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1. INTRODUCTION 

Research in the area of functional programming languages has 

been conducted for a number of years. The amount of this 

research has increased greatly in the past eight years since John 

Backus' Turing Award Lecture on the topic was published'. 

Despite this attention by the research community, the average 

programmer is either completely unaware of the ideas of 

functional languages, or, if he has some familiarity with the 

topic, believes such languages to be impossible to understand and 

devoid of practical value. 

The literature on the subject has contributed little to 

altering this state of affairs. Most of it is either difficult 

to find or extremely difficult to comprehend. The purpose of 

this paper is to present a survey of the topic of functional 

languages that is both comprehensive and understandable. The 

paper assumes the reader has a knowledge of the basic principles 

of traditional programming languages, and is comfortable with 

mathematics, but does not assume any prior knowledge of the ideas 

of functional languages. 

The organization of the paper is as follows. First, the 

basic principles of functional languages are discussed. A 

' John Backus, "Can Programming Be Liberated from the von 
Neumann Style? A Functional Style and Its Algebra of Programs," 
Communications of the ACM, Vol 21, No 8 ,  Aug 1978, pp 613-641. 
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definition of the term "functional language" is given, and a 

simple functional language is defined using the language style 

introduced by Backus. A l s o ,  the relationship of Backus' style 

and the lambda style of functional language is discussed. 

Second, the reasons for developing functional languages are 

discussed. The statements of the advocates of the language style 

are presented without comment on the validity of the claims. 

Third, the issues involved in the language style are 

examined. Topics discussed include methods of expressing 

concurrency, the algebra of functional languages, program 

transformation techniques, the inclusion of data types in 

functional languages, the technique of lazy evaluation, the 

implementation of functional languages on conventional machines, 

and new architectures specifically designed to support functional 

languages. 

Fourth, several existing languages that are claimed to be 

functional are mentioned briefly. Fifth, and finally, comments 

and opinions as to the future practical value of functional 

programmi ng languages are given. 
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2. BASIC PRINCIPLES OF FUNCTIONAL LANGUAGES 

Many different opinions as to what constitutes a functional 

programming language exist. Functional languages have been 

called "assignment-less" and "variable-less" languages2 . Just as 

calling structured programming languages "goto-less" languages is 

an oversimplification, so too are such descriptions of functional 

languages. The definition that will be used in this paper is 

discussed below. 

2.1 Definition of "Functional Lanquage" 

The major distinguishing characteristic of functional 

languages is the approach to problem solving they encourage. 

Traditional programming languages such as FORTRAN, Pascal, and 

Ada3 support an approach that can be described by this statement: 

A program in an Imperative Language is used to convey a list 
of commands to be executed in some particular order, such 
that on completion of the commands the required behavicr has 
been produced. 

In other words, a traditional language program is simply a set of 

commands. 

Bruce J. MacLennan, " A  S i i q l e  S ~ f t w a r e  E ~ ~ v i r n n m c n t  Rased 
on Objects and Relations," 85 Symposium on Language Issues in 
Programming Environments, pp 199. 

Ada is a registered trademark of the U. S .  Government: Ada 
Joint Program Off ice. 

Hugh Glaser, Chris Hankin, David Till, Principles of 
Functional Programming (Prentice-Hall International: London, 
1984), p 4. 
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The functional approach is different. It can be categorized 

by the following statement: 

A program in a Functional Language is used to define an 
expression which is the solution to a set of problems; this 
definition can then be used by a machine to produce -an 
answer to a particular problem from the set of prob1ems.l 

That is, a functional program is not a series of commands. 

Instead, it is an expression that represents a function that 

takes a particular set of objects (such as a list of names) and 

produces another set of objects (such as a l i s t  of phone 

numbers)2. A functional programming language is a language in 

which such programs are required or encouraged. 

2.2 A Simple Functional Language 

The definitions given above do not adequately convey the 

nature of functional languacres. The best way to illustrate the 

functional language approach is to present a simple language 

taking the approach. The informal language system introduced by 

Backus in his Turing Award paper is suitable for defining such a 

language. The particular language that will be defined lacks 

several features, that make it inadequate for use in practical 

applications, but it is sufficient for illustration. 

The languages introduced by Backus (called FP languages) are 

made up of five elements: objects, the "application" 

operator, functions, functional forms, and definitions. 

Glaser ,  et a l . ,  p 4 .  

John H. Williams, "Notes on the FP Style of Functional 
Programming", in J. Darlington, Peter Henderson, and D. A. 
Turner, editors, Functional Programming and its Applications 
(Cambridge University Press: Cambridge, England, 1982), p 73. 
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Choosing the components of these elements defines a single FP 

language. Below, each of the five elements is discussed, and, 

using these elements, a simple language called "ExFP" is 

defined' . 
The first necessary constituent of an FP language is a set 

of objects. An object can be one of three entities: a single 

atom, a sequence of atoms, or the undefined element (called 

"bottom"). The set of atoms may be chosen as desired. For ExFP, 

the set is chosen as all strings made up of letters, digits, and 

other characters not used otherwise in the language. The atom T 

w i l l  represent the boolean value true, and the atom F the value 

false. 

A sequence is denoted by 

<xl, x l ,  . . .  , x,> 
where each xj is an object. The empty sequence is represented by 

$,  which is both an atom and a sequence. Any sequence with I is 

identical to 1 itself. 

Another part of an FP language is the single operator 

"application" denoted by : .  For a function f and the object x, 

f:x represents the object resulting from applying f to x. 

Primitive functions make up another constituent of an FP 

This discussion is based on Backus, CACM, pp 620-622, and 
John Backus, "Function-level Computing", IEEE Spectrum, Vol 19, 
No 8, Aug 1982, p24. See also, Glaser, et al., pp 195-202, and 
Williams in Darlington, et al., pp 73-77. ExFP is similar to 
Backus' specific FP language, but has fewer primitive functions 
and functional forms. 
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language. These functions can be defined as desired. For ExFP, 

the following are defined' : 

1. 

2. 

3. 

4. 

5. 

6. 

Identity function: this function produces its 
argument. For example, 

id:<7, 6 ,  5> = c7, 6, 5> 

Selector functions: the selector function i gives the 

otherwise. For example, 
element of its object, if that element exists, and 1 it h 

3:<7, 6 ,  5> = 5 
4:<7, 6, 5> = 1 

Tail: this function produces the object sequence with 
its first element removed. If the object to which tail 
is applied is a sequence with one object (a singleton), $ 
is produced. If the object is not a sequence, 1 is 
produced. For example, 

tail:<7, 6 ,  5> = < 6 ,  5> 
tail:<7> = $ 
tail:7 = 1 

Distribute functions: these functions produce a 
sequence of pairs' of objects from a pair of objects. 
distr distributes from the right and requires the first 
object of the pair to be a sequence. distl distributes 
from the left and requires the second object to be a 
sequence. For both forms, if the requirement is not 
met, 1 is produced. For example, 

distr:<<a, m>, 7> = <<a, 7>, <m, 7>> 
distl:<7, <a, m>> = <<7, a>, <7, m>> 
distr:<7, 7> = I 

Append functions: these functions produce a sequence 
from a pair consisting of a sequence and an object. 
appendr requires the first object to be a sequence. 
append1 requires the second object to be a sequence. 
If the argument does not conform, 1 is produced. For 
example, 

appendr:c<7, 6 > ,  5> = <7, 6, 5> 
appendr:<7, < 6 ,  5>> = I 
appendl:<<7>, <6, 5>> = <<7>, 6, 5> 

Arithmetic functions: these are the standard functions 
+, -, i, and * (for multiplication). The object to 
which any of these functions is applied must be a pair, 

Note: Any function applied to 

A pair is a sequence consisting of 2 objects. 

yields 1. 
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each of which evaluates to a number; otherwise, I is 
produced. For example, 

+:<7, 3 >  = 10 
*:<7, 3>  = 21 
+:7 = 1 
+:<7, o> = 1 

7. Eq: this function produces T if its object consists of 
a pair of identical objects, F if the object consists 
of a pair of different objects, and 1 otherwise. For 
example, 

eq:<7, 7> = T 
eq:<7, 6> = F 
eq:<7, 7, 7> = 1 

8. Boolean functions: these are the standard boolean 
functions and, or, and not. The object to which either 
and or or is applied must be a pair of objects, each of 
which evaluates to either T or F. The object to which 
not  is applied must be a singleton whose element 
evaluates to either T or F. If these conditions are 
not met, 1 is produced. For example, 

and:<T, F> = F 
or:<T, F> = T 
not: <F> = T 
and:<7, 6> = 1 

Additional primitive functions have been defined by Backus, but 

these are sufficient for the example language. 

In addition to the primitive functions, an FP language 

provides functional forms by which new functions can be built 

from existing ones. Functional forms, also called combining 

forms, are expressions denoting functions. They are produced 

using what Backus calls program-forming operations (or, PFOs, for 

short). Listed below are the PFOs and the resulting functional 

forms that are included in ExFPl: 
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1. 

2. 

3. 

4. 

5. 

6 .  

Constant: this is denoted by % in front of an object'; 
it yields that object, except if it is applied to 1, in 
which case I is produced. Formally, that is 

P y otherwise 
%y:x E J- if x = 

Composition: denoted by between two functions; the 
composition of two functions f and g applied to a 
function x is equivalent to applying f to the result of 
applying g to x. That is 

Construction: this is denoted by [ 1 enclosing a group 
of functions; a construction applied to an object x is 
equivalent to the sequence produced by applying each 
function in the construction to x. That is 

(f O g):x E f:(g:x) 

[fl , . . . , f, ] :x = <fl :x, . . . , f, :x> 
Apply to all: this PFO is denoted by a in front of a 
function; if the object to which the function is 
applied is a sequence, the form is equivalent to the 
sequence produced by applying the function to each 
object in the sequence; if the object is not a 
sequence, the form is equivalent to 1. That is 

af:x 3 <f:x1, . . . , f:x,> 
if x is a sequence 

t 1 if x is not a sequence 

Insert: denoted by / in front of a. function; if the 
object to which the function is applied is not a 
sequence, the form is equivalent to 1; if the object is 
a sequence with a single member, the form is equivalent 
to that member; if it is a sequence with at least two 
members, the form is equivalent to applying the 
function to the sequence containing the first member of 
the original sequence followed by the insert form 
applied to the remainder of the sequence. Formally, 
that is 

/f:x = 1 if x is not a sequence 
/f:<X, , x2, . . . , x, > 

= f:<x,, /f:<x2 , . . . , x, >> 
- = x, if n = 1 

if n 1 2  
- 

Condition: denoted by three functions in the form (p 

This notation is from Scott E. Baden, "Berkely FP User's 
Manual, Rev. 4.1", UNIX Programmer's Manual: Supplementary 
Documents, 1980, p 28. Backus uses a bar over the object instead. 
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->f; g) applied to an object X I ;  to evaluate a 
condition p:x is computed, if T is produced the form is 
equivalent to f:x; if F is produced the form is 
equivalent to g:x; if neither T nor F is produced, the 
condition is equivalent to I. That is 

(p ->f;g):x I f:x if p:x = T 
g:x if p:x = F 

= I otherwise 
7. Loop: this combining form is denoted by two functions 

in the form (p ->  loop f) applied to an object x2; to 
evaluate this form, p:x is computed, if it yields T, 
the loop is equivalent to the form applied to f applied 
to x; if p:x = F, the loop is equivalent to x; 
otherwise the expression yields I. Symbolically, that 
is 

(p - >  loop f):x 
(p - >  loop f):(f:x) if p:x = T 

I x if p:x = F 
1 otherwise 

Again, more functional forms can be defined, but these are 

sufficient for ExFP. 

