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THE GENERAL OPTIMIZATION TASK

The mathematical statement of the general nonlinear optimization problem is

given in Figure i. The vector of design variables, X, includes all those variables

which may be changed by the ADS program in order to arrive at the optimum design.

The objective function F(X) to be minimized may be weight, cost or some other

performance measure. If the objective is to be maximized, this is accomplished by

minimizing -F(X). The inequality constraints gj(X) include limits on stress,
deformation, aeroelastic response or controilabllity , as examples, and may be

nonlinear implicit functions of the design variables, X. The equality constraints

hk(X) represent conditions that must be satisfied precisely for the design to be

acceptable. Equality constraints are not fully operational in version 1.0 of the

ADS program (ref. i) although they are available in the Augmented Lagrange

Multiplier method. The side constraints given by the last equation are used to

directly limit the region of search for the optimum. The ADS program will never

consider a design which is not within these limits.

The ADS program was developed under NASA Research Grant 57910.

FIND THE VECTOR OF DESIGN VARIABLES_ X_ THAT WILL

MINIMIZE F(X)

SUBJECT TO

Gj(X) -<0 J=I,M

HK(X) = 0 K=I,L

xL<xI<X U I=I.,N

Figure i
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ADS PROGRAM STRUCTURE

Figure 2 shows the overall design program structure with the particular

structure of the ADS program on the right. The main program is provided by the

user, as well as the routines to evaluate the objective and constraint functions

(analysis) and their gradients (if available). If gradient information cannot be

supplied by the user, an option is included in ADS to calculate this information by

finite difference. The ADS program is itself a subroutine which controls the flow

of the optimization process. When function or gradient evaluations are required,

control is returned to the calling program. After the information is evaluated, ADS

is called again and the optimization proceeds. This program organization provides

the flexibility for the user to terminate the program any time control is returned

to the main program and then re-start from this point at a later time. This also

provides a convenient means of performing multi-level and multi-discipline

optimization where several modules in the main program call ADS independently. Also,

if during analysis a sub-optimlzation task is performed, this may call ADS, even

though the results become input to a higher level in the overall optimization

process. Within the ADS program a three level structure exists, with the control

routine directing the flow of information. The Strategy level is used if the problem

is to be solved by conversion to a sequence of unconstrained minimizatlons,

sequential linear programming, or other technique whereby the optimization task is

converted to a sequence of problems. The Optimizer performs the actual optimization

task either directly, as in the method of feasible directions, or as a sub-problem

within a Strategy. Finally, the One-Dimensional Search portion performs a line

search to minimize the objective in a direction specified by the Optimizer. The

particular techniques used at each of these three levels are described in the

figures to follow.

USER-SUPPLIED AI)S SYSTEM

Figure 2
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OPTIMIZATIONSTRATEGIES

Figure 3 lists the Strategies available in version 1.0 of the ADSprogram. The
parameter ISTRATis used to designate the strategy to be used. ISTRAT=0would be
used if optimization is to be performed by a direct method such as the method of
feasible directions or if the problem is unconstrained. Options 1-5 are various
forms of Sequential Unconstrained Minimization Techniques. Option 6 is classical
Sequential Linear Programming with move limits to insure stability. Option 7 is
also a form of sequential linear programming, but instead of producing a sequence of
infeasible designs as the optimum is approached, this method produces a sequence of
improving feasible designs. Option 8 is a relatively new algorithm whereby the
Lagrangian function is approximated as a quadratic and the constraints are
llnearlzed. This approach retains the essential nonlinearity of the problem, even
for linear objective functions. Theoretically, a Quadratic Programmingsub-problem
is solved in this method. However, by using a direct method for optimization as
opposed to a special purpose QPoptimizer, someof the theoretical difficulties with
the method are overcome. Early experience with the ADS program has shown that
Sequential Linear Programming is more effective than is usually thought and that
Sequential Quadratic Programmingas coded here is a particularly powerful strategy.

ISTRAT

0

1

2

3

4

5

6

7

8

METHOD
i

NONE. GO DIRECTLY TO OPTIMIZER

EXTERIOR PENALTY FUNCTION METHOD

LINEAR EXTENDED INTERIOR PENALTY FUNCTION METHOD

QUADRATIC EXTENDED INTERIOR PENALTY FUNCTION METHOD

CUBIC EXTENDED INTERIOR PENALTY FUNCTION METHOD

AUGMENTED LAGRANGE MULTIPLIER METHOD

SEQUENTIAL LINEAR PROGRAMMING

METHOD OF INSCRIBED HYPERSPHERES (METHOD OF CENTERS)

