NASA Contractor Report 4021 (NASA-CR-4021) CCMPUTATION OF MULTI-DIMENSIONAL VISCOUS SUPERSONIC FLOW Final Contractor Report (Scientific Research Associates, Inc.) 194 p CSCL 01A N87-13496 Unclas 436**71** H1/02 # Computation of Multi-Dimensional Viscous Supersonic Flow R. C. Buggeln, Y. N. Kim, and H. McDonald CONTRACT NAS3-22027 OCTOBER 1986 # Computation of Multi-Dimensional Viscous Supersonic Flow R. C. Buggeln, Y. N. Kim, and H. McDonald Scientific Research Associates, Inc. Glastonbury, Connecticut Prepared for Lewis Research Center under Contract NAS3-22027 Scientific and Technical Information Branch 1986 ## TABLE OF CONTENTS | Page | |-------|--------|------|-----|----|---|-----|----|-----|-----|-----|---|-------------|------|----|----|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|------| | SUMMA | ARY | | | • | • | • | | | • | • | • | | • | | | | | | • | • | • | • | • | | • | • | • | | | • | • | | 1 | | INTRO | DUC | TIC | N | | | • | • | • | | | | | • | • | • | | • | • | • | • | • | • | • | • | • | • | • | • | | • | • | • | 2 | | LIST | OF | SYM | 1B(| oL | S | • | • | • | | | | | • | • | | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 8 | | ANALY | 'S I S | | , | • | | | | • | • | | • | | • | | | | • | • | • | | | • | • | • | • | • | • | • | • | • | • | • | 11 | | SOLUT | CION | OF | , , | TH | E | GC | VE | ERN | 111 | NG | E | QU <i>A</i> | AT I | [O | NS | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 24 | | TEST | CAS | ES | | • | • | • | • | • | | • | • | • | • | • | • | • | • | | • | • | • | • | • | • | • | • | • | • | • | | • | • | 27 | | DISCU | JSS I | ON | A | ND | C | 10: | CI | JUS | SIC | ONS | 3 | • | • | • | • | • | • | • | | • | • | • | • | • | • | • | • | • | • | • | • | • | 45 | | user' | 'S M | IANU | JA | L | • | • | • | • | | • | • | • | • | • | • | • | • | • | | • | • | • | • | • | • | • | • | • | • | • | • | • | 46 | | REFER | RENC | ES | | • | • | • | • | • | | • | 91 | | FIGUE | RES | | • | • | • | • | • | • | | • | 94 | | ጥለይ፣ር | 70 | _ | 150 | # PRECEDING PAGE BLANK NOT FILMED #### SUMMARY A method has been developed for two- and three-dimensional computations of viscous supersonic jet flows interacting with an external flow. approach employs a reduced form of the Navier-Stokes equations which allows solution as an initial-boundary value problem in space, using an efficient noniterative forward marching algorithm. Numerical instability associated with forward marching algorithms for flows with embedded subsonic regions is avoided by approximation of the reduced form of the Navier-Stokes equations in the subsonic regions of the boundary layers. Supersonic and subsonic portions of the flow field are simultaneously calculated by a consistently split linearized block implicit computational algorithm. The results of computations for a series of test cases associated with supersonic jet flow is presented and compared with other calculations for axisymmetric cases. Demonstration calculations indicate that the computational technique has great promise as a tool for calculating a wide range of supersonic flow problems including jet flow. Finally, a User's Manual is presented for the computer code used to perform the calculations. ### I. INTRODUCTION During the past two decades much effort has been expended in developing numerical procedures which can be used as alternatives to solving the full Navier-Stokes equations for certain classes of problems (Ref. 1). These procedures treat a reduced form of the steady state Navier-Stokes equations, often referred to as the 'parabolized Navier-Stokes equations,' as an initial boundary value problem that can be solved by spatial forward marching. The ability to obtain a solution by forward marching the governing equations from an initial streamwise location to some desired downstream location rather than perform a global solution of the governing equations, as is required for the solution of the full Navier-Stokes equations, results in a considerable savings of computational time. Although the amount of savings will depend on the problem considered, the efficiency of the solution procedures and numerous other variables, this savings is the primary motivation for the development of these marching procedures. To devise a set of governing equations suitable for the spatial forward marching of supersonic flows, three steps must be taken. First, a nominal primary flow direction must be identified. Second, a coordinate system must be constructed with one of its coordinate directions closely aligned with the primary flow direction. Third, all diffusion in the primary flow direction must be neglected. These steps when applied to the steady Navier-Stokes equations produce a set of governing equations which is well posed for the spatial forward marching of supersonic flows (e.g. Ref. 2). The introduction of no slip surfaces into a supersonic flow results in the formation of embedded subsonic regions adjacent to these surfaces. When the set of reduced equations, without further approximation, is forward marched with embedded subsonic regions the governing equations are not well posed and hence the solution procedure may become unstable. Even when the flow in this embedded subsonic region is approximated further and governed by what are essentially the boundary layer equations, an instability can still be encountered. This particular instability, which is often referred to as the branching phenomenon, has been the subject of much research (e.g. Refs. 3-8) and the technique used to surpress this instability is a convenient way to differentiate between procedures for solving the reduced form of the Navier-Stokes equations for supersonic flow with embedded subsonic regions. In one of the earliest works in this area Garvine (Ref. 3) demonstrated (for a model problem) the existence of exponentially growing (divergent) terms in the spatial development of a solution of a reduced form of the Navier-Stokes equations when applied to the problem of an inviscid supersonic flow interacting with a viscous boundary layer. The author concluded that for this problem the reduced form of the Navier-Stokes equations was improperly set as an initial value problem, because the interaction dynamics contained upstream "elliptic" influence. In the model problem, if the upstream conditions are not precisely set as to cause the divergent terms to be multiplied by zero, the exponentially growing terms will cause the streamwise pressure gradient terms to grow exponentially large resulting in unrestrained acceleration or deceleration of the flow. In general it is not possible to pick the upstream conditions to negate the exponentially growing modes, hence several investigators have attempted to suppress the unstable (or branching) behavior by further modification of the reduced form of the Navier-Stokes equations for supersonic flows with embedded subsonic regions. Much of the early work on the solution of the reduced form of the Navier-Stokes equations is based on the work of Rudman and Rubin (Ref. 4). Rudman and Rubin solved the equations for the hypersonic flow over slender bodies with sharp leading edges. Based on a order of magnitude analysis they demonstrated that for this class of problems the streamwise pressure gradient term was negligible when compared with the inertia and viscous terms of the streamwise momentum equation. Neglecting the streamwise pressure gradient term together with all streamwise diffusion results in a reduced form of the Navier-Stokes equations that is well posed for spatial forward marching even with embedded subsonic regions and branching was not observed in their calculations. Although this approach does yield a set of equations that is well posed for spatial forward marching, the assumption of negligible streamwise pressure gradient limits the class of flows which can be considered. In a later work Lubard and Helliwell (Ref. 5) proposed a method for preventing branching that involved explicit spatially lagged evaluation of the streamwise pressure gradient term. When marching from the ith to the i+lst streamwise station all streamwise terms (See Fig. 1), except the streamwise pressure gradient, are evaluated by a backward difference. streamwise pressure gradient term is approximated by differencing the streamwise pressure gradient at prior known spatial locations, i.e. at the i-1st and ith station (hence the terminology explicit evaluation). The above authors found that in addition to the frequently encountered problem of instability associated with exceeding some marching direction step size, a further instability is encountered when the step size is reduced below some limit. By examining the eigenvalues of a model set of equations (Ref. 9) they were able to develop a criterion for this minimum step size. (Numerical experimentation with their computer code demonstrated reasonable correlation with their criterion). Numerous flow fields have been successfully predicted using this method (mainly for cone flow) by the authors of Ref. 5 and others (Refs. 10-12), and in these cases evidently the restriction on the minimum marching step size was not a problem in allowing sufficiently accurate results to be obtained. However, the restriction on minimum marching step size is, in principle, not a desirable feature, since it does prevent arbitrary mesh refinement, and thereby the assurance that an accurate unique solution has been obtained. In at least one case (Ref. 9) this minimum step size restriction prevented the authors from successfuly obtaining a solution. In a later technique developed
by Rakich, Vigneron, and Agarwal (Ref. 6) a variant of the technique of Lubard and Helliwell was used to prevent branching. In this particular variant the streamwise pressure gradient term is approximated by an implicit backward difference in the supersonic portion of the flow. However, in the subsonic region only that portion of the streamwise pressure gradient term that can be included without causing branching is evaluated implicitly. The results of a stability analysis similar to that of Ref. 9 also produces a restriction on the minimum allowable step size. When that portion of the subsonic pressure gradient which could not be evaluated implicitly is evaluated explicitly by a lagged technique similar to Lubard and Helliwell, Rakich et al noted that the scheme became unstable. Thus, in order to achieve stability this technique neglected the explicit portion of the streamwise pressure gradient term in the subsonic region, and implicitly took into account only that portion of the term that can be stabily computed. Schiff and Steger (Ref. 7) treat the subsonic streamwise pressure gradient term by what the authors term either a first- or second-order streamwise extrapolation technique in the subsonic regions. The first order technique is equivalent to setting the streamwise pressure gradient term equal to zero in the subsonic region while the second order technique is equivalent to the explicit evaluation of the streamwise pressure term (as was done by Lubard and Helliwell). As with the two previously discussed techniques, these authors also report a restriction on the minimum marching step size that they may take and still retain a stable calculation. Lin and Rubin (Ref. 8) have developed a global relaxation procedure for solving the reduced form of the Navier-Stokes equations. This technique was primarily developed for application to cases where upstream influence is strong. To obtain the upstream influence with the reduced form of the Navier-Stokes equations requires a global iteration or relaxation procedure. The above authors do this by approximating the streamwise pressure gradient term by a forward difference. When marching the solution from the ith to the i+1st station the pressure gradient term is evaluated in terms of the pressure at the i+1st and i+2nd station (the i+1st station is the implicit station; all other streamwise derivatives are backward differenced between i+1 and i). Initially the (unknown) pressure at the i+2nd station is guessed; during subsequent global iterations the previously calculated value is used. Global iteration of the governing equations is continued until the solution converges. Lin and Rubin report that convergence is typically obtained in five to ten iterations for cases with small streamwise pressure gradients (cases run to date have been limited to flow over cones). The authors also report that there is no minimum marching step size requirement with their approach. The purpose of the present investigation is to develop an efficient numerical procedure for the solution of the two and three-dimensional reduced form of the Navier-Stokes equations for high Reynolds number internal flow. The study is limited to cases where the incoming flow is supersonic and the flow inside the internal flow device is, in the mean, supersonic. The existence of embedded subsonic regions adjacent to the surfaces of the internal flow devices is to be accounted for as part of the analysis. Because of the complexity of the physical processes occurring in internal flow devices and, especially in three dimensions, the large number of grid points required (and hence computer time) to accurately resolve these processes, it was decided that a technique that solves the full Navier-Stokes equations would be used only if no suitable alternative could be found. The physics of supersonic internal flow devices is characterized by the formation of shock waves, the growth of boundary layers, and the interaction of these phenomena. Many of the above internal flow phenomena are turbulent and have associated with them large streamwise pressure gradients, e.g., a high Reynolds number incident shock wave-boundary layer interaction. It is to be expected that in regions of such an interaction one would desire to take a small streamwise marching step to accurately resolve the phenomenon. In particular, it might prove necessary to resolve the turbulent boundary layer viscous sublayer (large cross flows can occur in this region) and take marching steps of this order. Reviewing the existing methods for Refs. 4-8 causes one to be concerned that techniques having such a minimum step size might not permit sufficient resolution of the large gradients expected. method of Rudman and Rubin presumes that the streamwise pressure gradient is small in comparison with the inertia and viscous terms. For the cases they considered this is a valid assumption. This is not the case for a shock wave-boundary layer interaction in moderately supersonic flow. The methods of Refs. 5-7 all make an attempt to consider the effect of the streamwise pressure gradient in the embedded subsonic regions. However, they give only an approximate treatment to this possibly dominant term and all of those methods have a minimum marching step size limitation which, in many cases of interest in this study, may not either allow for an accurate or in some cases even a minimally acceptable solution. Subsequently, it will be demonstrated that for a case with a large streamwise pressure gradient the minimum step size size limitation of the order of magnitude found in Ref. 9 was insufficient to accurately resolve the phenomenon. Here we seek a noniterative approach with a consequent reduction in computer cost relative to either the global iteration approach to solving the reduced form of the Navier-Stokes equations or solution of the full Navier-Stokes equation. Further as a prerequisite, we require that there exist no numerical limitation on the minimum marching step and it is desired to keep to a minimum any approximation to the streamwise pressure gradient term. In view of the above, it was decided to develop a numerical procedure for the solution of the reduced form of the Navier-Stokes equations, with special emphasis to be placed upon application to internal flow devices. The remainder of this report will describe that effort. It will consist of (1) a discussion of the analysis used in the study, (2) a discussion of the solution of the governing equations, (3) the results of a series of test cases run to demonstrate the applicability of the analysis and to exercise and to validate the resulting compter code and (4) a user's manual for the computer code, termed PEPSIS. ## LIST OF SYMBOLS | A | Square Matrix of coefficients | |----------------|---| | В | Constant of proportionality | | С | Constant of proportionality | | $c_{\rm H}$ | Nondimensional heat transfer coefficient | | c_p | Specific heat | | D | Column vector whose elements are spatial differential operators | | D: D | Second invariant of the mean flow rate of deformation tensor | | н | Column vector associated with marching direction terms | | J | Jacobian | | L | Linear differential operator | | М | Mach number | | P | Static pressure | | Pr | Prandtl number | | Re | Reynolds number | | s | Source term, distance from the leading edge | | T | Static temperature | | U | Streamwise velocity component | | v | Transverse velocity component | | W | Spanwise velocity component | | x | Distance from leading edge | | V | Velocity | | ప | Damping coefficient | | h | Metric coefficient, enthalpy | | 1 _m | Mixing length | | n
n | Unit vector normal | |----------------|--| | q | Heat transfer | | w | Velocity component | | x | Coordinate direction | | у | Distance from a surface | | y + | Nondimensional distance from a surface | | | GREEK SYMBOLS | | α | Yaw angle | | Υ | Ratio of specific heats | | δ _b | Boundary layer thickness | | η | Blasius similarity parameter | | ĸ | von Karman constant | | μ | Viscosity | | ρ | Density | | τ | Viscous stress tensor | | ∇ | Nabla operator | | Δχ | Marching direction step size | | | Subscripts | | i | ithd direction | | j | j th direction | | L | Laminar | | n | Normal direction | | w | Wall | | R | Reduced | | | | S Sonic line # Subscripts (Continued) | Т | Turbuent, tangential direction | |----------|------------------------------------| | 0 | Stagnation condition | | 1 | Streamwise direction | | 2 | Cross plane direction | | 3 | Cross plane direction | | ∞ | Free stream condition | | | Superscripts | | i | i th streamwise station | | T | Transpose | ## Governing Equations: The fluid dynamic conservation laws of mass, momentum and energy respectively can be written in nondimensional operator form as $$\nabla \cdot \rho \vec{\mathsf{V}} = \mathsf{O} \tag{1}$$ $$\nabla \cdot (\rho \vec{V} \vec{V}) + \nabla P - \frac{\nabla \cdot \tau}{Re} = 0$$ (2) and $$\nabla \cdot (\rho h_0 \vec{\nabla}) - \nabla \cdot \left[\frac{C_P}{Re} \left(\frac{\mu_{\ell}}{Pr_{\ell}} + \frac{\mu_{T}}{Pr_{T}} \right) \nabla T \right] - \nabla \cdot \frac{(\tau \cdot \vec{V})}{Re} = 0$$ (3) This form of the governing equations, often referred to as the full Navier-Stokes equations, requires several auxilliary relationships and models before these equations can be solved. In this study, the stagnation enthalpy, h_0 , is related to the static temperature, T, and the velocity, \vec{V} , through the relationship (assuming constant specific heat) $$h_0 = C_p T + \frac{\vec{\nabla} \cdot \vec{V}}{2} \tag{4}$$ while the temperature, T, pressure, P, and density, ρ , are related by means of the calorically perfect gas equation of stae $$P = \frac{\gamma - I}{\gamma} C_{p} \rho T \tag{5}$$ The stress tensor, T, is modelled by the relationship $$\tau = \mu
\left(\nabla \vec{\mathsf{V}} + \nabla \vec{\mathsf{V}}^{\mathsf{T}} \right) - \frac{2}{3} \mu \nabla \cdot \vec{\mathsf{V}}$$ (6) where the superscript T refers to the transpose of the tensor. The components of the velocity vector, \overrightarrow{V} , are interpreted as the mass weighted mean velocity components and ρ , P and T are the ensemble-averaged density pressure and temperature (Ref. 13). Hence, these equations can be applied to both laminar and tubulent flows if the effective viscosity, μ , is interpreted as the sum of the laminar and turbulent, μ_t , viscosities, i.e., $$\mu = \mu_{\ell} + \mu_{\mathsf{T}} \tag{7}$$ It is assumed that the laminar viscosity can be computed from Sutherland's law, and that the laminar and turbulent Prandtl numbers, Pr_{ℓ} and Pr_{t} are constant. For this study, an algebraic mixing length turbulence model of the form $$\mu_{\tau} = \operatorname{Re} \rho \, \mathbf{I}_{\mathbf{M}}^{\,2} \sqrt{\mathsf{D}:\mathsf{D}} \tag{8}$$ was used where ℓ_m is the algebraic mixing length and D:D is the second invariant of the mean flow rate of deformation tensor (Ref. 14). In this study, the mixing length of McDonald and Camarata (Ref. 15) was used. $$l_{m} = 0.09 \delta_{b} \tanh \left[\kappa \gamma / (0.09 \delta_{b}) \right]$$ (9) Where δ_b is the local boundary layer thickness, κ is the von Karman constant, y is the distance to the nearest wall, and $\sum_{i=1}^{\infty}$ is the sublayer damping term of van Driest (Ref. 16). To obtain what is often referred to as the reduced form or the 'parabolized' form of the Navier-Stokes equations involves approximation of the diffusion terms (both stress and Fourier heat conduction) of Eqs. (2), (3) and (6). This approximation neglects all derivatives of the stress tensor and the Fourier heat conduction terms in a selected 'marching' or 'streamwise' direction. In addition, all streamwise derivatives of the velocity components of the stress tensor are neglected. For example, in a general orthogonal coordinate system the principle and shear stress components can be expressed respectively as $$\tau_{ii} = 2\mu \left(\frac{1}{h_i} \frac{\partial w_i}{\partial x_i} + \sum_{\substack{j=1 \ j \neq i}}^{3} \frac{w_j}{h_i h_j} \frac{\partial h_i}{\partial x_j} \right) - \frac{2}{3} \frac{\mu}{J} \sum_{j=1}^{3} \frac{\partial}{\partial x_j} \left(\frac{J}{h_j} w_j \right)$$ (10) and $$\tau_{ij} = \mu \left[\frac{h_j}{h_i} \frac{\partial}{\partial x_j} \left(\frac{w_j}{h_j} \right) + \frac{h_i}{h_j} \frac{\partial}{\partial x_j} \left(\frac{w_i}{h_i} \right) \right]$$ (11) where $$J = h_i h_g h_g \tag{12}$$ l refers to the streamwise direction and 2 and 3 refer to the cross plane directions, w_i refers to the velocity component in the i^{th} direction and h_i refers to the metric in the i^{th} direction. The approximation neglects all direction 1 derivatives of velocity components in Eqs (10) and (11). Thus, for example, τ_{11} and τ_{13} are approximated by $$\tau_{II} \cong 2\mu \left(\frac{\mathsf{w}_2}{\mathsf{h}_1 \mathsf{h}_2} \frac{\partial \mathsf{h}_1}{\partial \mathsf{x}_2} + \frac{\mathsf{w}_3}{\mathsf{h}_3 \mathsf{h}_1} \frac{\partial \mathsf{h}_1}{\partial \mathsf{x}_3} \right) - \frac{2}{3} \frac{\mu}{\mathsf{J}} \left[\frac{\partial}{\partial \mathsf{x}_2} \left(\frac{\mathsf{J}}{\mathsf{h}_2} \, \mathsf{w}_2 \right) + \frac{\partial}{\partial \mathsf{x}_3} \left(\frac{\mathsf{J}}{\mathsf{h}_3} \, \mathsf{w}_3 \right) \right]$$ (13) and $$\tau_{13} \cong \mu \frac{h_1}{h_3} \frac{\partial}{\partial x_3} \left(\frac{w_1}{h_1} \right) \tag{14}$$ Application of the approximations needed to obtain the reduced form of the Navier-Stokes equations in other coordinate systems is straightforward. Hence, in general, the reduced forms of Eqs. (2) and (3) can be recast as $$\nabla \cdot (\rho \overrightarrow{VV}) + \nabla P - \frac{(\nabla \cdot \tau)}{Re} R = 0$$ (15) and $$\nabla \cdot (\rho h_0 \vec{\nabla}) - \left\{ \nabla \cdot \left[\frac{C_p}{Re} \left(\frac{\mu_L}{Pr_L} + \frac{\mu_T}{Pr_T} \right) \nabla T \right] \right\}_R - \left[\nabla \cdot \frac{(\tau \cdot \vec{\nabla})}{Re} \right]_R = 0$$ (16) where the subscript R refers to the approximated or reduced form of the noted term. The reduced form of the Navier-Stokes equations, Eqs. (1), (15) and (16) is the starting point for the discussion of the governing equations to be used for this study. The intent is to demonstrate that this set of equations is not well posed for solution by spatial forward marching when applied to the class of problems considered in this study, i.e., supersonic flow with embedded subsonic boundary layer regions. Although it does not appear that a rigorous analysis has been obtained for the compressible reduced form of the Navier-Stokes equations, model sets of equations have been investigated and the resuts can be used to give indications of the nature of the compressible reduced form of the Navier-Stokes equations. The Euler equations for compressible flow are one such relevant model system and are of interest here since it is desired to have a stable integration scheme for this system which we can reasonably expect to encounter in those high Reynolds number essentially inviscid regions of the flows considered. It is well known that all characteristics of the Euler equations are real for supersonic flow, and thus it is inferred that these equations are well posed for solution by spatial forward marching (e.g., Ref. 2). Apparently, the supersonic reduced form of the Navier-Stokes equations are also well posed for solution by spatial forward marching because entirely supersonic flow solutions have been obtained using marching techniques (e.g. Ref. 2). In view of the presence of imaginary characteristics associated with subsonic flows, it is inferred that both the compressible Euler equations (Ref. 17) and the incompressible reduced Navier-Stokes equations are unsuitable for solution by spatial forward marching (Ref. 18). The fact that these two sets of equations are ill posed as initial value problems leads one to suspect that the reduced Navier-Stokes equations for mixed supersonic-subsonic flows are also not well posed for solution by spatial forward marching. Examination of the characteristics analysis for the incompressible reduced Navier-Stokes equations shows that the imaginary roots can be affected by the streamwise pressure gradient term (Ref. 6). If this streamwise pressure gradient term is either a priori specified or neglected, the characteristic equations yield only real roots for subsonic flows. Thus, to create a well posed set of governing equations suitable for solution by spatial forward marching, much effort has concentrated on approximation or modification of this term in the reduced form of the Navier-Stokes equations. Efforts to create new sets of equations which may be solved by spatial marching which either approximate the reduced Navier-Stokes equations or permit stable iterations which, upon convergence, represent numerical solutions of the reduced Navier-Stokes equations are reported in Refs. 4-8. In view of the present interest in flows with strong pressure gradients, equation systems which contain approximations to the pressure gradient, in particular the streamwise pressure gradient, are viewed with concern. Equation systems which require global iteration, i.e. repeated streamwise sweeps through the entire flow, yet treat the pressure gradient terms without approximation upon convergence, are of course much more preferrable for this class of problems. The present desire is to make few approximations to the pressure gradient terms yet achieve the computational efficiency of a noniterative forward marching algorithm. A second set of model equations was investigated by Garvine (Ref. 3). In this case, the reduced form of the Navier-Stokes equations is approximated by the spatially hyperbolic Euler equations in the inviscid region, and the spatially parabolic boundary layer equations in the viscous region. behavior of the solution of this combined set of equations, both of which are separately well posed for solution by spatial forward marching in their given flow regimes, was shown to be unstable because of the existence of an exponentially diverging term in the solution. The unstable behavior was caused by the interaction process at the boundary between the two sets of equations. A physical interpretation of the unstable interaction process can be given for the case of an adverse pressure gradient from a supersonic region being impressed on a subsonic region (e.g. a shock wave-boundary layer interaction). The adverse pressure gradient causes the subsonic layer to increase in thickness. The growing subsonic layer in turn causes the supersonic flow to be displaced causing a further increase in the magnitude of the adverse pressure gradient. This process is obviously unstable as there is no restraining mechanism present at the boundary between the subsonic and supersonic regions. The cause of this phenomenon, which is sometimes referred to as a departure or branching behavior, has been encountered in numerous studies of supersonic interacting boundary layers. Note that branching is an entirely different phenomenon than the growing modes which cause the subsonic reduced Navier-Stokes equations to be ill posed for solution by spatial forward marching. The subsonic reduced Navier-Stokes equations possess imaginary characteristics and consequently are ill posed for forward marching, while the two sets of equations analyzed by Garvine are individually well posed for forward marching. Rather, it is the interaction at the boundary between two sets of equations that causes their growing modes. The approach taken in this investigation is to find further approximations which when utilized within the reduced form of the Navier-Stokes equations will produce a set of
governing equations which are well posed for solution by spatial forward marching. It is realized that such further approximations to the Navier-Stokes equations will almost certainly introduce further limitations on the domain of accurate physical representation of the flow. However, it is believed that approximations can be made that will leave the essential physical process of interest intact for a wide range of practical cases. It is further believed, that the increase in computational efficiency which will result from using a noniterative spatial forward marching technique, when compared to current (iterative) techniques for solving the full Navier-Stokes equations, justifies the use of the approximations. The previous discussion of the character of the reduced form of the Navier-Stokes equations in mixed supersonic-subsonic flow gives little guidance for the choice of further modifications or approximations that will yield a set of well posed governing equations. However, three important points were made in that discussion: (1) numerical experience indicates that the compressible reduced equations are well posed for solution by spatial forward marching if the flow is entirely supersonic, (2) the reduced equations are known to be ill posed for solution by spatial forward marching if the flow is subsonic and (3) the use of different sets of governing equations in the supersonic and subsonic flow regions may still be ill posed for solution by spatial forward marching even though each set of equations is by itself well posed in the region in which it is applied. The problem here arises because of the unstable interaction occurring at the boundary between the regions. In this investigation, the strategy taken is to divide the flow into supersonic and subsonic flow regions and to utilize different approximations, resulting in different sets of governing equations, in each region. This aspect of the approach is not unlike that utilized by other investigators (Refs. 5-12), however, the approximations used in obtaining the governing equations in the subsonic region are different than those previously used, and hence the interaction of the two sets of equations at the subsonic-supersonic boundary is also different. In this study, the technique is to utilize the reduced form of the Navier-Stokes equations in the supersonic region(s) of the flow, Eqs. (1), (15) and (16), and what can be considered to be a model set of equations in the subsonic region(s) of the flow. The model set of equations used in the subsonic region(s) is obtained by starting with the reduced form of the Navier-Stokes equations and making appropriate physical approximations in this region to obtain a new set of governing equations such that the coupled system of the inner subsonic flow and the outer supersonic flow are stable when solved as an initial value problem in space. For the problems of interest in this study, high Reynolds number supersonic flow with embedded subsonic regions in internal flow devices, the boundary layer thickness, δ , will in many cases be small with respect to a characteristic vertical dimension of the device. In this investigation, the less restrictive assumption is made that the thickness of the subsonic portion of the boundary layer is small with respect to the vertical dimension. In this subsonic portion of the boundary layer, the usual boundary layer approximations for high Reynolds number flow are certainly valid. (Note, for instance, that at M = 2 a turbulent flat plate boundary layer is supersonic within the viscous sublayer which typically has a nondimensional y+ value on the order of 10. Thus, except at very low Reynolds numbers, the sonic point is at least one order of magnitude or more smaller than the boundary layer thickness). As a result, an order of magnitude analysis of the terms in the reduced form of the Navier-Stokes equations allows the convection and the diffusion terms to be neglected in the subsonic normal (to the wall) momentum equation. This equation can then be expressed as a balance between the normal pressure gradient and the centrifugal (curvature) forces, $\partial p/\partial n = U^2/R$, in 2-D streamline coordinates, where R the streamline radius of curvature, U the streamwise velocity and n the normal to the streamline. In general orthogonal coordinates, $X_1,\ X_2$ and X₃ with corresponding metric coefficients h₁, h₂ and h₃ and velocity components w1, w2 and w3 this equation is expressed as $$\frac{\partial P}{\partial x_n} = (-1)^T \frac{w_T}{h_T} \left(w_3 \frac{\partial h_3}{\partial x_1} - w_n \frac{\partial h_n}{\partial x_3} \right) + (-1)^n \frac{w_I}{h_I} \left(w_I \frac{\partial h_I}{\partial x_n} - w_n \frac{\partial h_n}{\partial x_1} \right)$$ (17) where X_n and X_t respectively refer to the appropriate cross-sectional direction normal to and tangential to wall (n and t have values of 2 or 3; direction l is the nominally streamwise direction). It is further possible to integrate the continuity equation from the wall to an arbitrary point in the subsonic portion of the boundary. This yields in general othogonal coordinates. $$\left. h_{1} h_{T} \rho w_{n} \right|_{S} = - \int_{0}^{X_{S}} \left[\frac{\partial}{\partial x_{1}} \left(h_{2} h_{3} \rho w_{1} \right) + \frac{\partial}{\partial x_{T}} \left(h_{1} h_{n} \rho w_{T} \right) \right] dx_{n} + \left. h_{1} h_{T} \rho w \right|_{W} (18)$$ where again the subscripts n and T refers to the cross flow direction normal and tangential to the wall, s refers to the evaluation at the arbitrary point in the subsonic region and the subscript w referes to the evaluation at the wall. For the class of high Reynolds number flows considered, the boundary layer thickness is assumed to be small and as noted earlier the subsonic portion of the supersonic turbulent boundary layer, $X_{\rm S}$, is usually at least an order of magnitude smaller than the boundary layer thickness. Restricting our attention to flows where the subsonic region is sufficiently small allows the integral in Eq. (18) to be neglected and hence this equation can be approximated by $$\left. h_{l} h_{T} \rho w_{n} \right|_{S} = \left. h_{l} h_{T} \rho w_{n} \right|_{W} \tag{19}$$ For the case of an impermeable wall Eq. (19) further reduces to $$w_n \Big|_{s} = 0 \tag{20}$$ In summary then, Eqs. (17) and (18), the streamwise and tangential components of the vector Eq. (15), and Eq. (16), the energy equation, constitute the model set of governing equations utilized in the embedded subsonic regions. In two-dimensional and axisymmetric flows the terms normal and tangential directions to the wall are unambiguous and are defined as the X2- and X3-directons respectively. For the case where the cross plane is nonaxisymmetric (e.g. a rectangular cross section) ambiguity is avoided by referring to the normal and tangential direction relative to the nearest wall in the subsonic region of the flow. Far from the corners little concern arises from use of the nearest wall approach. The corner region is treated by defining a corner bisector in the subsonic regions and thus allowing the definitions of normal and tangential to change when crossing this line. There are several important features of the subsonic model set of governing equations. First, no approximation was made to the streamwise pressure gradient term (or any other term in the streamwise momentum equation). Hence, the full effect of this term will be felt in the subsonic portions of the flow. In addition, the reduced form of the tangential momentum equation (i.e. the tangential component of Eq. (15)) is unmodified in the subsonic region. This allows the effect of the tangential pressure gradient to be felt in the subsonic regions as, for instance, would physically occur in the case of a glancing shock wave-boundary layer interaction. The assumption needed to modify the normal momentum and continuity equations in the subsonic regions is the relatively unrestrictive condition that the subsonic layer is thin relative to the characteristic transverse dimension of the flow device. For the case of an impermeable wall, this leads to the condition that within the viscous subsonic layer the normal velocity component is negligible, Eq. (20). Since the boundary layer approximation already assumes that the normal velocity is small, this condition can be considered to be a further approximation, to be applied only in the thin subsonic portion of the boundary layer. The importance of the specification of the normal velocity is that a mechanism has now been established to prevent the growing mode caused by the interaction between the subsonic and supersonic layers, i.e., the branching phenomenon. In summary, the new set of governing equations consisting of the reduced form of the Navier-Stokes equations in the supersonic portion of the flow and the model set of equations in the subsonic regions of the flow has, on the basis of numerical experimentation (to be presented herein) been found to be well posed for solution by spatial forward marching for a wide range of practical problems. ## Initial and Boundary Conditions: To uniquely define the problem of interest, it is necessary to specify both initial and boundary conditions. For a spatial forward marching procedure, the initial conditions refer to the set of conditiions that must be specified at the initial marching station Boundary conditions must be set on the boundaries of the cross-sectional marching plane. For the calcualtion of internal flows, two types of initial conditions were utilized in this study. The first, which is primarily used for flows into devices which have sharp leading edges, sets the initial conditions as the free stream conditions. Analysis of the characteristics of the supersonic Euler equations shows that there are five characteristics entering the upstream boundary of the computational domain. Hence, five conditions must be set on this