The final necessary part of an FP system is a way to define 

new functions. The syntax is the following: 

Def 1 I r 

where 1 is the new function name and r is a function or 

Notation from Ibid. Backus uses a solid right arrow. The 
0 ' s  are necessary only when an expression would otherwise be ambiguous. 

This notation is quite different from Backus. He uses 
(while p f):x. The notation here seems more consistent with the 
condition combining form, since the - >  denotes a test in both 
cases. The 0 ' s  are necessary only when an expression would 
otherwise be ambiguous. 
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functional form'. For example, a function to return T if an 

object is equal to 0 and F otherwise could be defined in ExFP as 

Def eqO = eq [id, %01 

The above discussion has shown the elements that are 

necessary to make up an FP language. The components of these 

elements have been chosen, yielding the specific language ExFP. 

The semantics of the language are completely specified by stating 

how to compute f:x for any function f and object x. This can be 

done as follows': 

1. If f is a primitive function, the function is applied 
as described in the language definition. 

2. If f is a functional form, the description of the form 
is used to rewrite f:x. The resulting expression is 
then computed according to the semantic rules. 

3 .  If f is a defined function, given by Def f r, r:x is 
computed using the semantic rules. 

4. If f is neither a primitive function, a functional 
form, nor a defined function, or if the use of these 
rules continues infinitely for f : ~ ,  then the value 1 is 
assigned to f:x. 

An example should illustrate the technique of application of 

these semantic rules. Given the function length defined in ExFP 

as3 

Def length 2 /+ a x 1  

' The form of definition is extended in John Backus, "The 
algebra of functional programs: Function level reasoning, linear 
equations and extended definitions," Lecture Notes in Computer 
Science 107 (Springer-Verlag: Berlin, 1981), pp 27-37. That 
work is discussed in Section 4.4.2. 

Backus, CACM, pp 622. 

This function definition is taken from Williams in 
Darlington, et al., p 78. 
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consider the computation of 

length:<7, 6 ,  5> 

The computation would proceed as follows: 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

a. 

9 .  

The definition o f  length gives 
/+ a%l:<7, 6 ,  5> 

Composition produces 
/+: a%l:<7, 6, 5> 

Apply to all gives 
/+: <%1:7, %1,6, %1,5> 

Application of constant yields 
/+: <1, 1, 1> 

Insert produc'es 
+:<1, /+:<1, 1>> 

The internal insert yields 
+:<I, +:<I, /+<I>>> 

The remaining insert produces 
+:<1, +:<1, 1>> 

Addition results in 
+:<1, 2> 

The final addition yields 
3 

Thus, length:<7, 6, 5> = 3 ,  as desired. 

A s  mentioned above, the informal functional language 

Nevertheless, its structure shows sufficiently the basic 

principles of functional languages based on Backus' approach'. 

The careful reader has surely noticed that this language 
has no assignment statement, and that the only variables are the defined function names. This fact is the basis for the 
" a s s i gnme n t - 1 e s s " men t i one d 
previously. See Section 5 for a discussion of some languages 
that do provide these features. 

and " v a r i ab 1 e - 1 e s s " de f i n i ti on s 
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2.3 Relationship of the FP and Lambda Styles 

Backus' style is not the only basis for functional 

programming languages. The other primary model is based on the 

lambda calculus developed by Church in the 1940's'. In fact, the 

most widely known functional language, LISP, is based, in part, 

on this style2. 

The primary difference between the FP and lambda styles is 

the way in which programs are developed'. A s  mentioned above, 

for FP-based languages such as ExFP, programs are created by 

using program forming operations to combine existing programs. 

Lambda style languages generally have only one PFO, called 

"lambda abstraction." In place of PFOs, the languages have a 

large number of object forming operations. These are the primary 

mechanisms for program building. 

A s  an example of the consequences of this difference, 

consider the construction of a specific program4. Suppose the 

functions p, g, h, r, and s have been previously defined, and a 

function f is to be created. This program is to use p as a test. 

If it yields T, g is to be applied to the argument object; if the 

For a discussion of the development of the lambda 
calculus, see J. Barkley Rosser, "Highlights of the History of 
the Lambda-Calculus," 1982 Symposium on LISP & Functional 
Programming, pp 216-225. 

See Herbert Stoyan, "Early LISP History (1956 - 1959)," 
1984 Symposium on LISP & Functional Programming, pp 299-310 for a 
discussion of the development of LISP. 

' This discussion is based on Backus, LNinCS107, pp 8-13. 
* The example problem and programs are from Ibid, pp 8,9. 
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application of p yields F, h is to be applied to the result of 

applying both r and s to the argument. 

To construct f using ExFP, the combining forms condition, 

composition, and construction are used to combine the given 

programs. This yields the following program: 

p ->  g ;  h [r, S I  
Using the lambda style, the given programs can not be 

combined directly. Instead, an object x must be created. This 

object is used to form p:x, g:x, r:x, and s:x, which are also 

objects. The objects r:x and s:x are combined to produce the 

object h(r:x, s:x). These three objects are then combined using 

the object combining form condition. This result is still an 

object. To make it into a function, lambda abstraction is used. 

Thus, the lambda equivalent to the ExFP program is the following: 

Lam x.(p:x - >  g:x; h(r:x, s:x)) 

where Lam is the lambda abstraction’. 

A s  another example, consider the ExFP program2 

[r O t, s O tl 

The e q u i v a l e n t  lambda program is the following: 

Lam y.<Lam x.(r:(t:x)):y, Lam x.(s:(t:x)):y> 

These two examples should be sufficient to show that the 

consequence of the lack of program forming operations in lambda 

This is traditionally denoted by the Greek letter Lambda; 
however, the word processor being used for this paper cannot 
print that character. 

a This example is from Ibid, p 10. 
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style languages is that programs are hard to read. FP style 

programs, with PFOs, are much easier to understand. 

Another difference between the FP and lambda styles is in 

the number of arguments that a function can accept. In the FP 

style, functions can have only one argument; multiple arguments 

are expressed as elements of a single sequence. Lambda style 

languages, however, allow functions of more than one argument. 

As an example of what this difference means, consider the 

composition of two functions h and g. Suppose g produces a pair 

<y, z > ,  and h is a function of two arguments in the lambda style. 

The expression of the composition of the two functions using the 

lambda style looks like the following: 

Lam y.h(l:(g:x), 2:(g:x)) 

where 1 and 2 are selector functions as in ExFP. 

In the FP style, h would not be of two arguments, but rather 

would be a function on pairs. Thus, the function f can be 

expressed in ExFP simply as 

g O h  

Once again, the FP style program is much to understand. 

Lambda style languages do have an advantage over FP style 

languages: they are more powerful, in a sense. The single PFO 

lambda abstraction is able to express any FP style PFO that can 

be devised. 

Backus has suggested that this relationship is similar to 

that between FORTRAN and structured languages such as Pascal'. 

' Ibid, pp 12, 13. 
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Any structured statement can be modeled using if-then's and 

goto's. Nevertheless, writing clear programs is much easier in a 

language like Pascal than it is in FORTRAN. The same 

relationship exists between FP style languages and lambda style 

ones. 

This brief discussion has highlighted the fundamental 

differences between the FP and lambda style of functional 

languages. Because FP style languages tend to produce programs 

that are easier to read, the remainder of the paper will 

concentrate on languages of that style'. Some comments will be 

made about lambda style languages in Section 5 . ' .  

For more information on the lambda style, see K. J. 
Berkling and E. Fehr, "A modification of the Lambda-Calculus as a 
base for functional programming languages," Lecture Notes in 
Computer Science, Volume 140 (Springer-Verlag: Berlin, 1982), pp 
35-47, and W. H. Burge, Recursive Programming Techniques 
(Addison-Wesley: Reading, Mass., 1975). Also, consult the 
Annotated Bibliography for more references. 

Note: Some authors call lambda based languages 
" appl i cative languages" and FP based 1 anguage s " functional 
languages"; other authors consider both styles to be a type of 
applicative language. For this reason, the term "applicative 
ianguage" is generaiiy avoided in Chis paper. 
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3. REASONS FOR FUNCTIONAL LANGUAGES 

Clearly, functional languages are radically different from 

traditional programming languages. In fact, the primary 

motivation behind the research on functional languages is a 

dissatisfaction with traditional programming languages. John 

Backus wrote 

Programming languages appear to be in trouble. . . .  Each new 
language claims new and fashionable features, . . .  but the 
plain fact is that few languages make programming 
sufficiently cheaper or more reliable to justify the cost of 
producing and learning to use them. . . .  there is a desperate 
need for a powerful methodology to help us think about 
programs, and no conventional language even begins to meet 
that need. In fact, conventional languages create 
unnecessary confusion in the way we think about pr0grams.l 

Backus and other advocates of functional languages believe 

that such languages offer significant advantages over 

conventional ones’. Perhaps the best way to illustrate some of 

these claimed advantages of functional languages is an example 

that contrasts a traditional program with a functional one. A 

program to determine if a given object is an element of a vector 

is a suitable problem for such an example. 

An Ada’ program fragment to perform this operation might be 

written as 

Backus, CACM, p 614. 

As mentioned in the introduction, no judgments as to the 
reality of the advantages are made in this section; the claims 
are simply presented. The reader is encouraged to form his own 
opinion. For the author’s opinions, see Section 6 .  

’ The choice of Ada is arbitrary; almost any other tradi- 
tional language could be used here, without changing the 
discussion. 
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found := false; 
i := 1; 
while (not found) and (i <= n) loop 

found := (obj = vect[i]); 
i := i + 1; 

end loop; 
put( found) ; 

An ExFP program for the same operation might be written as 

Def find z /or aeq distl 

Four major differences between the two programs exist'. 

First, the ExFP program's effect is easy to understand, assuming 

one understands the individual components. This is not true of 

the Ada fragment. In order to understand its effect, one must 

mentally or manually execute it. 

Second, the functional program is built from the three 

existing programs or, eq, and distl. The Ada fragment has no 

such hierarchical structure2 . 

