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ABSTRACT 

AFAMRL is  current ly  conducting a s tudy to  explore use of t he  steady-state visual- 
evoked electrocortical  response as  a n  indicator.  of cognitive task  loading. Application 
of l inear descriptive modeling to  steady-state visual evoked response (VER) data  
obtained in t h e  AFAMRL study is summarized in  this  paper.  Two aspects  of linear 
modeling a r e  reviewed: (1) "unwrapping" the  phase-shift portion of t h e  frequency 
response,  and (2) parsimonious characterization of task-loading effects in terms of 
changes in model parameters.  Model-based phase unwrapping appears t o  be most 
reliable in applications - - such as  manual control -- where theoretical models a re  
available. Linear descriptive modeling of t he  VER has  not  yet been shown t o  provide 
consistent and readily interpretable results.  

INTRODUCTION 

Considerable effort has  been devoted in recent  years  t o  the  development of reliable 
metrics for pilot workload. Such metrics could be of value in the a reas  of cockpit 
design, pilot training, and flight operations. A measurement technique suitable for in- 
flight application could potentially warn of impending performance degradation and 
thereby allow timely remedial action. Assessment of workload in both simulated and 
operational flight tasks  would enhance the  identification of workload "bottlenecks", 
provide additional da ta  for the  evaluation of t he  crew/system interface,  and,  in 
general ,  provide information necessary for maintaining task  workload within desired 
limits throughout a given mission. 

Various studies have been undertaken in recent years  t o  develop reliable metrics of 
pilot workload, including subjective estimates, primary and secondary task  measures, 
and  physiologic measures. Exploration of physiologic measures has been motivated by 
the  desire t o  obtain one or  more measures tha t  a r e  non-interfering with t h e  primary 
mission and a r e  not  likely to  be biased by t h e  subject 's  preference €or a given 
man/machine interface o r  his unwillingness to  admit t ha t  a particular task  is difficult. 
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AFAMRL is current ly  conducting a study t o  explore use of t he  steady-state visual- 
evoked electrocortical  response a s  a n  indicator of cognitive task  loading [ l ]  This 
paper  summarizes the  results t o  da te  of an effort to  character ize  the  visual evoked 
response (VER) via linear descriptive modeling Two applications of linear modeling a r e  
reviewed Pa r t  I describes methods for "unwrapping" the  phase-shift portion of t he  
frequency response,  an issue of concern when analyzing behavioral as  well a s  
physiological response The central  issue of this paper -- characterization of task-  
loading effects in terms of changes in model parameters -- is addressed in par t  I1 

A s  of t h e  writing of this paper ,  characterization of task loading effects is still in 
progress  Par t  I1 of this paper is consequently written in the  style of a progress 
repor t  

PART I: PHASE U 

Nature of t h e  Problem 

To obtain the  plots of amplitude-ratio ("gain") and phase-shift t h a t  a re  commonly 
used to  character ize  the response of linear systems, one typically employs t h e  
following procedure: 

1. 

2.  Divide Fourier coefficients (or cross-power spectral  quantities) a t  
frequencies of interest  t o  obtain estimates of t he  frequency response as  
complex numbers. 

Compute Fourier transforms of t he  "input" and "output" time histories. 

3. Perform an  appropriate nonlinear transformation to  express the  frequency 
response in terms of gain and phase-shift. 

Various averaging techniques may be performed to  enhance the  reliability of t h e  
resul ts  as  discussed in [Z]. 

Procedures of this  sort  necessarily yield somewhat ambiguous phase-shift estimates, 
because phase repea ts  every 360 degrees. For example, a negative real  number can 
be considered to  have a phase shift of +180 degrees, -180 degrees, -540 degrees, e tc .  
Therefore, we can shift any phase estimate by an  integral  multiple of plus or  minus 
360 degrees (one "cycle") and not  be a t  variance with the  data .  In general, t he  
frequency analysis scheme described so fa r  must be accompanied by a procedure f o r  
"unwrapping" the  phase in a meaningful way. Otherwise, t he  frequency shaping of t h e  
phase response will have a sawtooth appearance, since Fourier analysis schemes can 
only identify phase shift within a single cycle (typically, -180 to  180 degrees). 

