
I

NASA Technical Memorandum 89019

A Survey of Functional Programming
Language Rinciples

IIiASA-TH-89019) E S U R V E Y CF EUNCTIONAL N87-11506
PKOGBRMMING L A N G U A G E F B I N C I E L E 5 (E I A S A) 86 p

CSCL 098
Unclas

G3/61 43760

C. Michael Holloway

September 1986

National Aeronautics and
Space Administration

Langley Rerearch Center
Hamptm, Virginla 23665

TABLE OF CONTENTS

1 . INTRODUCTION
2 . BASIC PRINCIPLES OF FUNCTIONAL LANGUAGES

2

4
4 2.1 Definition of "Functional Language"
5 2.2 A Simple Functional Language

2.3 Relationship of the FP and Lambda Styles 13

.
.

3 . REASONS FOR FUNCTIONAL LANGUAGES 17

4 . TOPICS IN FUNCTIONAL LANGUAGES 22
4.1 Parallelism in Functional Languages 22
4.2 The Algebra of Functional Programs 25
4.3 Program Transformation 32
4.4 Variables and Data Types 36

4.4.1 Implicit Typing 37
4.4.2 Explicit Typing 40

4.5 Lazy Evaluation 43
4.6 Implementation on Conventional Architectures . . . 45

4.5.1 Translation to Another Language 46
4.6.2 SECD Machine 47
4.6.3 Combinator Systems 48
4.6.4 Stack Based Systems 49
4.6.5 Remarks 49

4.7. New Architectures 50
4.7.1 Data Flow Machines 50
4.7.2 Professor Gyula Mago's Machine 52
4.7.3 SKIM I1 Processor 54

5 . EXISTING FUNCTIONAL LANGUAGES 56
5.1 FP Based Languages 56

5.1.1 Berkeley FP 56
5.1.2 pFP . 57

5.2 Non-FP Style Languages 62
5.2.1LISP. 62
5.2.2KRC . 63
5.2.3 HOPE . 64
5.2.4APL . 65
5.2.5 Others 66

5.1.3FShell 59

6 . CONCLUDING REMARKS 68

7 . ANNOTATED BIBLIOGRAPHY 72

1

1. INTRODUCTION

Research in the area of functional programming languages has

been conducted for a number of years. The amount of this

research has increased greatly in the past eight years since John

Backus' Turing Award Lecture on the topic was published'.

Despite this attention by the research community, the average

programmer is either completely unaware of the ideas of

functional languages, or, if he has some familiarity with the

topic, believes such languages to be impossible to understand and

devoid of practical value.

The literature on the subject has contributed little to

altering this state of affairs. Most of it is either difficult

to find or extremely difficult to comprehend. The purpose of

this paper is to present a survey of the topic of functional

languages that is both comprehensive and understandable. The

paper assumes the reader has a knowledge of the basic principles

of traditional programming languages, and is comfortable with

mathematics, but does not assume any prior knowledge of the ideas

of functional languages.

The organization of the paper is as follows. First, the

basic principles of functional languages are discussed. A

' John Backus, "Can Programming Be Liberated from the von
Neumann Style? A Functional Style and Its Algebra of Programs,"
Communications of the ACM, Vol 21, No 8 , Aug 1978, pp 613-641.

2

definition of the term "functional language" is given, and a

simple functional language is defined using the language style

introduced by Backus. A l s o , the relationship of Backus' style

and the lambda style of functional language is discussed.

Second, the reasons for developing functional languages are

discussed. The statements of the advocates of the language style

are presented without comment on the validity of the claims.

Third, the issues involved in the language style are

examined. Topics discussed include methods of expressing

concurrency, the algebra of functional languages, program

transformation techniques, the inclusion of data types in

functional languages, the technique of lazy evaluation, the

implementation of functional languages on conventional machines,

and new architectures specifically designed to support functional

languages.

Fourth, several existing languages that are claimed to be

functional are mentioned briefly. Fifth, and finally, comments

and opinions as to the future practical value of functional

programmi ng languages are given.

3

2. BASIC PRINCIPLES OF FUNCTIONAL LANGUAGES

Many different opinions as to what constitutes a functional

programming language exist. Functional languages have been

called "assignment-less" and "variable-less" languages2 . Just as

calling structured programming languages "goto-less" languages is

an oversimplification, so too are such descriptions of functional

languages. The definition that will be used in this paper is

discussed below.

2.1 Definition of "Functional Lanquage"

The major distinguishing characteristic of functional

languages is the approach to problem solving they encourage.

Traditional programming languages such as FORTRAN, Pascal, and

Ada3 support an approach that can be described by this statement:

A program in an Imperative Language is used to convey a list
of commands to be executed in some particular order, such
that on completion of the commands the required behavicr has
been produced.

In other words, a traditional language program is simply a set of

commands.

Bruce J. MacLennan, " A S i i q l e S ~ f t w a r e E ~ ~ v i r n n m c n t Rased
on Objects and Relations," 85 Symposium on Language Issues in
Programming Environments, pp 199.

Ada is a registered trademark of the U. S . Government: Ada
Joint Program Off ice.

Hugh Glaser, Chris Hankin, David Till, Principles of
Functional Programming (Prentice-Hall International: London,
1984), p 4.

4

The functional approach is different. It can be categorized

by the following statement:

A program in a Functional Language is used to define an
expression which is the solution to a set of problems; this
definition can then be used by a machine to produce -an
answer to a particular problem from the set of prob1ems.l

That is, a functional program is not a series of commands.

Instead, it is an expression that represents a function that

takes a particular set of objects (such as a list of names) and

produces another set of objects (such as a l i s t of phone

numbers)2. A functional programming language is a language in

which such programs are required or encouraged.

2.2 A Simple Functional Language

The definitions given above do not adequately convey the

nature of functional languacres. The best way to illustrate the

functional language approach is to present a simple language

taking the approach. The informal language system introduced by

Backus in his Turing Award paper is suitable for defining such a

language. The particular language that will be defined lacks

several features, that make it inadequate for use in practical

applications, but it is sufficient for illustration.

The languages introduced by Backus (called FP languages) are

made up of five elements: objects, the "application"

operator, functions, functional forms, and definitions.

Glaser , et a l . , p 4 .

John H. Williams, "Notes on the FP Style of Functional
Programming", in J. Darlington, Peter Henderson, and D. A.
Turner, editors, Functional Programming and its Applications
(Cambridge University Press: Cambridge, England, 1982), p 73.

5

Choosing the components of these elements defines a single FP

language. Below, each of the five elements is discussed, and,

using these elements, a simple language called "ExFP" is

defined' .
The first necessary constituent of an FP language is a set

of objects. An object can be one of three entities: a single

atom, a sequence of atoms, or the undefined element (called

"bottom"). The set of atoms may be chosen as desired. For ExFP,

the set is chosen as all strings made up of letters, digits, and

other characters not used otherwise in the language. The atom T

w i l l represent the boolean value true, and the atom F the value

false.

A sequence is denoted by

<xl, x l , . . . , x,>
where each xj is an object. The empty sequence is represented by

$, which is both an atom and a sequence. Any sequence with I is

identical to 1 itself.

Another part of an FP language is the single operator

"application" denoted by : . For a function f and the object x,

f:x represents the object resulting from applying f to x.

Primitive functions make up another constituent of an FP

This discussion is based on Backus, CACM, pp 620-622, and
John Backus, "Function-level Computing", IEEE Spectrum, Vol 19,
No 8, Aug 1982, p24. See also, Glaser, et al., pp 195-202, and
Williams in Darlington, et al., pp 73-77. ExFP is similar to
Backus' specific FP language, but has fewer primitive functions
and functional forms.

6

language. These functions can be defined as desired. For ExFP,

the following are defined' :

1.

2.

3.

4.

5.

6.

Identity function: this function produces its
argument. For example,

id:<7, 6 , 5> = c7, 6, 5>

Selector functions: the selector function i gives the

otherwise. For example,
element of its object, if that element exists, and 1 it h

3:<7, 6 , 5> = 5
4:<7, 6, 5> = 1

Tail: this function produces the object sequence with
its first element removed. If the object to which tail
is applied is a sequence with one object (a singleton), $
is produced. If the object is not a sequence, 1 is
produced. For example,

tail:<7, 6 , 5> = < 6 , 5>
tail:<7> = $
tail:7 = 1

Distribute functions: these functions produce a
sequence of pairs' of objects from a pair of objects.
distr distributes from the right and requires the first
object of the pair to be a sequence. distl distributes
from the left and requires the second object to be a
sequence. For both forms, if the requirement is not
met, 1 is produced. For example,

distr:<<a, m>, 7> = <<a, 7>, <m, 7>>
distl:<7, <a, m>> = <<7, a>, <7, m>>
distr:<7, 7> = I

Append functions: these functions produce a sequence
from a pair consisting of a sequence and an object.
appendr requires the first object to be a sequence.
append1 requires the second object to be a sequence.
If the argument does not conform, 1 is produced. For
example,

appendr:c<7, 6 > , 5> = <7, 6, 5>
appendr:<7, < 6 , 5>> = I
appendl:<<7>, <6, 5>> = <<7>, 6, 5>

Arithmetic functions: these are the standard functions
+, -, i, and * (for multiplication). The object to
which any of these functions is applied must be a pair,

Note: Any function applied to

A pair is a sequence consisting of 2 objects.

yields 1.

7

each of which evaluates to a number; otherwise, I is
produced. For example,

+:<7, 3 > = 10
*:<7, 3> = 21
+:7 = 1
+:<7, o> = 1

7. Eq: this function produces T if its object consists of
a pair of identical objects, F if the object consists
of a pair of different objects, and 1 otherwise. For
example,

eq:<7, 7> = T
eq:<7, 6> = F
eq:<7, 7, 7> = 1

8. Boolean functions: these are the standard boolean
functions and, or, and not. The object to which either
and or or is applied must be a pair of objects, each of
which evaluates to either T or F. The object to which
not is applied must be a singleton whose element
evaluates to either T or F. If these conditions are
not met, 1 is produced. For example,

and:<T, F> = F
or:<T, F> = T
not: <F> = T
and:<7, 6> = 1

Additional primitive functions have been defined by Backus, but

these are sufficient for the example language.

In addition to the primitive functions, an FP language

provides functional forms by which new functions can be built

from existing ones. Functional forms, also called combining

forms, are expressions denoting functions. They are produced

using what Backus calls program-forming operations (or, PFOs, for

short). Listed below are the PFOs and the resulting functional

forms that are included in ExFPl:

8

1.

2.

3.

4.

5.

6 .

Constant: this is denoted by % in front of an object';
it yields that object, except if it is applied to 1, in
which case I is produced. Formally, that is

P y otherwise
%y:x E J- if x =

Composition: denoted by between two functions; the
composition of two functions f and g applied to a
function x is equivalent to applying f to the result of
applying g to x. That is

Construction: this is denoted by [1 enclosing a group
of functions; a construction applied to an object x is
equivalent to the sequence produced by applying each
function in the construction to x. That is

(f O g):x E f:(g:x)

[fl , . . . , f,] :x = <fl :x, . . . , f, :x>
Apply to all: this PFO is denoted by a in front of a
function; if the object to which the function is
applied is a sequence, the form is equivalent to the
sequence produced by applying the function to each
object in the sequence; if the object is not a
sequence, the form is equivalent to 1. That is

af:x 3 <f:x1, . . . , f:x,>
if x is a sequence

t 1 if x is not a sequence

Insert: denoted by / in front of a. function; if the
object to which the function is applied is not a
sequence, the form is equivalent to 1; if the object is
a sequence with a single member, the form is equivalent
to that member; if it is a sequence with at least two
members, the form is equivalent to applying the
function to the sequence containing the first member of
the original sequence followed by the insert form
applied to the remainder of the sequence. Formally,
that is

/f:x = 1 if x is not a sequence
/f:<X, , x2, . . . , x, >

= f:<x,, /f:<x2 , . . . , x, >>
- = x, if n = 1

if n 1 2
-

Condition: denoted by three functions in the form (p

This notation is from Scott E. Baden, "Berkely FP User's
Manual, Rev. 4.1", UNIX Programmer's Manual: Supplementary
Documents, 1980, p 28. Backus uses a bar over the object instead.

9

->f; g) applied to an object X I ; to evaluate a
condition p:x is computed, if T is produced the form is
equivalent to f:x; if F is produced the form is
equivalent to g:x; if neither T nor F is produced, the
condition is equivalent to I. That is

(p ->f;g):x I f:x if p:x = T
g:x if p:x = F

= I otherwise
7. Loop: this combining form is denoted by two functions

in the form (p -> loop f) applied to an object x2; to
evaluate this form, p:x is computed, if it yields T,
the loop is equivalent to the form applied to f applied
to x; if p:x = F, the loop is equivalent to x;
otherwise the expression yields I. Symbolically, that
is

(p - > loop f):x
(p - > loop f):(f:x) if p:x = T

I x if p:x = F
1 otherwise

Again, more functional forms can be defined, but these are

sufficient for ExFP.

The final necessary part of an FP system is a way to define

new functions. The syntax is the following:

Def 1 I r

where 1 is the new function name and r is a function or

Notation from Ibid. Backus uses a solid right arrow. The
0 ' s are necessary only when an expression would otherwise be ambiguous.

This notation is quite different from Backus. He uses
(while p f):x. The notation here seems more consistent with the
condition combining form, since the - > denotes a test in both
cases. The 0 ' s are necessary only when an expression would
otherwise be ambiguous.