SEQUENTIAL QUADRATIC PROGRAMMING

Figure 3
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OPTIMIZERS

The optimization algorithms available in the ADSprogram are listed in Figure
4. The parameter IOPT is used to indicate the optimizer to be used. Options 2, 4
and 5 are used for solving unconstrained problems or for the unconstrained
minimization sub-problem in a Sequential Unconstrained Minimization strategy. When
an unconstrained optimization method is used, the design is still limited by the
side constraints. This insures that, for example, minimum gage constraints are
never violated, even whenusing a Sequential Unconstrained Minimization Technique at
the Strategy level. Two feasible directions algorithms are available for
constrained optimization. These are used for direct optimization of constrained
problems as well as for solving the linear or quadratic programming sub-problem of
strategies 6-8. The Method of Feasible Directions algorithm is essentially the same
as that contained in the earlier program, CONMIN(ref. 2). The Modified Method of
Feasible Directions (ref. 3) is similar to the Generalized ReducedGradient Method,
but is more storage efficient. Also, in the one-dimensional search, this method
uses a least squares technique rather than Newton's method for maintaining
feasibility.

UNCONSTRAINED

IOPT METHOD

2

4

5

FLETCHER-REEVES CONJUGATE DIRECTION METHOD

DAVIDON-FLETCHER-POWELL VARIABLE METRIC METHOD

BROYDON-FLETCHER-GOLDFARB-SHANNO VARIABLE METRIC METHOD

CONSTRAINED

IOPT METHOD

1

3

METHOD OF FEASIBLE DIRECTIONS

MODIFIED METHOD OF FEASIBLE DIRECTIONS

Figure 4
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ONE-DIMENSIONALSEARCH

Figure 5 lists the One-Dimensional Search routines available in ADS.Five
algorithms are available for both constrained and unconstrained problems. The
parameter IONEDis used to identify the algorithm to be used. Options i and 6 are
usually not useful except for special purpose applications. The remaining methods
are different combinations of the Golden Section method and Polynomial
Interpolation. The Golden Section method is normally only useful if function
evaluations are very cheap and if high precision of the one-dimensional search is
desired. While this method is usually applied only to unconstrained problems, it has
been modified to find the constrained minimum for use in ADS. Normally options 4
and 9 are the most efficient and reliable, where the solution is first bounded and
then refined by polynomial interpolation. Oneunique feature of the ADSprogram is
that, if no feasible solution can be found, a design is sought which minimizes the
constraint violations. Thus, on termination, the constraints which must be relaxed
to produce a realistic design are easily identified.

UNCONSTRAINED

IONED MC_UnnHLI_U_

1

2

3

4

5

BOUNDS ONLY

GOLDEN SECTION METHOD

GOLDEN SECTION + POLYNOMIAL INTERPOLATION

BOUNDS + POLYNOMIAL INTERPOLATION

POLYNOMIAL INTERPOLATION/EXTRAPOLATION WITHOUT

FIRST GETTING BOUNDS

CONSTRAINED

IONED METHOD

9

i0

6

7

8

BOUNDS ONLY

GOLDEN SECTION METHOD

GOLDEN SECTION + POLYNOMIAL INTERPOLATION

BOUNDS + POLYNOMIAL INTERPOLATION

POLYNOMIAL INTERPOLATION/EXTRAPOLATION WITHOUT

FIRST GETTING BOUNDS

Figure 5
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ADSPROGRAMOPTIONS

Not all combinations of Strategy, Optimizer and One-Dimensional search are
appropriate. For example, an unconstrained minimization method would not be a valid
optimization technique for use with Sequential Linear Programming. Figure 6 shows
the acceptable combinations of modules, where the numbers correspond to the control
parameters ISTRAT, IOPT and IONED. In this table, an X is used to denote a valid
combination of methods. First, a Strategy is chosen appropriate to the problem at
hand. Next, moving across the row, the Optimizer is chosen from among the valid
options, and finally, moving downthe column, the One-Dimensional search routine to
be used is chosen. An example is shown by the solid line beginning at Strategy
number 5 (the AugmentedLagrange Multiplier Method). The Broydon-Fletcher-Goldfarb-
Shanno optimizer (IOPT=5) is used to solve the unconstrained minimization sub-
problem and the One-Dimensional search is to be performed using polynomial
interpolation after first bounding the solution (IONED=4). It is clear from this
table that a large number of independent combinations of methods are available. It
maybe expected that, as experience is gained with the program, many of the options
will prove not to be useful for practical design and that a few will survive as
preferred options. One of the unique features of the program organization is that
one-to-one comparisons may be madebetween methods by changing only four input
parameters to ADS. No other coding modifications are needed.