Third, the ExFP program makes no mention of arguments. It 

can be used on any object, vector pair, and the vector can have 

any length. The Ada program fragment can only be used on the 

vector "vect" of length "n" , with subscripts beginning at 1. In 

order tz, makz the  Xi=. frigment. general, it must be embedded in a 

procedure, function, or package. This introduces the complexity 

of parameter passing issues. 
- 

This discussion is based on Backus, CACM, pp 616-7, and 
Backus, IEEE, p 24. He uses a different problem, but the 
discussion is similar. 

Large Ada programs using procedure, functions, and 
packages do possess some such structure, but not to the degree 
that functional programs do. 
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Fourth, the apply to a l l  combining form of the ExFP program 

expresses the inherent parallelism of the pair wise comparisons 

naturally. The Ada fragment does not; it gives the impression 

that the comparisons must be done sequentially. Recognizing 

implicit parallelism in traditional languages requires 

sophisticated techniques. 

This example has pointed out several of the advantages that 

functional style languages appear to offer over traditional 

languages. Additional advantages have been suggested as well. 

One such advantage that functional languages offer over 

traditional languages is that they operate in the same domain as 

the problem to be solved'. Programming problems involve changing 

one set of objects into another. To accomplish this task with 

traditional languages, all the objects must first be represented 

by data stored in certain memory locations. Manipulations are 

then done on these memory locations. In other words, instead of 

being concerned with objects, one is concerned with variables 

denoting memory locations. In contrast, functional languages are 

concerned with objects, as desired. 

Another advantage of the functional language style is that 

a language possesses algebraic properties itself'. These 

John Backus, "Is computer science based on the wrong 
fundamental concept of 'program'?" in Algorithmic Languages: 
Proceedings of the International Symposium on Algorithmic 
Languages (North Holland Publishing Company: Amsterdam, 1981), pp 
141-2. 

These properties are discussed more fully in the next 
section of the paper. 
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properties can be used in proofs of correctness, making such 

proofs much simpler than is currently the case. In traditional 

languages, on ly  expressions have any mathematical properties. 

Statements, the major part of programs, have no such properties. 

This means that proofs of correctness must be done in a logical 

language different than the programming language. That is, 

reasoning about the language cannot be done in the language. 

A final advantage that functional languages seem to offer 

over traditional ones is that they promise to be able to take 

better advantage of technological and architectural innovation'. 

Conventional style languages are tightly tied to the traditional 

computer design. Functional languages are not. In fact, since 

the conventional computer design does not appear to be suitable 

for efficient evaluation of functional languages', functional 

languages encourage the development of new architectures. 

Seven claimed advantages of functional languages have been 

mentioned above. To summarize, these are the following: 

functional language programs are easier to understand than 
non- functional ones ; 

functional languages allow the building of new programs from 
existing ones in a hierarchical fashion; 

functional languages encourage the development of general 
programs ; 

D. A .  Turner, "Recursion Equations as a Programming 
Language" in Darlington, et al., p 1. The research into new 
architectures is discussed in more detail in Section 4.7.  

' Section 4.6 discusses implementations for conventional 
machines. 
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functional languages allow the expression of inherent 
parallelism more naturally than traditional languages; 

functional languages operate in the same domain as 
programming problems ; 

functional languages possess algebraic properties that allow 
proofs of correctness to be conducted in the language 
itself; 

functional languages encourage architectural innovation and 
are better suited to take advantage of such innovation than 
non-functional ones. 
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4. TOPICS IN FUNCTIONAL LANGUAGES 

Whether or not one accepts the claimed advantages as true, 

that functional programming languages are different from 

conventional languages is clear. The differences require that 

functional language researchers address some topics not 

encountered by traditional language researchers, and that they 

address some conventional topics in unconventional ways. Several 

topics of this nature are discussed below. These are the 

following: methods of expressing parallelism; the algebra 

associated with a given functional language; techniques for 

transforming one program into another; methods for including data 

types in functional languages; the technique of lazy evaluation; 

implementation techniques on conventional computers; and, new 

computer architectures to support functional languages. 

4.1 Parallelism in Functional Lanquages 

The ability to express inherent parallelism was listed above 

as a claimed advantage of functional languages. In this section, 

methods of doing this in the simple language ExFP are discussed. 

In ExFP, the apply to aiid coi,str-iictier, b w l l l u r r r r r r y  - - m L . l ; n i n m  A" F r r r m c  L ... " 
allow the expression of many inherently parallel operations. As 

an example of the use of apply to all, consider adding together 

each pair of a set of pairs of numbers. Conceptually, each of 

the pairs can be added in parallel. This problem can be solved 

in ExFP by defining the following program: 

Def pairadd i a+ 
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To see how this simple program expresses parallelism, 

consider the computation of 

Substituting for the definition gives 

a+:<<1,4>, <2, 7 > ,  ‘ 7 ,  7>> 

The definition of the a functional form yields 

<+<1, 4>, +<2, 7 > ,  + < 7 ,  7>> 

which expresses the parallelism of the problem clearly. 

A similar example shows the use of the construction 

functional form. Consider a program that not only does the pair 

wise additions as above, but also does pair wise multiplication, 

subtraction, and division. Conceptually, all four of these can 

be done in parallel. If pairmult, pairsub, and pairdiv are 

defined in ways analogous t o  pairadd, an ExFP program for the 

operation can be written as the  following: 

Def pairarith = [pairadd, pairmult, pairsub, pairdiv] 

Substitution of the definition into 

yields 

[pairadd, pairmult, pairsub, pairdivl: 
<<1, 4>, <2, 7 > ,  < 7 ,  7 >  

Evaluation of the construction combining form produces 

<pairadd: <<1, 4>, < 2 ,  7 > ,  < 7 ,  7 > > ,  
pairmult:<<l, 4>, <2, 7 > ,  < 7 ,  7 > > ,  
pairsub: <<1, 4>, <2 ,  7 > ,  < 7 ,  7 > > ,  
pairdiv: <<1, 4>, <2, 7 > ,  < 7 ,  7>>> 

This clearly shows the intrinsic parallelism of the problem. 
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As defined, however, ExFP does not allow a large class of 

intrinsically parallel problems to be expressed clearly. As an 

example, consider the program length, defined above as 

Def length I /+ a%l 

The computation of 

length:<7, 6 ,  5, 4> 

yields, after several steps, 

Conceptually, the computation could, at the same point, be done 

as 

+:<+:<I, 1>, +:<l, 1>> 

which exhibits a greater degree of parallelism. 

In order to handle such computations, a new functional form 

can be defined, and ExFP extended to include it1. The intent is 

that this functional should not require computations to proceed 

entirely to the right as does inser t .  Instead, the functional 

should allow computations to be done in two parallel paths when 

possible. A suitable definition for such a combining form is the 

foiiowing: 

Parinsert: denoted by in front of a function; if the 
object to which the function is applied is not a 
sequence, the form is equivalent to I; if the object is 
a sequence with a single member, the result is 
equivalent to that member; if the object is a sequence 
with a least two members, the form is equivalent to 
applying the function to the sequence containing the 
parinsert functional applied to the first half (where 

This discussion is based on W i l l i a m s  in Darlington, et 
a l . ,  pp 79-82. The name and notation of the new functional form 
is different than that chosen by Williams, but the definition is 
the same. 



half is defined as the smallest integer greater than or 
equal to the number of elements in the sequence divided 
by two) of the sequence, followed by the parinsert 
functional applied to the remainder of the sequence. 
That is 

i f : x  = 1 if x is not a sequence 
xn ’ I I  I If:-, , . . . , 

= x x ,  i f n = l  
= f : < i  If:<x,, . . . , x,>, 

I;f:<X,+l, . . . ,  x,>> 
if n 2 2, m = ceil(n/2) 

To see how this works, consider redefining length as 

Def length p I I +  a x 1  

The computation of 

length:<7, 6, 5, 4> 

yields, after several steps 

Continuing with the computation gives 

+:<!!+:<I, 1>, ;;+:<I, I>> 
+ : < + : < I  !+:<I>, I !+:<I>>, 

+:<I ;+:<I>, I !+:<I>> 
+:<+:<I, 1>, +:<I, 1>> 

which is what is desired. 

This discussion has shown that a functional language as 

simple as ExFP can express a large class of intrinsically 

parallel problems easily. More advanced languages can be even 

more powerful in their ability to express parallelism. 

4.2 The Algebra of Functional Programs 

Another topic in functional language research is the 

algebraic properties of the languages. These properties allow 

reasoning about programs to be done in the language itself. 

Applying some other language, such as a predicate calculus, is 
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not necessary'. The intent in developing an algebra for a given 

functional language is to allow programmers to use the laws of 

the algebra to prove programs correct and to help develop new 

programs, without requiring them to know anything about the 

mathematical foundation of the algebra2. In order to examine the 

ideas of the algebra for programs, an algebra for ExFP programs 

is discussed below. 

The algebra that will be defined can be broken into three 

categories of statements: laws, derived theorems, and expansion 

theorems. Laws are statements that can be proven directly from 

the definitions of the language's primitive functions and 

functional forms. Derived theorems are statements that can be 

proven from the laws of the algebra. Expansion theorems are 

statements that allow recursive programs to be converted to 

nonrecursive ones' . 
There are two types of laws: ones that hold for all objects, 

and ones that hold for a restricted class of objects. A law 

stating that the functions f and g are equivalent for all objects 

is written as f f g. 

For information on techniques for reasoning with 
conventional languages, see David Gries, The Science of 
Programming (Springer-Verlag: New York, 1981). For comments on 
the need for a mathematical basis in languages, see George T. 
Liyler, "A Mathematical Approach to Language Design," Second 
Symposium on Prin. of Prog. Langs., 1975, pp 41-53, and Dana 
Scott, "Mathematical Concepts in Programming Language Semantics," 
AFIPS Conference Proceedings, Vol 40, 1972, pp 225-234. 

Backus, CACM, p 624.  For a discussion of the foundation 
of the algebra presented here, see p 630 of that paper. 

Williams in Darlington, et al., p 83. 
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In order to express the second type of lhw, additional 

notation must be used. One such notation is the following1: 

p = > f = g  

This means that f:x 3 g:x for all x such that p:x = T. 

To express that a lzw holds for any x that is defined (that 

is, not equal to I), the following definition can be made2 : 

Def defined %T 

(Recall from the definition of the constant combining form that 

%T:x is equivalent to T if x does not equal 1, and is equivalent 

to * if x equals *) Thus a law that states that two functions f 

and g are equivalent so long as f:x is not equal to could be 

written as 

defined f => f 3 g 

There are a large number of laws that can be written for 

ExFP. For purpose of example, three such laws will be stated and 

proven, and eight laws will be stated without proof. 

The first law that will be proven is the following' : 

1. If O h, g hl [f, SI h 

A proof of this statement must show that it is true for all 

functions f, g, and h, and for all objects. To do this, the left 

hand side is applied to the general object x, as follows 

[ f O h ,  g'hl : x 

Backus, CACM, p 625. The notation used here is different. 
He uses two solid right arrows. 

Ibid. 