10

functional form'. For example, a function to return T if an

object is equal to 0 and F otherwise could be defined in ExFP as

Def eqO = eq [id, %01

The above discussion has shown the elements that are

necessary to make up an FP language. The components of these

elements have been chosen, yielding the specific language ExFP.

The semantics of the language are completely specified by stating

how to compute f:x for any function f and object x. This can be

done as follows':

1. If f is a primitive function, the function is applied
as described in the language definition.

2. If f is a functional form, the description of the form
is used to rewrite f:x. The resulting expression is
then computed according to the semantic rules.

3 . If f is a defined function, given by Def f r, r:x is
computed using the semantic rules.

4. If f is neither a primitive function, a functional
form, nor a defined function, or if the use of these
rules continues infinitely for f : ~ , then the value 1 is
assigned to f:x.

An example should illustrate the technique of application of

these semantic rules. Given the function length defined in ExFP

as3

Def length 2 /+ a x 1

' The form of definition is extended in John Backus, "The
algebra of functional programs: Function level reasoning, linear
equations and extended definitions," Lecture Notes in Computer
Science 107 (Springer-Verlag: Berlin, 1981), pp 27-37. That
work is discussed in Section 4.4.2.

Backus, CACM, pp 622.

This function definition is taken from Williams in
Darlington, et al., p 78.

11

consider the computation of

length:<7, 6 , 5>

The computation would proceed as follows:

1.

2.

3.

4.

5.

6.

7.

a.

9 .

The definition o f length gives
/+ a%l:<7, 6 , 5>

Composition produces
/+: a%l:<7, 6, 5>

Apply to all gives
/+: <%1:7, %1,6, %1,5>

Application of constant yields
/+: <1, 1, 1>

Insert produc'es
+:<1, /+:<1, 1>>

The internal insert yields
+:<I, +:<I, /+<I>>>

The remaining insert produces
+:<1, +:<1, 1>>

Addition results in
+:<1, 2>

The final addition yields
3

Thus, length:<7, 6, 5> = 3 , as desired.

A s mentioned above, the informal functional language

Nevertheless, its structure shows sufficiently the basic

principles of functional languages based on Backus' approach'.

The careful reader has surely noticed that this language
has no assignment statement, and that the only variables are the defined function names. This fact is the basis for the
" a s s i gnme n t - 1 e s s " men t i one d
previously. See Section 5 for a discussion of some languages
that do provide these features.

and " v a r i ab 1 e - 1 e s s " de f i n i ti on s

12

2.3 Relationship of the FP and Lambda Styles

Backus' style is not the only basis for functional

programming languages. The other primary model is based on the

lambda calculus developed by Church in the 1940's'. In fact, the

most widely known functional language, LISP, is based, in part,

on this style2.

The primary difference between the FP and lambda styles is

the way in which programs are developed'. A s mentioned above,

for FP-based languages such as ExFP, programs are created by

using program forming operations to combine existing programs.

Lambda style languages generally have only one PFO, called

"lambda abstraction." In place of PFOs, the languages have a

large number of object forming operations. These are the primary

mechanisms for program building.

A s an example of the consequences of this difference,

consider the construction of a specific program4. Suppose the

functions p, g, h, r, and s have been previously defined, and a

function f is to be created. This program is to use p as a test.

If it yields T, g is to be applied to the argument object; if the

For a discussion of the development of the lambda
calculus, see J. Barkley Rosser, "Highlights of the History of
the Lambda-Calculus," 1982 Symposium on LISP & Functional
Programming, pp 216-225.

See Herbert Stoyan, "Early LISP History (1956 - 1959),"
1984 Symposium on LISP & Functional Programming, pp 299-310 for a
discussion of the development of LISP.

' This discussion is based on Backus, LNinCS107, pp 8-13.
* The example problem and programs are from Ibid, pp 8,9.

13

application of p yields F, h is to be applied to the result of

applying both r and s to the argument.

To construct f using ExFP, the combining forms condition,

composition, and construction are used to combine the given

programs. This yields the following program:

p -> g ; h [r, S I
Using the lambda style, the given programs can not be

combined directly. Instead, an object x must be created. This

object is used to form p:x, g:x, r:x, and s:x, which are also

objects. The objects r:x and s:x are combined to produce the

object h(r:x, s:x). These three objects are then combined using

the object combining form condition. This result is still an

object. To make it into a function, lambda abstraction is used.

Thus, the lambda equivalent to the ExFP program is the following:

Lam x.(p:x - > g:x; h(r:x, s:x))

where Lam is the lambda abstraction’.

A s another example, consider the ExFP program2

[r O t, s O tl

The e q u i v a l e n t lambda program is the following:

Lam y.<Lam x.(r:(t:x)):y, Lam x.(s:(t:x)):y>

These two examples should be sufficient to show that the

consequence of the lack of program forming operations in lambda

This is traditionally denoted by the Greek letter Lambda;
however, the word processor being used for this paper cannot
print that character.

a This example is from Ibid, p 10.

14

style languages is that programs are hard to read. FP style

programs, with PFOs, are much easier to understand.

Another difference between the FP and lambda styles is in

the number of arguments that a function can accept. In the FP

style, functions can have only one argument; multiple arguments

are expressed as elements of a single sequence. Lambda style

languages, however, allow functions of more than one argument.

As an example of what this difference means, consider the

composition of two functions h and g. Suppose g produces a pair

<y, z > , and h is a function of two arguments in the lambda style.

The expression of the composition of the two functions using the

lambda style looks like the following:

Lam y.h(l:(g:x), 2:(g:x))

where 1 and 2 are selector functions as in ExFP.

In the FP style, h would not be of two arguments, but rather

would be a function on pairs. Thus, the function f can be

expressed in ExFP simply as

g O h

Once again, the FP style program is much to understand.

Lambda style languages do have an advantage over FP style

languages: they are more powerful, in a sense. The single PFO

lambda abstraction is able to express any FP style PFO that can

be devised.

Backus has suggested that this relationship is similar to

that between FORTRAN and structured languages such as Pascal'.

' Ibid, pp 12, 13.
15

Any structured statement can be modeled using if-then's and

goto's. Nevertheless, writing clear programs is much easier in a

language like Pascal than it is in FORTRAN. The same

relationship exists between FP style languages and lambda style

ones.

This brief discussion has highlighted the fundamental

differences between the FP and lambda style of functional

languages. Because FP style languages tend to produce programs

that are easier to read, the remainder of the paper will

concentrate on languages of that style'. Some comments will be

made about lambda style languages in Section 5 . ' .

For more information on the lambda style, see K. J.
Berkling and E. Fehr, "A modification of the Lambda-Calculus as a
base for functional programming languages," Lecture Notes in
Computer Science, Volume 140 (Springer-Verlag: Berlin, 1982), pp
35-47, and W. H. Burge, Recursive Programming Techniques
(Addison-Wesley: Reading, Mass., 1975). Also, consult the
Annotated Bibliography for more references.

Note: Some authors call lambda based languages
" appl i cative languages" and FP based 1 anguage s " functional
languages"; other authors consider both styles to be a type of
applicative language. For this reason, the term "applicative
ianguage" is generaiiy avoided in Chis paper.

16

3. REASONS FOR FUNCTIONAL LANGUAGES

Clearly, functional languages are radically different from

traditional programming languages. In fact, the primary

motivation behind the research on functional languages is a

dissatisfaction with traditional programming languages. John

Backus wrote

Programming languages appear to be in trouble. . . . Each new
language claims new and fashionable features, . . . but the
plain fact is that few languages make programming
sufficiently cheaper or more reliable to justify the cost of
producing and learning to use them. . . . there is a desperate
need for a powerful methodology to help us think about
programs, and no conventional language even begins to meet
that need. In fact, conventional languages create
unnecessary confusion in the way we think about pr0grams.l

Backus and other advocates of functional languages believe

that such languages offer significant advantages over

conventional ones’. Perhaps the best way to illustrate some of

these claimed advantages of functional languages is an example

that contrasts a traditional program with a functional one. A

program to determine if a given object is an element of a vector

is a suitable problem for such an example.

An Ada’ program fragment to perform this operation might be

written as

Backus, CACM, p 614.

As mentioned in the introduction, no judgments as to the
reality of the advantages are made in this section; the claims
are simply presented. The reader is encouraged to form his own
opinion. For the author’s opinions, see Section 6 .

’ The choice of Ada is arbitrary; almost any other tradi-
tional language could be used here, without changing the
discussion.

17

found := false;
i := 1;
while (not found) and (i <= n) loop

found := (obj = vect[i]);
i := i + 1;

end loop;
put(found) ;

An ExFP program for the same operation might be written as

Def find z /or aeq distl

Four major differences between the two programs exist'.

First, the ExFP program's effect is easy to understand, assuming

one understands the individual components. This is not true of

the Ada fragment. In order to understand its effect, one must

mentally or manually execute it.

Second, the functional program is built from the three

existing programs or, eq, and distl. The Ada fragment has no

such hierarchical structure2 .

Third, the ExFP program makes no mention of arguments. It

can be used on any object, vector pair, and the vector can have

any length. The Ada program fragment can only be used on the

vector "vect" of length "n" , with subscripts beginning at 1. In

order tz, makz the Xi=. frigment. general, it must be embedded in a

procedure, function, or package. This introduces the complexity

of parameter passing issues.
-

This discussion is based on Backus, CACM, pp 616-7, and
Backus, IEEE, p 24. He uses a different problem, but the
discussion is similar.

Large Ada programs using procedure, functions, and
packages do possess some such structure, but not to the degree
that functional programs do.

18

Fourth, the apply to a l l combining form of the ExFP program

expresses the inherent parallelism of the pair wise comparisons

naturally. The Ada fragment does not; it gives the impression

that the comparisons must be done sequentially. Recognizing

implicit parallelism in traditional languages requires

sophisticated techniques.

This example has pointed out several of the advantages that

functional style languages appear to offer over traditional

languages. Additional advantages have been suggested as well.

One such advantage that functional languages offer over

traditional languages is that they operate in the same domain as

the problem to be solved'. Programming problems involve changing

one set of objects into another. To accomplish this task with

traditional languages, all the objects must first be represented

by data stored in certain memory locations. Manipulations are

then done on these memory locations. In other words, instead of

being concerned with objects, one is concerned with variables

denoting memory locations. In contrast, functional languages are

concerned with objects, as desired.

Another advantage of the functional language style is that

a language possesses algebraic properties itself'. These

John Backus, "Is computer science based on the wrong
fundamental concept of 'program'?" in Algorithmic Languages:
Proceedings of the International Symposium on Algorithmic
Languages (North Holland Publishing Company: Amsterdam, 1981), pp
141-2.

These properties are discussed more fully in the next
section of the paper.

19

properties can be used in proofs of correctness, making such

proofs much simpler than is currently the case. In traditional

languages, on ly expressions have any mathematical properties.

Statements, the major part of programs, have no such properties.

This means that proofs of correctness must be done in a logical

language different than the programming language. That is,

reasoning about the language cannot be done in the language.

A final advantage that functional languages seem to offer

over traditional ones is that they promise to be able to take

better advantage of technological and architectural innovation'.

Conventional style languages are tightly tied to the traditional

computer design. Functional languages are not. In fact, since

the conventional computer design does not appear to be suitable

for efficient evaluation of functional languages', functional

languages encourage the development of new architectures.

Seven claimed advantages of functional languages have been

mentioned above. To summarize, these are the following:

functional language programs are easier to understand than
non- functional ones ;

functional languages allow the building of new programs from
existing ones in a hierarchical fashion;

functional languages encourage the development of general
programs ;

D. A . Turner, "Recursion Equations as a Programming
Language" in Darlington, et al., p 1. The research into new
architectures is discussed in more detail in Section 4.7.

' Section 4.6 discusses implementations for conventional
machines.

20

functional languages allow the expression of inherent
parallelism more naturally than traditional languages;

functional languages operate in the same domain as
programming problems ;

functional languages possess algebraic properties that allow
proofs of correctness to be conducted in the language
itself;

functional languages encourage architectural innovation and
are better suited to take advantage of such innovation than
non-functional ones.

21

4. TOPICS IN FUNCTIONAL LANGUAGES

Whether or not one accepts the claimed advantages as true,

that functional programming languages are different from

conventional languages is clear. The differences require that

functional language researchers address some topics not

encountered by traditional language researchers, and that they

address some conventional topics in unconventional ways. Several

topics of this nature are discussed below. These are the

following: methods of expressing parallelism; the algebra

associated with a given functional language; techniques for

transforming one program into another; methods for including data

types in functional languages; the technique of lazy evaluation;

implementation techniques on conventional computers; and, new

computer architectures to support functional languages.

4.1 Parallelism in Functional Lanquages

The ability to express inherent parallelism was listed above

as a claimed advantage of functional languages. In this section,

methods of doing this in the simple language ExFP are discussed.

In ExFP, the apply to aiid coi,str-iictier, b w l l l u r r r r r r y - - m L . l ; n i n m A" F r r r m c L ... "
allow the expression of many inherently parallel operations. As

an example of the use of apply to all, consider adding together

each pair of a set of pairs of numbers. Conceptually, each of

the pairs can be added in parallel. This problem can be solved

in ExFP by defining the following program:

Def pairadd i a+

22

To see how this simple program expresses parallelism,

consider the computation of

Substituting for the definition gives

a+:<<1,4>, <2, 7 > , ‘ 7 , 7>>

The definition of the a functional form yields

<+<1, 4>, +<2, 7 > , + < 7 , 7>>

which expresses the parallelism of the problem clearly.

