
isotopes, and especially the low 29,30Si fluxes (§ 11-1.2.2., 111-2. and

4.).

Wledenbeck (2, 84) and Krombel and Wiedenbeck (_, 92) also ob-

tained quite good mass resolution on CI, Sc and Ca around 250 MeV/n
(fig. 3). They found radloactlve _vCl depleted, as expected, and contri-
buted to tightening up the source Ca abundance, based on the primary 40Ca

isotope, which is well resolved from the heavier, secondary isotopes

(fig. 3). Webber et al. (2, 88)'s data can be used for the same purpose
(§ 11-1.2.2.; fig. 14).

At high energy, the HEAO 3 French-Danlsh experiment (ffEAO-C2)
team has provided new geomagnetic mean mass estimates at 3 GeV/n for

_ements between N and Fe (Ferrando et al. _, 96, and prlv. comm. of
N/N - 0.49 ± 0.06), whose significance, combined with the earlier

HEAO-C2 data, will be discussed later (§ 111-2. and 4.). HerrstrBm and

Lund (_, i00) have also shown that the 22Ne enhancement at source does
not vary with energy between 0.I and 6 GeV/n.
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I-3. SPALLATIONCROSS-SECTIONS

In response to a crucial need, and taking advantage of the faci-

lities offered by the Berkeley Bevalac, a very massive effort is now
being invested on spallation cross-sectlon measurements. Lee me inslst

on the materlallty of the need : with the high accuracy now achieved in
the cosmlc-ray measurements, especially with the HEAO-C2 data, the check
of the self-conslstency and the refinement of the propagation models
(truncation of the path length distribution ? distributed reaccelera-

elon ?), and a fortiorl the determination of the _u_e abundances^of key
largely secondary elements and isotopes (N, Na, "_,_ME, AI, z_,_Usi, P,

At, Ca) are essentially limited by our knowledge of spallation cross-
sections (§ II-1.2., III-2. and 4.1.). I_ is important to measure cross-

sections for a great variety of energies and incident nuclei. In the
interpretation of secondary nuclei abundances, it is indeed not worth

having their production cross-sections from a few dominant parents deter-
mined with utmost accuracy, as long as the cross-sections for a large

number of other contributing parents remain entirely unmeasured (Table 2).
Measurement of spallatlon cross-sectlons on He are also becoming neces-

sary now (Ferrando et al. _, 61 ; § III-2.3.1.).
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I-3.1. }/essuremenCs of spsZZatlon cross-sectlons on B

Following the early work of the 0rsay group (e.g. Raisbeck and
Yiou 1976) and the first studies on the Bevalac (Lindstrom etal. 1975 ;

Olson et al 1983), in recent years the New Hampshire group has been

leading the way as regards cross-sectlon measurements (Webber and Brauti-

gam 1982 ; Webber etal. 1983a,b ; Webber 1984 ; Webber and Kish _, 87).
Other groups are now Joining the effort : Louisiana State U. - Berkeley

collaboration (Guzlk etal. _, 80), Col Tech (Lau etal. 1983 ; _, 91),
and the HEAO-C3 team in the Ultra-Heavy range (Brewster etal. 1983 ;

Kertzman etal. _, 95).

In the Be, B, C, N, 0 Kange,. @bsolutely essential new data on

the reactions 12C + Be, B and IbO * I_'IDN have been provided by Webber

and Kish 13, 87) and Guzik etal. 2, 80). They are summarized in fi£.4.
When thes--edata are combined with those for 160 . B and 2ONe . 14,15N

(Webber etal. 1983b), respectively % 81%, 74% and 91% of the production
of B, 14N, 15N between _ 0.3 and 2 GeV/n results from reactions whose

cross-sections are measured (§ 111-2.1. ; Table 2). While the very small
errors quoted by the New-Hampshire group are sometimes questioned in view

of the importance of their thick target correction, the agreement between
the various data sets in fig. 4 shows that no large systematic error
affects the data.

140F-- , ' ' ..... I ...... I0_ .... ', .... '_,, , , ,

,z C _ B,Be i Decoyed90 160--'N

i

60 5C 14T6 S,,_ L

20 " 30] L

0 I _ J , J _ Jl J , _ _ J J _ L 20 = .... J • , , ..... i , _ ¢
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Enemy(GeV/nuc) Energy (MeV/nuc)

Cross-sectionsfor 12C+ g _ Be,B and 160+ H . ]4,]6N,after deca_. Fil_ed
circles : Webber and Kish (3_ 87) (see also Webber 1984), and Webber etal.
(I983b). Triangles : Ouzik et aT. (_, 80). Open oiPcles : Lindstrom et a_. (2975)
(or Ol8on etal. I983) and Eontes (1977). Curves : semi-empiricaZ estimates by
Tsao and Silberberg (1979)a_d Guzlk (1981).

As regards the spallation of 56Fe specifically, some of the dis-

crepancles between the recent New-Hampshlre data (Webber and Brautigam
1982 ; Webber et al. 1983a ; Webber 1984) and earlier studies (e.g.

Perron 1976 ; Orth et al. 1976) are being removed by refined analysis
of the recent data. Anyway, there is excellent agreement on the sum of
the cross-section for formation of Sc+Ti+V+Cr. The new data on the

energy dependence of the Fe cross-sectlons at low energy (down to

300 MeV/n ; Webber 1984 ; Lau etal. 3, 91) is of particular interest,
and should allow a broad revision of _he seml-empirlcal formulae for low
energies.
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Spallatlon cross-sections for 28Si and 4OAr between 500 and

1300 MeV/n have been measured by Webber and Kish (3, 87), wh_ should also

_ovlde us soon with new cross-sectlons for spal_atlon of J_S, "UCa and
Ni. The.s_ measurements compl_ment the above mention_ New-Hampshire

data on )_Fe spallatlon. For _UAr, and to some point Z_Si spallatlon,
the new data imply that, at 650 MeV/n, the semi-empirical estimates (Tsao

and Silberberg 1979) underestimate the cross-section, by factors of up to
% 1.9 for products with Z = 12 to 14 (fig. 5). If the same trend is pre-

_nt s._or other, neighbou£1ng parent nuclei (which will be checked soon,
S.."VCa), it is of extreme importance, _in_ it wil_d_rease the

estimate of the source abundances of Na, AI, z_'z°Hg and z_'_Vsi, which

are at present critical issues (§ I1-1.2.1. and 1.4., III-4.; figs. 14
and 29). The effect of such a correction on the determination of the
source abundance of A1 is illustrated in fig. 6 (from Webber et el. 3, 42).
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Relatlve cross-sectlons for spallation of 4OAr and 56Fe measured

around 300 MeV/n by Lau et el. (1983; 3, 91) also give useful information
to refine seml-emplrlcal estimates. In particular, these authors note
the effect of closed neutron shells: the cross-sectlons for formation of

products with 1 neutron less than a magic number are found very small,
probably because neutron emission out of a closed shell is difficult.
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In the Ultra-Heavy (UH) range, beautiful new data on the spalla-

tlon of 54Xe, 67Ho and 79Au around I GeV/n have been provided by Brewster
et al. (1983) and Kertzman et al. (_, 95). Their measured total cross-

sections Oto t show that extrapolation of Westfall et al.'s (1979) formu-
la for projectiles beyond Fe leads to slight overestimates for Ors t (by

15% for 67Ho on H). Figure 7 displays the measured charge yields on H.
It shows that, when normalized to Otot, the charge yield is approximate-
ly a universal function of the charge change AZ, independent of the

charge of the incident UH nucleus. Comparison with the semi-empirical
estimates by Silberberg and Tsao (1979) (fig. 8) shows that the estimates
are fairly good (generally to within a factor of 1.5) for the more impor-
tant nearby products (AZ _ I0), but can underestimate by factors of up to
2 the smaller cross-sectlons for more distant products. Figure 8 also

shows that the departures of the estimated cross-sectlons from the measu-

red ones cannot be described by a unique pattern valid for all b_ parent
nuclei.
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1-S.2. Semi-empirical estimates of spallation cross-sections on H

As regards seml-emplrlcal estimates of unmeasured cross-sectlons

(Silberberg and Tsao 1973a,b ; Silberberg et al. 1985 ; Tsao et al. 3,
103), it is clear that they will remain necessary. Estimating theTr

accuracy is however still not easy: on the one hand, Letaw et al. (_,
46) give evidence that the errors on the semi-empirical cross-sections

are uncorrelated and generally less than 35% below Fe at 4 GeV/n; on the

other hand, recent cross-section observations show that the semi-empi-

rical estimates for some major cross-sections are off by factors of up to
2 around 0.6 GeV/n (fig. 5; § 1-3.1.; Webber et al. 1983b ; Webber

and Kish 3, 87). With the large body of recent and forthcomin_ measure-

ments of _ross-sectlons for the spallation of 12C, 160, 2ONe, 2_Mg, 28Si,

32S, 40Ar, 40Ca, 56Fe, 58Ni in the 0.3 to 1.7 GeV/n range by the New-
Hampshire group, time will soon be ripe for a deep revision of the para-

metrization of the cross-section systematlcs, possibly including new

physical effects (e.g., closure of neutron shells ; Lau et al. 3, _§ 1-3.1.). In particular, comparison Of the data for 40At a_d C
spallation will shed light on the effect of the neutron-richness of the
parent nucleus. The detailed measurement of the behaviour of the Fe

spallation cross-sections down to % 300 MeV/n (Webber 1984) is also an

invaluable source of information (but one pending problem is to within

which accuracy the cross-sections measured at Bevalac up to at most
1.7 GeV/n are constant beyond that energy ; see, e.g., Perron 1976). In
the UH range, the new data by Kertzman et al. (3, 95) should also allow

improved estimates. As a general rule, adjustment factors for individual
cross-sections should, of course, be avoided, since they do not permit
improved predictions for unmeasured cross-sections.

1-3.3. Nucleus-nucleus cross-sections

Since all the Bevalac measurements of spallation on H (§ 1-3.1.)

have actually been performed by comparing data for spallation on CH2 and
on C, they have also given information on nucleus-nucleus interactions.

In addition Helnrich et al. (3, 99) have specifically addressed this pro-

blem, by performing measurements of 4OAr and 5bFe spallation on C12H1807
and Ag and discussing the scaling of the cross-sections as compared to
cross-sections on H (see also their list of references). They are at

present developing analytical expressions for nucleus-nucleus cross-

sections. I shall not discuss this topic here, which is however impor-
tant as regards nuclear physics, for atmospheric and instrumental
corrections, and as giving hints on spallation cross-sectlons on He,

which may become crucial for refined studies of interstellar propagation

(truncation ; Ferrando et al. _, 61; § 111-2.3.1.).
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I-4. OBSERVATIONSOFULTRA-HEAVY(UH) NUCLEI

I-4.1. The BK&O-C3 and ArlelVI data

Improved data on UH nuclei (Z > 30) from the HEAO-C3 and Ariel
VI spacecraft experiments have been presented at this conference by

Newport etal. (_, 123), Klarman et al. (_, 127) and Waddington etal.

(9,...), and by Fowler etal. (_, 115, 119).

The Ariel VI team has provided an improved analysis of their

data for both Z $ 48 (where only high geomagnetic cut-off portions of the
orbit can be used, to avoid pollution by low-energy Fe nuclei) and Z _ 48

(where the entire orbit can be used) (Fowler et al. 2, 115, 119). Their

"apparent charge" histogram for Z _ 48 is shown in f_gure 9; the median
energy of these particles is fairly low, _ 2 GeV/n. From such histo-

grams, elemental abundances are derived by deconvolution with an instru-
mental resolution function extrapolated from that of Fe. Corrections for

interactions within the (rather thin) instrument are not large. The

corrected abundances are plotted in figure i0 (for Z _ 62, grouped into

broad ranges of elements, see also Table I).

In the higher Z range Z _ 50, the HEAO-C3 team has also provided

improved data for higher energy nuclei (recorded when the geomagnetic
cut-off was > 5 GV;median energy _ 6 GeV/n) (Klarman et al. _, 127;

Waddington etal. 9,...). Their brutto "apparent charge" histogram is
also shown in figure 9. Exploiting these data for Z _ 62, the authors
felt it more realistic to give only abundances for broad ranges of ele-

ments, in view of the limited charge resolution and statistics. They are

given in Table i and plotted in figure I0. These values have been appro-
ximately corrected for the interactions within the ffEAO-C3 instrument,
which is much thicker than Ariel VI (see caption of fig. i0).
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At lower Z = 34 to 64, the HEAO-C3 group is now developing a new

technique of analysis in order to take advantage of their full statis-

tics, by using the particles from the entire energy range covered by
their detectors (Newport etal. _, 123). Medium energy particles were

previously excluded from the analysis, because their individual charge
and velocity cannot be unambiguously determined from their ionization
chamber and Cerenkov signals. The authors now perform a maximum like-

lihood adjustment of the elemental abundances, that accounts best for the
entire ionization chamber-Cerenkov two-dimensional histogram. The useful
statistics is thus almost doubled. But, of course, the method is dell-

cate, and no conventional "charge histograms" can be produced.

Very preliminary elemental abundances obtained by this method
are shown in figure i0, together with the "classical" earlier data pre-

sented at the Bangalore conference (Binns etal. 1983; Stone etal.

1983). These data have been presented at the Conference, but are not in

the proceedings. The stated errors are only statistical ones within a
given fitting model, and the final uncertainties will certainly be larger

(E.C. Stone, private comm.; see caption of fig. I0).

Abundanoesof ar_vtng oosmic-_s _th Z >._1, deoonvolvedfrom the o_ginaZ
"apparentcharge"histogremsormatrices(e.g.fig.9). Forz .<45bothevenand
odd-Z elementabundancesare given, but (exoeptfor alga measured by the HEAO-C2
instr_nent with adequate resolution)none of the giv_ odd-Z abun_anoesshould be
considered really significant; they are rather o_er of rno_nitudeestimates that
improve the estimate of the even-Z element abundcuaoes.For Z >_46, onlH even-Z
element abundances are given ; they includethose of adjacent odd-E eZements (the
systematic bias thus introduoed is generallysmall with respeotto the unosrtain-
ties). The HEAO-C8 points for Ga and _e are from B_rnak etal. (1883b). The

_I _2rom et (1983)and etHRAO-_3 Bangalore Conferenoe_nts are Binns al. 5%one al.
(1983). They are deriw_lfrom charge histogrconsof a fraction of the data (see §
I-4.I.). The new HEAO-C3points up to Z = 64 are ve_ prelimina_ results of a n_
tv_o--dimensionalanalysis of the entire set of data (He_portet al. 2, 123). The
stated errors are only statistioalones, within a particular fittingmodel ; /;he
final errors will be larger (_.C. Stone, private comm.), which ! have recalled By
plotting an arbitrar_dashed prolongationto the statisticalerror bars. This is
in particular true for the odd-Z elements, whose abundancesare highly dependent
upon the fitting procedure; some of them were implausiblylow in the authors'
original graph. I have taken the liberty to raise them to a plausible level; the
resulting oo_eotions on the adjacent even-Z element abundancesare not large
(<IO_). But I stress that the intrinsiccharge resolution of the instrumentis
quite adequate to resolveeven-Z elements (see Binns et al. 1983, 1984 ; _tons st
al. 1983). The deoonvolvedAriel VI dataj with poore_ intrinsiocharge resolution
below Z --48, give comparableabundancesfor even-Z elements up to Z = 60 (Fowler
etal. 2, 115, 119). For Z >, 82, where charge resolution and statistics are
becomin_ poor in both ezperiments(fig. 9), I have followed the choiceof the HEAO-
C3 teem and plotted only average abundances (per even-Z element) over broad,
physically significant, ranges of elements (Table 1 ; Klarman et al. 8_,127;
Waddington et al, 9,...; Fowler etal. 8, 119). The no*_nalisationto Fe of the
HEAO-C3 data for Z >_-'88is not perfectly_etermined (oorreotionafor interactions
within the defeater). Based on disoussions,I have applied a global oor_eation
factor of I.20 + 0.15 to the HEAO-C$figures relative to Fe (Table 1). For the
sake of clarity, all error bars eztendingover a factor of >,4 have been replaced
by upper limits. The higher "seoondar_element"fluzes observed by Ariel between
Z = 62 and 7_ i8 probably an energy dependent effect (see § I-4._. and fig. 11).
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T-A.2. gli data, overview

The general picture apparent from fig. iO can be described as
follows. Up to Z _ 45, the intrinsic resolution of the HEAO-C3 instru-

ment is significantly superior to that of Ariel VI (Blnns et al. 1983,
1984 ; Fowler et al. 2, 115). The new two-dlmenslonal analysis of the

entire set of HEAO-C3 data (Newport et al. 2, 123) yields quite small
statistical errors and is very promising, aTthough the additional non-
statistical errors have not yet been assessed. For even Z-elements,

these new values are generally in good agreement with both the earlier

HEAO-C3 analysis and the Ariel VI data, except for 40Zr, for which the
earlier errors were very large. Tentative odd-Z-element abundances have

been plotted in figure i0, but the instrument resolutions are such that

none of them can be considered significant (except for 31Ga, observed
wlth adequate resolution, though low statistics, by the HEAO-C2 experi-
ment ; Byrnak et al. 1983b). Rough odd-Z-element abundance estimates are

however useful to improve the fit of the even-Z-element abundances (which
are not much affected by the associated uncertainties, except perhaps for

40Zr) •

In the range Z = 46 to 60, where only even-Z-elements are given

In figure I0, the resolution of the two experiments is becoming almost
comparable (fig. 9). There is a very good agreement between the two
experiments on the main s- and r-process peak elements from Z = 50 to 56

(in particular 52Te is no longer low in the HEAO-C3 analysis).

Beyond Z = 62, figure 9 clearly shows that in both experiments,
neighbouring even-Z-elements are no longer well resolved (see, e.g., near
Z = 75 and Z = 80), and that the statistics is low. There may, in addi-

tion, be small systematic shifts of the charge scale (see, e.g. 82Pb)
(e.g., Newport et al. _, 287). Accordingly, only abundances for the wide,

Table 1 - The data on UH nUClei with Z _ 62

HEA0-C3 b hRIEL ¥I c
a

Zapp Denollfnstton brutto relattve nom,1 .to Fe brutte relative normal ,to Fe
counts corrected corrected counts corrected corrected

26 re _9.6 _ o.s).;# _ lo6 _ to_ g.60.1o6 -.-10_ _ 1o6

62-69 "L_ght Sec," 34 0.33 ± 0.06 4.0 ± 1,0 63 0.44 ± 0.06 7.4 ± 1.0
54 * I.I 9.3 ± 1.0

70-73 "Heavy See." 10 0.09 _ 0.03 1.1 :_0.4 18 0.1). ± 0.04 1.9 J: 0.6

74-80 apt group" 42 0.46 * 0.07 5.B ± 1.2 46 0.34 ± 0.05 9.7 * 0,9
6.9 ± 1.5 7.7 ± 1.0

01-86 "Pb group" 10 0.12 -+0.04 1.4 ± 0.5 22 0.12 ± 0.04 2.0 ± 0.5

62-86 SumZ >,62 96 ---1,00 12.0 ± 2.3 12.0 ± 2.3 149 =- 1.00 17.0 * 1.4 17.0 ± 1.4

(62-73)/[74-86) Sec/"PtPb" 0.73 ± O.IB - 1.21 * 0.20

(8|-86)/(74-80) "Pb"/*Pt" 0.25 ± 0,09 0.35 ± 0.10

d
>. 87 J_ctln_des 0.5 _0._ 3 0,4 i 0.2

_Zann • "apparent charge', not Including possible non-Z2 effects fn the real charge scale (e.g., Newport et al. 3, 287).
Kl_an et al. 2 , 127; _a4d_ngton et sl. g, .... The authors have applled a correction for the effect of nut'(ear tntorecttons tn t_e_r,
comparatively t_tck, detector on the relatITe abundancesof Z ) 62 nuclei. The effect of the Interactions on the abundances wtth respect
to Fe ts not straightforward. Based on discussions, I have applied an additional global correction factor of 1.20 ± 0,15.

c Fowler et al. 2, 119. The corrections Include deconvolutton of the "apparent charge" histogram, and corrections for nuclear Interectfons
In the, comparatively thin, detector.

d Ftxsen et al. {1983) have observed I ectlntde nucleus for 17.4.106 Fe nuclel.
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physically significant charge ranges defined by the HEAO-C3 team have

been plotted in figure i0. They are defined in Table i, which gives also

key abundance ratios.

Figures 9 and I0 show that both experiments agree well on the

"Pt-group" element abundances, and that Pb is better defined and somewhat

higher in the Ariel Vl data.

As regards secondaries, in the Z = 62-73 region, they are also

higher in the Ariel Vl data. Now, recall that the HEAO-C3 data are taken

when the rigidity cut-off R c is > 5 GV (median energy of the recorded
particles % 6 GeV/n), while the Ariel VI data include locations with much

lower cut-off (median energy of the particles % 2 GeV/n). When only

location where Rc> 5 GV are selected in the Ariel VI data, the difference
with respect to HEAO-C3 seems to disappear (fig. Ii; P.H. Fowler, pri-

vate comm.). So, the data simply seem to indicate an increase of the

secondary/primary ratios towards lower energies. (See discussion in

terms of a low energy increase of the grammage and especially cross-

sections in § 111-2.3.2.).

