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Emulsion Chamber Observations and Interpretation (HE 3)

M. Shibata

Yokohama National University, Yokohama, 240, Japan

i. Introduction

The contributions to High Energy 3 session consist of 66 papers,

which mainly deal with Emulsion Chamber experiments, related methods and
theories. Hereafter emulsion chamber will be abbreviated as EC. The

physical interest in this field is concentrated on the strong
interaction at the very high energy region (>101_eV) exceeding the

accelerator energy, also on the primary cosmic ray intensity and its
chemical composition.

The majority of the papers concern the experimental results from EC
experiments at mountain altitudes or at higher levels using flying
carriers. There are also some papers from hybrid experiment consisting

of EA$ arrays or calorimeters in addition to EC.
Those experiments observe cosmic ray secondaries and give us the

informations on high energy interaction characteristics through the
analyses of secondary spectra, gamma-hadron families and C-jets (direct

observation of the particle production occuring at carbon target). The
discussions are devoted to problems of scaling violation in

fragmentation region, interaction cross section, transverse momentum of
produced secondaries and some peculiar features of exotic events.

Already a lot of discussions for these problems have been made in
Kyoto, Paris and Bangalore ICRC, however, the statistics of

experimental dataare steadily increasing and the quality of simulation
works are also progressing, reflecting the details of new accelerator
results.

The following is the classification of papers for this talk.

Secondary spectra
Primary spectra
Gamma-hadron families

Halo events ( Super high energy families )

Exotic phenomena
New technics

Cascade calculations, propagations
Hybrid experiments

Some important results are described below from each section.

2. Secondary spectra

The most basic data in EC experiments are gamma and hadron spectra,
which reflect the interaction characteristics of hadrons in the

atmosphere as well as the primary cosmic ray intensities. It is well
known that the intensity of gamma rays at mountain altitudes is quite

lower than the expected value from calculationsl) based on the scaling
(or quasi-scaling) interaction model and energy-independent primary
chemical composition with about 40 % of protons, as it is known at
energies around 10 12 eV.

Mt.Fuji collaboration (HE 3.1-3) presented those spectra from their
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Fig.i The energy spectr_ of gamma-rays (a) and hadrons (b) at Mt.Fuji.

last exposure (Fig.i). The power

indices of both components are the

same within statistical errors,

being 2.0. Both gamma and hadron I " _LL " _rJ_orov e_I_.

, ._fluxes are consistent with a .o- _JACEE

calculation based on quasi-scaling i I.._E'_u._ _-_ _
model with hea_-enriched primary _ __=,__..,,_.

total intensity is taken from .- ..... _-.___ "-__ _Fe

Grigorov's 2) spectrum and the _ -_'_'_"....... __'_ _ "'_2::.. "_.chemical composition is ,o-, :-_:-.._.
extrapolated from low energy data

of i0 z2 eV range with an . _

assumption that proton component ,_ I "_f.... Ihas a knee around i0 z4 eV as .0, .o, .a.

suggested by the magnetic rigidity _vmo=__

cut-off model of the cosmic ray

propagation in the galas. Other Fig.2 The heavy-enriched primary
components are assumed to have the chemical composition assumed in
knee at energies Z times greater, calculations.

where Z is the atomic number. Such primary model gives proton-poor and

hea_-enriched composition at energies greater than i0 I_ eV.

China-Japan collaboration also presented those spectra as shown in

Fig.3 (HE 3.1-2). In a part of this experiment, iron is used instead of
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Fig.3 The energy spectrum of gamma-rays (a) Fig.4 Altitude variation of

and hadrons (b) at Mt.Kanbala. gamma-rays and hadrons.

lead and the result is consistent with that from lead chamber. Open

circles and closed circles present the result from lead chamber and

iron chamber, respectively. The slope and the intensity of gamma and

hadron spectra are quite consistent with Mt.Fuji collaboration. The
same Monte Carlo calculation as mentioned before can explain the

attenuation of the secondaries in the atmosphere for world data,

Qomolangma, Mr. Kanbala, Mr. Chacaltaya, Pamir plateau and Mt. Fuji.