boundary. In this study those conditions are chosen as the three velocity components, the pressure and the temperature. Usually, but not necessarily, the conditions are chosen to be uniform everywhere in the initial plane. The second type of initial condition is primarily used for cases where information exists at an initial plane such that a reasonable approximation to a complete set of initial data can be constructed. In its most pure form, this would be an initial plane where experimental data were available such that all the initial conditions were known. Usually a limited amount of information is available where, for instance, free stream conditions, a boundary layer thickness, and a skin friction coefficient might be known. In this case a theoretical boundary layer profile of the pertinent variables (velocity components, temperature, pressure, etc.) can often be derived and matched with the free stream portion of the flow. It is to be emphasized that the initial conditions must in some sense be consistent with the governing equations. supersonic flow computations inconsistencies, perturbations, etc. can persist far downstream. As used in this investigation, the boundary conditions utilized on the bondaries of the cross-sectional plane can be divided into three categories: (1) wall conditions, (2) symmetry conditions and (3) external flow conditions. Analysis of the charcteristics of the boundary layer equations shows that four conditions must be specified on walls. For this study, the no-slip conditions are used for the streamwise and tangential cross plane velocity components, i.e., $$\mathbf{w}_{i} = 0 \tag{21}$$ and $$\mathbf{w}_{\mathsf{T}} = \mathbf{0} \tag{22}$$ where again the subscript I refers to the streamwise direction and the subscript T refers to the cross plane tangential velocity direction. For the cross plane normal velocity component either the normal velocity or the normal mass flux are specified, i.e., $$w_0 = w_w \tag{23}$$ $$\rho w_n = \rho_n w_n \tag{24}$$ where the subscript w referes to the specified wall value. The fourth condition used, the thermal condition, is either to specify an adiabatic wall or to specify the wall temperature (a cold or hot wall). The conditions can be specified respectively as $$\mathbf{T}_{\mathbf{w}} \cdot \nabla \mathbf{T} = \mathbf{0} \,. \tag{25}$$ or $$T = T_{\mathbf{w}} \tag{26}$$ where in this case n_w represents the unit vector normal to the wall. In addition, a fifth condition, not required by the characteristic analysis, is used for convenience to close the set of equations. The need for this fifth condition could be removed by the use of one-sided differencing or by applying one of the governing equations at the wall. In this study, the second method was used and the boundary layer approximation to the normal momentum equation was applied at the wall. This can be expressed as $$\pi_{\mathbf{w}} \cdot \nabla \mathbf{P} = \mathbf{0}$$ Studies have indicated that there is little difference between using this equation and the full normal momentum equation (e.g. Ref. 19). The symmetry conditions are meant to be applied on a plane or axis of symmetry. The velocity conditions require that the cross plane velocity velocity conditions require that the cross plane velocity component normal to the axis or plane of symmetry equals zero, i.e., $$\vec{n}_s \cdot \vec{V} = 0 \tag{28}$$ where $\overset{+}{n_8}$ is the unit vector normal to the axis or plane of symmetry and that the first derivatives of the remaining two velocity components equal zero. Two other conditions must be set on the axis or plane of symmetry. Usually the symmetry conditions on pressure and temperature are used, viz. $$\vec{n}_s \cdot \nabla P = 0$$ (29) and $$\vec{h}_{s} \cdot \nabla T = 0 \tag{30}$$ The final category of boundary conditions used in this investigation are those on external surfaces, specifically on the boundary upstream of the cowl surface of a supersonic inlet (Fig. 2). In this case a shock wave is generated by the ramp and passes out of the computational domain upstream of the cowl lip. Upstream of the point where the shock wave passes out of the computational domain, the free stream conditions are appropriate as boundary conditions and downstream of this point the post shock (Rankine-Hugoniot) relationships are valid. Two techniques are commonly used to define shock waves, shock fitting and shock capturing. The shock fitting technique recognizes the failure of Taylor series expansion through the discontinuity so first locates the position of the shock wave, and then enforces the Rankine-Hugoniot conditions across the wave. This can occur either on the boundary or an interior portion of the computational domain. This technique has been used in Ref. 5 to locate the bow shock for external flow cases. For internal flow cases, the shock structure can in many cases become very complex, and attenuated following the 'boundary layer' interactions. Thus, the logic needed to locate the shock waves (especially in three dimensions) can become very complex. In addition, in the case of shock wave-boundary layer interactions, the shock wave at some point in the interaction process ceases being a shock wave and in this region the shock fitting procedure becomes very unclear. The shock capturing technique used in this study allows the shock waves to be formed as a consequence of the solution of the governing equations. Although the presence of the shock wave violates the Taylor series representation of the solution used to construct the numerical derivatives, it is very convenient. Its use in the present study is only justified a posteriori by virtue of the adequacy of the results for the problems considered. Returning to the boundary condition upstream of the cowl, the approach taken here is to find a set of boundary conditions that can be applied on this interior flow 'boundary' that will permit the exterior region to be neglected yet that will allow all disturbances which originate from within the computational domain to pass through this boundary without spurious reflection. The technique used in this investigation is predicted on the concept that in a simple wave region the flow properties remain constant along Mach lines (the presumption here is that the regions fore and aft of the shock wave are simple wave regions). Thus, the first derivatives of the flow variables in the direction of the Mach angle should be small and are here set equal to zero. The technique is termed Mach wave extrapolation and yields the boundary conditions $$\vec{n}_m \cdot \nabla \vec{V} = 0 \tag{31}$$ $$\vec{n}_{m} \cdot \nabla P = 0$$ (32) and $$\vec{n}_{m} \cdot \nabla T = 0$$ (33) where n_m is the unit vector in the direction of the local Mach angle. This technique requires computation of the Mach angle, and has been successfully applied to a number of test cases both by the present authors and the authors of Refs. 20 and 21. The boundary conditions allow the flow upstream of the shock wave to remain undisturbed, and permit the shock wave to pass out of the computatonal domain without reflection. The resulting 'free stream' flow behind the shock very closely approximates the appropriate theoretical post shock values. The govening equations in both the supersonic and the embedded subsonic portions of the flow are simultaneously solved by the consistently split linearized block implicit (LBI) technique described in detail in Refs. 2 and 20. This technique can be logically divided into three parts: (1) linarization of the governing equations, (2) discretization of the resulting set of linearized equations by finite difference approximation of derivative terms and (3) simultaneous solution of the resultant set of linear coupled algebraic equations. Application of the LBI technique to a set of govering equations (and boundary conditions) that is well posed for forward marching is straightforward. It is presumed that a solution is known at some arbitrary ith streamwise station and it is desired to march that solution to the $i + 1^{St}$ station, at some distance ΔX apart (See Fig. 1). Using notation similar to that of Ref. 20 at a single grid point, the system of governing equations can be written in the following form: $$\frac{\partial H(\phi)}{\partial x} = D(\phi) + S(\phi) \tag{34}$$ where ϕ is the column vector of dependent variables (w_1 , w_2 , w_3 , ρ , h_0), H and S are column vector algebraic functions of ϕ , and D is a column vector whose elements are the spatial differential operators which generate all spatial derivatives appearing in the governing equation associated with that element. The solution procedure is based on the following implicit marching direction difference approximations of Eq. (34) $$\frac{H^{i+1} - H^{i}}{\Delta x} = D^{i+1} + S^{i+1}$$ (35) where, for example, H^{i+1} denotes H (ϕ^{i+1}). A local spatial linearization (Taylor series expansion about ϕ^i) of requisite formal accuracy is introduced, and this serves to define a <u>linear</u> differential operator L such that $$D^{i+1} = D^{i} + L^{n}(\phi^{i+1} - \phi^{i}) + \mathcal{O}(\Delta x^{2})$$ (36) Similarly, $$H^{i+1} = H^{i} + \left(\frac{\partial H}{\partial \phi}\right)^{i} (\phi^{i+1} - \phi^{i}) + \mathcal{O}(\Delta x^{2})$$ (37) $$s^{i+1} = s^{i} + \left(\frac{\partial s}{\partial \phi}\right)^{i} (\phi^{i+1} - \phi^{i}) + \mathcal{O}(\Delta x^{2})$$ (38) Eqs. (36) through (38) are inserted into Eq. (35) to obtain the following system which is linear in ϕ^{i+1} $$(A-\Delta \times L^{i})(\phi^{i+1}-\phi^{i}) = \Delta \times (D^{i}+S^{i})$$ (39) and which is termed the linearized block implicit (LBI) scheme. Here A denotes a square matrix defined by $$A = \left(\frac{\partial H}{\partial \phi}\right)^{i} - \Delta \times \left(\frac{\partial S}{\partial \phi}\right)^{i} \tag{40}$$ Eq. (40) is 0 (ΔX) accuracy. It is well known
that the finite difference analogue of the governing equation system may have an associated stability restriction (Ref. 23). For simple equations, the stability criterion can often be analytically obtained, for instance using the Fourier technique of von Neumann (Ref. 23). For complex systems of equations (including boundary conditions) it is often impossible to derive a closed form criterion which can be easily interpreted. In this case, the stability bounds (if they exist) may be determined by numerical experimentation. For this investigation, second order central differences have been used throughout except for the streamwise derivatives (which are represented by first order backward differences although other choices are clearly permissible). These differences are used with the previously described linearized block implicit scheme and a numerical analogue of the governing equation system constructed. As far as can be determined by experimental investigation, there is no stability restriction associated with the resulting scheme. The tests used to substantiate these remarks will be discussed later. To obtain an efficient algorithm, the linearized system, Eq. (39) is split using ADI techniques. To obtain the split scheme, the multidimensional oeprator, L, is rewritten as the sum of two 'one-dimensional' suboperators L_i (i = 2,3) each of which contains all terms having derivatives with respect to the ith-cross plane coordinate. The split form of Eq. (39) can be derived either as in Ref. 20 by following the procedure described by Douglas and Gunn (Ref. 24) in their generalization and unification of scalar ADI schemes, or using the approximate factorization as in Ref. 26. For the present system of equations, the split algorithm is given by $$(A - \Delta \times L_i^i)(\phi^* - \phi^i) = \Delta \times (D^i + S^i)$$ (41) $$(A - \Delta x L_2^i)(\phi^{i+1} - \phi^i) = A(\phi^* - \phi^i)$$ (42) where ϕ^* is the consistent intermediate solution (Ref. 22). If spatial derivatives appearing in L_i and D are replaced by the difference formulae, as indicated previously, then each step in Eqs. (41) and (42) can be solved by a block tridiagonal elimination. Combining Eqs. (41) and (42) gives $$(A - \Delta \times L_{1}^{i}) A^{-1} (A - \Delta \times L_{2}^{i}) (\phi^{i+1} - \phi^{i}) = \Delta \times (D^{i} + S^{i})$$ (43) which approximates the unsplit scheme, Eq. (39) to $O(\Delta X^2)$. Since the intermediate step is also a consistent approxiation to Eq. (39), physical boundary conditions can be used for ϕ^* (Refs. 22, 26). #### IV. TEST CASES The preceding analysis was incorporated into a very general computer program with the acronym PEPSIS. To validate the ability of this computer program to accurately predict flows which are suited for solution by spatial forward marching, a series of test cases were run for which there existed either experimental data, an analytical solution or a numerical solution obtained by another computer program. Calculations were made for both two and three dimensional cases in cartesian, general orthogonal, axisymmetric and nonorthogonal coordinate systems. Both laminar and turbulent test cases were considered. In addition, options within the code were constructed to solve the conventional two dimensional boundary layer equations, and to solve the system proposed by Rudman and Rubin (Ref. 4) and Lubard and Helliwell (Ref. 5) so that results obtained from the present analysis (the reduced form of the Navier-Stokes equations) could be compared with other proposals and conventional boundary layer calculations. The boundary layer option solves the streamwise momentum equation (with specified streamwise pressure gradient) and the continuity and energy equations. The numerical solution procedure for all these options is the same, appropriately reduced to reflect the different sets of governing equations. The only significant numerical difference is that in the boundary layer option the continuity equation is solved by a trapezoidal integration technique to avoid the need to specify a vertical velocity condition at the outer boundary. The boundary conditions used in the boundary layer option were the no slip conditions and appropriate thermal condition at a wall and specified conditions at the outer boundary. ## CASE I - Incompressible Laminar Flat Plate Boundary Layer Initially a low Mach number virtually incompressible zero streamwise pressure gradient laminar flat plate case was run with the boundary layer analysis to determine how that version of the computer code would reproduce the Blasius solution. The case calculated was for a free stream Mach number of 0.1 and a Reynolds number per unit length of 10^5 per meter. The wall temperature was chosen as the adiabatic wall temperature. The computational domain is as shown in Fig. 3. 100 grid points were nonuniformily distributed in the transverse direction with grid points concentrated in the region close to the wall. The initial boundary layer profile was generated from a Blasius solution at an axial location of X/L = 2.0 from the leading edge of the flat plate. (L was chosen to equal 1 meter). The initial boundary layer (point where u/ue = 0.999) was contained within the first 65 grid points corresponding to a thickness of $\delta/L = 0.0267$. The initial displacement and momentum thickness Reynolds numbers were 297.0 and 771.7 respectively. initial profile was marched downstream 500 steps to a streamwise location of X/L = 6.99 at a constant marching step size of $\Delta X/L = 0.01$ (this corresponds to a streamwise marching step size of $\Delta X/\delta = 0.375$ of the initial boundary layer thickness). The calculated streamwise velocity profile at X/L = 6.99 (plotted in terms of the Blasius similarity variable $\eta = Y \sqrt{\rho u_{\infty}} / \mu_{\infty} X$) iscompared with the theoretical Blasius profile in Fig. 4. Agreement with the Blasius profile is excellent. In Fig. 5 the calculated streamwise distribution of skin friction coefficient is compared with the Blasius result. Agreement between the two results is again excellent. of the boundary layer version of the code to accurately predict the Blasius solution is viewed as a prerequisite before more complex cases can be attempted. In addition, since the subsonic layer approximations used in the more general analysis are similiar to the boundary layer equations, the numerical scheme must be able to solve this related set of equations. ### CASE II - Supersonic Laminar Flat Plate Boundary Layer Next both the boundary layer option and the more general analysis were used to predict the laminar supersonic flow over a flat plate. This case was confined to a model fluid having a laminar viscosity proportional to the temperature and a unity Prandtl number. For this case, the Dorodnitsyn-Howarth similarity solution of Ref. 27 can be used as an initial condition and as a means of generating a theoretical downstream solution. The case run was for a free stream Mach number of 5.0 the Reynolds number per unit length was 10^5 per meter, the wall temperature was specified at 25% of the free stream temperature and the reference length, L, was 1.0 meter. One hundred (100) grid points were nonuniformly distributed in the transverse direction with grid points concentrated in the region close to the wall. initial profile was specified at a streamwise location of X/L = 2.0 from the leading edge. The initial displacement and momentum thickness Reynolds numbers were 297.0 and 771.7 respectively. The initial boundary layer profile was contained within the first 68 grid points corresponding to a boundary layer thickness of $\delta/L = 0.0359$. The subsonic portion of the initial boundary layer was contained within the first 25 grid points corresponding to a subsonic thickness of 6.55% of the boundary layer thickness. Both the boundary layer and the more general analysis versions of the computer code were utilized to march the initial solution downstream in 500 equal steps of $\Delta \dot{x}/L = 0.01$ (corresponding to a Courant number of 0.81) to a streamwise location of X/L = 6.99. The boundary conditions for the boundary layer version were the same as for the previous case except that the wall temperature was now specified. The more general analysis utilized the no slip conditions, specified zero normal pressure gradient and specified temperature at the wall and Mach line extrapolation at the outer surface as boundary conditions. The streamwise velocity profiles (plotted at X/L = 6.99 in terms of the Blasius similarity variable $n = y \sqrt{\rho u_\infty / \mu_\infty X}$) predicted by both the boundary layer and the more general analysis are compared with the theoretical profile in Fig. 6. As can be seen, the agreement is excellent as the calculations and the theoretical solutions are indistinguishable from one another. In Fig. 7 the calculated streamwise distribution of surface skin friction coefficient is compared with the theoretical values. As can be seen the agreement between the boundary layer and more general analysis and the theoretical distribution is excellent. Similar excellent agreement can also be observed in the plot of the streamwise distribution of momentum thickness Reynolds number, Re $_{\Theta}$ (see Fig. 8). The purpose of the above case was to demonstrate that when the interaction effects of displacement are negligible the more general analysis yields approximately the same results as a boundary layer analysis (in this case the boundary layer profile, a local property - the skin friction coefficient and an integrated property - the momentum thickness Reynolds number were compared). The inference is, of course, that the assumptions utilized to make the governing subsonic equations of the more general analysis well posed for solution by spatial forward marching did not compromise the physics of the flow. The case chosen was a high Mach number flow with a highly cooled wall
where the displacement effects were expected to and evidently did have only a small influence on the boundary layer flow. ## CASE III - Supersonic Turbulent Flat Plate Boundary Layer The next case considered was the supersonic turbulent flow over a flat plate. As with the previous case solutions were obtained with both the boundary layer and the more general analysis. The energy equation was approximated by assuming constant stagnation enthalpy. Boundary conditions were the same as used for the previous case. The method of Maise and McDonald (Ref. 28) was applied to the incompressible Musker profile (Ref. 29) to obtain both an initial compressible flow condition and as a basis for comparison with the calculated downstream results. For this test case, the free stream Mach number was chosen as 3.0, the Reynolds number per unit length was 10⁵ per meter and the reference length, L, was 1.0 meter. An initial boundary layer thickness of $\delta/L = 0.1365$, a momentum thickness Reynolds number of 934.6, and a skin friction coefficient of 2.5×10^{-3} were assumed. 50 grid points were nonuniformly distributed in the vertical direction with the initial boundary layer encompassing 17 grid points. subsonic portion of the initial boundary layer had a thickness of 0.01152L and was contained within the first 4 grid points. The corresponding subsonic nondimensional distance $y^+ = \rho_w y u_T / \mu_w$ was 9.5. The initial profile was located at a value of X/L = 1.0 and was marched downstream in 350 unequal steps to a downstream location of X/L = 180. The initial step size was $\Delta X/L$ = 0.15 corresponding to a Courant number of 2.88. Results from the test case are presented in Figs. 9-12. In Figs. 9 and 10 the skin friction coefficient vs. the momentum thickness Reynolds number results generated by both versions of the computer code are compared with results from the transformed profile of Musker. Except for some relatively minor deviations near the initial station the agreement is good for both cases. It is believed that the minor deviations in this region are due to the numerical method adjusting to the given initial profile (which for convenience assumed zero initial transverse velocity). The transformed generalized velocity defect predicted by both versions of the code was compared with those given by the analytic Musker profile in Figs. 11 and 12 respectively. As can by seen from these figures the theoretical and calculated agreement is good. ### CASE IV - Hypersonic Laminar Corner Flow The fourth case considered was that of the hypersonic laminar strong interaction flow in a 90° corner formed by two sharp flat plates aligned with the free stream. A schematic of the flow system is shown in Fig. 13 along with the prescribed coordinate system. A viscous layer starting near the leading edge forms the continuum merged layer; the strong interaction regime appears downstream with a discrete boundary layer, inviscid region and shock wave structures. In the corner region the two layers which form on each of the plates merge together and it is this region in particular that is examined here. The computational study was conducted at a free stream Mach number of 11.2 and a Reynolds number of 5.9×10^5 per meter. The reference length, L, was chosen as the height and width of the computational domain. 0.134 meters. This case was experimentally studied by Cresci (Ref. 30). The free stream and wall temperature were 361°K and 305.55°K respectively. determine the distribution of cross plane and streamwise grid points necessary to adequately resolve the physics of this case, the two dimensional analog of this case was first run, i.e., hypersonic laminar flow over a flat plate. Using criteria determined from running the two dimensional case, it was decided that the cross plane would require a 50 × 50 mesh of grid points. Grid points were packed in the vicinity of the walls and the shock region (see Fig. 14). The boundary layer option is inappropriate for this and subsequent cases and so was not run. The more general analysis was forward marched 120 streamwise steps corresponding to a streamwise location of X/L = 1.316. For the first 100 steps (corresponding to a Courant number of 0.286) the step size, ΔX , was kept constant at $\Delta X/L = 0.01$; thereafter the step size was allowed to increase by 5% per step. In the calculation, uniform free stream conditions were used as initial conditions. After marching the free stream conditions for two streamwise steps, the flow encountered the leading edge of the corner and the flow was allowed to naturally develop. In this approach the leading edge singularity is ignored and smeared over by the computational scheme. The governing equations used for this case were the three momentum equations, the continuity equation and the energy equation. The no-slip conditions, the zero pressure gradient condition and specified temperature were used as the wall boundary conditions. On all other boundary surfaces the symmetry conditions were imposed. Fig. 15 presents the comparison of the calculated and experimental wall pressure distribution normal to either of the two flat plates (i.e. in the Z direction) at streamwise location X/L = .990 corresponding to an interaction parameter, χ = 5.1 (χ = $C^{1/2} M_{\infty}^{3}/R_{\infty}^{1/2}$, R_{∞} = $\rho_{\infty} \; u_{\infty} X/\; \mu_{\infty}$ where C is the constant of proportionality between viscosity and temperature and X is the distance from the leading edge). It can be seen that $\chi \propto 1/\chi^{1/2}$, Ref. 31. Considering the uncertainties in the experimental data, the calculated wall pressure agrees very well with the measurements both in the location of the peak pressure and the general form of the pressure distribution. Fig. 16 compares the Stanton number $C_{\mbox{\scriptsize H}}$ where $C_H = q_w/[\rho_\infty U_\infty(h - h_w])$ at streamwise location X/L = or $\chi = 8.2$. general the agreement is good, with the analysis showing a slightly thinner peak heating region. Fig. 17 shows the comparison between computed and measured skin friction coefficient at X/L = 0.990 or $\chi = 5.17$. discrepancy between the data and the calculation is large, although the general form of the curves are similar. Since it was not clear why such a large discrepancy occurred, the original source of the data (Ref. 30 and 32) were reviewed carefully to determine possible sources for such disagreement. In Ref. 30 it is reported that the skin friction coefficient was estimated by using the gradient of axial velocity normal to the wall which was calculated from the measurements of the total temperature and Mach number distributions in the corner regions. Furthermore, it was found that the nearest measuring station was approximately 0.1 cm from the wall. Thus, for the purpose of comparison with the data, it was felt to be reasonable to calculate the predicted skin friction coefficient in a like manner by using the numerically calculated velocity gradient normal to the wall with the first grid point 0.1 cm off the wall. As is shown in Fig. 17 (dotted line) this calculation produced a skin friction coefficient distribution that is in much better agreement with the experimental data. Fig. 18 shows the streamwise development of the stagnation pressure isobars. The development of the merged region, separation of the shock wave from the viscous region and the complex corner flow structure are easily identified as the flow proceeds downstream. CASE V - Three-Dimensional Glancing Shock Wave - Boundary Layer Interaction A typical flow phenomenon occurring in internal supersonic flow is the interaction of a sidewall boundary layer with a cowl generated glancing shock wave. This flow configuration gives rise to a strong interaction region in the corner between the sidewall and the cowl resulting in the formation of a corner vortex as the flow proceeds downstream. A well documented extensive experimental investigation of the phenomenon has been performed by Oskam, Vas and Bogdonoff and is reported in Ref. 33 and Ref. 34. Fig. 19 schematically depicts the flow. A supersonic turbulent boundary layer is produced on the walls of the test section. A shock generator in the form of a sharp edged plate is mounted vertically between the tunnel floor and ceiling and turned to some desired angle, o, to the incoming flow. The glancing shock formed by the generator then interacts with the boundary layer formed along the floor of the test section. For the case under consideration in this study the plate was inclined at $\phi = 10^{\circ}$ to the free stream which had a Mach number of 2.94. The pre-interaction boundary layer thickness was 1.40cm and the Reynolds number based on that thickness was 9.68×10^5 . For this case experimental data were obtained at three stations (see Fig. 20). The mean flow data taken were static pressure (cone-cylinder proble), stagnation pressure (cobra probe), total temperature (theremocouple probe) and yaw angle (cobra probe). The yaw angle, a, in the context of the coordinate system of Fig. 20 is defined as $$\alpha = \tan^{-1}\left(\frac{v}{u}\right) \tag{44}$$ where u is the streamwise velocity and v is the velocity component perpendicular to the wind tunnel side wall. The cross-sectional area of the test section in 8 x 8 inches, and hence the reference length, L, was chosen as 8 inches (20.32 cm). The computational domain chosen for this calculation consists of the region starting at X = 2.98 cm, i.e., X/L = 0.147 upstream of the leading edge of the shock generator and proceeding to a distance of X = 25.14 cm, i.e., X/L = 1.237 downstream of the leading edge. Because of the vertical symmetry, the computation only had to be made in the lower half of the test section. The spanwise domain was bounded by the shock generator on one surface, and a free stream boundary located far enough away such that the