_ AR,EL_ , sGv
t-,--_ HEA( Re _ 5 GV _ _mpa_son between the A_eZ Vr

data obtained at low _t-off rigidi-

ties Rc < 5 GY and the Ariel _ and

H_O-C3 data obtained at high Rq >
5 GV. Brutto data, averaged over wzde
charge ranges, are _ed. _rmal ized

to the Pt-Pb region (Z _ = 76 tO

Z_ ..... _ 86), Based on P.H. _wl_peivate
< communication. _e H_O-C3 and Arie_

°1 . _ _ data obtained at equal, high Ro
agree.

_L..._I I

50 60 76 86

APPARENT CHARGE Zapp

The total abundance of nuclei with Z : 62-83, both primary and

secondary, Is marginally higher in Ariel VI (17.0 + 2.6) than in HEAO-C3

(12.0 + 2.0, relative to Fe : 106). These figures give a rough indica-

tion of (strictly, a lower limit to) the abundance of primary nuclei
emitted at the sources). The small difference between Ariel Vl and HEAO-

C3 cannot be simply accounted for in terms of more spallatlon at low

energy, which would produce the opposite effect. It might, however, have

to do with the energy dependence of the shape of the mass yield (Kaufman

and Steinberg 1980), on which the data of Kertzman et al. (3, 95) give
information at I GeV/n only (§I-3.1. ; fig. 7).

As regards Actlnldes, the Ariel Vl team has 3 candidates (Fowler

et al. 2, 119). The HEAO-C3 team reported i candidate in Bangalore
(Fixsen et al. 1983). See Table I. The HEAO-C3 value for the ratio

(Th+U)/(Pt+Pb group) is close to the LG value % 10-2 , the Ariel value is
% 4 times higher.
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I-5. DEUTERII_, HELIUM-3ANDAWl'I-PROTONS

Beatty (2, 56), Evenson et al. _2, 60) and Mewaldt (2, 64) have

provided new dat_ on low energy D and _e, which are purel_ secondary

isotopes. The conclusion of the three studies is that most of the exist-
ing low energy D and _He data are readily accounted for by standard pro-

pagation and modulation models that account for the heavier nuclei

abundances (escape length %e _ 6 to 8 g.cm-2). 2

The high _e/_e ratio _ 0.24 ± 0.05 at 6 GeV/n (Rigidity

13 GV) recently reported by Jordan and Meyer (1984) and Jordan (1985) is

most probably an overestimate. The authors have41ndeed stressed that
this result is highly sensitive to the value of the He rigidity spectral

index YR near Earth at the time of the observation (with d_/dR= R-VR ),
_he sense of a positive correlation be_wee_the derived value of

e/_He and YR" To get the above value of the aHe/_He ratio, the authors

have assumed that YR = 2.65 around 13 GV, near Earth, in April 1981.

Now, Golden et al. (2, I)_ have measured YR = 2.58 ± 0.05 between i0 and

25 GV, in September i_76. _ The value of YR near 13 GV in April 1981 can
be only lower, because the spectrum is bent within the above rigidity

range, and because of the much higher degree of solar modulation in 1981

(e.g. Lockwood and Webber 1984). Earlier measurements, as summarized by

Smith et al. (1973) or Webber and Lezniak (1974), also clearly point

towards lower values of YR _ 2.40 to 2.50 at 13 GV, near Earth.

The standard leakyrbox.models fitting the B/C ratio with rigidi-
+ty dependent escape yield 3He/4He 0.17 - 0.05 at 6 GeV/n (scaled from

Meyer 1974 ; Lagage add Cesarsky 1985). 4 Jordan (1985)'s observations

lead to values of 3He/_e in this range for values of 7R between 2.52 and

2.62, a perfectly plauslble range for YR at the time of his observations.
There is therefore no hint whatsoever for an anomaly.

Jordan (1985)'s data, together with the low energy data on D and

_e, can be used to set lower limit to the intrinsic thickness of the

thick sources invoked to explain a possible cosmlc-ray antl-proton excess

(Cowslk and Galsser 1981 ; Cesarsky and Montmerle 1981 ; Tan and Ng 1983;

Lagage and Cesarsky 1985 ; Tan _, 346).

2 There Is, however, a problem for the high deuterium fluxes observed by Webber and
Yushak (1983), which, llke the earlier data of Hsleh et al. (1971), remain a
mystery. Such data could be understood only If,at the time of the data taking,

the Interplanetar_ deceleration was so weak that the bulk of the deuterons due to
the p + p . d + _ process, with energies below _ 200 MeV/n in the interstellar
medium, were still observable near Earth (Meyer 1975; Webber and Yushak 1983).
This would be extremely dlfflcult to accept, considering all evidences on solar
modulation. In addition_ Evenson et al. (2,60) noted the constancy of their
observed D/_e and 3He/4He ratios between 1978 and 1983 (a period which, however
does not include extreme solar minimum conditions, e.g. Lockwood and Webber 1984).

3 The larger value publlshed by Golden et al. (_,I) in the proceedings is not that
measured near Earth, but refers to the derived demodulated He spectrum. These
results replace those publlshed by Badhwar et al. (1979).

4 Wlth the assumption of rigidity dependent escape, the equilibrium 3Me/_e ratio at

a given energy/nucleon is 20% hlg_er than predicted based on the formation rates
only, because the residence time of _He in the galaxy is longer than that of _e at
the same energy/nucleon. (Therefore, if the bulk of the grammage Is spent near the

sources, where _he _igldlty dependent escape takes place, the predicted ratio near
Solar System is JHe/'He - 0.14 only.)
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1.-6_____:.ENERGYSPECTRAOFPRIMARYNUCLEI

At this conference, a number of studies have been devoted to

this subject : Golden etal. (_, 1) ; Engelmann etal. (_, 4) ; Webber et

al. (_, 16) ; Derrtckson etal. (_, 20) ; Burnett etal. (_, 32, 48) ;
Sato etal. (_, 36); Strettmatter etal. (_, 40); Vernov etal. (_, 52).

Although I regard this subject as important, I will not discuss
it here. 5

I-7. ELECTRONSANDPOSITRONS

Nlshlmura etal. (9, ...) have provided improved e- spectra up

to 2000 GeV (fig. 12). Th_ presence of e- fluxes at such high energies,
where the e- lifetime against synchrotron loss is <_I0 years, implies
that their sources are close by, within a few i00 pc. These data, con-

fronted with the constraints from CR nuclei, also favour a nested leaky-

box model for propagation, a standpoint already advocated by Nishlmura et

al. 1981), Tang and MUller 41983), MUller and Tang (1983), Mauger and

Ormes 1983), and Tang 41984).

10 II ¢_ Huller and Tlng :1983 ,f . b11rl/b2'_ 2 . 0.1
41 out" dsti :1985

":> IIII Webbar(Rld|o| :1979 62s 0.6 _ • 2.2
A^ ^_bJ _ IA .. Iv- _ 6,-I.0

_, _ e, eZ_lj eleetz'on epeotr.w, up

":'_ 10z to 2000 GeY by Nish4n_a e_:
.- a_. (9...,...).

%,
_.2

10: ' , I , , I , , I , ,
10 100 1000

Energy (' GeV }

Golden etal. (2, :7_ and MUller and Tang (2, 378)have provi-
ded new measurements of tie _/(e++e-) ratio between--5 and 20 GeV (fig.

13). The high values observed for Chls ratio are probably due to a rapid
decrease of the e- flux above a few GeV.

........ i , ....... I ....
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-- I_-< 'l4 i Fla. 1.3 The .e_ obeezma_ione of
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+

% 5 ar_l 90 GeT bl? Go_den ee a_.
' _ " (2, 374) and HilZZe2.and Pang

•_ o5 _,,,,.,. (_, 378), aZong _ith ea2Eier
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5 This is the shortest paragraph in my reportl
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PART IX

ASSESSING ]HE GALACTIC COSMIC-RAY SOURCE (GCRS) ELEMENTAL COMPOSITION

CORRELATION NllH FIRST IONIZATION POTENTIAL (FIP)

II-1. GCRS ELE]4EMI"AL COMPOSITION UP TO Z = 30

Up to Z = 30 the cosmic ray data are very reliable and a compa-
rison is possible with Solar Energetic Particles (SEP) abundances. After
having specified the Local Galactic (LG) abundances I shall use as a

reference (§ II-i.I.), I am going to discuss the various available deter-

minations of the elemental composition (flg.14) as to obtain an "adopted"
GCRS composition (fig. 15 ; § 11-1.2.). I shall then compare the GCRS,

SEP and Solar Coronal compositions (fig. 17 ; § 11-1.3.) and discuss
their common properties (§ 11-1.4.).

II-l.1. The Local Galactic (KG) reference abundances used

The LG abundances used for reference are mostly those of Meyer
(1979a,b ; 1985a,b), generally in good agreement with recent analysis of

Anders and Eblhara (1982) and Grevesse (1984a,b). For S, Cu and Zn, the
improved agreement between the recent type I carbonaceous chondrlte

(hereafter Cl) and photospheric determinations have led me to slightly
modify the values and considerably reduce the error bars : S = 45

(1.15) 6, Cu = 0.047 (I.i0), Zn = 0.124 (I.08) on the scale Si = i00.
Note, however, that there is an apparently significant difference

between Cl's and photosphere for Fe, which seems higher by a factor of
1.45 ± 0.II in the Photosphere than in Cl'sIIl. This is all the more

a puzzle since the slderophile elements Cr, Co, Ni, Pd definitely
do not show the same trend, and are found equally abundant in Cl's and
Photosphere (Grevesse 1984a). By contrast, there seems to be another

significant discrepancy for Ti, a refractory, not siderophile element.

As regards the C1 and photospheric abundances of volatile Ge and Pb, see
Grevesse and Meyer (_, 5) and § III-3.5. •

In figures 14 and 15, I have kept the traditional Cl value to LG

Fe, but have also indicated where Fe would lle if the photospheric value
would be adopted as a reference instead.

II-1.2. GCES compoalzlonup to Z m 30: the data and the adopted
composition

Figure 14 gives up to date information on the GCRS/LG abundance

ratios for elements up to Zn, versus First Ionization Potential (FIP). I

have avoided, as much as possible, determinations based on low energy

data ( _ 500 MeV/n), whose interpretation may pose specific problems rela-
ted to strongly energy dependent low energy cross-sectlons and possible

distributed reacceleratlon (_iberberg et al. 1983). As will be shown in
the discussion of the B vs. _JN problem (§ Ill-2.1.), this hypothesis may
have to be taken very seriously.

6 Throughout this paper such figures betweenparenthesesdenote error factors:
"withina factor of...".
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II-1.2.1. Source abundances derived from elemental data

The basic determinations used are those from the HEA0-C2 experi-

ment, derived from high energy observations between 1 and 25 GeV/n

(Engelmann 1984 ; Lund 1984). At this conference, Webber et el. (!, 42)
have reestlmated the source abundances, based on the HEAO-C2 data speci-

fically at 1.5 GeV/n, taking into account their new cross-sectlon measu-

rements up to _ 0.8 to 1.3 GeV/n (Webber and Kish _, 87 ; see § I-3.1.).

They have assumed that the trend for an enhanced production of seconda-

ries with Z - 12 to 14 observed in the spallatlon of 28Si and 4OAr was

also valid for other neighbouring parent nuclei. This leads, in parti-

cular, to a decrease of the estimated source AI abundance (fig. 6).

Whenever different from the previous values, these new estimates of the

GCRS/LG ratios have been given in fig. 14. HEAO-C3 data have also been

used for Zn (Binns et el. 1984), as well as for Ar and Ca, for which the

data of Jones et el. (_, 28) up to %200 GeV/n, i.e. at highest energies
where the secondary component is much reduced, should in principle yield

very accurate source abundances. However, for the reasons discussed in

§ I-l., I think these latter determinations should be considered prelimi-

nary at the present stage.

II-1.2.2. Source abundances derived for isotopic data

For N, Ar and Ca, we have also source abundance determinations

based on low energy (% 200 to 600 MeV/n) isotopic observations of 14N,

36At and 40Ca, which are the predominant isotopes in the sources. These

source abundance determinations should, in principle, be much more accu-

rate than those based on elemental observations only, since the secondary

component to be subtracted is comparatively much smaller.

As regards Ca, the cross-sectlons for secondary formation of

40Ca are extremely small so that, while surviving primaries make up only

30 to 55% of arriving e_gmental Ca for energies from _0to 25 GeV/n, they
make up 95% of arriving Ca at 0.6 GeV/n (fig. 16). Ca is thus es_n-

tlally a pure primary, and the Ca source abundances derived from "vCa

isotopic data are therefore extremely clean (e.g., Krombel and Wiedeubeck

2, 92). They are essentially limited by the statistics of the isotopic

_bservatlons (the.mass resolution is generally adequate to separate mass
40 from _ 42, "ICe being very scarce; figs. 2 and 3). Following the

summary by Krombel and Wiedeubeck (_, 92), I have plotted in fig. 14 the
Ca GCRS/LG ratios resulting from the five available isotope measurements

(Tarl_ et al_n1979 ; Young et el. 1981 ; Webber 1981 ; Webber et el. _,
88, source WUCa/Fe : 0.I13 ± 0.027 derived by myself ; Krombel and Wie-

denbeck _, 92).

As regards Ar, the situation is less favourable: while survi-

ving primaries make up _ 25 to 55% of arriving elemental Ar for e_rgles
from I to 25 GeV/n, they still make up only 50% of arriving Ar at

0.6 GeV/n36(flg. 16). So, the secondary contribution remains important,
even for At. The two available determinations (Webber 1981; Webber et

el. 2, 88, source 36Ar/Fe - 0.062 ± 0.024 derived by myself) thus give
source Ar values which are sensitive to the conditions of propagation and

secondary formation at low energy. I shall show in § III-2.1. that these

conditions pose very serious problems.
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GCRS/LG abundanae ratios vs. PIP, for Z < 30 : the various determinations.
Normalized to Si. The errors are the quadratic sum of the GCRS and the LG errors
(§ II-1.1.). For ee, I have also plotted its GCRS/LG ratio if the photospheric

value is taken _ LG standard (marked by "Ph" ; § II-1.1. ). For Ne, for which the
minor isotope Re is greatly in ezcess ( § III-4. I. ; fig. 29), the plotted ratio
refers to the dominant isotope 2ONe only. [As regards Mg and Sij possibly also

slightly isotopicallg anomalous (fig. 29), considering only the dominant isotopes
24Mg and 6oSi would yield a negligible correction]. As regards H and He, they are
given at a given energynucleon for three different energies (3, 10 and 60 GeV/n),
based on the data compiled and propagated back to the sources b_ Engelmann et al.
(1885) (see § II-1.2.$.). The various determinations of the GCRS abundances : for

each element, the first bar -on'-t_i'l-ef't-_s"t_i HEAO-C2 "d_t-e_i'ff_i-on-"_a_e_ -on ob-
sermations over the range from _ 1 to 25 GeV/n (Engelmann 1984 ; Lund 1984). Nezt
comes, as a left-oriented braoketj the new estimate b_ Webber et el. (3j 42)j based
on the HEAO-C2 data at I.5 aeV/n and on ne_ cross-sections, especiall_ from Webber

and Kish (3, B?) (see § _-3.1. and XI-l.2.1.). It is given only when the ne_ esti-
mate differs significantly from the original one. Next come, marked by a dot below
the error barj source abundances derived from low energy (_ 200 to 600 MeV/n) iso-
tope obaermations (see § IX-1.2.2.). For Ca, they are, from left to rightj due to
_arl4 et aI.(1979)_ Young et el. (1961)j Webber (1961), Webber et el. (2, 68), and
Krombel and Wiedenbeck (2j 92), and for Ar to Webber (1981) and W-ibber ¢t el.

(2j 80) (see discussion _n §If-1.2.2. and III-2. I.). For N, the isotope bar sum-
marines a number of low energy isotope studies (see § II$-2. 1. and 2.2.). Finally,

the bars marked "C3n result from the H_AO-_3 data_ at GeV/n energies for Zn (Binns
et el. 1904)_ and at _ 200 aeV/n for Ca and Ar (Jones et el. 2, 20) ; the latter
t_o values, with dashed error bars, are still preliminar_ (see § I-I. and IX-1.2.1).
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The situation is even worse for N: surviving primaries make up
20 to 35% of arriving elemental N for energies from I to 25 GeV/n, but

still make up only _35% of arriving 14N at 0.6 GeV/n (fig. 16). Actually,
the lower source N/O ratios (_ 3%) found from low energy isotopic

14,15N data, and their contrast to higher values (_ 6%) derived from high
energy elemental measurements have been discussed at length in recent
years. I shall discuss that point in detail in § 111-2., from a new

standpoint.

II-1.2.3. H.ydr_og_en and Helituaat sources

Now consider H and He. According to current shock wave accele-

ration theories, the relevant parameter for acceleration is momentum per

nucleon (or, equivalently, energy per nucleon), not rigidity (e.g.
Krimsky 1977 ; Axford et al. 1977 ; Bell 1978a,b ; Blandford and Ostrlker
1978 ; Axford 1981). It is therefore preferable not to discuss the
source H/He ratio at a given rigidity, and I shall consider this ratio at

a given energy/nucleon. But rigidity dependent escape from the galaxy

(which acts differently on H and He at a given energy/nucleon) is essen-
tial in properly deriving the source H and He spectra from the observed
ones. The study of Engelmann et al. (1985 ; see their fig. 12) shows

that, when this is done, the H and He source spectra, in the range in
which they are both precisely determined (_ 3 to 60 GeV/n), are such

that : (i) The H/He ratio is remarkably constant and normal (_I0); (ll)
the abundance ratios of H and He to CNO are energy dependent; they in-

crease by a factor of _ 2 (1.5) between 3 and 60 GeV/n (based on all
existing data for the CNO spectrum, not merely those of HEAO-C2, which
tend to be steeper than the other ones; Engelmann et al. 1985, and 2,4).

Note that no significant energy dependence of any heavy element/_eavy
element source abundance ratio could ever be noticed between % 0.5 and

25 GeV/n. This energy dependence of the H,He to heavier nuclei ratios

has been shown in figs. 14 and 15.

II-1.2.4. "Adopted CCRScomposttion for Z _ 30

Based on the detailed data on GCRS composition presented in
fig. 14, 1 derive an "adopted" set of elemental GCRS/LG ratios for Z _ 30,
which is shown versus FIP in fig. 15. In these adopted abundances I have
taken into account, though with some prudence, the trends associated with
the new cross-section estimates by Webber and Kish (3, 87) and Webber et

al. (_, 42), in particular as regards the lower A1 a_undance. For Ca, 1
have kept an error bar which is consistent with all elemental and espe-

cially isotopic determinations. For the more difficult cases of N and At,
for which the interpretation of the isotopic data depends strongly on low

energy propagation (§ 111-2.1.), I have kept very large error bars,
encompassing essentially the entire range of existing estimates. In fig.

15, I have also marked the position of Fe if the photospheric value is
taken as a standard, instead of the CI meteoritic value ( §II-I.I.;

Grevesse 1984a) : Fe would then be deficient by a factor of _ 1.40 in
C.CRS, relative to AI, Dig, Si, Ca, Co, Ni, Cu.
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II-1.3. Compartson vlth Solar Rner_etie Particles (SEP) and Solar
Coronal compositions

Before discussing the properties of the obtained GCR$/LG corre-

latlon with FIP (§ II-1.4.), I want to compare the GCRS and the SEP
abundances. It is now well established that the GCRS composltlon pattern

versus FIP is remarkably similar to the basic pattern of SEP, as well as

to the solar coronal composition, which differs from that of the photo-

sphere and C1's ("Local Galactic") (Webber 1975, 1982b; Cook et al.

1979, 1980, 1984 ; Mc Gulre et al. 1979, 1986; Mewaldt 1980 ; Meyer

1981a,b,c, 1985a,b ; Breneman and Stone _, 213, 217). Using T-ray llne

spectroscopy data, Murphy et al. (_, 249, 253) have, at this conference,

found once again the same pattern of abundances in the upper chromosphere

or lower transition region material (except for Ne, which is a probleml).

These similarities in composition, together with other arguments,

led to the suggestion that SEP and GCRS compositions are, to first order,

a reflectlon of the composition of solar-stellar coronae (F to M stars),

out of which they have first been extracted (Meyer 1985b ; see also Mont-

merle, 1984). As regards the reason why the solar coronal composition is

biased according to FIP, it is not known. Two scenarios are at present

attempting to understand it, one in terms of a dynamical ionization model

in spicules (Geiss and Bochsler 1984), the other in terms of gravitation-

al settling of neutrals In the presence of the magnetic field within the

chromospheric plateau (Vauclair and Meyer _, 233).