(Fig. 4)

Cananov S.D. et al. presented hadron spectrum from Pamir experiment

(HE 3.1-7). This new result (Table l) is in a good agreement with other

experiments.

Table i. Hadron intensity by Cananov. S.D. et al.

(Normalized to Pamir level)

Experiment 10(E >5 TeV)/cm2s sr The Slope

Mt. Fuji 3) (3.2 + 0.2) 10 -1° 2.0 + 0.i
Mt. Kanbala _ .(2.9 + 0.i) i0 -l° 1.85 + 0.i

Pamir Pb chamberS_(l.9 + 0.4) i0 -IU 1.96 + 0.i

This work (2.7 + 0.i) 10 -1° 1.9 + 0.i

Summarizing the results of secondary spectra, all experiments are in

a good agreement. The spectral indices of gamma and hadron component
are about 2.0 in observed energy range of 10 12 -i0 I_ eV. The absolute

intensity and the attenuation in the atmosphere for mountain altitudes

are well explained by a calculations with quasi-scallng model and

heavy-enriched primary composition.

Quasi-scaling model assumed in these works means that the scaling

law in the fragmentation region is not violated strongly, while the

increase of the rapidity density in pionization region is taken into
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Fig.5 (a) Rapidity distribution and (b) x-distribution for

quasi-scaling model.

account extrapolating ISR-SPS 6) results as illustrated in Fig.5 (HE

3.4-9) for rapidity and x distributions. The increase of proton-air
cross section is assumed as o=E0 °'°6.

However, this is not a unique interpretation of the secondary

spectra because it is also possible to explain experimental data

assuming stronger violation of scaling in the fragmentation region and

energy-independent primary composition. This ambiguity cannot be solved
when one treats only the uncorrelated

secondaries. This , problem will be fl_O[]

discussed again in family phenomena.. I :::_:_

P

3. Primary speotra 00
The observation of primary particles i "_''" I

in the stratosphere is made by

Mandritskaya K.V. et al. (HE 3.1-10). 4001 ",
Results for 1-100 TeV range are shown 2_ "°° A_

in Fig.6 and compared with a mixed I ",'_',_
composition with following parameters, _ _0

which are derived from the lower energy _4°°
data by Ryan M.G. et al. 7) Simon M. 8) ,

Ormes J.P. et al. 9) and Smith L.H. et _ 100 __--_-_'-"IC
al. i0) Helium and heavier components

show good agreement with expected _o. "
intensity. However, the proton spectrum _ L_Z_._
shows steepening in i-i00 TeV range. Zm

Another paper on the existence of

the bump at i0 15 eV in primary total Z _ _ zo _o E,T_v
spectrum was presented by Capdevielle

J.N.,Iwai J. and Ogata T. (HE 3.7-9) Fig.6 The primary spectra
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from a compilation of Concordel t), JACEE 12_ and Japan Air Line

experiments £3_as sho_ in Fig.7.

S_arizing the primary spectrum obtained by means of EC at energies

greater than i0 I_ eV, still the situation is not clear, especially for

proton intensity. A discrepancy is seen between the works by

_ndritskaya et al. and the _ JACEE collaboration (Fig.8). One may

question the statistical and/or methodical accuracy in these

e_eriments. Therefore, at present, one cannot say definitely about the

energy dependence of the chemical composition at energies greater than
101 _ eV.

E_ "bI(m-2s'lsr-_eFl'_) 0 _ncorde

f JAL

-- 1019 @ JACEE
Nikolski
EAS

Fig. 7 Primary total spectr_ by Capdevielle J.N. et al.

'j to He+ ......q

'.11

"_ t10t O/ 1 10 z _ ,r,,/(-,¢.