shock wave will not exit through this surface for the streamwise extent of this computation. The coordinate system used for this calculation was generated by using a Schwarz-Christoffel transformation technique of Anderson (Ref. 35) to generate a set of conformal coordinates. The initial conditions were calculated by assuming a mixture of a boundary layer profile on the floor of the test section and free stream conditions elsewhere. The initial boundary layer velocity profile was calculated by the method of Maise and McDonald (Ref. 28) with a transverse velocity set to zero. The pre-interaction boundary layer thickness of 1.40 cm ($\delta/L = 0.0689$), a skin friction coefficient of 1.2×10^{-3} , a momentum thickness Reynolds number of 3 x 10⁻⁴, and a wall temperature of 297° were used to calculate the profile. The initial enthalpy and temperature profiles were calculated by use of the modified Crocco profile (Ref. 36). Boundary conditions on the shock generator surface, and the floor of the test section are the no-slip conditions for the three velocity components, specified temperature for the termal condition (279°K for the test section floor and 236°K for the shock generation surface), and imposition of the normal pressure gradient equals zero condition. The two above surface temperatures are nominally average values of these parameters during a run. Due to the nature of test facility, the free stream stagnation temperature decreases on the order of 55°K during a run. This causes the surface temperature to also vary; however, since the shock generator has a low heat capacity, its temperature decreases more rapidly than the test section floor temperature, and thus the above temperatures are the mean temperatures during the fun. This time-dependent nature of the experiment will undoubtedly lead to some (undetermined) error in assessing the values of the experimental data. boundary conditions on the bounding surface upstream of the leading edge of the shock generator as well as the two other boundary surfaces (the plane of symmetry and the surface opposite the shock generator) utilize symmetry boundary conditions. The mixing length model is based on minimum distance to the nearest wall, in this case the distance from a surface is taken to be the minimum of the distance to either the shock generator surface or the test section floor. The laminar and turbulent Prandtl numbers used for this calculation were 0.74 and 0.90, respectively. The initial solution was marched downstream 400 stations at a computational step size that varied from a minimum of $\Delta X/L = 0.002$ in the vicinity of the tip of the shock generator to a maximum of $\Delta X/L = 0.005$ further downstream. At the initial plane, this minimum step corresponds to a physical distance of approximately $\Delta X/L = 0.02$ or a Courant number of 8.70. The cross plane utilized a 40 x 40 grid point strucutre with grid point packing about both the shock generator surface and the test section floor. As was the case for the previous calculation, the shock wave was generated as part of the solution rather than as part of the initial profile. The equations solved in this case were the three orthogonal momentum equations, the continuity equation and the energy equation. Results in the form of calculated and measured pitot pressure, static pressure, total temperature and yaw angle are presented in Figs. 21-29. Pitot pressure measurements were obtained at the four measuring stations shown in Fig. 20, static pressure and total temperature at two stations and yaw angle at three stations. Agreement between the calculations and the data is excellent both from a qualitative and quantitative perspective. (Data at a value of YG = .25 in is within the wind tunnel floor boundary layer. All other data is outside the boundary layer.) The agreement between the calculated and experimental static pressure (Figs. 21 and 27) indicates proper placement of the shock wave. Results at the streamwise station X = 7.60 in vertical distances from the shock generator of 2.75 and above (i.e. values of YG (Fig. 20)) there is some minor deviation between the calculation and experiment. This is probably due to some smearing of the shock wave as it was in this region that the fewest number of transverse grid points were used. The pitot pressure profiles (Figs. 23-26) again show overall good agreement between the calculation and data. The pitot pressure can be viewed as a composite variable which measures the level of the static pressure as well as the boundary layer streamwise velocity profile. The near wall data values of pitot pressure expecially in the corner region show some deviation from the calculated values. Comparisons between data and calculated values of the yaw angle are shown in Figs. 27-29. The agreement is excellent both qualitatively and quantitatively throughout. Some minor deviations can be seen within the boundary layers. However, when one considers that it is usually more difficult to accurately calculate the cross flow velocity components than the streamwise velocity component, the amount of deviation must be considered minimal. The yaw angle distribution is one means of determining both the position and strength of the corner vortex which is located in the corner region and grows as the flow proceeds downstream. The ability to accurately calculate the yaw angle, therefore, implies an ability to accurately calculate the strength and location of the vortex. Referring back to the statement about the local maximum in the total temperature, it can be seen from examining the yaw angle distribution that the local maximum in total temperature occurs in the vicinity of the edge of the vortex associated with the shock wave. CASE VI - Supersonic/Turbulent Flow in a Variable Area Ratio Duct The next test case considered was the two-dimensional turbulent flow through a channel of varying cross-section. The geometry and computational mesh used for this calculation is shown in Fig. 30. For this case, a nonorthogonal coordinate system was utilized. The streamwise coordinate is obtained by using a $Y/\delta(X)$ transformation, where $\delta(X)$ is the equation of the height of the top surface taken normal to the lower, flat surface. The equations solved were the transformed Cartesian streamwise and transverse momentum equation and the transformed continuity equation. The stagnation enthalpy was assumed constant. Boundary conditions on both surfaces are the no-slip conditions and zero normal pressure gradient. The flow conditions for this case were a free stream Mach number of 1.9 and a Reynolds number per unit length of 4.64×10^7 per meter. The reference length, L, is taken as the minimum distance between the upper and lower surfaces, i.e., 0.01018 meters. Ninety-nine (99) grid points were utilized in the transverse direction with packing in the vicinity of the two walls. The marching step size was taken at a constant value equal to $\Delta X/L = 0.01$ (corresponding to a Courant number of 1.37). The initial profiles on both surfaces were again generated by using the method of Maise and McDonald (Ref. 28). The boundary layer thickness on the lower and upper surfaces were $\delta_1/L = 0.06074$ and $\delta_2/L = 0.12149$, respectively. The corresponding skin friction coefficients were 3.94 x 10^{-3} and 3.32 x 10^{-3} . Corresponding momentum thickness Reynolds numbers were 400 and 750, respectively. These values were the same as were used in the calculation of Ref. 38. In Ref. 38 the same prediction was performed by numerically solving the full Navier-Stokes rather than with a reduced form as is done here. Figure 31 shows the comparison of the upper surface static pressure distribution calculated by both the spatial forward marching analysis and the Navier-Stokes code. Initially, the agreement between the two predictions to good, but the forward marching procedure predicts a higher peak pressure in the compression region and a corresponding greater expansion further downstream. The differences of the two methods in this region could be due to the neglecting of the streamwise diffusion in the forward marching analysis (and hence the neglecting of upstream influence). The difference could also be due to the higher level of accuracy obtained by the forward marching procedure due to the use of a finer streamwise grid structure than was used in the Navier-Stokes analysis. The forward marching run was terminated as the shock wave approached the lower wall due to the formation of a suddenly expanding subsonic region near the lower wall. The streamwise location that this phenomenon occurred was approximately the same location that the Navier-Stokes analysis predicted the existance of a Mach stem, and hence a corresponding suddenly expanding subsonic region. Although the forward marching procedure cannot calculate through such a region, it is significant that at least in this case, the analysis predicted the initial formation of such a region. VII - Supersonic Turbulent Shock Wave-Boundary Layer Interaction A well-documented experimental investigation of a shock wave-boundary layer interaction flow has been made by Rose (Ref. 36). A schematic of the experimental apparatus is shown in Fig. 32. A conical shock wave is generated by a 9° half angle cone situated in the center of an axisymmetric test section of radius, L=2.64 cm. The shock wave interacts with a turbulent boundary layer on the wall of the test section. The free stream Mach number was 3.88 and the Reynolds number based on the pre-interaction boundary layer thickness of 0.51 cm was 8.7 x 10^4 . Experimental data were obtained in the turbulent boundary layer on the wall of the test section in the vicinity of the interaction region. The mean flow data consists of measured pitot and total temperature profiles and surface static pressure distribution. The cone half angle was chosen to produce a shock strength
near to that required to produce streamwise separation. The computational domain for this calculation consists of the transverse region between the cone surface and the test section wall starting at the streamwise position X/L = 0.364 upstream of the cone tip and extending downstream X/L = 5.053. Because the cone is placed in the center of the axisymmetric test section the resulting flow is axisymmetric, and hence it is only necessary to solve the usual axially symmetric set of governing equations. A conformal coordinate system was generated by means of the previously discussed Schwarz-Christoffel transformation technique of Anderson (Ref. 35). The initial conditions consist of a turbulent boundary layer on the test section wall generated by the method of Maise and McDonald (Ref. 28). The boundary layer thickness was 0.51 cm, ($\delta/L = 0.1923$), the skin friction coefficient was 1.72×10^{-3} , the momentum thickness Reynolds was 2000, and the wall temperature was 277.8°K. The initial enthalpy and temperature profile is calculated using the modified Crocco-Busmann profile (Ref. 37). Finally, the pressure on the initial plane is assumed constant at the test section free stream value. The equations solved were orthogonal axisymmetric streamwise and transverse momentum, continuity and energy equations. Boundary conditions on the cone surface and the test section wall are identical, i.e. no-slip for the velocity components, a specified wall temperature of 277.8°K and zero normal pressure gradient. On the axis of symmetry upstream of the cone tip, symmetry conditions are imposed. The laminar and turbulent Prandtl numbers were set to 0.71 and 1.0, respectively. The initial solution was marched downstream 800 stations at a constant computational step size of $\Delta X/L = 0.01$ corresponding to a Courant number of 0.42. At the initial station this corresponds to a physical step size that is 1% of the distance from the tip of the cone to the test section wall. For this calculation, 99 transverse grid points were utilized with packing about the cone and test section wall. It is to be noted that the shock wave generated by the cone is not input as an initial condition. Rather, the shock wave is generated as a result of the coordinate system, the governing equations and the applied boundary conditions. Results in the form of calculated and measured pitot pressure are presented in Fig. 33. The experimental data were obtained at equally spaced streamwise stations in the vicinity of the interaction. Basically, the first three profiles are in the pre-interaction region and the remaining are in the interaction and post interaction regions. The incident shock wave can be seen in the pitot pressure profile plots (Fig. 33), at the second and third data stations. At the sixth and subsequent data stations, the shock wave reflects off the boundary layer and proceeds back towards the cone. As can be seen from Fig. 33, the calculated and measured values of pitot pressure are in substantial agreement. Qualitatively, they agree at all data stations. Qualitatively the agreement in the pre-interaction and throughout most of the interaction region is excellent. The calculation does predict a slightly thicker (on the order of 10%) emerging boundary layer thus resulting in some disagreement between the calculated and experimental pitot pressures in the outer portions of the boundary layer at the downstream stations. This can perhaps be attributed to the use of a constant boundary layer thickness in the turbulence model of Eq. (9). To date, no attempt has been made to use a varying boundary layer thickness in the turbulence model. Initially, the wind tunnel boundary layer had four grid points within the subsonic portion of the layer (correspondig to 0.004% of the distance between the wall and the axis of symmetry). During the interation process, the adverse pressure gradient causes the flow to decelerate. At one point the subsonic portion of the boundary layer was contained within 12 grid points corresponding to 2.1% of the distance between the cone and the wind tunnel wall. Numerical simulation of the Rose experiment were also performed with the computer code constructed to perform on option the calculation according to the method of Rudman and Rubin (Ref. 4) and Lubard and Helliwell (Ref. 5). It will be recalled that Rudman and Rubin neglected the streamwise pressure gradient in their procedure while the Lubard and Helliwell technique used explicit spatial lagging for the calculation of the streamwise pressure gradient term. The Rudman-Rubin approach was not proposed for use in this type of flow (it was proposed for hypersonic flow over highly cooled walls where the streamwise pressure gradient is negligible with respect to the other terms of the momentum and energy equations). Here it is used only to give perspective to the role that streamwise pressure gradient term plays in the flow of interest. For both techniques the linearization of the governing equations, their finite difference approximation and solution of the resultant set of linear algebraic equations was achieved by the same method as described in the previous section, i.e., the same method as was used to solve the governing equations of the present analysis. Although this numerical method of solving the governing equations was not used by either Rudman and Rubin or Lubard and Helliwell, the governing equation and finite difference representation of derivatives, grid point distribution, boundary conditions and initial conditions were the same. Hence, the only factor of consideration is the governing equations themselves. Results for the simulation of the Rudman and Rubin techniques are presented in Fig. 34. At this first streamwise data station the calculated boundary layer profile agrees well with the experimental data as they should since at this point, i.e., in the preinteraction region, the streamwise pressure gradient is small. However, at the third streamwise station the calculated shock wave location noticeably lags the data, and as the flow proceeds downstream the calculated flow bears little resemblance to this data. It should be re-emphasized here that the Rudman and Rubin technique was not developed for this problem and that the results indicate only that this type of approach is not satisfactory for predicting typical flow phenomena that occur in internal flow devices. Using the method of Lubard and Helliwell no stable calculation could be obtained with any marching step size used. The calculations displayed the well known symptoms of branching, i.e., a large increase in pressure was predicted which in turn causes a strong streamwise recirculation zone to form. Initially this calculation was run with a streamwise marching step of 0.01% of the reference length, L (the same as was used for the general analysis and the Rudman and Rubin calculation). Subsequent calculations using a marching step as large as 10% of the reference length were attempted, but these calculations were also unstable. The step size of 10% of the reference length corresponds to approximately twice the stable marching step size predicted by Lubard and Helliwell in Ref. 9. This is not surprising as the authors infer that their criterion is only approximate. No step sizes larger than 10% were used as it was felt that streamwise step sizes of this magnitude are surely too large to adequately resolve the interaction process. The failure of this method to give a stable solution supports the previously stated objection that methods that have a minimum step size criterion may not be acceptable for flow situations of interest where large streamwise pressure gradients exit. It is to be expected, although it has not been demonstrated here, that the other methods which have a similar minimum step size criterion; would also not give a stable solution for this case. #### VI - Axisymmetric Inlet The last two test calculations performed under this effort were for the Boeing axisymmetric mixed compression type inlet. Details of this inlet and the experimental test conditions are available in Ref. 39. A schematic of the inlet is provided in Fig. 35. The test conditions were for a free stream Mach number of 3.5 with a Reynolds number (based on the lip diameter) of 2.8 x 10^{-6} . The reference length L, was chosen as half of the lip diameter of 49.723 cm. Calculations were performed at both 0° and 3° angle of attack. Surface contours of the centerbody and cowl are listed in Table 1. At the design Mach number of 3.5, the centerbody is in the fully retracted position providing a capture mass-flow ratio of unity. The axisymmetric centerbody's half angle is initially inclined at 10° to the horizontal. The Schwarz-Christoffel transformation technique of Anderson (Ref. 35) was used to generate a conformal coordinate system for this inlet (see Fig. 36). computational domain consisted of the region between the centerbody and the The upstream limit of the computational domain was chosen to be slightly upstream of the leading edge of the centerbody; the downstream extent terminated downstream of the geometric throat. For the 0° angle of attack case the flow is axisymmetric and hence only the axisymmetric equations had to be solved. In this case, the equations solved were streamwise and transverse momentum, continuity and the energy equations. Ninety-nine (99) grid points were used in the transverse direction with grid packing in the vicinity of the centerbody and the cowl surface. For the 3° angle of attack case, the flow is three-dimensional. However, a plane of symmetry exists and hence the computation only has to be made in the half plane. In this case, streamwise, radial and circumferential momentum, continuity and energy equations had to be solved. Fifty radial grid points were used for the 3° case with grid packing in the vicinity of the centerbody and the cowl surfaces. Nineteen equally spaced grid
points were used in the circumferential direction (corresponding to 10° increments). The boundary conditions on both the centerbody and the cowl surface were the no-slip conditions for the velocity components, zero normal pressure gradient and the adiabatic wall condition. The effects of bleed (which was utilized in the experiment) were not considered for these two cases. On the free surface corresponding to the upstream extension of the cowl surface, Mach line extrapolation was utilized. Since the calculation procedure was initiated upstream of the leading edge of the centerbody, a boundary condition had to be set on this surface (corresponding to the upstream extension of the centerbody surface). In this case, symmetry conditions were used for streamwise velocity (circumferential velocity for the 3° angle of attack case), pressure and temperature. The normal velocity component on the upstream extension remained unchanged. Finally, for the 3° angle of attack case symmetry conditions were used on the plane of symmetry. The initial condition for both cases were the uniform free stream conditions. Thus, the shock wave is produced by the calculation procedure and is not input as a part of the initial conditions. For the 0° angle of attack case the initial conditions were marched 470 streamwise steps at a constant step size of $\Delta X/L = 0.02$. Corresponding to a Courant number of 3.00. This corresponds to an initial step size equal to 2% of the distance from the centerbody to the upper surface (see Fig. 35). The computation terminated slightly upstream of the geometric throat (a large recirculation zone formed on the cowl surface). The displaced scale Mach number profiles are shown in Figs. 37 and 38. Figure 37 shows the plots in physical space while Fig. 38 shows the plots in computational space. Although the propagation of the shock waves is somewhat difficult to discern in Fig. 37, the shock waves propagation is very distinct in the computational space plots of Fig. 38. The centerbody shock passes out in front of the cowl. A shock wave forms off the cowl, impinging on the centerbody, reflecting and impinging on the cowl surface where a recirculation zone forms. Comparison of the centerbody and cowl static pressure distributions are presented in Figs. 39 and 40. Considering that the effects of bleed are not considered, the agreement with data is good. In Fig. 38, it can be seen that the region where the calculation terminated due to a large recirculation zone was also (evidently with good reason) a region where the flow was subjected to wall bleed. The 3° angle of attack case was run mainly as a demonstration case of an off-design condition. The centerbody location was specified to be that of the 0° angle of attack location. Under this condition, it is to be expected that the shock wave will hit inside the cowl on the windward side and fall further outside the cowl on the leeward side. However, the strength of the shock will be stronger on the windward side. This case was run with a variable marching step size. The step size was chosen such that initially a step size of $\Delta X/L = 0.02$ was used (corresponding to a Courant number of 1.45). After encountering the centerbody the step size was gradually increased to a step size of $\Delta X/L = 0.4$ and then gradually decreased to a step size of $\Delta X/L = 0.01$ slightly upstream of the cowl. Downstream of the cowl entrance region the step size was gradually increased again to a maximum of ΔX/L =0.04. The purpose of varying the step size is to increase resolution in regions of large streamwise flow gradients and to decrease resolution of a larger step can be taken. This calculation was marched downstream 270 steps before the calculation terminated. Termination was due to the generation of a recirculation zone on the leeward side of the centerbody. Results of the calculating of the off-design 3° angle of attack case are presented in Fig. 41-48. No comparison is made with data since data was not obtained for the 3° case in the off-design condition. In Figs. 41-43, the streamwise pressure distributions on the centerbody and the cowl surfaces are shown on the leeward, waterline and windward rays. On the leeward side of the cowl, the shock passes in front of the cowl entrance. The turned flow then encounters the cowl entrance and forms a shock wave. This can be seen by the spike-like rise followed by a decrease in pressure (as the cowl at this point becomes concave) followed by an increasing rise in pressure as the cowl surface becomes convex again. Similar features can be seen on the waterline and windward rays. In this case the shock formed by the centerbody impinges on the cowl surface. A similar spike-like behavior followed by expansion and compression zones can be observed. The corresponding displaced scale Mach number plots are shown in Figs. 44-46. By looking up into the inlet, the shock structure can be discerned. Figure 47 shows typical secondary flow velocity vectors. The streamwise location is approximately at a value of X/L = 2.45. The winward side is on the left; the leeward side is on the right. The position of the shock wave is clearly discernable as a discontinuity in flow direction. It can be seen that the shockwave is closer to the windward surface than to the leeward surface. Mach number contours at the same station are shown in Fig. 48. The approximate position of the shock wave is shown by the concentration of the Mach number contours. All of the above test cases were run on the NASA-LRC IBM 370-3033 computer. The CPU run times are 5.43×10^{-3} sec/grid point for the two-dimensional runs 1.43×10^{-2} sec/grid point for the three-dimensional runs. The total run time for a given case scales linearly with respect to the number of grid points, thus for instance the Rose case which used 99 transverse grid points and marched 800 streamwise stations had a run time of 430 seconds. The difference in run times between two- and three-dimensions is due to the three-dimensional calculation having an additional momentum equation to solve plus the additional terms in all equations because of the presence of the third dimension. There is also additional overhead costs since the three-dimensional cases uses mass storage to transfer information in and out of core while the two-dimensional cases always have all the necessary information in core. The PEPSIS computer code was developed as a very general research tool and hence no attempt has been made to optimize its computational efficiency for a specific class of problems. The run times would decrease significantly if the number of terms in the governing equations could be reduced as for instance would occur for simplier geometric configurations. The present version has a general orthogonal capability as well as a limited nonorthogonal capability (see section on the User's Manual). #### V. DISCUSSION AND CONCLUSIONS The primary objective of this investigation was to develop and validate an efficient numerical procedure for the calculation of two- and three-dimensional supersonic flows (with embedded subsonic regions) in internal flow devices. It is felt that this objective has been achieved, and a new set of governing equations has been developed which are well-posed for solution by an efficient spatial forward marching procedure. This procedure has been validated by application to a series of test cases characteristic of the pehnomena that occur in internal flow devices and the results in general give very good agreement with the available experimental data. Numerous additional test cases have been successfully run by the present authors and by other investigators (Refs. 20 and 21) and branching or other unstable behavior has not been observed even when the marching step size has been several orders of magnitude below the minimum of the stability criterion that restrict schemes which have a minimum step size. Thus, the restrictive requirement of a minimum marching step size has not been observed for this set of governing equations. It should be emphasized that no approximation was made to the streamwise pressure gradient in the present approach. is viewed as being extremely important for internal supersonic flows where so many of the phenomena of interest have associated with the large streamwise pressure gradients. Finally, the efficiency of the spatial forward marching procedure is such that a million grid point calculations can be performed in approximately four hours of IBM 370-3033 CPU run time (this is equivalent to approximately one hour of CRAY I run time). This procedure could be used on a routine basis for design type calculations for internal flow devices such as supersonic inlets. #### IV. USER'S MANUAL The PEPSIS users' manual is meant to serve as a guide in helping the user make successful runs with the PEPSIS computer program. The degree of success obtained by the user will depend on the skill of the user and his ability to correctly apply the code to his particular problem. The code will solve the governing equations, subject to the user supplied boundary conditions, however, meaningful results will only be obtained if the boundary conditions are appropriate to the problem. In addition the user must specify viscosity models, initial conditions, a coordinate system and the location of grid points to adequately resolve the flow. The user with a good knowledge of the physics involved in his problem and how the code models the physics should, with a moderate amount of experience, he able to successfully apply the code to a wide variety of supersonic flow problems. The users' manual is divided into eight parts consisting of: (1) a flow diagram, (2) a brief description of each subroutine and its use, (3) a list of the Fortran variables and a description of their meaning, (4) a description of the logical file units utilized by the PEPSIS computer code, (5) a detailed
description of the input required by the PEPSIS computer code, (6) a description of the common error conditions that may be encountered during the execution of a PEPSIS run and the corrective action to be taken, (7) sample input for two and three-dimensional cases and (8) sample output for the corresponding cases. #### Flow Diagram The purpose of the flow diagram is to help the user understand the basic flow of information within the PEPSIS computer code. Because of the size of the code (approximately 13,000 cards), a detailed flow diagram would be prohibitively large and probably be of little value to the user. Therefore, the flow diagram is intended only to give a general overview of the structure of the code. The interested user is urged to consult the program listing for details. Flow Diagram for the PEPSIS Computer Code #### PEPSIS Subroutines | Subroutine | Purpose | |------------|---------| | | | ADDRES Calculate addresses for finite difference representation of metric and fluid dynamic variables. ADI Master control subroutine for ADI procedure. ADICP Control subroutine for coupled equations. ADIUN Control subroutine for uncoupled equations. AMARCH Linearizes streamwise convective terms. AMATRX Linearizes all streamwise terms. ARTVIS Artificial dissipation subroutine. AVRG Calculates averaged quantities in cross plane. BC Boundary condition subroutine. BLKDATA Stores default values of key variables. BLT Calculates boundary layer thickness. BULEEV Calculates Buleev turbulent mixing length. CONVCT Linearizes cross plane convective terms. CORBND Calculates geometry transformation information on boundaries. CORTRN Calculates geometry transformation information for interior points. CROSEC Control subroutine for calculation of derived variables. CURVT Linearizes curvature terms. DATAS Logical file control subroutine. DELTX Calculates transformation information for ICORD = 2 option. DELTXZ Calculates transformation information for ICORD = 3 option. Purpose Subroutine Linearizes diffusion terms. DIFF Calculates dissipation function. DISFCN Calculates divergence of velocity. DIV Control subroutine for linearization of DOP2 Y-direction and source terms. Control subroutine for linearization of DOP3 Z-direction terms. Equation of state subroutine linearizes and EOS updates pressure and temperature. **FGFUN** Calculates geometry groupings. **GAUSS** Solves uncoupled tri-diagonal set of equations. Control subroutine for coupled boundary **GENCBC** conditions. **GENUBC** Control subroutine for uncoupled boundary conditions. GEORD Controls reading of metric information from logical file unit LDRUM. **GEOTRB** Generates metric information on logical file unit LDRUM. INDIC Determines if flow is subsonic or supersonic at grid points. INPUTS Input subroutine. Input data enters and is processed. INTEBC Performs a two-dimensional linear interpolation for wall transpiration rates. Calculates laminar profile. LAMP LAW Calculates nondimensional velocity, U+ as a function of nondimensional distance, Y+. LENGTH Calculates turbulent mixing length. Brings into core dependent and derived variables at appropriate points. LOADUP Subroutine Purpose MAIN Main control program. MATPRT Prints elements block tridiagonal matrix. MGAUSS Control subroutine for solving block tridiagonal systems of equations. **MGERR** Calculates error associated with solving block tridiagonal system of equations. NMLIST Subroutine for printing namelist input information. OUTPUT Control subroutine for printing out results on a cross-sectional (Y-Z) plane. **PLOT** Writes plot information on logical file unit JPLOT. PLOTIN Writes first record of general information on logical file unit JPLOT. PROF Generates initial profiles. QUICK Matrix elimination subroutine. READZ Prepares variables for printing. RESTRT Reads and writes restart information. ROTATE Rotates data from columns to rows and vice versa. SETBVL Updates boundary information a line at a time. SHEAR Control subroutine for the calculation of wall shear velocity. SPREAD Spreads two-dimensional data to three dimensions. **SUB** Contain special subsonic logic. SWITCH Calculates streamwise location for switch of boundary condition. TANHYP Grid stretch subroutine. **TNDER** Calculates normal derivative of temperature at a wall. Subroutine Purpose **TRANS** Transition model subroutine. TURB Turbulence model subroutine. TURBP Calculates turbulent profile based on theory of Maise-McDonald. **VISCOS** Constant and laminar viscosity subroutine. WALLFN Calculates wall shear velocity. WRMATR Writes block tridiagonal dump information on logical file device NUNERR. YCALC Calculates Y and Z locations. ZERO Zeros out linearization arrays. ## Logical File Units Utilized by PEPSIS Computer Code The PEPSIS COMPUTER code utilizes up to twelve (12) logical file units during the execution of a run stream. In many cases not all twelve units are used, and hence in these cases there is no need to define all twelve units. All references to a logical file unit in the PEPSIS computer code is accomplished through the use of a FORTRAN name rather than through a specific unit number. Thus, if the user desires to change a logical file unit number, this can be done through the input file. A list of the logical file units utilized by the PEPSIS computer code, their FORTRAN name, default value unit number, and a brief description of the use of the unit is presented below. All units are sequential. | FORTRAN Name | Default Unit Number | Description | |--------------|---------------------|---| | MIN | 5 | Input data unit. | | MOUT | 6 | Printed output unit. | | MASS1 | 8 | First unit which stores dependent and derived variables either by rows or columns. Not needed for two-dimensional cases, i.e., when TWOD = .TRUE. | | MASS2 | 9 | Second unit which stores dependent
and derived variables either by
rows or by columns. Not needed
for two-dimensional cases, i.e.,
when TWOD = .TRUE. | | MSDD | 15 | Unit which stores dependent and derived variables by rows only. Not needed for two-dimensional cases, i.e., when TWOD = .TRUE. | | JDRUM | 11 | Unit which contains output of ADD computer code. Only needed when IGEOM = 10 or 11. | | LDRUM | 12 | Intermediate unit used in generations of final metric information file. Only needed when IGEOM = 10 or 11. | | KDRUM | 13 | Unit which stores final metric information. Needed in all cases. | | FORTRAN Name | Default Unit Number | Description | |--------------|---------------------|---| | NUNEER | 14 | Unit which stores information concerning the block tridiagonal matrix inversion. Needed when MGDMP # 0. | | JPLOT | 16 | Unit which stores plotting information. Needed when IPLOT ≠ 0. | | JRSTIN | 10 | Input retart unit. This unit contains appropriate common block information and the value of the dependent and derived variables at each cross-sectional grid point at the restart streamwise station. Needed only when IRSTIN # 0. | | JRSTOT | 10 | Output restart unit. This unit contains appropriate common block information, and the values of the dependent and derived variables at each cross-sectional grid point at the restart streamwise station. Needed only when IRSTOT = 0. Default is JRSTIN = JRSTOT; however, it is desired to have separate input restart and output restart files set JRSTOT = 17. | #### PEPSIS Input Except for an initial title card and plot file input data the entire PEPSIS input is entered by means of the NAMELIST format. There are two primary advantages to the use of the NAMELIST format: (1) if the default values (defined in the block data subroutine) are acceptable, the user need not input that variable, and (2) the order (within a given NAMELIST) in which the variables are entered is irrelevant. There are six NAMELIST input files in the PEPSIS code, \$REST and \$LIST1 through \$LIST5. The first file is read in the main program and enters restart information. The remaining NAMELIST files are read in subroutine INPUTS. Basically, the NAMELISTS \$LIST1 through \$LIST5 can be divided by function. \$LIST1 enters information about the governing equations and appropriate boundary conditions, \$LIST2 enters reference and free stream conditions, \$LIST3 enters geometric information, \$LIST4 enters viscosity model and initial profile information and \$LIST5 enters file output information. A description of all the PEPSIS input information will be given below. ## Plot File Input | Columns | Format | Variable | Function | |---------|--------------|----------|------------| | 1-24 | 6 A 4 | TITLE(I) | Title Card | #### Card 2 Card 1 | Columns | Format | <u>Variable</u> | Function | |---------|--------|-----------------|--| | 1-2 | 112 | ISYM | Reciprocal of Symmetry | | 3-12 | 1F10.0 | SYSTEM | SYSTEM = 1 - Quasi-
Cartesian Coordinates | SYSTEM = 2 - Quasi-Cylindrical Coordinates | variable name
REST | Description Restart Options | |-----------------------|--| | IRSTIN | Marching station number when data is to be read for restart case. | | | IRSTIN = 0: Dead start case. | | | IRSTIN # 0: Restart case started at station IRSTIN. | | | Default value is 0. | | IRSTOT | Interval for saving restart information. | | | IRSTOT = 0: No restart information is saved. | | |
IRSTOT # 0: Information is saved at each IRSTOTth station. | | | Default value is 0. | | JRSTIN | Logical file name of input restart file.