Figure 17 compares the GCRS abundances to SEP abundances for

Z _ 30. Two sets of SEP abundances are taken: (i) the "mass-unblased"
basellne composition of Meyer (1981a, 1985a), which represents the

composition of these events in which the abundances are least perturbed

by rigidity (and hence, roughly Z -) dependent acceleration and propaga-

tion effects, as Judged from their Fe/Mg,Si ratio 7 ; in these events the

correlation of abundances with FIP, presumably an image of their coronal

source material, is cleanest. (ii) the new 10-flare average presented at

this conference by Brenaman and Stone (_, 213, 217), who suggest that, on
the average, rigidity dependent acceleration-propagation effects do not

entirely cancel out in SEP's, so that the average SEP composition is

slightly biased as a function of A/Q (or, roughly, Z) with respect to the i

original coronal composition (where Q = mean effective charge). (This

conclusion however depends somewhat upon the adopting of the photospheric,

rather than CI, value as a standard for Fe; the properties of this

average over 10 flares will also have to be confirmed by a much broader

averaging).

I now discuss the GCRS/SEP ratios plotted in fig. 17:

(i) Fig. 17 confirms that the two compositions are very similar. The

strong dependence of the GCRS/LG ratio upon FIP (fig. 15) has to first

order disappeared in the GCRS/SEP plot.

7 Using the photospheric instead of the C1 value as a standard for Fe would only
slightly modify the derived "mass-unblased" baseline SEP composition (Meyer 1985a).
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GCRS/SBP abu_anoe ra_ios, vs. FIF, for Z <_30 ( § II-X. 3). The GORS values
are those azlop_ed in fig. 15 (uith _he errors on the LG der_mina_or ta&_m ou_). The
s_P vaEues are (i) the '_nc_8--ur_i_ed bcaveline" defined by Meyer (1985a)_ and (ii)

the lO-fZ_e ave_e reported at this oonfer_oe by Br6m6_nc_ and Stone (4_,213,
217). To zeroth order, the FIP-dependen# bias has disappeomed here. Ho_ever #he
Zinc, dralon #o guide #ha eyej euggee#8 #hat #he depZe#ion of high-FIP eZemen#s re-
la#ive to Zov_eIP ones 44 sEigh#ly more pronounoed in GCRS #hat in SEV's (by a

fee#or of _ 1._ ; Meter 1985b ; Webber e# aZ. _, 42). O, and probably O, are above
#he so.tEa#ion,i.e. oa,e dis#ino#Zy in exoess _n GORS rela#ive to SEP.

(li) Fig. 17 shows that C (and, to a lesser extent, possibly O) is

much above neighbouring "high-FIP" elements (FIP > 9 eV). In particu-

lar, the C/O ratio itself, extremely well determined in both GCRS and

SEP's, is about twice as high in GCRS as in SEP's. See discussion in

terms of the GCRS excess of 22Ne and 25,26Mg in § 111-4.

(iii) Based on the other "high_FIP" elements 2ONe, Ar, N and S, fig. 17

suggests that the depletion of "high-FIP" elements relative to "low-

FIP" elements (FIP < 9 eV) is somewhat higher (a factor of % 6 instead

of % 4) in GCRS than in SEP. This point, already noted by Meyer

(1985b) is confirmed by the analysis of the new SEP data by Webber et

al. (_, 42).

(iv) In this context the GCRS N abundance is very critical : if the

correlation of GCRS/LG with FIP (fig. 15) and the similarity with SEP

(fig. 17) are to hold, the GCRS/LG and GCRS/SEP ratios for N may not be

lower than those for Ar and especlally 2ONe. This condition requires

that N/O _ 6% at GCRS. It requires that the actual GCRS N abundance

lles in the upper part of the adopted error bar_ in agreement with the

abundances derived from the high energy elemental observations

(1-15 GeV/n), but in conflict with those derived from low energy (30 to

600 MeV/n) isotopic data (see discussion in § 111-2.).
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11-1.4. Shape of the GCeSlU: correlation with ¥IP for Z 6 30

At this conference, many papers have discussed the shape of the
correlation between the GCRS/LG abundance ratio and FIP, based on data

for Z _< 30 (Jones et al. 2, 28 ; Krombel and Wiedenbeck 2, 92 ; Webber et
al. 3, 42) or for Z > 30 (Fowler et al. 2, 115 and 119 ; g/arman et al.

2, 12--7; Waddlngton etal. 9,... and 3, T; Binus etal. 3, 13 ; Letaw
etal. 1984).

As regards elements with Z _<30, figs. 14 and 15 show that the
AI and Ca abundances seriously tie down (to a factor of <_1.4) any pos-

sible systematic excess of elements with lower FIP relative to elements
with FIP _ 8 eV. In SEP's, in which no correction is required for

spallatlon, there is not either any indication for such an excess (Meyer

1985a,b; Breneman and Stone 4, 213, 217; Mc Guire et al. 1986).

All exponential fits of the GCRS/LG pattern versus FIP are in-

adequate, as illustrated in fig. 18. They are totally unable to repro-
duce the steep drop in the Si, Zn, S, C, O, N region, together with the
flat behaviour of GCRS/LG at lower and higher FIP's. Relative to ME, Si,
Fe (FIP _ 8 eV), exponential fits, either (i) fit more or less Zn, S, C,
O, N and are much too low for Ar and Ne and too high for Na, A1, Ca, or
(il) fit Ar and Ne and are much too high over the entire region from Zn
to N (fig. 18). The fit proposed by Letaw et al. (1984) is more adequate,
but also somewhat high in this region.
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It seems to me that the obvious shape of the pattern of the
GCRS/LG ratio versus FIP is that indicated as f(FIP) in fig. 15 : two

plateaus at low and high FIP, with a narrow intermediate region (Zn, S).

C and O, the two elements that are overabundant with respect to SEP's

(fig. 17 ; § ll-l.3.).have be_9 left above the correlation curve f(FIP) ;
such an excess of tZC and °O i_ actually quantitatively predicted in

connection with the 22Ne and 25,26ME excesses, if the latter are due to

the presence of a small fraction of He-burnlng material in GCRS, possibly
originating in Wolf-Rayet stars (§ III-4. ; Meyer 1981c, 1985b ; Cass8
and Paul 1982 ; Maeder 1983 ; Prantzos 1984a,b ; Prantzos etal. 1983 and

_, 167 ; Arnould 1984). The N abundance problem, mentioned in § II-1.3.,
wlll be discussed in § III-2., H and He, whose abundances relative to
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heavier elements vary with energy (§ II-1.2.3.) and which do not behave

like heavier elements in SEP's (e.g.,SMason et al. 1983 ; Meyer 1985a),are also left out of the correlation.

This two-plateau structure of f(FIP) resembles that found in

SEP's and solar corona (e.g. Cook et al. 1984 ; Meyer 1985b ; Breneman

and Stone _, 213, 217). Physically, it cannot be easily understood as
representing simply the ionized fraction in a gas at a single temperature

or with a monotonic distribution of temperatures (Arnaud and Cass_ 1985 ;
Meyer 1985b). It rather suggests a situation where ions and neutrals are

selected with different efflciencies out of a plasma at _ 6000 K (Meyer

1985b ; Geiss and Bochsler 1984 ; Vauclalr and Meyer _, 233) (see
§ II-i. 3.) •

II-2. GCRSELEHEMTALCOMPOSITIONFORZ > 30 ("ULTRA-HEAVY"NUCLEI, UH)

I1--2.1. The Local Calactlc (KC) reference abundances used for rm nuclei

The LG abundances used for Z _ 30 have been discussed in
§ II-l.l. For Z > 30, the CI meteoritic values of Anders and Ebihara

(1982) have been adopted; their error is usually much smaller than the

GCRS error. Photospheric abundances, which are certainly a more undlspu-

table image of the abundances in the protosolar nebula, are often lacking

or still very inaccurate for UH nuclei; but, whenever they are accurate-

ly determined, they generally agree well with the C1 values (Grevesse

1984a,b). This may, however, not be always true, especially for volatile

elements, and Grevesse and Meyer (3, 5), at this conference, have found

possibly significant differences between CI and photospheric abundances

for Ge and Ph (§ III-3.5.).

As regards C2 meteorites, which are a mixture of 50% Cl-llke

material, plausibly unfractlonated, and of 50% highly fractlonated

"pebbles", there is no reason whatsoever to believe that their bulk

composition might have any relevance as a standard (Anders 1971 ; Meyer

1979a,b ; Ebihara et al. 1982 ; Anders and Ebihara 1982). And C2 abun-

dances indeed yield strange discontinuities at 46Pd-47Ag refractory-

volatile Junction (Meyer 1979a). As regards the noble gases 36Kr and

54Xe, their abundances are interpolated, and the associated error diffi-
cult to assess.

11-2.2. The _ composition of 111 nuclei

In fig. I0 (§ I-4.), I have summarized the recent observations

of arriving UH nuclei. From these data, I have derived rough values of

the source abundances of selected elements in the range Z = 31 to 58. The

resulting GCRS/LG ratios have been plotted versus FIP in fig. 19, to-

gether with the data for Z @ 30 and with the correlation f(FIP) adopted
for these lighter elements (fig. 15). The case of Pt and Pb, for which,

llke most authors, I dare not derive some abundances relative to Fe or

Si, will be discussed later (§ 111-3.1.).

8
In § 111-4. and 5. and in the Appendix, f(FIP) will be expressed as fik(FIP), deno-
ting the value of f(FIP) for species i normalized to that for a reference species k.
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GCRS/bG abundanoe ,,atlosvs. riP, for UZtra-geavy (Ug) el_ents v4th Z > 30
(thick bars), and for clients with Z ,< 30 (thin bars, from fig. 15). The corre-
lation f(FIP) definedin fig. 16 baaed on the data for g ,<30(§ II-1.4.) has also
been _eprodueed. See caption of fig. 14. For _ elements, the thick, solid bare
indicate the more probable ranges,baaed on the ne_, preliminaryanalysis of the
HEAO-_3 data by Newport etal. (8, 123) and on conservative estimates of the
8paZlation oor_eation (of. Israel-'etal. 1983). The dashed, white prolongations
give ranges that cannot yet be strictly ezoluded,consideringall the data in
fig. 10 (Ariel VI data, Fowler et al. 8, 116,119;earlier analysis of the g_AO-
C8 data ; see §I-4.) and broader assumptionsfor the spallationcorrection (§li-
B.8.). For Ge and Fe, the values of the C_RS/LGratio is also given if the photo-
8pheric measurement ("Ph") is adopted as LG standard, insteadof the more
usual meteoriticvalue ("CI"); see footnote _ 10 (§ II-1.1., 8.1. ; III-3.$.).

The solid error bars for UH elements in fig. 19 correspond to

what I believe to be the more probable range for their source abundances,

based on the new, preliminary _analysls the HEAO-C3 data by Newport et al.

(_, 123) 9, and on conventional corrections for spallatlon adapted from
those of Israel etal. (1983). For many elements the results of Newport
et al. (2, 123) are actually in good agreement both with the earller ana-

lysis of the HEAO-C3 data and with the Ariel VI data (fig. I0 ; § I-4.).
For many elements too, the spallatlon corrections are not very large, so

that they cannot be a major source of uncertainty.

For a few elements, however, there are large differences between

sets of data (especially 40Zr, 52Te, 58Ce) and/or large spallation cor-
rectlons which could be very significantly altered by slightly different

9 To account for possible systematicerrors in the fitting procedure,a standard 20%
error has been quadraticallyadded to the purely statisticalerrors of Newport et
al. (!,123) (§ I-4.1.).
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propagation models or cross-sectlons (36Kr, 54Xe, possibly 52Te). Taking
into account all data in fig. I0 and allowing for more extreme spallation

corrections, the solid error bars in fig. 19 (giving the moreprobable

range of source abundances) have been prolongated by dashed white bars

representing ranges that, though much less likely, cannot yet be entirely
excluded.

For Ge, I have plotted two values in fig. 19, one relative to

the usual CI value, one relative to the photospheric _lue as a LG stan-
dard (Grevesse and Meyer, _, 5 ; § 111-3.1. and 3.5.) .

II-2.3. DXseusslom -IEnuclel, correlated with FIP ?

This discussion will be based on the more probable GCRS abun-

dances indicated by the solid bars in fig. 19, the dashed bars giving

only indications as to what is really definite and what might possibly
still change.

When compared to the quite orderly pattern of GCRS/LG ratios

versus FIP for elements with Z_ 30 (fig. 15), the points for UH nuclei

in fig. 19 give an impression of disorder. Clearly, the same simple

correlation with FIP found for Z _ 30 does not entirely account for the

UH nuclei data. But the general pattern with FIP nevertheless seems to

some extent present : hlgher-FIP 34Se, 54Xe, 36Kr do seem depleted rela-
tlve to lower-FIP elements.

The general picture is that, while a few OH elements lle on the

correlation established for Z _ 30, many of them lie above (with only

32Ge being perhaps below, depending upon whether one uses the CI or the

photospheric value as a standard; § 111-3.5.). It is particularly clear

that four low-FIP elements are overabundant (certainly 58Ce and 42Mo,

seemingly by factors of % 3 to 4 ; and most probably 56Ba and 4 Zr). The
striking point is that these excesses are not at all correlated with

FIP. 11,12

I0
One should not mechanically couple the choices of a Cl or of a photospheric value
as LG standard for Ge (and Pb) and for Fe (figs. 19 and 20). The problems involved
in the photospheric and C1 determinations are totally different and uncoupled for
Fe and Ge (and Pb). Both problems are, independently, open.

II The case of 42Mo is especially compelllng. Its FIP (7.1 eY) is close to those of
Mg, Si, Fe; when the earller data from both HEAO-C3 and Ariel VI repeatedly indi-
cated a hlgh abundance for Mo, we (or at least, I) did not pay too much attention
to them, surmising that with improved statistics and data treatment, its abundance
would gently fall off and get normal. The improved data from both HEAO-C3 and
Ariel VI (fig. I0 ; § I-4.) now confirm and even slightly increase the apparent Mo
excess. Note also that Mo is a refractgry element for which there exists both good
Cl data [Mo - 2.52 (I.05), for Si - 10b ] and reliable photospheric data [Mo - 2.32
(1.12)J, which agree perfectly (Anders and Ebihara 1982; Grevesse 1984a,b). So,
the LG abundance of Mo cannot be questioned. The spallatton correction, taken into
account in the Mo value plotted in fig. 19, is not either very important (e.g.,
Israel etal. 1983). Similarly, the 40Zr LG abundance cannot be questioned [Zr -
10.7 (1.12) in Cl's and 10.1 (1.12) in the Photosphere], and its spallation correc-
tion is small.

12 Only the slightly high 56Ba could be interpreted as an indication of a slight slope
of the low-FIP elements plateau. But aside from A1 and Ca, tnt 38Sr and 31Ga would
not confirm this view.
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Actually, the U_ elements that are clearly above the correlation

with FIP valid for Z _ 30 tend to be the heavier ones (Z _ 40), while

lighter 31Ga, 32Ge (?), 34Se, 36Kr, 38Sr, both low-FIP and hlgh-FIP ele-
ments, are roughly conistent wlth the correlation f(FIP).

To try to separate FIP-dependent from other, e.g. Z-dependent

effects, I am going to correct the GCRS/LG ratios of all elements for the

bias with FIP, i.e. plot the ratio [GCRS/LG]/f(FIP) versus Z. 13 This

procedure yields fig. 20 (in which Pt and Pb are still lacking, see
§ III-3.1.). Fig. 20 represents enhancement factors for each element in

GCRS, relative to a "normal", or "main" CR component assumed to obey the

For completeness the GCRS

correlation f(FIP) (cf. § 111-4. and 5.)_4,25Mgexcesses of the minor isotopes 22Ne, and 29,30Si relative to

standard LG isotope ratios have also been plotted (fig. 29; § 111-4.1.).
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_v _Ofr[C,CRSlr_Slf(Fn,)ratio us. z for eT.eme,.,t_obet,,,eenZ - z andz = 58 (asderi-om fig. 19 ; § IE-2.3.). Normalised to _asi (see _i;. 14 caption). It repre-
sents the GCRS/LG ratios corrected for the bias _ith PIP, as deso_ibed bg f(FIP)
which characterizes the data _p to Z = 30 (figs. 16, 19 ; § II-1.4.). It a_so re-

presents the ezcess for each species in GCRS, relative to a "norma_" or '_,ain"CR
component ass_qned to obeg the correlation f(FIP) [i.e. the quantity Ei_ CR in the
notations of the Appendiz ; § III-4. and 5.]. Eo_ No, Mgj Si. the elemental olJun-
dances are replaced by those of the dominant isotopes 2ONe, _iMg, _Ssi. The

ezcesses of the minor isotopes ratios have Been plotted as dashed bars (fig. 8g
§ III-4. 1. ; see footnote # _?). For H and He, the ezcess is energy-dependent, and

given at 3, I0 and 60 _eV/n (§ II-1.2. 3. ; figs. 1_, 15). Foz,ge and Go, two ran-
ges are given, corresponding to the adoption of _he more usual meteoritic ("C1") or
to the photospheric ('q_h") value as LG reference ; see footnote _ 10 (§ II-1.1.,
8. 1. ; III-3. 5. ). PO_"Z > 34, the e_.or borne Itwlude a more pz,obable z,ange (so_,'_d},
and a broader range which, though m_oh le,s likelH, oannot be entirelH excluded
(dashed) (fig. 18 ; § II-2. _.). The Pt-Pb region is absen_ from this plo_, and
will be treated separateEy ( § III-3.1., _._.).

13 I recall that f(FIP) Is the function describing the correlation of C_RS/LG wlth FIP
for Z _< 30 (figs. 15,19 ; § II-1.4.).
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PARTIII

"IHEPROBLEMSNlllll ME GALACTICCOSMICRAYSOURCECOMPOSITIONAND

PROPAGATION- BEYOND"IHECORRELATIONWHH FIRST IONIZATIONPOTENTIAL-

To first order, the GCRS composition is characterized by its
correlation with FIP. The question I am going to ask now is : what is

beyond ? Where does the correlation with FIP not work ? Or, at least,
where is it insufficient to account for the data ?

In fig. 20, the deviations of the ratio [GCRS/LG]/f(FIP) from

the value I, when really significant, indicate the nuclel for which the

FIP-dependent filtering is insufficient to account for the data (for the

Pt-Pb region, see §111-3.1.). I see five areas of problems in fig. 20,

which I classify in three types:

a - The Hydrogen and Helium deficiency, which is a very specific problem
(§ IZI-I.).

b - Excesses of heavy nuclei. They can in principle be accounted for by

the presence of minor components highly enriched in specific nuclel,
highly diluted in a dominant component that obeys the FIP correlatlon.

(The abundances of the other nuclel may thus remain unaffected by the

presence of the minor components). Z see two areas of this kind:

the C, O, 22Ne, 25,26Mg, 29,3OSI area ( § III'4.) and the Z _ 40 area

(_ ZZI-5.) • 14

c - Depletions of heavy nuclei, They cannot be accounted for in the same

way. The depletion of a single, isolated heavy species, if really

proven, would imply that the bulk of GCR's originate in a medium

specifically depleted in that species. Such an evidence would be

sufficient to question the relevance of the entire apparent correla-

tion with FIP and of the similarity with SEP and Solar Coronal compo-

sitions. I see three possible areas of this kind: Nitrogen (which

will lead me to discuss the problems of CR propagation; § III-2.).

and Germanium and Lead, which will be discussed together (§III-3.). 15

I am now going to discuss these various areas of problems in
turn.

1_ Ar and Kr, with their large error bars, are also Just consistent with the value 1
in fig. 20. I do not think we have to worry there. The errors are large, both on
the spallation correction and on the LG value.

15 1 shall not discuss here the problems that arise if the photospheric value is
adopted for LG Fe (figs. 15,20). Note Chat a deficiency of a group of neighbouring
elements might be accounted for by (A/Q) dependent effects at high temperatures,
superimposed on the correlation with FIP (as present in daily SEP composition, e.g.

Meyer 1985a, and possibly in the average SEP composition, Breneman and Stone _,
213,217). But, relatlve Co a photospheric standard, GCRS Fe would be underabundant
relaclve to its neighbours Co, Ni, Cu as well as to MS, SI (figs. 15, 20), so that
the above type of explanation would not work.
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III-1. ]HE HYDROGENANDHELIUMDEFICIENCYPROBLEI_

III-1.1. H and He source spectrap and behaviour in SEP's

As shown in § II-1.2.3., the GCR observations, propagated back

to the sources using a rigidity dependent escape length %e' imply:

- that the He/H-ratlo at the sources is remarkly constant and normal

(% 10%), at least between % 3 and % 60 GeV/n, when taken at a given

energy/nucleon (the relevant parameter according to current shock wave
acceleration theory ; e.g., Krimsky 1977 ; Axford et al. 1977 ; Bell

1978a,b ; Blandford and Ostrlker 1978 ; Axford 1981);

- chat the roughly common spectral shape of H and He differs from that
of heavier nuclei (CNO), which is steeper in this range (3 to 60 GeV/n).