' Backus, CACM, p 625, proves the law in the opposite 
direction. 
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From the definition of the construction combining form, this can 

be rewritten as 

<(f O h):x, (g O h):x> 

By the definition of the composition form, this can in turn be 

rewritten as 

< f :  (h:x), g: (h:x)> 

expression is simply the right hand side of a construc- But this 

tion, so it can be written as 

[ f ,  gl:(h:x) 

This, in turn, is the right hand side of a composition. A final 

rewriting yields 

( [ f ,  gl h):x 

Thus, the law has been proven. 

The second law that will be proven is the following': 

2 -  ~f O [gl, * . . ,  gnI E [f O g,, f O gnl 

To prove this law, the two sides must be shown to be equivalent 

for all functions f, gl, . . . ,  g,, and any object x. Thus, the 

right hand side is written as 

o r -  a i  L Y l ,  ..., g , ; i x  

Applying in order the definitions of composition, construction, 

apply to a l l ,  composition, and construction yields the following 

proof: 

' The law is from Backus, CACM, p 625. The proof is 
original. 
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C(f O gl):x, ..., (f O g , ) : x >  = 
[f O 9 1 ,  . - . ,  f O g,l:x as desired. 

The final law that will be proven is the following': 

[f, 91 E f 0 3 .  defined g => 1 

A proof of this law must show that for any function f, any object 

x, and any function g not yielding 1 when applied to x, the 

statement holds. The following does just that, using in order 

composition, construction, and the selector function 1 in conjun- 

ction with the assumption that g is defined: 

1 O [f, gl:x = 
1: If, g1:x - 
1: <f:x, g : x >  = 
f:x as desired. 

- 

Several other laws that can be proven in ways similar to 

those shown above are the following2: 

4. 

5 .  

6 .  

7. 

a. 

9 .  

10. 

L_ 

The law is from Backus, LNinCS107, p 7. The proof is original. 

The first 4 laws are from Backus, LNinCS107, p 7. The 
remainder are from Williams in Darlington, et al., pp 84-5. 
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11. /f appendl [g, h] J 

f [g, /f hl 

As mentioned, many more laws can be inferred. These laws 

can then be used to derive theorems, which make up the second 

category of statements in the algebra. Once derived, the 

theorems can be used in the same way as the laws. The larger the 

body of laws and proven theorems, the easier the task of 

reasoning about programs becomes. 

As an example of the derivation of a theorem, consider the 

following program: 

length appendl [tail, id] 

This program computes the length of the sequence constructed by 

appending to the front of the argument sequence, the tail of that 

sequence. The result of applying the program to any sequence can 

be determined by using the algebraic laws described above. 

First, the definition of length is used to rewrite the 

program as 

/+ O a%l O appendl [tail, id] 

Law 10 can used with f = %1, g = tail, and h = id, to yield 

/+ appendl O [%1 tail, a%l id] 

Since tail is defined for any sequence, law 8 can be used with x 

= 1 and g = tail, to produce 

/+ O appendl [%1, a%l id] 

Application of Law 11 with f = +, g = %1, and h = a%l id, gives 

’ This example is based on Williams in Darlington, et al., p 
85. He uses two general functions within the construction, but 
the form used here seems easier to understand. 
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+ O  id] 

Finally, the definition of length can be used to yield 

+ O [%1, length id] 

So, the program applied to a sequence always yields the length of 

the argument sequence plus one, as expected'. 

The final category of statements in the algebra is that of 

expansion theorems. Expansion theorems are too complex to 

discuss in any detail here. As an example, a linear expansion 

theorem is given below': 

IF 
f = p --> q; Hf 

where Hf is a function involving f, and H:l = *, and 
there exists an HI such that for all g, h, and j, 
H(g->h;j) H,g - >  Hh; Hj 

THEN 

. . . ,  f = p - -> q; * H,"p  --> H"q; . . .  
The algebra of functional programs is a complex topic. This 

section has only touched on the basic ideas, but the presentation 

should provide sufficient groundwork for further study3. 
- .- 

If this does not seem correct, consult the definition of 
append1 given above. 

' John H. Williams, "On the Development of the Algebra of 
Functional Programs," ACM Transactions on Programming Languages 
and Systems, Vol 4, No 4, Oct1982, p 737. This same theorem is 
given in Williams in Darlington, et al., p 84, Backus, CACM, p 
627, and Backus, LNinCS107, p 26.  See these references for more 
information on expansion theorems. 

Besides the references already mentioned in this section, 
the interested reader should see Toni A .  Cohen and Thomas J. 
Myers, "Towards an Algebra of Nondeterministic Programs," 1982 
Symposium on LISP and Functional Programming, pp 29-36. 
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4.3 Program Transformation 

One consequence of the algebra of programs is the 

possibility of transforming programs from one form to another 

using the algebra. The primary motivation behind program 

transformation is the observation that writing easily understood 

' This representation uses a different notation from, but is 
equivalent to, the representation of John S. Givler and Richard 
B. Kieburtz, "Schema Recognition for Program Transformations," 
1984 Symposium on LISP & Functional Programming, p 75. 
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programs and writing efficient programs are often conflicting 

goals. The program transformation method of development is to 

first write a program that is clear and easy to understand, and 

then transform it into one that runs as efficiently as possible 

on the available hardware'. 

A transformation has the form 

c, Pi, -->' P o u t  

where C is a set of conditions under which the transformation is 

valid, Pi, is the template, and P o u t  is the program equivalent to 

the template'. 

The process of using a transformation consists of the 

following steps: 

1. Recognition of a program or segment of program that 
matches a known template. 

2. Verifying that the conditions for the application of 
the template are satisfied by the program or segment. 

3 .  Converting the program or segment to the equivalent 
form given in the transformation. 

' John Darlington, "Program Transformation", Darlington et 
al., p 193. 



Clearly, the laws and theorems of the algebra of a 

functional language provide an initial set of transformations. 

For example, given the language ExFP and its laws given above, 

the following simple transformation can be stated: 

# ,  h O (p -> f;g) -->> p --> (h O f); (h O 4) 

where the # signifies that there are no conditions that must be 

satisfied before the transformation can be applied. 

Another simple transformation that does have a qualifying 

condition is the following: 

g defined, %x g --D %X 

This means that the transformation holds so long as the 

application of the function g does not yield 1. 

As an illustration of the use of these two transformations, 

consider the following program: 

i O (eqO O tail -> [l, %1 id]; id) 

This program is similar to a simple divide, except that it checks 

to see if the second element in the object sequence is 0, and if 

it is, sets it to 1. The program can be rewritten by using the 

two transformations given above. 

The program matches the template of the first transformation 

in the following way: 

h = f, 
p = (eqO tail), 
f = [l, %1 O id], and 
g = id 

0 

Applying this yields 

eqO O tail - >  (+  O [l, %1 O id]); (f id) 
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Part of this program matches the template of the second 

transformation with x = 1 and g = id. Since id is defined for 

all non-1 arguments, the transformation can be applied. This 

produces 

eqO O tail - >  (I O 11, %1]); (+ id) 

Not only can transformations be used that convert one 

program in a given language into another program in the same 

language, but transformations can be developed that relate one 

language to another. An example of such a transformation that 

converts an ExFP program to an Ada program fragment is the 

following: 

p:x = T or p:x = F, (p - >  g; h) --B 

if P then 
G ;  

else 
H ;  

end if; 

where P is an Ada boolean expression corresponding to the ExFP 

function p, G is an Ada procedure corresponding to the ExFP 

function g, and H is an Ada procedure corresponding to the ExFP 

function h . 

One final application of program transformations is to 

convert recursive programs into iterative ones. Certain 

algorithms are most clearly expressed recursively, but most 

efficiently executed iteratively. Appropriate use of 

transformations can be used to convert such algorithms'. 

See Alberto Pettorossi, "A Powerful Strategy for Deriving 
Efficient Programs by Transformation," 1984 Symposium on LISP & 
Functional Programming, pp 273-281 for a strategy for doing this. 
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A s  this discussion has shown, the basic idea of program 

transformation is simple; however, at least two major hindrances 

exist to its practical application. Each of these is discussed 

briefly below. 

The least severe of the two problems is the potential 

difficulty in verifying that a particular transformation’s 

pre-conditions are satisfied. For the simple transformations 

given here, the task of pre-condition verification was simple, 

but f o r  more complicated transformations this is not necessarily 

the case. 

The more severe problem is that for any language of 

sufficient power, recognizing instances of known templates can be 

very difficult. For the example above, matching the given 

program to the template was easy, but consider the following 

program1 : 

eq O [id, tail id] - >  loop (1 distr) 
eqO - >  or O [ 2 ,  3 O tail]; not 1 - >  /+ O a%7; 
eqO O - 0 [id, %1] - >  loop a* 

This program does not appear to match either of the templates 

given above, but it does in the following way: 

h = eq [id, tail id] - >  loop (1 distr), 
p = eqo - >  or O [ 2 ,  3 O tail]; not 1, 
f = /+ O a%7, and 
g = eqO O - 0 [id, %1] - >  loop a* 

Recognition of all instances of known templates is beyond the 

capabilities of most, if not, all people. 

This program does not compute anything of known 
significance. It is given simply as an example of the complexity 
of template matching. 
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A proposed solution to both these problems is to develop 

automated systems to carry out the transformations. At the 

present time, no system exists that is able to perform this task 

completely on its own'. Systems do exist that are able to 

perform transformations with assist from a programmer2. The 

future utility of program transformation systems is an open 

question. 

4 . 4  Variables and Data Types 

So far, no mention of the roles of variables and data types 

in functional languages has been made. In fact, languages, such 

as ExFP, that strictly follow the Backus' style do not explicitly 

have either. The only variables are the names of defined 

function. Not all functional languages are so devoid of 

variables, but mechanisms for providing variables are directly 

related to each particular language. For this reason, the 

subject will be discussed in Section 5 .  

Mechanisms for providing types in functional languages are 

less language specific. They fall generally into two categories: 

implicit t ype  inferellce, and explicit t.;p declarsti.cn. The 

Darlington in Darlington, et al., p 2 0 9 .  

The interested reader should see Givler, Kieburtz, pp 
74-84,  Francoise Bellegarde, "Rewriting Systems on FP expressions 
that Reduce the Number of Sequences They Yield," 1984 Symposium 
on LISP & Functional Programming, pp 63-73 ,  and Phillip Wadler, 
"Listlessness is Better than Laziness: Lazy Evaluation and 
Garbage Collection at Compile Time," 1984 LISP & FP, pp 45-52.  
Also of interest is R. Kent Dybvig, Bruce T. Smith, " A  Semantic 
Editor," 85 Symposium on Language Issues in Programming 
Environments, pp 74-82,  which describes an editor for FP that 
uses transformations. 
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approach taken in the discussion below is to briefly describe 

only one specific method for each category, and to give 

references to others. 

4 . 4 . 1  Implicit Typing 

In implicitly typed systems, determining the type of a given 

expression is the responsibility of the compiler or interpreter. 