Flg.8 Comparison of proton spectrum between

l:Mandristkaya K.V. et al. and 2:JACEE collaboration.
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4. Gamma-hadron families

Gamma-hadron families are generated by successive interactions of

primary particles and their secondaries in the atmosphere. There has

been a lot of works to account for nuclear-electromagnetic cascading
effects in order to extract the characteristics of hadronic

interactions from observed feature of gamma-hadron families. One of

those approach is to compare experimental data with results of Monte

Carlo calculations under various interaction models. Another is to try
to eliminate those effects for individual events and trace back to the

original interaction features. Such procedure was developed by many

authors among EC experimentalists 14) and called 'clustering' or
'decascading'.

The paper presented by Mt.Fuji collaboration is using the first

approach (HE 3.5-1). The intensity of gamma families is compared with

results of calculations under various assumptions as shown in Fig.9,

where M denotes Mixed composition, P - Proton primary, S - Scaling

model, F - Fireball model of CKP type, which corresponds to the strong

scaling violation in the fragmentation region, Q - that QCD jet effect

is accounted, I - Increasing cross section and inside of the

parenthesis is the knee energy of proton spectrum. The data are

compatible with MSQI(100) model.

The energy weighted lateral spread of gamma families which reflect

the transverse momentum of produced particles is compared in Fig.10,

where T denotes the increase of mean Pt as <Pt> =E0 °'°_, which does not

seem to explain the data. Since family phenomena are very sensitive to

the fragmentation region, ittis suggested from this figure that the

increase of mean Pt in fragmentation region is not remarkable.

!

L.

"E _. Era= 4 TeV

_, I0_
'_ _ 30 -

M,rl:ll (IOQO)
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Fig.9 Fig.10
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MSQI(100) model can also

explain the binocular type
events (with large lateral Fig. 3

spread) as shown in Fig.ll. IO" Sxx ZET_IOOTeV
The fraction of events with

X12>I00 TeV cm is about 7 %.

High multiplicity model does
_ot explain these

_xperimental data. _ "\__^_"_
China-Japan collaboration _ x __

(HE 3.4-2) presented a \__:_6_
detailed analysis of an event \__:_ MSO,T

KOEI9 of the total visible \PFI
energy 1537 TeV. The I 1 I I MS°I
production height of this 200 40o 600 800
event is estimated from ............

triangulation method to be XI2=RIe EI/_2 TeV cm
less than 70 m. The Fig.ll

clustering procedure lead to an interpretation of this event, in terms

of QCD-jet, as 5-jets event with quite small sphericity (0.0074).
Navia O. and Sawayanagi K. made a cluster analysis on gamma families

for Chacaltaya EC data (HE 3.2-1). From B-ER correlation, where B is
the asymmetry parameter defined by A.Kry_ et al. TM, they pointed out

the existence of multi-jet with symmetrical structure. When the lateral

structure of family is symmetrical, B J . i
is close to i while it is close to 0 if

the showers are grouped along a _0 20_<50(T_¢m)
straight line. Gamma families are
classified by energy weighted lateral

spread, then B distribution is shown in .20
Fig.12. In the widest class of _'_---_
families, one can see a peak close to
B=0, which can be understood as 0

binocular type events. However, there _ 40 _<80are non-zero distribution in symmetric _ 50.

region too. The authors conclude that _ r
for those events the <ER> values are as _ 20_

large as for binocular events but the _ _ ._ ( _--
number of jets is much greater, which
makes the structure more symmetrical. 0

Azimov et al. presented a similar
analysis for Pamir EC data using a 80 _

symmetry parameter, _, instead of B.
The definition is just opposite than of I
B, _ is 0 for symmetric case and is
unity for asymmetry (HE 3.7-1). They
also showed the existence of wide and 2C

symmetrical families. Their explanation _ r
of these families as generated by heavy _ I _ p--
primary nuclei is based on the C t0 '0_ 0

comparison of experimental data with
calculations using a quasi-scaling
model and mixed primary chemical Fig.12
composition.
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Therefore, the events with large lateral spread cannot be directly

connected with QCD-jet or large Pt phenomena but most of them are

probably generated by heavy primary nuclei. The event KOEI9 reported by

China-Japan collaboration does not belong to such cases because of
small lateral spread corresponding to the low interaction height.