Meanwhile, no significant difference in source spectral shape between

any two heavy nuclei has ever been found, over the range % 0.5 to
25 GeV/n.

These facts are expressed in our plot of the abundances of H and

He relative to heavies at three different energies (3, i0 and 60 GeV/n)

in figs. 14,15,19,20,21,22.

In SEP's, H and He do not follow the orderly dependence on FIP
and (A/Q) of all heavier species. This is in particular true for the
variations of their abundances with time, a crucial parameter we have

access to in SEP's, not in GCR's ! (e.g. Mason et al. 1983 ; Meyer

1985a).

So, H and He, the dominant elements, behave distinctly diffe-

rently from the trace heavy elements we are studying, both in SEP's where
their variations do not correlate with those of heavies, and in GCRS

where they have a different spectrum. I therefore do not worry if they

do not fit in the abundance pattern for the trace elements. Clearly,
other phenomena are going on.

III-1.2. Deficiency of H and He : direct injection out of the Hot
Interstellar 14edi_a (HIM) ?

Attempts have been made to account for the low H and He abundan-

ces, assuming direct rigidity dependent injection of GCR's out of the HIM

(Eichler 1979 ; Elllson 1981, 1985 ; Elllson et al. 1981 ; Eichler and
Hainebach 1981). At this conference Binns et al. (3, 13) have tried to
test this hypothesis by plotting the GCRS/LG ratios versus the ratio

(A/QI20) for all available elements wa_ up to Z ffi58, where QI20 is the
approximate charge of the ions in a % i0 K plasma (QI20 is estimated by
assuming that all electrons with ionization potential < 120 eV have been
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removed). Their plot, shown in flg. 21 (updated), shows that the heavy

element abundances are not at all organized in terms of (A/Q120). This
confirms earlier studies based on more accurate calculations of the

charge Q In hot plasmas, but limited to Z _<30, by Cesarsky et al. (1981;
1985, quoted by Cass_ 198_), which showed (fig. 22) that, for temperatu-

res between 105 and 10v K, the GCRS/LG ratios plotted versus A/Q are
characterized by discontinuities which cannot be accounted for by the

smooth A/Q dependence of the composition predicted by the models assuming
direct injection out of the ISM. These models would also have trouble in
accounting for a normal He/H ratio (fig. 22).
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e_aiZar to those of E_ieon (1981), assuming direct injection of the particles out
of the hot IS_ pZasma. As can be seen, #heg do no_ account for the "obsewed" dis-
continuities of C_TR_/LGvs. A/Q (§ III-1.2. ).
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IlI-2. THENITROGENDEFICIENCYPROBLEM- COSHICRAYPROPAGATION-
THE B - 15N CONTRADICTION - DISTRIBUTED REACCELERATION ?

TRUNCATIONOF'IHEPLD?

Is N depleted in GCRS relative to other hlgh-FIP species, as

compared to LG and/or to SEP abundances ? The best hlgh-FIP species to

which N can be compared is 20Ne, since Ar is poorly determined and C and
0 are enhanced in SEP's relative to GCRS's, most probably because they

are synthesized in large quantities together with the excess 22Ne and

25,26Mg (§ III-4.). The most stringent condition comes from the compari-

son with SEP (in which N/2ONe is better determined and a bit higher than

in LG matter, see figs. 15 and 17). The condition that N be not deficient

relative to 2ONe in GCRS, as compared to SEP, is equivalent to the condi-

tion that N/O _ 6% in GCRS.

As noted in § II-1.2.2., most of the low energy studies based on

isotopic observations of 14N yield source N/O ratios % 3%, which would

imply that the correlation with FIP and the similarity with SEP's are not
relevant, while high energy elemental studies yield N/O _ 6%, and thus

make no problem (low energy_isotope data : Pretzler etal. 1975; Wieden-
beck et al. 1979 ; Guzik 1981 ; Mewaldt etal. 1981 ; Webber 1982a,1983b;

Webber etal. 2, 88 ; high energy elemental data : Gofer etal. 1981 ;

Webber 19825 ;--Engelmann 1984 ; Lund 1984 ; Dwyer and Meyer 1985 ; Webber

etal. 2,16; further discussions : Mewaldt 1981; Silberberg etal., 1983;

Wiedenbeck 1984 ; Meyer 1985b ; Guzik et al. _, 80 ; Webber etal. _,42).

The sg_viving primary fraction is _ 34% among arriving low ener-

gy isotopic i_N, and ranges from _ 19 to _ 31% (average _ 23%) for the

high energy elemental N observed between _ i and _ 15 GeV/n by the HEAO-
C2 instrument (fig. 16 ; assuming N/O TM 6% at sources). So, the supe-

riority of the low energy isotopic data as regards surviving primary
fraction is not overwhelming. But the relevant cross-sections are most

precisely measured at low energy, up to % 1GeV/n (fig. 4 ; § I-3.1.), so

that the high energy estimates of the source N/O ratio require an extra-

polation of the cross-sections to higher energies. Although the cross-
sections are known not to vary much in the GeV range for such light

nuclei (which is confirmed by the existing higher energy measurements,

fig. 4), we do not know to within which accuracy this is true.

The HEAO-C2 isotopic data points for 14N/O at high energy (E =

2.5 to 6 GeV/n; fig. 25), obtained from different subsets of events with

various methods of geomagnetic isotope analysis, are at present too

scattered to be decisive (Gofer et ai.1983 ; Byrnak etal. 1983a; Ferran-

do etal. 2, 96 and prlv. comm. 15N/N - 0.49 ± 0.06). Let me Just note

that the r--eglon of marginal agreement of all HEAO-C2 error bars on 14N/O

in fig. 25 (10 errors are plotted) corresponds to N/O - 6% at the

source; [while the corresponding data range for 15N/O, fig. 24, agrees

with the 15N/O ratios predicted from the high energy B/C ratios].

I am now going to discuss cosmic ray propagation at low energy.
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III-2.1. Low energy cosmic ray propasatlon -The B-15N contradiction -
Distributed reacceleratlon T

Figs. 23 and 24 compare observed data to the result of propaga-
tlon calculations for two (presumably) pure secondary to primary ratios:
B/C and 15N/O. The species considered are close in mass, so that the

compared predictions for the two ratios are not sensitive to the exact

shape of the Path Length Distribution (PLD; which may be truncated or
not).

The PLD's used throughout figs. 23,24,25,26 are the pure expo-

nential distributions with rigidity dependent escape length %e used by
Soutoul et al. (_, 8). They are adjusted to best fit the observed B/C
ratio, with the most up to date cross-sectlons. At high energy, they fit
the HEAO-C2 data of Engelmann etal. (1983), with the relevant modulation
parameter _ = 600 MV. [To fit the B/C ratios Just obtained by Webber et

al. (_, 16), slightly lower grammages would be required]. At lower ener-

gles, below R = 5.5 GV or E _ 2 GeV/n,7two behaviours of %e are consider-ed : %e = cst = 7.7 gcm-2, and le = .9 _ gcm -2 (pure H). Two levels

of modulation are also considered, _ = 350 and 490 MV. Actually le " cst
and _ ffi350 MV on the one hand, and le _ _ and _ = 490 MV yield about the
same results. 16 The value _ = 490 MV is probably more adequate for the

Chicago IMP-8 data, so that their data on B/C tend to favour _ _
(fig. 23). But the important point here is that the dispersion o_ the
curves that encompass the plausible fits to the low energy B/C data
points is not large, neither in fig. 23, nor in figs. 24,25 and 26.

I have also included in figs. 23,24,25,26 an estimate of the
uncertainty on the calculated curves due to the cross-section uncertain-
ties around 600 MeV, based on the figures given in Table 2. I have dis-
tinguished the errors associated with measured cross-sections, for which
I have used the published uncertainties, from those associated with un-
measured cross-sectlons for which I have attributed a standard 35% error

to the seml-empirlcal estimates. 17 I have simply llnearily summed the
two contributions.

Comparison of figs. 23 and 24 shows that the propagation models

(values of %e) that fit the purely secondary B/C ratio do not at all fit
the nearby purely secondary I)N/O ratio at low energles. 18 This is
another way of expressing the problem earlier addressed by Guzlk (1981)

and Guzlk etal. (_, 80).

16 For a higher degree of interplanetarydeceleration_, the low energy particles
observed near Earth had originally higher energies in interstellar space. In the
few 100 MeV/u % 1C.eV/n range in interstellar space, higher energy particles have
higher B/C ratios. Therefore a higher value of the modulation parameCer _ yields
higher B/C ratio near Earth.

17 This 35% error may seem large since the sum of a large number of unmeasured cross-
sections is involved, whose errors should largely compensate each other on the
average (e.g., Letaw etal. _, 46). On the other hand, recently measured cross-
sections often deviate much more than expected from the semi-empirical estimates
(e.g.,Webber and Kish _, 87) (fig. 5 ; § I-3.).

18 The lower B/C ratios Just obtained by Webber etal. (2, 16), plotted in fig. 23,
would requlrestill lower values of _e' thus amplifying_he contradiction.
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Table 2 - Contribution of various parents (fraction f) end associated cross-section errors (when unmeesured! adopted error - 35t)

to the formation of secondar_ Bf 14Nt ISN! Sc-Cr around 600 14eV/n

r B 14N 15N Sc-Cr •f S error Product f 1;error Product f 1;error Product f % error Product

C 0.554 2.5t 1.41;

N 0,111 35.0t 3.9% 0.179 35.0% 5.35

0 0.25Z 8.2t Z.1% 0.548 4.91; 3.2Z 0,810 3.5S 2.81; -

0,095 10.3% 1.0% 0.103 8.41; 0.gt -

F,Ne 0.084 35.01; 2.9t
:j Na 0.078 35.0"., 2.71; 0.087 35.01; 3.01; -

lea154, 55,57,68Fe,Co, Nt - 0.260 35.01; 9.11;

S6Fe . 0.740 3.01; 2.21;

Fract/on yielded by
measured a 0.806 - 0.743 0.913 0,740

_'. errors measured a 3.51; 4.21; 3.71; 2.21;

_'_.Errors Total 10.31; - 13.2t 5.71; 11.31;

The contradiction is cleanest in the % 300 to 500 MeV/p_range,
where we have in fig. 24 four independent solid points for I_N/O by
Webber and coworkers, obtained with good to excellent instrumental iso-
tope resolution (fig. 2; § I-2.), which lie _ 30% above the predictions
that fit B/C. The interpretation of the data in terms of solar modula-
tion in this energy range is also less critical than for the lowest ener-
gy points (_ 100 MeV/n), which, however, point toward the same problem
(Guzik 1981; Guzik et al. 2,80). This energy range is also the one
where the cross-sections _ave been best measured recently (§ I-3.1. ;

fig. 4). It is clear from figs. 23 and 24 (Table 2) that the discrepancy
is far beyond those permitted by reasonably estimated combined cross-
section errors (± 13%).

Again, changes in the exact shape of the PLD (truncation) will
not remove the contradiction for such nearby nuclei. So, unless there

are gross, unknown errors i5 either in the ca data, or in the measured
cross-sections for B and/or N - which seems improbable -, I ca_5imagine
no way of understanding simultaneously the low energy B/C and N/O ob-
servations within the classical propagation framework.

At this state, I can think of only two ways out 19 :

(i) A _p_ec_ia_l £r_pag_at_ion histor Z for C (and 0?) nuclei ?

The first one is very speculative, certainly difficult to check,
but should still be kept in mind as a possibility. According to our

_urrent knowledge, % 50% of the GCR C nuclei originate, together with the
"ZNe excess, in special environments, plausibly Wolf-Rayet stars
(§ II-1.3. and III-4. ; figs. 17, 20 and 30). It is not impossible -
although there is no particular astrophysical Justification for this

19 Here I exclude the hypothesis that a significant fraction of the 15H be primary.
This would imply an excess of 15N by a factor of % 100 in GCRS, as compared to
excesses by factors of % 2 to 2.5 for 12C and % 3.2 for 22Ne. A strong dilution of
the l_N-rlchmaterial with normalmaterial would then be difficult to accept. Most
CR's probably ought to originate In the 15N-rich material.
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The B/C ratio, vs. energy. Errors o' _- _- R ]-O.(*S
OBservations are from : Garcia- B Heasured-_-._ "_ _,=2l,.0. p . S.SJ
Munoz et al. Z979 (IMP-8) ; Webber 1 Notmeasured--{
et el. 2, 18 ; and Engelma_n et C (3s%) .-_'_ x,=23J, R ]-o6s
al. 1983--(HEAO-C2). _he calculated 0.40 s.sJ
curves are adjusted as to Best fit
the observed ratios. They refer to
pure ezponential PLD's with _. =
f(R) or f(RjS) as indicated on _he 600MV_- -JL

figure, Based on Soutoul et al. (_, 1,,>h._6__a ' _'

8) [lm in g cm-2 of pure H ; R _n 0.30 . _ _
GV ; the Bracket with R and .5.5
indicates that for R < 5.5 GV, the .._1"1"

R dependence ceases, and R is to Be .t490MVJ __--'L_Y_ \_

replaced by 5.5]. The full curves (3soMv)l
include a B-dependence, the dashed z.9OHVtcurves do not. Three values of the 020 L
modulation parameter _ are conside- 3SOMV

, red ; 600 _fV is believed to be ade-

quate for the HEAO-Cg data, and
490 MV for the low energy IMP-8
data, thus favourin.q a 6-dependence

of _e" An estimate of the uncer- 010
tainty on the curves due to cross- |
section (o) errors is given around
600 MeV/n ; I have indicated sepa- • GARCIA-MUNOZef at 1979 (IMP 8)
ratel_ the errors associated with • WEBBERef al,this conf.
the measured cross-sections and • ENGELHANNe_ ai 1983 (HEAO-CZI
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Byrnak et el. 198&z (HEAO-C2) i (350HV)

Ferrando et al. __, 95 and priv. 0.10- 490MV t_-
con_n. (H_AO-C_). New data presented ]S0MV
at this conference are marked By an
arrow. Calculated curves, adjusted
as to best fit the B/C ratio : see

caption of fig. 23.
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hypothesis - that these nuclei have a propagation history different from

that of the bulk of the CR nuclei and traverse on the average signifi-
cantly less matter, thus yielding comparatively low B/C ratios. The B/C
ratio would then not be a good cornerstone to discuss propagation in

general. An immediate argument against this hypothesis would be that, in
the same framework, it is expected that _ 30% of the O also originates

in Wolf-Rayet stars (fig. 301, so that the difference in propagation
history is not so large for the daughters of C and of O. [This figure of

% 30% of 0 from Wolf-Rayet stars is, however, probably more model depen-

dent than the 50% for C]. When good cross-sectlons become available,
study of almost purely secondary Fluorine may be very instructive in this
context.

(ii) Distributed reacceleration ?

The second way-out I can think of at the moment is less specula-
tive, and certainly more liable to check : it is the hypothesis of dis-
tributed reacceleratlon. In this hypothesis, the CR's we observe in the

few i00 MeV/n range have earlier been propagating a long time at lower
energy (say,_ i00 MeV/n), before they got boosted up in energy by factors
of a few units by passing weak supernova shocks (Silberberg etal. 1983,
and 3,238 ; Letaw et al. 1984 ; Simon etal. 3,2301. The relevant cross-

sectTons for secondary formation are then largely thecross-sections below

I00 MeV/n, which sometimes show strong peaks followed by a steep decrease

down to threshold. Silberberg et al. (1983) have noted several problems

with CR composition, specifically at low energy, which might be solved if
distributed reacceleration is at work.

At high energy, distributed acceleration has less effect on

composition, because the cross-sectlons are much more constant with

energy. Note that, at this conference, Simon etal. (_, 230) have shown
that distributed reacceleration is not in conflict with the observed

decrease of the secondary/primary ratios at high energies ( % 2 to
200 GeV/n).

A serious difficulty with the hypothesis that the particles have
traversed a lot of matter at E _ I00 MeV/n before we observe them at a

few i00 MeV/n, arises from the strong energy loss and its Z2 dependence
at low energy, which may well kill selectively heavier nuclei such as Fe

and especially UH elements. [This is the problem first posed by Eichler

(1980) and Epstein (1980a) regarding the injection problem; at very low
energies _ 3 MeV/n, however, the plck-up of electrons by heavier nuclei

is sufficient to cancel the Z2 dependence of the energy loss (Meyer
1985b) ; but this is no longer true in the i0-i00 MeV/n range where the

nuclear interactions involving the low energy cross-sections are supposed
to take place]. Small reaccelerations must be frequent enough that Fe

and UH nuclei do not get preferentially thermalized. This is a problem.

Anyway, I think that the lower energy B-15N contradiction is

perhaps a clear case for distributed reacceleration. To check this hypo-
thesis, I recommend: (i) measurement of key unmeasured spallation cross-
sections below % i00 MeV/n, down to threshold ; (ii) detailed analysis

of the consistency of our data on secondary 6Li, 7Li, 7Be, 9Be, lOB, liB,

15N, 170, 19F at low energy, with and wlthout distributed reacceleratlon;
(iii) studies of the energy loss problem for heavier nuclei: can it be
overcome ?
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Ill-2.2. The 1_ source abundance from low and high energy data

Fig. 25 is the twin-figure to fig. 24, for 14N/O. Here, of

cour_, a significant source component is expected, and I have p_otted

the=_N/O ratios expected from th_ purely secondary production, (_N/O)=
= 0%, and for source (I_N/O)s = 6%. In between, calculated curves woul_

roughly linearly with (14N/O) S.scale

As well known, the bulk of the low energy points indicate

(14N/O)s _ 3%, if th? values _ %e that fit the B/C ratio (fig. 23) are
adopted. Of course, ir one we_ to increase the low energy le'S _o as to
fit the 15N/O ratio instead, the predicted secondary yields for 14N would

increase accordingly and the 14N source values derived from the 10w ener-
gy points correspondingly decrease down to values close to zero.

I think that, as long as the low energy. B-15N contradiction is

not solved, we cannot say anything serious on the 14N source abundance as
derived from low energy data. Assuming that the CR data are correct,

some cross-sections ought to be wrong : those for B formation ? for 15N
formation ? and then, how about those for 14N formation ? As mentioned

above, I do not think the recent cross-sectlon measurements for product-
ion of these very species from their principal progenitors can be that

wrong. Errors on estimates of other, not measured cross-sectlons are not
either likely to make the difference (Table 2 ; figs. 23 and 24). That

is why I think some other ingredient must interfere. The most likely one
I can think of at the moment is distributed reacceleration. The relevant

cross-sectlons could then largely be those below _ i00 MeV/n, and we
would indeed be using wrong cross-sections at present ! And before the

very low energy cross-sectlons are known (those for Li, Be, B formation
have been largely investigated, e.g. Read and Viola 1984, but not those

for 14,15N) and propagation with distributed acceleration has been model-
led, only God knows whether this hypothesis solves the B-15N contradic-
tion (while being consistent with the data on 7Be, 9Be, lOB, liB, 15N, F),
and which source 14N abundance it yields.

At high energies (where, anyway, distributed reacceleration
would not significantly affect the composition), the marginal consensus
of the various HEAO-C2 isotope analysis around 3 GeV/n and the point at

6 GeV/n yield 15N/O ratios which are consistent with the predictions from

the B/C ratio, and converge on (14N/O) S _ 6% (figs. 24 and 25; plotted
are 10 errors).

6% is also the value for (14N/O) S derived from the N/O elemental
data between _ i and 15 GeV/n (HEAO-C2 data, Engelmann 1984, Lund 1984;

in excellent agreement with the new data of Webber et el. _, 16 and of
Dwyer and Meyer 1985).
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II1-2.3. Truncation of the exponential Path Length Distribution (PLD) ?

A truncation at low pathlengths of the roughly exponential PLD

of CR's in the galaxy means a dearth of particles having traversed a

small amount of matter, say _ I gcm -2, between source and earth. The

simplest interpretation of such a dearth is that many sources are sur-

rounded by dense matter, in which newly accelerated CR's are trapped

before escaping into the general galactic medium: this is the nested

leaky-box model (Cowsik and Wilson 1973).

Whether the PLD is truncated or not can be decided by comparing

observed secondary to primary ratios, for groups of nuclei with widely

different nuclear destruction lengths %nucl (some with %nucl _ %e* others

with %nucl << %e, where h e is the escape length from the Galaxy; e.g.,
Webber et el. 1972). The PLD may actually be truncated for some ener-

gies, and not for others. At this conference, a number of investigators

have addressed this problem, at both high and low energy, based either on

data for Z _ 30 (Soutoul etal. _,8 ; Margolls _,38 ; Webber et el. _,42;

Letaw et el. _, 46 ; Ferrando et el. _, 61 ; see also Garcla-Munoz et el.

1984), or on data for UH nuclei (Fowler et al. _, 119 ; Klarman et al. _,

127 ; Waddingtou et el. _,i ; Giler and Wibig 3,17 ; see also Brewster et
al. 1983 and Letaw et al. 1984). In view o_ the very small value of

lnucl for UH nuclei, the latter studies should in principle be the most
powerful tool to investigate a possible dearth of short pathlengths.