A similar example shows the use of the construction

functional form. Consider a program that not only does the pair

wise additions as above, but also does pair wise multiplication,

subtraction, and division. Conceptually, all four of these can

be done in parallel. If pairmult, pairsub, and pairdiv are

defined in ways analogous t o pairadd, an ExFP program for the

operation can be written as the following:

Def pairarith = [pairadd, pairmult, pairsub, pairdiv]

Substitution of the definition into

yields

[pairadd, pairmult, pairsub, pairdivl:
<<1, 4>, <2, 7 > , < 7 , 7 >

Evaluation of the construction combining form produces

<pairadd: <<1, 4>, < 2 , 7 > , < 7 , 7 > > ,
pairmult:<<l, 4>, <2, 7 > , < 7 , 7 > > ,
pairsub: <<1, 4>, <2 , 7 > , < 7 , 7 > > ,
pairdiv: <<1, 4>, <2, 7 > , < 7 , 7>>>

This clearly shows the intrinsic parallelism of the problem.

23

As defined, however, ExFP does not allow a large class of

intrinsically parallel problems to be expressed clearly. As an

example, consider the program length, defined above as

Def length I /+ a%l

The computation of

length:<7, 6 , 5, 4>

yields, after several steps,

Conceptually, the computation could, at the same point, be done

as

+:<+:<I, 1>, +:<l, 1>>

which exhibits a greater degree of parallelism.

In order to handle such computations, a new functional form

can be defined, and ExFP extended to include it1. The intent is

that this functional should not require computations to proceed

entirely to the right as does inser t . Instead, the functional

should allow computations to be done in two parallel paths when

possible. A suitable definition for such a combining form is the

foiiowing:

Parinsert: denoted by in front of a function; if the
object to which the function is applied is not a
sequence, the form is equivalent to I; if the object is
a sequence with a single member, the result is
equivalent to that member; if the object is a sequence
with a least two members, the form is equivalent to
applying the function to the sequence containing the
parinsert functional applied to the first half (where

This discussion is based on W i l l i a m s in Darlington, et
a l . , pp 79-82. The name and notation of the new functional form
is different than that chosen by Williams, but the definition is
the same.

half is defined as the smallest integer greater than or
equal to the number of elements in the sequence divided
by two) of the sequence, followed by the parinsert
functional applied to the remainder of the sequence.
That is

i f : x = 1 if x is not a sequence
xn ’ I I I If:-, , . . . ,

= x x , i f n = l
= f : < i If:<x,, . . . , x,>,

I;f:<X,+l, . . . , x,>>
if n 2 2, m = ceil(n/2)

To see how this works, consider redefining length as

Def length p I I + a x 1

The computation of

length:<7, 6, 5, 4>

yields, after several steps

Continuing with the computation gives

+:<!!+:<I, 1>, ;;+:<I, I>>
+ : < + : < I !+:<I>, I !+:<I>>,

+:<I ;+:<I>, I !+:<I>>
+:<+:<I, 1>, +:<I, 1>>

which is what is desired.

This discussion has shown that a functional language as

simple as ExFP can express a large class of intrinsically

parallel problems easily. More advanced languages can be even

more powerful in their ability to express parallelism.

4.2 The Algebra of Functional Programs

Another topic in functional language research is the

algebraic properties of the languages. These properties allow

reasoning about programs to be done in the language itself.

Applying some other language, such as a predicate calculus, is

25

not necessary'. The intent in developing an algebra for a given

functional language is to allow programmers to use the laws of

the algebra to prove programs correct and to help develop new

programs, without requiring them to know anything about the

mathematical foundation of the algebra2. In order to examine the

ideas of the algebra for programs, an algebra for ExFP programs

is discussed below.

The algebra that will be defined can be broken into three

categories of statements: laws, derived theorems, and expansion

theorems. Laws are statements that can be proven directly from

the definitions of the language's primitive functions and

functional forms. Derived theorems are statements that can be

proven from the laws of the algebra. Expansion theorems are

statements that allow recursive programs to be converted to

nonrecursive ones' .
There are two types of laws: ones that hold for all objects,

and ones that hold for a restricted class of objects. A law

stating that the functions f and g are equivalent for all objects

is written as f f g.

For information on techniques for reasoning with
conventional languages, see David Gries, The Science of
Programming (Springer-Verlag: New York, 1981). For comments on
the need for a mathematical basis in languages, see George T.
Liyler, "A Mathematical Approach to Language Design," Second
Symposium on Prin. of Prog. Langs., 1975, pp 41-53, and Dana
Scott, "Mathematical Concepts in Programming Language Semantics,"
AFIPS Conference Proceedings, Vol 40, 1972, pp 225-234.

Backus, CACM, p 624. For a discussion of the foundation
of the algebra presented here, see p 630 of that paper.

Williams in Darlington, et al., p 83.

2 6

In order to express the second type of lhw, additional

notation must be used. One such notation is the following1:

p = > f = g

This means that f:x 3 g:x for all x such that p:x = T.

To express that a lzw holds for any x that is defined (that

is, not equal to I), the following definition can be made2 :

Def defined %T

(Recall from the definition of the constant combining form that

%T:x is equivalent to T if x does not equal 1, and is equivalent

to * if x equals *) Thus a law that states that two functions f

and g are equivalent so long as f:x is not equal to could be

written as

defined f => f 3 g

There are a large number of laws that can be written for

ExFP. For purpose of example, three such laws will be stated and

proven, and eight laws will be stated without proof.

The first law that will be proven is the following' :

1. If O h, g hl [f, SI h

A proof of this statement must show that it is true for all

functions f, g, and h, and for all objects. To do this, the left

hand side is applied to the general object x, as follows

[f O h , g'hl : x

Backus, CACM, p 625. The notation used here is different.
He uses two solid right arrows.

Ibid.

' Backus, CACM, p 625, proves the law in the opposite
direction.

27

From the definition of the construction combining form, this can

be rewritten as

<(f O h):x, (g O h):x>

By the definition of the composition form, this can in turn be

rewritten as

< f : (h:x), g: (h:x)>

expression is simply the right hand side of a construc- But this

tion, so it can be written as

[f , gl:(h:x)

This, in turn, is the right hand side of a composition. A final

rewriting yields

([f , gl h):x

Thus, the law has been proven.

The second law that will be proven is the following':

2 - ~f O [gl, * . . , gnI E [f O g,, f O gnl

To prove this law, the two sides must be shown to be equivalent

for all functions f, gl, . . . , g,, and any object x. Thus, the

right hand side is written as

o r - a i L Y l , ..., g , ; i x

Applying in order the definitions of composition, construction,

apply to a l l , composition, and construction yields the following

proof:

' The law is from Backus, CACM, p 625. The proof is
original.

28

C(f O gl):x, ..., (f O g ,) : x > =
[f O 9 1 , . - . , f O g,l:x as desired.

The final law that will be proven is the following':

[f, 91 E f 0 3 . defined g => 1

A proof of this law must show that for any function f, any object

x, and any function g not yielding 1 when applied to x, the

statement holds. The following does just that, using in order

composition, construction, and the selector function 1 in conjun-

ction with the assumption that g is defined:

1 O [f, gl:x =
1: If, g1:x -
1: <f:x, g : x > =
f:x as desired.

-

Several other laws that can be proven in ways similar to

those shown above are the following2:

4.

5 .

6 .

7.

a.

9 .

10.

L_

The law is from Backus, LNinCS107, p 7. The proof is original.

The first 4 laws are from Backus, LNinCS107, p 7. The
remainder are from Williams in Darlington, et al., pp 84-5.

29

11. /f appendl [g, h] J

f [g, /f hl

As mentioned, many more laws can be inferred. These laws

can then be used to derive theorems, which make up the second

category of statements in the algebra. Once derived, the

theorems can be used in the same way as the laws. The larger the

body of laws and proven theorems, the easier the task of

reasoning about programs becomes.

As an example of the derivation of a theorem, consider the

following program:

length appendl [tail, id]

This program computes the length of the sequence constructed by

appending to the front of the argument sequence, the tail of that

sequence. The result of applying the program to any sequence can

be determined by using the algebraic laws described above.

First, the definition of length is used to rewrite the

program as

/+ O a%l O appendl [tail, id]

Law 10 can used with f = %1, g = tail, and h = id, to yield

/+ appendl O [%1 tail, a%l id]

Since tail is defined for any sequence, law 8 can be used with x

= 1 and g = tail, to produce

/+ O appendl [%1, a%l id]

Application of Law 11 with f = +, g = %1, and h = a%l id, gives

’ This example is based on Williams in Darlington, et al., p
85. He uses two general functions within the construction, but
the form used here seems easier to understand.

30

+ O id]

Finally, the definition of length can be used to yield

+ O [%1, length id]

So, the program applied to a sequence always yields the length of

the argument sequence plus one, as expected'.

The final category of statements in the algebra is that of

expansion theorems. Expansion theorems are too complex to

discuss in any detail here. As an example, a linear expansion

theorem is given below':

IF
f = p --> q; Hf

where Hf is a function involving f, and H:l = *, and
there exists an HI such that for all g, h, and j,
H(g->h;j) H,g - > Hh; Hj

THEN

. . . , f = p - -> q; * H,"p --> H"q; . . .
The algebra of functional programs is a complex topic. This

section has only touched on the basic ideas, but the presentation

should provide sufficient groundwork for further study3.
- .-

If this does not seem correct, consult the definition of
append1 given above.

' John H. Williams, "On the Development of the Algebra of
Functional Programs," ACM Transactions on Programming Languages
and Systems, Vol 4, No 4, Oct1982, p 737. This same theorem is
given in Williams in Darlington, et al., p 84, Backus, CACM, p
627, and Backus, LNinCS107, p 26. See these references for more
information on expansion theorems.

Besides the references already mentioned in this section,
the interested reader should see Toni A . Cohen and Thomas J.
Myers, "Towards an Algebra of Nondeterministic Programs," 1982
Symposium on LISP and Functional Programming, pp 29-36.

31

4.3 Program Transformation

One consequence of the algebra of programs is the

possibility of transforming programs from one form to another

using the algebra. The primary motivation behind program

transformation is the observation that writing easily understood

' This representation uses a different notation from, but is
equivalent to, the representation of John S. Givler and Richard
B. Kieburtz, "Schema Recognition for Program Transformations,"
1984 Symposium on LISP & Functional Programming, p 75.

32

programs and writing efficient programs are often conflicting

goals. The program transformation method of development is to

first write a program that is clear and easy to understand, and

then transform it into one that runs as efficiently as possible

on the available hardware'.

A transformation has the form

c, Pi, -->' P o u t

where C is a set of conditions under which the transformation is

valid, Pi, is the template, and P o u t is the program equivalent to

the template'.

The process of using a transformation consists of the

following steps:

1. Recognition of a program or segment of program that
matches a known template.

2. Verifying that the conditions for the application of
the template are satisfied by the program or segment.

3 . Converting the program or segment to the equivalent
form given in the transformation.

' John Darlington, "Program Transformation", Darlington et
al., p 193.

Clearly, the laws and theorems of the algebra of a

functional language provide an initial set of transformations.

For example, given the language ExFP and its laws given above,

the following simple transformation can be stated:

, h O (p -> f;g) -->> p --> (h O f); (h O 4)

where the # signifies that there are no conditions that must be

satisfied before the transformation can be applied.

Another simple transformation that does have a qualifying

condition is the following:

g defined, %x g --D %X

This means that the transformation holds so long as the

application of the function g does not yield 1.

As an illustration of the use of these two transformations,

consider the following program:

i O (eqO O tail -> [l, %1 id]; id)

This program is similar to a simple divide, except that it checks

to see if the second element in the object sequence is 0, and if

it is, sets it to 1. The program can be rewritten by using the

two transformations given above.

The program matches the template of the first transformation

in the following way:

h = f,
p = (eqO tail),
f = [l, %1 O id], and
g = id

0

Applying this yields

eqO O tail - > (+ O [l, %1 O id]); (f id)

33

Part of this program matches the template of the second

transformation with x = 1 and g = id. Since id is defined for

all non-1 arguments, the transformation can be applied. This

produces

eqO O tail - > (I O 11, %1]); (+ id)

Not only can transformations be used that convert one

program in a given language into another program in the same

language, but transformations can be developed that relate one

language to another. An example of such a transformation that

converts an ExFP program to an Ada program fragment is the

following:

p:x = T or p:x = F, (p - > g; h) --B

if P then
G ;

else
H ;

end if;

where P is an Ada boolean expression corresponding to the ExFP

function p, G is an Ada procedure corresponding to the ExFP

function g, and H is an Ada procedure corresponding to the ExFP

function h .

One final application of program transformations is to

convert recursive programs into iterative ones. Certain

algorithms are most clearly expressed recursively, but most

efficiently executed iteratively. Appropriate use of

transformations can be used to convert such algorithms'.

See Alberto Pettorossi, "A Powerful Strategy for Deriving
Efficient Programs by Transformation," 1984 Symposium on LISP &
Functional Programming, pp 273-281 for a strategy for doing this.

34

A s this discussion has shown, the basic idea of program

transformation is simple; however, at least two major hindrances

exist to its practical application. Each of these is discussed

briefly below.

The least severe of the two problems is the potential

difficulty in verifying that a particular transformation’s

pre-conditions are satisfied. For the simple transformations

given here, the task of pre-condition verification was simple,

but f o r more complicated transformations this is not necessarily

the case.

