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Pentti Kanerva of RIACS has been working on a machine of a new class of computers,
which he calls pattern computers. Pattern computers may close the gap between

capabilities of biological organisms to recognize and act on patterns -- visual: auditory_
tactile, or olfactory -- and capabilities of modern computers. Combinations of numeric,
symbolic, and pattern computers may one day be capable of sustaining robots. This

essay gives an overview of the requirements for a pattern computer, a summary of
Kanerva's Sparse Distributed Memory (SDM). and examples of tasks this computer
can be expected to perform well.
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Today's computers excel at two kinds of task. Numeric computers far

exceed human capacity in performing complex calculations such as in solving

equations of physical systems or supporting business operations. Symbolic com-

puters far exceed human capacity in processing strings of characters such as in

logical deduction and text processing. Neither of these types of computers has

come close to biological organisms in recognizing patterns or retrieving stored

patterns -- visual, auditory, tactile, or olfactory. Humans can, in less than one-

tenth of a second, recognize a familiar face in a crowd. They can effortlessly

recognize English spoken by a wide variety of persons with many different voices.

They can recognize many variations on the letter "A," or a musical theme, or

any other pattern. No computer has come close to duplicating these feats.

Pentti Kanerva of RIACS has been working on a machine of a new class of

computers, which he calls pattern computers, that may close this gap. In this

essay I will give an overview of the requirements on a pattern computer, a sum-

mary of the architecture Kanerva calls Sparse Distributed Memory (SDM), and
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examples of tasks this computer can be expected to perform well. Combinations

of numeric, symbolic, and pattern computers may one day be capable of sustain-

ing robots.

In Mind over Machine, Hubert and Stuart Dreyfus discuss five levels of

human skill: novice, advanced beginner, competent performer, proficient per-

former, and expert (1). The lowest level is characterized by analysis of situa-

tions and applications of basic rules to calculate successful action. The highest

level is characterized by recall of abstractions of similar past situations, the

memories of which contain past actions. The lowest level uses a slow, conscious

process of deduction and rule manipulation; the highest level uses a fast, uncons-

cious lookup of a pattern containing suggested actions.

The Dreyfuses are troubled by the failure of AI research to build computers

that can reproduce human skills faithfully. They argue that contemporary com-

puters, which are either numeric or symbolic, are well suited to rule manipula-

tion and searches characteristic of low skill levels; but because they cannot per-

form fast pattern recalls, or quickly form abstractions of sets of similar past pat-

terns, these computers cannot move much beyond the stage of bare competence.

The Dreyfuses speculate that computers with mathematical properties Iike holo-

grams are suited for such tasks: two holograms can be quickly checked for simi-

larities (by shining light through both); loss of information in a local region does

not destroy the set of patterns retrievable.
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In Brain.s, Behavior, and Robotlcs, James Albus argues that many of the

functions of organisms arise from their structure (2). He describes a Cerebellar

Model ArithMetic Computer (CMAC), whose internal Structure reproduces key

functions of the human nervous system. He argues that this type of computer is

capable of processing large patterns efficiently and is likely to lead to good

robots.

A growing number of researchers share the belief that neural networks,

which are systems of interacting threshold logic elements, may make good

Models for the pattern processing properties of people. These networks can store

large binary patterns as their stable states. Although neural networks were first

proposed by McCulloch and Pitts in 1943, their mathematical richness was not

appreciated until recently. One of the most important models of this type was

proposed by John Hopfield in 1982 (3). Collections of papers about other

neural-net architectures have been edited by Hinton and Anderson ($) and by

Rumelhart and McClelland (5, 6).

In analyzing descriptions of human expert skills, discussions of the nervous

system, and properties of neural networks, one can deduce that the requirements

for pattern computation include:

1. Able to look up very large patterns (10 s bits or more).

2. Able to cycle 10-1000 times per second.

3. Able to link patterns and to recall pattern sequences.
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4. Able to look up patterns similar to a given pattern.

5. Able to generate a pattern that is an abstraction of a given set of simi-

lar patterns.

6. Able to continue functioning, perhaps degraded, if'a local portion of

the storage system fails.

Ordinary random-access memories are optimized for very small patterns: for

example, 32-bit words with cycle times on the order of 10 -8 second. They meet

only the second and third requirements. Associative (content-addressable)

memories are designed to find locations whose contents exactly match the subset

of address bits determined by a mask. They can meet the first, second, and

third requirements. An attempt to meet the fourth requirement by providing a

set of masks enumerating all similarities would lead to a hopelessly complex

memory structure when the number of address bits becomes large. Memories of

new architecture are required to meet all the requirements.