I shall discuss in turn the evidence for and against truncation

(i) at high energy ( _ I GeV/n) based on elements with Z _ 30; (ii) at

high energy, based on OH elements; and (ill) at low energy ( < i GeV/n),

based on elements with Z _ 30.

XII-2.3.1. Truncation of the PLD in the GeV/n ranle-Data for Z _ 30 -
The role of interstellar He

From the comparison of the B/C and Sc-Cr/Fe ratios, there is a

general agreement that no significant truncation is required beyond i or

a few GeV/n. This is, in particular, illustrated in the comparison of

figs. 23 and 26, based on Soutoul et al. (_, 8). The purely exponential
PLD that best fits B/C also fits almost perfectly Sc-Cr/Fe at high energy

(and certainly within the cross-sectlon errors). The fit is, however,

slightly low, and a limited amount of truncation cannot be excluded
either.

Ferrando etal. (3, 61) have suggested that the need for trunca-

tlon may be reenforced when interstellar He is included in the propaga-

tion calculations in a physical way (i.e. using as much as possible real

cross-sectlons on He; not Just scaling the cross-sections on H, which is

merely equivalent to a change of "units" for %e). Referred to the total
cross-sectlon, the spallation of Fe on He yields less nearby products

(Sc-Cr) than its spallatlon on H, while the 8pallation of C yields about

as much Be on Ue as on H. When interstellar He gets properly taken into

account, one may therefore expect a decrease of the calculated yield for

Sc-Cr as compared to that for Li Be B. Then more truncation of the PLD

will be required. I think that this idea must be studied more precisely,

based on all available data on spallation on He (or, for lack of such
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data, on spallatton on heavier targets such as Be and C). Also, product-
ion of B, for which we have much better CR data, should be considered,

rather than of Be. [B wlll probably be comparatively less produced than
Be in the spallatlon of C on heavier targets, more llke Sc-Cr; the above

effect should therefore be smaller for B than for Be; on the other hand,
as much as % 45% of B is produced out of parents heavier than C (Table 2),

for which B 18 not a nearby product]. Anyway, thls problem requires mea-
surements of spallatlon cross-sectlons on He.

1XX-2.3.2. Truncation of the PLD in the _eV/n ranle_-DU nuclei data

As regards L_{ nuclei, Klarman et al. (_, 127) have in particular
compared the observations to the predictions for purely exponential PLD's
for two mainly secondary/prlmary ratios : (Z = 62 to 69)/"Pt Pb" and (Z =

70 to 73)/"Pt Pb", where "Pt Pb" stands for (Z = 74 to 83) (fig. 27).
The predictions are obtained using a cross-sectlon systematlcs derived

from the latest cross-sectlon measurements by Kertzman et el. (_, 95) at
I GeV/n (fig. 7 ; § I-3.1.). Fig. 27 shows that the agreement between

the HEAO-C3 measurement and the predictions is excellent. It may, how-
ever, be coincidental. The HEAO-C3 data indeed refer to a median

energy of % 6 GeV/n, while the new cross-sectlons measurements have been

performed at % i GeV/n. Nowj the study of Au spallatlon by Kaufman and

Steinberg (1980) shows that, for AA _ 40, spallatlon cross-sectlons p_k
around i GeV/n and decrease by factors of % 2 between I and 6 GeV/n •
So, the secondary yields at 6 GeV/n predicted for a pure exponential
PLD could well be twice lower than apparent in fig. 27, which would be a

case for truncation. In addition, the Ariel VI group finds higher
fluxes of secondary nuclel (figs. 27 and 9, I0). They refer to lower

energies than the HEAO-C3 data, and the difference is belleved to be

real (fig. 11). Their median energy, % 2 GeV/n, is actually much closer

A'R,EL1.21 , , , , _ Cross plot of the two mainly secondar_• to primary Patios (Z = 62 to 69)/'rPt Pb" vs.I--

: L ZGeV/,_-.. z= 70-z_/'_Pb".uhe_e"PCPb"standsfo,(Z_= 10
0. _ _///_ = 74 to 8_), adapted from Klummun etal. (2_

_- 08_ HEAO _////J 127) [see also Banns et el. 1985]. The source= I 65eV/n "v-,/-// ratios assume LG abundances biased according

- _ to f(FIP) (fig. 15). The propagated ratios

i0.6 ,,,--Propagated have been obtained assuming a _re ezponential

k\\_b
|_at15eVln} PLD, and using o_oss-seatione derived from the

O.l_ y Zatestmeasumements by Eerie,an etal. (3, 95)
at I GeV/n (fig. ? ; §I-3.1.). The obs-'e_oed
_at_os ape those of the emperiments HEAO-C3

0.2 _Source (FIP) ea_u,d 8 GeV/n und Art, el VI mainZg ul'ound
- 2 GeV/n (figs. 9, 10 ; § I-4.). I_ iS impor-

, I I I I , I runt to note tha_; a subset of the Ariel FI
0 0.1 0.2 0.3 0./_ 0.5 0.6 data a_ou.d 8 GeV/n agrees well wi_h the IIEAO-

C3 point at the sums energy (fig. 11). See
(Z=70to 73)/"P, Pb" d_s_ussio,in § III-2.Z.2..

20 This behaviour is not simple. Both the energy at which the cross-section peaks (it
falls again at lower energy) and the relative amplitude of the peak depend on AA
(Kaufman and Steinberg 1980).
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to the energy at which the cross-sections have been measured, so t_t
these Ariel VI data, together with the above mentioned calculation ,

could provide further support for truncation (fig. 27).

The above arguments are valid, unless distributed reaccelera-

tion, working at higher energy as well, makes the cross-sections at

I GeV/n relevant for'6 GeV/n ! (we might then also have problems in

explaining the high secondary fluxes in the Ariel data at lower energy I).

III-2.3.3. Truncation of the PLD in the few 100MeV/n rante

Below i GeV/n, comparison of the data for B/C and Sc-Cr/Fe 22 In

figs. 23 and 26, shows that the purely exponential PLD's that fit B/C

indeed do not produce as much Sc-Cr as observed at low energy. However,

the discrepancy is only marginal, when considering the uncertainty on the

prediction associated with the unmeasured cross-sectlons (taken to be

good to within 35%, perhaps somewhat pessimistically; fig.26, Table 2). 23

Much more important, the low energy discrepancy between B/C and

$c-Cr/Fe (figs. 23 and 26), which we tend to interpret in terms of a

truncation of the PLD, is much smaller than that between B/C and 15N/O

(figs. 23 and 24),__hich Is totally not understood (and certainly not due

to truncation)!l! Z4 So, I think that, as long as the B-15N contradiction

is not understood, It would be very imprudent to draw any conclusion

regarding truncation of the PLD at low energy.

III-2.3.4. Summar_on the truncation of the PLD

At high energy (E _ i GeV/n) there _s a consensus that the data

up to Fe do not suggest any significant truncation of the PLD. They

should actually allow to place strict limits to acceptable truncations.

However, a realistic introduction of spallation in interstellar He might

increase the need for truncation. The UH data, which are extremely

sensitive to truncation, are difficult to interpret because of probable

energy dependence of the cross-section. They might well favour some

truncation. Distributed reacceleratlon, if present, may further compli-

cate the picture.

At low energy, (E _ I GeV/n) no conclusion can be drawn before

the B-15N contradiction is solved (§ III-2.1.).

21 These UH secondary/prlmary ratios, while very senslclve to a truncation of the PLD,

are very insensitive to the exact value of he (which is anyway >> %hUrl), and to
its _ 50% increase between 6 and 2 GeV/n.

22 At low energy, I shall consider essentially the IMP 8 data from the U. of Chicago.
There exists a large body of diverging balloon data, most of which are above the

saturated $c-Cr/Fe ratio (corresponding to no escape at all) (Soutoul et el. _,8).
23

The discrepancy between B/C and Sc-Cr/Fe may appear larger when expressed in terms

of the Ae'S for pure exponential PLD's required to flt both ratios (Soutoul et el.
2,g). But this he is not a good parameter since a small increase of Sc-Cr/Fe, ob-
_alned by a small amount of truncation of the short pathleugths, would require a

large increase of he in a purely exponential framework (since he >> Aunt1 ).

24 Actually, a larger he at lower energy that would flt I_/o would roughly fit
Sc-Cr/Fe.
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11I-3. THEGERMANIUM-LEADDEFICIENCYPROBLEM

1 shall discuss together the Ge and Pb deficiency problems,

because both may be volabillty indicators, and because for both the CI
meteoritic abundance standard might have to be questioned (see below

§ III-3.4. and 3.5.).

III-3.1. Deflnl_ the Ge and Pb/rt anomalies

It is immediately apparent in figs. 19 and 20 that Ge is low in

GCRS as compared with elements with similar FIP (Fe, big, Si), when refer-
red to the standard CI meteoritic value as LG abundance (§ II.I.I. and

2.1.).

Pt and Pb have not been plotted in the above figures, because
their source abundances relative to Fe or Si cannot yet be reliably
determined. Even the even-Z elements are not individually resolved in

this range, neither on HEAO-C3, nor on Ariel VI (fig. 9), so that charge

groups have had to be defined "Pt-group" - (Z = 74 to 80) and "Pb-group"
- (g - 81 to 86) (§ I-4 ; fig. i0 ; Table i). Second, extrapolation to
the sources of the observed abundances relative to Fe or Si is still very

uncertain, model dependent (truncation of PLD, § III-2.3. ; cross-

sections, § I-3.1.) (e.g. Giler and Wiblg 3, 17). I shall therefore dis-
cuss only the "Pb-group"/"Pt-group" ratio, without reference to Fe or Si.

And, rather than deriving Chls ratio at the sources from the observa-
tlons, I shall follow most authors and more prudently investigate which
source abundances may, or may not, be consistent with the observed ratio.

I recall that the observed "Pb-group"/"Pt-group" ratios are 0.25 ± 0.09
and 0.35 + 0.I0 from the HEAO-C3 and Ariel VI experiments respectively

(Table 1 ; Waddington et al. 9,. Fowler et al. 2, 119). These ob-
served ratios have been plotted on ;-- fig. 28. Posslble-non-Z 2 effects in

the HEAO-C3 instrument might further slightly reduce the ratio (fig. 28 ;

Waddlngton et al. 9,... ; Newport et al. 3, 287).

I shall now ask the question : are the observed "Pb-group"/Pt-

group" ratios consistent with what would be predicted by the simplest
model : source abundances following standard meteoritic C1 values biased

according to FIP, and later modified by standard pure leaky-box propaga-
tion in the galaxy ?

Fig. 28 addresses this question. Based on standard CI values,

the LG ratio "Pb-group"/"Pt-group" = 1.00 (I.II) (Grevesse and Meyer, 3,
5). Correction for FIP bias according to the pattern f(FIP) adopted _n
fig. 15 increases this ratio by a factor of % 1.55 (1.15), since FIP(Pb)

- 7.4 eV and FIP(Os, It, Pt) _ 8.9 + 0.2 eV. We thus get "Pb-group"/"Ft-

group" = 1.55 (1.19) at the sources, after bias with FIP. The modifica-
tion of this ratio during propagation is not small, because a large
fraction of the interacting "Pb-group" elements is transformed into one

of the numerous "Pt-group" elements. With the best-available scalings of

cross-sectlons (§ 1-3. I.) ; Kertzman et al. 3, 95 and prlv. comm.) and
a simple leaky-box model, propagation reduces the "Pb-group"/"Pt-group"
ratio by a factor of % 0.48 (1.20) (my estimate of the error, perhaps
quite optimistic ; § I-3.1. and III-2.3.2. and 3.2.). The clear conclu-

slon of fig. 28 is that the "Pb-group"/"Pt-group" ratio is indeed anoma-
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lously low, based on the most standard assumptions, and in partlcular
starting from standard C1 values as LG abundances.

Of course, since we are unable to provide a reliable link with

the abundances of much lighter elements, we cannot tell whether Pb is
underabundant or Pt overabundant !

// l I = I I I I I I
Ph (1

LG -- --SOURCE+FIP Ph C1

. PROPAG. Ph Cl

HEAD-C3DATA ARIEL Vl n°n-Z2 _' = :', _. t

_, I i J I i i Ill
0.1 0.2 0.5 1 2

"Pb-group"/"Pt-group"
The "Pb-group"/'_-group"abundance ratio (see Table 1 for def.)j studied in

f_.euork of the standard cosmic-rag mode_. Based on Waddington et a_.
(9_s...)and Grevesse and Meyer ($_s5). Peom top to bottom : LG abundance ratio,
equal to 1.00 (1.11) bused on CI meteoriticdata (CI)j and equal to 0.59 (1.14)
based on solar photospherie data (Ph) (_ III-3.5.). If the usual bias _th FIP
applies, the presumable GCRS ratio is increased by a factor of 1.65 (1.15)
relative to its LG value (_ III-3.I. $ fig. ]5). Pure leukpboz propagation
between sources and Earth in turn decreases the ratio by a factor of 0.48 (1.80)
(§ III-.3.1. ; on the figures these various uncertaintieshave been swnmed quudra-
t_allg). The t_ bottom lines give the data obse_ed b_ the HEAO_3 and A_el VI

eo_erDnen_s (Hc_ding_on e_ a_. 9_ ... ; Fouler etal. 2j 119 ; § I-4. ; _able g ;
figs. 9, 10). Vossible non-Z e_feots on the BEAO-C3_ho_e soale m_ht displo_e
the HEAO_3 point to the posit_n of the trio_le (e.g._ Neuport e_ al. 3j 287).
The oleo_ oonoluaion of this f_ure is that the obse_ed '_b-g_upV/'_-g_up "
ratios are definitely inoonsisten__ith the most standard CR model if CI meteor_io
obundunoes are adopted as a LG basisj but are not inoonsistentif the solar photo-
sphe_i_ values are adopted instead.

111-3.2. The low Pb/Pt ratio : probabl_ not explainable in terms of a
truncation of the PLD

It is clear from § 111-2.3.2. that the question of a limited
truncation of the PLD, to which UH elements would be extremely sensitive,

is still open. The main p_oblem is here the energy dependence of the
relevant cross-sectlons, which are measured at I GeV/n (§ I-3.1.) and are

used at 6 and 2 GeV/n, a range in which they are llkely to slgniflcantly
decrease with energy (Kaufman and Steinberg _980). If too large cross-

sections are actually used, truncation is actually needed.

But this trade-off between cross-sectlons and truncation is

about the same when considering the (Z = 62-73)/"Pt Pb" ratio and the
effect of secondaries on the "Pt-group"/"Pb-group" ratio. Fig. 27 shows

that, with the cross-sectlons used as they are and no truncation, the

(Z = 62-73)/"Pt Pb" data of HEAO-C3 and Ariel VI (high energy part of
the data, identical to those of HEAO-C3 ; see fig. 11) are well fitted.

Therefore not much can be changed by some trade-off between cross-
sections and truncation as regards the calculated "Pt-group"/"Pb-group"
ratio.
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III-3.3. The low Pb/Pt ratio - Interpretations in terms of
nucleosynthests ....

It is well known that in ordinary matter Pb is primarily a

s-process element while elements of the Pt group are mainly formed by the

r-process. On this llne Oiler and Wibig (_, 17) have proposed a model in
which the parameters governing nucleosynthesis of OH elements in GCR

material differ from those for ordinary, "solar-mix", material : for GCR

material, neutron fluences and densities, temperatures and time scales

are adjusted in such a way that the s-process does not reach beyond g =

58, and the shape of the GCR Pt-Pb peak is reproduced by a specific type
of r-process.

On the other hand, Margolis and Blake (3, 21) note that, in

"solar-mlx" material, the standard s-process that f_ts s-nuclides up to

204pb (1.5% of Pb) underproduces the dominant, heavier Pb isotopes. It

is generally believed (Clayton and Rassbach 1967 ; Beer and Macklin 1985)

that most of the missing Pb is produced in specific sites with particula-

rity intense neutron exposures ("recycling s-process"), which are identi-

fied as low mass stars (M < i M_ ). The sites for production of most Pb

being different from those for lighter s-nuclides, a deficiency of Pb in

GCR's would be explained if the nucleosynthetic yield of these sites,

i.e. stars with M < i MQ, was underrepresented in GCR's as compared to
"solar mix". 26

The difficulty with such explanations of the deficiency of a

specific element in terms of nucleosynthesls is always the same : they

imply that the vast majority of GCR's must originate in specific sites of

current nucleosynthesls, while their bulk composition resembles so much

the "solar-mix" modified by slmple atomic selection effects (the same

selectlon effects found present in the solar Corona and SEP), and corre-

lates so poorly with the outcome of the major cycles of nucleosynthesls

and with the calculated pre-supernova and supernova compositions (Arnould

1984 ; Meyer 1985b).

Of course, there remains the possibility that Pb be not low, but

that "Pt-group" elements be high, as a specific excess of r-nuclldes (see

§ III-5.3. ) •

25 This adjustment is also tuned as to reproduce other features of the UH source
abundances for lower Z (some of which are, however, in my opinion, very unreliably
derived from the abundances observed near Earth). Selection according to FIP is
assumed to apply for s-process elemente_ not for r-process species.

25 F_ppeler etal. (1982) had erroneously attributed to r-process the entire differ-

ence between the observed Pb abundance and that estlmated for conventional s-pro-
cess, thus forgetting about the important contribution of the "recycling s-process"
(F._ppeler etal., private circular ; Beer and Macklln 1985). On this erroneous
track, Fixsen (1985) has reevaluated a r-process Pb abundance, which is also much
too high (as noted by Fixsen himself, by comparison with the neighbouring r-process
components of Tl and Bi). This. high r-process Pb abundance is however the one

adopted by Binns et el. (1985) and Waddington etal. (_,...) ; I shall not consider
it further in my di_cusslon, These authors, however, note that the CR data may be
consistent with a "Pb-poor r-process" (similar to the more standard one considered

by Oiler and Wlblg _, 17).
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111-3.4. Ge and Pb as volatilit 7 indicators

It is now well known that, for most elements, the degree of vo-
latility is (positively) correlated with the value of the FIP so that the
apparent correlation of abundances with FIP might as well be interpreted
as a correlation with volatility (Cesarsky and Bibring 1980 ; Epstein
1980a ; Bibrlng and Cesarsky 1981). Only a few low-FIP, though volatile,

elements that are exceptions to the general rule permit to distinguish
between the two types of correlation. Two indicators, Cu and Zn, though
not entirely clear-cut, tend to favour FIP. But the best available indi-

cators are at present Ge and Pb (Meyer 1981d ; Grevesse and Meyer _, 5).

The fact that Ge and Pb are simultaneously found underabundant

is striking I At face value, it implies in this context that volatility,
not FIP, is the relevant ordering parameter, and that GCR's are primarily

interstellar grain destruction products. This is an interesting possibi-
lity, but not an easy one to live with ] The models of grain destruction

and preferential injection in shock waves, while accounting fairly easily
for the relative abundances of the refractory and volatile reactive heavy
elements and for the low abundances of H and He, have a hard time in

accounting for the roughly normal abundances of heavier noble gases (Ne,
At, Kr, Xe) relative to O. Note also that, if GCR's are grain destruc-
tion products, their similarity in composition with SEP and Solar Corona

is purely fortuitous.

111-3.5. _estlonln_ the l_ reference abundances forge and Pb

LG reference abundances have been discussed in § 11-1.1. and

2.1.. As mentioned there, I think that C2 meteoritic abundances are
irrelevant as a standard, which does not mean that Clfs are necessarily

perfectly representative of the protosolar nebula for all elements.

The study of Grevesse and Meyer (_, 5) shows that the CI meteo-
ritic abundances are well deflned for both Ge and Pb.

As regards the solar Photosphere, this study shows that the Ge

abundance can be rellably determined from 2 llnes, and that of Pb from 1
line. This represents very few llnes indeed ! However, with the quality

presently reached by the solar atmospheric models, it is no longer un-
reasonable to determine the abundance of an element based on 1 or 2 llnes

only. A critical treatment of the errors in the photospheric abundance
determinations, especlally on the log gf values, leads to the conclusion
that, to the best of our present knowledge, there is a significant dis-

crepancy between the C1 and the photospheric abundances of Ge and Pb,
both being found lower by a factor of % 1.6 in the Photosphere. If the

photospheric values are adopted, there is no longer any significant
underabundance of Ge relative to Fe, big, Si (figs. 19 and 20) and of Pb

relatlve to Pt (fig. 28).
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Can one meanlngfully plck-up speclflcally two elements and adopt

for them photospheric rather than C1 meteoritic values ? Once again, C1
values are better measured, but their relevance as representative of the
abundances of the protosolar nebula is not straightforward, especially
for volatile .elements (§ II-2.1.). And we are specifically considering
two volatile elements (especially Pb, which is extremely volatile) I
Consideration of fig. 2 in the review by Grevesse (1984a) shows that

there is still some leeway for limited differences between photospheric
and C1 abundances among volatile and highly volatile elements (not to

speak of the problems with siderophile Fe and refractory Ti ; § 11-1.1.).