The more severe problem is that for any language of

sufficient power, recognizing instances of known templates can be

very difficult. For the example above, matching the given

program to the template was easy, but consider the following

program1 :

eq O [id, tail id] - > loop (1 distr)
eqO - > or O [2 , 3 O tail]; not 1 - > /+ O a%7;
eqO O - 0 [id, %1] - > loop a*

This program does not appear to match either of the templates

given above, but it does in the following way:

h = eq [id, tail id] - > loop (1 distr),
p = eqo - > or O [2 , 3 O tail]; not 1,
f = /+ O a%7, and
g = eqO O - 0 [id, %1] - > loop a*

Recognition of all instances of known templates is beyond the

capabilities of most, if not, all people.

This program does not compute anything of known
significance. It is given simply as an example of the complexity
of template matching.

35

I

A proposed solution to both these problems is to develop

automated systems to carry out the transformations. At the

present time, no system exists that is able to perform this task

completely on its own'. Systems do exist that are able to

perform transformations with assist from a programmer2. The

future utility of program transformation systems is an open

question.

4 . 4 Variables and Data Types

So far, no mention of the roles of variables and data types

in functional languages has been made. In fact, languages, such

as ExFP, that strictly follow the Backus' style do not explicitly

have either. The only variables are the names of defined

function. Not all functional languages are so devoid of

variables, but mechanisms for providing variables are directly

related to each particular language. For this reason, the

subject will be discussed in Section 5 .

Mechanisms for providing types in functional languages are

less language specific. They fall generally into two categories:

implicit t ype inferellce, and explicit t.;p declarsti.cn. The

Darlington in Darlington, et al., p 2 0 9 .

The interested reader should see Givler, Kieburtz, pp
74-84, Francoise Bellegarde, "Rewriting Systems on FP expressions
that Reduce the Number of Sequences They Yield," 1984 Symposium
on LISP & Functional Programming, pp 63-73 , and Phillip Wadler,
"Listlessness is Better than Laziness: Lazy Evaluation and
Garbage Collection at Compile Time," 1984 LISP & FP, pp 45-52.
Also of interest is R. Kent Dybvig, Bruce T. Smith, " A Semantic
Editor," 85 Symposium on Language Issues in Programming
Environments, pp 74-82, which describes an editor for FP that
uses transformations.

36

approach taken in the discussion below is to briefly describe

only one specific method for each category, and to give

references to others.

4 . 4 . 1 Implicit Typing

In implicitly typed systems, determining the type of a given

expression is the responsibility of the compiler or interpreter.

One method of doing this is called the reduced computation

approach'. This technique is described briefly below.

The basic idea of the reduced computation method is to

consider a function to be a mapping of one data type to another,

possibly identical, data type. In other words, for each function f

that produces an object y when applied to an object x, there is a

function' f' that yields the type of y when applied to the type

of x. In order to perform type checking and inference for a

given function f, the corresponding reduced computation function

f' is considered.

As an example of the operation of this method, consider its

application to the language ExFP. Before the technique can be

used, the desired types must be chosen. For ExFP, a suitable

choice is number, character, boolean, and sequence. The first

This discussion is from Takuya Katayama, "Type Inference
and Type Checking for Functional Programming Languages: A Reduced
Computation Approach," 1984 Symposium LISP & Functional
Programming, pp 263-272.

"Function" is used here not in a strict mathematical
sense. It is possible that the same types yield different result
types. See Ibid, p 264-5.

37

three types mean what one would expect. The sequence type is

defined as follows:

if t,, .. ., t, t T then <t,, ..., t,> E T,
where T is the set of types

Given these types, the type expressions for the primitive

functions of ExFP can be stated. To express these clearly the

following notation is used':

1. x*y represents the sequence <x, y> so long as y is
a sequence; if y is not a sequence, the expression
is undefined.

2. xOy represents the sequence <x, y> so long as x is
a sequence; if x is not a sequence, the expression
is undefined.

3. x" represents the sequence containing x n times.

4. f':x - - > y means that y is produced when the type
domain function f' is applied to x.

Using this notation, the type expressions for the ExFP primitive

functions are the following (r, s, and t are type variables; n is

an integer variable):

1. id':t - -> t That is, the id function yields the
same type as its argument.

2. 1':t.s - -> t, 2':r.(s.t) - -> s , . . . That is, the
selector function i produces the type of the 1'"
element in the sequence.

3 . tai1':t.s - -> s

The notation for 1. is slightly different from Ibid, p
267. The notation for 2. is entirely new; Katayama provides no
means for expressing this. The notation for 3 . is the same. The
notation for 4. is slightly different.

38

5 . appendr':<t, s> - -> tos
appendl':<t, s> - -> t ~ s

6. +':number2 - -> number
-':number2 - -> number
*':number2 - - > number
+' :number2 - - > number

This means that +, -, *, and i must have as
arguments a sequence with two elements each
of type number'.

7. eq':t2 - -> boolean

8 . not':boolean - -> boolean
and':boolean' - -> boolean
or' :boolean' - -> boolean

This approach can be extended and applied to the combining

forms to give a complete type inference and checking system for

non-recursive programs. Further extensions yield a system for

some recursive programs as well3.

The reduced computation technique for inferring and checking

types is not the only method for these purposes4. The discussion

of this particular method should be sufficient to provide a basic

understanding of the principles involved.

This assumes each element in the type sequence t" is of
the same type t for both d i s t r , and d i s t l . Specifying a type
expression for these functions without this assumption is much
more complex. See Ibid, p 267.

The fact that + cannot have a second argument equal to 0
is not expressed here.

' See Ibid. for how these extensions are made.
The interested reader should see Luis Dumas and Robin

Milner, "Principle type-schemes for functional programs," 9th ACM
Symposium Principles of Programming Languages, pp 207-212, and
John Mitchell, "Coercion and Type Inference," 11th ACM Symposium
Prin. of Prog. Langs., pp 175-185.

39

4 . 4 . 2 Explicit Typing

The alternative to inferring types is to require explicit

declaration of them. As an example of how this might be done,

ExFP is extended to include type definitions'. Such an extension

requires several steps. Each of these is discussed below.

The first thing that must be done is to determine the types

that will be added. For this example, the types number,

character, boolean, and sequence will be used. These types have

meanings as would be expected, and have the abbreviations nun,

char, bool, and seq respectively.

Once the types are decided, primitive functions that

determine if an object is of a particular type must be added.

Given the four types above, the following four functions are

added to ExFP: isNum, ischar, isBool, and isSeq. The program

isType:x yields T if x is of type Type and F otherwise.

Another necessary extension to ExFP is the combining form

TypeOK. This combining form is defined in the following way2:

TypeOK : this is denoted by TypeOK(f) applied to an
object x; the combining form yields T if f:x yields an
acceptabie t ype ; t h e def i i l i t i on of wkat c c n s t i t u t e s an
acceptable type depends on f.

A s an example of the TypeOK combining form, consider the

following:

' This discussion is based on John Guttag, "Notes on Using
Types and Type Abstraction in Functional Programming, in
Darlington, et al., pp 116-126.

a This definition is based on Ibid, p 119.

40

This is equivalent to the following expression:

ando[isSeq, ando[isNumO1, isNum02]1

In order to provide a suitable mechanism for type

declarations, the D e f facility of ExFP must be extended to allow

the inclusion of names for parameters on the left hand side'.

The general form of this extension is the following:

Def f E(x,, . . . , x,) = F(x,, - - - , x,)

This form makes the reading of function definitions easier. For

example, the following definition under the old form

Def f = g id

can be written in the new form as
D e f f o x = g 0 x

which more clearly shows the dependance of f on the argument

object x.

The new form of D e f also allows clearer specification of

restrictions on the form of objects acceptable to a function.

For example, consider a function f that is intended to perform g O

[Z , 11 only if the argument object consists of a pair. Using the

unextended definition, the function could be written as

Def f = pair - > g 12, 11; 1

where pair yields T if the object is a sequence of two elements.

With the extended definition, the function could be written as

follows:

This extension is based on Backus, LNinCS107, pp 27-37.
The description here is informal. For a formal discussion, see
the paper. Backus' use of in the notation is confusing, but it
is used here for lack of anything better.

41

Def f [x, yl = g [y, X I
which is easier to read, and does not require the introduction of

the function pair.

Another necessary extension is a way to declare the types of

the arguments to a function and the type of the object returned

by a function. To allow the former, parameters in a function

definition are allowed to have a type specification. A type

specification is of the following form':

x('llYPe1

A s an example, consider the function f defined as above. If f

is desired to yield 1 for any x and y that are not both numbers,

the definition could be written as

Def f [x(Num), y(Num)l = g [y, X I
This is equivalent to the non-extended definition

Def f = ando[ando [isNumOl, isNum'21, %TI - >
g O [2, 11;

To allow the declaration of the type of the object produced

by a function f, the following notation can be used':

Def f . . . yields Type = . . .
For example, if f as defined above should yield either T or F,

the definition could be written as

Def fo[x(Num), y(Numj1 yields Boo1 = go[y, X I

This notation differs from Guttag in Darlington, et al.
He uses the form x:Type. The use of : here, although consistent
with traditional languages, seems inappropriate since the symbol
also stands for application.

Ibid, p 118 uses returns instead of yields.

42

Given all of these extensions, all that would be necessary

to complete the introduction of types to ExFP would be the

redefinition of the primitive functions to include type specifi-

cations. As an example, the functions or, t a i l , and + would be

of the following forms respectively':

or [x(Bool], y{Boolj] yields Boo1

tail [~(Seq)] yields Seq

+ [x{Num), y{Num)l yields Num

Some functions can take arguments of several types and

return several different types. Each possibility can be defined

separately. For example, id can take either a sequence, a

number, or a character. The function could be defined in the

following form' :

id O [~(Seq]] yields Seq
id [x{Num)l yields Num
id char)] yields Char

The above discussion has shown a technique for adding type

declarations to the language ExFP. Other methods exist as well.

Section 5 discusses the type schemes of each language mentioned'.

4.5 Lazy Evaluation

Lazy evaluation is a particular technique for determining

when expressions are evaluated. It is used by many functional

These are given for example purposes only, not as rigorous
definitions.

' Again, this is given only as an example.
' That is, where such information is available in the

literature. See also, D. B. MacQueen and Raui Sethi, "A Semantic
Model of Types for Applicative Languages," 1982 Symposium on LISP
& Functional Programming, pp 243-252.

43

languages. The basic principle of lazy evaluation is that an

evaluation is done at the time that the result is needed, and not

before. In contrast, in a conventional (or busy) evaluation

scheme, all computations are done as soon as possible.

A s an example of the method, consider the following ExFP

program and application:

A conventional evaluation scheme would give the following:

or: [%T, eqO + I : < 7 , O>
or: <%T: < 7 , O>, eqO i: <7,0>>
or: <T, eqO: f: < 7 , O > >
or: <T, eqO: I>
or: <T, *>
I

However, a lazy evaluation scheme would give something like

the following:

or: [%T, eqO + I : < 7 , O>
or: <%T: < 7 , O > , eqO O +: < 7 , O>>
or: <T, eqO: f : < 7 , O>>
T

One consequence of such a scheme is that a programmer has

little control over the order of execution of operations'. He

must not assume anything about evaluation order. Making such

assumptions is generally considered to be a bad practice; so lazy

evaluation has the advantage of discouraging it.

This discussion of lazy evaluation should be sufficient to

show the basic idea. Much research has been conducted on its

' Cordelia Hall and John T. O'Donnell, "Debugging in a Side
Effect Free Programming Environment," 1985 Symposium on Language
Issues in Programming Environments, p 61.

44

use, so the interested reader may consult a variety of references

for more information'.

4.6 Implementation on Conventional Architectures

The conventional computer architecture consists of three

parts: a processor, memory, and a communications line connecting

the processor and memory2. Most computers, from small personal

computers to large main frames, employ this same basic

architecture with only minor differences. In his Turing Award

paper, John Backus argues that a major cause of the inadequacies

of traditional programming languages is their dependance on this

conventional computer model. He claims that new architectures

are essential to the improvement of languages'.

Backus' arguments may well be true; however, the vast

majority of computers will almost certainly retain the

traditional architecture throughout the foreseeable future. For

this reason, the acceptance of functional languages is partially

' To start, see Peter Henderson and J. Morris, Jr., "A Lazy
Evaluator, "' 3rd Symposiums on Principles of Programming
Languages, pp 95-103, P. A. Subrahmanyam and J. H. You, "Pattern
Driven Lazy Reduction: A Unifying Evaluation Mechanism for Func-
tional and Logic Programs," 11th Symposium on Principles of
Programming Languages, pp 228-234, and Glaser, et al., pp 70,71.
For a discussion of lazy evaluation for Backus' FP, see Walter
Dosch and Bernard Moller, '"Busy and Lazy FP with Infinite
Objects," 1984 Symposium on LISP & Functional Programming, pp 282-292.

Philip C. Treleaven, "Computer Architecture For Functional
Programming," Darlington, et al., p 290. Such an architecture is
often called a "von Neumann" architecture, after one of the men
who conceived it.

Backus, CACM, p 615.

45

dependent on whether or not they can be implemented efficiently

on conventional machines.

A complete discussion of the topic would be much more

complicated than is desirable for this paper. However, basic

implementation techniques can be discussed briefly. Most

research has concentrated on implementing lambda based languages,

so the discussion also concentrates on methods for such

languages. Since, as was mentioned in Section 2.3, the lambda

calculus can be used to simulate any function or functional form,

the lambda methods can be adopted for use for FP style languages.