Default value is 10. | | JRSTOT | Logical file name of ouput restart file.
JRSTOT and JRSTIN do not have to be same file.
Default value is 10. | | NFILE | File number on unit JRSTIN desired for restart. Default value is 0. | | NSAVED | Number of restart stations saved on JRSTOT. | | | On a restart by setting JRSTOT = JRSTIN and NFILE + NSAVED, one file can be used for both reading and writing without destroying the information previously saved. Default is -1. | | ICOMP | Flag for computer options: | | | ICOMP = 1: Univac computer option. | | | ICOMP = 2: CDC computer option. | | | ICOMP = 3: IBM computer - virtual memory option. | | | | ICOMP = 4: Disk writing computer option Default value is 4. | LIST1 | Description Equations and Boundary Conditions | |-----------------|---| | IHSTAG | <pre>IHSTAG = 0: Energy equation formulated in terms of</pre> | | | <pre>IHSTAG = 1: Energy equation formulated in terms of</pre> | | | IHSTAG = 2: Stagnation enthalpy constant. | | | Default value is 1. | | IBOUND(IBC) | Computational domain boundary characteristics (wall or non-wall). | | | <pre>IBOUND(IBC) = 1: Solid wall boundary at surface</pre> | | | <pre>IBOUND(IBC) = 2: Non-wall boundary at surface IBC.</pre> | | | Default values are 1, 1, 2, 1. | | IEQBC(IBC, IEQ) | Boundary condition of the governing equation IEQ at sold wall boundary IBC. | | | Default values are: 12*2, 4*16, 4*11, 8*2. | | JEQBC(IBC, IEQ) | Boundary condition of the governing equation IEQ at non-wall boundary IBC. | | | Default values are: 4*11, 2*2, 4*11, 2*2, 16*11. | | | Boundary condition options used either IEQBC or JEQBC are as follows: | | | φ: Any dependent variable | | | P: Pressure | | | T: Temperature | | | n= Normal to boundary | # Description Equations and Boundary Conditions LIST1 # subscript c= Cartesian component | Index | Function Type Description | |-------|---| | 1 | $\Delta \phi = 0$ (No change of ϕ at boundary) | | 2 | $\phi = 0$ | | 3 | V or W known | | 4 | ρV or ρW known | | 5 | $\Delta P = 0$ | | 6 | P = PRESS(IBC) | | 7 | $\Delta T = 0$ | | 8 | T = TWALL(IBC) | | | Derivative Type | | | Description | | 11 | $\frac{\partial \phi}{\partial n} = 0$ (gradient of ϕ normal to boundary) | | 12 | Mach line extrapolation using one-
sided difference | | 13 | Slip boundary condition for velocity using wall function | | 14 | $\frac{\partial P}{\partial n} = 0$ (gradient of pressure normal to boundary) | | 15 | $\frac{\partial P}{\partial n}$ = curvature (pressure gradient normal to boundary with curvature effects) | | LIST1 | Index | Derivative Type Description | |-------|-------|---| | | 16 | Momentum equation in direction normal to boundary | | | 17 | $\frac{\partial T}{\partial n} = 0$ (adiabatic condition for wall or symmetry condition for non-wall) | | | 18 | $\frac{\partial T}{\partial n} = DTDN(IBC)$ | | | 19 | Wall function boundary condition for temperature | | | 20 | $\frac{\partial \phi}{\partial n}$ = 0 (same as 11, but applied at one grid point off the wall) | | | 21 | Mach line extrapolation using central difference scheme at one point off the boundary | | | 41 | $\frac{\partial^2 \phi}{\partial n^2} = 0$ | | | 42 | $\frac{\partial^2 P}{\partial n^2} = 0$ | | | 43 | $\frac{\partial^2 \mathbf{T}}{\partial \mathbf{n}^2} = 0$ | | | 44 | $\frac{\partial \mathbf{u}_{\mathbf{c}}}{\partial \mathbf{n}_{\mathbf{c}}} = 0$ | | | 45 | $\frac{\partial v_c}{\partial n_c} = 0$ | | | 46 | $n_c \cdot \nabla P = 0$ | | | 47 | $n_c \cdot \nabla T = 0$ | Description TWALL(IBC) Specified temperature at boundary IBC. Default values are 4*1.0. PRESS(IBC) Specified pressure at boundary IBC. Default values are 4*0.0. DTDN(IBC) Specified temperature gradient at boundary IBC at boundary condition. Default values are 4*0.0. ASW(IBC) BSW(IBC) CSW(IBC) DSW(IBC) Coefficient of a cubic polynomial fit for IBCth surface to determine the axial location where boundary characteristics at boundary IBC should be changed from wall to non-wall or vice versa, i.e., IBOUND(IBC) automatically changed. Default values are: ASW = 4*1.0E + 10 BSW = 4*0.0 CSW = 4*0.0 DSW = 4*0.0 LIST2 Freestream and Reference Conditions IUNITS Sentinel for units. IUNITS = 1: English units IUNITS = 2: Metric units Default value is 2. **LREF** Reference length (ft or m) No default. REPL Reynolds number per unit length. No default. MINF Free stream Mach number. No default. PINF Free stream static pressure (lbf/ft² or nt/m²) No default. ### Reference and Reference Conditions **PZERO** Free stream stagnation pressure (lbf/ft² or nt/m²) No default. PR Laminar Prandtl number. Default value if 0.74. PRT Turbulent Prandtl number. Default value if 1.0. XOB(IBC) Location on IBCth surface where the boundary type switches from non-wall to wall. Default values are 4*1.0E + 06. **ICORD** Flag for coordinate transformation. ICORD = 1: Conformal coordinates ICORD = 2: Nonorthogonal coordinates X + X **Y** + **Y** $Z + \zeta(X,Z)$ ICORD = 3: Nonorthogonal coordinates $X \rightarrow X$ $Y + \eta(X,Y,Z)$ z + z Default value is 1. NE(IADI) Number of grid points in the Y(IADI = 1) and Z(IADI) = 2 directions. No default values. NS Number of last streamwise stations which solution is to marched to. No default value. ## Freestream and Reference Conditions #### LIST2 XENTR, DELX, IAP(10), AP(10), DXMIN(10), DXMAX(10) XENTR is the initial streamwise location. DELX is the initial stepsize in the streamwise (marching direction, i.e., X(2) = XENTR + DELX. At streamwise station I the streamwise position is given by X(I) = X(I-1) + AP(X(I-1) - X(I-2)) where if AP is greater than 1.0, the streamwise step size will increase by (AP-1.0) percent each step. If AP is less than 1.0, the streamwise step size will decrease by (1.0-AP) percent each step DXMIN and DXMAX are lower and upper overriding limits on the step size. AP, DXMIN and DXMAX are dimensional so that streamwise step size variation can be changed by the IAP parameter, IAP denoting the streamwise location where these variables change. Values of XENTR and DELX should normally only be set on the initial run as these variables are automatically calculated for restarts. XENTR, DELX, IAP(10), AP(10), DXMIN(10), DXMAX(10) (CONTINUED) XENTR = 0.0 DELX = No default value IAP = 1,9*1000000 $AP = 10 \times 1.0$ DXMIN = 10*0.0 DXMAX = 10*1.0E + 06 **IGEOM** Flag for coordinate options IGEOM = 1: Cartesian coordinates IGEOM = 2: Cylindrical coordinates IGEOM = 3: Polar coordinates Default value is 1. # Geometric Options TWOD Sentinel for two-dimensional option. If TWOD = .TRUE. TWO DIMENSIONAL TWOD = .FALSE. THREE DIMENSIONAL Default value is .FALSE. TT1(2) Grid distribution factor (lower surface (IBC = 1) - Y-direction, left surface (IBC = 3) - Z-direction). The closer the value is to 1.0, the tighter the packing; value must be negative. Default values are 2*0.0 TT2(2) Grid distribution factor (upper surface (IBC = 2) - Y-direction, right surface (IBC = 4) - Z-direction). The closer the value is to the 1.0, the tighter the packing. Default values are 2*0.0 YS(2,2) Defines computational domain in Y-Z cross plane. YS(1,1) = 0.0 - lower limit Y-direction YS(2,1) = 1.0 - upper limit Y-direction YS(1,2) = 0.0 - lower limit Z-direction YS(2,2) = 1.0 - upper limit Z-direction Default values are 0.0, 1.0, 0.0, 1.0. LIST4 #### Initial Profile, Turbulence Information IBCP Basic surface for initial profile generation. ## Boundary Layer Profile at surface 1 IBCP = 1 at surface 2 IBCP = 2 at surface 3 IBCP = 3 at surface 4 IBCP = 4 Default value is 1. DELTAP(IBCP) Boundary layer thickness on surface IBCP needed to generate the initial profile referenced to each surface. No default values. # Initial Profile, Turbulence Information CFP(IBCP) Skin friction coefficient on surface IBCP needed to generate the initial turbulent boundary layer profile. No default values. **IPROF** Flag for initial profile options. IPROF = 1: Freestream profiles IPROF = 2: Initial profiles supplied by user Default value is 1. IMIXL Flag for mixing length options. IMIXL = 2: Buleev mixing length model IMIXL = 4: Same as IMIXL = 1, but local shear is used to calculate nondimensional distance Angle of attack in degrees. Default value is 0.0. Yaw angle in degrees. Default value is 0.0. YAW BETA # Initial Profile, Turbulence Information IVISC Flag for viscosity options. IVISC = 1: Constant viscosity DELTAB(IBC) Specified boundary layer thickness on surface IBC for mixing length model of turbulence. No default values. **ITRANS** Flag which tells whether transition turbulence model logic is used. ITRANS = 0: No transitional model is used ITRANS # 0: Transitional model is used Default value is 0. IBLT Flag which tells whether boundary layer thickness is input or calculated dynamically. IBLT = 0: Boundary layer thickness is input IBLT # 0: Boundary layer thickness is dynamically calculated. Default values is 0. TKEINF Freestream turbulent kinetic energy. is 0.0. Default value is 0.0. IVARPR(1) Index of variables to be printed. Needed only for three-dimensional flow. IVARPR(I) = 0: No print IVARPR(I) = 1: Print every IPRINT steps IVARPR(I) = 2: Print every JPRINT steps Default values are 5*1, 2*0, 3+1, 7+0. # Initial Profile, Turbulence Information I = 1: UVEL I = 2: VUEL I = 3: WVEL I = 4: Density I = 5: Enthalpy I = 6: Turbulent kinetic energy I = 7: Turbulent dissipation I = 8: Pressure I = 9: Temperature I = 10: Mach Number I = 11: Mach Number Indicator I = 12: Stagnation temperature I = 13: Stagnation pressure I = 14: Pressure coefficient I = 15: Laminar viscosity I = 16: Mixing length
I = 17: Turbulent viscosity I = 18: Effective viscosity **IPLOT** Marching station interval for storage of plotting information. IPLOT = 0: No plotting Default value is 0. **IPRINT** Primary marching station interval for printing. Default value is 1. **JPRINT** Secondary marching station interval for printing. Default value is 1. #### Error Conditions in the PEPSIS Computer Code Failure of the PEPSIS computer code to successfully execute a runstream can occur because of either inconsistent or incorrect input data or because of an attempt to apply the PEPSIS code to a case where the physics violate the assumptions inherent in the code. This section will address only the former mode of failure. Avoidance of the latter failure mode is dependent primarily on the users understanding of the basic physics of the case he is going to run, and the degree to which the PEPSIS code can be expected to model the physics. One method of discussing the inconsistent or incorrect input data mode of failure is by examining the possible failures in the various subroutines. Since the individual subroutines are responsible for separate tasks during the execution of a run, (e.g. overall control of the program geometry generation, etc.), this technique will in essence outline the possible failure modes as the tasks are performed. Discussion will occur in the same order as the run is executed. #### SUBROUTINE RESTRT There are two modes by which SUBROUTINE RESTRT can fail. Both involve improper use of the restart file. A message, PESTART INFORMATION REQUESTED AT (IRSTIN marching number) BUT STORED INFORMATION AT SEQUENCE (NFILE) IS AT STATION (Station number). This message occurs because the marching station number read off the NFILEth restart file does not match the input value of IRSTIN. The corrective action is to make NFILE and IRSTIN consistent with each other. Another possible mode of failure occurs when NFILE exceeds the number of files on the restart device, JRSTIN, in which case an END of INFORMATION (or analogous statement) will appear in the day file. The corrective action is to recheck the input value of NFILE. If JRSTIN \$\neq\$ JRSTOT, the value of NFILE is the number of the restart on device JRSTIN. #### SUBROUTINE INPUTS There are two failure modes in SUBROUTINE INPUTS. In the first case, the message NS = (input value of NS) GREATER THAN NSMAX = (dimension of X vector) will be printed if the number of marching stations exceeds the dimensioned value of X, the streamwise locations. The corrective action is to lower the value of NS. The second failure mode occurs when the Buleev turbulence model is specified for a two-dimensional case. Since this model is not applicable to two-dimensional cases, the message CANNOT USE BULEEV TURBULENCE MODEL IN TWO-DIMENSIONAL FLOW is printed. The corrective action is to specify an alternate turbulence model. #### SUBROUTINE GEOTRB At present SUBROUTINE GEOTRB is coded to calculate metric information for values of IGEOM = 1, 2, 3, 10 and 11. Values of IGEOM 4-9 are left for various coordinates that may be coded in the future. Input value of IGEOM = 4-9 will result in the message INVALID OPTION IN GEOTRB. The corrective action is to either change the value of IGEOM or to code in a new option. For IGEOM options 10 and 11 (conformal-Cartesian cross-section and conformal-axisymmetric cross-section) the metric information is externally generated by the ADD computer code. In this case, logical file units JDRUM and KDRUM must be defined. JDRUM contains the ADD code data which is then interpolated onto the PEPSIS mesh system. If the PEPSIS values of the streamwise coordinate is less than the first value of the ADD code streamwise coordinate no streamwise interpolation is possible and the message FAILURE IN GEOTRB - SQ12 = (PEPSIS position) SQ1 = (first ADD code position) SQ2 = (second ADD code position). The corrective action is to increase the value of XENTR (the first PEPSIS position) to a value greater than SQl. On the other hand, if the value of a PEPSIS streamwise coordinate exceeds the last streamwise position generated by the ADD code an END OF INFORMATION message will appear in the day file. The corrective action is to either rerun the ADD code such that the maximum PEPSIS streamwise coordinate does not exceed the maximum ADD code streamwise coordinate or to reduce the maximum PEPSIS streamwise coordinate to an acceptable value. #### SUBROUTINE INTEBC SUBROUTINE INTEBC performs a two-dimensional linear interpolation of the transpiration schedules on both X-Y planes at X-Z planes. If the number of streamwise stations on a surface at which data is input exceeds 15 (the dimensioned size of the data arrays) a message FAILURE IN INTEBC VALUE OF NPTSX (surface number IBC) = (value of NPTSX(IBC) EXCEEDS DIMENSION LIMITS OF 15 is printed. The corrective action is either to updimension NPTSX and associated variables or to decrease the value of NPTSX. Likewise, in the Y or Z direction data can be input at up to 15 locations. If the value of NPTSYZ exceeds 15, the message FAILURE IN INTEBC VALUE OF NPTSYZ (streamwise location, surface number) = (value of NPTSYZ) EXCEEDS DIMENSION LIMITS OF 15 ls printed. The corrective action is either to updimension NPTSYZ and associated variables or to decrease the value of NPTSYZ. #### SUBROUTINE QUICK If the choice of boundary conditions is incorrectly made, it is possible that a singular matrix will result. This will manifest itself in SUBROUTINE QUICK in an attempt to divide by zero. The corrective action is to re-evaluate the choice of input boundary conditions to determine the source of the singularity. An example of an improper choice of a boundary condition set would be to choose as boundary conditions the three no-slip conditions for the three momenta equations, the normal pressure condition for the continuity equation and the normal momentum equation for the enthalpy equation. In this case, the enthalpy does not appear in any of the boundary conditions, and hence a singular matrix would result. #### SUBROUTINE CROSEC Often, if a case is not going to successfully run, the code will cease operation in SUBROUTINE CROSEC. This will occur because of the existence of a negative temperature in which case the Mach number calculation will fail in SQRT. There can be many reasons for this failure mode. Usually, however, it can be related to inadequate numerical resolution of the physical processes that are occurring. For instance, a lack of transverse grid points might lead to large oscillations in the pressure or too large a streamwise step in the region where a wall inclination is rapidly changing might result in a temperature becoming negative. Sometimes it is difficult to know a priori what grid resolution is necessary for a given problem. Usually, experimentation with two-dimensional cases can provide some guidelines for three-dimensional cases. This in addition with the users' overall experience with the code and his understanding of the physical processes will usually provide the means of resolving the above problem. ## PEPSIS FORTRAN VARIABLES | FORTRAN
Symbol | BLOCK
BLOCK | DESCRIPTION | |--------------------|----------------|---| | ACON | LAWW | CONSTANT IN ARGUMENT OF EXPONENTIAL FUNCTION | | | | FOR TRANSITIONAL MODEL | | AG(NN,9,2) | OPER | DIFFERENCE WEIGHTS IN PHYSICAL COORDINATES | | AGEO | GEOM | COEFFICIENTS OF POLYNOMIAL FIT FOR BOUNDARY SHAPE | | AGID(9) | FGCOM | TEMPORARY STORAGE ARRAY OF METRIC INFORMATION | | AGIP | FGCOM | TEMPORARY STORAGE ARRAY OF METRIC INFORMATION | | AG2D(9) | FGCOM | TEMPORARY STORAGE ARRAY OF METRIC INFORMATION | | AHP(5) | FGCOM | TEMPORARY STORAGE ARRAY OF METRIC INFORMATION | | AH1D(5,9) | FGCOM | TEMPORARY STORAGE ARRAY OF METRIC INFORMATION | | AIE(NN,7) | PRFILE | INITIAL PROFILE ARRAY | | AM(NCPLD,3*NCPLD+1 | HODOK | UTILITY MATRIX USED IN BLOCK MATRIX INVERSION | | AMACRI | SUPER | MACH NUMBER CRITERION USED IN LOCATING SONIC LINE | | AN(NEQS,NN) | LIN | STORAGE FOR LINEARIZATION COEFFICIENTS OF | | | | X - DERIVATIVES | | AP(10) | GEOM | AMPLIFICATION RATE OF MARCHING STEP SIZE | | APLUS | LAWW | CONSTANT IN ARGUMENT OF EXPONENTIAL | | | | FUNCTION FOR VAN DRIEST DAMPING FORMULA | | ASW(4) | BOUND | COEFFICIENTS OF POLYNOMIAL FIT FOR SWITCHING THE | | | | BOUNDARY SURFACE TYPE | | AVISC(2,NEQS) | VISC | COEFFICIENT USED IN ARTIFICIAL DAMPING | | BETA | REF | ANGLE OF ATTACK | | BGEO | GEON | COEFFICIENTS OF POLYNOHIAL FIT FOR BOUNDARY SHAPE | | BFOCK1(IVDD3) | | STORAGE FOR ADD CODE METRIC INFORMATION | | | | EQUIVALENCED TO C(1,1,1) | | BLOCK2(IADD3) | | STORAGE FOR ADD CODE METRIC INFORMATION | | | | EQUIVALENCED TO C(1,1,NN/2+1) | | FORTRAN
Symbol | COMMON
BLOCK | DESCRIPTION | |-------------------|-----------------|---| | BLTH(NN,4) | LAWW | DYNAMICALLY DETERMINED BOUNDARY LAYER THICKNESS | | BSW(4) | BOUND | COEFFICIENTS OF POLYNOMIAL FIT FOR SWITCHING THE | | | | BOUNDARY SURFACE TYPE | | BWD | LIN | CRANK-NICHOLSON FACTOR | | BWDI | LIN | INVERSE OF BWD | | C(NN,NCPLD,NN) | CCOM | BLOCK DIAGONAL MATRIX ELEMENTS | | CDUM(NDIM) | | TEMPORARY STORAGE ARRAY TO ROTATE DATA FROM COLUMNS | | | | TO ROWS AND VICE VERSA - EQUIVALENCED TO C(1,1,1) | | | | NDIM = HZVAR + MLEVEL + NN | | CFP(4) | PRFILE | SKIN FRICTION COEFFICIENT | | CGEO | GEON | COEFFICIENTS OF POLYNOMIAL FIT FOR BOUNDARY SHAPE | | CHUINF | VISC | CONSTANT IN TURBULENT VISCOSITY MODEL | | CONGEO(11*NN) | GEOM | COORDINATE TRANSFORMATION INFORMATION | | CONVDR | UNITS | CONVERSION FACTOR IN GOING FROM DEGREES TO RADIANS | | CONVRD | UNITS | CONVERSION FACTOR IN GOING FROM RADIANS TO DEGREES | | COOR(NN,4) | GEON | PHYSICAL COORDINATE INFORMATION WITH RESPECT | | | | TO ABSOLUTE ORIGIN AT N+1ST STREAMWISE LOCATION | | COORN(NN,4) | GEOM | PHYSICAL COORDINATE INFORMATION WITH RESPECT | | | | TO ABSOLUTE ORGIN AT NTH STREAMWISE STATION | |
CPINE | FREE | FREE STREAM SPECIFIC HEAT | | CPREF | REF | REFERENCE PRESSURE COEFFICIENT | | CPREFI | REF | INVERSE OF REFERENCE PRESSURE COEFFICIENT | | CRITU | OPER | CRITICAL VELOCITY USED FOR FLARE APPROXIMATION | | CSOLN(NCPLD, NN) | ССОН | SOLUTION TO BLOCK TRI-DIAGONAL MATRIX INVERSION | | CSW(4) | BOUND | COEFFICIENTS OF POLYNOMIAL FIT FOR SWITCHING THE | | | | BOUNDARY SURFACE TYPE | | FORTRAN