One method of doing this is called the reduced computation 

approach'. This technique is described briefly below. 

The basic idea of the reduced computation method is to 

consider a function to be a mapping of one data type to another, 

possibly identical, data type. In other words, for each function f 

that produces an object y when applied to an object x, there is a 

function' f' that yields the type of y when applied to the type 

of x. In order to perform type checking and inference for a 

given function f, the corresponding reduced computation function 

f' is considered. 

As an example of the operation of this method, consider its 

application to the language ExFP. Before the technique can be 

used, the desired types must be chosen. For ExFP, a suitable 

choice is number, character, boolean, and sequence. The first 

This discussion is from Takuya Katayama, "Type Inference 
and Type Checking for Functional Programming Languages: A Reduced 
Computation Approach," 1984 Symposium LISP & Functional 
Programming, pp 263-272. 

"Function" is used here not in a strict mathematical 
sense. It is possible that the same types yield different result 
types. See Ibid, p 264-5. 
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three types mean what one would expect. The sequence type is 

defined as follows: 

if t,, .. ., t, t T then <t,, ..., t,> E T, 
where T is the set of types 

Given these types, the type expressions for the primitive 

functions of ExFP can be stated. To express these clearly the 

following notation is used': 

1. x*y represents the sequence <x, y> so long as y is 
a sequence; if y is not a sequence, the expression 
is undefined. 

2. xOy represents the sequence <x, y> so long as x is 
a sequence; if x is not a sequence, the expression 
is undefined. 

3. x" represents the sequence containing x n times. 

4. f':x - - >  y means that y is produced when the type 
domain function f' is applied to x. 

Using this notation, the type expressions for the ExFP primitive 

functions are the following (r, s, and t are type variables; n is 

an integer variable): 

1. id':t - ->  t That is, the id function yields the 
same type as its argument. 

2. 1':t.s - ->  t, 2':r.(s.t) - ->  s ,  . . .  That is, the 
selector function i produces the type of the 1'" 
element in the sequence. 

3 .  tai1':t.s - ->  s 

The notation for 1. is slightly different from Ibid, p 
267. The notation for 2. is entirely new; Katayama provides no 
means for expressing this. The notation for 3 .  is the same. The 
notation for 4. is slightly different. 
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5 .  appendr':<t, s> - ->  tos 
appendl':<t, s> - ->  t ~ s  

6. +':number2 - ->  number 
-':number2 - ->  number 
*':number2 - - >  number 
+'  :number2 - - >  number 

This means that +, -, *, and i must have as 
arguments a sequence with two elements each 
of type number'. 

7. eq':t2 - -> boolean 

8 .  not':boolean - ->  boolean 
and':boolean' - ->  boolean 
or' :boolean' - ->  boolean 

This approach can be extended and applied to the combining 

forms to give a complete type inference and checking system for 

non-recursive programs. Further extensions yield a system for 

some recursive programs as well3. 

The reduced computation technique for inferring and checking 

types is not the only method for these purposes4. The discussion 

of this particular method should be sufficient to provide a basic 

understanding of the principles involved. 

This assumes each element in the type sequence t" is of 
the same type t for both d i s t r ,  and d i s t l .  Specifying a type 
expression for these functions without this assumption is much 
more complex. See Ibid, p 267. 

The fact that + cannot have a second argument equal to 0 
is not expressed here. 

' See Ibid. for how these extensions are made. 
The interested reader should see Luis Dumas and Robin 

Milner, "Principle type-schemes for functional programs," 9th ACM 
Symposium Principles of Programming Languages, pp 207-212, and 
John Mitchell, "Coercion and Type Inference," 11th ACM Symposium 
Prin. of Prog. Langs., pp 175-185. 
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4 . 4 . 2  Explicit Typing 

The alternative to inferring types is to require explicit 

declaration of them. As an example of how this might be done, 

ExFP is extended to include type definitions'. Such an extension 

requires several steps. Each of these is discussed below. 

The first thing that must be done is to determine the types 

that will be added. For this example, the types number, 

character, boolean, and sequence will be used. These types have 

meanings as would be expected, and have the abbreviations nun, 

char, bool, and seq respectively. 

Once the types are decided, primitive functions that 

determine if an object is of a particular type must be added. 

Given the four types above, the following four functions are 

added to ExFP: isNum, ischar, isBool, and isSeq. The program 

isType:x yields T if x is of type Type and F otherwise. 

Another necessary extension to ExFP is the combining form 

TypeOK. This combining form is defined in the following way2: 

TypeOK : this is denoted by TypeOK(f) applied to an 
object x; the combining form yields T if f:x yields an 
acceptabie t ype ;  t h e  def i i l i t i on  of wkat c c n s t i t u t e s  an 
acceptable type depends on f. 

A s  an example of the TypeOK combining form, consider the 

following: 

' This discussion is based on John Guttag, "Notes on Using 
Types and Type Abstraction in Functional Programming, in 
Darlington, et al., pp 116-126. 

a This definition is based on Ibid, p 119. 
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This is equivalent to the following expression: 

ando[isSeq, ando[isNumO1, isNum02]1 

In order to provide a suitable mechanism for type 

declarations, the D e f  facility of ExFP must be extended to allow 

the inclusion of names for parameters on the left hand side'. 

The general form of this extension is the following: 

Def f E(x,, . . . ,  x,) = F(x,, - - - ,  x,) 

This form makes the reading of function definitions easier. For 

example, the following definition under the old form 

Def f = g id 

can be written in the new form as 
D e f f o x = g  0 x 

which more clearly shows the dependance of f on the argument 

object x. 

The new form of D e f  also allows clearer specification of 

restrictions on the form of objects acceptable to a function. 

For example, consider a function f that is intended to perform g O 

[ Z ,  11 only if the argument object consists of a pair. Using the 

unextended definition, the function could be written as 

Def f = pair - >  g 12, 11; 1 

where pair yields T if the object is a sequence of two elements. 

With the extended definition, the function could be written as 

follows: 

This extension is based on Backus, LNinCS107, pp 27-37. 
The description here is informal. For a formal discussion, see 
the paper. Backus' use of in the notation is confusing, but it 
is used here for lack of anything better. 
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Def f [x, yl = g [y, X I  
which is easier to read, and does not require the introduction of 

the function pair. 

Another necessary extension is a way to declare the types of 

the arguments to a function and the type of the object returned 

by a function. To allow the former, parameters in a function 

definition are allowed to have a type specification. A type 

specification is of the following form': 

x('llYPe1 

A s  an example, consider the function f defined as above. If f 

is desired to yield 1 for any x and y that are not both numbers, 

the definition could be written as 

Def f [x(Num), y(Num)l = g [y, X I  
This is equivalent to the non-extended definition 

Def f = ando[ando [isNumOl, isNum'21, %TI - >  
g O [2, 11; 

To allow the declaration of the type of the object produced 

by a function f, the following notation can be used': 

Def f . . .  yields Type = . . .  
For example, if f as defined above should yield either T or F, 

the definition could be written as 

Def fo[x(Num), y(Numj1 yields Boo1 = go[y, X I  

This notation differs from Guttag in Darlington, et al. 
He uses the form x:Type. The use of : here, although consistent 
with traditional languages, seems inappropriate since the symbol 
also stands for application. 

Ibid, p 118 uses returns instead of yields. 
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Given all of these extensions, all that would be necessary 

to complete the introduction of types to ExFP would be the 

redefinition of the primitive functions to include type specifi- 

cations. As an example, the functions or, t a i l ,  and + would be 

of the following forms respectively': 

or [x(Bool], y{Boolj] yields Boo1 

tail [~(Seq)] yields Seq 

+ [x{Num), y{Num)l yields Num 

Some functions can take arguments of several types and 

return several different types. Each possibility can be defined 

separately. For example, id can take either a sequence, a 

number, or a character. The function could be defined in the 

following form' : 

id O [~(Seq]] yields Seq 
id [x{Num)l yields Num 
id  char)] yields Char 

The above discussion has shown a technique for adding type 

declarations to the language ExFP. Other methods exist as well. 

Section 5 discusses the type schemes of each language mentioned'. 

4.5 Lazy Evaluation 

Lazy evaluation is a particular technique for determining 

when expressions are evaluated. It is used by many functional 

These are given for example purposes only, not as rigorous 
definitions. 

' Again, this is given only as an example. 
' That is, where such information is available in the 

literature. See also, D. B. MacQueen and Raui Sethi, "A Semantic 
Model of Types for Applicative Languages," 1982 Symposium on LISP 
& Functional Programming, pp 243-252. 
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languages. The basic principle of lazy evaluation is that an 

evaluation is done at the time that the result is needed, and not 

before. In contrast, in a conventional (or busy) evaluation 

scheme, all computations are done as soon as possible. 

A s  an example of the method, consider the following ExFP 

program and application: 

A conventional evaluation scheme would give the following: 

or: [%T, eqO + I :  < 7 ,  O> 
or: <%T: < 7 ,  O>, eqO i: <7,0>> 
or: <T, eqO: f: < 7 ,  O > >  
or: <T, eqO: I> 
or: <T, *> 
I 

However, a lazy evaluation scheme would give something like 

the following: 

or: [%T, eqO + I :  < 7 ,  O> 
or: <%T: < 7 ,  O > ,  eqO O +: < 7 ,  O>> 
or: <T, eqO: f :  < 7 ,  O>> 
T 

One consequence of such a scheme is that a programmer has 

little control over the order of execution of operations'. He 

must not assume anything about evaluation order. Making such 

assumptions is generally considered to be a bad practice; so lazy 

evaluation has the advantage of discouraging it. 

This discussion of lazy evaluation should be sufficient to 

show the basic idea. Much research has been conducted on its 

' Cordelia Hall and John T. O'Donnell, "Debugging in a Side 
Effect Free Programming Environment," 1985 Symposium on Language 
Issues in Programming Environments, p 61. 
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use, so the interested reader may consult a variety of references 

for more information'. 

4.6 Implementation on Conventional Architectures 

The conventional computer architecture consists of three 

parts: a processor, memory, and a communications line connecting 

the processor and memory2. Most computers, from small personal 

computers to large main frames, employ this same basic 

architecture with only minor differences. In his Turing Award 

paper, John Backus argues that a major cause of the inadequacies 

of traditional programming languages is their dependance on this 

conventional computer model. He claims that new architectures 

are essential to the improvement of languages'. 

Backus' arguments may well be true; however, the vast 

majority of computers will almost certainly retain the 

traditional architecture throughout the foreseeable future. For 

this reason, the acceptance of functional languages is partially 

' To start, see Peter Henderson and J. Morris, Jr., "A Lazy 
Evaluator, "' 3rd Symposiums on Principles of Programming 
Languages, pp 95-103, P. A. Subrahmanyam and J. H. You, "Pattern 
Driven Lazy Reduction: A Unifying Evaluation Mechanism for Func- 
tional and Logic Programs," 11th Symposium on Principles of 
Programming Languages, pp 228-234, and Glaser, et al., pp 70,71. 
For a discussion of lazy evaluation for Backus' FP, see Walter 
Dosch and Bernard Moller, '"Busy and Lazy FP with Infinite 
Objects," 1984 Symposium on LISP & Functional Programming, pp 282-292. 