4 . 5 . 1 Translation to Another Language

Perhaps the simplest way to implement a functional language

is to translate it into another high-level language. A

translator system takes source code from the functional language

and produces code in another language for which a compiler or

interpreter already exists.

The Berkeley FP system uses this technique'. The language

of the system is based on the FP language introduced by Backus.

Programs written in this language are translated into LISP code.

This code may then be either interpreted or compiled. A s one

might expect, the system does not execute programs with much

speed.

Generally, any implementation based on translation to

another high-level language will not be very efficient. For this

See Baden, and Scott E. Baden, Dorab R. Patel, "Berkeley
FP -- Experiences with a Functional Programming Language," Digest
of Papers of CompCon 83, 1983, pp 274-77.

46

reason, such implementations are not suitable for most practical

programming applications.

4 . 6 . 2 SECD Machine

The SECD machine is the standard way to implement functional

languages that are based on the lambda calculus'. It is intended

to be created in software on conventional architectures. A SECD

machine operates according to the following algorithm:

WHILE (an expression is left to be evaluated)
OR (there is a suspended computation) DO
IF the current evaluation is done THEN

ELSE
resume the last suspended evaluation

CASE next expression to be evaluated OF
identifier:push the value onto the evaluation
stack and pop the next expression from the
expression stack
Lambda-exp: push the appropriate closure onto
the evaluation stack and pop the next
expression
application: replace the top of the
expression stack by the expression
representing this appl.
"ap": cause the operator on the evaluation
stack to be applied to the operand below it.

END CASE
END IF

END WHILE

As given, the SECD model is not able to support lazy

evaluation; however, the machine can be extended to provide this

support. Characterizing the efficiency of SECD based

implementations is difficult. In general, they are not thought

' Glaser, et al., p 82. The algorithm is from p 84, with
some changes in notation.

47

to be adequately efficient to allow practical realizations of

languages'.

4 . 6 . 3 Combinator Systems

Another method of implementing functional languages is the

use of combinators. Combinators are a method for representing

lambda calculus expressions in a shorter form. As an example,

the single combinator S is used to represent the following lambda

expression2 :

Lam x Lam y Lam z. (x z) (y z)

Combinator systems can be used to implement lambda based

languages. The first part of such systems is a translator that

converts the lambda expressions into their combinator

representation. Many different techniques exist for producing

executable code from these representations. Most methods are

able to support lazy evaluation.

Studies have shown that these techniques are generally as

efficient as direct lambda expression implementations such as the

SECD Machine discussed above3. Some researchers claim that

combinator implementations are much more efficient, enough so to

' Paul Hudak and David Kranz, "A Combinator-Based Compiler
for a Functional Language," 11th Symposium on Principles of
Programming Languages, p 122.

R. J. M. Hughes, "Super Combinators: A New Implementation
Method for Applicative Languages," 1982 Symposium on LISP &
Functional Programming, p 2.

Simon L. Peyton Jones, "An Investigation of the Relative
Efficiencies of Combinators and Lambda Expressions," 1982
Symposium on LISP & Functional Programming, pp 150-158.

48

allow practical realizations of functional languages' ; however,

other researchers dispute such claims.

4.6.4 Stack Based Systems

Some research has suggested that certain lambda based

functional languages can be implemented using a run-time stack.

This method involves the modification of the conventional

run-time stack used for languages like Pascal. These

modifications include adding separate stacks for return addresses

and intermediate variables, and adding a new pointer to each

activation record.

This method is said to be applicable to any functional

language that uses copy-rule parameter passing. It is also

claimed to be suitably efficient2.

4.6.5 Remarks

The above discussion has been necessarily brief. Not all

implementation methods for conventional machines have been

Hudak, Kranz, pp 122-132. For more information on
combinator implementations, see Paul Hudak and Benjamin Goldberg,
"Experiments in Diffused Combinator Reduction," 1984 Symposium on
LISP & Functional Programming, pp 167-176, Steve S. Muchnick and
Neil D. Jones, "A Fixed-Program Machine for Combinator Expression
Evaluation," 1982 Symposium on LISP & Functional Programming, pp
11-20, and Glaser, et al., pp 93-104.

See U. Honschapp, W.-M. Lippe, and F. Simon, "Compiling
Functional Languages for von-Neumann Machines," 1983 Symposium on
Programming Language Issues in Software Systems, pp 22-27, and M.
P. Georgeff, "A Scheme for Implementing Functional Values on a
Stack Machine," 1982 Symposium on LISP h Functional Programming,
pp 188-195.

49

.

discussed'. Those techniques that have been mentioned have been

covered in a cursory manner. The discussion has shown that the

current techniques for implementing functional languages on

conventional architectures do not appear to produce adequate

efficiency . The development of new architectures shows more

promise; this research is discussed in the next section.

4 . 7 . New Architectures

Since implementations of functional languages on

conventional architectures thus far have been inefficient, much

research is being done on developing architectures to support

functional languages specifically. Three approaches to such

architectural innovation are discussed below'.

4.7.1 Data Flow Machines

The ideas of data flow architectures have been in existence

for a number of years. The original motivation for these type

machines was not functional languages' ; however, data flow

machines do have properties which make them appear attractive for

functional language implementations. One particular data flow

machine being developed at the Massachusetts Institute of

Technology is discussed below4.

For one interesting additional technique, see Corrado
Bohm, "Combinatory Foundation of Functional Programming," 1982
Symposium on LISP h Functional Programming, pp 29-36.

' The interested reader should see Proceedings of the
Conference on Functional Programming Languages and Computer
Architecture, ACM, October, 1981.

' Glaser, et al., p 104.

This discussion is based on Backus, IEEE, pp 26,27.

50

The M.I.T. machine consists of a large number of identical

operand

processors. These processors are connected by a network that

operand

allows each processor to communicate with any other processor in

the network. The communication is done by passing packets. Each

packet contains the address of the processor for which it is

intended, a list of other packets with which the packet's data is

to be combined, and data. The structure of an individual

processor is shown below'.

IN
I

waiting/

output sect i on

I
OUT

A processor operates in the following manner:

1. A packet arrives as input. It waits in the
waiting/matching unit until all packets from which it
needs data have arrived.

2. When a complete match is made, the packets are sent to
the instruction fetch unit.

' The figure is from Ibid, p 26.

51

3. This unit gets the necessary instructions from memory
and sends them and the data to the arithmetic and logic
unit.

4 . The A . L . U . uses the instructions to form a result from
the data. This result is sent to the output section.

5. The output section puts the result data in a new
packet. The address(es) to which this packet is to be
sent is computed from the input packets and the
instructions.

6 . The packet is sent out onto the network.

The developers of this machine believe that it can be used

to implement any type of functional language. A t the time of the

writing of the reference on which the discussion is based, a 64

processor prototype was expected to be in operation by the end of

1985.

4 . 7 . 2 Professor Gyula Mago's Machine

Unlike the previous machine, the architecture being

developed by Gyula Mago at the University of North Carolina is

intended to be used only for the implementation of functional

languages based on Backus' style'. This machine has a cellular

design. That is, it consists of a large number of interconnected

components. These components, called cells, are one of two

types: leaf or tree. The tree cells are connected as a binary

tree. The leaf cells are connected at the base of the tree.

Each leaf cell is also connected to its two neighboring leaf

cells.

This discussion is based on Ibid, pp 25,26, and Gyula
Mago, "Data Sharing in an FFP Machine," 1982 Symposium on LISP &
Functional Programming, pp 201-202.

52

The structure of the cells is very simple. Each leaf cell

consists of a small processor, a small microcode memory, memory

for a symbol and its position in the program, and some condition

registers. The purpose of these cells is twofold: to store data,

and to process data. FP primitive operations and combining forms

are implemented directly in the cells' microcode.

Each tree cell is made up of data registers and a simple

processor capable of moving data and doing simple operations.

The purpose of these cells is to control communication between

leaf cells.

To evaluate an FP expression, the expression and the data to

which it is applied are mapped onto the leaf cells. Each leaf

cell contains zero or one symbol from the program. The machine

then proceeds with an execution cycle of three phases'.

In the first phase, the tree cells partition the

representation into each independent subexpression. Each of

these consists of a single function and the data to which it is

applied. All subexpressions so partitioned can be evaluated in

parallel. The process of partitioning configures the machine to

match the program and data. This is in contrast to most other

approaches which try to match the program and data to the

hardware.

In the second phase, each independent sub-tree attempts to

evaluate its first application. If this is possible, the

function and data to which it is applied are replaced by the

The discussion of.the execution cycle is from Mago, p 202.

53

result of the application. Most FP functions can be executed

immediately in one cycle.

The final phase of a machine cycle is storage management.

The remaining subexpressions and data are moved to the

appropriate places among the leaf cells. At the conclusion of

this phase, another execution cycle begins. This continues until

a result is obtained.

In order to evaluate large FP programs effectively using

this architecture, a machine must contain very many cells. The

simplicity of an individual cell suggests that providing as many

as a million cells at reasonable cost may be feasible using Very

Large Scale Integration methods.

4 . 7 . 3 SKIM I1 Processor

The final new architecture that will be mentioned is the

SKIM I1 processor being developed at the University of Cambridge.

The discussion of this design will be brief because the available

literature says very little about the architecture of the

machine' .
The SKIM I1 processor is the successor of the SKIM I

processor. It is intended for the efficient implementation of

combinator methods for functional language evaluation. The

processor has separate memory for programs and data. It is

The discussion is based on W. R . Stoye, T. J. W. Clarke,
and A. C. Norman, "Some Practical Methods for Rapid Combinator
Reduction," 1984 Symposium on LISP & Functional Programming, pp
159-166.

54

controlled by microcode. This microcode contains the combinator

reduction algorithm.

The implementation of combinator evaluation on SKIM I1 is

claimed to be significantly more efficient than the

implementation of the method on conventional machines.

Improvements in combinator techniques for those machines can be

easily incorporated into the processor, so the difference in

efficiency should remain regardless of advancements in the

algorithms.

In addition to comparing the efficiency of SKIM I 1 to

conventional architectures, the developers have compared the

efficiency to implementations of non-functional languages. The

results suggest the performance of SKIM I1 is about one-quarter

of that of a traditional language compiled on comparable cost

hardware'.

Ibid, p 166.

55

5. EXISTING FUNCTIONAL LANGUAGES

In the previous sections, the only specific functional

language discussed has been the example language ExFP. In this

section, several actual languages that are claimed to be

functional are discussed. The languages are divided into two

categories: languages based on Backus’ style; and languages not

based on Backus’ style (these may be based on the lambda style,

based on a combination of the two styles, or based on neither

style).

5.1 FP Based Languages

The theory of FP based languages is still in its infancy.

Most of the research has been in developing the theory, not on

designing specific languages. Thus, not many FP based languages

are discussed in the available literature. Three language

systems that do exist are described below.

5.1.1 Berkeley F P

The Berkeley FP system’ was mentioned briefly in Section

4.6.1. The language implemented is very similar to the specific

FP language described by Backus, and thus is similar to ExFP as

well. The differences between Berkeley FP and Backus’ language

are primarily syntactical. A l s o , the Berkeley language provides

a greater number of primitive functions. The system was designed

for experimentation, not for practical programming.

See B a d e n and Baden, P a t e l .

56

5 . 1 . 2 pFP

The language pFP1 is used to describe V.L.S.I. circuit

design. It is a variant of Backus' FP. The differences between

pFP and Backus' FP are discussed below.

One primary difference between the languages is in the

nature of the data accepted and produced. FP functions operate

on one input and produce one output. pFP functions operate on a

sequence of inputs that varies over time and produce a time

varying sequence of outputs.

A s illustration, consider the function +. In FP, this

function can be applied only to a single pair. For example,

In pFP, the function can be applied to a sequence of pairs, where

each pair represents input at a certain time. For example,

+: <<7, 8 > , < l o , 9>, <1, 2>, < 3 , 4>, ... > =
<15, 19, 3, 7, . . . >

The consequence of this difference in input and output

values is that a pFP function f is basically equivalent to the FP

combining form af. The only non-equivalence to this relationship

is that the pFP function may take a potentially infinite sequence

as input, while the FP function's input sequence must be finite'.

Mary Sheeran, "muFP, a language for VLSI design," 1984
Symposium LISP & Functional Programming, pp 104-112.

That is, for FP as defined by Backus. For a discussion of
an extension that allows infinite input sequences, see Tetsuo Ida
and Jiro Tanaka, "Functional Programming with Streams, "
Information Processing '83: Proceedings of the IFIP Ninth World
Computer Congress, Sept 19-23, 1983, pp 265-270.

57

The relationship between a pFP expression and its equivalent

FP expression can be express using a meaning function, denoted by

M1. M{f) is equal to the FP equivalent of the pFP function f.

Thus, the relationship discussed above can be expressed in the

following way:

MIfl = a f

In order to express the relationship between the combining

forms, the function tran is needed. This is the matrix transpose

function. It is used to express the conversion of a stream of

sequences to a sequence of streams. The meanings of pFP

combining forms is given below:

constant:
M{%Yl = a%Y

construction:
~ { [f , , . . . , f n l I = tran [M{flI, ..., MlfnI]

apply to all:
M{af] = tran aM{f) tran

insert:
M{/f] = / (M { f] tran) tran

condition:
M{p -> g; h] = a(1 --> 2;3) tran

[M{PI, MIgI, M(h11

loop:
pFP does not provide this combining form

The other primary difference between pFP and FP is that pFP

contains the additional combining form p. This form introduces a

limited memory to the language. The expression pf means that the

The notation and definitions are from Sheeran, p 105, 106.