III-3.6. Sumlary on the@4-Pb deficienc_ problem

The low Ge and Pb abundances in GCRS seem at first to indicate

that volatility, rather than FIP, is the parameter governing GCR abun-
dances, and that GCR's are primarily grain destruction products. (How-
ever other, less clear-cut indicators, Cu and Zn, do not confirm this

view). This hypothesis is not easy to 1lye with : it has dlfficultles in

explaining the noble gas abundances in CR's ; in addition, it would imply
that the similarity between GCRS_ SEP and solar coronal abundances is
fortuitous.

On the other hand, models based on specific nucleosynthetlc

processes have been proposed to account for the low Pb. These are, in my
view, not appeallng. They would, indeed, require the entire cosmic ra-
diation to originate in sites of specific uucleosynthetic processes.

This seems highly improbable, in vlew of the similarity of the main

features of GCRS composition to LG, SEP and solar coronal composition,
and of its dissimilarity to predicted outcome of the main nucleosynthetlc
cycles and to calculated global pre-supernova and supernova compositions.

A more acceptable possibility, to be kept in mind, would be a

specific excess of the r-nucllde8 around Pt, with respect to which a

normal Pb abundance would appear low (see § 111-5.3.).

One possible way-out is to question the CI meteoritic standard
used for reference. If the - apparently slgnlflcantly - lower photo-

spheric values were used as a_standard, Ge and Pb would no longer appear
depleted in GCRtso The question is open.
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III-4_._..._,THE.C,..o, 2..2Ne,25,26N9, 29,30S| EXCESSES

The C, and to a lesser extent, O excesses in GCRS are most cons-

picuous when the GCRS composition is compared to that of SEP's, the two
compositions being otherwise quite similar (fig. 17 ; § II.I.3.). In

particular the C/O ratio itself, extremely well determined in both popu-
lations, is about twice as high in GCRS as in SEP's. I surmise that

these excesses relative to SEP's are highly meaningful ; and the shape of

f(FIP), the basic FIP-dependent pattern of GCRS relative to LG composi-
tion defined in fig. 15, has been chosen accordingly : f(FIP) does not
try to fit the GCRS/LG values for C and O, which are in excess, like in

fig. 17 ( § II-1.4.). In addition suc_.C^ond O excesses are known to be
expected, associated with the 4_Ne and "D'ZbMg excesses, if these are due
to a small fraction of He-burnlng material appearing in GCR's.

But let me first review the evidences for or against the exlst-

ence of 22Ne, 25'26Mg and 29,30Si excesses is GCRS.

III-4.1. EstimattaJ_ the 2211eo 25,261_ 29,30SI t_CCe|Ssl in GG_ 8ouzcem

Fig. 29 summarizes our knowledge on the Ne, Fig and SI isotopic

composition. I have plotted the estimated composition from Wiedenbeck's
(1984) summary at Graz, which is mainly based on low energy data (< 600

MeV/n), the new data brought at this conference by Webber etal. (_, 88)
around 500 MeV/n, and a summary of the high energy HEAO-C2 data between

2.5 and 6 GeV/n, includlng those presented at this conference (Ferrando

et el. _, 96 ; Herrstr_m etal. _, iOO) (§ 1-2.).

In this figure, I have given both the isotope ratios measured

near Earth and those derived for the sources, thus evidencing the crucial

importance of the correction for secondaries in estimating the 25,26Mg
and 29,30Si excesses (or absence of excess [[I) at the sources. These
corrections differ somewhat from calculation to calculation. An impor-

tant new point is that the cross-sectlons for secondary production of big

and Si isotopes out of 28Si and 4OAr Just measured by Webber and Kish (_,
87) are higher than was expected (§ I-5.1. ; fig. 5). These higher
cross-sectlons, when extrapolated to other neighbouring parent nuclei

(the question is of course : how to extrapolate ?), yield slgnlfi_ag_ly
hlghgr .secondary production, hence lower source abundances, for z_,zDMg

and z_'JUSi (as for AI, illustrated in fig. 6). In fig. 29, these higher

cross-sectlons are applied to the data of Webber at al. (_, 88), but I
have not modified the other corrections accordingly.

Extreme prudence is in addition required since, except for the

HEAO-C2 data (which are conclusive, neither for Mg, nor for Si), all
estimates are based on low energy studies. But we have shown in
§ III-2.1. that the B-15N contradiction suggests Chat we understand poor-

ly propagation at these energies, and that distributed reacceleratlon

I t s _e_ase, thepOSsibly completely blurts the picture the_. _5,_ were
corrections for secondary formation of _Ne, blg and _-,_Si might
have to be based on the cross-sections below i00 MeV/n, which are unknown.
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to sta, da_d LG (see footnote H 27). For each set of data, I give the e=osss as
obse_._edaC Earth (dash_ ; error bar omitted for oZoJ*iC¥)and tha_ dez,_u_ at,
souroe after oo_eotion for seoortdo_._pr(_uotiono_ de_ved by the calibers(soE_).
_om left to _ght in seth p_ot : (i) Hiedm_beo_'s(1984)s_v_z,_'_of the data ec_st-
ir_ in 1964, based mainEy on Eo_ energy data (E < 600 _s_/n) ; (ii) the new data by
_ebber et aZ. (2_,88) (Lround 500 MeV/n, the oorreotion for seoo_ prod,_tion
being bc_ed on ne_ Ear_er o_oss-seot_ns, reoently measur_ or estimated
(§ I-3.I. ; figs. 5, 6) ; (iii) a 8uvvno_ of the BEAO-C2 data at high enemy,
mainZH near 2.5 GeV/n bu_ up Co 6 GeV/n, ba_ed on Ryr,a]<eC aZ. (1983a)_Gofer ¢_
aE. (1983); F_z_eoJ_do_t aE. (2__96) and Herrstrb'mst aE. (2, I00) ; (iv) an
"canopied"source exoess. For Mg and Si, the vo._io_sratios plotted o_e i_iaated
at the bottom of the figure.

An important point in fig. 29 is the low abundance of 29'30SI

observed near Earth by Webber etal. (2, 88), with an excellent resolu-
tion and a decent statistics (fig. 2 _ § I-2.). Together wt_h the In-
creased correction for spallation, it yields very low 29'30Si/28Si source

ratios. _m dering all the data for St together, there may be a slight
excess of _.,i Si at the sources, but the data are also perfectly consis-
tent with a totally normal source 29,30Si/28St ratio.

As regards 25'26Hg, the da_a do suggest on excess in GCRS, but
are not really compelling in view of all the uncertainties on the secon-
dary correc_ion. And, even if real, the excess could be very small.

Only the 22Ne exce_s is established beyond any doubt and is
rather precisely determined, z/

The adopted GCRS excesses of 22Ne/20Ne, 25,26Mg/24ME and
29,3081128Si have been plotted in flg. 20.

27 No error has been aesoclaced wlch the LG 22Ne/20Ne isotope taCio, taken on the
bas_s of SEP's (Meyer 1985b). _f the Solar Wind value _urnedouC to be more
representative(e.g., Gelss 1985), the GCRSexcess would be slightly larger.
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1II-4.2. The common and newwlsdoaon He-burni._ and weak s-process in
Wolf-Ra_et stare

It is now common wisdom that the simultaneous conspicuous 22Ne

and C excesses in GCRS (relative to LG and especially SEP abundances) are
an indication that a small fraction GCR's originates in He-burnlng mate-
rial. The smaller excesses of 25,26Mg and O, if confirmed, indicate a

more limited contribution from the subsequent staxe of nucleosynthesis
where 22Ne is turned into 25,26Mg and 12C into 160. It is also well

known that Wolf-Rayet (WR) stars, in which the nucleosynthetlcally active

core has been bared by huge stellar winds which disperse the newly
"cooked" material, are a very plausible site for providing this processed
component without further alteration.

More precisely, it has been shown that the 22Ne-C and possible

25,26Mg-0 excesses are explained if materlal from WC-WO type stars (the
WO stage is very rapid) is diluted in GCR's in _ 50 times as much nucleo-

synthetically standard, solar-mix material (to be precise, this dilutlon
factor applies to hlgh-FIP species that are unaffected by the local

nucleosynthesls, such as 20Ne ; see § 111-4.3. and footnote # 29). If
one considers material from the entire WR stars sequence, which includes

40% of WN stars (which are not enriched in 12C, 22Ne), one GCR 20Ne

nucleus out of _ 30 should originate in a WR star of any type (Meyer
1981c, 1985b ; Cass_ and Paul 1981, 1982 ; Maeder 1983 ; Blake and

Dearborn 1984 ; Arnould 1984 ; Prantzos 1984a,b ; Prantzos et el. 1983 ;

l, 167).

Note that a high abundance of Ne (presumably 22Ne) has indeed
been recently observed by IRAS in the atmosphere of a WC star (Van der
Nucht and Olnon 1985).

One strong conclusion from the abo_ studies is that, while
25'26Mg can be produced in the destruction of Ne, there is no way of

29,30 in e x 29,30producing Si th same context. To explain e cesses of Si,

addltional, extrinsic hypothesis would have to be invoked, such as super-
metallicity (i.e. CR's coming from far away in the inner galaxy), or
galactic evolution, which are not straightforward (Woosley and Weaver

1981 ; Cass_ 1981, 1983). The new observations by Webber et al. (_, 88)
_§ 1-2 and III-4.1. ; fig. 2 and 29) indicating that there may well be no
9'30Si excess at all, if confirmed, would greatly simplify the situation.

In addition, liberatlon of neutrons at the time of the 22Ne des-
25

tructlon by the 22Ne(_, n) M_ process leads to the predicted formation
of other n-rlch species (weak s-process), which have been estimated quan-

titatively in the framework of a consistent WR evolution scheme by

Prantzos et el. (1983), Prantzos (1984a,b) and at this conference by
Prantzos at al. (3, 167) who have integrated over the contribution of WR

stars with initia_masses > 50 M®. The predicted excess of these other

n-rlch species in GCRS can be related to the 22Ne excess through the _ime
scales of the WR star evolution and the dilution factor required for _ZNe.

These results will be discussed in the next § 111-4.3. (figs. 30 and 31).

Note that a possible N excess originating in WN-stars (largely

lower mass stars, < 50 MQ ) has not been studied quantitatively in the
same framework. Recall, however, that, even at the end of CNO cycle, N
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s overabundant by a factor of at most _ 17 (to be compared to 120 for
2Ne in the He-burning phase) (Prantzos 1984a ; Meyer 1985b). Quite small

dilution factors for the _ star material would be required to produce an
observable N excess in GCRS, while only _ 40% of WR stars are of type _,
60% of them being of type WC-WO.

III-A.3. Relatin_ the excesses tnGCRS to those in the (WK) processed
component materlal. FIP effects in the dllutlon

This is all nice, but there is a problem.

In order to characterize the sources of the processed material,

we have to correctly relate the excesses in that processed component to
those in GCRS as derived from the observations. The key point here is to

properly take into account the dilution of the processed component in the
main component, for each particular element.

The studies performed up to now have, in my view, not dealt with

th_s point correctly. As pointed out in Meyer (1985b), it has been for-

gotten that, in the main component In which the processed material is
belleved to be diluted, low-FIP elements such as Mg are overabundant by

factors of % 6 relative to hlgh-FIP Cj O, Ne. Then, while we do not know
what atomic selection effects might affect the processed component, two

slmple cases should be considered (see formallsm in the Appendix) :

(i) _he_rocessed component is affected _y_.the same bias with PIP as the
maincom£one_t

Then, of course, all elements are diluted by the same factor ;
and the existlng studies, that simply ignore differences in dilution
factor between elements, give correct results (Meyer 1981c, 1985b ; Cass_

and Paul 1981, 1982 ; Maeder 1983 ; Blake and Dearborn 1984 ; Arnould

1984 ; Prantzoe 1984a,b ; Prantzos et al. 1983 ; _, 167). Then, as
shown in the Appendix, the classical formula applies :

Eik,C R = I + Pk,Eik,proc,nucl (A3)

where (see Appendix)

*
Eik,C R = enhancement in GCRS relative to LG after correction for

bias with FIP, i.e. [GCRB/LG]/f(FIP)_ the quantity plot-
ted in fig. 20, for species i relative to a reference

species k which is not affected by the nuclear processing.

Eik,proc,nucl = enhancement in the processed component material relative
to LG, due to nuclear effects only, for species i rela-

tlve to the same3 unaffected, reference species k.

Pk = fraction of the unaffected species k originating in the

processed component (I/Pk - dilutlon factor for species k).

I regard this situation as astrophyslcally implausible. It

would indeed be quite odd to have the same filtering according to FIP
occur independently in the main component and in the processed component,
which certalnly originates in a cahotlc environment ; the proposed
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favourable objects, Wolf-Rayet (WR) stare, are very hot, so that all ele-

ments are ionized on their surface and FIP does not have a chance to play
a role.

The only way-out would then be : the filtering according to FIP

should occur after mixing of the main and the processed components (i.e.

at a common injection or acceleratlon phase).

But the presence of the refractory, condensable elements in the

main GCR component and its bias with FIP seem to reflect the composition

of coronae of solar-like F-M stars (as well as that of SEP's), which are

llkely to be the injection sites of this main component (Meyer 1985b).

The cause for the bias with FIP of the main component therefore probably

lles in the composition of the medium they have been extracted from, not

in later, distant injection or acceleration processes. 28

Note however that the above formula ignoring any differences in

dilution between elements gives, anyway, correct results when applled

only to elements on the same FIP-plateau, e.g. 20,22Ne, C, O, for which

it has actually been first used (see Appendix).

In the top graph of fig. 30, the data on the GCRS excesses (from

figs. 20,29 and Wiedenbeck 1984) are compared to the excesses predicted

for GCRS, based on Prantzos et el. (_, 167)'s He-burnlng and weak s-pro-
cess calculatlons in 50-100 M O WO-WC star atmospheres, and on the above

eq.(A3) to describe the dilutlon of this processed component. The dilu-

tlon factor (P20Ne _ 1/50 for the WC-WO material) 29 is adjusted as
22

to fit the GCRS Ne excess of _ 3.2 (figs. 20,29). The depicted spe-

cies are those produced in WC-WO stars_ whose excess in GCRS is, or may

become observable (as a reminder 29'30Si, which is not produced in this

context, has also been plotted).

In the top graph of fig. 31, the enhancement factors in the

source medium of the processed component, as derived from the GCRS data

using eq.(A3), are compared with those dlrectly predicted by the stellar

evolutlon codes for WC-WO atmospheres. The same value P20Ne _ 1/50 is
used to adjust the excesses derived from the GCRS data to the 2Ne en-

hancement calculated for time averaged WC-WO atmospheres.

28 1 believe that we definitely have two completely different injection sites for the

main and the processed component. The final, high energy accelerations may take
place, either (1) prior to mixing of the two components, in different environments;
for instance, the WR component might be speclflcally accelerated by the WR's own
stellar wind terminal shock, or (li) after mixing of the two injected suprathermal
populations, by a common agent. The lack of detectable difference between the
source spectral shapes of C, O, 22Ne and other heavy nuclei between % I and

20 GeV/n (Engelmann et al. 1985 ; Herrstr_m and Lund _, i00) is consistent with
the second hypothesis, but not necessarily inconsistent with the first one. Of
course, search for such differences in spectral shapes should continue, especlally
at higher energies.

29 Choosing 2ONe as the reference species k unaffected by the local nucleosynthesls is
not strictly adequate, since a small amount of 2ONe is produced at the end of the
WO stage (Prantzos et el. 1983 ; Prantzos 1984b ; time integrated excesses : 2ONe :
1.6 ; 22Ne : 108). But after dllutlon, the 2ONe excess is completely negllglble,
and we can forget about it.
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(ii) _he_rocessed component is not affected by atomlc selection effects,

We now consider the situation in which the processed component

is not affected by the same bias with PIP as the main component. As Just

discussed, this is the more plausible situation. Other atomic selection

effect, unrelated to PIP, may of course be present in the processed com-

ponent ; but in the absence of any information on them, we can only

ignore them and take for the processed component the composition given
directly by the local nucleosynthesis.

Then we have, as shown in the Appendix :

* = Pk

EikcR i + fik(FIP) / Eik,proc,nucl (Ad)

with the notations defined above for eq.(A3) and fik(FIP) being the value

of f(FIP) for species i normalized to that for species : fik(FIP)
fi(FIP)/fk(FIP).

Here fik(FIP) = 1 for high-FIP species (reference species k =

20Ne), and fik(FIP) _ 6 for low-FIP species (fig. 15). Equation (Ad)

thus simply expresses the 6-fold higher degree of dilution of "processed"

low-FIP species as compared to high-FIP species (Meyer 19855). The

dilution factor P20N e = 1/50 relevant for high-FIP species becomes 1/300
for low-PIP species.

When eq.(Ad) is used to describe the dilution, the new connec-

tions between the excesses in GCRS and those in the WC-WO processed com-
ponent are depicted in the bottom graphs of figs. 30 and 31.

I11-4.4, Discusslon : t_e8 of dilution, observed and predicted
excesses

Pigs. 30 and 31 include only three high-FIP species, C, O and

22Ne, all heavier species being low-FIP elements. Comparison of the top
and bottom graphs shows that :

- as regards the high-FIP species, the top and bottom graphs are, of

course, identical (since the dilution is adjusted as to fit the high-

PIP 22Ne/20Ne ratio) As has been known for a while now, the same

degree of dilution of the WC-WO material fits simultaneously the 22Ne,
C and O excesses.

- For all other, low-FIP, species, the 6-fold higher degree of dilution

in the bottom graphs (in which the processed component is no longer

assumed to be affected by the bias with PIP) decreases the expected

excesses at GCRS by that same factor of 6 (fig. 30). [Conversely, it

increases the excesses in the processed material, required to fit the

observed GCRS excesses (fig. 31)].

- As regards specifically 25,26Mg, produced together with O, the pre-

dicted GCRS excess drops from _ 1.48 If the WR component is biased with

PIP (as usually implicitely assumed up to now), down to _ 1.08, i.e. a

minute enhancement, in the much more probable opposite case. The pre-

sent data (fig. 29) do not really exclude either of the possibilities.

We really need higher statistics observations and safe, accurate secon-

dary corrections.
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- As regards the other low-FIP species, produced by the weak s-process

(Prantzos et al. _, 167), their predicted enhancements are also very
small if the WR component is not biased with FIP (fig. 30, bottom).
Even in the unlikely case that this component were FIP-btased_ the
predicted excesses would still be below all present upper limits to the
GCRS excess (fig. 30, top). The most promising species that might set
limits in _is case are, first, Ca, and then Na, Co, Ga. Present upper
limits on _OFe are still very far up.

- Note finally that, if the processed component is not FIP-biased, the

existing da_ on _g n_ St isotoves in GCR$ do not exclude equal ex-cesses of "'Ne, 2_,2 -_ and 29'3Osi in the material of the processed

component (fig. 31, bottom). This leaves the door slightly ope_^for

z_ - z___e2Pr°p°n_t_0°f the supermetallicity hypothesis to explain the "ZNe,
, _Mg, , Si excesses (Woosley and Weaver 1981). It would remain

to see how the C and 0 excesses would then fit into the picture.

III-4.5. Excess 22me : preferentt81 Injection at the dec87 of 22Na, T

A shrewd, totally new mechanism to explain the 22Ne excess has

been proposed at this conference by Yanagita (_, 175). Although I am not
too convinced that it will flnally work out as a very plausible scenario
for 22Ne I think it deserves attention becauses it contains a lot of new

ideas which may be fruitful in this, or other occasions.

The idea is that, at the moment of _-decay, the daughter nucleus

gets both ionized and selectively heated, hence "injected", by the recoil

energy of the electron emission. The mechanism therefore concerns
nuclear species which originate from the _-decay of some other, directly

syntheslze_o progenitor. Now, it is well _own from Ne-E in meteorites
that some _Ne is produced via _-decay of 4_Na, which is itself largely
synthesized by explosive H-burnlng in novae and possibly massive super-

nova envelopes (e.g., Arnould and Norgaard 1978,1981 ; Arnould et al.
1980 ; Hillebrandt and Thielemann 1982). This 22Ne could be preferen-
tially injected, hence be in excess in GCRS.

Now, among the various species thus formed vi_^_-decay from some
other directly synthesized nuclide, why should only "ZNe be enhanced in

GCRS ? Yanagita (3, 175) remarks _at the mechanism does not work for
radioactive progenitors other than Na (T22N_ - 2.6 yr) because, either
they are too short-llved so that the dec_y occurs within a stellar

medium, inapp_prlate for acceleratlon, or they are rapidly locked in
grains. Only _Na both has a long enough period and remains volatile in

30
space.

Many^^questlons remain to be solved with this scenario : (I) the
zz rsuprathermal Ne must be picked up by an accele atlng shock wave before

it gets thermallzed, which takes about i year ; (ll) the total production

of 22Ne via 22Na in novae can be estimated through the observed ZbA1

T-ray llne emission, provided most of the 26AI is indeed produced by

30 There might however be another possibility with fission products (Xe) formed in
supernovae.
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explosive H-burning in novae (Arnou_ etal. 1980 ; Hillebrandt and
Thielemann 1982), which is not obvious ; even then, the process requi-

res that as much as 6% of all2_he 22Na nuclei ejected by novae get
accelerated and become cosmic-ray Ne ; this would be a very high effi-
ciency indeed ! (ill) the energetics remains to be precisely worked out.