• However, we need more statistics to draw a picture of multi-jet

production process at very high energies.

In a paper presented by Pamir collaboration, an investigation was
made for the ratio of energetic hadrons with no visible hadron

accompaniment to the total hadron intensity (HE 3.1-ii). It is shown

that this ratio is much higher than the predictions of scaling models
as shown in Fig.13. The considerations on the increasing interaction
cross section or the primary chemical composition are not successful in

explaining the experimental data. The violation of scaling in

fragmentation region is required to explain this discrepancy, according
to the authors.

0,6 gxp

g-rood . "

' ' ' 50"0
20 50 20O . E¢h

Fig.13 Single hadron ratio to total hadron intensity,
T.K. Gaisser ,T.Stanev and J.A.Wrotniak made a Monte Carlo simulation

on this problem and showed the sensitivity of single hadron intensity

and gamma-hadron ratio to the different interaction models (HE 3.4-7).
Their results show that single hadron ratio to the total hadron

intesity by Pamir experiment seems to be explained within a statistical
error. However, Gamma-hadron ratio of Pamir experiment cannot be

reproduced by quasi-scaling model. Possible explanations by authors are,
i. breakdown of scaling in fragmentation region,
2. there are more hadrons produced than they assume,
3. the underestimation of gamma ray energy or more probably

the overestimation of hadron energy.

Summarizing the papers on gamma-hadron families, there is still an
ambiguity in interpretation of the experimental data in 1014 -1015 eV

range. The global features, like family intensity and lateral spread ,
may be explained by the interaction mechanisms extrapolated from the
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accelerator results with only very slight scaling violation in

fragmentation region with an assumption of heavy-enriched primary
composition. The events with large lateral spread and their symmetry
structures are also explained within those framework, as it is shown in

clustering analysis. If the above explanations are valid, then the
transverse momentum in fragmentation region seems to remain almost
constant.

On the other hand, another result reported by Pamir collaboration on

'the high ratio of the energetic hadrons with no hadron accompaniment

to the total hadron intesity' is not explained by above mentioned point
of view. This can be explained by nuclear interactions, where no
secondary particles have sufficiently high energy to be detected. Then,

only survival hadron is detected with no visible accompanying particles°

Such situation would be explained by strong breakdown of scaling in
fragmentation region and/or the change in inelasticity with energy.

Mt.Fuji experiment also found the excess of single hadrons, but less one

compared to the results of Pamir experiment, being about I0 %z6). They
claim this excess would be attributed to a scanning inefficiency for

low multiplicity events. On the other" hand, the result, which Pamir
experiment concludes to be in contradiction with scaling model, is

successfully explained by the work of T.K.Gaisser et al. According to
their calculations based on quasi-scaling model, also taking into
account of the design of the Pamir chamber, the result does not

contradict with experimental data within the statistical accuracy. This
problem needs more investigations both in experiment and calculations

to clarify the sensitivity to the interaction mechanism and also to the

experimental bias like energy determination, scanning efficiency for
accompanied particles and so

on o I
5. Halo events o_

Some of the most energetic
families show a remarkable

character of extremely high A •.. "\ 3,
optical density on the X-ray -- _,
films, and it is called halo. I0! _"
Joint paper from Mt. FuJi and

China-Japan collaboration I_
presented the intensities of
the halo events (HE 3.4-9).
The comparison with a Monte

Carlo simulation including
the halo development inside

suggests more I_2v
the chamber

than 3 times lower proton
abundance in 10 16 -10 17 eV

range than that of i0z2-i013
eV within the framework of IO

quasi-scaling model as shown -3
in Fig.14. Here the 10

geometrical size of the halo 0.1 I Sm_X Cm 210
defined as an area with

optical density greater than Fig.14
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0.7 on N-type X-ray film is shown on horizontal axis. High multiplicity
model (n= E0_) cannot reproduce the observed intensity of the halo

events when the increase of the cross section and the primary chemical
composition are adequately accounted for. Therefore, halo itself is not

an exotic phenomenon but its low intensity is the largest problem.
Since most of the halo events are induced by protons, such low intensity
requires proton-poor primary chemical composition in 1016 -i017 eV

range, say less than i0 %. Both results from Mt.Fuji and Mt.Kanbala
experiment are consistent within statistical errors with the

calculation based on those assumptions.