Symbol | COMMON BLOCK | DESCRIPTION | |-------------------|--------------|---| | CIWO | REF | NUMERICAL CONSTANT IN GOVERNING EQUATION | | CXI(NDIFH) | ADDR | STORAGE FOR FIRST DERIVATIVE DIFFERENCE WEIGHTS | | CXXI(NDIFM) | ADDR | STORAGE FOR SECOND DERIVATIVE DIFFERENCE WEIGHTS | | C1(NN) | CCOM | SUBDIAGONAL MATRIX ELEMENTS | | CISUTH | VISC | COEFFICIENT IN SUTHERLAND'S LAW OF LAMINAR | | | | VISCOSITY | | C2(NN) | CCOM | DIAGONAL MATRIX ELEMENTS | | C2SUTH | VISC | COEFFICIENT IN SUTHERLAND'S LAW OF LAMINAR | | | | VISCOSITY | | C3(NN) | CCOM | SUPERDIAGONAL MATRIX ELEMENTS | | C4(NN) | CCOM | VECTOR ELEMENTS | | D | VAR | INDEX FOR DIVERGENCE | | DELMAX(NEQS) | EQN | MAXIMIUM VALUES OF THE DELTAS | | DELTAB(4) | LAWW | SPECIFIED BOUNDARY LAYER THICKNESS FOR | | | | MIXING LENGTH MODEL OF TURBULENCE | | DELTAP(4) | PRFILE | BOUNDARY LAYER THICKNESS | | DELX | GEOM | STEP SIZE IN MARCHING DIRECTION | | DGEO | GEON | COEFFICIENTS OF POLYNOMIAL FIT FOR BOUNDARY SHAPE | | DIFOP(6) | OPER | DIFFERENCE WEIGHTS IN COMPUTATIONAL COORDINATES | | DL | VAR | STORAGE LEVEL OF DIVERGENCE IN | | | | GENERAL PURPOSE STORAGE | | DM1(NCPLD,NCPLD) | CCOM | GENERAL PURPOSE STORAGE ARRAYS FOR BLOCK | | | | TRI-DIAGONAL MATRIX INVERSION | | DM2(NCPLD) | CCOM | GENERAL PURPOSE STORAGE ARRAYS FOR BLOCK | | | | TRI-DIAGONAL MATRIX INVERSION | | DM3(NCPLD,NCPLD) | CCON | GENERAL PURPOSE STORAGE ARRAYS FOR BLOCK | | | | | | FORTRAN
Symbol | COMMON BLOCK | DESCRIPTION | |-------------------|--------------|---| | | | TRI-DIAGONAL MATRIX INVERSION | | DS | VAR | INDEX FOR DISSIPATION FUNCTION | | DSL | VAR | STORAGE LEVEL OF DISSIPATION FUNCTION IN | | | | GENERAL PURPOSE STORAGE | | DSW(4) | BOUND | COEFFICIENTS OF POLYNOMIAL FIT FOR SWITCHING THE | | | | BOUNDARY SURFACE TYPE | | DTDN(4) | воиир | SPECIFIED TEMPERATURE GRADIENT NORMAL TO | | | | BOUNDARY | | DIDNU(NN,4) | воиир | STORAGE ARRAY FOR TEMPERATURE GRADIENT NORMAL | | | | TO BOUNDARY | | DX | OPER | STEP SIZE IN X-DIRECTION | | DXI | OPER | INVERSE OF DX | | DXHAX(10) | GEOM | MAXIMUM MARCHING STEP SIZE | | DXMIN(10) | GEOM | MINIHUM MARCHING STEP SIZE | | D1(NEQS,NDIFM,NN) | LIN | STORAGE FOR LINEARIZATION COEFFICIENTS OF | | | | Y - DERIVATIVES | | D1L(NEQS,NDIFM) | LIN | STORAGE OF LINEARIZATION COEFFICIENT | | | | FOR TEMPERATURE AND PRESSURE COMPUTATION | | D2(NEQS,NDIFM,NN) | LIN | STORAGE FOR LINEARIZATION COEFFICIENTS OF | | | | Z - DERIVATIVES | | E(NN, NCPLD, NN) | | ARRAY USED IN MGAUSS ERROR CHECK - EQUIVALENCED | | | | TO C(1,1,1) | | EPS | VAR | INDEX FOR DISSIPATION OF TURBULENCE | | | | KINETIC ENERGY | | EPSMWF | LAWW | CONVERGENCE CRITERION FOR WALL FUNCTION FORMULATION | | F(14,NN) | ZPLOT | TEMPORARY STORAGE FOR PLOT INFORMATION | | FORTRAN
SYMBOL | BLOCK
COMMON | DESCRIPTION | |--------------------|-----------------|---| | FACLM(4) | LAWW | MULTIPLICATION FACTOR TO BOUNDARY LAYER | | | | THICKNESS | | FG(8,3,NN) | METRIC | STORAGE FOR METRIC COEFFICIENTS AND DERIVATIVES | | GAM(3) | GEOM | COORDINATE TRANSFORMATION COEFFICIENT FOR | | | | BOUNDARY CONDITIONS | | GAMMA | REF | RATIO OF SPECIFIC HEATS | | GC | UNITS | GRAVITY CONSTANT | | н | VAR | INDEX FOR ENTHALPY | | HEORM | REF | HEAT OF FORMATION | | HINE | FREE | FREE STREAM ENTHALPY | | HREF | REF | REFERENCE ENTHALPY | | HREFI | REF | INVERSE OF REFERENCE ENTHALPY | | IA | CCOM | INDEX REFERRING TO SUBDIAGONAL MATRIX ELEMENTS | | IADDO(NDIFM) | ADDR | ADDRESSES IN THE OPPOSITE DIRECTION | | IADDP(NDIFM) | ADDR | ADDRESSES IN THE PRIMARY DIRECTION | | IADDS1(NN) | ADDRE | ADDRESS FOR POINT LOGIC OF FLUID VARIABLES | | IADDS2(NDIFM, NN) | ADDRE | ADDRESS FOR Y DERIVATIVE OF FLUID VARIABLES | | IADDS3(NDIFM,NN) | ADDRE | ADDRESS FOR Z DERIVATIVE OF FLUID VARIABLES | | IADDS4(NDIFH**2,NN |) ADDRF | ADDRESS FOR MIXED DERIVATIVE OF FLUID VARIABLES | | IADDS5(NDIFM**2,NN |) ADDRF | ADDRESS FOR MIXED DERIVATIVE OF FLUID VARIABLES | | IADD1 | ADD | NO. OF GEOMETRIC VARIABLES USED IN ADD CODE | | IADD2 | ADD | NO. OF TRANSVERSE GRIDPOINT USED IN ADD CODE | | IADD3 | ADD | RECORD SIZE USED IN ADD CODE | | IADI | SWEEP | ADI SWEEP DIRECTION | | IADIM1 | SWEEP | IADI - 1 | | IAP(10) | GEOM | MARCHING STEP INDEX AT WHICH AP, DXMIN, DXMAX | | FORTRAN
Symbol | BLOCK
COMMON | DESCRIPTION | |-------------------|-----------------|--| | | | ARE REINITIALIZED | | IB | CCOM | INDEX REFERRING TO DIAGONAL MATRIX ELEMENTS | | IBC | воиир | INDEX FOR BOUNDARY SURFACE IDENTIFICATION | | IBCP | PRFILE | BASIC SURFACE FOR INITIAL PROFILE GENERATION | | IBLT | LAWW | FLAG WHICH TELLS WHETHER BOUNDARY LAYER | | | | THICKNESS IS INPUT OR CALCULATED DYNAMICALLY | | IBOUND(4) | BOUND | BOUNDARY SURFACE TYPE INDICATOR | | IC | CCOM | INDEX REFERRING TO SUPERDIAGONAL MAIRIX ELEMENTS | | ICDC(NN+1,2) | CDC | RECORD INDEX FOR READMS AND WRITEMS MASS | | | | STORAGE DEVICES-CDC COMPUTER ONLY | | ICOMP | REST | FLAG FOR COMPUTER OPTIONS | | ICONS(3,NEQS) | OPER | FLAG FOR CONVECTIVE FORMULATION BASED ON MACH | | | | NUMBER AND EQUATION | | ICORD | GEOM | FLAG FOR COORDINATE TRANSFORMATION OPTIONS | | ICPLD(NEQS,2) | EQN | COUPLED EQUATION SENTINEL | | ID | CCOM | INDEX REFERRING TO VECTOR MATRIX ELEMENTS | | IDIF(40) | OPER | INDEX FOR TYPE OF DIFFERENCING OF BOUNDARY | | | | CONDITIONS | | IDMPY | DMP | DUMP LINE NO. IN Y DIRECTION | | IDMPZ | DMP | DUMP LINE NO. IN Z DIRECTION | | IDUM2(NN) | ADDRG | INDICATOR OF THE POINT IN DIFFERENCE MOLECULE | | | | WHERE Y DERIVATIVE IS TAKEN | | IDUM3(NN) | ADDRG | INDICATOR OF THE POINT IN DIFFERENCE MOLECULE | | | | WHERE Z DERIVATIVE IS TAKEN | | IEQ | EQN | EQUATION NUMBER INDEX | | IEQRC(4,NEQS) | BOUND | SPECIFIED BOUNDARY CONDITION FOR WALL | | FORTRAN
SYMBOL | COMMON BLOCK | DESCRIPTION | |-------------------|--------------|---| | IEQNUM(NEQS) | EQN | IDENTIFICATION NUMBER OF EQUATIONS TO BE SOLVED | | IFLARE | OPER | SENTINEL WHICH TELLS IF FLARE OPTION IS USED | | IGDMP | DMP | FLAG FOR DUMP OPTIONS | | IGEOM | GEOM | FLAG FOR COORDINATE SYSTEM OPTIONS | | IH | GRID | UPPER BOUNDARY POINT ON THE LINE WHERE IMPLICIT | | | | SOLUTION IS OBTAINED | | IHSTAG | EQN | FLAG FOR ENERGY EQUATION OPTIONS | | IJ | DIFCOM | COLUMN OR ROW NUMBER ON WHICH CALCULATION IS BEING | | | | MADE | | IL | GRID | LOWER BOUNDARY POINT ON THE LINE WHERE IMPLICIT | | | | SOLUTION IS OBTAINED | | IMIXL | LAWW | FLAG FOR MIXING LENGTH OPTIONS | | IND | VAR | FLAG WHICH TELLS IF MESH POINT BELONGS TO | | | | SUPERSONIC OR SUBSONIC REGION | | INDC(NN) | DIFCOM | MACH NUMBER INDICATOR | | INDL | VAR | STORAGE OF MACH NUMBER INDICATOR IN | | | | GENERAL PURPOSE STORAGE | | INH12 | ADD | SENTINEL USED TO DETERMINE FORMULATION USED | | | | IN CALCULATION OF TRANSVERSE DERIVATIVE OF HI | | INH21 | ADD | SENTINEL USED TO DETERMINE FORMULATION USED | | | | IN CALCULATION OF STREAMWISE DERIVATIVE OF H2 | | INH31 | ADD | SENTINEL USED TO DETERMINE FORMULATION USED | | | | IN CALCULATION OF STREAMWISE DERIVATIVE OF H3 | | INH32 | ADD | SENTINEL USED TO DETERMINE FORMULATION USED | | | | IN CALCULATION OF TRANSVERSE DERIVATIVE OF H3 | | IOPTWE | LAWW | SENTINEL WHICH DETERMINES WALL FUNCTION FORMULATION | | | | | | FORTRAN
Symbol | BLOCK
COMMON | DESCRIPTION | |-------------------|-----------------|--| | IOPTYZ(3,NEQS,2) | OPER | FLAG FOR DIFFERENCING FORMULATION BASED ON | | | | MACH NUMBER, EQUATION, AND ADI DIRECTION | | IPLOT | CIO | MARCHING STATION INTERVAL FOR STORAGE OF | | | | PLOTTING INFORMATION | | IPRINT | CIO | PRIMARY MARCHING STATION INTERVAL FOR PRINTING | | IPROF | PRFILE | FLAG FOR INITIAL PROFILE OPTIONS | | IPRTE | GASL | FLAG WHICH DETERMINES EQ. OF STATE FORMULATION | | IRSTIN | REST | STREAMWISE STATION NUMBER FOR RESTART | | IRSTOT | REST | STREAMWISE INTERVAL FOR SAVING RESTART | | | | INFORMATION | | ISONIC | SUPER | FLAG FOR SONIC LINE INTERPOLATION LOGIC | | ISS(NN,4) | SUPER | GRID POINT LOCATION OF SONIC LINE | | ISSHFT | SUPER | INDEX USED TO DETERMINE IF SONIC LINE IS LAST | | | | SUBSONIC POINT OR FIRST SUPERSONIC POINT | | ISTART | METRIC | INITIAL CONDITION INDEX | | ISW | UNIVAC | SENTINEL FOR WORD ADDRESSABLE OR SECTOR- | | | | ORIENTED MASS STORAGE DEVICE - UNIVAC ONLY | | ISYM | ZPLOT | SYMMETRY OPTION FOR PLOTS | | ITRANS | LAWW | FLAG WHICH TELLS WHETHER TRANSITION TURBULENCE | | | | MODEL LOGIC IS USED | | IUNITS | UNITS | FLAG USED TO DETERMINE SET OF DIMENSION UNITS USED | | IVARNO(NEQS) | EQN | IDENTIFICATION NUMBER OF DEPENDENT VARIABLES | | IVARPR(25) | PRNT | INDEX OF VARIABLES TO BE PRINTED | | IVISC | VISC | FLAG FOR VISCOSITY OPTIONS | | IWALF | VISC | SENTINEL WHICH DETERMINES IF WALL FUNCTION | | | | LOGIC IS NEEDED IN THE CALCULATION OF WALL | | FORTRAN
SYMBOL | COMMON
Block | DESCRIPTION | |-------------------|-----------------|---| | | | VISCOSITY | | IWR | CIO | SENTINEL FOR NAMELIST REST PRINT | | IYGD(NDIEM) | ADDR | GEOMETRY ADDRESSES | | IZCT(3) | ZEX1 | RELATIVE UNIT NO. FOR VIRTUAL MEMORY STORAGE | | IlIG(8,3) | FGCOM | INDEX NEEDED IN THE CALCULATION OF METRIC | | | | INFORMATION | | 121G(8,3) | FGCOM | INDEX NEEDE IN THE CALCULATION OF METRIC | | | | INFORMATION | | JA(3) | ADDRF | SHIFT LOGIC INDEX | | JADDO(NDIFM) | ADDR | ADDRESSES IN THE OPPOSITE DIRECTION | | JADDP(NDIFM) | ADDR |
ADDRESSES IN THE PRIMARY DIRECTION | | JBOUND(NN,4) | BOUND | BOUNDARY TYPE INDICATOR AT EACH POINT ON BOUNDARY | | JDMAX | EQN | Y GRID POINT LOCATION OF MAXIMIUM DELTA | | JDRUM | C10' | ADD CODE DEVICE | | JDUM | DIFCOM | INDEX DENOTING RELATIVE POINT ABOUT WHICH | | | | DERIVATIVE IS LOCATED | | JEQBC(4,NEQS) | воимр | SPECIFIED BOUNDARY CONDITION FOR NON-WALL | | JEQN(NEQS,2) | EQN | EXTERNAL EQUATION NUMBER | | JGSTOR | LIN | VALUE OF JG NEEDED BY SUBROUTINE EOS | | JPL0T | CIO | DEVICE FOR PLOTTING | | JPRINT | C 10 | SECONDARY MARCHING STATION INTERVAL FOR PRINTING | | JPROF(4) | PRFILE | SENTINEL FOR BOUNDARY VALUES DURING INITIAL PROFILE | | | | GENERATION | | JRSTIN | REST | LOGICAL FILE FROM WHICH RESTART INFORMATION | | | | IS READ | | JRSTOT | REST | LOGICAL FILE ON WHICH RESTART INFORMATION | | FORTRAN
Symbol | B L O C K | DESCRIPTION | |-------------------|-----------|---| | | | IS WRITTEN | | JVAR(NEQS,2) | EQN | VARIABLE NUMBER ASSOCIATED WITH EACH EQUATION | | | | DURING AN ADI SWEEP | | JWR(5) | CIO | SENTINEL FOR NAMELIST PRINT OPTION | | JX | OPER | RELATIVE HARCHING STATION COUNTER | | JXDUM | OPER | ABSOLUTE MARCHING STATION COUNTER | | JXDUMP | DMP | MARCHING STATION WHEN DUMP OUTPUT IS REQUESTED | | KA(5) | ADDRG | INDICIES NECESSARY TO CALCULATE GEOMETRIC GROUPINGS | | KDMAX | EQN | Z GRID POINT LOCATION OF MAXIMIUM DELTA | | KDRUM | CIO | DEVICE FOR TEMPORARY STORAGE - USED IN GEOMETRY | | | | GENERATION | | LADD(3) | воимо | ADDRESSES FOR BOUNDARY CONDITIONS | | LDRUM | CIO | DEVICE FOR FINAL METRIC INFORMATION | | LEQ1 | EQN | LOWEST INDEX OF EQUATIONS SOLVED EITHER BY | | | | COUPLED OR UNCOUPLED ADI SWEEP | | LEQ2 | EQN | HIGHEST INDEX OF EQUATIONS SOLVED EITHER BY | | | | COUPLED OR UNCOUPLED ADI SWEEP | | LEV(3) | ADDR | GEOMETRY LEVEL | | LEVEL | ADDRG | GEOMETRY LEVEL | | LGA1(NN) | ADDRG | ADDRESS FOR POINT LOGIC OF GEOMETRIC VARIABLES | | LGA2(NDIFM,NN) | ADDRG | ADDRESS FOR Y - DERIVATIVE OF GEOMETRIC | | | | VARIABLES | | LGA3(NDIEH,NN) | ADDRG | ADDRESS FOR Z - DERIVATIVE LOGIC OF GEOMETRIC | | | | VARIABLES | | LGA4(NDIFH##2,NN) | ADDRG | ADDRESS FOR CROSS DERIVATIVE(Y-Z) LOGIC OF | | | | GEOMETRIC VARIABLES | | FORTRAN
SYMBOL | BLOCK
BLOCK | DESCRIPTION | |-------------------|----------------|---| | LGA5(NDIFM**2,NN) | ADDRG | ADDRESS FOR CROSS DERIVATIVE(Z-Y) LOGIC OF | | | | GEOMETRIC VARIABLES | | LREF | REF | REFERENCE LENGTH | | LREFI | REF | INVERSE OF REFERENCE LENGTH | | LSHFT | GEOM | SHIFT INDEX FOR COORDINATE TRANSFORMATION | | LVG(8) | воинр | BOUNDARY POINT INDICATOR FOR BOUNDARY CONDITION | | MASS1 | CIO | GENERAL PURPOSE MASS STORAGE DEVICE | | MASS2 | CIO | GENERAL PURPOSE MASS STORAGE DEVICE | | MCPLD | EQN | NUMBER OF COUPLED EQUATIONS TO BE SOLVED | | MEFF | VAR | INDEX FOR EFFECTIVE VISCOSITY | | HEFFL | VAR | STORAGE LEVEL OF EFFECTIVE VISCOSITY IN | | | | GENERAL PURPOSE STORAGE | | меак | EQN | LEQ1 - 1 | | MEQS | EQN | TOTAL NUMBER OF EQUATIONS TO BE SOLVED | | MEQS1 | EQN | INDEX OF FIRST EQUATION TO BE SOLVED | | MEQS2 | EQN | INDEX OF LAST EQUATION TO BE SOLVED | | мбонь | DMP | FLAG FOR DUMP OPTIONS | | MGD1 | GRID | IL + 1 | | MGD2 | GRID | IH - 1 | | мім | CIO | INPUT DEVICE | | MINE | FREE | FREE STREAM MACH NUMBER | | ML | VAR | INDEX FOR MIXING LENGTH | | MLEVEL | PARAM | MAXIMUM NO. OF STORAGE LEVELS | | MLL | VAR | STORAGE LEVEL OF HIXING LENGTH IN | | | | GENERAL PURPOSE STORAGE | | ми | VAR | INDEX FOR MACH NUMBER | | FORTRAN
Symbol | BLOCK
COMMON | DESCRIPTION | |-------------------|-----------------|--| | HNL | VAR | STORAGE LEVEL OF MACH NO IN | | | | GENERAL PURPOSE STORAGE | | TUON | CIO | OUTPUT DEVICE | | MREF | REF | REFERENCE MACH NUMBER | | MREFI | REF | INVERSE OF REFERENCE MACH NUMBER | | MSDD | CIO | TEMPORARY MASS STORAGE DEVICE | | MSD1 | CIOD | GENERAL PURPOSE MASS STORAGE DEVICE | | MSD2 | CIOD | GENERAL PURPOSE MASS STORAGE DEVICE | | MSGVAR(25) | PRNT | TITLE OF VARIABLES TO BE PRINTED | | MU | VAR | INDEX FOR LAMINAR VISCOSITY | | MUINE | FREE | FREE STREAM LAMINAR VISCOSITY | | MUL | VAR | STORAGE LEVEL OF LAMINAR VISCOSITY IN | | | | GENERAL PURPOSE STORAGE | | MUREF | REF | REFERENCE VISCOSITY | | MUREFI | REF | INVERSE OF REFERENCE VISCOSITY | | HUT | VAR | INDEX FOR TURBULENT VISCOSITY | | MUTL | VAR | STORAGE LEVEL OF TURBULENT VISCOSITY IN | | | | GENERAL PURPOSE STORAGE | | MWINE | FREE | FREE STREAM MOLECULAR WEIGHT | | MWREF | REF | REFERENCE MOLECULAR WEIGHT | | MWREFI | REF | INVERSE OF REFERENCE MOLECULAR WEIGHT | | MZVAR | PARAM | MAXIMUM NUMBER OF STORAGE VARIABLES | | NABC | CCOM | NABC = ID | | NANG | METRIC | ANGLE OF COORDINATE LINES RELATIVE TO HORIZONTAL | | NCPLD | PARAM | MAXIMIUN NUMBER OF COUPLED EQUATIONS | | NCPLD2 | CCOM | NCPLD##2 | | FORTRAN
SYMBOL | BLOCK | DESCRIPTION | |-------------------|--------|--| | NCTR | DIFCOM | CENTER OF DIFFERENCE MOLECULE | | NCUP | EQN | NUMBER OF COUPLED EQUATIONS | | NDIFM | PARAM | MAXIMIUM NUMBER OF GRID POINTS IN A DIFFERENCE | | | | MOLECULE | | NDIFMT | DIFCOM | 2*NDIEM | | ND I FM1 | DIFCOM | NDIFM - 1 | | ND IFP1 | DIFCOM | NDIFH + 1 | | NE(2) | GEOM | NUMBER OF GRID POINTS IN Y AND Z DIRECTIONS | | NEQN(NEQS,2) | EQN | NUMBER OF COUPLED EQUATIONS TO BE SOLVED IN EACH | | | | ADI SWEEP | | NEOS | PARAM | MAXIMIUM NUMBER OF EQUATIONS IN CODE | | NEY | GRID | NUMBER OF GRID POINTS IN Y DIRECTION | | NEYMI | GRID | NEY - 1 | | NEZ | GRID | NUMBER OF GRID POINTS IN Z DIRECTION | | NEZMI | GRID | NEZ - 1 | | NE2S | CIO | SENTINEL FOR SPREADING OF 2-D PROFILE TO 3-D | | NEILE | REST | SEQUENCE NUMBER OF RESTART INFORMATION | | NGEOMV | METRIC | NUMBER OF METRIC COEFFICIENTS AND DERIVATIVES | | NH1 | METRIC | INDEX FOR METRIC COEFFICIENT IN X-DIRECTION | | NH12 | METRIC | INDEX FOR DERIVATIVE OF X METRIC IN Y DIRECTION | | NH2 | METRIC | INDEX FOR METRIC COEFFICIENT IN Y-DIRECTION | | NH21 | METRIC | INDEX FOR DERIVATIVE OF Y METRIC IN X DIRECTION | | кня | METRIC | INDEX FOR METRIC COEFFICIENT IN Z-DIRECTION | | NH31 | METRIC | INDEX FOR DERIVATIVE OF Z METRIC IN X DIRECTION | | NH32 | METRIC | INDEX FOR DERIVATIVE OF Z METRIC IN Y DIRECTION | | NIIT | CIO | NO. OF FALSE MARCHING STEPS USED TO GENERATE | | 0.0 | | | | FORTRAN
Symbol | BTOCK
COWWON | DESCRIPTION | |-------------------|-----------------|---| | | | THE INITIAL PROFILE | | NJD | DIFCOM | GRID POINT LOCATION FOR START OF SECOND SWEEP | | NMAXWE | LAWW | MAXIMIUM NUMBER OF ITERATIONS ALLOWABLE IN | | | | CALCULATIOON OF WALL SHEAR VELOCITY | | NN | PARAM | MAXIMIUM NUMBER OF GRID POINTS IN Y OR Z DIRECTION | | NPADI | EQN | NUMBER OF COUPLED AND UNCOUPLED EQUATIONS TO BE | | | | SOLVED DURING EACH ADI SWEEP | | NPISX(4) | INTBC | NUMBER OF STREAMWISE LOCATIONS WHERE TRANSPIRATION | | | | DATA IS INPUT | | NPTSYZ(15,4) | INTBC | NUMBER OF CROSS-PLANE LOCATIONS WHERE TRANSPIRATION | | | | IS INPUT | | ИРИИСН | CIO | PUNCH DEVICE | | NRGI(2) | DIFCOM | NCTR POINTS FROM RIGHT OR TOP BOUNDARY | | нѕ | GEOM | LAST MARCHING STATION | | NSAVED | REST | SEQUENCE NUMBER OF RESTART STATIONS SAVED | | NSMAX | PARAM | 2 GREATER THAN NS | | NUNERR | CIO | DEVICE FOR MGAUSS ERROR CHECK | | NVSOLV | EQN | NUMBER OF DEPENDENT VARIABLES | | NWORD2(50) | STRAGE | SIZE OF EACH COMMON BLOCK | | OMBWD | LIN | 1.0 - BWD | | OMEGWE | LAWW | UNDER-RELAXATION FACTOR FOR WALL FUNCTION | | | | FORMULATION | | P | VAR | INDEX FOR STATIC PRESSURE | | PCON1 | REF | (GAMMA-1.0)/GAMMA | | PCON2 | REF | 0.5 * PCON1 | | PINF | FREE | FREE STREAM STATIC PRESSURE | | FORTRAN
Symbol | BLOCK
COMMON | DESCRIPTION | |-------------------|-----------------|---| | PL | VAR | STORAGE LEVEL OF STATIC PRESSURE IN | | | | GENERAL PURPOSE STORAGE | | PLTFLD(NN,NN,8) | ZPLOT | GENERAL PURPOSE STORAGE FOR PLOT INFORMATION | | PR | REF | PRANDIL NUMBER | | PREF | REF | REFERENCE PRESSURE | | PREFI | REF | INVERSE OF REFERENCE PRESSURE | | PREPS | VISC | PRANDTL NO. IN TURBULENT ENERGY DISSIPATION | | | | EQUATION | | PRESS(4) | BOUND | SPECIFIED PRESSURE AT BOUNDARY | | PRT | REF | TURBULENT PRANDIL NO. | | PRTKE | VISC | PRANDIL NO. IN TURBOLENT KINECTIC ENERGY EQUATION | | PZERO | FREE | STAGNATION PRESSURE | | Q1D(8,NN) | METRIC | INTERMEDIATE STORAGE ARRAY FOR METRIC | | | | INFORMATION | | Q2D(8,NN) | METRIC | INTERMEDIATE STORAGE ARRAY FOR METRIC | | | | INFORMATION | | R | VAR | INDEX FOR DENSITY | | RATLD | LAWW | EMPIRICAL NUMERICAL CONSTANT IN MIXING LENGTH | | | | COMPUTATION | | RE | REF | REYNOLDS NUMBER | | REI | REF | INVERSE OF REYNOLDS NUMBER | | RE 12 | REF | 2.0 * REI | | REPL | FREE | REYNOLDS NUMBER PER UNIT LENGTH | | RGAS | REF | GAS CONSTANT | | RHO(NDIFM) | ADDR | STORAGE OF DENSITY FOR FIRST DERIVATIVES | | RHOINE | FREE | FREE STREAM DENSITY | | FORTRAN
SYMBOL | COMMON
BLOCK | DESCRIPTION | |-------------------|-----------------|---| | RHOREF | REF | REFERENCE DENSITY | | RHOWL(NN,4) | BOUND | STORAGE FOR DENSITY ON THE BOUNDARY | | RHREFI | REF | INVERSE OF REFERENCE DENSITY | | RUNIV | UNITS | UNIVERSAL GAS CONSTANT | | SAVE(NEQS, NN) | EQN | STORAGE FOR CHANGES DURING FIRST ADI SWEEP | | SN(NN) | LIN | STORAGE FOR N TH LEVEL TERMS | | SQ1 | ADD | ADD CODE STREAMWISE LOCATION | | SQ2 | ADD | ADD CODE STREAMWISE LOCATION | | SYSTEM | ZPLOT | SENTINEL FOR COORDINATE SYSTEM - PLOTS ONLY | | T | VAR | INDEX FOR STATIC TEMPERATURE | | TEMPS(NN,4) | воиир | STORAGE ARRAY FOR TEMPERATURE ON BOUNDARY | | TEMPSN(NN,4) | BOUND | STORAGE ARRAY FOR TEMPERATURE AT NTH STREAMWISE | | | | STATION - BOUNDARIES ONLY | | TINE | FREE | FREE STREAM STATIC TEMPERATURE | | TITLE(6) | ZPLOT | TITLE FOR PLOT FILE | | TKE | VAR | INDEX FOR TURBULENT KINETIC
ENERGY | | TKEINF | LAWW | FREE STREAM TURBULENT KINETIC ENERGY | | TL | VAR | STORAGE LEVEL OF STATIC TEMPERATURE IN | | | | GENERAL PURPOSE STORAGE | | TREF | REF | REFERENCE IEMPERATURE | | TREFI | REF | INVERSE OF REFERENCE TEMPERATURE | | TT1(2) | GEOH | MESH DISTRIBUTION FACTOR | | TT2(2) | GEON | MESH DISTRIBUTION FACTOR | | TWALL(4) | BOUND | SPECIFIED TEMPERATURE AT BOUNDARY | | TWOD | GEOM | FLAG FOR IWO DIMENSIONAL LOGIC | | TZERO | FREE | STAGNATION TEMPERATURE | | | | | | FORTRAN
Symbol | BLOCK
COMMON | DESCRIPTION | |-------------------------|-------------------------|---| | 12(2) | GEOM | MESH DISTRIBUTION FACTOR | | U | VAR | INDEX FOR VELOCITY IN X-DIRECTION | | UDUE(4) | LAWW | BOUNDARY LAYER THICKNESS SAMPLING CRITERIA | | UDUM(NJIFN) | ADUR | STORAGE OF VELOCITY FOR FIRST DERIVATIVES | | UINF | FREE | FREE STREAM VELOCITY | | UREF | REF | REFERENCE VELOCITY | | UREFI | REF | INVERSE OF REFERENCE VELOCITY | | USCALE | AUD | METRIC SCALE FACTOR | | USIAR(NN,4) | LAWW | FRICTION VELOCITY ON SOLID WALL BOUNDARY | | UTIL(NDIEM) | ADDR | STORAGE OF DEPENDENT VARIABLE FOR FIRST DERIVATIVES | | v | VAR | INDEX FOR VELOCITY IN Y-DIRECTION | | VELSQ(NN,NN) | | STORAGE FOR UAA2 + VAA2 + WAA2 - EQUIVALENCED TO | | | | PLTFLD(1,1,4) | | VKB | LAWW | SECOND CONSTANT IN LOGARITHMIC LAW OF THE WALL | | VKC | LAWW | VON KARMAN CONSTANT | | VNO(15,15,4) | INTBC | INPUT TRANSPIRATION RATES | | W | VAR | INDEX FOR VELOCITY IN Z-DIRECTION | | X(502) | GEOM | STREAMWISE LOCATION | | XENTR | GEOM | STARTING STREAMWISE LOCATION | | XG1(NN,2) | OPER | FIRST DERIVATIVES OF COMPUTATIONAL COORDINATES | | | | WITH RESPECT TO PHYSICAL COORDINATES | | XG2(NN,2) | OPER | SECOND DERIVATIVES OF COMPUTATIONAL | | | | COORDINATES WITH RESPECT TO PHYSICAL COORDINATES | | | | | | X0B(4) | BOUND | INITIAL LOCATION OF SOLID OBSTACLE IN X DIRECTION | | X0B(4)