Figure 1 show's Kanerva's model of a pattern computer. It is inspired by

mathematical models of human memory (7, 8). The Focus is a processing ele-

ment that receives a code representing current sensory input and a pattern from

the memory; it produces a new" pattern for the memory and a code that drives

motor apparatus. The Focus also contains a short-term memory, which holds a

small number of recent memory patterns (e.g., 7). The internal state of the

Focus is a code for the current moment of experience. The Focus can search the

memory by cycling through a sequence of patterns.
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FIGURE 1. Pattern computer based on SDM.
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The number of pattern bits is denoted by N. (Kanerva believes that the

number of sensory bits is about 80% of N and the number of motor bits about

20%.) For human memory, N may be on the order of 106 bits or more and the

cycle time of the Focus on the order of 0.1 second. A computer of this form may

be able to trade pattern width for cycle time - for example, N on the order of

104 bits and cycle time 0.001 second. A memory that meets the requirements is

described below. (See Figure 2.)

The address space consists of 2 N potential locations. The set of M actual

locations, called cells, are assigned N-bit addresses at random. A cell is selected

by the memory's input pattern if its address is within Hamming distance D bits

of that input. Equivalently, the input pattern is a point in an N-dimensional

space: all cells within a (hyper)sphere of radius D are selected by that input.

(Kanerva recommends choosing D so that 0.05 to 1.0 per cent of the cells are

selected.) Each cell contains N counters. A write access to the memory stores

the data pattern into each selected cell by adding one to each counter

corresponding to a 1-bit of the data, and subtracting one from each counter

corresponding to a 0-bit of the data. A read access retrieves data by recon-

structing it from the sphere of selected cells using a majority voting rule: if the

sum of all counters in a particular bit position is positive, output a 1-bit in that

position, otherwise output a 0-bit. Kanerva has shown that 8 bits (one standard

byte) is sufficient for each counter. He has also shown that all the operations -

selecting cells, adjusting counters, and reading counters - can be done with
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linear threshold logic.

It is now apparent where the Sparse Distributed Memory gets its name.

The set of M cells is sparsely embedded in the address space of 2N potential

locations; each stored pattern is distributed over a set of cells. Because each pat-

tern is distributed over many cells, the number of patterns that can be stored is

less than the number of cells. Kanerva shows that the theoretical capacity of the

SDM is about M/IO patterns and its useful capacity is about M/100 patterns.

How does the SDM meet each of the requirements for a pattern computer?

Kanerva argues as follows.

1. By design, the memory handles large patterns.

2. As shown in Table 1, cycle times for sample simulated SDMs for vari-

ous choices of the parameters (N, M, D ) are within the required

range.

3. The SDM is a generalization of random-access memory for large pat-

terns. A link between patterns A and B can be established by storing

B in the sphere centered on .4.

4. By design, the memory can retrieve patterns similar to the address

pattern. Stored patterns within a critical distance of the input pattern

can be retrieved. (The critical distance is about D/2 when the

number of patterns stored is less than M/100, and decreases to 0 as

the number of stored patterns increases to M/10.)
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Table I:Examples of SDM

Dimension Cells Sphere CyclesperHardware N M D second

Dedicated
DEC 2060 128 10,000 46-51 0.2-1.0

32-nodeIntel

iPSChypercube 128 50,000 46-51 1-5

Breadboard
prototype 256 100,000 103-107 10-100

64,000-node

Connection Machine 256 180,000 103-107 50-200

Largest feasible prototype
{present VLSI) 1:000 100,000,000 448-459 1,000

Note: The breadboard prototype would cost about $75,000 for about
half the performance of the $3,000,000 Connection Machine.

5. It is a research problem how to find codes for sensory input and motor

actions that allow similar patterns to be stored in the same regions of

the address space. If this can be done, a pattern that addresses the

center of the overlapping regions would become an abstraction for the

set of regional patterns. It appears that such codes can be found in

simple cases.

6. Because many cells participate in the storage of one pattern, the

memory will continue to function, perhaps degraded, if a local region

should fail or be obliterated by repetitive storage of other patterns.