Some examples of optical density map are shown in Fig.15 for

experimental data by Mt.Fuji collaboration and artificial ones by the
simulation (HE 3.4-9), though the structure of those events is not
fully discussed yet.

I)

J'_. _ ..:._.<:_"_>!_.i!!._?_J_i_}__ _._.,._r_,,_:_:_,.:._._,,_-,_._-.._.-,_-•,_- _'.":_'>.'_.':",.,',_.,.._:,.:_.,_:,_.,._,.,,............._ _,._!_...._,._'.,_,'--

(a) Experimental:FH-89 (b) Simulation:Proton primary

Ehalo=2300 TeV Ehalo =2300 TeV

:1_ _,{_t'[_!_a:_-_J'_'_'_' __"_*"_"l!i ';_._'_' "__-,_"__"!i!..... '..a *_'::"'>:__}!__"':'f_ '_'_,
,+.,.,, :._ ....fli] _, ,_,_=

' _7.1-.5-.....
O

(c) Experimental:FC-104 (d) Simulation:CNO primary
Ehalo=3000 TeV Ehalo=2480 TeV

Fig.15 Optical density map of halo.
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N.M.Amato, N.Arata and R.H.C.Maldonado (HE 3.4-5) presented an

analysis of a halo event named P06 of the total visible energy 1300

TeV. According to their interpretation, central part of this event is

formed by 'Giant-Mini-Cluster' with extremely small Pt of 30 MeV, whose

characteristics are discussed by papers of Brazil-Japan collaboration

(HE 3.5-4).

Another extremely exotic nature of the high energy interactions is

re_orted by Pamir collaboration (HE 1.4-12). Some energetic events over
i0 _s eV show a coplanar emission of high energy photons as shown in

Fig.16. The strong correlation among high energy photons were shown from

the asymmetry analysis including the accompanied photons outside of the

halo, though its interpretation is still open.

2127 I :3.................. .. "
.... • -_ ._^" , ,-',.. r -8 " ,

.' "".;_._":. _=/:) " -:,V_' L t ._....... -"-'.':" ""
• ;"_llll[_H_.,_llli,_£_ "_" I. ,, " .-,4dlIlP,,I_Jlr" : .'., t I. " .- ._".. ,,_:.- .'_-_.: .

,,.. _F:_,: " ':. ' ....... " 't" • ... } • ':"_ _._'_
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Fig.16 Coplanar events observed by Pamir experiments.

Summarizing the papers on halo phenomena, which correspond to the

primary cosmic ray energy of 1016 -1017 eV, the intensity and energy

flow properties are also explained by the same Monte Carlo calculations

based on quasi-scaling model and heavy-enriched primary composition. In

this energy range, the proton abundance was assumed as less than i0 % of

the total primary intensity. If we assume more primary protons, then we

need to introduce violation of scaling in fragmentation region stronger

than one assumed in this calculation, though not as strong as CKP-type,

because halo is created by very high energy electromagnetic particles,

which are most probably produced in fragmentation region. It is

reported by Pamir collaboration (HE 3.4-10, HE 3.4-11) that some of the
halo events may be attributed to only few energetic photons. Sometimes

only one photon produced high in the atmosphere is enough to construct

observed characteristics of the halo spot. From those considerations,

the fragmentation secondaries seem not to be disappearing in very high
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energy interactions.

The coplanar events detected by Pamir experiment seem to indicate an

existence of strikingly unknown features of very high energy
interactions.