XVNO(15,15,4) | BOUND
IN I BC | | | FORTRAN
Symbol | COMMON
Block | DESCRIPTION | |-------------------|-----------------|---| | X0(2) | GEOM | HESH DISTRIBUTION FACTOR | | Y(NN,NN,2) | | PHYSICAL DISTANCES FROM BOUNDARIES - EQUIVALENCED | | | | TO PLTFLD(1,1,2) | | YAW | REF | YAW ANGLE | | YPLUSL(NN,NN) | | STORAGE FOR RHO & UTAU / VISLAM - EQUIVALENCED TO | | | | PLTFLD(1,1,1) | | YS(2,2) | GEON | NONDIMENSIONAL EXTENTS OF COMPUTATIONAL DOMAIN | | YSAVE(NN,2) | GEOM | COMPUTATIONAL COORDINATES | | YZPROF(NN) | PRFILE | TEMPORARY STORAGE ARRAY FOR PHYSICAL COORDINATES | | YZVNO(15,15,4) | INTBC | CROSS-PLANE LOCATIONS WHERE TRANSPIRATION DATA IS | | | | INPUT | | ZNIRN(NDIH,3) | ZEX1 | ARRAY FOR VIRTUAL MEMORY STORAGE | | | | NDIM = NN + NN + MZVAR + MLEVEL | | ZZ(M,L,K) | VARZZ | GENERAL PURPOSE STORAGE FOR DEPENDENT AND DERIVED | | | | VARIABLES - M = MZVAR, L = MLEVEL, K = NDIFM * NN | Sample input and output for two- and three-dimensional cases are presented in Tables II - V, respectively. The two-dimensional input is that used in running the previously discussed Rose case (Ref. 36) while the three-dimensional input is that used in the running of the Bogdonoff case (Ref. 34). The Rose case input data is for an initial run (IRSTIN=0) with a restart to be written every 200 marching steps (IRSTOT). The case is to be run on our IBM virtual memory marching (ICOMP=3). The streamwise and transverse momentum as well as continuity and stagnation enthalpy (IHSTAG) version of the energy equation are to be solved. On the first boundary, the boundary type as well as the boundary condition are to change at streamwise distance 0.5618 (ASW(1)=0.5618). Wall temperatures on the 1 and 2 surfaces are 3.651111439 times the reference temperature (TWALL(1)=2*3.651111439). The reference length is 0.8666667 ft. (IUNITS=1) the Reynold's number per ft. is 5.22×10^{6} , the free stream March number 3.88 and the free stream pressure is 5.9.8170527 lbt/ft². Grid point packing about the 1 surface is to be moderate TT1=-0.80 while the packing around the 2 surface is to be considerably tighter TT2=0.95 99 grid points are utilized in the transverse direction (NE(1)=99) and an axisymmetric coordinate system generated by the ADD code (IGEOM=11) is to be utilized. The initial run is to be marched 200 steps (NS=200) starting at a streamwise location of 0.2 (XENTR=0.2). An initial profile is to be supplied off the 2 surface. The boundary layer thickness is 0.130 and the skin friction coefficient is 1.72×10^{-3} . A turbulent mixing length model is used (IMIXL=1). Printout is given every 10 steps (IPRINT=10) and plot information is written every 2 steps (IPLOT=2). The output for the two-dimensional Rose case consists of NAMELIST information and geometric information and maximum change information and flowfield information at each tenth streamwise station. The NAMELIST information is provided as a means for the user to check the input data. The geometric information consists of the nondimensional computational distance (YSAVE), the nondimensional physical distance Y from the lower surface, the three metrics and their derivatives and the X and Y physical location based on an (ADD code) absolute frame of reference. The maximum change information consists of the variable number (IVAR) the grid point position of the maximum change (JMAX and KMAX) and the value of the maximum change of the variable from one marching station to the next. The next two pages consist of the flowfield information at a given streamwise location. All variables (except the pressure) are in a nondimensional form with respect to the reference conditions which are displayed in NAMELIST LIST2. The pressure terms are nondimensionalized with respect to the free stream pressure. The first page of flowfield output consists of the transverse grid point number, the computational position, the streamwise velocity component, the transverse direction velocity component, the density, the static or stagnation (IHSTAG=0 or IHSTAG=1 or 2) enthalpy, the turbulence kinetic energy, the static pressure, the static temperature, the effective viscosity and the Mach number. The second page of flowfield output again consists of the grid point number at the computational position followed by the subsonic (INDC=1) supersonic (INDC=3) indicator, the stagnation temperature and pressure, the pressure coefficient, the laminar viscosity, the mixing length, the dissipation function and finally the cell Reynolds number. Following the flowfield information is the subsonic-supersonic grid point position indicator (ISS) with respect to the lower and upper surface and the boundary indicator (IBOUND). The ISS values tell the grid point where the flow transitions from subsonic to supersonic flow while the variable IBOUND tells the type of surface (JBOUND=1 corresponding to a wall and JBOUND=2 corresponding to a nonwall). Finally, plot file information is displayed. The sample input for a three-dimensional restart case is presented in Table IV. Since this is a restart case the initial input values are retained as defaults and only variables that are going to be changed need appear. For this particular case, the results at step 350 (IRSTIN=350) are going to be marched 50 more steps to station 400 (NS=400). From this input stream it is possible to see how the streamwise step size was varied. The initial step size (which would have to be obtained from the initial input run stream) was decreased by 20% per step over the first 20 stations and allowed to reach a minimum step size of 0.002. At station 21 the step size was increased by 5% per step. From station 41 to 101 the step size remained constant. At station 101 the step size was again reduced by 20% per step with a minimum value of 0.0002. After station 251, the step size increased by 15% per step until it achieved a maximum step size of 0.005. A portion of the output for this case is presented in Table V. The initial three-dimensional output is the same as the two-dimensional output and is not presented here. The format of the flowfield output is of a different form. Unlike the two-dimensional flowfield output, the three-dimensional output is controlled by the variable IVARPR. All of the variables that were printed inthe two-dimensional output can be obtained in three dimensions. For three dimensions, however, the output is in the form of a cross-sectional plane of output. The integer variables IY and IZ represent the transverse and spanwise grid point locations respectively while Z and Y are the corresponding computational positions. Table IV is a portion of the output for the Bogdonoff case i.e., the cross plane distribution of the streamwise velocity (UVEL) and pressure (PRES). Other variables can (and were) printed out but for reasons of economy of space are not presented here. ## REFERENCES - 1. Davis, R.T. and Rubin, S.G.: Non-Navier-Stokes Viscous Flow Computations, Computers and Fluids 8, 101, 1980. - 2. McDonald, H. and Briley, W.R.: Three-Dimensional Supersonic Flow of a Viscous or Inviscid Gas, J. Comp. Physics, 1975. - 3. Garvine, R.W.: Upstream Influence in Viscous Intraction Problems, The Physics of Fluids, Vol. 11, Number 7, July 1968. - 4. Rudman, S. and Rubin, S.G.: Hypersonic Viscous Flow over Slender Bodies with Sharp Leading Edges, AIAA Journal, Vol. 6, No. 10, October 1968. - 5. Lubard, S.C. and Helliwell, W.S.: Calculation of the Flow on a Cone at High Angle of Attack, AIAA Journal, Vol. 12, No. 7, July 1974. - 6. Rakich, J.V., Vigneron, Y.C. and Agarwal, R.: Computation of Supersonic Viscous Flows Over Ogive-Cylinders at Angle of Attack, AIAA Paper 79-0131, 1979. - 7. Schiff, L.B. and Steger, J.L.: Numerical Simulation of Steady Supersonic Flow, AIAA Paper 79-0130, 1979. - 8. Lin, A. and Rubin, S.G.: Three-Dimensional Supersonic Viscous Flow Over a Cone at Incidence, AIAA Paper 81-0192, 1981. - 9. Helliwell, W.S. and Lubard, S.C.: An Implicit Method for
Three-Dimensional Viscous Flow with Application to Cones at Angle of Attack, Computers and Fluids, Vol. 3, 1975. - 10. Lubard, S.C. and Rakich, J.V.: Calculation of the Flow on a Blunted Cone at a High Angle of Attack, AIAA Paper 75-147, 1975. - 11. Helliwell, W.S., Dickinson, R.P. and Lubard, S.C.: Viscous Flows Over Arbitrary Geometries, at High Angle of Attack, AIAA Journal, Vol. 19, No. 2, February 1981. - 12. Li, C.P.: Implicit Solution for the Shock-Layer Flow Around General Bodies, AIAA Journal, Vol. 20, No. 2, February 1982. - 13. Favre, A.: Statistical Equations of Turbulent Gases, Problems of Hydrodynamics and Continuum Mechanics, Soc. Indust. and Appl. Math, 1969, pp. 231-266. - 14. Beer, J.M. and Chiger, N.A.: Combustion Aerodynamics, John Wiley and Sons, Inc., New York 1972. - 15. McDonald, H. and Camarata, F.J.: An Extended Mixing Length Approach for Computing the Turbulent Boundary Layer Development, Proceedings Sanford Conference on Computation of Turbulent Boundary Layers, Vol. I, Stanford University, 1969, pp. 83-98. - van Driest, E.R.: On Turbulent Flow Near a Wall, Journal of Aeronautical Sciences, November 1956. - Von Mises, R.: Mathematical Theotyr of Compressible Fluid Flow, Academic Press, New York, 1958. - Garibedian, P.R.: Partial Differential Equations, John Wiley & Sons, New York, 1964. - Cebeci, T. Ed: Numerical Physical Aspects of Aerodynamic Flows, Springer-Verlag, New York, 1982. - 20. Anderson, B.H. and Benson, T.J.: Numerical Solution to the Glancing Sidewall Oblique Shock Wave/Turbulent Boundary Layer in Three-Dimension, AIAA Paper 83-0136, 1983. - 21. Benson, T.J. and Anderson, B.H.: Validation of a Three-Dimensional Viscous Analysis of Axisymmetric Supersonic Inlet Flow Fields, AIAA Paper 83-0135, 1983. - 22. Briley, W.R. and McDonald, H.: Solution of the Multidimensional Compressible Navier-Stokes Equations by a Generalized Implicit Method, J. of Comp. Physics, Vol. 24, No. 4, Aug. 1977, p. 372. - 23. Richtmyer, R.D. and Morton, K.W.: Difference Methods for Initial-Value Problems, Interscience Publishers, New York, 1967. - 24. Douglas, J. and Gunn, J.E.: A General Formulation of Alternating Direction Methods, Numerische Math., Vol. 6, 1964, p. 2128. - 25. Beam, R.M. and Warming, R.F.: An Implicit Factured Scheme for the Compressible Navier-Stokes Equations, AIAA Journal, Vol. 16, April 1978, p. 393. - 26. Briley, W.R. and McDonald, H.: On the Structure and Use of Linearized Block ADI and Related Schemes, J. Comp. Physics, Vol. 34, 1980, p. 54. - 27. Stewartson, K.: The Theory of Laminar Boundary Layers in Compressible Fluids, Oxford, 1964, pp. 33-41. - 28. Maise, G. and McDonald, H.: Mixing Length and Kinematic Eddy Viscosity in a Compressible Boundary Layer, AIAA Journal, Vol. 6, No. 1, Jan. 1968. - 29. Musker, A.J.: Explicit Expression for the Smooth Wall Velocity Distribution in a Turbulent Boundary Layer, AIAA Journal, Vol. 17, No. 6, June 1976. - 30. Cresci, R.J.: Hypersonic Flow Along Two Intersecting Planes, Pibal Report No. 895, March 1966. - 31. Dorrance, W.H.: Viscous Hypersonic Flow, McGraw-Hill, 1962, p. 147. - 32. Cresci, R.J., S.G., Rubin, Nardo, C.T. and Lin, T.C.: Hypersonic Interaction Along a Rectangular Corner, AIAA Journal, Vol. 7, No. 12, Dec. 1969. - 33. Oskam, B., Vas, I.E., and Bogdonoff, S.M.: Oblique Shock Wave/Turbulent Boundary Layer Interactions in Three-Dimensions at Mach 3, AFFDL-TR-76-48, Part I and II, 1976. - 34. Oskam, B., Vas, I.E., and Bogdonoff, S.M.: An Experimental Study of Three-Dimensional Flow Fields in an Axial Corner at Mach 3, AIAA Paper 77-689, 1977. - 35. Anderson, O.L.: User's Manual for a Finite-Difference Calculation of Turbulent Swirling Compressible Flow in Axisymmetric Ducts with Struts and Slot Cooled Walls, USAAMRDL-TR-74-50, Vol. I, 1974. - 36. Rose, W.C.: The Behavior of a Compressible Turbulent Boundary Layer in a Shock-Wave-Induced Adverse Pressure Gradient, NASA TN D-7092, March 1973. - 37. White, F.M.: Viscous Fluid Flow, McGraw-Hill, 1974, p. 627. - 38. Liu, N.-S., Shamroth, S.J. and McDonald, H.: Numerical Solution of the Navier-Stokes Equations for Compressible Turbulent Two/Three Dimensional Flows in the Terminal Shock Region of an Inlet/Diffuser, AIAA Paper 83-1892, 1983. - 39. Syberg, J. and Kuncsek, J.L.: Experimental Evaluation of a Mach 3.9 Axisymmetric Inlet, NASA CR-2563, 1975. FIGURE I - FORWARD MARCHING PROCEDURE - NOTATION FIGURE 2- TYPICAL HIGH SPEED INLET C-2 FIGURE 3 — TYPICAL COMPUTATIONAL DOMAIN FOR TWO DIMENSIONAL LAMINAR AND TURBULENT FLOW CALCULATION Figure 4. Laminar Flat Plate - Streamwise Velocity Distribution. Figure 5. Laminar Flat Plate - Skin Friction Distribution. Supersonic Laminar Flat Plate - Streamwise Velocity Distribution. Figure 6. Figure 7. Supersonic Laminiar Flat Plate - Skin Friction Distribution. Supersonic Laminar Flat Plate - Momentum Thickness Reynolds Number. Figure 8. Supersonic Turbulent Flat Plate - Boundary Layer $C_{\mathbf{f}}$ vs $\mathrm{Re}_{\mathfrak{G}}$. Figure 9. Figure 10. Supersonic Turbulent Flat Plate - Reduced Navier-Stokes $C_{\mathbf{f}}$ vs $\mathrm{Re}_{\Theta}.$ Figure 11. Supersonic Turbulent Flat Plate - Boundary Layer Velocity Defect Profile. Supersonic Turbulent Flat Plate - Reduced Navier-Stokes Velocity Defect Profile. Figure 12. Hypersonic Corner Flow Schematic Representation of Corner Flow System. Figure 13. Figure 14. Hypersonic Corner Flow - Computational Mesh in the Streamwise Plane. Figure 15. Hypersonic Corner Flow - Comparison of Pressure on a Spanwise Surface. Figure 16. Hypersonic Corner Flow - Comparison of Heat Transfer Coefficient on a Spanwise Surface. Figure 17. Hypersonic Corner Flow Comparison of Skin Friction Coefficients on a Spanwise Surface. Hypersonic Corner Flow - Streamwise Development of the Stagnation Pressure Isobars. Figure 18. Figure 19. Glancing Shock Wave-Boundary Layer Interaction. Schematic of Experimental Facility Figure 20. Glancing Shock Wave-Boundary Layer Interaction. Coordinates for Data Acquisition Figure 21 - Glancing Shock Wave - Boundary Layer Interaction - Static Pressure at X = 5.1. Static Pressure Ratio, P/P_{∞} Figure 22(a) - Glancing Shock Wave - Boundary Layer Interaction - Static Pressure at X = 7.6. Static Pressure Ratio, P/P_{∞} Figure 22 (c) - Glancing Shock Wave - Boundary Layer Interaction -Static Pressure at X = 7.6. Figure 23 - Glancing Shock Wave - Boundary Layer Interaction - Pitot Pressure at X=3.56. Pitot Pressure Ratio, PT√P_{o∞} Figure 24 - Glancing Shock Wave - Boundary Layer Interaction - Pitot Pressure at X = 5.1. Pitot Pressure Ratio, PT/P Figure 25 - Glancing Shock Wave - Boundary Layer Interaction - Pitot Pressure at X = 7.1. Pitot Pressure Ratio, PT/P Figure 26(b) - Glancing Shock Wave - Boundary Layer Interaction - Figure 26(c) - Glancing Shock Wave - Boundary Layer Interaction - Pitot Pressure at X=7.6. Pitot Pressure Ratio, PT/P_{∞} Yaw Angle (a), Degrees Figure 27 - Glancing Shock Wave - Boundary Layer Interaction - Yaw Angle at $X \neq 5.1$. Figure 28 - Glancing Shock Wave - Boundary Layer Interaction - Yaw Angle at X = 7.1. Yaw Angle (a), Degrees Yaw Angle (a), Degrees Figure 29(a) - Glancing Shock Wave - Boundary Layer Interaction - Yaw Angle at X=7.6. Figure 29(b) - Glancing Shock Wave - Boundary Layer Interaction - Yaw Angle at X = 7.6. Yaw Angle (a), Degrees 129 Figure 29(c) - Glancing Shock Wave - Boundary Layer Interaction - Yaw Angle at X = 7.6. Figure 29(d) - Glancing Shock Wave - Boundary Layer Interaction - Yaw Angle at X = 7.6. Figure 30 - Nonorthogonal Channel Flow - Computational Mesh. Figure 31 - Comparison of Computed Pressure Distribution on Upper Wall. Figure 32 - Supersonic Turbulent Shock Wave-Boundary Layer Interaction - Schematic of Experimental Facility. Supersonic Turbulent Shock Wave-Boundary Layer Interaction -Stagnation Pressure. Figure 33 - Supersonic Turbulent Shock Wave-Boundary Layer Interaction - Stagnation Pressure (Rudman & Rubin). Figure 34 - Figure 35 - Axisymmetric Inlet - Mach 3.5 Inlet Model Schematic. Figure 36 - Axisymmetric Inlet - Computation Mesh. Figure 37 - Axisymmetric Inlet - Streamwise Development of Axial Mach Number Profiles. Figure 38 - Axisymmetric Inlet - Streamwise Development of Axial Mach Number Profiles. Figure 40 - Axisymmetric Inlet - Comparison of Cowl Static Pressure. Figure 41 - Axisymmetric Inlet at Angle of Attack - Streamwise Static Pressure Distribution on both Centerbody and Cowl on Windward Ray. Figure 42 - Axisymmetric Inlet at Angle of Attack - Streamwise Static Pressure Distribution on Both Centerbody and Cowl on Waterline Ray. Figure 43 - Axisymmetric Inlet Angle of Attack Streamwise Static Pressure Distribution on Both Centerbody and Cowl on Leeward Ray. • Figure 44 - Axisymmetric Inlet of Angle of Attack - Streamwise Development of Axial - Mach Number Profiles on Windward Ray. Figure 45 - Axisymmetric Inlet of Angle of Attack - Streamwise Development of Mach Number Profiles on Waterline Ray. Figure 46 - Axisymmetric Inlet at Angle of Attack - Streamwise Development of Mach Number Profiles on Leeward Ray. Windward Figure 47 - Axisymmetric Inlet of Angle of Attack - Typical Secondary Velocity Vectors in the Cross Section - Axial Location - $\rm X/R_1$ = 2.45 Figure 48 - Axisymmetric Inlet of Angle of Attack - Mach Number Contours for Axisymmetric Cone at Angle of Attack - Axial Location - $\rm X/R_1$ = 2.45 Table 1 - Inlet Contours | X/R _L | R/R _L | Slope | | | | |------------------|------------------|---------|--|--|--| | Centerbody | | | | | | | 0.0 | 0.0 | 0.17633 | | | | | 4.0 | 0.70532 | 0.17633 | | | | | 4.1 | 0.7228
0.7387 | 0.144 | | | | | 4.2
4.3 | 0.7512 | 0.144 | | | | | 4.4 | 0.759 | 0.052 | | | | | 4.5 | 0.7625 | | | | | | 4.55 | 0.763 | 0.0 | | | | | 4.6 | 0.7625 | | | | | | 4.65 | 0.7611 | | | | | | 4.7 | 0.7585 | -0.0646 | | | | | 4.8 | 0.7504 | 0 1205 | | | | | 4.9 | 0.7391 | -0.1295 | | | | | 5.1
5.3 | 0.7120
0.6829 | | | | | | 5.5 |
0.6525 | -0.153 | | | | | 5.6 | 0.6362 | | | | | | 5.7 | 0.618 | | | | | | 5.8 | 0.5973 | | | | | | 5.9 | 0.5744 | | | | | | 6.0 | 0.5467 | | | | | | 6.1 | 0.5093 | | | | | | 6.2 | 0.4564 | 0.70/ | | | | | 6.28 | 0.4 | -0.794 | | | | | | Cowl | | | | | | 2.86 | 1.0 | 0.01745 | | | | | 3.1 | 1.004188 | 0.01745 | | | | | 3.2 | 1.0054 | -0.011 | | | | | 3.4
3.6 | 1.0051 | -0.011 | | | | | 3.8 | 0.9882 | | | | | | 4.0 | 0.9681 | -0.124 | | | | | 4.1 | 0.954 | | | | | | 4.2 | 0.9364 | -0.1942 | | | | | 4.25 | 0.9261 | | | | | | 4.3 | 0.9154 | -0.213 | | | | | 4.4 | 0.8949 | 0.163 | | | | | 4.5 | 0.8768 | -0.163 | | | | | 4.55
4.6 | 0.8695