Techniques for Unwrapping the Phase Shift 

Certain assumptions must be made in order to  derive a method for unwrapping the  
phase.  In t h e  case of manual control data,  we usually assume tha t  phase varies 
relatively smoothly wi th  frequency. That is, we assume tha t  the  frequencies a t  which 
we obtain frequency-response estimates are  sufficiently close together s o  t h a t  
successive phase estimates a re  unlikely to  differ by more than 180 degrees. We simply 
unwrap t h e  phase by adjusting the  phase a t  each measurement frequency by t h e  
number of cycles required so tha t  i t  does not differ from the  preceding (in frequency) 
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estimate by more than 180 degrees. We also assume a reference point for the  phase 
obtained a t  the lowest measurement frequency -- usually 0 or -180 degrees. 

The assumption of a smoothly-varying phase response is not always justified, 
however. For example, unless the frequency-response measurements a r e  finely 
quantized in frequency space, a highly-resonant system (especially one t h a t  is 
accompanied by significant pure delay) m a y  well exhibit sharp changes in phase-shift 
in the  region of the resonance. 

If we wish to  avoid the constraint tha t  successive phase measurements differ by less 
t han  180 degrees, we must assume that  the  phase and gain curves a r e  related to  each 
other  in an orderly manner, and we must have a quantitative understanding of the 
analytic constraints (typically, a linear model) on the gain and phase curves. In this 
case,  the experimental phase-shift is unwrapped with respect t o  a model-generated 
baseline. 

Although we do not generally recommend tha t  one "adjust the data t o  fit the  model", 
such adjustments a r e  entirely legitimate provided they are  integral multiples of 360 
degrees. 

In general, the  use of a model to  unwrap the phase curve implies a model-matching 
exercise: a single iterative procedure is employed to  jointly select parameters to  best  
characterize the da t a  and to unwrap the  phase. Ideally, the model used for this 
purpose is a "theoretical model"; i.e., one t h a t  is expected on theoretical grounds to  
provide a good match to  the data.  Otherwise, a "descriptive" model may be employed 
which, while having no theoretical justification, is of a form t h a t  generates the  type of 
qualitative frequency dependencies exhibited by the data.  

The following procedure is suggested for unwrapping the phase via model analysis: 

1. 

2. 

3.  

4.  

5. 

6 .  

Use a theoretical  model if one is available. Otherwise, select the least 
complex descriptive analytic mode1 t h a t  seems likely to provide an 
acceptable match to  the data.  

For theoretical  modeling, select an initial set  of model parameters based on 
theoretical considerations or on previous modeling results. For descriptive 
modeling, important features of the frequency response may be analyzed to  
provide a reasonable initial parameter selection. 

Using the current  model parameters, predict gain and phase a t  each 
mea s u r  em en t frequency. 

Readjust the  experimental phase shift a t  each frequency, where necessary, 
by an integral multiple of 360 degrees until the experimental phase estimate 
is within 180 degrees of the corresponding model prediction. 

Using an appropriate adjustment scheme and matching criteria, readjust 
independent model parameters t o  improve the match to  the data. 

I terate on s teps  3-5 until the  matching criteria are  satisfied. The resulting 
adjusted experimental phase curve is substituted for the sawtooth curve 
originally yielded by the Fourier analysis scheme. 

This procedure is based on the assumption tha t  frequency response data a r e  to  be 
matched. Other techniques for parameter adjustment might be employed if modeling is 
to  be applied instead t o  the  relevant time histories. 
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The validity of this  procedure can be judged in a particular application in terms of 
t he  resulting model match. If a good qualitative match is obtained to  both the  gain 
and  phase curves (note:  experimental gain is not  adjusted),  then  the  resulting 
adjustments to  the  phase curve can be accepted a s  valid; otherwise t h e  phase curve 
should be unwrapped using another  model form. 

Application of Model-Based Phase Unwrapping 

Application of t h e  model-based technique described above is demonstrated for both 
manual control and physiological response data .  A theoretical  model is used fo r  t he  
manual control da ta ,  whereas a linear descriptive model is  employed for t h e  
physiologic da ta .  