58

next output and next state depend on the current input and

current state. In a given cycle, the current state is the second

input. Initially, the state is considered to be the unknown

value ?.

To illustrate the use of the p combining form, consider a

program to represent a shift register cell'. This cell has as

output its current state, and as input its new state. The pFP

function for this is the following:

P [2 , 1 1

Given the input <O, 1, 0, 0, 1, 0, . . . >, the output of the

program would be e ? , 0, 1, 0, 0, 1, 0, . . . >.

The introduction of the new combining form does not

significantly alter the algebra of programs. Most of the laws

and theorems that hold for FP, hold for pFP.

An interpreter for pFP has been written. Also, the language

has been combined with a functional geometry system2 to produce

pictures of a design layout.

5.1.3 F Shell

The F shell' is not a programming language. Rather, it is a

command interpreter in the spirit of the C shell and Bourne shell

Ibid, p 107 .

Peter Henderson, "Functional Geometry," 1982 Symposium on
LISP h Functional Programming, pp 179-187 .

Jon Shultis, "A Functional Shell," 1983 Symposium on
Programming Language Issues in Software Systems, pp 202-211 .

59

of UNIX’. I t i s , however, based on Backus’ FP. For t h a t reason,

it i s discussed below.

The da ta of F s h e l l programs c o n s i s t of f i n i t e sequences of

c h a r a c t e r s c a l l e d d a t a streams. These streams may be nameless o r

l a b e l l e d w i t h i n t e g e r va lues . Also, s eve ra l s epa ra t e streams may

be combined i n t o one stream with seve ra l components; such a

stream i s c a l l e d a s t r u c t u r e d stream.

The s h e l l provides a set of p r i m i t i v e programs. Each

p r i m i t i v e program t akes a d a t a stream a s inpu t and produces a

d a t a stream as output .

The F s h e l l has four types of PFOs: composers, s t r u c t u r e r s ,

s e l e c t o r s , and powers. There a r e t h r e e types of composers. The

f i r s t of these i s c a l l e d composition and i s s i m i l a r t o FP’s

composition. The d i f f e r e n c e i s t h a t t h e F s h e l l composition i s

evaluated l e f t t o r i g h t . That i s , t h e F s h e l l expression f g

i s analogous t o t h e ExFP expression

g O f .

The second composer is c a l l e d source . The no ta t ion p<f

means t h a t a d a t a stream is c rea t ed from f i l e f and s e n t a s i npu t

t o program p. The t h i r d composer i s c a l l e d s i n k . I t i s denoted

by > f , and means t h a t a d a t a stream i s sen t t o t h e f i l e f . Thus,

t o copy f i l e f , i n t o f i l e f, i n t h e F s h e l l , one w r i t e s f , < > f , .

The f i r s t s t r u c t u r e r PFO i s c a l l e d cons t ruc t ion . The

expression [p , , ..., p,] c r e a t e s a s t r u c t u r e d d a t a stream, whose

jth component i s t h e r e s u l t of applying p, t o t h e inpu t stream.

U N I X i s a trademark of AT & T B e l l Labora tor ies .

60

The second s t r u c t u r e r i s product ' . The expression p1 * . . . * pn

t a k e s a s t r u c t u r e d stream with n components a s i n p u t . I t

produces a s t r u c t u r e d stream with n components, where t h e j t h

component is t h e r e s u l t of applying pj t o t h e j t h component of

t h e inpu t . The t h i r d s t ruc tu re r i s p ro jec t ion . This i s denoted

by l S t , Z n d , ..., where t h e j t h p r o j e c t i o n selects t h e j t h

component of a s t r u c t u r e d stream a s output .

Three s e l e c t o r s e x i s t : a l t e r n a t i o n , sum, and l a b e l l i n g .

A l t e rna t ion i s denoted by S p l , ..., Pn 2 * This expression t a k e s a

l a b e l l e d stream a s inpu t and produces a s output t h e r e s u l t of

applying p j t o i t , where j i s t h e l a b e l . The sum PFO i s

i d e n t i c a l t o a l t e r n a t i o n except t h a t it r e t a i n s t h e l a b e l on t h e

stream. I t i s denoted by p1 + . . . + p n . The PFO l a b e l i s

denoted by -1 , where 1 can be any program t h a t produces an

i n t e g e r a s ou tput .

The f i n a l type of PFO i n t h e F s h e l l i s t h a t of powers. Any

of t h e t h r e e ope ra to r s O , *, and + can be used i n a power. The

gene ra l form i s p"" , where R i s one of t h e t h r e e ope ra to r s and n

i s an i n t e g e r . The expression i s equiva len t t o t h e program p I3 p

. . . I3 p , where t h e r e a r e n p ' s .

As an example of t h e u s e of t hese PFOs, consider a program

t h a t i s intended t o do t h e following:

apply p t o t h e inpu t ; then apply program b, i f b produces 1,
apply p1 ; i f b produces 2 , apply pz .

-
The no ta t ion used here f o r product , a l t e r a t i o n , and l a b e l

a r e d i f f e r e n t than Ib id . H i s n o t a t i o n uses symbols no t a v a i l a b l e
t o t h i s author .

61

This program can be written in the F shell as follows:
0 p -b O <PI 9 P22

A s mentioned above, the F shell obeys algebraic laws. The

reader may enjoy attempting to verify the validity of the

following representative laws' :

f o (g o h) = (f o g) O h

[fl, ..., f,] O jth = fj if 1 I j I n

^k O Sg,, ..., gn2 g,

n2 0 - fl + - . . + f, If' O -1, ..., f,
A major problem with using the F shell as a practical

command interpreter is that most keyboards are unable to produce

many of the characters used by the shell2. The notation can be

converted to standard characters, but this reduces its

readability. A prototype version of the shell has been

implemented in this way. Also, research is being conducted into

developing a graphical representation for personal computers.

5.2 Non-FP Style Languages

Because the emphasis in this paper has been on FP style

languages, languages based on other styles, such as the lambda

calculus, will be discussed only briefly. The interested reader

can consult the references mentioned for each language for more

information.

5.2.1 LISP

' Shultis, pp 210-211.
C l e a r l y , this is a problem with all FP languages.

62

LISP is one of the oldest languages still in use. Extensive

literature on the language has been published, so nothing more

will be said about it herel.

5 . 2 . 2 KRC

The three basic properties of KRC are equational

As an definitions, pattern matching, and set abstraction' .
example of equational definitions, the Fibonacci function can be

defined in KRC in the following manner:

fib n = 1, n = 1
= 1 , n = 2
= fib(n - 1) + fib(n - 2), n > 2

A s an example of the pattern matching facility, consider the

definition of a function that adds a list of integers. This can

be defined in KRC as follows:

total [1 = 0
total (a : x) = a + total x

[] denotes an empty list. "a : x" matches any non-empty list;

remainder of the list. The operator ":" denotes construction of

a list from its two operands.

The set abstraction facility of KRC allows sets to be

expressed in much the same way as done in mathematics. As an

For a simple introduction to the language, see Terrence W.
Pratt, Programming Languages: Design and Implementation, 2nd
edition (Prentice-Hall: Englewood Cliffs, New Jersey, 1984), pp
497-527. The original published discussion of the language was
in John McCarthy, "Recursive Functions of Symbolic Expressions
and Their Computation by Machine Part I," CACM, Vol 3 , No 4,
April 1960, pp 184-195.

a This discussion is from Glaser, et al., pp 180-184.

63

example, the set [[2, 11, [3 , 11, [3, 211 can be expressed in KRC

as the following:

I [x, Yl I x, Y <- [l . . 31; x ' Yl
This definition reads "the set of pairs x and y such that x and y

are in the range 1 to 3 and x is greater than y."

That KRC is not based on the FP style of language can be

seen in the lack of program forming operations. Problems are

solved by defining new functions and using them in a manner

similar to traditional languages.

5 . 2 . 3 HOPE

HOPE uses equational definitions and pattern matching in

much the same way as KRC'. The major differences between the two

languages is that HOPE also provides a typing mechanism and a

data abstraction facility.

The typing mechanism of HOPE is partially implicit and

partially explicit. The types of functions must be declared; all

other types are inferred. As an example, the factorial function

might be defined in HOPE in the following way:

dec factorial : num -> num;
factorial(n) <= n * factorial (n - 1)
factorial(0) <= 1;

This definition means that f a c t o r i a l accepts a single parameter

of type num and produces a single result of type num.

In addition to built in types, HOPE provides a facility for

users to define their own types. Also, the language provides

' Ibid, pp 185-195.

64

data abstraction by allowing the operations on defined types to

be restricted to ones specified in the type definition.

A s an example of the use of these facilities, consider the

following data abstraction of the familiar stack':

module stacks
typevar alpha
pubtype stack (alpha)
pubconst pop, top, empty, push
data stack(a1pha) == empty ++ push(alpha, stack(a1pha))
dec pop : stack(a1pha) -> stack(a1pha)
dec top : stack(a1pha) -> alpha
--- pop(push(a,b)) <= b
--- pop(empty) <= empty
--- top(push(a,b)) <= a
--- top(empty) <= error
end

A programmer can use this module to declare a stack of any type.

This stack can be accessed only through the functions pop, top,

empty, and push.

A s with KRC, HOPE provides no powerful program forming

operations. It is a functional language, but not in the FP

style.

5 . 2 . 4 APL

APL was designed by Kenneth Iverson in the early 1960's'.

Although it was originally intended as a way to look at

programming, not as a specific language, implementations of it

were developed. Today, the language has something of a cult

following among some programmers.

Ibid, p 190.

Kenneth E. Iverson, A Programming Language (John Wiley and
Sons: New York, 1962).

65

There are some similarities between APL and the functional

approach being discussed in this paper, but it is not truly a

functional language. Several of the reasons why this is true are

mentioned below' .
First, the language maintains the distinction between

expressions and statements. Expressions are governed by

algebraic properties, but statements are not. A large amount of

programming must be done using statements.

Second, APL has only three functional forms. This is not

really sufficient for full functional programming. Also, the use

of these forms is restricted.

These two facts mean that APL, although a step in the

functional direction, is more related to traditional languages

than to functional ones'.

5 . 2 . 5 Others

Other functional languages besides those mentioned above

exist. These include the following:

ML : This language was initially designed as a metalan-
guage for proofs. It has evolved into a general
purpose language. ML provides strong typing
through implicit type checking. It is being
developed at the same university as HOPE, and
shares many of the same attributes3.

These reasons are given by Backus in Backus, CACM, p 618.

For a discussion of the type scheme of APL, see W. E. Gull
and M. A. Jenkins, "Decisions for 'type' in APL," 6th Symposium
on Principles of Programming Languages, pp 190-196.

For more information on ML, see Lennart Augustsson, "A
Compiler for Lazy ML," pp 218-227, David MacQueen, "Modules for
Standard ML," pp 198-207, and Robin Milner, "A Proposal for
Standard ML," pp 184-197, all in 1984 Symposium on LISP &

66

Daisy: This language is similar to LISP. It is based on
the lambda style. It allows variables, but does
not have type checking'.

Poplar: This is an experimental language, designed for use
in text and list processing. It has properties in
common with LISP, with the addition of string
matching facilities' .

Artic: This language is intended to be used for the
implementation of real time control systems. Real
time constraints are expressed as time valued
functions3.

' For more information, see Hall, O'Donnell and John T.
O'Donnell, "Dialogues: A Basis for Constructing Programming
Environments," 1985 Symposium on Language Issues in Programming
Environments, pp 19-27.

For more information, see James H. Morris, "Real
Programming in Functional Languages" in Darlington, et al, pp132-
153.

For more information, see Roger B. Dannenburg, "Artic: A
Functional Language for Real-Time Control," 1984 Symposium on
LISP & Functional Programming, pp 96-103.

67

6. CONCLUDING REMARKS

This paper has presented a survey of the ideas of functional

programming languages. Not all the possible topics have been

covered', but enough information has been given to provide a

suitable background for advanced study. The paper concludes with

an assessment of the future of functional programming languages.

In assessing the potential of functional languages, several

questions need to be answered. These include the following:

1. Does the functional language style actually offer' the
advantages claimed for it?

2. Can practical languages based on the style be
developed?

3 . If so, will such languages be accepted?

The author's opinions answers to these three questions follow.

Does the functional language style offer the advantages claimed
__ for it?

Section 3 of this paper mentioned seven advantages that

functional languages have been claimed to have over traditional

languages. These were the following:

1. functional language programs are easier to understand
than non-functional ones

2 . functional languages allow the building of new programs
from existing ones in a hierarchical fashion

3 . functional languages encourage the development of general
programs

Two particular topics not discussed were mechanisms for
allowing user defined combining forms, and methods of adding
history sensitivity. The first issue is more complex than
thought suitable for this paper; little published research has
been done on the second. The interested reader should see
Backus, CACM, and John H. Williams, "Formal Representations for
Recursively Defined Functional Programs, I' LNinCS107, pp 460-470.

68

4. functional languages allow the expression of inherent
para1 leli sm

5. functional languages operate in the same domain as
programming problems

6 . functional languages possess algebraic properties that
allow proofs of correctness to be conducted in the language
itself

7. functional languages encourage architectural innovation
and are better suited to take advantage of such innovation
than non-functional ones.