0.864 | -0.093 | | | | | 4.65 | 0.86 | 3.0,3 | | | | | 4.7 | 0.8572 | -0.0485 | | | | | 4.8 | 0.8533 | | | | | | 4.9 | 0.8511 | | | | | Table 1 - (Concluded) | X/R _L | R/R _L | Slope | |------------------|------------------|--------| | | Cowl | | | 5.0 | 0.8502 | | | 5.1 | 0.85 | 0.0 | | 5.6 | 0.85 | 0.0 | | 5.8 | 0.8574 | | | 5.9 | 0.8646 | İ | | 6.0 | 0.8735 | | | 6.1 | 0.8839 | 0.107 | | 6.2 | 0.8946 | | | 6.3 | 0.9050 | Ì | | 6.4 | 0.9145 | | | 6.5 | 0.9227 | 0.0729 | | 6.6 | 0.9299 | | | 6.7 | 0.9368 | | | 6.8 | 0.9435 | 1 | | 6.9 | 0.95 | 0.065 | Table 1 - Surface contours of the centerbody and cowl #### TABLE II - Sample Two-Dimensional Input ### TOP RECORD ****ROSE CASE**** ``` 01 1.0 &REST ICOMP = 3, IRESTIN = 0, NFILE = 0, NSAVED = 0, IRSTOT = 200, JRSTOT = 17, &END &LIST1 IHSTAG = 1, IBOUND = 2,1,2,2, IEQBC(1,1) = 2,2,13,13, IEQBC(1,2) = 2,2,13,13, IEQBC(1,3) = 2,2,2,2, IEQBC(1,4) = 16,16,16,16, IEQBC(1,5) = 8,8,8,8, JEQBC(1,1) = 44,21,11,11, JEQBC(1,2) = 45,12,11,11, JEQBC(1,3) = 12,12,2,2, JEQBC(1,4) = 46,12,14,14, JEQBC(1,5) = 47,17,17,17, ASW(1) = .5618, TWALL(1) = 2*3.651111439, &END &LIST2 LREF = .08666667, REPL = 5,22E+06, MINF = 3.88, PINF = 59.1870527 PR = 0.710, IUNITS = 1. &END &LIST3 XOB(1) = 0.5618, TWOD = .TRUE., TT1 = -0.80, 0.0, TT2 = 0.95, 0.0, YS(1,1) = 1.0E-03, NE(1) = 99 IGEOM = 11, DELX = 0.01, NS = 200, XENTR = 0.2, &END &LIST4 IDIRP = 2, IBCP = 2, DELTAP(2) = 0.130, CFP(2) = 1.72E-03, IVISC = 3, ``` #### TABLE II - Sample Two-Dimensional Input (Continued) ``` IPROF = 4, DELTAB(1) = 2*0.130, IMIXL = 1, &END &LIST5 IPRINT = 10, IPLOT = 2, &END ``` #### CREGINAL PAGE IS OF POOR QUALITY # ORIGINAL PAGE IS OF POOR QUALITY | บทบบทบทบบบบบบบบบบบบบบบบบบบบ | | | | | |---|---|-----------------|---------------------------|--| | C-0000CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC | | | | | | وروان البالباليانيا لبالبالياليا ليالياليا لياليانيان والبالباليانيان والباليانيا لياليا لياليا لياليا | 1 | | | | | このことのカイナリルというできるとのならられることのとのよりカードインと | | | | | | | | | | | | らららて8013~り1471594952901234~7~ | | | | | | ************************************** | | | | | | ALTERIAL A A A A A A A BIRIRIA MAINTING CO. | | | | | | | | | | | | | | - | | | | 000000000000000000000000000000000000000 | | 7 | | | | أت إن الذات الذات أننا أننا أننا أننا أننا أننا أننا أن | | € | | | | ちちゃりの日まっちらうらののちゃっちゅうするようのようできます。 | | | | | | まっている。してしていることでものでしたのでもころりしょりには、しょしてしょうことととできるとしてもられるようのできるととなっているできなっている。 | | | | | | | | ~ | | | | ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ | | * | | | | | | ** | | | | | | • | | | | | | <u>~</u> | | | | | | • | | | | <u> </u> | | • | | | | トアンスパーこうらころこと ようみりろうようとけってうちててらぐんり うめらら みんけいちゅうちゅうしゅうしょう ほうちょうりん はてきているり くりり ストラン・ストー | | . | | | | a meende en politina anter proportie en entrope e qui | | • | | | | ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ | | ~ | | | | ちょうきょう キャチャ かんごうじゅん ちょうしょ しゅうしょしょう こくろん | | • | | | | | | ~ | | | | 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | | - | | | | 000000000000000000000000000000000000000 | | • | | | | والماليات والماليات والماليات الماليات والماليات والماليات والماليات والماليات والماليات والماليات والماليات | | 0.c | | | | ◆もれてはたらいしゅう~◆ひからららりりゅうゅゅうらいりゅうりょう | | £. ** | | | | あるののうべょうごうとうちょうでしょうらうらんしゃゅうらってん | | • | | | | | | *N | | | | • | | - ~ | | | | - CANDADDUDENTALENAME 4 4 4 4 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | | ₹ . | | | | • | | • N | | | | 000000000000000000000000000000000000000 | | ₩ | | | | 900000000000000000000000000000000000000 | | | | | | 9999999999999999999999999 | | - | | | | *************************************** | | • | | | | 3 | | 27 | | | | Ñ | | • • | | | | • n | | , 4 N | | | | ••• | | 0 | | | | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | - | | | | | 000000000000000000000000000000000000000 | € • | • 1~ | | | | | • • | (V ≠U) | | | | - 4 25 でんか かんりょうそう トキッド ららちり 4 4 4 5 5 5 5 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 | (V • 00 | TU ex | | | | - 1 もら きじゅーじに クイト もりらりて 150~5~10~4~0000 1 | | 0 0 | | | | 4 1 2 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 000 | 9-6 | | | | | (ver vo | -6 | | | | - 111111111111111111111111111111111111 | • | ***** | | | | | er e | N= "P | | | | | • • • • • • | • • | | | | 111111111111111111111111111111111111111 | 00 C | 02.20 | | | | البياريون وزواجها والهافينا ببذلها والهوابية بيوليوساليه والهوا والمائما بالكوائمة بماتمة بالمؤاما أماكيا كما | * | - Œ | | | | - OUGPDFOUNDENDOUDOUPERCOTAPONOS KIS | ** QVV * | *(' * * DOO | | | | POETHEOLIOUN-PHONUM-ONG-PMANUGCIAL C | | N 4 N 000 0 | | | | - ^ 4 * * * * * * * * * * * * * * * * * * | | 11 0 4 4 4 11 | o | | | しょうごうきょくこうこくこうしょししょしゅ カアらららゅうここしてき | - 114ペンンマーニ ごこのむ | :DFUU < | c | FII II NAMEN II II | | · · | かいくくのこ せつおスピーー | こしりひける きょうしゅつ | <u>ເພຣະນາເມີຂະເມີກິ່ນ</u> | # # | | - ろっしりがするこうようこうかみてららんさいようしゅんてららんうこと | | こしりに ほくくくくいけ ニコ | ・ いっこんひ いこくとつつ | これしょうしい アンコング・コンプラー ション・コーニー コーニー コーニー | | าทาทดดเนเนนเดดเลย | アチミン・シーー アスプラーチ | マーーフィコルローコン | >>CI-L.Q-E-22 | x ncca-x f = 1 | ``` 1015 = 1 1017 = 1 1017 = 1 1017 = 2 1017 = ``` #### ORIGINAL PAGE IS OF POOR QUALITY ``` The state of s ``` (H= 0 0-00-01 0-200-01 3.0 ċ ó 2 • 0 • # #### ORIGINAL PAGE IS OF POOR QUALITY | | 1 | ###################################### | |---|------------|--| | | = 2.000E-0 | | | 66 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | A - S012 | 111111111111111111111111111111111111 | | | FIRIC | | | ###################################### | • | ###################################### | | | | PROBABO O O O O O O O O O O O O O O O O O | | | | | | 0.000000000000000000000000000000000000 | | 0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0- | | しょうしょうしょうしょう のいり かいりょくくく とうぞうらったい しょりゅう こうかい りょうしょう かいらう くりょう しょうしょく カール・ション しゅう かいりょく カール・ション ちょう とりゅう ちゅう ちゅう ちゅう しゅう ちゅう しゅう しゅうしょく しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしゅう | | りょうけい ちゅうけ うけり はれん 自身 自身 内内 アファファファ ちょうろん ららら ちんごうちょう ちょう ちゅう ちゅう ちゅう はするちょうこしゅん アンファファ ちょうしゅん アンジャブ・グログ カック・ログ はっちょうしゅん アンジャン・グレック はっぱい はいしょう しゅうしょう しゅうしょう しゅうしょう しゅうしゅう しゅう | $\begin{array}{c} \mathsf{Low}_{\mathsf{O}} \mathsf{Conv}_{\mathsf{O}} \mathsf{Conv}_{\mathsf{O}}$ 0000000000000000 000000000000000 11 $\frac{1}{2} \frac{1}{2} \frac{1}$ 11 × LEVEL LOCATION COMPANDUMUNA 444 44 NUMERINA MANDUMUNA MA Femage and with white at a 4 shiply with or with one of the control th $\begin{array}{c} \mathsf{L}_{\mathsf{C}} \mathsf{D}_{\mathsf{C}} \mathsf{D}_{\mathsf{C}}$ $\frac{1}{\sqrt{N}} \frac{1}{\sqrt{N}} \frac{1}{\sqrt{N}$ ### ORIGINAL PAGE IS 00000 OF POOR QUALITY 22480167 22480167 22480167 2440167 00000 20000 00000 00000 00000 00000 00000 00000 ** 00000 11 × LOCATION 6606E-01 6606E-01 6606E-01 6606E-01 00000 12 et et 0.-- | |
##################################### | |--|---| | 2 NUNDUCCCOODODODOS COMPANDO COCCOODODO COCCOODO | ### ################################## | | $\begin{array}{c} 0.00000000000000000000000000000000000$ | © © © © © © © © © © © © © © © © © © © | | | ## ## ## ## ## ## ## ## ## ## ## ## ## | | | | | | 101 1 1 1 1 1 1 1 1 1 | | 0.0000000000000000000000000000000000000 | | | | M | | | | | | 2 | | 0 00000 00 0000000000000000000000000000 | | | N NANANANANANANANANANANANANANANANANANAN | 1 | | 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 1 2 2 2 2 2 2 2 2 2 | | ちょうちゅうちょういさん くろくろうしょうしょうしょしょう 含った ちゅうこう のうしょう カー・グロル ちんしゅうけい うっぱい みさいまうしゅい ちゃんしゅ はっぱい みゃんしゅ はっぱい かんしょう はいいい | # C | #### ORIGINAL PAGE IS OF POOR QUALITY | Company Comp | 0000000 | | | | |---|--|-------------------|----------|--| | Company | الما الما إلما أما إلما | | | | | | 今ちをこまにて | | | | | | | | | | | | SEIGHAN | | | 00000000000000000000000000000000000000 | | | | | | | | | | | | 40700000000000000000000000000000000000 | | | ಗಾಗಾಧಕರನನ | | | | | SOURCE OF THE PROPERTY | | | | | | | | | | EL MAN | | | | | | | | | | | | 868666666666666666666666666666666666666 | | Section Sect | | | | | | | 2020-00 | | | MONATAL DESCRIPTION OF THE PROPERTY PRO | | ONDODODO ONDODODODO | N.40000€.4 | | | | | | | | | ちちゅうまえる ちらんてて HBBPPPPBBOOT てんちょくしょくろくろく こうろん スポット・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ | | | | | | 000000000000000000000000000000000000000 | | | | | | 000000000000000000000000000000000000000 | | | | | | | | | 10101010101010101010101010101010101010 | | | z-nnostkint-aminosoning-set-ap-tition-set-ap | | | 000000 | | | | | | | | 5 | NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN | | | กกอกอ | | | 999999999999999999999999999999999999999 | | | 00000- | | 0 | 000000000000000000000000000000000000000 | | | 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
6 6 6 | | ₽. | | | | | | | Name and Colored And Colored And Colored Color | | | | | | | | | | | 11 | | | | | | 7 | | | | | | | | | | | | ~ | 000000000000000000000000000000000000000 | | | | | w | | | | | | έ£ | × | | | | | | | | | | | ں | | | | لياليالياليانياسا | | | | | | F-0-0-1-5. | | ببا | | | | • • • • • • | | - | INABASE FOR A CHOOSE PORT OF THE PROPERTY T | | | 111111
2004420 | | 2. | Note は とう | | | 20000000 | | L | | | | | | - | • • • • • • • • • • • • • • • • • • • | | | المنافعة لمالها المائية لبنا | | ∽ | | | | | | | 866888888888888888888888888888888888888 | | | | | | 4 N/ | | 1 | | | | ###################################### | | 1 | | | | THE BOW ORD WAR DE WAR DE WAS TO A MEDICAL CONTRACTOR OF THE PARTY | | 1 | <u> નામાનામાં તેવ</u> | | | これろうちゃこれゃりゃゅうこころらららららて77088990つ。11111111111110、111 | | | EU EU EU EU EU EU EU EU EU | | | CONTRACTOR OF THE O | | 1000000 | • • • • • • | | | | | 1000000 | | | | | | 1000000 | 000000 | | | MOSAGE TOWN HOLD WAS AND THE TOWN TO THE TOWN THE THOSE OWNER | | 1 | | 7777 | | > 心ももでしてなるとものもののないというだけできるとものものできます。 | | 1 | 62 62 62 62 62 62 62 62 | at (U tr) and and | | | | 1000000000000000000000000000000000000 | | 75-0 | | | | | | CI DIMUM | | 000000000000000000000000000000000000000 | | | 0000000 4
00000000 0 | ₩ | | | | | 1111110 ~ | • • | | and and an | | NOW | FUENO-D L | | | > UR SINERO ONE DICTOR OF SERVICE | | NOW | ••••• ×
₩₩₩₩ | | | - $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ | | 1000000000000000000000000000000000000 | | × | | | | 111111 150 | 200000000 | | | | | | 000000 | a mere a | | والتانيانيان والمستورية والمستورين والمستورين والمستورين والمستورين والمستورين والمستورين والمستورين والمستوري
والتانيانيان والمستورين والمستورين والمستورين والمستورين والمستورين والمستورين والمستورين والمستورين والمستوري | | ************************************** | لمالما بالرائل المالية | 2 | | ₹₽₽₹₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽ | | 4NVN | 17 40 0 0 0 0 C C | œ | | NOT CAUDI DUOLA HITA HENT A CONTRACTOR DE LOS CONTRACTOR DE LE | | | | 4-104D | | | | ト むかん ちゅうしょう こうしょう アン・アン・アン・アン・アン・アン・アン・アン・アン・アン・アン・アン・アン・ア | 4 - 144 | - | | | | 0.0 0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | | | | こうきょう こうちょうか こうきゅうこう そうちょうひょう かいようひょう やりょう ワイト クロ・カン・ログ | | | てらちゅうこし | | | TO TO THE TOTAL DATA OF THE TOTAL TOT | # ORIGINAL PAGE IS OF POOR QUALITY 2.90008 10) = × | 00000000000000000000000000000000000000 | |--| | $\label{eq:contraction} \textbf{NNew} Nne$ | | 00000000000000000000000000000000000000 | | c de mara a su un marco a de marco a de marco a de marco a de marca a de marco de marco a de marco | | | | イーノー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ | | 94444444444444444444444444444444 | | | | | | | | | | | | ###################################### | | | | 000000000000000000000000000000000000000 | | 14 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | 000000000000000000000000000000000000000 | | ###################################### | | ###################################### | | ちとものみれてもちゅうとしゅのもしもちゃうとしの内外でもちでものからできゃっとしのみれてもいるとしのいまするちゃっとしのみれんでゅうとしのけれてもちゃっちゃっと | # OF POOR QUALITY .5098E-04 .8842E-04 .0467E-03 222 $\begin{array}{c} \text{Remains an invariant and invariant$ 3.900F 000 1.0001F 1.0001E 1.0002E 3.1959E+05 4.4617E+05 4.8837E+05 DATA 2 (1,2) 1312E 1313E 1313E UPUM CRUM 249005-03 Z O 000 20 **8** Š 80 4.0109E JB0UND([.1) WRITTEN VRITTEN WRITTEN 3 11 LOPDS LORDS LOPDS LOPOS LORUS 10 3.0000 3.0000 3.0000 5.0000 5.0000 × 1391 1391 LOCATION 1.38926-02 7.29385-03 1.0000E-03 10. 12, 16, ¢: 1401 ~~- #### TABLE IV - Sample Three-Dimensional Input ### TOP RECORD BOG TEST CASE ``` 1 1.0 &REST ICOMP = 3, IRSTIN = 350, IRSTOT = 50, JRSTOT = 17, NFILE = 1, NSAVED = 0, &END &LIST1 &END &LIST2 &END &LIST3 NS = 400, IAP = 1,21,41,101,251,5*10000, AP = 0.8, 1.05, 1.0, 0.8, 1.15, 5*1.0, DXMIN = 0.002, 0.0, 0.0, 0.002, 6*0.0, DXMAX = 4*100000.0, 0.005, 5*100000.0, &END &LIST4 &END &LIST5 &END ``` #### TOWN PAGE IS CF POOR QUALITY ### MUMBER SFOUCINCE REGORDED TO LESS CONTROL DE LA z STATI C. SATA Poblacia de la companya compan FILE ပ Ξ RF TR WRITTER COODS CC. TIDG. SC. TOTAL CONTROL OF THE INFORMATION THE STATE OF S EUUCOUR TUOOUR TUOOUR DELTAS The theory was a supplied to the t COSSOCIONE COSTIDERO NOCIONA DE CONTRA LA CONTRA LA CONTRA CONTRA LA o a pressua de a consecución de actual de la consecución con PRESCRIPTION OF THE PROPERTY O CONDENSIONAND TO THE CONTRACT OF REPROPRIESTANCE OF THE PROPERTY PROPERT ## OF POOR QUALITY # ORIGINAL PACE IS **DE POOR QUALITY** | 00000000000000000000 | | |
--|----------|--| | | | | | 140 240 2010 405 14 17 27 17 17 16 16 16 16 16 16 16 16 16 16 16 16 16 | ياد | ************************************** | | まんちゅうちゃうようようきゅうけんりょほう | | Language Control (Control of the Control Con | | ************************************** | | - ・ ・ ◆ ◆ ◆ C いつ とり ひと とうりょう とう しゅう こう くんりょう こう しゅう しゅう しゅう カラ しょう しゅう しゅう しゅう しゅう しゅう しゅう しゅう しゅう しゅう しゅ | | | | $\mathbf{x} \oplus \mathbf{x} $ | | HELLER HELD COUNTY OF THE THE | | | | | _ | 1 — MAMAMAMAMAMAMAMAMAMAMAMAMAMAMAMAMAMAM | | 000000000000000000000000000000000000000 | Č | , <u> </u> | | ع ع ع ع ع ع ع ع ع ع ع ع ع ع ع ع ع ع ع | | 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | ○○→→◆をごといこるのことでは、→○→○○○○ | 0.0 | ・・・・ ひたっこっちょうたんきょうかいかん かんりゅうしん カード・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ | | てららい ちゅうしょうしょう きょうしょう かんごうしゅう しゅうしょうしゅう しゅうしゅう しゅう | M. J. C. | ACHTOMINE TOUGHT TOUGHT TOUGHT TOUGHT CHUND TOUGHT | | ウルトにいうこうことのようしょんりりゅうひ | - | | | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | | は 日 ム ナ メ ト ア ト フ ら し ら し ら っ っ っ っ っ っ っ っ っ っ っ っ っ っ っ | | | | | | | _ | | | 0000000000000000000 | • | | | A A A A A A A A A A A A A A A A A A A | • | المعاقبة المناطقة فالمناطقة والمنطقة والمناطقة والمنطقة و | | i de la | 5.7 | | | 50044700747400404644704400 | | יש השיים ביש המוש המוש המוש המוש של המוש המוש המוש המוש המוש המוש המוש המוש | | EXPONENTIAL CONTINUE OF SECO | | | | しょうしょうしゅう いきんりゅう しょうしょうしょうしょうしょうしょうしょうしょう | | azazzanen a en a en azazzan en a en a en | | | | | | | - | | | 00053005000300555050 | - | | | بالقالمة بقانية بالتناسات ويولياسانيات للاقتاب | _ | المستقلقة بالنا بالتا بالمالية المدين المدين أناه أن أن أن أن أن المدينة المدي | | Ended on sacidate the month of the control c | 7 - 7 | and the shall shall the first state of the shall be shall the shall be shal | | CH43400 WESSCHAR SHIP CHMO | C | | | CALL PARTIES AND | `` | CHATAM MANDE TERMINATURE DANGE AND CONTROL OF STREET | | トトトトトトトゥウクウクシンジャキック | • | ###################################### | | | | | | | = | | | 1 1 1 1 1 1 1 1 1 1 | ī | | | とってつけるらさんときているりをびらる10 ちてつりょうきゅう しゅうしゅんしゅうしゅんしゅうしゅんしゅしゅつ からこうこうにいいこうにこうにこうにこうにこうに | | المالية المنطبة والمتحاط فالمافط تتنافيا لماكينا لماكيا لماكيا لماكين وتوزيل وتواكي يترين يسترين ويورو بين يوايين والمارية لماك | | とうけつにゅんさんときていひららいごゅうし らうりじゃきょう | 13 | the missional transfer of the company of the commence of the company compa | | これ チェンリア そりごうじょうきょうきょん りりゅう | 7 | MELANDICANNAS DI CINCHANGUNES OHUN ANHANDANACONOCARUBEHHOO BE ENLINOIS ANNAS DI CINCHANGUNES OHUN ANHAUN DI COMPACANO DI CANTONIA CANTO | | | ٠, | • | | アファファファフィンともららころううもうロ | • | 我以 与ちの ウルファファング・ファファファファファ ロッパー お 日日日 月 日日日 月 日日 日中 日中 ファラウラ ロロ | | | | | |
000000000000000000000000000000000000000 | 6 | | | | | | | さいもずらのがらちゃららがやりもうころらの
いしょうしょ チェンシングリーチョウ (1970)
これにはいしままたいがいが、これをはない。 | ں ، | BE ALL BUILDING AND BUILDING BERNEL HOLL SUBJECT AND CONTROL OF STATE AND STATE OF S | | water and the transfer of | | Chickwhile of the marinthine process to be a control of the state t | | 01 50 MARIA DA 40 40 10 40 40 40 40 40 40 40 40 40 40 40 40 40 | - 5 | | | カファファファイト かんらん こうこう こうきゅう | • | © C C X X X X W V V V V V V V V V V V V V V V | | WHALE THAT COUNTY OF THE PARTY | • | | | | | | | UK 0330000000000000000000000000000000000 | 0 | ခရရခရခရမမေမေခု အရာဗာခု ခုကုမ်စရီမိုမိုင်ရှိ ခိုင်မိုခိုင်ရှိ မိုင်ရိမိုင်ရှိမိုင်မှ မိုင်မိုင်မိုင်မိုင်မိုင်မိ | | | | <u>များ မို့များ မို့မရှိများကို မို့ ရို့ ရို့မည် မို့ မို့မြောက်ပြောင်း မို့မြောက်ပြောင်း မိမို့မြောက်ပြောင်း မိမိမို့မို့မှာ မို့မြောက်ပြောင်း မိမိမို့မို့မှာ မို့မြောက်ပြောင်း မိမိမို့မို့မှာ မို့မြောက်ပြောင်း မိမိမို့မို့မှာ မို့မြောက်ပြောင်း မိမိမို့မို့မှာ မို့မြောက်ပြောင်း မိမိမို့မို့မှာ မို့မြောက်ပြောင်း မိမိမို့မှာ မို့မြောက်ပြောင်း မိမိမို့မှာ မို့မြောက်ပြောင်း မိမိမို့မှာ မို့မြောက်ပြုမှာ မို့မြောက်ပြုမှာ</u> | | E 4440446 E 5 5 0 - N 6 6 6 4 1 4 4 0 | 4 4 | POPENT ACCOMENCE FOR ACCOUNT ON ACCING HOLD HOT HOLD DOT ALL HAS | | 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | ~5 | DE LESS DE CONTRACTOR DE L'AUGUSTE DE L'AUGUSTE DE L'AUGUSTE DE L'AUGUSTE L'AUGUSTE DE L'AUGUSTE | | じ スプムじゅ こしいメイラうしゅうゅ ひゅうし | ت | AACORUBANTIAN COLOR DO | | #************************************* | | TO TO TO TO TO TO THE DOTATE BY TO THE PROPERTY AND THE PROPERTY OF PROPER | | | | | | | - | | | 11111111111111111 | e e | 000000000000000000000000000000000000000 | | Control of the Contro | Lif | | | ちこれようするできる さらちきゅう もっちゅう | b) 4. | on a substitution of the contraction of the confidence and the confidence | | まりれていこうたくだくられれらり ひこうりつ | ف | CONTRACTOR OF THE PROPERTY | | 61 - 35 4 4 4 6 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 | | COOCITIII TECHNOLOUND TITE COI MORRE CON O COCO COCO COCO COCO COCO COCO CO | | カイトイトイトでないないないいい こもれる | 4 | いりゅう はんに はんアンテーノーファンティー にはん はじらはは 自然のけらら からけらら じらりのりんだい | | | | | | | - | | | | ī | | | キャッちゅう ちゃうそうりょうじゅんちゅう | نوا د ا | しゅうしゅうしゅうしゅうしゅう しゅうしゅう しゅうしゅうしゅうしゅうしゅうしゅうしゅう しゅうしゅうしゅう しゅうしゅう | | こ べいりいいいじょう ちゅうけいしゅつ | PT C1 | | | これ アムシュ ちょうれ アスタータ アム こうごひ よう プラップ・ラック アップ・アング しゅう アンション ログ・アン しゅう アンション しゅう アンジャン しゅう アンジャン しゅう アンジャン しゅう アンジャング しゅう アンジャング しゅう アンジャング しゅうしゅう しゅうしゅう | 2 | NUMBER OF STREET AND THE STREET STREE | | | | でうからのわれど日のアートーアーアアアルは大井内内内が中になれての今ででのののでのののでのでのでのですのです。 | | 分り マイファ マイト トート からら 合うらら りゅうり | • | provide a figure a series of the t | | | _ | | | 222002200000000000000 | 6 | 000000000000000000000000000000000000000 | | 6 | <u>.</u> | | | キュウェリロ ロソナニシアウ ロウラロメ ぐんし | ; | ANNOTATION TO THE TOTAL OF THE PROPERTY | | こうけいけい しょうきょうてい ちょうしょうしょうしょう こうこうりゅう しょうてい ちゅうしょう しょうしょう しょうしゅう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしゅう しょう しょうしょう しゅうしょう しょうしゅう しゅうしゅう しゅうしゅう しゅうしゅう しゅうしゅう しゅうしゅう しゅうしゅう しょうしゅう しゅうしゅう しょうしゅう しょうしゅう しゅうしょう しゅうしゅう しゅうしゅう しゅうしゅう しゅうしゅう しゅうしゅう しゅうしゅう しょうしょう しょうしょう しょうしょう しょう しょうしょう しょうしょう しょうしょう しょうしょう しょう | 2.4 | A 6 5 5 THE CHANGE OF THE CONTRACT OF CONTRACT OF THE CHANGE CHAN | | อะคันเทิสทเคอะคเก็กครคสถะเหือ | ٠. | ###################################### | | おててててててらららららららららゅう | • | တီတိုင်တီဘီဗီဆိုဆိုဆိုဆိုဆိုဆိုသို့သို့သို့သို့သို့သို့သို့သို့သို့သိ | | പേരുവരുന്നും ചലലെല്ലെല്ല് കേര | | - 0.000 | | 220000000000000000000 | | | | | | TITLE TO THE TELEFORM OF T | | ###################################### | 81 H | アローチャーショック ちゅうしょうしょう いっぱん カラン・カー・カー・カー・カー・カー・カー・カー・カー・カー・カー・カー・カー・カー・ | | とう もちょう もりゅう うじょうりゅう くくらげる | ~~ | - ロスペニュートのログのストューニック・ストック・コー・ト・ピチリングは下げまりの→ログ・ログウチログのグログ | | emmenes and demonstrated and and and and and and and and and an | | MJC JAJANA JAGA A GOO O O O O O O O O O O O O O O O | | 1 | | | | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | | | #### ORIGINAL PAGE IS OF POOR QUALITY | ###################################### | 60
- 4.9708E-0 | ###################################### | |--|--------------------
--| | ###################################### | 59
4.9674E=01 | ###################################### | | | 58
4.9636E-01 | | | | 57
4.9594F-01 | | | 00000000000000000000000000000000000000 | 56
4.9549E-01 | | | | 4.949 HE = 01. | ###################################### | | THE STATE OF S | 4.9443E-01 | TO DO COME TO THE TO THE TOTAL THE TOTAL TO THE TOTAL TO | | ###################################### | 4.7382E-01 | PUPPOGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG | | PURCHASE CONTROL TENDENCIA DE LA CONTROL DE | .43156-01 | PPPPCO0010000000000000000000000000000000 | | ###################################### | 51
*.0241E-01 4 | | | | - | TOTAL TOTAL STATE OF THE PROPERTY PROPE | | ぷぴぴぴぴぴぴぴぴぴぴぴぴぱぱぱぱぱぱぱぱぱぱぱぱぱぱぱぱぱぱぱぱぱぱぱぱぱ | : | | ## ORIGINAL PAGE IS OF POOR QUALITY | $\begin{array}{c} Color(\mathsf{Color(Color(\mathsf{Color($ | 70 | ACHACAURD THE TROOPEN TO THE | |--|------------------|--| | ###################################### | 69
4.9906E-01 | | | 0.0000000000000000000000000000000000000 | 5 | | | CACOCO ACTIVITATION TO THE COCOCO COCOCOCOCOCOCOCOCOCOCOCOCOCOCOC | ۳.