Manual Control Example 

Figure l a  shows frequency-response da ta  obtained in a recent  simulation of a n  
F-14 performing a steady-state gunsight tracking task 131. The da ta  points related t o  
phase shift show sharp  positive jumps a t  around 1 and 11 rad/sec because of t he  
-180 and +180 degree boundaries on the  Fourier analyzer. 

Because these da ta  were obtained in a tracking task employing a known task  
environment using linearizable vehicle dynamics, the  optimal control model (OCM) for 
piloted systems was used to  unwrap the  phase.  No model-matching was employed; 
r a the r ,  a single prediction of pilot response behavior w a s  generated using pilot- 
re la ted model parameters  typical of those found to  match human operator  behavior in 
previous studies.  The phase-shift curve was then  used as a point-by-point baseline 
f o r  unwrapping the  experimental phase data .  A s  shown in Figure l b ,  t h e  initial 
selection of model parameters gave a qualitatively good match to  t h e  data;  there  w a s  
no  need t o  improve the  model-match, via parameter adjustment, in order  t o  
demonstrate t he  validity of t he  unwrapped phase curve. 

For this particular data  set, t h e  same phase unwrapping is generated by simply 
assuming t h a t  consecutive da ta  points do not  differ by more than  180 degrees. 
Nevertheless, in general ,  the  resul ts  a r e  more compelling if they a r e  shown to  be 
consistent with reasonable analytical constraints.  

Application to  Visual Evoked Response 

A t  present,  theoretical  models of the  type available for manual control do not  exist 
f o r  the  visual evoked electrocortical response (VER). Unlike the  manual control task,  
where a specific response s t ra tegy can usually be derived for accomplishing well- 
defined control objectives (particularly in a laboratory setting), the  VER is no t  known 
t o  have a similar teleological foundation. Unless one is using t h e  VER for biofeedback 
in a control loop, i t  is not clear why the  electrocortical potentials recorded from the  
scalp should bear  any particular relationship to  the  visual stimulus. Thus, t o  t he  
ex ten t  tha t  we rely on model analysis t o  unwrap the  steady-state VER phase data ,  we 
must currently use descriptive models. 

Figure 2a shows the  average gain and phase data  obtained from a single subject in 
a n  ongoing AFAMRL study of steady-state VER. (The details of this  experiment are 
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a) Phase Unmodified b) Fhase Unwrapped With OCM 
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Figure  1. Prlot Frequency Response, Simulated F-14 
Gunsight Tracking Task 

briefly summarized later in this paper and in more detail by Junker et  a1 [l]). The 
unmodified phase curve shows upward-directed discontinuities a t  around 8, 15, and 20 
Hz. 

Because the  gain curve has the general appearance of a second-order resonant 
lowpass filter, a linear model of the following form was employed to  unwrap the  phase: 

- s T  K w  e 
0 F(s)  = - 

s 2 + 2 1 ; w s i w  2 
0 0 

where the four independent model parameters a r e  the asymptotic low-frequency gain 
K, the  natural  frequency w , the damping-ratio 5 ,  and the pure time delay T. (The 
frequency variable "s" is not a model parameter.)  
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a) Phase Unmodified 
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b)  Phase Unwrapped wi th  
Descr iDt ive  L i n e a r  Model 
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F i g u r e  2 .  V i sua l  Evoked Resnonse, Example 1 

An initial selection of parameters was based on the  apparent resonance frequency, 
t h e  asymptotic low-frequency gain, and the  difference between maximum and low- 
frequency gains. In addition, the monotonic and relatively sharp negative increase in 
phase shift with frequency suggested the  presence of a pure delay term, which was 
also included in the  model. The initial estimate of the delay was chosen on t h e  basis 
of t h e  slope of t he  phase curve after a preliminary unwrapping in which a 180-degree 
difference limitation was imposed. 