In the author’s opinion, these advantages are provided by

the functional language style discussed in this paper. The

hierarchical nature of programs, the generality of programs, the

ability to express parallelism, the operation in the problem

domain, the existence of algebraic properties, and the

encouragement of architectural innovation have been shown, at

least in part, in previous sections. Whether or not functional

programs are easier to understand than traditional language ones

is almost entirely a matter of opinion. The author believes that

once the combining forms and primitive functions are understood,

functional programs are easy to read.

Can practical languages based on the style be developedz

Although the functional language style of Backus may offer

significant advantages in theory, the idea is not very useful

unless practical languages based on it can be developed. Whether

or not production quality functional programming languages can be

created depends on several factors. In particular, two such

factors are the success of architectural improvements, and the

development of suitable methods for incorporating knowledge of

69

the past into the languages. Architectural improvements appear to

be necessary to allow adequately efficient implementations of

functional languages. A knowledge of past results is certainly

necessary for applications such as database systems, payroll

calculations, and word processors.

The time is perhaps too soon to tell if these necessary

advances will occur. The architectural research discussed in

Section 4 . 7 looks promising, but its success is by no means

assured. The research into history sensitivity appears less

promising. In fact, the topic was not covered in this paper

because of the lack of available information. A primary problem

is to introduce history sensitivity without destroying algebraic

properties and simplicity.

Will such languages be accepted?

Even if practical languages are developed, their success

depends on their acceptance by the programming community.

History suggests that the probability of such acceptance is low.

In 1975, Peter Naur offered the following opinion concerning

the future of programming language development:

. . . the split between the more academic, pure computer
science oriented study of programming languages and the
world of practical programming will persist indefinitely;
the era of influential programming language construction is
past, FORTRAN and COBOL will retain their dominanceI

The ten years since that writing have done little to prove this

prophecy wrong. The "world of practical programming" is

Peter Naur, "Programming Languages, Natural Languages, and
Mathematics," 2nd Symposium on Principles of Programming
Languages, pp 137-148.

70

f

extremely resistent to change. To believe that something as

radically different as functional languages will be accepted by

this world, is to ignore the last twenty years of history.

Lest this paper end on such a discouraging note, let it be

said that history does not always accurately predict the future.

A large part of the resistance to change may be caused by the

lack of solid evidence to show that a new language or technique

is significantly better than existing languages and techniques.

If functional languages can be developed fully, and if the

advantages of such languages can be adequately demonstrated to

the programming community, then, perhaps, they will be accepted.

71

7. ANNOTATED BIBLIOGRAPHY

Augustsson, Lennart, "A Compiler for Lazy ML" in Conference
Record of the 1984 ACM Symposium on LISP and Functional
Programming (1984 ACM Sym LISP & FP), Austin, Texas, August
6-8, 1984, pp 218-227.

This paper describes a compiler for the functional language
Lazy ML. Several benchmark tests are presented.

Baden, Scott E., "Berkeley FP User's Manual, Rev. 4.1" in UNIX
Programmer's Manual: Supplementary Documents, 1980, Chapter
4, 33 pages.

This is the user's manual for the University of California
at Berkeley's FP system. Included is a discussion of the
differences between Backus' FP and Berkeley FP.

Baden, Scott E. and Dorab R. Patel, "Berkeley FP -- Experiences
with a Functional Programming Language" in Digest of Papers
of CompCon 83, San Francisco, California, Feb 28 - Mar 3,
1983, pp 274-77.

This paper briefly describes the Berkeley FP system. As in
the User's Manual, the differences between Berkeley FP and
Backus' FP are discussed.

Backus, John, "Can Programming Be Liberated from the von Neumann
Style? A Functional Style and Its Algebra of Programs" in
Communications of the ACM (CACM), Vol 21, No 8, Aug 1978, pp
613-641.

This is Backus' Turing Award Lecture that brought the idea
of functional programming languages into prominence. In it,
Backus discusses the problems with conventional languages
and presents functional languages as a potential solution.

Backus, John, "Function-level Computing" in IEEE Spectrum, Vol
19, NO 8, Aug 1982, pp 22-27.

This paper briefly covers topics similar to the Turing Award
Lecture. It also discusses research in developing computer
architectures specifically designed to support functional
languages.

72

.

Backus, John, "Is computer science based on the wrong
fundamental concept of 'program'?" in Algorithmic
Languages: Proceedings of the International Symposium on
Algorithmic Languages, North-Holland Publishing Company,
Amsterdam, 1981, pp 133-165.

This paper is similar to the Turing Award paper in topics.
The approach is different: discussing the notion of
'program' rather than 'language'.

Backus, John, "Programming Language Semantics and Closed
Applicative Languages" in Conference Record of the ACM
Symposium on Principles of Programming Languages, Boston,
Mass. Oct 1-3, 1973, pp 71-86.

This paper describes some of Backus' early work in applica-
tive languages. This work eventually led to the ideas of
the Turing Award paper.

Backus, John, "The algebra of functional programs: Function
level reasoning, linear equations and extended definitions"
in Formalization of Programming Concepts, Lecture Notes in
Computer Science Volume 107 (LN in CS Vol 107), Springer--
Verlag, Berlin, 1981, pp 1-43.

The paper discusses the relationship between the FP style
and the lambda style of programming. Backus also extends
the discussion of the algebra of FP, and proposes a revised
form of function definition intended to be clearer than the
form given in the Turing Award Lecture.

Bellegarde, Francoise, "Rewriting Systems on FP expressions that
Reduce the Number of Sequences They Yield" in 1984 ACM Sym
LISP & FP, pp 63-73.

This paper describes a program transformation system that
minimizes intermediate lists. The system produces a set of
rules that give a normal form for each term in a program.
The system is not claimed to be optimal.

Berkling, K. J. and E. Fehr, "A modification of the
Lambda-Calculus as a base for functional programming
languages" in Automata, Languages and Programming, Lecture
Notes in Computer Science Volume 140, Springer-Verlag,
Berlin, 1982, pp 35-47.

This paper describes the Berkling Reduction Language, a
language based on a modification of the lambda-calculus.

73

Bohm , Corrado, "Combinatory Foundation of Functional Programming"
in Conference Record of the 1982 ACM Symposium on LISP and
Functional Programming (1982 ACM Sym LISP & FP), Pittsburgh,
PA, Aug 15-18, 1982, pp 29-36.

This paper proposes a way to embed Backus' FP into a
combinatory logic system. This is intended to aid in
implementing FP on conventional machines. It also is
claimed to reduce the number of necessary primitives.

Broy, Manfred, "Applicative Real-Time Programming" in Information
Processing 83: Proceedings of the IFIP Ninth World Computer
Congress (IP 83), Paris, France, Sep 19-23, pp 259-264.

An applicative programming language with time-related
functions is described in this paper. The language is
stated to be too restrictive to be suitably implemented.

Burge, W. H., Recursive Programming Techniques, Addison-Wesley
Publishing Company, Reading, Mass., 1975.

This book describes a method of programming using a language
based on the lambda calculus.

Cardelli, Luca, "Compiling a Functional Language" in 1984 ACM Sym
LISP & FP, pp 208-217.

This paper summarizes the author's experiences in developing
a compiler for the language ML. The implementation was
different than that for any traditional compiler.

Cartwright, Robert and James Donahue, "The Semantics of Lazy (and
Industrious) Evaluation" in 1982 ACM Sym LISP & FP, pp
253-264.

This paper describes a semantic theory for lazy evaluation.
It also discusses results derived from this theory.

Chiarini, A., "On FP Languages Combining Forms" in SIGPLAN
Notices, Vol 15, No 9, Sep 1980, pp 25-27.

This article describes several combining forms implemented
in an FP system developed by the author. The syntactic form
of the language differs slightly from Backus' FP.

74

Cohen, A. Toni and Thomas J. Myers, "Towards an Algebra of
Nondeterministic Programs" in 1982 ACM Sym LISP & FP, pp
235-242 .

In this paper, the authors extend Backus' algebra of
programs to include nondeterministic operators. Laws
applying to these new operators are also introduced.

Dannenburg, Roger B. , "Artic : A Functional Language for
Real-Time Control" in 1984 ACM Sym LISP & FP, pp 96-103.

This paper describes a functional language with mechanisms
for specifying and implementing real-time control systems.
The language is claimed to be especially attractive because
it eliminates the need for programmer concern with execution
sequence.

Darlington, J., Peter Henderson, and D. A. Turner, editors,
Functional Programming and its Applications, Cambridge
University Press, Cambridge, England, 1982 .

This book is a textbook for a course in functional program-
ming. Topics include the functional style of programming,
functional programming in languages other than Backus' FP,
methods of program transformation, and specialized architec-
tures for functional languages.

Dosch, Walter and Bernhard Moller, "Busy and Lazy FP with
Infinite Objects" in 1984 ACM Sym LISP & FP, pp 282-292 .

A variant of Backus' FP is introduced in this paper. This
language allows infinite trees by relaxing the requirement
that all functions be strict.

Dumas, Luis and Robin Milner, "Principle type-schemes for
functional programs" in Conference Record of the Ninth
Annual ACM Symposium on Principles of Programming Languages,
Albuquerque, NM, Jan 25-27, 1982, pp 207-212 .

This paper discusses the type scheme of the language ML.
The scheme does not require a programmer to declare types;
rather, it requires the compiler to infer types.

Dybvig, R. Kent and Bruce T. Smith, "A Semantic Editor" in
Proceedings of the ACM SIGPLAN '85 Symposium on Language
Issues in Programming Environments, Seattle, WA, June 25-28,

75

1985, in SIGPLAN Notices, Vol 20, No 7, July 1985 (85 Sym
Language Issues), pp 74-82.

This paper describes an editor for Backus' FP. The editor
allows manipulation of programs based on the algebra of
programs.

Eggert, Paul R. and D. Val Schorre, "Logic enhancement: a method
for extending logic programming languages" in 1982 ACM Sym
LISP & FP, pp 74-80.

This paper discusses methods for extending the logic
language Prolog. One proposed extension is the adoption of
functional notation.based on the FP style.

Feldman, Gary, "Functional Specifications of a Text Editor" in
1982 ACM Sm LISP & FP, pp 37-46.

This paper describes a formal specification technique based
on Backus' FP. The technique is demonstrated by specifying
a text editor.

Georgeff, M. P., "A Scheme for Implementing Functional Values on
a Stack Machine" in 1982 ACM Sym LISP & FP, pp 188-195.

In this paper, Georgeff proposes a method for implementing
function valued expressions. This method is uses a
traditional run-time stack for evaluation, and is claimed to
produce good efficiency.

Givler, John S. and Richard B. Kieburtz, "Schema Recognition for
Program Transformations" in 1984 ACM Sym LISP & FP, pp
74-83.

In this paper, an FP dialect is used to examine program
transformations. Also, algorithms are presented for
determining if a given function is an instance of a schema
for which a transformation is known.

Glaser, Hugh, Chris Hankin, and David Till, Principles of
Functional Programming, Prentice-Hall International, London,
1984.

This book describes the basic principles of functional
programming, specialized computer architectures, and several
specific functional languages. The emphasis is on languages
based on the lambda calculus.

76

Gries, David, The Science of Programming, Springer-Verlag, New
York, 1981.

This book describes principles of correctness proofs for
conventional programming languages.

Gull, W. E. and M. A. Jenkins, "Decisions for 'Type' in APL" in
Conference Record of the Sixth Annual ACM Symposium on
Principles of Programming Languages (6th ACM Sym Prin Prog
Lang), San Antonio, Texas, Jan 29-31, 1979, pp 190-196.

This paper discusses the APL notion of types.

Hall, Cordelia and John T. O'Donnell, "Debugging in a Side Effect
Free Programming Environment" in 85 Sym Language Issues, pp
60-68.

This paper describes debugging methods for the lambda based
language Daisy.

Henderson, Peter, "Functional Geometry" in 1982 ACM Sym LISP &
FP, pp 179-187.

In this paper, a method for describing pictures is
introduced. The method results in a functional program.

Henderson, Peter, Functional Programming: Application and
Implementation, Prentice-Hall, London, 1980.

This book was not available to the author during the time
the paper was being written. The reader who has access to
it, should consult it.

Henderson, Peter and J. Morris, Jr., "A Lazy Evaluator" in
Conference Record of the Third Annual ACM Symposium on
Principles of Programming Languages, 1976, pp 95-103.

In this paper, the authors introduce the evaluation
technique of lazy evaluation.

Hoffman, Christoph M. and Michael J. O'Donnell, "An Interpreter
Generator Using Tree Pattern Matching" in 6th ACM Sym Prin
Prog Lang, pp 169-179.

77

This paper describes a technique for developing interpreters
for nonprocedural languages. Equations are used as the
basis, in a way analogous to context-free grammars for
procedural languages.

Hogger, Christopher John, Introduction to Logic Programming,
Academic Press, London, 1984.

This book explains the basic concepts of logic programming,
using the language PROLOG.

Honschapp, U., W-M. Lippe, and F. Simon, "Compiling Functional
Languages for von-Neumann Machines" in Proceedings of the
SIGPLAN '83 Symposium on Programming Language Issues in
Software Systems, San Francisco, CA, June 27-29, 1983 in
SIGPLAN Notices, Vol 18, No 6, June 1983 (83 Sym Prog Lang
Issues), pp 22-27.

In this paper, a compiler for the language LISP/N is
described. The compiler assumes a conventional von-Neumann
computer architecture.

Hudak, Paul and Benjamin Goldberg, "Experiments in Diffused
Combinator Reduction" in 1984 ACM Sym LISP & FP, pp 167-176.