Of course, this interesting mechanism, when applied to CR 22Ne
suffers from an addltlonal weak point : it takes care only of the 22Ne

excess, so that an l_e_ndent c_s_0 must be found for the C excess, as
well as for the weak , Mg and ' Si excesses, if they exist (flgs.29
and 20 ; § III-4.1.). 32

III-5. IHE EXCESSOF ELEMENTSWI_ Z _ 40

The conspicuous really new event in fig. 20 is the probable
excess of all of the six nuclei with Z >/40 for which GCRS abundances

have been estimated (see also fig. 19). As discussed in § II.2.2., the
solid error bars in fig. 20 indicate the more probable ranges for the
excesses of UH nuclei, while their dashed prolongations indicate ranges

which cannot yet be entirely excluded, but are by far less likely. As

can be seen, the excesses seem certain for 42Mo and 58Ce, and probable
for 40Zr, 52Te, 54Xe, 56Ba. The discussion that follows is based essen-
tlally on the solid bars, and thus assumes that all six excesses are

real. The dashed bars however tell us where there is still a sllghC
degree of doubt.

The excesses appear roughly comparable in magnitude for elements

in the ranges Z = 40-42 and Z = 52-58, and also for predomlnantly s

(40Zr, 42Mo, 56Ba, 58Ce) and for predomlnantly r (52Te, 54Xe) elements
But this point will have to be discussed more seriously in § III-5.2..

A very striking feature is that there is no trend for an excess
up to Z - 38 : the excess starts abruptly at Z - 40. It is true that

348e and 36Kr, with their large error bars on fig. 20, could apparently
be also in excess ; but further analysis will show that thls possibility

is only apparent (§ III-5.1.2.). As regards 38Sr, a refractory element
for which good C1 meteoritic data agree with the photospheric value
(Anders and Eblhara 1982 ; Grevesse 1984a), which is well measured in

CR's (fig. 10), and for which the spallatlon correction is negllglble
(e.g., Binns etal. 1983), it is deflnitely not in excess (see also

fig. 19). By contrast, most probably 40Zr, and deflnltely 42Mo are in
excess. For these two elements the LG values and the _allation correc-
tions cannot either be questioned (see footnote # 11). oo

31 There are other, competingprocesses for 26AI formation, in red giants (Norgaard
1980) and In Wolf-Rayetstars (Dearbornand Blake 1985 ; Prantzos and Cass6 1985).

32 For these weak excesses,galactic evolution effects or the supermetalllcltyhypo-
thesismight do the Job (Casst 1981, 1983 ; Woosley and Weaver 1981).

33 Atomic selection effects are not good candidates to explain the Jump. As regards

F[P-dependent effects (actually taken out in flg. 20), 38St, Zr and 42Mo have
very slmllar low values of FIP (fig. 19). In a 10u K plasma, _g. 21 shows that
they also behave quite alike. 0nly In a very specific temperature range between

15000 and _ 80000 K would 38Sr (in its Kr-ltke state) behave differently from
40Zr and 42Mo.
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IX1-5.1. Ksttumttno the excesses in the processed component material -
FIP effects in the dilution

Before discussing the possible significance of the excesses in

flg. 20, we must make sure that we understand them correctly. We are
indeed faced with the same problem as in the study of the 22Ne and its

associated excesses in § 111-4.3.. Most likely, we have again a pro-

cessed component, hlghly enriched in specific species, which is highly
diluted in the FIP-blased main CR component. We need to derive the
nuclear anomalies in the source material of this processed component from
the GCRS excesses in fig. 20. This requires to properly take into

account the differences in degree of dilutlon of the various elements of

the processed component, due to the FIP-blas in the composition of the
main component itself (cfo§ 111-4.3.).

We shall, again, start from the fundamental eq.(A2) of the

Appendix, explicited for Eik,proc,nucl:

Eik_C R - I flk(FIP) (A2')

Eik'pr°c'nucl " Pk " flk,proc (at°m)

with the notations of § III-4.3. and of the Appendix [f_k -roc (at°m) des-

cribes any atomic selectlon effects in the processed_component] • This

equation is valid for Pk << i (high degree of dilution) and Eik,proc,nucl
>> i.

The situation however differs from the one we had when studying

the 22Ne anomaly : here we have no model at hand to theoretically estl-

ate Eik,proc.nucl and therefore have no way to know the dilution
actor i/pk (which I just assume to be large). Eik.proc.nucl can there-

fore be derived only to within an unknown factor. This is why fig. 32,

otherwise similar to fig. 31, is labelled in arbitrary units (actually

normalized to the 42Mo excess H I0n, where n is an unknown, non integer,
number).

Like in § 111-4.3., we have two choices :

(1) the processed componentchas gone through the same FIP-filterlng as
the main component ; then all differential effects on dilution cancel

out ; fik _roc (at°m) = fik (FIP)' and the second factor in eq.(A2')
vanishes _ig. 32 ; top) ; for the reasons developed in § II-4.3., I
consider this situation as implausible ;

(ll) the processed component did not go through the same FIP filtering ;
other atomic selection effects may of course be at work, probably not

related with FIP ; in the absence of any information on them, we can only

ignore them and set f;u _nc(atom) " I ; we are thus left with a factor

flk(FIP) in eq. (A2), w_[ch Just describes the lower degree of dilution
of the processed species belonging to elements which are underabundant in
the main component (fig. 32, bottom) ; this should be a better approxima-

tion to reality.
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Plotted are excesses gik.,prqq.,nuo_ in the s andor r-processed component.
material, relative to LG compos_v_on (_ Ill-5.I. ; Appendix). This figure is
8_#nilarto fig. 31. The excesses in the processed componentare those derived from
the C_TRScomposition(figs. 19, 80 ; § IX-2.2.) ; they are known only to within an
unknown dilution factor for the processed component (1/pk, assu_nedlarge),so that
only relative values of the e¢cesse8are given (normalizedto the 4_Mo ezcess-
1on). For each element, the thick, solid error bar gives the more pro_able range,
and its thin, dashed continuationa range that is much less likelg,bwt cannot get
be entirely e_cluded (figs. 19, 20 ; § ZZ-2.8.). Of course, bars reaching the
bottom lines are only upper limits,consistentv_ithno enhancementat all. Also
given are the main processes responsiblefor the s_nthesis of the various elements
in the "solarmix" : e, s, r, p processes, and s' = s due to the _eak componentof
the neutron irradiation (seefootnote _ 36). One sbenbolplotted : ) 80Z one pro-
oess $ Cv_osb#rd_oZs: tyroprocesses contribute c_bout equally ; seoo_ s_ols in
parenthesis : contributes odooutI/3 of total. _o_ _r_h : the processed component
is assumed to be tiP-biased like the main component, so that all species are dilu-
ted by ¢he scnneracer ; this assumptionis quite implausible. Bottom_r_a_ : the
processed component is not YIP-bio_d, so that in C-CRSits _ou--F_-P;l_n;nta have
been more di_wted than its high-FIP elements ; it is the more plausible hypothesis.
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111-5.1.2. Consequences of dlfferen_lal diluClon

Introducing the differential effects of dilution changes the
picture in some respects, which are apparent when comparing figs. 20 and
32, top and bottom. In fig. 32, I have marked the predominant nucleo-

synthetic processes responsible for the formation of the various elements

in the usual "solar mix" (K_ppeler et al. 1982 ; Fixsen 1985 ; Binns et
al. 1985).

Elements 34Se, 36Kr and 38Sr are all three consistent with no
enhancement at all (fig. 20). Figs. 20 and 32 (top), however, do not ex-

clude the possibility that 34Se and 36Kr, with their large upward error
bars be in excess, while 38Sr is definitely not. Since about half the

34Se and 36Kr are formed by r-process while 38Sr is almot pure s, one
could have considered a specific enhancement of r-nuclides in this range

[however the enhancement of 40Zr, also almost pure s, would have poorly
fitted into the picture]. When differential dilution is included (fig.32,

bottom), this possibility of an enhancement of 34Se and 36Kr relative to

38Sr in the source material of the processed component disappears.

In the Te 4Xe 56Be 58Ce quartet, introduction of differential52 5
dilution specifically reduces the excesses of the two r-elements 52Te and

especially 54Xe (which happen to be high- or intermediate-FIP elements,
fig. 19) in the processed component materlal (fig. 32).

III-$.2. Evidences for 8 and/or r-process excesses

I am now going to discuss the excesses in the processed compo-
nent material, under the most plausible assumption that this component
has not gone through the FIP-dependent filter of the main component
(§ III-4.3. and 5.1.). Fig. 32 (bottom) will therefore serve as the main
basis for the discussion.

111-5.2.1. What ha_p_en8 aZ g - 40 ?

As noted earlierl and obvious from figs. 20 and 32 (top as well
as bottom), the most striking feature in the data is the sharp onset of
the excesses, specifically between Z = 38 (no excess) and Z - 40 (provi-

ded the 40Zr excess is confirmed, § 11-2.2.).

At Z - 38 to 40, we are right at the neutron magic number N - 50

(fig. 33) I This fact very strongly suggests an s-process anomaly. 38Sr

and 40Zr are almost pure s elements, while _o for which the excess isbest established, is about 44% s, 32% r and ___ p (K_ppeler et al. 1982 ;
Fixsen 1985 ; Binns et al. 1985).

As shown in fig. 33_ all isotopes of Sr have N < 50 neutrons ;
but one isotope dominates by far, 88Sr (82%), which has N - 50 neutrons.

As regard_ Zr, all its isotopes have N > 50 neutrons ; the most abundant
isotope, °Zr, which makes up 52% of Zr, has also N = 50 neutrons. Both
88Sr and 90Zr lie right near the bottom of the first precipice of the ON_

curve (e.g., Ward and Newman 1978 ; KMp_ler et el. 1982). So, 8°Sr i_
definitely not enhanced in GCRS, while "uZr, with the same magic number
of neutrons N - 50, may be enhanced, or not. The responsibility for the

enhancement of elemental Zr might indeed rest only with its isotopes with
N _ 51, which make up 48% of elemental Zr.
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The cz_tical part, of the ch_t of the nuc_es around Z = 40_ i.e, _ound

m_7_ N = ,50 neutrons ( § III-5.2. 1.). Onl_ stable nucl_es are given. The pe_
contribution of each isotope to the elemental abunda,ce in the "solarmiz" is
indicated. For the contribution of the variousprocesses to each nuclidej see
K_ppeler et al. 1982, Fizsen 1985, Binns et al. 1985 (see also fig. 3_). The CR
da_a indicate that 40Zr and 4_Mo are probably enhanced in CR sourees_ while 36K_
and $8Sr are not (figs. 10, 19, 80, $8 ; § II-2.$. and Ill-5.). _is may suggest
that nuclides with N >,61 neutrons are specificallyin ezcess in C_R8.

So the enhancement of s-specles precisely from Z : 40 upwards

might mean that only s_cles with N > 51 neutrons, beyond the magic N-50,
are enhanced in GCRS. _" This would imply that products of comparatively

strong s neutron irradiations, with average number of neutrons captured

per Fe nucleus nc _ 54, are overrepresented in GCR's (e.g., Clayton 1968,
Fig. 7-22). Some material having undergone specifically such strong
irradiations should be injected in the CR accelerating machine l A very
important conclusion indeed i [which however depends on the confirmation

of the5 40Zr excess ; 42Mo lles beyond N = 50, and is almost as much r
as S] *

ZZT-5.2.2. _The 52T__e_54Xe_.56_Ba 58_Ce_q_uar_te_.t

In the r- and s-peaks region between Z = 52 and 58, we have evi-
dence for enhancement of all four studied elements, by comparable amounts

for predominantly r 52Te and 54Xe and for predominantly s 56Ba and
58Ce (figs. 20 and 32, bottom).

The best established enhancement Is that of 58Ce, which is 65% s

and 35% r in "solar mix" material. Almost pure s 56Ba is probably also
enhanced.

34 In this context, a reliable determination of the CR abundance of the single isotope
pure-s element _Y, which has also 50 neutrons, would be worth a very specific
effort, if feasible at all.

35 For A _ 86 (i.e. from 36Kr downwards) an additional frequent weak neutron irradia-
tion is required to account for the s-species abundances, which are higher than
predicted by the main irradiation law which make up all s-species up to 20_pb (Ward
and Newman 1978 ; K_ppeler et al. 1982). Elements largely produced by this extra
irradiation, i.e. 31Ga, 32C,e, 345e, 36Kr, denoted by s' in fig. 32, are clearly not
enhanced in CR's. One could imagine that the enhancement starts right beyond this
zone, when the main irradiation law sets in. But the limit would then lie between
36Kr and 38$r, not between 38Sr and 40Zr as it does.
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The data as they stand tell us that r-nuclides in this range are
enhanced by comparable factors (fig. 32, bottom). But the two predomi-

nantly r elements we have, 52Te and 54Xe are not among the nuclides whose
excesses are best establlshed (flg.-i9). The HEAO-C3 data for 52Te have
changed a lot between the earlier and the new analysis, which-however

agrees with the Arlel VI data (fig. 101 . 54Xe is poorly resolved between
more abundant elements in both HEAO-C3 and Ariel VI experiments (fig. 9)

[not to speak of the question of the 54Xe LG abundance]. For both ele-
ments, secondary formation by spallatlon is not negllgible, so that a
limited downward revision of the observed abundance can result in a large

revision of the source abundance. Finally, both excesses are sensitive
to the exact choice of f(FlPl, which is of course also subject to an

uncertainty, especially in the relevant intermediate- and high-FIP region
(fig. 191.

For these reasons, the r-process excess in the Z ffi52-54 peak,

while suggested by the data, should still be taken with caution.

III-5.3. UB element excesses -Summary and overvlew

There is no enhancement of, either s, or r nuclldes for Z _ 38

(fig. 32, bottom).

There is quite convincing evidence for s-process enhancements

beyond Z = 38, from (fig. 32, bottom I : (1) the Jump between the almost

pure s elements 38Sr, not enhanced, and 40Zr, probably enhanced, right at
the limit N = 50 (magic) ; (ii) the well established excesses of largely

s 42Mo and 58Ce (which have, however, also very significant r components

in the "solar mix") ; (lii) the probable excess of almost pure s 56Be.
This implies that some specific material having undergone strong s neu-

tron irradiations (average number of neutrons captured/Fe nucleus nc _ 54,
Clayton 1968) is probably present in CR's.

There is evidence for comparable excesses of r-nuclldes in the
Z ffi52-54 r peak (fig. 32, bottom), but it is weaker : it rests on two

elements, 52Te and 54Xe whose excesses are probable, but not very strong-"
ly established.

It must be stressed that the real strength of the evidence for a

s-process excess rests on the sharp Jump right at N = 50 (fig. 33), i.e.

on the reality of the 40Zr excess, which becomes our cornerstone. Its LG
abundance is very rellable. But as can be seen in fig. I0, its excess is
observed only in the new analysis of the HEAO-C3 data. It needs confirm-
ation.

If this 40Zr excess happened not to be confirmed, the entire
picture would be much more ambiguous : all elements 42Mo, 52Te, 54Xe,

58Ce have significant r contr_utlons, and a predominant excess of rJO
nuclldes could not be excluded . Only 56Be, whose excess is not very
strongly established, would definitely not flt in. Recall, too, that the
low "Pb-group"/"Pt-group" ratio ( § III-3wl, usually discussed in terms of

a low Pb abundance, can also be interpreted in terms of an excess of the
r elements forming the "Pt-group".

36 Although it would then seem odd to have the almost pure r elements 52Te and 54Xe
apparentlyless enhanced than the mixed elements 42Mo and 58Ce (fig. 32_ bottom).
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PARTIV

SUMMARYANDRECOMMENDATIONS

IV-1. SUMMARY

A few key new observations have been brought at the La Jolla
Conference : observation of sub-Fe nuclei up to 200 GeV/n ( § I-1. ;
fig. 1) ; improved isotopic data, which are especially important for Si
(§ I-2. ; figs. 2, 3) ; a whole bunch of results from continuing efforts
on systematic spallation cross-section measurements (§ I-3. ; figs. 4 to
8) ; a breakthrough in the accuracy of the Ultra-Heavy (UH) nuclei
abundance measurements up to Z _ 60 (_§1-4. ; figs. 9 to 11) ; improved
data on low energy deuterium and _e, and evldence (related to new

spectral measurements) that the recently claimed high _e fluxes at high

energy is probably an overestimate (§ I-5.) ; energy spectra of primary
nuclei (§ 1-6. ; not discussed) ; improved observations of e- fluxes up
to 2000 GeV and of e+ around i0 GeV (§ 1-7. ; figs. 12, 13).

From these and earlier data, the Galactic Cosmic Ray composi-
tions at Sources (GCRS) can be inferred. This implies correcting for the
effects of interstellar propagation, which I discuss now.

As regards CR propagation, we have two strong facts :

(1) At very high energies, observations of sub-Fe nuclei have shown

beyond doubt that the escape length %e continues to decrease, at roughly
the same rate, up to at least 200 GeV/n (§ I-i ; fig. i).

(il) While in the GeV/n range, the observations of secondary nuclei yield
a reasonably consistent picture of CR propagation, at low energies

(_ 600 MeV/n) we have a flat contradiction between two presumably pure

secondary to primary ratios : B/C and 15N/O. They cannot be fitted

simultaneously with classical propagation models (§ 111-2.1. ; figs. 23
and 24). The contradiction is well beyond reasonable errors on both the

CR data and the cross-sectlons, which happen to be particularly well
measured for the relevant nuclei and at these energies (§ 1-3.1.; f18.4 ;
Table 2). The nuclei concerned are also too close in mass for refine-

ments of the propagation model (truncation of the PLD) to have any chance
to solve the problem.

One way out would be to have 15N enhanced by a factor of _ I00

in CR sources, but it does not sound plausible to me (footnote # 19). I

therefore think that some really new ingredient must be introduced in our
understanding of low energy CR propagation.

One may note that a large fraction of _^(and a smaller one of O)
is believed to orlginate, together with the ZNe excess, in a specific
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environment, plausibly Wolf-Rayet stars (§ III-4.2.). One cannot exclude
that these nuclei might have a propagation history different from that of

the bulk of other CR's, and traverse on the average less matter. This

hypothesis cannot be strictly ruled out, but it is completely specula-
tive, ad hoc, and difficult to check (§ 111-2.1.).

The only other way-out I can think of at this point is the
hypothesis of distributed reacceleration, in which CR's still increase
their energy by a factor of a few units while propagating, as they meet
extended weak SN shock waves. This idea, which is much less far-fetched

and more liable to check, was first advocated by Silberberg et al. (1983)

to ease various problems in cosmic ray composition, especially below a
few i00 MeV/n (§ 111-2.1.). The relevant cross-sectlons for secondary

formation could then be largely those below % i00 MeV/n, which are often
unmeasured, but known to be far from constant ; for nearby secondaries,

they tend to sharply peak at low energy before decreasing towards thres-

hold. I think the low energy B-15N contradiction may be a good case for
distributed reacceleration, and Justifies a serious effort to investigate

the point (see next § IV-2. for recommendations).

Anyway, as long as the low energy B-15N contradiction is not

understood, I think the determination of source abundances of 14N and

other largely secondary nuclei (Na, 25'26Mg, Al, 29'30Si, P, At, Ca) from

low energy data (E _ 600 MeV/n) cannot give reliable results. At higher

energies, the cross-sectlons are much more constant, at least for compa-
ratively light nuclei, so that distributed reacceleratlon, if present,
has much less effect on the interpretation of the data.

As regards specifically the 14N source abundance (§ 111-2.2.),
we are left with the high energy studies based on elemental data, which

lead to (N/O)source _ 6%, and with the high energy isotopic values,
which, though scattered, are all consistent with that same value

(fig. 25). The ratio (N/O)source _. 6% implies no deficiency of N rela-
tive to other hlgh-FIP elements (at least those not affected by the Wolf-

Rayet nucleosynthesls ; § 111-4.) (figs. 14, 15, 17).

The B-15N contradiction also precludes any conclusion on a trun-

cation of the exponential pathlength distribution (PLD) at low energy

(§ 111-2.3.3. ; figs. 23, 24 and 26). At higher energies, the situation

is open : studies of elements up to Fe do not request a truncation, but
could allow a limited one (fig. 26) ; properly taking into account
spallatlon on interstellar He could possibly increase the need for trun-
cation (§ 111-2.3.1.). Interpretation of the data on UH nuclei, which
are most sensitive to truncation, is complicated due to an energy depen-
dence of the cross-sectlons that extends up to very high energies [where

distributed reacceleratlon_ if present, would further change the picture]

(§ 111-2.3.2. ; fig. 27).