A sca la r  model-matching error  was defined as  the  rms difference between model 
predictions and experimental data, weighted inversely by the  standard e r rors  of the 
experimental data .  (The unwrapped phase estimates were used for this  computation.) 
Best-fitting model parameter values were identified using a quasi-Newton gradient 
s ea rch  scheme similar t o  tha t  employed previously in manual control studies [4,5]. 
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Because the  lowest measurement frequency was relatively large (5 Hz, compared to  
0.15 rad/sec for t h e  tracking data) ,  we could not  rely on the  da ta  of Figure 2a to  
determine the  asymptotic zero-frequency phase shift. I t  was not obvious whether the  
asymptdtic frequency would be referenced to  0 degrees (implying a positive low- 
frequency model gain), or  - 180 degrees (implying a negative gain). Accordingly, model 
analysis was performed with both positive and negative gains, and resul ts  were 
accepted from the  model yielding the  smallest matching er ror .  ("Gain" here  refers  t o  
the  scale factor parameter K, specified a s  a real  number, not the  the  amplitude-ratio 
portion of the  frequency response,  which is  specified in logarithmic units.)  

Analysis with the  negative gain yielded a substantially lower matching e r ro r ;  the  
result ing phase curve is shown in Figure 2b. The relatively good qualitative match to  
t h e  da ta  suggests tha t  the  phase curve is likely to  be valid, with t h e  possible 
exception of t he  phase a t  t he  highest measurement frequency. 

Application of t h e  same model form to  another VER da ta  set  is shown in Figure 3 for  
both positive model gain (Fig. 3a) and negative model gain (Fig. 3b). For this  da ta  se t ,  
t he  two model-matches yielded nearly identical matching errors ,  but  t he  unwrapped 
phase curves differed by 360 degrees. Apparently, t he  -180 degree phase shift  
imposed on the  model predictions by the  negative gain shifted the  predicted phase 
response sufficiently to  require an  ex t ra  360 degrees of unwrapping in order  to  
minimize model-data differences. 

Because we have no theoretical  basis for determining the  asymptotic low-frequency 
phase shift (equivalently, t h e  sign of t h e  model gain parameter), and because the  
qualitative matches t o  the  da t a  se t s  a r e  equally good (though different in detail), the  
two phase curves must be considered equally valid. Thus, t he  phase unwrapping 
remains to  some extent  ambiguous when a second-order resonant loss-pass filter is 
adopted as  t h e  model form. Other model forms 'might provide unambiguous results,  but 
t h a t  would have t o  be determined from tr ia l  and error .  

PART 11: LINEAR MODELING OF STEADY-STATE VER 

Background 

Prior research has  indicated t h a t  recorded scalp electrical potentials respond, to  
some extent ,  in a manner linearly related to  the  visual stimulus. There is, in addition, 
a s t rong nonlinear component of the  response,  plus a substantial  amount of unrelated 
ongoing electrical activity t h a t  is present .  Under proper stimulus conditions, the  
l inear component of the  response is large enough to  allow its estimation with 
reasonable statist ical  confidence. Thus, this electrophysiological system lends itself to  
t h e  analytical techniques employed in pilot/vehicle analysis - - i.e., t o  the 
measurement of describing function and remnant -- as  has  been demonstrated above 
in P a r t  I.  The focus of the  ongoing research,  t o  which this  paper is addressed, is to  
determine whether such measures a r e  sensitive to  workload and other  forms of s t ress .  

A s  noted earlier,  we cannot define a "purpose".for t he  visual evoked response,  in 
t h e  sense t h a t  we can for control response in 6 well-defined tracking task.  Not only 
do we lack a theoretical  model for what the  evoked response ought t o  be, there  is no 
obvious functional relation between the  response (electrical potentials measured a t  the 
scalp) and t h e  demands of t h e  "task" (which m a y  be no more specific than  to  a t tend 
to  o r  fixate on  the  stimulus). Therefore, our basis for interpreting visually evoked 
response is not  as solid a s  our  basis for interpreting manual control response, and 
in t ra -  and inter-subject variability tends to  be substantially greater  t han  with 
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a)  Model w i th  P o s i t i v e  Gain b) Model w i th  Negat ive  Gain 
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Figure  3 .  Visua l  Evoked Response, Exapple 2 
Second-order Lowpass Resonant F i l t e r  

manual control response behavior. The averaging technique described elsewhere in 
these Proceedings by Levison [Z] were developed largely to  deal with this  variability. 