Philip C. Treleaven, "Computer Architecture For Functional 
Programming," Darlington, et al., p 290. Such an architecture is 
often called a "von Neumann" architecture, after one of the men 
who conceived it. 

Backus, CACM, p 615. 
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dependent on whether or not they can be implemented efficiently 

on conventional machines. 

A complete discussion of the topic would be much more 

complicated than is desirable for this paper. However, basic 

implementation techniques can be discussed briefly. Most 

research has concentrated on implementing lambda based languages, 

so the discussion also concentrates on methods for such 

languages. Since, as was mentioned in Section 2.3, the lambda 

calculus can be used to simulate any function or functional form, 

the lambda methods can be adopted for use for FP style languages. 

4 . 5 . 1  Translation to Another Language 

Perhaps the simplest way to implement a functional language 

is to translate it into another high-level language. A 

translator system takes source code from the functional language 

and produces code in another language for which a compiler or 

interpreter already exists. 

The Berkeley FP system uses this technique'. The language 

of the system is based on the FP language introduced by Backus. 

Programs written in this language are translated into LISP code. 

This code may then be either interpreted or compiled. A s  one 

might expect, the system does not execute programs with much 

speed. 

Generally, any implementation based on translation to 

another high-level language will not be very efficient. For this 

See Baden, and Scott E. Baden, Dorab R. Patel, "Berkeley 
FP -- Experiences with a Functional Programming Language," Digest 
of Papers of CompCon 83, 1983, pp 274-77. 
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reason, such implementations are not suitable for most practical 

programming applications. 

4 . 6 . 2  SECD Machine 

The SECD machine is the standard way to implement functional 

languages that are based on the lambda calculus'. It is intended 

to be created in software on conventional architectures. A SECD 

machine operates according to the following algorithm: 

WHILE (an expression is left to be evaluated) 
OR (there is a suspended computation) DO 
IF the current evaluation is done THEN 

ELSE 
resume the last suspended evaluation 

CASE next expression to be evaluated OF 
identifier:push the value onto the evaluation 
stack and pop the next expression from the 
expression stack 
Lambda-exp: push the appropriate closure onto 
the evaluation stack and pop the next 
expression 
application: replace the top of the 
expression stack by the expression 
representing this appl. 
"ap": cause the operator on the evaluation 
stack to be applied to the operand below it. 

END CASE 
END IF 

END WHILE 

As given, the SECD model is not able to support lazy 

evaluation; however, the machine can be extended to provide this 

support. Characterizing the efficiency of SECD based 

implementations is difficult. In general, they are not thought 

' Glaser, et al., p 82. The algorithm is from p 84, with 
some changes in notation. 
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to be adequately efficient to allow practical realizations of 

languages'. 

4 . 6 . 3  Combinator Systems 

Another method of implementing functional languages is the 

use of combinators. Combinators are a method for representing 

lambda calculus expressions in a shorter form. As an example, 

the single combinator S is used to represent the following lambda 

expression2 : 

Lam x Lam y Lam z. (x z) (y z )  

Combinator systems can be used to implement lambda based 

languages. The first part of such systems is a translator that 

converts the lambda expressions into their combinator 

representation. Many different techniques exist for producing 

executable code from these representations. Most methods are 

able to support lazy evaluation. 

Studies have shown that these techniques are generally as 

efficient as direct lambda expression implementations such as the 

SECD Machine discussed above3. Some researchers claim that 

combinator implementations are much more efficient, enough so to 

' Paul Hudak and David Kranz, "A Combinator-Based Compiler 
for a Functional Language," 11th Symposium on Principles of 
Programming Languages, p 122. 

R. J. M. Hughes, "Super Combinators: A New Implementation 
Method for Applicative Languages," 1982 Symposium on LISP & 
Functional Programming, p 2. 

Simon L. Peyton Jones, "An Investigation of the Relative 
Efficiencies of Combinators and Lambda Expressions," 1982 
Symposium on LISP & Functional Programming, pp 150-158. 
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allow practical realizations of functional languages' ; however, 

other researchers dispute such claims. 

4.6.4 Stack Based Systems 

Some research has suggested that certain lambda based 

functional languages can be implemented using a run-time stack. 

This method involves the modification of the conventional 

run-time stack used for languages like Pascal. These 

modifications include adding separate stacks for return addresses 

and intermediate variables, and adding a new pointer to each 

activation record. 

This method is said to be applicable to any functional 

language that uses copy-rule parameter passing. It is also 

claimed to be suitably efficient2. 

4.6.5 Remarks 

The above discussion has been necessarily brief. Not all 

implementation methods for conventional machines have been 

Hudak, Kranz, pp 122-132. For more information on 
combinator implementations, see Paul Hudak and Benjamin Goldberg, 
"Experiments in Diffused Combinator Reduction," 1984 Symposium on 
LISP & Functional Programming, pp 167-176, Steve S. Muchnick and 
Neil D. Jones, "A Fixed-Program Machine for Combinator Expression 
Evaluation," 1982 Symposium on LISP & Functional Programming, pp 
11-20, and Glaser, et al., pp 93-104. 

See U. Honschapp, W.-M. Lippe, and F. Simon, "Compiling 
Functional Languages for von-Neumann Machines," 1983 Symposium on 
Programming Language Issues in Software Systems, pp 22-27, and M. 
P. Georgeff, "A Scheme for Implementing Functional Values on a 
Stack Machine," 1982 Symposium on LISP h Functional Programming, 
pp 188-195. 
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discussed'. Those techniques that have been mentioned have been 

covered in a cursory manner. The discussion has shown that the 

current techniques for implementing functional languages on 

conventional architectures do not appear to produce adequate 

efficiency . The development of new architectures shows more 

promise; this research is discussed in the next section. 

4 . 7 .  New Architectures 

Since implementations of functional languages on 

conventional architectures thus far have been inefficient, much 

research is being done on developing architectures to support 

functional languages specifically. Three approaches to such 

architectural innovation are discussed below'. 

4.7.1 Data Flow Machines 

The ideas of data flow architectures have been in existence 

for a number of years. The original motivation for these type 

machines was not functional languages' ; however, data flow 

machines do have properties which make them appear attractive for 

functional language implementations. One particular data flow 

machine being developed at the Massachusetts Institute of 

Technology is discussed below4. 

For one interesting additional technique, see Corrado 
Bohm, "Combinatory Foundation of Functional Programming," 1982 
Symposium on LISP h Functional Programming, pp 29-36. 

' The interested reader should see Proceedings of the 
Conference on Functional Programming Languages and Computer 
Architecture, ACM, October, 1981. 

' Glaser, et al., p 104. 

This discussion is based on Backus, IEEE, pp 26,27. 
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The M.I.T. machine consists of a large number of identical 

operand 

processors. These processors are connected by a network that 

operand 

allows each processor to communicate with any other processor in 

the network. The communication is done by passing packets. Each 

packet contains the address of the processor for which it is 

intended, a list of other packets with which the packet's data is 

to be combined, and data. The structure of an individual 

processor is shown below'. 

IN 
I 

waiting/ 

output sect i on 

I 
OUT 

A processor operates in the following manner: 

1. A packet arrives as input. It waits in the 
waiting/matching unit until all packets from which it 
needs data have arrived. 

2. When a complete match is made, the packets are sent to 
the instruction fetch unit. 

' The figure is from Ibid, p 26. 
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3. This unit gets the necessary instructions from memory 
and sends them and the data to the arithmetic and logic 
unit. 

4 .  The A . L . U .  uses the instructions to form a result from 
the data. This result is sent to the output section. 

5. The output section puts the result data in a new 
packet. The address(es) to which this packet is to be 
sent is computed from the input packets and the 
instructions. 

6 .  The packet is sent out onto the network. 

The developers of this machine believe that it can be used 

to implement any type of functional language. A t  the time of the 

writing of the reference on which the discussion is based, a 64 

processor prototype was expected to be in operation by the end of 

1985. 

4 . 7 . 2  Professor Gyula Mago's Machine 

Unlike the previous machine, the architecture being 

developed by Gyula Mago at the University of North Carolina is 

intended to be used only for the implementation of functional 

languages based on Backus' style'. This machine has a cellular 

design. That is, it consists of a large number of interconnected 

components. These components, called cells, are one of two 

types: leaf or tree. The tree cells are connected as a binary 

tree. The leaf  cells are connected at the base of the tree. 

Each leaf cell is also connected to its two neighboring leaf 

cells. 

This discussion is based on Ibid, pp 25,26, and Gyula 
Mago, "Data Sharing in an FFP Machine," 1982 Symposium on LISP & 
Functional Programming, pp 201-202. 
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The structure of the cells is very simple. Each leaf cell 

consists of a small processor, a small microcode memory, memory 

for a symbol and its position in the program, and some condition 

registers. The purpose of these cells is twofold: to store data, 

and to process data. FP primitive operations and combining forms 

are implemented directly in the cells' microcode. 

Each tree cell is made up of data registers and a simple 

processor capable of moving data and doing simple operations. 

The purpose of these cells is to control communication between 

leaf cells. 

To evaluate an FP expression, the expression and the data to 

which it is applied are mapped onto the leaf cells. Each leaf 

cell contains zero or one symbol from the program. The machine 

then proceeds with an execution cycle of three phases'. 

In the first phase, the tree cells partition the 

representation into each independent subexpression. Each of 

these consists of a single function and the data to which it is 

applied. All subexpressions so partitioned can be evaluated in 

parallel. The process of partitioning configures the machine to 

match the program and data. This is in contrast to most other 

approaches which try to match the program and data to the 

hardware. 

In the second phase, each independent sub-tree attempts to 

evaluate its first application. If this is possible, the 

function and data to which it is applied are replaced by the 

The discussion of.the execution cycle is from Mago, p 202. 
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result of the application. Most FP functions can be executed 

immediately in one cycle. 

The final phase of a machine cycle is storage management. 

The remaining subexpressions and data are moved to the 

appropriate places among the leaf cells. At the conclusion of 

this phase, another execution cycle begins. This continues until 

a result is obtained. 

In order to evaluate large FP programs effectively using 

this architecture, a machine must contain very many cells. The 

simplicity of an individual cell suggests that providing as many 

as a million cells at reasonable cost may be feasible using Very 

Large Scale Integration methods. 

4 . 7 . 3  SKIM I1 Processor 

The final new architecture that will be mentioned is the 

SKIM I1 processor being developed at the University of Cambridge. 