This paper presents a model of an architecture designed for
implementing functional languages. This architectures uses
a network of closely-coupled processors.

Hudak, Paul and David Kranz, "A Combinator-Based Compiler for a
Functional Language" in Conference Record of the Eleventh
Annual ACM Symposium on Principles of Programming Languages
(11th ACM Sym Prin Prog Lang), Salt Lake City, Utah, Jan'
15-18, 1984, pp 122-132.

In this paper, the authors propose that lambda based
functional languages can be implemented efficiently by
appropriate optimizing compilers. They also describe a
method for building such compilers based on combinators. A
progress report on their efforts to build a compiler is
given, also.

Hughes, R. J. M., "Super Combinators: A New Implementation
Method for Applicative Languages" in 1982 ACM Sym LISP 6(FP,
pp 1-10.

c

This paper describes a method for implementing lambda

78

calculus based functional languages. The method is called
super combinators, and is stated to be faster than
previously described methods.

Ida, Tetsuo and Jiro Tanaka, "Functional Programming with
Streams" in IP 83, pp 265-270.

The authors introduce the notion of "streams" into Backus'
FP. This extension is intended to eleminate nontermination
of certain recursive equations, and to reduce computational
complexity of functions.

Iverson, Kenneth E., A Programming Language, John Wiley and Sons,
New York, 1962 .

This book is the basis of the language APL. It was not
intended to define a new language, but to introduce a style
of programming.

Johnson, Steven D., "Applicative Programming and Digital Design"
in 11th ACM Sym Prin Prog Lang, pp 218-227 .

This paper discusses the use of a functional programming
language to describe circuit designs.

Jones, Simon L. Peyton, "An Investigation of the Relative
Efficiencies of Combinators and Lambda Expressions" in 1982
ACM Sym LISP & FP, pp 150-158.

This paper presents an experimental comparison of the
combinator and traditional reducer methods of implementing
lambda expressions. The results suggest that the combinator
method is at least as efficient as conventional methods.

Katayama, Takuya, "Type Inference and Type Checking for
Functional Programming Languages: A Reduced Computation
Approach" in 1984 ACM Sym LISP & FP, pp 263-272 .

In this paper, the author proposes an approach to type
inference and checking in functional languages. The
approach is based on reducing computations on data to
computations on types.

Kennaway, J. R. and M. R. Sleep, "Expressions as Processes" in
1982 ACM Sym LISP & FP, pp 21-28 .

79

This paper introduces a notation for expressing applicative
expressions as processes. These processes are said to be
implementable using data flow techniques.

Ligler, George T., "A Mathematical Approach to Language Design"
in Conference Record of the Second ACM Symposium on
Principles of Programming Languages (2nd ACM Sym Prin Prog
Lang), Palo Alto, CA, Jan 20-22, 1975, pp 41-53.

This paper suggests that programming languages should be
designed with mathematical proof techniques in mind. It is
not directly related to functional programming, but the idea
of taking a mathematical approach to language design is
related.

MacLennan, Bruce J., "A Simple Software Environment Based on
Objects and Relations" in 85 Sym Language Issues, pp
199-207.

This paper introduces a
supports both functional
The functional language for
detail.

programming environment that
and object-oriented programming.
the system is not described in

MacQueen, David, "Modules for Standard ML" in 1984 ACM Sym LISP &
FP, pp 198-207.

This paper describes the module facility of the language ML.

MacQueen, D. B. and Raui Sethi, "A Semantic Model of Types for
Applicative Languages" in 1982 ACM Sym LISP & FP, pp
243-252.

In this paper, the authors develop a model for adding types
to applicative languages.

Mago, Gyula, "Data Sharing in an FFP Machine" in 1982 ACM Sym
LISP & FP, pp 201-207.

This paper discusses the implementation of the
Peterson-Wegman data-sharing algorithm for formal FP
systems. The author's innovative computer architecture is
also briefly described.

Malachi, Yonathan, Zohor Manna, and Richard Waldinger, "TABLOG:
The Deductive-Tableau Programming Language" in 1984 ACM Sym

80

LISP 6(FP, pp 323-330.

This paper describes the programming language TABLOG. The
language combines functional and logic programming styles.

McCarthy, John, "Recursive Functions of Symbolic Expressions and
Their Computation by Machine Part I" in CACM, Vol 3, No 4,
Apr 1960, 184-195.

In this paper, McCarthy describes a formal method for
defining recursive functions. He also discusses the
original LISP system and implementation. Note: No Part I1
was ever published.

Metayer, D. Le, "Mechanical Analysis of Program Complexity" in 85
Sym Language Issues, pp 69-73.

This paper describes a system to automatically evaluate the
complexity of FP programs.

Milner, Robin, "A Proposal for Standard ML" in 1984 ACM Sym LISP
& FP, pp 184-197.

This paper describes a proposed standard for the strongly
typed functional language ML.

Mishra, Prateek and Robert M. Keller, "Static inference of
properties of applicative programs" in 11th ACM Sym Prin
Prog Lang, pp 235-244.

This paper discusses a method for deducing properties from
programs written in a class of functional languages. The
primary property mentioned is that of types.

Mitchell, John C . , "Coercion and Type Inference" in 11th ACM Sym
Prin Prog Lang, pp 175-184.

This paper describes the principles of type inference and
proposes a method for doing it.

Muchnick, Steve S. and Neil D. Jones, "A Fixed-Program Machine
for Combinator Expression Evaluation" in 1982 ACM Sym LISP &
FP, pp 11-20.

An evaluation mechanism for combinator expressions is
proposed in this paper. The method is claimed to be easily

81

implemented on conventional computers.

Naur, Peter, "Programming Languages, Natural Languages, and
Mathematics" in 2nd ACM Sym Prin Prog Lang, pp 137-48.

This paper relates the author's opinions concerning the
future of programming language development. He suggests
that no further major developments will occur. This is
directly contradictory to the motivations behind functional
programming languages.

O'Donnell, John T., "Dialogues: A Basis for Constructing
Programming Environments" in 85 Sym Language Issues, pp
19-27.

This paper discusses the description of communications in
programming environments. The functional language Daisy is
used for the description.

Pettorossi, Alberto, "A Powerful Strategy for Deriving Efficient
Programs by Transformation" in 1984 ACM Sym LISP & FP, pp
273-281.

This paper presents a technique for transforming recursive
programs into iterative ones.

Pratt, Terrence W., Programming Languages: Design and
Implementation, 2nd edition, Prentice-Hall, Englewood
Cliffs, NJ, 1984.

This book is a general introduction to programming
languages.

Proceedings of the Conference on Functional Programming Languages
and Computer Architecture, ACM, October, 1981.

These proceedings contain several papers cited in works
listed here.

Rosser, J. Barkley, "Highlights of the History of the
Lambda-Calculus" in 1982 ACM Sym LISP & FP, pp 216-255.

This paper describes the origins and development history of
the lambda calculus.

82

Scott, Dana, "Mathematical Concepts in Programming Language
Semantics" in AFIPS Conference Proceedings, Vol 40, 1972, pp
225-234.

This paper describes an application of mathematical concepts
to defining language semantics. Although a von Neumann
computer is assumed, the emphasis on mathematics is similar
to that in functional programming.

Sheeran, Mary, "muFP, a language for VLSI design" in 1984 ACM Sym
LISP & FP, pp 104-112.

In this paper, Sheeran describes a VLSI design language that
is a variant of Backus' FP.

Shultis, Jon, "A Functional Shell" in 83 Sym Prog Lang Issues,
202-211.

This paper describes a command language interpreter based
Backus' FP. A partial implementation of the shell
discussed.

PP

on
is

Stoyan, Herbert, "Early LISP History (1956-1959)" in 1984 ACM Sym
LISP & FP, pp 299-310.

This paper discusses the early history of LISP.

Stoye, W. R., T. J. W. Clarke, and A. C. Norman, "Some Practical
Methods for Rapid Combinator Reduction" in 1984 ACM Sym LISP
& FP, pp 159-166.

This paper describes the SKIM I1 processor. SKIM I1 was
designed for rapid evaluation of functional languages. The
paper includes performance measures.

Subrahmanyam, P. A. and J. H. You, "Pattern Driven Lazy
Reduction: A Unifying Evaluation Mechanism for Functional
and Logic Programs" in 11th ACM Sym Prin Prog Lang, pp
228-234.

This paper introduces an evaluation method that is claimed
to be applicable to both functional and logic languages.

83

Wadler, Phillip, "Listlessness is Better than Laziness: Lazy
Evaluation and Garbage Collection at Compile Time" in 1984
ACM Sym LISP & FP, pp 45-52.

In this paper, the author introduces a program transforma-

eliminates all intermediate lists whenever possible. The
author states that the system is applicable to a large class
of programs, but not to all programs. b

tion system for functional languages. This system (.

Williams, John H., "Formal Representations for Recursively
Defined Functional Programs" in LN in CS Vol 107, pp
460-470.

This paper proposes an algorithm for producing formal
representations of any informal FP function.

Williams, John H., "On the Development of the Algebra of
Functional Programs" in ACM Transactions on Programming
Languages and Systems, Vol 4, No 4, Oct 1982, pp 733-757.

In this paper, Williams develops further Backus' algebra of
programs. He proves some new expansion theorems related to
non-linear functions. These theorems extend the class of
functions for which expansion theorems are applicable.

84

Standard Bibliographic Page

. Report No.

NASA TM-89019
2. Government Accession No. 3. Recipient's Catalog NO.

'. Author(s)

:. Title and Subtitle

A Survey of Functional Programming Language Principles

8. Performing Organization Report No.

5. Report Date

September 1986
6. Performing Organization Code

505-65-11-02

~

C. Michael Holloway
1. Performing Organization Name and Address

NASA Langley Research Center
Hampton , V i rgi ni a 23665-5225

10. Work Unit No.

11. Contract or Grant No. t------

17. Key Words (Suggested by Authors(s))

13. Type of Report and Period Covered
2. Sponsorinn Anency Name and Address

18. Distribution Statement

National Aeronautics and Space Administration
Washington, DC 20546

19. Security Classif.(of this report) 20. Security Classif.(of thib page) 21. No. of Pages
Uncl a s s i f i ed Unclassified 85

5 . Supplementary Notes

22. Price
A0 5

6. Abstract

Research in the area of functional programming languages has in tens i f ied i n the
8 years since John Backus' Turing Award Lecture on the topic was published. The
purpose of t h i s paper i s t o present a survey of the ideas of functional program-
mi ng 1 anguages, The paper assumes the reader i s comfortable with mathematics
and has know1 edge of the basic pr inciples of t rad i t iona l programming 1 anguages ,
b u t does not assume any pr ior knowledge of the ideas of functional languages.

A simple functional language i s defined and used t o i l l u s t r a t e the basic ideas.
Topics discussed include the reasons for developing functional languages, methods
of expressing concurrency, the algebra of functional programming languages,
program transformation techniques, and implementations of functional languages.
E x i s t i n g functional languages a re a l so mentioned. The paper concludes w i t h the
author 's opinions as t o the future of functional languages.
bibliography on the subject i s a l so included.

An annotated

Programming Languages
Functional Programming Unclassified-Unl imi ted

I Subject Category 61

I I I

For sale by the National Technical Information Service, Springfield, Virginia 22161
N A S A Langley Form 63 (June 1985)

.

e

.. Report No.

NASA TM-89019

Standard Bibliographic Page

2. Government Accession No. 3. Recipient's Catalog No.

1. Title and Subtitle

A Survey o f Funct ional Programni ng Language Pr inc ip les

Nat ional Aeronautics and Space Administrat ion
Washington, DC 20546

5. Report Date

September 1986
6. Performing Organization Code

505-65-1 1-02

I
.5. Supplementary Notes

C. Michael Holloway

NASA Langley Research Center
1. Performing Organization Name and Address

Hampton, V i r g i n i a 23665-5225

.2. Sponsoring Agency Name and Address

6. Abstract

)9
Research i n the area o f func t iona l programing languages has i n t e n s i f i e d i n the
8 years s ince John Backus' Tur ing Award Lecture on the top i c was published. The
purpose o f t h i s paper i s t o present a survey o f the ideas o f func t iona l program-
ming languages, The paper assumes the reader i s comfortable w i t h mathematics
and has knowledge o f the basic p r i nc ip les o f t r a d i t i o n a l programming languages,
b u t does no t assume any p r i o r knowledge of the ideas o f func t iona l langu

- A simple func t iona l language i s def ined and used t o i l l u s t r a t e the bas ic ideas.
Topics discussed i n c l ude the reasons f o r developing func t iona l 1 anguages, methods
o f expressing concurrency, the algebra o f funct ional p rograming languages,
program t ransformat ion techniques, and implementations o f func t iona l languages.
E x i s t i n g func t iona l languages are a lso mentioned. The paper concludes w i t h the
author 's opinions as t o the f u t u r e o f funct ional languages.
b ib l iography on the subject i s a lso included.

/ r --_

An annotated

8. Performing Organization Report NO.

10. Work Unit No.

11. Contract or Grant No.

13. Type of Report and Period Covered

17. Key Words (Suggested by Authors(s))

Programming Languages
Funct ional Programming

18. Distribution Statement

Unclassi f ied-Unl i m i ted

Subject Category 61

19. Security C!assif.(of this report) 20. Security ClFsif.(of this page) 21. No. of Pages
Unclass i f ied Unclass i f ied 85

22. Price
A05