A number of research efforts have focused on obtaining a frequency-response 
description of t he  VER [6-91. In what is perhaps the  most comprehensive e f for t  to  
da te ,  Spekreijse [9] measured the  VER using inputs consisting of single sinusoids (as 
opposed to  a sum-of-sinusoids), o r  single sinusoids plus Gaussian noise. His work 
focused a great  deal on characterizing t h e  nonlinear aspects of the  response. On the  
basis of numerous sub-experiments, Spekreijse concluded tha t  nonlinear response 
components in the  VER were due largely to  memoryless rectification and saturat ion 
nonlinearities and  tha t  these nonlinearities were located prior t o  the  "cortical 
selective process" If this model is correct ,  then nonlinear VER components a re  not  
influenced by t h e  operator 's  cognitive s ta te ,  and we are  justified in characterizing 
task-related VER changes in terms of quasi-linear model parameters even though the  
VER may contain significant nonlinear response components. 
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More recently, Junker and Peio [ 101 obtained steady-state evoked responses to  
sum-of-sinusoids visual stimuli They found tha t ,  although the  na tu re  of t he  
frequency response varied from subject-to-subject,  it appeared t o  be relatively stable 
for a given subject across  replications. and t o  be influenced b y  the  task  environment. 
Preliminary analysis of their  data  revealed tha t ,  for a t  least  some of t he  da ta  se t s ,  
t he  frequency response could be reasonably well characterized by a second-order 
l inear descriptive model 

Experiments 

Details of the  VER experiment a r e  provided in a companion by Junker e t .  al .  [l]. A 
brief overview is given here .  

Electrocortical response was recorded from subJects exposed to  spatially uniform 
light stimulus modulated by a complex sum of sinusoids Ten sinusoidal components of 
uniform amplitude and random phasing were used, with component frequencies ranging 
from 6 25  to  21 75 Hz 

Three task loading conditions, provided in a balanced order ,  were explored: (a) no 
explicit task,  other  t han  attending to  the  flashing lights, (b) a first-order manual 
tracking task ,  and (c) a grammatical reasoning task.  Analysis techniques similar to  
those applied extensively to  manual control analysis were employed here  to  obtain the  
frequency response characterist ics of the  VER. Response metrics consisted of 
amplitude ratio ("gain") and phase shift ,  measured a t  stimulus frequencies, and 
"remnant" (response components a t  other  t han  input frequencies) averaged over 1 -Hz 
"windows" centered about each input frequency. Only the  gain and phase da ta  a re  
considered here .  

Data from seven subjects were considered statistically reliable and were made 
available for model analysis. Each VER frequency response considered in th i s  paper 
represents  t he  average of from six to  eight 4Q-second segments of electrocortical  
recordings. Averaging was performed as  described by Levison [2]. 

ode1 Analysis 

Model analysis was performed a s  described in Par t  I. The objectives of this  analysis 
were to  unwrap the  phase to aid in overall interpretation of t he  frequency response,  
and  t o  determine whether or not  the  independent model parameters would provide a 
parsimonious and consistent characterization of task-loading effects. 

A s  noted above, preliminary resul ts  led u s  t o  believe tha t  a lowpass filter of the  
type defined in Equation 1 would character ize  the  steady-state visual evoked response 
a t  least  for a portion of the subject population. Data from all seven subjects were 
initially modeled in this  manner. Positive and negative gains were tes ted,  and 
whichever sign yielded the smallest matching er ror  w a s  included in the  
parameterization for a given data  se t .  

Application of the  second-order model did not yield consistently useful resul ts ,  
e i ther  for phase unwrapping or  for interpretation of the  evoked response. The 
resonant  lowpass filter provided a good qualitative match to  only a portion of t he  da ta  
se t s ;  for da ta  where the  match was not qualitatively acceptable, the  validity of t he  
resulting phase curve had to be questioned. 
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The best-fitting model parameters did not reveal a consistent t rend  with t a sk  
loading, and they tended to  vary over wide ranges from one da ta  set t o  t h e  next .  
Nearly as many da ta  se t s  were best matched with a positive model gain parameter a s  
with a negative gain. This result implies t h a t  the polarity of t he  recording electrodes 
was changed from one condition to  the  next -- a notion a t  variance with t h e  
experimental procedures  followed in this  study. 