After these remarks on CR propagation, we can get back to the

source composition. Let me first discuss the elemental GCRS composition
up to Z = 30 as derived, for safety's sake, mainly from observations in
the GeV/n range (§ II-I. ; figs. 14, 15). Up to Z = 30, there is no

great novelty : the GCRS/LG (LG : "Local Galactic" abundance standard)
ratios follow the well known correlation with First Ionization Potential
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(FIP) ; it is clear that this correlation does not follow an exponential
law (fig. 18), but has rather a two-plateau structure (fig. 15) ; it is

very similar to that found in Solar Energetic Particles (SEP) and, more
important, in coronal composition [except for a distinct excess of C and
a probable one of 0 in GCRS] (fig. 17). This structure is not too

consistent with an ionized fraction In a gas at any simple temperature or

with a monotonic distribution of temperatures. It rather suggests a
picking out, with different efficiencles, of both ions and neutrals out

of a gas at _ 6000 K, such as the gas in the chromospheres underlying the

coronas of the Sun and of most main sequence F to M stars (§ 11-1.3. and
1.4.),

It should be stressed that H and He, which have a unique, odd
temporal behaviour in SEP's, have a GCR source spectrum that is distinct-

ly flatter than the common source spectrum of heavier species (between 3
and 60 GeV/n) (§ 11-1.2.3. and III-I.i. ; e.g. fig. 15). H and He are
both deficient relative to heavier nuclei, but the He/H ratio itself is

remarkably normal and energy-independent. The attempts to explain the H,
He deficiency by a rigldity-dependent injection of GCR's directly out of
the hot ISM gas face very serious difficulties : they do not account for

the normal He/H ratio, nor for the discontinuities of the heavy element
GCRS/LG ratios versus Z ( § 111-1.2. ; figs. 21, 22).

Back to the C and O excesses in GCRS as compared to SEP, they
are probably related to the 22Ne and associated isotopic anomalies.

sta o 22 25,26 29,30Where do we nd as regards our kn wledge of the Ne, Mg, Si
excesses at GCR sources ( § 111-4.1.) ?

The 22Ne excess is, of course, confirmed. As regards the heavy
Mg and Si isotopes, observed mainly at low energy, new data do not find
any more evidence at all for a 29,30SI excess ( § 1-2. and 111-4.1. ;

figs. 2 and 29). In addition, new cross-sectlon measurements (§ 1-3.1. ;

fig. 5) suggest a larger than expected secondary contribution to the
observed 25,26Mg and 29,30Si. This, together with the unknown effects of
a possible distributed reacceleration, leads me to very prudent about the

magnitude of the 25,26Mg excess itself, which has, however, still a good
chance to be real (§ 111-4.1. ; fig. 29).

A lack of 29,30Si excess, if confirmed, could fit well into the

hellum-burning (Wolf-Rayet) scenario for the excess 12C, 160, 22Ne,
25,26Mg, in which heavy Si isotopes are not produced.

But atomic selection effects interfere with this interpretation
of 12C, 160, 22Ne, 25,26Mg and correlated weak s-process excesses in
terms of a small fraction of CR's originating in He-burnlng material,

plausibly at the surface of WC-WO Wolf-Rayet stars (§111-4.2.). A ques-
tion should indeed be posed : did the processed component go through the
same FIP-filtering as the main CR component ? As regards the main compo-

nent, we now have good reasons to believe that the cause for its bias

with FIP lles in the composition of the cool star coronal medlum they
have been extracted from, rather than in the injection or acceleration

process ( §11-1.3. , 111-4.3.). There is no reason whatsoever for the
source material of the 22Ne rich component to have been affected by the
same FIP-filtering, especially if it originates in hot WC-WO stars. So,
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the processed component, in all likelihood not FIP-biased, is diluted in
a main CR component in which Iow-FIP elements are comparatively _ 6 times
as abundant as hlgh-FIP elements. Therefore the processed low-FIP
25,26M_ and weak s-process species are _ 6 times as diluted as the high-

FIP I_C, 160 and 22Ne. Their predicted excesses at GCRS thus become

minute, essentially impossible to evidence (§ 111-4.3. and 4.4. ; fig.30,
bottom). The large uncertainty on the presently determined 25,26Mg
source abundance does not conflict with these views (fig. 30, bottom).

Conversely, if the GCRS 25,26Mg and/or 29,30Si excesses even-

tually turned out to be significant (say. a factor of _ 1.5), it would

probably imply roughly equal excesses of 22Ne, 25,26Mg and/or 29,30SI in
the source material of the processed component (fig. 31, bottom), which

could no longer be explained in terms of He-burning in WC-WO stars.

Other hypothesis, such as supermetalllclty, should then be considered.

Now, let us turn to "Ultra-Heavy" (UH) elements, beyond Z = 30.
There, we have real new stuff ! The most important point brought up at
this conference is serious evidence for excesses of all elements for
which we have source abundance determinations between Z = 40 and 58,

relative to the FIP pattern f(FIP) describing the composition for ele-

ments with Z < 30 [excesses of 40Zr, 42Mo and of the r-s-peaks elements

52Te, 54Xe, 56Be, 58Ce ; the excesses of 42Mo and 58Ce are certain, the
others are probable] (§ 11-2. ; figs. i0, 19, 20). Once again, I tend to
interpret these excesses in terms of a specific processed component,

highly diluted in the main, solar coronal-like, CR component. In deri-
ving the excesses in the processed component material itself from the
"observed" GCRS excesses, we again have to take into account the fact

that, in all likelihood, the processed component itself is not FIP-blased

(§ 111-5.1. ; fig. 32, bottom).

A key point here is that elements in the range Z = 30 to 38, and

in particular definitely _Sr, are not enhanced : they Just nicely follow
the correlation f(FIP) (rlgs. 19, 20, 32 bottom). So, the enhancements

seem to start abruptly at Z = 40. Actually, the enhancement of 42Mo is

established beyond any doubt, while that of 40Zr is probable, but not yet

certain (fig. i0). This 40Zr excess (or lack of excess) is the corner-
stone of the interpretation of all these LR_excesses, and is worth any
effort to be confirmed (or not).

If 40Zr is indeed in excess, the sharp onset of the excesses

between 38Sr and 40Zr, right after the neutron magic number N = 50
(fig. 33) is almost a signature of a s-process contribution, implying
that a specific component having undergone strong neutron irradiation

(average number of neutrons captured per seed Fe nucleus nc _ 54, see
Clayton 1968) is present in the cosmic radiation. It is then very

tempting to interpret the excesses of predominantly s 42Mo, 56Be and 58Ce
in terms of this same intense neutron irradiation. There seems to be

also an r-process exces s , as judged from 52Te and 54Xe. But the excesses
for these two elements are not very strongly established from the data

(fig. 19 ; § 111-5.2.2.).

If, by contrast, the 40Zr excess is not confirmed, the interpre-
tation of the various excesses in terms of s and/or r-process excesses is
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much more confused, since the elements for which we have best evidence

for an excess, 42Mo and 58Ce, (figs. 19, 20, 32 bottom) have both signi-
ficant s and r components in "solar mix" material. If r-process excesses

are present, the may be related to a possible excess of Pt-group elements

(see below).

Finally, we have still the old puzzles of the low Ge and low

Pb/Pt ratio, unusually interpreted in terms of an underabundance of Pb.

Contrary to excesses, deficiencies cannot be explained by admixture of a

specific extra-component ! Thus explaining a low Pb in terms of a special

nucleosynthesis requires the bulk of the cosmic radiation to originate in

a spot of active nucleosynthesls, while we have so much evidence Chat

most CR's are made of nucleosynthetlcally "solar mix" material, just

fractlonated llke solar coronal gas. An excess of r-process Pt would be

more plausible (§ III-3.3. and 5.3.). On the other hand, a coupled defi-

ciency of Ge and Pb could indicate a fractlonation of "solar mix" mate-

rial according, not to FIP, but to volatility ; thls would indicate that

CR's are interstellar grain destruction products, another hypothesis not

easy to llve with [similarity with solar corona and SEP's ; noble gas

abundances] (§ III-3.4.). Finally, the standard abundances to which we

refer the CR abundances of Ge and Pb may be inadequate, in which case

they could be not deficient at all ! For these two elements, the photo-

spheric value indeed seems to differ significantly from the usually

adopted Cl meteoritic value (§ III-3.5. ; figs. 19, 20, 28). This would

be the easiest explanation. But the question is open.

IV-2. RECOMMENDATIONSFORFUTUREWORK

(1) Distributed reacceleratlon

The hypothesis of distributed reacceleratlon should be throroughly inves-

tigated (§ III-2.1.). Only its modelling (in the presence of solar modu-

lation) will allow to tell whether it can, not only solve the low energy
B-15N contradiction, but consistently account for the fluxes of D, _He,

7,9Be I0,ii 15 17 r r6,7Li, , B, N, O, F and sub-Fe nuclei obse ved at low ene -

gy. Also, will it yield low energy source abundances for 14N,Na,Ai,P,Ar,

Ca consistent with the higher energy determinations ? Will it have an ef-
29,50 r sfect on the 22Ne, 25'26Mg and Si sou ce abundance , which are mainly

determined from low energy data ? One must also investigate the problem

posed by the differences in energy loss rates between nuclei, if they are

kept a long time at low energy, say below I00 MeV/n. Last but not least,

such a study requires a program of very low energy cross-sectlon measure-

ments (all the way down to thresholds) which I shall evoke below.

ii±) Fluorine

I insist on the possibility to get independent info_atlon on propagation
from F, a purely secondary element, close to B and _N, but not made from

C and 0 [in recent CR experiments, F is well resolved from O]. It might

help to understand what is going on in the Li, Be, B, 15N region

(§III-2.1.). But, first, we need cross-sectlons.
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(iii) EnerKy_ra_nKe for source abundance determinations

In order to get safest source abundances of comparatively light nuclei,
CR observations and propagation studies should concentrate in the range

1 to 2 GeV/n. At higher energies, we cannot get any more cross-
section measurements at the Bevalac, and have to use extrapolated cross-

sections (which, however, usually remain quite constant with energy for

lighter nuclei). At lower energies, the combined effect of the strong
cross-sectlon variations below % i00 MeV/n and of possible distributed

reacceleratlon (plus modulation l) casts doubt on any results one may

obtain [for heavier nuclei, such as Fe or UH nuclei, the cross-sectlons
become energy-lndependent only at significantly higher energies ; e.g.
Webber 1984 ; Kaufman and Steinberg 1980].

(iv) Zr abundance and s-proces_s

In the UH range, make all efforts to confirm (or not) the high abundance

of 40Zr, which is essential in the interpretation of the UH element
excesses in terms of a CR component having undergone a specific s-process

(fig. i0 ; § III-5.2.1. and 5.3.). If feasible at all, an estimate of
the abundance of the neighbouring odd-Z single isotope element _¥ (N=50)
would also be valuable.

(v) Cross-sections

Although much effort has been invested in recent years on cross-sectlon
measurements and seml-empirlcal estimates (§ I-3.), insufficient know-

ledge of spallatlon cross-sections is still the weak point of many a CR

problem :

- A major specific effort must be undertaken to measure __allrelevant
cross-sectlons at lowest energies, down to thresholds (below the

% 300 MeV/n lower bound of the Bevalac range). Such a program is
essential to investigate the reality of distributed reacceleratlon

and to assess its consequences (§III-2.1.).

- Measurements of cross-sectlons on a He target are necessary to pro-

gress on the question of the truncation of the PLD (§ II[-2.3.1.).

- Measurement of cross-sectlons for the formation of F can give an
essential new tool to untangle the low energy propagation puzzle

(isotopic cross-sectlons ; undecayed elemental cross-sectlous are
always much less useful) (§ III-2.1.).

- Be conscious that, once the cross-sectlons for the major contributors
to the formation of a daughter product have been accurately measured,

the much larger errors on the unmeasured cross-sectlons for the nume-
rous minor contributors can become dominant (see, e.g., Table 2 and

figs. 23 to 26). Therefore, measurements on a large number of parent
nuclei are useful and, for lack of it, a significant improvement of

the semi-empirlcal estimates is essential. This remark applies in

particular to crucial nuclei whose formation cross-sectlons from
dominant parents have been intensively measured recently :

- B, 14'lbN : (Table 2). Note the importance of 14'15N parents in
the formation of B and even 14N !
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- Se-Cr : (Table 2). Note the importance of parents other than 56Fe
(mainly Mn, 54,55Fe, Ni).

- 25,26Mg, 29,30Si : to the secondary production of 25,26Mg, while Si

contributes _ 63 %, AI makes _19 %, S _ 9 % and heavier nuclei
9 % ; to that of 29,30Si, while S contributes _ 52 %, Ar makes
12 %, Ca _13 %, Sc-Mn _15 % and Fe _8 %.

- As regards UH nuclei, where cross-sections remain energy dependent up
to very high energies, try to semi-empirically combine the recent

Bevalac data on u = f(Zparent ) at _ i GeV/n (§ 1-3.1. ; fig. 7) with
the comprehensive data on U = f(E) for a Au target over the wide
range of energies from 0.2 to 6 GeV/n by Kaufman and Steinberg (1980).

[If possible, of course, complement the Bevalac measurements at
i GeV/n by other ones at other (including lower) energies within

the _ 0.3 to 2 GeV/n Bevalac range]. To master the energy-dependence
of the cross-sections is obviously essential to interpret the UH data
in terms of propagation (truncation problem ; § 111-2.3.2. ; fig.27).

- Try to diversify the groups performing cross-sectlon measurements, to

permit inter-laboratory check of the results. In particular check
thick target against thin target data.

- With the large body of rec_nt and forthcoming measurements of spalla-

tlon cross-sectlons for IZC, 160, 2ONe, 24Mg, 28Si, 32S, 4OAr, 40Ca,

56Fe, 58Ni and of the low energy dependence of the cross-section for
56Fe, time should be ripe for real improvement of the parametrization

of the (still essential) semi-empirical formulae. These should be
based, as much as possible, on a better physical understanding of

what is going on (see detailed discussion in § 1-3.2.).
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APPENDIX

FORMALISMFOR ]HE DILUTION OF "IHE 22He-RICH OR O'nIER PROCESSEDCOMPONENTS

With Xi being the mass fraction of the nuclear species.i,31et me
define various excesses Eik of species i relative to species k .

(i) As regards elemental composition, I define the GCRS "main compo-

nent", biased according to FIP, as following strictly the correla-

tion f(FIP) defined in fig. 15. As regards isotopic ratios, they
are assumed to have standard LG values. Thus, the excesses relati-

ve to LG for the main component are :

= Xi,main / Xk'main fi (FIP)
Elk,main

Xi,LG Xk,LG = fk(FIP) -- fik(FIP)

where fi(FIP) and fk(FIP) are the values of f(FIP) for species i

and k, and fik(FIP) is its value for species i normalized to its
value for species k. An uncertainty should be associated with

f(FIP) ; for simplicity, I shall ignore it here.

(il) In the "processed component", we have :

Xi proc / Xk,proc
Elk,pro c = ,

Xi, I_ J Xk, LG

El" roc describes abundance anomalies of any origin in the proces-
se_'Pcomponent : local nucleosynthesls and, if any, atomic selection

effects on this component. To separate the two possible effects,

atomic and nuclear, let me define :

Elk,pro c - fik,proc(atom) • Eik,proc,nucl •

I choose as a reference species k a species _ose mass fraction is
not affected by the nuclear processing (e.g. _VNe, 28SI). Since in

addition, f-- (atom) is normalized to species k, we have
. , . iK,p_oc

Ak,prociAk,LG = L.

(ill)In the C_RS composition, obtained after mixing of the two components
(for brevity, I use the symbol CR), we have :

XicR/EIk,C R = Xi,L G Xk,LG

Eik, CR is essentially a "measured" quantity, which will later have
to De confronted with the model-related excesses Eik,mai n and

Elk, proc"

37 Workln 8 directly on the excess of mass fraction of a sinsle species (withouc refer-

ence to a comparison species, e.8- E i CR - Xi CR/XI LG is very inconvenient because
P t

Xi CR depends on the behaviour of H and _e in _CR s, which is irrelevanC here
(e_smlc rays are not a closed system with fixed mass).
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It wlll often be more significant to consider the GCRS excess rela-

tive to the FIP pattern f(FIP) describing the main component (i.e.

the quantity plotted in fig. 20) ; let :

, Eik,CR Eik,CR Xi,cR / Xk,CR
Eik,C R -= =, = /Elk,realn f(FIP) Xi ,maln Xk,maln

Now let Pk be the fraction of the species k (unaffected by the
nuclear processing) in GCRS that originates from the processed component.

So I/pk is the dilution factor for species k. I shall work in the appro-

ximation Pk << I, implying that the processed component is a minor one,
highly diluted in the maln component (for a more general treatment -

though not entirely adequate, as we shall see below - see Maeder 1983).

When Pk << I, it is readily shown that :

Eik,CR " E1k,maln + Pk " Elk,proc (AI)38

Eik,CR " flk (FIP) + Pk " fik,proc (at°m) " Elk,proc,nucl

Or, dividing by fik(FIP) :

, flk,proc (at°m)
Eik,C R - i + Pk " • Eik,proc,nucl (A2)

flk(FIP)

This is the general expression (for p << i) we need. It relates the ob-

served excess at GCRS EIk,C R (corrected for the bias with FIP), the
excess in the processed component material Elk -roc nucl, and the dllu-,P

tlon factor I/pk ; and it includes possible atomic selection effects In
the processed component. It can be used either way to derive one of three

quantities from the other two.

The traditional treatment (Meyer 1981c, 1985b ; Cass_ and Paul

1981, 1982 ; Maeder 1983 ; Blake and Dearborn 1984 ; Arnould 1984 ;

Prantzos 1984a,b ; Prantzos et al. 1983 ; _, 167) assumes flk,proc(atom)
- flk(FIP) and gets hence :

E * (A3)39ik,CR " I + Pk " Eik,proc,nucl

As discussed in the text (§ III-4.3. ; Meyer 1985b), I think this assump-
tion is not a plauslble one.

38 In eq.(Al) the reference to LG composition has merely introduced a constant factor

K_ LG/Xk LG on both sides of the equation, which is superfluous. SoD the relatlon-
s_p between Eib CR, Eib m-4n, E_k _roc and Pk is unaffectedby changesof, and
hence uncertalnt_a on t_ _ stanaa_. Uncertaintieson the LG compositionof a

large n,--betof elements (not specificallyspecies I and k) intervenewhen Elk ma4n
- fik(FIP) is being defined ; I ignore this uncertainty here. On the other _an_,
Eik CR is an observational quantity, and, when this excess has to be determined,
unc_rtainties on the LG abundances of species i and k fully play their role.

39 It is also equivalent to forget about any atomic selection effect whatsoever in
both the main and the processed component, as Maeder (1983) did.
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In our ignorance of possible other atomic selection effects in the

processed component, we can also simply not consider any, and set

fik,proc!?t?m) = I. Then we get the more plausible, though possibly
overslmp_ea expression :

• * Pk (A4)
Eik,C R - I + fik(Fip) Eik,proc,nucl

which expresses simply the effect of the higher degree of dilution of the
"processed" species belonging to elements more abundant in the main com-

ponent (low-FIP elements).

Of course, expressions (A3) and (A4) do not differ when dealing
with elements in the same FIPTplateau as the reference element k, since

then fik(_P) = i. With k - ZONe, the two formulae yield identical re-
sults for Ne, C, O (see footnote 29).

As regards the 22Ne excess (§ III_,.), pk - p2o_:l_ _ _ete_:_:dfrom (A3) or (A4), from the 'observed' Elk _R and the b e t -

tlcal estimates of Elk _roc nucl for ZZNe = i'_Meyer 1981c, 1985b ; Cass_
and Paul 1981, 1982 ;'VMae_er 1983 ; Blake and Dearborn 1984 ; Arnould

1984 ; Prantzos 1984a,b ; Prantzos et al. 1983 ; _, 167).

To build up fig. 30, eqs. (A3) and (A4) have been used, while

these same formulae, expllclted for Elk _roc nucl have been used for

fig. 31. In both f_ures, the top plot _sul_s from eq.(A3) and the
bottom one from (A4).

As regards the excesses of UH nuclei (§ 111-5.), we do not have

any theoretical estimate of Eik,proc,nuel , so that Pk cannot be derived
from eq. (A3) or (A4). E_ ....... i can only be related to the

oDservea 51k CR to wltnln an unknown factor Pk' corresponding to the
unknown degree' of dilution (of whatever species k). Fig. 32, otherwise
similar to fig. 31, has been built up in this way, and gives only rela-

tive enhancements Elk -roc nucl" [Since there is no calculation to com-
pare the data with, th_e i_ no point in drawing an analog to fig. 30].

40 On the r.h.s, of eq. (A2) through (A4), should strlctly appear the term

[Eik.vroq,nucl - 1]. Since it is assumed that Eik.vroc.nucl >> 1, the I has been
negle_teo. _n figs. 31 and 32, where the e_attOne are expllclted for

E1_,proc,npcl, it must be clear that, In case of a small excess,Eik,proc,nucl. I,and _ot . O.
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