OPTIMIZER
STRATEGYl 2 3 4 5

X X X X X
0 X 0 X X
0 X 0 X X
,n X 0 X X

0 X 0 X X

m

ONE-DIM,

SEARCH

1

2

3

4

5

6

7

8

9

10

O--X --9

X 0 X

X 0 X

× 0 X
°li0

0

0 0 0 0 0

0 X 0 X X

0 X 0 X X

0 X 0 X (_)

0 X 0 X X

0 0 0 0 0

X 0 X 0 0

X 0 X 0 0

X 0 X 0 0

X 0 X 0 0

Figure 6
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BLOCKDIAGRAMFORUSINGADS

Figure 7 shows the program organization for using ADS. The user must begin by
allocating array storage for the vector of design variables, constraints, and de-
sign variable bounds, as well as work arrays for use in ADS. Also at this point the
basic control parameters such as the numberof design variables, the options ISTRAT,
IOPT and IONEDand similar parameters are defined. The basic program flow control
parameter INFOis initialized here to -2. Then the ADSsubroutine is called to
initialize all internal parameters to their default values. These include
convergence criteria, finite difference steps and the like. Control is then
returned to the calling program and the user is free to over-ride the default values
of the internal parameters if desired. ADS is then called again and the
optimization process proceeds from here. Whenever function or gradient information
is needed, control is returned to the calling program with INFO=I or 2 respectively.
The user evaluates the needed information and calls ADSagain. This iterative
process continues until the optimization task is complete, at which point ADS
returns a value of INFO=0. All information is transferred to and from ADSvia a
single parameter list. No additional commonblocks or data transfer mechanismsare
required. Any time that control is returned to the calling program, the user may
store the contents of the parameter list on mass storage and terminate the program.
The program may be restarted from here by reading the information back and
continuing the program flow. In the event that the user wishes to use all default
options in ADS, the first call to ADS may be omitted. In this case INFO is
initialized to zero and the optimization proceeds without the first initialization
step.

BEGIN
ALLOCATEARRAYSTORAGE
DEFINEBASICVARIABLES

INFO.,I---2
CALLADS(INFO,ISTRAT,IOPT,IONED,. . )

OVER-RIDEDEFAULTPARAMETERS
WHICHARENOWCONTAINEDIN

ARRAYSWK'ANDIWKIFDESIRED

CALLADS(INFO,ISTRAT,IOPLIONED,. . )

YES

YES _ N O

EVALUATE EVALUATE

OBJECTIVE GRADIENTOF

AND OBJECTIVE
CONSTRAINT AND SPECIFIED

FUNCTIONS CONSTRAINTS

EXIT

OPTIMIZATION
IS COMPLETE

Figure 7
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DESIGNEXAMPLE

Figure 8 gives an example of the ADSprogram for solution of the lO-bar truss
commonly found in the literature. Here no special effort has been madeto formulate
the problem for efficient optimization. The design variables are the membercross-
sectional areas (as opposed to reciprocal variables which would be much more
efficient). The structure is stress constrained, subject to the single loading case
shown. The table gives the optimization results for various combinations of ISTRAT,
IOPT and IONED. The numberof function and gradient evaluations is also given. In
this example, all default parameters in ADSare used and no attempt was made to
"fine tune" the program to this problem. Also, it should be noted that as
experience is gained with the program, these defaults will be modified to improve
efficiency of the general design task. As may be expected, Sequential Unconstrained
Minimization methods required a relatively high number of function and gradient
evalutions. Also, the use of the Golden Section algorithm in the One-Dimensional
search dramatically increases the numberof function evaluations without noticable
improvement in the result. Direct methodsappear to be relatively efficient and the
Sequential Quadratic Programming method is seen to be a particularly powerful
Strategy. Assuming early experience with this method is indicative of its
efficiency for general design problems, this appears to offer an impressive
capability for engineering design. As experience is gained with the program,
further refinements can be expected. The over-all motivation in the development of
the ADS program has been to provide a user-friendly, general, and efficient
tool for a wide variety of engineering design problems of practical interest.

DESIGN EXAMPLE_ THE IO-BAR TRUSS

I00K 100K

ISTRAT IOPT IONED OPTIMUM ANALYSES GRADIENTS

0 1 7 1516,8 305 39

0 1 9 1519,7 120 30

0 3 8 1497.8 489 8

0 3 9 1497,3 114 6

1 2 4 1648,4 114 27

1 4 2 1534,2 384 37

1 4 5 1549,4 109 33

2 4 5 1522.7 133 41

2 5 2 1505,2 528 51

3 4 4 1511.3 211 51

4 5 4 1500,8 209 52

5 4 4 1504,0 210 47

5 5 4 1496,3 235 54

6 3 9 1510.3 20 20

7 3 10 1509.5 47 47

8 1 9 1498,0 28 6

CONMIN 1500.9 104 31

Figure 8
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