Even where a good qualitative match was obtained, the  resulting model parameters  
were often inconsistent with the assumption of a stable linear system For example, 
t he  model fits shown in Figures 3a and 3b were obtained with negative damping ra t ios  
_ _  a characterist ic of a system whose oscillatory response grows exponentially with 
time Such a resul t  is inconsistent with electrocortical  responses obtained with 
t ransient  stimuli When subsequent model analysis w a s  performed with the  constraint  
t h a t  the damping-ratio and natural-frequency parameters  remain positive, 
substantially greater  matching er rors  were obtamed in most cases  

Inspection of the  da ta  (specifically, the  gain curves) suggested t h a t  other  model 
forms would more closely resemble the  frequency dependency of the da ta .  Figure 4 
shows an example of a da ta  set  matched with the  following fourth-order bandpass 
filter: 

This model also has  four  independent parameters:  gain, two natural  frequencies, and  
delay. (The damping rat ios  were fixed a t  0.707.) 

By constraining the  two frequency parameters to  be positive, we were able t o  
characterize the  da ta  with a stable linear system. Analysis with this  model form w a s  
no t  conducted on a large scale, however, because of t he  sensitivity of the  resul ts  t o  
t h e  initial parameter selection -- a situation not uncommon when employing gradient 
search  schemes. 

The difficulty of obtaining a consistent model-based characterization of the steady- 
s t a t e  VER is indicated by inspection of the  gain curves shown for two t e s t  subjects in 
Figure 5. For the  baseline (no-task) condition, t he  da ta  for Subject 2 (Fig. 5a) 
resemble the  frequency response of a resonant lowpass filter, whereas the data  f o r  
Subject 3 (Fig 5d) resemble an  rnverted "v" and a re  perhaps modeled by a tuned 
bandpass filter (The da ta  shown in Figure 5a were used for t he  demonstration of 
phase unwrapping in Figure 2 )  

The curves for the  tracking condition (Figures 5b and d) show no consistent effects 
of t a sk  loading: the  da t a  from Subject 2 reveal regions of diminished response,  
whereas t h e  da ta  from Subject 3 show less of a qualitative change from the baseline. 
For t h e  grammatical reasoning condition, however, both subjects showed gain response 
curves tha t  appeared t o  vary less with frequency than t h e  baseline. 
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F i g u r e  4 .  V i s u a l  Evo1:ed Response, Example 3 
Fourth-order  Bandpass F i l t e r  

The trends revealed in Figure 5 suggested t h e  hypothesis t h a t  t h e  gain response is 
"flatter" for the  reasoning task  than for the  baseline condition. Accordingly, da ta  
from the  first th ree  tes t  subjects providing complete data  se t s  (Subjects 2,3,  and 5 )  
were modeled with a simple gain/delay model of the  form: 
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where K and T a r e  t h e  "gain" and delay parameters ,  respectively. The reasoning 
behind this tes t  was t h a t ,  if the  flat-response hypothesis were t rue ,  this  model form 
would yield lowest matching er rors  for t h e  grammatical reasoning condition. 

Figure 6 (bottom graph) shows tha t ,  for t h e  three  subjects tes ted ( t i m e  did not  
permit testing of t h e  ent i re  da ta  base),  the  gain/delay mode1 yielded t h e  lowest 
matching e r r o r  for t h e  reasoning task,  thereby providing some quantitative support  for 
t h e  qualitative t rend  suggested above Testing of the  remaining da ta  is required t o  
explore the  generality of t h e  hypothesis Visual inspection of the frequency response 
yielded by t h e  o ther  subjects (not shown here)  suggests tha t  this t rend  will no t  hold 
f o r  t h e  entire subject population 

The top two graphs of Figure 6 show t h a t  task  loading conditions did not  have a 
consistent effect on t h e  gain and delay parameters  across  t h e  three subjects.  This 
simple model form, then ,  appears  to  be of use only for testing some very general  d a t a  
t r e n d s  -- not  for paramaterizing the  VER in a meaningful way. 