The discussion of this design will be brief because the available 

literature says very little about the architecture of the 

machine' . 
The SKIM I1 processor is the successor of the SKIM I 

processor. It is intended for the efficient implementation of 

combinator methods for functional language evaluation. The 

processor has  separate memory for programs and data. It is 

The discussion is based on W. R .  Stoye, T. J. W. Clarke, 
and A.  C. Norman, "Some Practical Methods for Rapid Combinator 
Reduction," 1984 Symposium on LISP & Functional Programming, pp 
159-166. 
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controlled by microcode. This microcode contains the combinator 

reduction algorithm. 

The implementation of combinator evaluation on SKIM I1 is 

claimed to be significantly more efficient than the 

implementation of the method on conventional machines. 

Improvements in combinator techniques for those machines can be 

easily incorporated into the processor, so the difference in 

efficiency should remain regardless of advancements in the 

algorithms. 

In addition to comparing the efficiency of SKIM I 1  to 

conventional architectures, the developers have compared the 

efficiency to implementations of non-functional languages. The 

results suggest the performance of SKIM I1 is about one-quarter 

of that of a traditional language compiled on comparable cost 

hardware'. 

Ibid, p 166. 
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5. EXISTING FUNCTIONAL LANGUAGES 

In the previous sections, the only specific functional 

language discussed has been the example language ExFP. In this 

section, several actual languages that are claimed to be 

functional are discussed. The languages are divided into two 

categories: languages based on Backus’ style; and languages not 

based on Backus’ style (these may be based on the lambda style, 

based on a combination of the two styles, or based on neither 

style). 

5.1 FP Based Languages 

The theory of FP based languages is still in its infancy. 

Most of the research has been in developing the theory, not on 

designing specific languages. Thus, not many FP based languages 

are discussed in the available literature. Three language 

systems that do exist are described below. 

5.1.1 Berkeley F P  

The Berkeley FP system’ was mentioned briefly in Section 

4.6.1. The language implemented is very similar to the specific 

FP language described by Backus, and thus is similar to ExFP as 

well. The differences between Berkeley FP and Backus’ language 

are primarily syntactical. A l s o ,  the Berkeley language provides 

a greater number of primitive functions. The system was designed 

for experimentation, not for practical programming. 

See B a d e n  and Baden, P a t e l .  
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5 . 1 . 2  pFP 

The language pFP1 is used to describe V.L.S.I. circuit 

design. It is a variant of Backus' FP. The differences between 

pFP and Backus' FP are discussed below. 

One primary difference between the languages is in the 

nature of the data accepted and produced. FP functions operate 

on one input and produce one output. pFP functions operate on a 

sequence of inputs that varies over time and produce a time 

varying sequence of outputs. 

A s  illustration, consider the function +. In FP, this 

function can be applied only to a single pair. For example, 

In pFP, the function can be applied to a sequence of pairs, where 

each pair represents input at a certain time. For example, 

+: <<7, 8 > ,  < l o ,  9>, <1, 2>, < 3 ,  4>, ... > = 
<15, 19, 3, 7, . . . >  

The consequence of this difference in input and output 

values is that a pFP function f is basically equivalent to the FP 

combining form af. The only non-equivalence to this relationship 

is that the pFP function may take a potentially infinite sequence 

as input, while the FP function's input sequence must be finite'. 

Mary Sheeran, "muFP, a language for VLSI design," 1984 
Symposium LISP & Functional Programming, pp 104-112. 

That is, for FP as defined by Backus. For a discussion of 
an extension that allows infinite input sequences, see Tetsuo Ida 
and Jiro Tanaka, "Functional Programming with Streams, " 
Information Processing '83: Proceedings of the IFIP Ninth World 
Computer Congress, Sept 19-23, 1983, pp 265-270. 
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The relationship between a pFP expression and its equivalent 

FP expression can be express using a meaning function, denoted by 

M1. M{f) is equal to the FP equivalent of the pFP function f. 

Thus, the relationship discussed above can be expressed in the 

following way: 

MIfl = a f  

In order to express the relationship between the combining 

forms, the function tran is needed. This is the matrix transpose 

function. It is used to express the conversion of a stream of 

sequences to a sequence of streams. The meanings of pFP 

combining forms is given below: 

constant: 
M{%Yl = a%Y 

construction: 
~ { [ f , ,  . . . ,  f n l I  = tran [M{flI, ..., MlfnI] 

apply to all: 
M{af] = tran aM{f) tran 

insert: 
M{/f] = / ( M { f ]  tran) tran 

condition: 
M{p -> g; h] = a(1 --> 2;3) tran 

[M{PI, MIgI, M(h11 

loop: 
pFP does not provide this combining form 

The other primary difference between pFP and FP is that pFP 

contains the additional combining form p.  This form introduces a 

limited memory to the language. The expression pf means that the 

The notation and definitions are from Sheeran, p 105, 106. 
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next output and next state depend on the current input and 

current state. In a given cycle, the current state is the second 

input. Initially, the state is considered to be the unknown 

value ?.  

To illustrate the use of the p combining form, consider a 

program to represent a shift register cell'. This cell has as 

output its current state, and as input its new state. The pFP 

function for this is the following: 

P [ 2 ,  1 1  

Given the input <O, 1, 0, 0, 1, 0, . . .  >, the output of the 

program would be e ? ,  0, 1, 0, 0, 1, 0, . . .  >. 

The introduction of the new combining form does not 

significantly alter the algebra of programs. Most of the laws 

and theorems that hold for FP, hold for pFP. 

An interpreter for pFP has been written. Also, the language 

has been combined with a functional geometry system2 to produce 

pictures of a design layout. 

5.1.3 F Shell 

The F shell' is not a programming language. Rather, it is a 

command interpreter in the spirit of the C shell and Bourne shell 

Ibid, p 107 .  

Peter Henderson, "Functional Geometry," 1982 Symposium on 
LISP h Functional Programming, pp 179-187 .  

Jon Shultis, "A Functional Shell," 1983 Symposium on 
Programming Language Issues in Software Systems, pp 202-211 .  
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of UNIX’. I t  i s ,  however, based on Backus’ FP. For t h a t  reason, 

it i s  discussed below. 

The da ta  of F s h e l l  programs c o n s i s t  of f i n i t e  sequences of 

c h a r a c t e r s  c a l l e d  d a t a  streams. These streams may be nameless o r  

l a b e l l e d  w i t h  i n t e g e r  va lues .  Also, s eve ra l  s epa ra t e  streams may 

be combined i n t o  one stream with seve ra l  components; such a 

stream i s  c a l l e d  a s t r u c t u r e d  stream. 

The s h e l l  provides  a set of p r i m i t i v e  programs. Each 

p r i m i t i v e  program t akes  a d a t a  stream a s  inpu t  and produces a 

d a t a  stream as output .  

The F s h e l l  has  four  types  of PFOs: composers, s t r u c t u r e r s ,  

s e l e c t o r s ,  and powers. There a r e  t h r e e  types  of composers. The 

f i r s t  of these i s  c a l l e d  composition and i s  s i m i l a r  t o  FP’s 

composition. The d i f f e r e n c e  i s  t h a t  t h e  F s h e l l  composition i s  

evaluated l e f t  t o  r i g h t .  That i s ,  t h e  F s h e l l  expression f g 

i s  analogous t o  t h e  ExFP expression 

g O f .  

The second composer is c a l l e d  source .  The no ta t ion  p<f  

means t h a t  a d a t a  stream is c rea t ed  from f i l e  f and s e n t  a s  i npu t  

t o  program p.  The t h i r d  composer i s  c a l l e d  s i n k .  I t  i s  denoted 

by > f ,  and means t h a t  a d a t a  stream i s  sen t  t o  t h e  f i l e  f .  Thus, 

t o  copy f i l e  f ,  i n t o  f i l e  f, i n  t h e  F s h e l l ,  one w r i t e s  f , < > f , .  

The f i r s t  s t r u c t u r e r  PFO i s  c a l l e d  cons t ruc t ion .  The 

expression [ p , ,  ..., p, ]  c r e a t e s  a s t r u c t u r e d  d a t a  stream, whose 

jth component i s  t h e  r e s u l t  of applying p, t o  t h e  inpu t  stream. 

U N I X  i s  a trademark of AT & T B e l l  Labora tor ies .  
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The second s t r u c t u r e r  i s  product ' .  The expression p1 * . . .  * pn 

t a k e s  a s t r u c t u r e d  stream with n components a s  i n p u t .  I t  

produces a s t r u c t u r e d  stream with n components, where t h e  j t h  

component is t h e  r e s u l t  of applying pj t o  t h e  j t h  component of 

t h e  inpu t .  The t h i r d  s t ruc tu re r  i s  p ro jec t ion .  This  i s  denoted 

by l S t ,  Z n d ,  ..., where t h e  j t h  p r o j e c t i o n  selects t h e  j t h  

component of a s t r u c t u r e d  stream a s  output .  

Three s e l e c t o r s  e x i s t :  a l t e r n a t i o n ,  sum, and l a b e l l i n g .  

A l t e rna t ion  i s  denoted by S p l ,  ..., Pn 2 * This  expression t a k e s  a 

l a b e l l e d  stream a s  inpu t  and produces a s  output  t h e  r e s u l t  of 

applying p j  t o  i t ,  where j i s  t h e  l a b e l .  The sum PFO i s  

i d e n t i c a l  t o  a l t e r n a t i o n  except t h a t  it r e t a i n s  t h e  l a b e l  on t h e  

stream. I t  i s  denoted by p1 + . . . + p n .  The PFO l a b e l  i s  

denoted by  -1 ,  where 1 can be any program t h a t  produces an 

i n t e g e r  a s  ou tput .  

The f i n a l  type of PFO i n  t h e  F s h e l l  i s  t h a t  of powers. Any 

of t h e  t h r e e  ope ra to r s  O ,  *, and + can be used i n  a power. The 

gene ra l  form i s  p"" ,  where R i s  one of t h e  t h r e e  ope ra to r s  and n 

i s  an i n t e g e r .  The expression i s  equiva len t  t o  t h e  program p I3 p 

. . . I3 p ,  where t h e r e  a r e  n p ' s .  

As an example of t h e  u s e  of t hese  PFOs, consider  a program 

t h a t  i s  intended t o  do t h e  following: 

apply p t o  t h e  inpu t ;  then apply program b, i f  b produces 1, 
apply p1 ; i f  b produces 2 ,  apply pz . 

- 
The no ta t ion  used here f o r  product ,  a l t e r a t i o n ,  and l a b e l  

a r e  d i f f e r e n t  than Ib id .  H i s  n o t a t i o n  uses  symbols no t  a v a i l a b l e  
t o  t h i s  author .  
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This program can be written in the F shell as follows: 
0 p -b O <PI 9 P22 

A s  mentioned above, the F shell obeys algebraic laws. The 

reader may enjoy attempting to verify the validity of the 

following representative laws' : 

f o ( g o h ) = ( f o g )  O h  

[fl, ..., f,] O jth = fj if 1 I j I n 

^k O Sg,, ..., gn2 g, 

n2 0 -  fl + - . .  + f, If' O -1, ..., f, 
A major problem with using the F shell as a practical 

command interpreter is that most keyboards are unable to produce 

many of the characters used by the shell2. The notation can be 

converted to standard characters, but this reduces its 

readability. A prototype version of the shell has been 

implemented in this way. Also, research is being conducted into 

developing a graphical representation for personal computers. 