To reveal why the SDM computer is capable of pattern processing on an

order that may support skilled behavior, it is helpful to consider a series of
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increasingly complicated examples. These examples are inspired by the speech-

processing application that will serve as one of the first tests of the SDM com-

puter when the simulators are working by late 1986.

Consider a restricted version of the computer in Figure 1 to be used for

speech recognition. The sensory input is derived from audio equipment through

preprocessors that create one auditory code for each spoken word. (This

assumption, one code per word rather than one code per phoneme, is not impor-

tant and will be removed later.) The output (motor) codes are ASCII strings

corresponding to the spoken words in the auditory input.

To train the memory, we need simply to speak selected words, thereby gen-

erating their auditory codes, and then write the corresponding ASCII code in the

memory sphere selected by each given auditory code. Thus if someone speaks

the phrase, "Mary had a little lamb," the training process will yield five spheres

containing the ASCII codes for the words. Now the memory can be switched to

retrieve mode. When any of the words is spoken, the memory will retrieve its

ASCII code and make ]t available as output.

A simple extension of the above coding scheme will allow the memory to

retain the fact that a sequence of words has meaning as a unit. In the sphere

selected by a given word, we store that word's ASCII code and the auditory code

of the nezt spoken word in the sequence. (This encoding scheme uses the short-

term memory in the Focus.) The result of speaking "Mary had a little lamb" will

be a linked chain of spheres in the SDM. Now the single spoken word "Mary"
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will retrieve the first ASCII code plus the link for the head of the rest of the

chain, thereby allowing successive cycles of the Focus to retrieve the rest of the

sequence without further auditory input. In fact, speaking any word in a

sequence would initiate the retrieval of the remaining sequence.

What would happen if the training processes described above were per-

formed when the memory is not initially empty? As above, speaking a sequence

of words distributes the codes over a chain of spheres; but now the strength of

these codes may be too weak relative to other codes also distributed among the

same spheres, and retrieval is impossible. The phrase must be repeated several

times so that its relative strength in these spheres rises and retrieval becomes

possible.

Actually the spoken repetitions are not identical. The auditory codes from

successive repetitions of the same word will differ slightly according to the tone

of voice, amount of stress, pitch, timber, sex. room accoustics, and background

noises surrounding the speaker. Each repetition's code will address a slightly dif-

ferent sphere; but as long as the set of auditory codes for the same word have

most of the bits the same - within radius D/2 -- the set of spheres will overlap

strongly. Thus the chain of spheres for each repetition will overlap strongly with

the chains from prior repetitions. Because all the spheres for a given word will

contain the same ASCII code, each spoken variant will retrieve its ASCII code

properly. Moreover, new variants are highly likely to retrieve the same ASCII

codes when the SDM "hears" them for the first time.
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What happens if a new phrase is spoken that overlaps with a previous one?

Consider '.'Mary, Mary quite contrary." The first chain overlaps strongly with

the head(s) of the chain(s) for "Mary had a little lamb." After enough repeti-

tions, there will be two sets of chains, one for each phrase. On hearing the word

"Mary," which chain the SDM would retrieve would depend on the secondary

bits of the auditory code (details of voice, noise, etc.), on the relative strengths

of the two sets of chains, and on other information distributed among the same

cells. Likewise, more than the immediately preceding word is needed to get past

the second "Mary," but in general once a chain is picked, it can be followed

easily to its conclusion.

These descriptions illustrate some aspects of human memory that can be

simulated naturally by the SDM:

1. Easy association of outputs with sensory input patterns.

2. Increased strength of memory after more repetitions.

3. Storing items in sequence corresponding to their occurrence in time,

and retrieving the tail of the sequence given the sensory input

corresponding to any member.

4. Retrieving proper outputs despite variations of input.

5. Triggering retrieval of overlapping chains based on secondary bits

(noise) in the sensory input.



TR-86.14 - 12- June 4, 1986

The discussion above is meant to suggest the capabilities of a pattern com-

puter based on SDM. To accomplish the tasks of speech recognition and docu-

ment retrieval outlined above, much work remains. For example, the real-time

output of audio equipment is likely to be in the form of phonemes rather than

word-codes. We need to modify the encoding scheme in the SDM so that

phoneme-sequences terminate on ASCII codes for blocks of letters. A second

example is the encoding of links into stored pattern-sequences. The most general

approach is to use the entire contents of the short-term memory (in the Focus)

to link a pattern with a small number of preceding and following patterns. A

third example is more ambitious than recogniz.ing continuously-spoken speech:

recognizing components of images.
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