6. Exotic phenomena

Since the observation of the event 'Centauro 1 '17) by Brasil-Japan

collaboration, extensive searches of peculiar events were made on

gamma-hadron families and C-jets by the same authors. Though no

Centauro-like events were reported, a scheme of the interpretations on
those interaction mechanisms was discussed in this conference. The new

mechanisms are named by those authors as 'Centauro' - pinaught-less

particle production, 'Mini-Centauro' - hadron-rich events, 'Chiron' -

Pt = 2-3 GeV/c, 'Geminion' - binocular events, 'Mini-Cluster' - Pt =
10-20 MeV/c and 'Giant-Mini-Cluster' - ensemble of mini-clusters.

A search was carried out by H.Kumano for the anomalous events among

C-jets at total visible energy greater than 5 TeV (HE 3.2-5). Among 150
C-jets, the author assigns 9 events as anomalous ones because of non

pinaught character and/or the large transverse momenta.

Another paper by Brasil-Japan collaboration also reported exotic

interactions among C-jets and Pb-jets from the systematic analysis of

Charaltaya CH-19 (HE 3.2-6). The decisive characteristics common to all

these exotic interactions stated by authors are : (%) - unusually large

Pt and (2) - no neutral pions produced in an interaction. The origin of

cascades registered in the chamber were understood to be hadrons if the

shower spot was visib%e only in depths greater than 6 c.u., or if their

cascade curves were obviously not like electromagnetic ones, or if they

were showing a clearly multi-core structure. Eightevents with 2 showers

and another eight with 3 showers are reported hecause of the invariant

mass greater than 200 MeV/c 2 or the association of hadrons. The

resemblance of these events to Mini-Centauro interactions is shown in

the Pt and fractional energy distributions (Fig.17), which may be
characterized by <Pt(gamma)> = 0.35 ± 0.05 GeV/c and initial

N

I(X) I_

(a) (b)

I0 _ 1(....... , I |

0 '_3.5_) _0 I_ 0 _I _ O_ O_ 0.5 _ 02 O_
P.- f

Fig.17 (a) Pt distribution and (b) fractional energy distribution
for exotic C-jet events.
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multiplicity <m0> = 18 ± 3. The parent interaction energies which give
rise to these exotic events is estimated as i00 to 400 TeV.

M.Tamada showed the mini-cluster structure from the study of the

correlations between hadrons and electromagnetic particles of the

gamma-hadron families of Chacaltaya experiment (HE 3.3-6). There exist
a number of hadrons which accompany electromagnetic showers very closely
as shown in the distribution of relative distances between a hadron and

its nearest neighbouring shower (Fig.18). Another feature is that the

hadron carries a large portion of the cluster energy. They form a
mini-cluster whose members carry transverse momentum about i0 times

smaller than in normal production process.
Another paper by Brasil-Japan collaboration presented detailed

characteristics of the mini-clusters (HE 3.5-3). The authors select the

gamma-hadron families penetrating through bothupper and lower chambers

and having <ER> > 180 GeV m after the decascading with Kc=6 GeV m.
Single-cored and mini-clustered high energy showers _ i0 TeV),

spreading from 0.i to a few mm of radius, are investigated in detail.
The multiplicity distribution of mini-cluster constituents is shown in
Fig.19. The lateral structure of those families is interpreted as the
result of Chiron interactions with Pt = 2-3 GeV/c and mini-cluster

formation with Pt _i0-20 MeV/c by the secondary interactions.

Is -r],.j [] pcnet rative

0 5 ]0 15 _ Z5 30 _

Fig. _9 Histogram of shower core number
in a mini-cluster.
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The mini-clusters with high multiplicity (m >30) are called

'Giant-Mini-Cluster' (HE 3. 5-4). They show small spread corresponding

to extremely high rapidity density and strong penetrative power. The

inner lateral distribution of giant mini-clusters shows high similarity

of exponential type among different events as shown in Fig.20.

Giant-mini-cluster is interpreted as an ensemble of mini-clusters and

it is suggested as a possible cause of halo in large families.