DISCUSSION 

The use of a model t o  unwrQp the  phase-shift response is not  uncommon, but  i t  is 
usually informal and  implicit. Typically, the  individual performing the  analysis has  a n  
expectation of what t h e  frequency dependency should be,  based on previous 
experience with similar systems, and unwraps t h e  data  according t o  a qualitative 
"mental model". What we have done here  is t o  suggest tha t  the  procedure be made 
more explicit with t h e  use of a specific mathematical model, with a combined procedure 
of phase unwrapping and parameter adjustment i f  need be. Provided a suitable model 
s t ruc ture  is available, with a solid basis for initial parameter selection, such a 
procedure provides a means for automated phase unwrapping. 

Although preliminary resul ts  encouraged t h e  application of linear descriptive models 
of t h e  VER, modeling of this  form has not been demonstrated s o  far t o  be a reliable 
method for characterizing task  loading effects. Although model forms can be found t o  
provide a reasonable qualitative match t o  t h e  data ,  the appropriate model form 
appears  to  vary across  subjects and sometimes across  tasks,  parameter variations do 
not  follow a clear t rend ,  and model parameter values a r e  not always consistent with a 
s table  response mechanism. 

I t  is tempting t o  conclude t h a t  the relative lack of modeling success (in terms of 
our  s ta ted goals) is due, in par t ,  to the  fact  tha t  we a r e  attempting t o  model a 
nonlinear response mechanism with a linear model. We do not think this  is a major 
factor .  However nonlinear the  VER might be,  i t  does contain a measurable and  
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generally statistically reliable linear response component. If t ask  loading were t o  
change the  response behavior in a consistent manner, we would expect t h e  linear 
response component t o  change in a consistent manner. 

I t  IS possible t h a t  we have not  explored the  appropriate model forms To t h e  extent  
t h a t  model analysis is pursued during t h e  remainder of this study, model forms t h a t  
have a s t ruc ture  based more on theoretical  considerations [ 11,12,13] will be explored 
Another avenue to  be explored is t h e  e f fec t  of task  loading on t h e  variability of t h e  
VER, ra ther  than  t h e  mean [14] 

A more likely source of t h e  difficulty is t h a t  there  is no "reason" f o r  t h e  
electrocortical  potentials t o  exhibit a particular pa t te rn ,  in terms of what t h e  subject 
is  trying t o  accomplish. To create  a situation closer to  tha t  of manual control tasks ,  
where generation of a particular response behavior can aid the  achievement of task-  
re la ted goals imposed upon the tes t  subject, i t  is anticipated t h a t  t h e  AFAMRL study 
will explore t h e  use  of the  evoked response in a continuous control task  employing 
biofeedback. A t ask  environment of this  sor t  is expected to  reduce the  variability of 
t h e  VER and make i t  more sensitive t o  task  loading. The use of t h e  VER as a n  
"unobtrusive" measure of t ask  loading may be compromised, however, a s  t h e  VER will 
now be a component'  of a secondary task  competing for attention with t h e  primary 
cognitive (or psychomotor) task.  

Inspection of t h e  available da ta  base suggests t h a t  there  may be important inter-  
subject differences in terms of t h e  linear response behavior. Thus, while not  yielding 
a consistent index of task loading, linear analysis may prove viable as  a means for  
characterizing subject differences. I t  remains t o  be established whether such  
differences,  if found to  be statistically significant, relate in a consistent manner t o  
behavioral aspects of interest ,  and not  simply t o  physical characterist ics such a s  
differences in t h e  shape of the  skull. 

Finally, we note  t h a t  t h e  "remnant" (background eeg) remains t o  be analyzed. 
Although t h e  effects of task loading and individual differences appear t o  be smaller f o r  
t h e  remnant t h a n  for the  main curve, i t  is possible tha t  remnant changes a r e  
st a t  is t ic ally more significant. 
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