5.2 Non-FP Style Languages 

Because the emphasis in this paper has been on FP style 

languages, languages based on other styles, such as the lambda 

calculus, will be discussed only briefly. The interested reader 

can consult the references mentioned for each language for more 

information. 

5.2.1 LISP 

' Shultis, pp 210-211. 
C l e a r l y ,  this is a problem with all FP languages. 
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LISP is one of the oldest languages still in use. Extensive 

literature on the language has been published, so nothing more 

will be said about it herel. 

5 . 2 . 2  KRC 

The three basic properties of KRC are equational 

As an definitions, pattern matching, and set abstraction' . 
example of equational definitions, the Fibonacci function can be 

defined in KRC in the following manner: 

fib n = 1, n = 1 
= 1 ,  n = 2  
= fib(n - 1) + fib(n - 2), n > 2 

A s  an example of the pattern matching facility, consider the 

definition of a function that adds a list of integers. This can 

be defined in KRC as follows: 

total [ 1 = 0 
total (a : x) = a + total x 

[ ] denotes an empty list. "a : x" matches any non-empty list; 

remainder of the list. The operator ":" denotes construction of 

a list from its two operands. 

The set abstraction facility of KRC allows sets to be 

expressed in much the same way as done in mathematics. As an 

For a simple introduction to the language, see Terrence W. 
Pratt, Programming Languages: Design and Implementation, 2nd 
edition (Prentice-Hall: Englewood Cliffs, New Jersey, 1984), pp 
497-527. The original published discussion of the language was 
in John McCarthy, "Recursive Functions of Symbolic Expressions 
and Their Computation by Machine Part I," CACM, Vol 3 ,  No 4, 
April 1960, pp 184-195. 

a This discussion is from Glaser, et al., pp 180-184. 
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example, the set [[2, 11, [ 3 ,  11, [3, 211 can be expressed in KRC 

as the following: 

I [x, Yl I x, Y <- [l . .  31; x ' Yl 
This definition reads "the set of pairs x and y such that x and y 

are in the range 1 to 3 and x is greater than y." 

That KRC is not based on the FP style of language can be 

seen in the lack of program forming operations. Problems are 

solved by defining new functions and using them in a manner 

similar to traditional languages. 

5 . 2 . 3  HOPE 

HOPE uses equational definitions and pattern matching in 

much the same way as KRC'.  The major differences between the two 

languages is that HOPE also provides a typing mechanism and a 

data abstraction facility. 

The typing mechanism of HOPE is partially implicit and 

partially explicit. The types of functions must be declared; all 

other types are inferred. As an example, the factorial function 

might be defined in HOPE in the following way: 

dec factorial : num -> num; 
factorial(n) <= n * factorial (n - 1) 
factorial(0) <= 1; 

--- 
--- 

This definition means that f a c t o r i a l  accepts a single parameter 

of type num and produces a single result of type num. 

In addition to built in types, HOPE provides a facility for 

users to define their own types. Also, the language provides 

' Ibid, pp 185-195. 
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data abstraction by allowing the operations on defined types to 

be restricted to ones specified in the type definition. 

A s  an example of the use of these facilities, consider the 

following data abstraction of the familiar stack': 

module stacks 
typevar alpha 
pubtype stack (alpha) 
pubconst pop, top, empty, push 
data stack(a1pha) == empty ++ push(alpha, stack(a1pha)) 
dec pop : stack(a1pha) ->  stack(a1pha) 
dec top : stack(a1pha) ->  alpha 
--- pop(push(a,b)) <= b 
--- pop(empty) <= empty 
--- top(push(a,b)) <= a 
--- top(empty) <= error 
end 

A programmer can use this module to declare a stack of any type. 

This stack can be accessed only through the functions pop, top, 

empty, and push. 

A s  with KRC, HOPE provides no powerful program forming 

operations. It is a functional language, but not in the FP 

style. 

5 . 2 . 4  APL 

APL was designed by Kenneth Iverson in the early 1960's'. 

Although it was originally intended as a way to look at 

programming, not as a specific language, implementations of it 

were developed. Today, the language has something of a cult 

following among some programmers. 

Ibid, p 190. 

Kenneth E. Iverson, A Programming Language (John Wiley and 
Sons: New York, 1962). 
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There are some similarities between APL and the functional 

approach being discussed in this paper, but it is not truly a 

functional language. Several of the reasons why this is true are 

mentioned below' . 
First, the language maintains the distinction between 

expressions and statements. Expressions are governed by 

algebraic properties, but statements are not. A large amount of 

programming must be done using statements. 

Second, APL has only three functional forms. This is not 

really sufficient for full functional programming. Also, the use 

of these forms is restricted. 

These two facts mean that APL, although a step in the 

functional direction, is more related to traditional languages 

than to functional ones'. 

5 . 2 . 5  Others 

Other functional languages besides those mentioned above 

exist. These include the following: 

ML : This language was initially designed as a metalan- 
guage for proofs. It has evolved into a general 
purpose language. ML provides strong typing 
through implicit type checking. It is being 
developed at the same university as HOPE, and 
shares many of the same attributes3. 

These reasons are given by Backus in Backus, CACM, p 618. 

For a discussion of the type scheme of APL, see W. E. Gull 
and M. A. Jenkins, "Decisions for 'type' in APL," 6th Symposium 
on Principles of Programming Languages, pp 190-196. 

For more information on ML, see Lennart Augustsson, "A 
Compiler for Lazy ML," pp 218-227, David MacQueen, "Modules for 
Standard ML," pp 198-207, and Robin Milner, "A Proposal for 
Standard ML," pp 184-197, all in 1984 Symposium on LISP & 
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Daisy: This language is similar to LISP. It is based on 
the lambda style. It allows variables, but does 
not have type checking'. 

Poplar: This is an experimental language, designed for use 
in text and list processing. It has properties in 
common with LISP, with the addition of string 
matching facilities' . 

Artic: This language is intended to be used for the 
implementation of real time control systems. Real 
time constraints are expressed as time valued 
functions3. 

' For more information, see Hall, O'Donnell and John T. 
O'Donnell, "Dialogues: A Basis for Constructing Programming 
Environments," 1985 Symposium on Language Issues in Programming 
Environments, pp 19-27. 

For more information, see James H. Morris, "Real 
Programming in Functional Languages" in Darlington, et al, pp132- 
153. 

For more information, see Roger B. Dannenburg, "Artic: A 
Functional Language for Real-Time Control," 1984 Symposium on 
LISP & Functional Programming, pp 96-103. 
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6. CONCLUDING REMARKS 

This paper has presented a survey of the ideas of functional 

programming languages. Not all the possible topics have been 

covered', but enough information has been given to provide a 

suitable background for advanced study. The paper concludes with 

an assessment of the future of functional programming languages. 

In assessing the potential of functional languages, several 

questions need to be answered. These include the following: 

1. Does the functional language style actually offer' the 
advantages claimed for it? 

2. Can practical languages based on the style be 
developed? 

3 .  If so, will such languages be accepted? 

The author's opinions answers to these three questions follow. 

Does the functional language style offer the advantages claimed 
__ for it? 

Section 3 of this paper mentioned seven advantages that 

functional languages have been claimed to have over traditional 

languages. These were the following: 

1. functional language programs are easier to understand 
than non-functional ones 

2 .  functional languages allow the building of new programs 
from existing ones in a hierarchical fashion 

3 .  functional languages encourage the development of general 
programs 

Two particular topics not discussed were mechanisms for 
allowing user defined combining forms, and methods of adding 
history sensitivity. The first issue is more complex than 
thought suitable for this paper; little published research has 
been done on the second. The interested reader should see 
Backus, CACM, and John H. Williams, "Formal Representations for 
Recursively Defined Functional Programs, I' LNinCS107, pp 460-470. 
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4. functional languages allow the expression of inherent 
para1 leli sm 

5. functional languages operate in the same domain as 
programming problems 

6 .  functional languages possess algebraic properties that 
allow proofs of correctness to be conducted in the language 
itself 

7. functional languages encourage architectural innovation 
and are better suited to take advantage of such innovation 
than non-functional ones. 

In the author’s opinion, these advantages are provided by 

the functional language style discussed in this paper. The 

hierarchical nature of programs, the generality of programs, the 

ability to express parallelism, the operation in the problem 

domain, the existence of algebraic properties, and the 

encouragement of architectural innovation have been shown, at 

least in part, in previous sections. Whether or not functional 

programs are easier to understand than traditional language ones 

is almost entirely a matter of opinion. The author believes that 

once the combining forms and primitive functions are understood, 

functional programs are easy to read. 

Can practical languages based on the style be developedz 

Although the functional language style of Backus may offer 

significant advantages in theory, the idea is not very useful 

unless practical languages based on it can be developed. Whether 

or not production quality functional programming languages can be 

created depends on several factors. In particular, two such 

factors are the success of architectural improvements, and the 

development of suitable methods for incorporating knowledge of 
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the past into the languages. Architectural improvements appear to 

be necessary to allow adequately efficient implementations of 

functional languages. A knowledge of past results is certainly 

necessary for applications such as database systems, payroll 

calculations, and word processors. 

The time is perhaps too soon to tell if these necessary 

advances will occur. The architectural research discussed in 

Section 4 . 7  looks promising, but its success is by no means 

assured. The research into history sensitivity appears less 

promising. In fact, the topic was not covered in this paper 

because of the lack of available information. A primary problem 

is to introduce history sensitivity without destroying algebraic 

properties and simplicity. 

Will such languages be accepted? 

Even if practical languages are developed, their success 

depends on their acceptance by the programming community. 

History suggests that the probability of such acceptance is low. 

In 1975, Peter Naur offered the following opinion concerning 

the future of programming language development: 

. . .  the split between the more academic, pure computer 
science oriented study of programming languages and the 
world of practical programming will persist indefinitely; 
the era of influential programming language construction is 
past, FORTRAN and COBOL will retain their dominance ....I 

The ten years since that writing have done little to prove this 

prophecy wrong. The "world of practical programming" is 

Peter Naur, "Programming Languages, Natural Languages, and 
Mathematics," 2nd Symposium on Principles of Programming 
Languages, pp 137-148. 
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extremely resistent to change. To believe that something as 

radically different as functional languages will be accepted by 

this world, is to ignore the last twenty years of history. 

Lest this paper end on such a discouraging note, let it be 

said that history does not always accurately predict the future. 

A large part of the resistance to change may be caused by the 

lack of solid evidence to show that a new language or technique 

is significantly better than existing languages and techniques. 

If functional languages can be developed fully, and if the 

advantages of such languages can be adequately demonstrated to 

the programming community, then, perhaps, they will be accepted. 
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c 
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