The characteristics of hadron families are investigated on Charaltaya

carbon chambers by H.Aoki (HE 3.3-4). The hadron multiplicity

distribution is compared with current model calculations with primary

protons in Fig.21. The excess of the hadron-rich events (Nh> 9) to

proton-initiated artificial families is shown, though there is a

possibility of explaining it with heavy primaries .. In the correlation

between Nh and <ERh>, the

majority of experimental data |

are explained as fluctuations t00
of ordinary interactions, but
Centauro I and its candidates

(Centauro II,III,IV) are not

explained by this argument. _*"

Summarizing the papers on _ 10
exotic phenomena, Brazil-Japan _

collaboration concludes that

5-i0 % of observed events _

cannot be attributed to z

ordinary interactions.

Japan-USSR collaboration t

(HE 3.4-8, HE 3.5-2)also H _ Hreported observing
mini-clusters in Pamir carbon 23456789 13 1617 27

chambers. HUttiPlicLtYjNh

The energy threshold for

those exotic phenomena is Fig.21
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estimated to be around I00 TeV, though searches by present accelerator

data showed negative results. This situation is explained by the

authors: either the threshold energy is a little higher than SPS-energy

or there is a genetic relation between the exotic phenomena, namely,

the secondaries from a Chiron interaction at very high energies

maintain the exotic characters and produce mini-Centauro, Geminion and

mini-clusters in successive interactions in the atmosphere. These

exotic phenomena reported by Brazil-Japan collaboration are derived by

focusing their attention on events of unusually large lateral spread or

of hadron-rich nature. This is, however, fully related to the problem

of the fluctuations in 5-10 % tail. Therefore a comparison with

detailed Monte Carlo simulation is needed to exclude the possibility of

explaining these events as just fluctuations in ordinary interaction

process. As mensioned before, the large lateral spread of 7 % of

gamma-hadron families can be attributed to the heavy primary nuclei. In
the discussion of hadron-rich events or the mini-clusters containing

hadrons, the reliability of hadron identification is the most essential

point, because mini-clusters showing transverse momentum of 10-20 MeV/c

can be interpreted as trivial electromagnetic cascades if they lack

hadrons inside. Those procedures of hadron identification are also

related to the problem of the fluctuations in the development of

electromagnetic cascades.

7, New technics

Taira T. et al. (HE 3.1-133 presented a paper on a high sensitive

screen type X-ray film (_Fuji G8-RXO) and luminescence sheets (Fuji

'Imaging Plate'). Those films are irradiated to the electron beam to

obtain the characteristic curves. They show quite high sensitivity

compared to the currently used films like N type and other similar ones.

The detection threshold energy for the cascade shower observation is

also tested by baloon experiment and found to be around 200 GeV.

A new clustering procedure is proposed by Nanjo H. (HE 3.7-4) based

on the idea of a variable cut off value for decascading instead of the I

constant ER in other methods. The new method is applied to simulated

data and the validity of the procedure is examined on initial number of

gamma rays, initial photon energy of a cascade and the sensitivity to

the transverse momentum. The results seem to be encouraging.

8. Cascade calculations, propaKations

There were ii papers on cascade studies or cosmic ray propagations

in the atmosphere. A.Wasilewski and E.Kry_ (HE3.6-10,HE 3.6-11) made a

detailed Monte Carlo simulation both in lead and air including every

possible electromagnetic processes. They gave a new approximation

formula for electron lateral distribution, which shows some deviations

from NKG formula. This formula explains the discrepancies between

experimental data and NKG formula, for instance the change of age

parameter with the distance from the shower axis.

Ivanenko I.P. et al. (HE 3.5-12, HE 3.5-13) made calculations of

electromagnetic cascades for higher moment characteristics, i.e.,

variations, asymmetry and excess.

