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An interesting question is "How does one empirically distinguish between

velocity fluctuations due to turbulence and those due to waves?" The subject

is more interesting at present because there is a controversy between those who

interpret such velocity fluctuations as being due to 2-D turbulence (GAGE,

1979; LILLY, 1983) vs those who attribute them to waves (VANZANDT, 1982; DEWAN,

1979). Is there a way to determine by means of experiment which view is cor-

rect, or when one or the other is more appropriate? Unfortunately, the power

spectral density (PSD) does not help very much with this problem.

The goal of this and the companion paper to follow is to address this pro-

blem. It will, however, be necessary to first discuss the physical differences

between waves and turbulence. One of the main purposes of this paper is to

display certain new theoretical ideas on the subject of buoyancy range turbu-

lence in this context. The companion paper presents a proposed empirical test

to distinguish between 2-D turbulence and gravity waves.

WAVES VS TURBULENCE

Inertial range turbulence (IRT) involves an energy cascade or, to put it

another way, strong mode interactions. The PSD has a k-5/3 dependence where

k is the wave number. IRT also involves strong mixing and it is isotropic.

The cascade was vividly described by TENNEKES and LUMLEY (1972) in terms of a

3-D vortex stretching interaction between scales. RICHARDSON (1972) used

poetry for the same purpose.

In contrast, buoyancy range turbulence is not isotropic but is strongly

affected by buoyancy. It was described by Bolgiano (1959) who gave a k -II/5

dependence for the spectrum, and by LUMLEY (1964) who gave k -3 for the

dependence. There were other prominent contributors as well, but, the main

point is that thi_ v_k led to a particular length scale known as the buoyancy

length i B = (e/N_°) _'_ where e is the dissipation rate and _ the
buoyancy frequency. This scale separates IRT from BRT accoraing to these early

authors. As we shall see, this is indeed correct, but a slight extension of

this concept leads to a scale which separates waves from BRT.

Table 1 summarizes some basic differences between waves and turbulence. A

particularly useful distinction involves the interaction time between modes.

BRT can be best regarded as a field of wave modes which interact so strongly

that a given mode dies within one period or so of oscillation. In contrast,

the fluctuations which can properly be called waves oscillate for very many

periods and do so in a linear fashion i.e., without significant mode inter-
action.

INTERACTION TIME AND THE BRT/WAVE SEPARATION SCALE

While there is very little interaction between waves, Phillips and others

have shown that under certain resonant conditions (PHILLIPS, 1977) there is

indeed some interaction. He has shown (PHILLIPS, 1960) that the interaction

time, Ti, is to a certain approximation,



/
/

119

v2 )-1/2Ti = (kI Vl k2 (i)

where k. and v i refer to the wave numbers and particle velocities of compo-
nents o_ a resonant triad of interacting waves. If one ignores constants of

order unity and if we let k and v refer to the primary wave, then we can, for

our purposes, use the approximation

T. =_ (kv) -I (2)
1

The dispers/on relation for an incompressible buoyancy wave is simply

= (_ cos e)-1 (3)

where T is the wave period, 8 is the angle between the wave vector k, and
w

the horzzontal. In this paper, we shell ignore factors of 2.

In view of the above discussion, we shall characterize waves by

T. << T
i W

and BRT by the reverse of this inequality.

tween the two regimes is given by T i = Tw.

the boundary

(_ cos 0) = (kv)

from (2) and (3).

(4)

It follows that the boundary be-

From this it follows that at

(5)

It is useful to eliminate v from (5). For this purpose we consider the

case where 8 = 0. As will be shown below, this leads to the transitional scale

that separates horizontally propagating waves and IRT. We next assume that at

this scale all the energy of this borderline wave with velocity v is fed into

the IRT cascade and that the energy emerges from the small scale end of that

cascade in the form of e, i.e., dissipation. With this in mind, and using the

definltion that a borderline wave dumps all of its enerEy in one period, we

obtain

V 2

e :__ (6)
T
W

This is used in Equation (5) to eliminate v and hence

= k ( E)l/2
NB B_ B

or

k B = (N3/e) 1/3

(7)

(8)

an equation which has what may be a surprisingly familiar look to it. It is,

of course, the inverse of the well-known buoyancy length, but it appears in a

novel context. At first it seems to contradict the assertion that this length

separates IRT and BRT; however, the seeming contradiction will soon be

resolved below.

To address the above paradox, we now turn to the general case where 8

is allowed to be arbitrary. In this case, the borderline condition which is

given by T = T. leads to
W 1

kB = (NB3COS3_C,)I/2 (9)
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where e has beem replaced by e, in anticipation of the discussion to follow.

For BRT we claim that the clearest physical description is that it consists of

a cascade of strongly interacting waves of large amplitude. This cascade

resembles IRT in the sense that, for the most part, the flow of energy is down

the scale. (The subharmonic instability is a good candidate for the mechanism

of interaction). Now an interesting observation is that, as O is increased,

T is also increased (in accordance with the dispersion relation). This
w

means that for any T. one can find a T such that T. = T . In princi-1 w

pie, as 0 goes to 90 _, Tw goes to _. _t is these waves where 0 > 0 but

where T < T. which are not proper waves in the usual sense but are,
1

rather,Wthe strongly interacting buoyant modes which constitute what is

designated at BRT.

As promised, we now discuss e'. In BRT, there are two additional ways

for energy to be dissipated in contrast to IRT which has only e. These are,

namely, ePE which is the dissipation rate of potential energy brought about

by mixing In the stratified fluid, and eRA D which is due to the radiation of

energy in the form of gravity waves that are generated by a certain amount of

"up scale" energy flow caused by mode interactions. Thus,

E' = EpE + eRA D + e (i0)

Unfortunately, the numerical values of e_A n and epE are not known. As can
be seen from Equation (9), BRT can exist*_fbr wavelengths ranging from the usual

"buoyancy length border" or, the outer scale of IRT, to scales that are bound-

less for 8 close to 90 ° . The very large wavelengths and associated long

periods correspond to nearly horizontal particle motion as can be seen from

the incompressibility condition _ • _ = 0. In other words, as 8 is increased,

becomes more vertical, the period lengthens, and particle motion becomes

horizontal. Thus, the question arises, 'q)oes this type of BRT represent what

is usually called 2D-turbulence?" The answer seems to be "no" for the follow-

ing reason. The 2D-turbulence in the literature involves a cascade in the

direction of small to large scale, which is to say, a reverse cascade. BRT

does not seem to fit this description.

We leave as an unanswered question '_4here does 2-D turbulence fit as

strongly interacting buoyancy-affected modes such that

k < (_3 cos38/e,) I/2

Equation (ii), in principle, could lead to an empirical test between BRT and

waves. Further discussion will be given in the companion paper.

Table I

Physical distinctions between waves and turbulence

Waves Turbulence

1. Linear Superposition I.

2. No Fluid Mixing 2.

3. Wave Pattern is Global 3.

(In Space & Time

Propagation

Lasts many periods
Coherence

4. Obeys Dispersion Relation 4.

NonLinear "Promiscuous"

Mode-Interaction

("Cascade" in k-space)

Fluid Mixing (Dispersion)

Eddies are Local

(In Space &-Time)

No Propagation

Decays in about one period

Incoherence

No Dispersion Relation
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