Other papers in this field also show some useful results, however,
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due to the limited space, I would like to suggest to look at papers by

A.Liland (HE 3.1-9), A.V.Plyasheshinikov (HE 3.5-9), Yu.P.Kratenko and
S,A. Charishnikov (HE 3.5-10), R.M.Golynskaya et al. (HE 3.5-11),

T.Yanagita (HE 3.6-7) and A.Tomaszewski and Z.Wlodarezyk (HE 3.7-3).

9. Hybrid experiments

There are several stations where hybrid experiments are under

operation. They are Tien-Shan station (K.V.Cherdyntseva et al.
HE 3.2-7), Chikovani station (Yu.G.Verbetski et al. HE 3.2-8, HE 3.2-9),

Mt. Chacaltaya station (Matano T. et al. HE 3.3-8, HE 3.3-9) and
Mt.Norikura station (Shima M. et al. HE 3.3-10, HE 3.3-11).

Matano T. et al. (HE 3.3-8, HE 3.3-9) reported a detection of very

high energy gamma-hadron family in an air shower core, whose age

parameter is estimated to be 0.17. The association of such a young air
shower to the high energy gamma-hadron family suggests that the primary

particle of this event is a proton.
The installation reported by Shima M. et al. consists of EAS array,

EC and burst detector below EC. EAS size spectrum is obtained in two

trigger conditions. One is a usual air shower trigger and another is a
burst trigger below EC. EAS size spectrum accompanied by gamma-family
of total energy greater than i0 TeV is presented in Fig.22. The result

agrees with the simulated data for proton poor primary composition of
less than 15 % better than the proton-rich one of more than 30 %.

This kind of the experiment is a promising one because of the high

sensitivity to the chemical composition of primary particles. Though
the available data are limited at present, the possibility to extend

the experiment is not limited compared with storatospheric experiment.
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i0. Conclusions and prospects for future

One can explain emulsion chamber data by so called quasi-scaling

interaction models if primary proton spectum becomes steeper around

i0 I_ eV. Already a lot of works have shown the mutual consistency among
various features of the EC data. One can say, that at least no serious

difficulty is known up to now in this framework.

One may argue, however, that the proton percentage at these energies

is larger, and thus a more serious scaling violation in fragmentation

region has to be assumed. There has been also a number of papers

discussing about such possibilities 18) . In high multiplicity model,

however, difficulties arise in reproducing the frequency of the

binocular events and halo events, which are effectively produced in

case of low multiplicity with high secondary energies. Therefore, the

high multiplicity model can survive when the multiplicity distribution

has a great fluctuation as discussed by J. Wdowczyk 19).

As to the exotic events, we need stronger evidence in order to

confirm that they are really new phenomena. More simulations are needed

to exclude the background events from fluctuations of ordinary

interactions or heavy primary effects.

To get an increased sensitivity to the primary composition, an

importance of hybrid experiments was discussed in this conference.
Simulteneous informations from Emulsion Chamber and air shower array

will bring us less ambiguous conclusions. Such experiments are being

developed, for example, ANI experiment at Aragatz station,

Mt.Chaealtaya, Mt.Norikura and others.

The continuation of the exposures of EC is also important to increase

the statistics significantly for very high energy events like halo. The

large scale EC experiments are also developing, for example, at

Mt.Kanbala by China-Japan collaboration and Pamir plateau by Japan-USSR

collaboration (HE 3.1-1). Fragmentation region at very high energies

can be studied through those observations.

These situations are illustlated in following chart.
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!
I I Fraction of primary protons

L

small y _ large

Very mild scaling violation scaling strongly violated

in fragmentation region in fragmentation region

Knee in proton spectrum: Energy independent
composition up to

N IO 14 eV 10 17 eV

II I Exotic Events i

either / ??? _or

iewnomealIuuaonIHeavy primary effects

(Stronger evidence necessary)

III Importance of hybrid experiments : Increased sensitivity to
composition

IV Large exposures : - halo phenomena

- fragmentation region at very high energies

- structure reflects (maybe ?) the kind of

primary particle

Significant increase in statistics is necessary to
draw conclusions.
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