۳. | | | O ころ こうけごろは ままくままり ビモキスク けらづまり でうきょう みんこん シャムこん ラフロー ちょけう みょんごう まんまん ものらっか カイル きゅうしゅう きょうりん みょう おんしん | A) 6. | <u> </u> | | アファファファファファフェビとらんようには云でいままた 4 4 4 4 4 7 4 7 7 7 7 7 7 7 7 8 8 8 8 8 | • | ስኪየህር ሲፈፋፋ ፋፋፋ ፋፋ ፋፋ ፋፋ የህር ነን | | 000000000000000000000000000000000000000 | | 200202020202020202020202020 | | Little de de de la little de la | - 2 | ณ์นั้นเป็นไม่เห็น นั้นเป็นเป็นไม่เป็นไม่เห็นเป็นไม่นี้ เป็นไปนั้นมี
มหาง อย่างจะพระบางเรายาการ เพราะ พระบางเรายาการ | | HOiOSTLA G OOOOM おらじさり けらう14 ちゅこうてきん きこし りこしれっしょし けらこけいけょこう ビルチキ ちゃね しょれん じてゅうりてららん サステ らんちき おうれつさり | 9,6 | らこりがフェイトとりゃこことにころのころりとこうできられるちゃっとって、 ちゅりごうきょうきょうちょうゅうこうこうこうこうこうこうこうこうこうこうじょうしゅう | | | 4.9 | ሳብር ነበር ነው የተመሰው ነው የተመሰው ነው የተመሰው ነው የተመሰው ነው የተመሰው ነው ነው የተመሰው ነው የተመሰው ነው የተመሰው ነው ነው ነው ነው የተመሰው ነው | | | - | <u> - передерия при при при при при при при при при при</u> | | 00000000000000000000000000000000000000 | - | | | りゅうしゅう かっしょう ちょうしょう ちゅうしょう しょうりょう しょうりょう しゅう しょうりょう しょう かっしょう しょう かんいう しゅうしょう しゅうしょう しゅうしょう しゅうしょう しゅうしょう しゅうしょう しゅうしょう しゅうしょう しゅうしゅう しゅうしゅう しゅうしゅう | 386 | MODER DESERVE THE ENGLISH STREET
OF THE STRE | | アナアアアとらわす きこよつり グアシャ ごこうりょ アシャブス じゅうちゅ こうけんちゅうりんしゅう ちゅうアル タろら けいらい ちょうしょ しょうりゅう しゅう スカラス けい ちょうりん | 9.6 | ままりきゅうは ちらじこうらららりひりこうできる アドバ ひょくてきち プラスタグライル グラのようりょうきょう おんごう たっかう アンス | | | ÷ | ปฏาการแบบ ค.ศ. ค.ศ. ค.ศ. ค.ศ. ค.ศ. ค.ศ. ค.ศ. ค. | | | 0.1 | | | ♦ 8 . 8 . 8 . 9 . 9 . 9 . 8 . 9 . 8 . 8 . | ů | 0 | | ○○を上ていまっているかりをうじまんで、よりできょうがなっていました。 できるにはいい ととく りんきょ せきをし うりまかい カライン しょうしょう ちょう ちょう ちょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう フェッション ちょんほう シェンジ アンドル・ション ちょんしょう アール・ファット・ファット・ファット・ファット・ファット・ファット・ファット・ファット | 4) (E) | のもものできたいというない まかい かんかい アンチャン・マイ・ステロ アーラン・マン・マン・マン・マン・マン・マン・マン・マン・マン・マン・マン・マン・マン | | EX XEOTH-08:0444-C0:008:46:400 7004-0000000000000000000000000000000 | 5. | CALMAD DA CONTROL CONT | | คลาดเลาสาราชาน | • | ယ်တယ်ကိုယ်ကြည်ချခုံချိန်ချိန်ခြိတ်သည်။ မြိတ်မြိတ်လိုယ်လိုယ်လို | | <u> </u> | 15 | | | TO A | 7. | THE CONTRACT OF THE STATE TH | | はもちひゅうとうこにもくちゃう アイスタモキー とうこがない ちゅうとり ロウェンタスラウィング しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしゅう オース・プログラング・スティック・スティーク・スティック・スティック・スティック・スティック・スティック・スティーク・スティック・スティック・スティック・スティック・スティー | 919 | あらずしゅうとう ちゅうてんらう ていれいこうりごう じはみられる しょうけい はれぬ たる いっぱっしょ うまり しょうしょう しょうしょう しょうしょう しょうしょく しょうしょく かいしょう はんしょう しょうしょう | | ************************************** | 7 | きょうこうようないとうならずればまごろうならればしまります。 | | アファファファファファファアとなら、たらもしらればらればちょうないのみのできますこと | 4 | ത്രെ സുവാധവുടെ കേഷക്ഷക്ഷണ വരുന്ന വരുന്നു വരുന്നു വരുന്നു. | | Ond the control of th | .31 | | | ට යා මාන්තු අතුරුව වැඩ අතුරු සුදු අතුරුවලට අතුරුවලට සුදු අතුරුවලට සුදු අතුරුවලට සුදු අතුරුවලට සිට සුදු අතුරුවල
සු ලබුව ද සහ ලබුණු දෙන සුදු ද ද සහ සුදු කළ සුදු සුදු සුදු සුදු සුදු සුදු සුදු සුද | ٹ ۔ | a faltata da la falla de la calenda de l
Calenda la calenda de c | | out that a classification to a major the activation of the control | 7 9 6 | - さっぱいさいーのついいさいつさいさいがくたくまさいさんままだめ | | UC COU LE ÉNERUL CAMALA PARA ANTE EN ANTE EN ANTE DE COMMENS CO | ٠. | ANNOCH KO SPANNINIUM SIE AN GOMANNA AN AN CONNES
BANNARINION CHOROLO CHOROLO SIA CONTRA CONTRA
CONTRA CONTRA CONTR | | * エコ エコ テンティア・ファック・アイ・アン・プログラン (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) | 4 | ന് ഉദ്യാഗിന്റ്റ് ത്യായ ക്യായ ക്യാസ്സ്സ് സ്വാഹം വിവാധിവാവിവാവ | | | 31 | | | ា ។ ជា ខេត្ត ជាជាជា ជា ។ ជា ១៩៤០ ជា ១៩៤០ ជា ជា ១៩៤០ ១៩៤០ ១៩៤០ ១៩៤១ ១៩៤១ ១៩៤១ ១៩៤១ ១
មុខភាពស្រាស់ ជា ស្រាស់ សាល់ សាល់ សាល់ សាល់ សាល់ សាល់ សាល់ ស | ů. | នានី ខានី ខានី ខានី ខានី ខានី ខានី ខានី | | BLOWING CHARLES IN A STATE OF THE CONTROL CO | 6.5 | # # # # # # # # # # # # # # # # # # # | | マンチェンス・アン・アン・アン・アン・アン・アン・アン・アン・アン・アン・アン・アン・アン・ | <i>J</i> | | | とれいけには ほんファイティアファン いしじじ しゅう そうちょうちょうちゅう キャル カラストごり | • | ಯಾಗುವುದು ಬಟ್ಟಾಟ್ ಬಡುತ್ತು ಕಾರ್ಯದ ಬಟ್ಟಿಯ ಬಟ್ಟಿಯ ಬೆಂಬಿ ಸಂಬಾಧ ಪ್ರಾಯಾಗಿಯ ಬಿಂಬಿ ಬಿಂ | | | -0.1 | 657565575756555555555555555555 | | E. E. E | - G | 11111111111111111111111111111111111111 | | บังนี้จายตัวที่เลื้อ. ตัวนี้ รัพพิตัส (ค.ศ. 2014) หนึ่นคา ไป (สิตัสต์ สิตัส พิตัสส์ 2014) ขอ
เป็นสาทบังหา ประกาทเหตุลาว เปลี่ยนตัวสามอสสมอสสมอสสมอสหมัด
สหา เป็นตาม ของบบบบทหมู่หายสมาชติดตามหายของปลาหายติ | 36 | OND IN AMMEDIAM COMMON SERVING CONTROL OF A COMMON CONTROL CON | | | : | ുയ്യിന്റ് ഡയം .⊶ 7 7 ന്നാർ നിവുന്നു മുത്നി നായിക്കിയും വിവരുന്നാന്
യോഗ്യൂയിലുമാന്റെന്നാന് അതു അസ്സോവാന്തിന്നെ സ്ത്രീയയായി വിവരുന്നായി വിവരുന്നായി | | ACT TO THE TOTAL CONTRACTOR OF THE | • | 3 | | Centradanno portugiaren epublicaria de monatte | | + | | as Edició de de colo de como en esta consecución de la del consecución de la del consecución de la consecución del | | を見られる かいようない しょうかい しょうしょう かんしょう マンション・ジョン できる インション マンション マンション マンション マンション マン・ジャン・マン・ション・マン・ファン・マン・フィン・フィン・フィン・フィン・フィン・フィン・カー・ジャン・カー・ジャン・カー・ジャン・カー・ジャン・カー・ジャン・カー・ジャン・カー・ジャン・カー・ジャン・カー・ジャン・カー・フィン・カー・ジャン・カー・ジャン・カー・フィン・カー・カー・カー・カー・カー・カー・カー・カー・カー・カー・カー・カー・カー・ | | | -~ | | | mg zi zikingingina a zibiki biri dindinimimimimimi zi kinna a zidicimimizilibi. | | 100mとメイトでいるより表示なるののできることできることです。 | | まるようちょうちゅうとうのきをすることになるともまままままましょうかっています。 | | 1月777777777 GGGA GGGGG ちろろろろろろろろろろろろろり けりのけはてらる ゆうくしり はておう もっぱくしりは けんらら オラムリカけん ちゅうこしゅ | | | | 000000000000000000000000000000000000000 | |--|-------------------
--| | | 7 | | | | | | | | 00 | 0000000000000000000000 | | A HUMB GHT & GAMEN & DO GADON & MO GADON SA HIMMO GADON GO STON A CONTRO | € € | | | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | c | 00000000000000000000000 | | | • | | | | | 555555555555555555555555555555555555555 | | 00000000000000000000000000000000000000 | - | | | | | | | | • | | | a a a a a a a a a a a a a a a a a a a | • | 00000000000000000000000 | | | | 8 1 8 4 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | | નો નોનાના છે છે. છે. જે છે | C 1. | ちんちょう ちゅうて けんじゅう ひこうりょうけんしょ | | みてこれ しゅじて そんちゅうさうろ アメロ キア ちろっきろう けて ちろ フトラン ロクアラ け O2HS200 しじゅ きじ らりりょう はいまけ こうりょうさい しょりょうさい しょう こうかいこう リア ちょう しょうしょう こんきごう しょう しゅうしょう いいん | ~ 0 | CHARE HUME & THUE KHUNZ PRIGOR | | FOLID: 4 FORMAND WAND: HANS 4 & SANSA WOLD BOKE DOUG DECKED CLAD | . 0 | こしのものがアーンのイトのちらっちのちょうしのちょ | | CIPP TO A ANNOUNCE APPOIL HER REMOVED LIME & FROM THE PARTY HOLD CONTRACT OF O | 0 | 379℃は175~000000000000000000000000000000000000 | | | • | | | ጥ ማ-ው ው ው ው ው ው ው ው ው ው ው ው ው ው ው ው ው ው ው | - | | | | | | | | - | | | 000000000000000000000000000000000000000 | - | 000000000000000000000000000000000000000 | | | • | | | ျက်သည် ရသည်။ပုံလည်း ရေးသည်။ပုံသည်။ သည်မြှုပ်သည်။ သည်မေသည်။ ပုံသည် ထိုသည်မေသည်။ လည်းသည်။ မေသည်။
ကိုရှင်ကို ကောက်သည်။ နှင်တွင် မေတို့ လည်းသည်။ လည်းသည်မေတို့ လည်းသည်။ မေတို့ လည်းသည်။ မေတို့ လည်းသည်။ မေတို့ လည | بيا | الماليا التاليا والباديا بياليا: والنااوات ليالي الباليا المالياليالياليالياليا | | いたじゅういいりゅうしょうもいついまたまけんじゃいいいりゅうごうまんしいっこうまんじゅごう | E. P. | | | ELOUGE OF UP AND BOTH A GOTH OF COLOR OF THE CAR GOTH FATTE OF CHE | 46 | 今日の日の日本ではないのできるままるようにはまます。 | | FLARE, MEDING AND MEST ARE STANDED A PARE ARE MODERN TO THE AREA CONTRACTOR AND MEST ARE MEDICAL TO THE CONTRACTOR AND MEST AREA AND MEST AREA CONTRACTOR AND MEST AREA CONTRACTOR AND MEST AND MEST AREA CONTRACTOR AND | ŏ | 44************************************ | | | • | * | | င်ပြုပွဲသိတိတို့တို့နှံတို့သို့သို့သို့သိတိတိတို့သို့သည်။ သို့တို့သည်။ အချိန်းအခြေခံခြေခံခြေခံခြေခံခြေခံခြေခံခြေခံခြေခ | - | CACALNOLIC CACACACACACTOR FOR FOR CHEAT BUTCH HONDING | | | | | | | _ | | | | | 000000000000000000000000000000000000000 | | 111111111111111111111111111111111111111 | • | | | ရှိနှင့် မြောက် မေးမြောက် ရှိနှင့် မြောက် | ~ 6. | a magas coe coe cinha san rinea ciedaesin
sigo e coe coe de a cara consissimente de ciedaesin
sigo e coe coe coe coe coe coe coe coe coe | | しょうしょうしょうじょうしょうしょうりゅう かりゅうえんしょく インドラント とうしゅうきょう ストラウ ちょうしょう りょうしょう しょうしょう ストラン・ファン・ファン・ファン・ファン・ファン・ファン・ファン・ファン・ファン・ファ | | い てみしろろうじょうひに だってみせらて マンフェンタ | | じょうり ストチューステーチ はんぐみ カイ りょう こうらこのうらう じょうけい しょうてき ハー・ファイ ちゅう | ~ 2 | war-acritica : aaktaracritishii-iniiaikki | | 4 さけごす 0555 とららずり 4 けい 4 さいらすて 4 なら 6 ののけり ドナチアト 6 まこうけん 5 もりきろうせつ | 2 | なんなのなななないというない かいかい こうしゅうかい | | りゅうしょう こうしょうしょう こうしょう にゅうしょう にゅうしょう にゅうしょう にんごう かっしゅう しゅうしょう しゅうしょう にゅうしょう にゅうしょう にゅうしょう にゅうしょう にゅうしょう にゅうしょう にゅうしょう しゅうしゅう しゅうしゅう しゅうしゅう しゅうしゅう | ٠. | ジェラショル りょうしゅうしゅう りょうしょう | | an managa an | • | ALM RIM WOOLGO CHOO CHOO CHOO CHOO CHOO CHOO CHOO CH | | | | | | | | | | ridea a cacadale companda al calaba del del calaba del | | | | ස්ප්ත්ම අම්මත්ව ප්රතිරුදු ප්විත ප්රතික කිරීමට දී කිරීමට සිට සම්ප්රේ සම්ප්රේ ප්රතික ප්රතික කිරීමට සිට සිට සිට ස | ن | 600000000000000000000000000000000000000 | | * | | | | ないしょ (はない) かんしゅい しょうしょ きょうしょう かんしゅう かんしゅう かんしゅう かんしゅう かんしゅう かんしゅう かんしゅう カント・ストー カン・ストー カー・ストー カン・ストー カー・ストー カー・スト | 75 | and distribute and the second of the control | | こうとうしょうこう かんしょうしゅんしゅん ちゃくん しょうしょう しゅうじょうしゅ ロース・ロップ とんりょう しょうしょう しょうしょう しょう かんしゅう しょうしょう しゅうしょう しょうしょう しゅうしょう しょうしょう しゅうしゅう しゅうしゅう | 7.4 | CONGRUMENTESTATEMENTONEOGENE | | ままで コイルチャー しゅうじゅう しゅうて しゅうじゅう ふっしゅう しゅう しゅう しゅう しゅう しゅう しゅう しゅう しゅう しゅう | | SHURRAR TO A C PLAT DOP TO CIPIOP POT | | こうがたたりなるまとのりもたたのにすわれるとのだいいまいいいり くたにじゅんいいこ かだいたてたし | C. | じしゅ アミススクート りりしょくちょう カアドル つうご | | • | • | | | ୳୲୷୷ଡ଼୷ୄ୷୷୷୷୷୷୷୷୷୷୷୷୷୷୷୷୷୷୷୷୷୷୷୷୷୷୷୷୷୷୷୷୷ | • | @ @ \$P\$ | | | | | | | - | | | 000000000000000000000000000000000000000 | 0 | 000000000000000000000000000000000000000 | | | • | | | يما لما لما بما تسايما لينا بها بها وما لمالها فهالها بيه لعادما لما المالها لها لهاجها بموايد لمالها لمالها فهالها وماله المالها المالها المالها وماله المالها وماله المالها وماله المالها ومالها المالها الم | | មានប្រជាជាការបានប្រជាពី ក្រុម ការប្រជាពី ក្រុម ការប្រជាពី ក្រុម ការប្រជាពី ក្រុម ការប្រជាពី ក្រុម ការប្រជាពី ក
ការប្រជាពី ក្រុម ការប្រជាពី ក្រុម ការប្រជាពី ក្រុម ក្រុម ការប្រជាពី ក្រុម ការប្រជាពី ក្រុម ការប្រជាពី ក្រុម ការប | | ညီ သည်လာရဲ့ ရုံရာကိုရသည်ဆန်းညီမှ များကမ်းမှာလေတွင် ကိုမေရ သည်စွာ ကောက်ရီ လိုမှာလူပေသည်းစုံးရှိသို့ သို့ | 7.5 | | | いどり かいきょうしょ カージョン・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ | - 3. | いこらはごうしこもい きんファキ・ミチロ しょうはていい しょうみんけんり しょうみん プロリト・リンター ちょうけい しょうしゅう ちゅうしょうし | | イトトスピカのものであるカルトンに3ヶ内へいつのかかしなったいしょう またむからのい スピュース・マイン | - 5 | さるできる 下山口 カナ・ド・カナラ はいは アエレークト・キイ | | | • | | | AIR GIOR CONTONIO ON TOUR AIR DESCRIPTION OF THE SECOND CONTONIO ON THE SECOND OF | • | a a a a a a, a) a, a, b, a, | | | | | | | _ | | | 207077777777777777777777777777777777777 | 0 | 000000000000000000000000000000000000000 | | 1 | | | | التأكيا ماختا بالبراغة بدخاء والماخ والبانية وبالبالية وبالبرانية والبياء ووقيتها والماجية ليناه والتاجية والماجوا التأكيا والماجانية والتاجوا والتاجوا والأنجاب والماجوا والتاجوا والت | لما | وبالرا المالياليا بالماسانيا بالماليا بالماليات الماليات الماليا المالياليات الماليات | | AND A REGIOURNE PROMITARIO COR COR CONTRACTOR CONTRACTO | 7. | CHURKHAL : 400440 32 5 7 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | | ATTUCTOR AND ANIMOTOTISMENT PROGRAMMENT APONICE CHOCHINGO | 9 | さらりらいろうらい よれて みられり しゅららしょう てい たいくこうこう スプラスト スプラス カンログ おけられ アードイ ブこうじじゅ | | てきれらず じじじじ りつじり サガガ てるちゅうご まんちゅう ろしつ ガガイ ちゅんしい ちゅごうごけしけ さがり はまり けんさて スターは しゅん カイファ ちゅうしゅん ちゅう しゅうちゅう しゅうちゅう しゅうちゅう しゅうちゅう しゅうしょう しゅうちゅう しゅうしゅう | ŏ | ピーもりこりだけ かんちいらんけのりょこうきゅうけん | | ************************************ | | | | | • | cadadamin'n'n'n'n'n'n'n'n'acadeda | | • | | | | | | | | 000000000000000000000000000000000000000 | 6 | 200200020000200000000000000000000000000 | | * | 1 | | | وغرون بالبائدين بالبرين والوروانيين والوالوالغارية والوائيا لوائيا بالبائيا المائيا لياروانية ووراده البائيات لياران الوائيا والدائية | _ ພ | ກ່ວນປາການຕາມຕຸ້ນ ກ່ວນການການເປັນຕາມຕາມຕາມຕາມຕາມຕາມຕາມຕາມຕາມຕາມຕາມຕາມຕາມຕ | | Capana anni as chipata accornage (cha ana can hipatalica a anni ao | 50 tV | ちゅうさん アイトゥ はままなり ちょういん かんしょう はんしょく | | TARIHAR CHAMBAR WAREN TO THE HOUSE WAS TO BE A WAREN TO THE COMMINION OF THE PROPERTY P | 7 6 | O (CO (CO (CO (CO (CO (CO (CO (CO (CO (C | | ###################################### | e` | しつつてもののな メレトトレ なりしい いまるしなり | | • | • | | | อนั้นที่ที่ดีดีดี คือ คือ คือ คือ ที่มีเป็นเป็นเป็นเป็นเป็นเป็น คือ | • | സ്വരുട്ടു ഭരുതത്തിലാത്തിലു വരു വരു വരു വരു വരു വരു വരു വരു വരു വര | | | | | | | | | | C0000000000000000000000000000000000000 | ~ ~ | <u> </u> | | | • | | | ին հանգիական մանրին է այլացալագրերին արանչիան հանգիրին ին հանգին հանգին ին այլացան այլացակին այլացակին և հանգի | البها | المجالية الموالية والمرادا والمادان المالية المالية لمالية لمالية لمالية المالية المالية | | SAVAGENERO ENTERNACIO DE SAVERE E PARECENTA TANTO E MA DE GUAD | 200 | 20000000000000000000000000000000000000 | | Opening 22 20 and | 7.6 | | | りりしょころころころころようしょりとてもちょうます。 とうちゃくしりり カフェラック・リックしゅう しゅうしょう スプランス ちょうてい しょうしょう しゅうしょう こうりょう しゅう スプラン スプラン スプラン スプラング スプラック スプラング スプラック スプラング スプラック スプラング スプラック スプラング スプラング スプラング スプラース スプラング スプラング スプラー スプラック スプラック スプラング スプラック スプラング スプラング スプラング スプラック スプラング スプラーグ スプラング ス | σ. | さんしゅうしゅうしゅうしゅうこう ちゅうりょう ちゅうしょう ちゅうしょ しゅうしゅうしゅう しゅうしゅう しゅう | | | | | | ターフーファーファーファー ゆうかん かんかん かん ない こう | - | น.อากุลสุดสุดสาเทคาทลลลลสุดสุดสุดเทศ | | | | | | | | | | 000000000000000000000000000000000000000 | | 000000000000000000000000000000000000000 | | - 1 | 0 | 111111111111111111111111 | | أغالبا
لبازيز ليانيا ليانيا لبانيا لبانيا ليانيا ليانيانا البانيانيا ليانيا ليانيا بيانيانيا ليانيانيا ليانيانا البانيانيا البانيانيانيا البانيانيانيا | • | | | | ů | દ્યાન હોતો નાના નાના નાના નાના નાના નાના નાના ન | | Acting an appropriate the control of | 1 | のらのみてきららって ドンキャナカーの しょうてきまり | | じしょうしゅんじゅんじゅん ひゃく ひにんしょう ひまけん ひょうしゅん きゅう かんりゅん しょくしん ローローロー | 71
31E- | のらのみてきららって ドンキャナカーの しょうてきまり | | THE METERS OF THE PROPERTY | 71
931E- | ひょうまだ。 4 ターコンロローシャ 4 プライン・マーク 4 グライン グライバー 4 グライバー 4 グライン 4 グライン 4 グライン 4 グラング | | ###################################### | . 4931E- | THE STATE OF S | | ᲔᲠᲠᲠᲡᲓ ᲠᲓᲔᲠᲐᲡ ᲛᲝᲠᲓ ᲓᲠ ᲓᲐ ᲛᲠᲡᲚᲠ ᲓᲐ ᲠᲓᲐ ᲛᲠᲡᲚᲠ ᲓᲐ ᲥᲐᲛᲑᲡ ᲛᲠᲡᲚ
ᲓᲠᲓᲓᲓᲔᲠᲠᲚᲠ ᲓᲐ ᲛᲠᲡᲚᲠ | 71
931E- | ひょうまだ。 4 ターコンロローシャ 4 プライン・マーク 4 グライン グライバー 4 グライバー 4 グライン 4 グライン 4 グライン 4 グラング | | $\begin{array}{c} CAUDUMENTARY = AFFAFT + AFF$ | . 4931E- | THUNDS CARACTER CASS OF THE CONTROL | | THE THE TENDRICH OF A DOUGHOUS AND A TODAGO DOUGH AND AND A TO T | . 4931E- | THE STATE OF S | | O-NONOEVEL TO COOLIGO DE SERVICIO DE LA CALVA DE MANARA DE COOLIGO DE CONTROLO | . 4931E- | CONSTRUCTOR STATEMENT OF THE CONTRACT C | | CHORD FOR THE CONTROL OF | 4.9316- | ODOSTANON TARTES NO MENOR CONDENS NO | | CONSIGNATION OF A STATE A CHARLES TO A CHARLES BONNER CHARLES CONTROL | # 71
4.931E- | | | CONTROLIC SERVICE CONTROL TO SERVICE THE SERVICE SERVI | 4.9316- | OUDSTANDS CONTRACTORY SEE | | CONDECTED COLUMN CONTRACTOR CONTR | # 71
4.931E- | | | ###################################### | # 71
4.931E- | ONDSTRUCTOR STREET CONTROL OF THE CON | | ###################################### | # 71
4.931E- | TORONAN TENENT TENE | | ###################################### | # 71
4.931E- | OUDSTANSTANTO GRANTE CONTROL C | #### ORIGINAL PAGE IS OF POOR QUALITY | 11111111111111 | | 9 | ###################################### | |--|-----------------|--------------|--| | ちょうて ファファファファ | | 9
7E | きょうこうごうごうごう ジョンジョン ジョンジョン いりょうしょう こうしょうしょく こうしょく しょくりょう しゅう しょくしょ マット くしょう ちょくしょ マット くしょう しょうしょ とうしょう マット くりょう しょうしょ というしょう しゅうしょく アントラーション ジェンク イン・エンジョン アン・フィン・フィン・フィン・フィン・フィン・フィン・フィン・フィン・フィン・フィ | | POOD COOOO COOON | | **O | | | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | | 5.0 | | | | | | 000000000000000000000000000000000000000 | | 1111111111111 | | ? | | | ###################################### | | 9 10 | BUDDANG ACTUAL CONTROL CONTROL OF THE STANDARD CONTROL | | ストリュ ファファファフィ 日本 日本 ロロログ は アラファファ アランド ランド ファランド ファック スト グラン・スク ア・スク スト | | A 36 | DOODOODOOMOODOCCCCCODOOOOOOOOOOOOOOOOOO | | 00000000000000 | | : | | | | | - | ###################################### | | 111111111111 | | | ************************************** | | E LECTED AND THE LINE REPORTS | | 3 3 | Adduction to the property of the control con | | 対 ほ てい て まりら さい ち るらら り ア フ こく し こ 1 ち り り さ り り き り ま り ま り ま り ま り | | 4
(- | 00000000000000000000000000000000000000 | | 77777777777777777777777777777777777777 | | 4. | HARRAMANAHANCICICICI INDIGONOLOGIONICICICIONOLOGIONICIONO | | | | | 000000000000000000000000000000000000000 | | 111111111111 | | ١ | ************************************** | | يرد مايد المدادية الديد الديديسية المدادية
معادية مايدين المدادية المدادية المدادية | | ~~ | OSCOCOMENCE ACTUAL CONTRA CONT | | こころけらうちゅうちゅうちゅう | | <u> </u> | ましょしょ しょうけいじゅうけいろん しょりててらい ちきいゅう みゅうじゃく きゅうさいてき ちゅうりゅうじゅう はらい はっぱい はん | | ************************************** | | | ขอดคอย ขอดอย ของ | | | | | 000000000000000000000000000000000000000 | | 11111111111 | r. | • | 000000000000000000000000000000000000000 | | ան տնչենը ոյձևնձևնձը
Երդորդություն ուղոնությու | а
П | Æ | プログラグラー かいしょうしょう インター・アイ・アイ・アイ・アイ・アイ・アイ・アイ・アイ・アイ・アイ・アイ・アイ・アイ・ | | 4041.04 D-1000XOD | a. | £ | | | 11044411111111111111111111111111111111 | <u>u</u> | 7 | 000000000000000000000000000000000000000 | | to | 36 | _ | | | | | 0.5 | | | | h U T | | ००० हैं हैं है है है है । १००० हैं है है है । १००० १००० १००० १००० १००० १००० १००० १ | | よりてりている ちょうかい ゆう | <u>~</u> | erie.
Pri | CHECKOCHET CONTRACTOR CENTRACTOR CONTRACTOR | | aaacaaaaaaaaa
aacaaaaaaaaaaaa | 18 | 5 | ###################################### | | | 10 | 6 | | | 000000000000 | A
T3 | 0.5 | 00000000000000000000000000000000000000 | | | يَ | Ψ. | ى دى | | こいちゅつようちゅうりょんまっしょうじににらまるがべきまって あまっかい | v | 4 E | ETERT HE HUYCHONDER FRANCHINDEN DANGUNGE FRONCHING HOFHORME
ETERTALING OFFICH OFFICH FRANCHINDEN DE HOUNDE FRONCHING HOFFICH DE FERNANCHINDEN | | アプアららららゅゅうりゅき
みらゅしがゅりゅがさいららら | \$ 0 | 1 7 | AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA | | | ä | | สสสสสสสสสสสคาสายเกิดเหลือเกิดเกิดเกิดเกิดเกิดเกิดเกิดเกิดเกิดเกิด | | 000000000000000000000000000000000000000 | | 20 | 000000000000000000000000000000000000000 | | | | Ī | | | # 0 # 0 # 0 # 0 # 0 # 0 # 0 # 0 # 0 # 0 | | F. 4 | かいかい かいしゅう かいしゅう かいしゅう かいしゅう ちょう かいしゅう かいしゅう しゅうしゅう しゅうしゅう とり しゅうしゅう とうしゅうしゅう しゅうしゅう しゅうり しゅうり | | 氏 とれ ト ア し ら こ こ 4 こ 5 に ち り り り り り り り り り り り り り り り り り り | ۵ | e = | | | ~~~~~~~~~~~ | 0
1 | : | | | | 319 | 25 | 000000000000000000000000000000000000000 | | | .13 | ù | | | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | | 4 <u>۲</u> | อเมื่อเป็นเป็นเป็นเป็นเป็นเป็นเป็นเป็นเป็นเป็น | | すいいされれててももごごじせていまます | | 9 | HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH | | | ر
د . | 2 | | | | o ⊔
• > | 0 | 000000000000000000000000000000000000000 | | 111111111111 | و ا | • | | | あし いもじ というしょ こうしょうしゅ こうしょう こうしょう こうしょう こうしょう こうしょう こうしょう こうしょう こうしょう しょうしょう しょう | * | 10 E | DEDUCUTE PRODUCTURA DE COMPRESE DE CONTRE C | | 0003:54.44.44.46.30
0003:54.44.44.46.30
0003:54.44.44.46.30
0003:54.44.44.46.30
0003:54.44.44.46.30 | 10 _N | 000 | OCCOOC=00C=1,2(IVH==================================== | | 82 TULUULUULUULUU | 4 | | | | 20000000000000000000000000000000000000 | 8. | | | | | <u> </u> | | | | 100350000000000000000000000000000000000 | 1 Sf | ## XX > | - OTO (CENTRO A C MARCH CAN A C MARCH CAN A C C C C C C C C C C C C C C C C C | | พละเกละคณาพะผลอย | 3 | ' | Out the decree of the art to a first and the art of | | 付することの なりころうきとしていり | ₹. | | <u>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</u> | | 4 M M H C C S M M M M M M M M M M M M M M M M M | F | <u> </u> | | | | ž | | | | | | | | # ORIGINAL PAGE 18 OF POOR QUALITY | | 50
50
10
10
10
10
10
10
10
10
10
10
10
10
10 | TO SOLUTION OF THE |
--|--|--| | ###################################### | 4.90718-01 | 00000000000000000000000000000000000000 | | | 4. H9745-01 | | | CONDESCRIPTION OF THE PROPERTY | 47
4.6466-01 | ODOUGAJOOODCOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO | | THE TO THE OUT OF THE TOTAL TOTA | 46.87485-01 | 240 A M M M M M M M M M M M M M M M M M M | | | 4.8619E-01 | 00000000000000000000000000000000000000 | | CONTROL OF THE CONTRO | 4 4 4 7 6 E - 01 | 00000000000000000000000000000000000000 | | COCODODODOCOCCOCCOCCOCCOCCCCCCCCCCCCCC | 4. H327E-01 | | | OCCOUNTING TO THE | 4.81495-11 | 00000000000000000000000000000000000000 | | OCCORDED DO | 4.7961E-U1 | 00 00 00 00 00 00 00 00 00 00 00 00 00 | | ###################################### | 17. | 00000000000000000000000000000000000000 | | 000000000000000000000000000000000000000 | | 000000000000 | |--|----------------|--| | | Ĺ | • | | しょうこう しゅうしゅう しゅうしょうしょうしょう とうしょう とうしょうしょう とうしょう しゅうしょう シャンション しょうしょう シャン・シャン・シャン・シャン・シャン・シャン・シャン・シャン・シャン・シャン・ | و ت | C PONTOU 4 00 0 4 10 P 4 5 0 P | | MULDHOUGOLCCO-HOUNDHEAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAG | | - 44:DOUP-U-DOUP-E | | | • | | | สสสสสสสสสคากกลุกลุกลุกลุกลุกลุกลุกลุกลุกลุกลุกลุกลุ | • | r eedaadadadadada | | 000000000000000000000000000000000000000 | _ | 4 0000000000000000000000000000000000000 | | 000000000000000000000000000000000000000 | č | 000000000000 | | and the formula of the first field field at the first field of the first fir | | بيالية ليانية بياليا لياليانيا ليانيانيا بياليا | | ウェック・ブラック・ファック・ロック・マン・マン・マン・マン・マン・マン・マン・マン・マン・マン・マン・マン・マン・ | E17 | | | ###################################### | | 4 400 400 400 400 400 400 400 400 400 4 | | AMMAMAMAMAMININININININININININININININI | | | | | - | | | | _ | | | 000000000000000000000000000000000000000 | - | *********** | | t which as but the tributed between the tribute of the article to the part in the sign of the sign of the first terms of the sign s | a L | البالها ليوديو ليوليو بماليا الوالمائية المائية الما | | C HIGHER HAR CORF.C. & ON WILD NO & CAPTAIL CONTRACT CONT | U 10 | ちょうんてしょうゅしここりょ | | - 4% \$40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 9 | COD-HISTORIAN DECOM | | | ; | | | | | | | 00000000000000000000000000000000000000 | 5 | 000000000000 | | | | | | t with the figure of the first the substitution of the substitution of the first | ~~ | まった ひしょうしょう しゅうしょう | | อาหาหนายที่อิส แล้มโทยี สนามิที่สังหมือนหลังในที่ที่ที่ที่ที่ที่ที่พื้นในในข้อมีเห็น แล้วเก็มโทย เก็มโทย
ที่เก็บอาหาหนายที่ อาหาหนายที่ที่ที่สิดสังสังสังสังสังสังสังสังสังสังสังสังสังส | ۳.6 | ちょうしんりょ しらけごちてげ きょうしょうしょ | | | | | | | 4 | | | 000000000000000000000000000000000000000 | | | | - 98000000000000000000000000000000000000 | 6 | 000000000000 | | A A A A A A A A A A A A A A A A A A A | | و هر و هر و و و و و و و و و و و و و و و | | Composition of the property | 25.4
29. | ののことをおはまたのにからり | | | Ç. | ゆた りんらてじまくりごらてみ | | 0.0000000000000000000000000000000000000 | 0 | ದರರ್ಲವಾಗುವಾಗುವಾಗುವ | | | • | | | 200000000000000000000000000000000000000 | _ | 60000000000000 | | ncono real respondente de la constanta c | • | 00000000000000 | | اليواري فيريون ويراز ويوري والوايان والهاروانيان فياليان فيرانيات ليزوان ليانوانيا أناطانا | لعذ | المارية | | രട്ടുക്കാൻ രട്ടുക്കുന്നുന്നു. ഇന്നെ പ്രത്യായ
പ്രത്യായ പ്രത്യായ പ്രത്യായ വേശ്യായ വേശ്യായ വേശ്യായ വേശ്യായ വേശ്യായ വേശ്യായ പ്രത്യായ പ്രത്യ പ്രത്യായ പ്രത്യ പ്രത്യായ പ്രത്യ പ്രത്യായ പ്രത്യായ പ്രത്യായ പ്രത്യായ പ്രത്യായ പ്രത്യായ പ്രത്യാ | ±7.35,
⊌107 | でもちょうないできるとのなっているというないできることできることできることできることできることできることできることできること | | | 7 6 | 00000000000000000000000000000000000000 | | 0.0000 10.00000000000000000000000000000 | • | | | | • | | | 666999969996666969996659966999669999669999666666 | = | 50050650500060 | | | 9 | ********** | | Maria dum trait and traite de la companda de la compania de la compania de la della della della della della del
La compania della compania della della compania della compania della compania della compania della compania de | LJ
GP PP 1 | そうりゅうかん ガーガライアウ | | Prince Control William Comment of the Common of which control of the Common Com | Ω4 | 4500 からてきよいのまたする | | 246222222222222222222222222222222222222 | σ. | coominantinandar | | +++++++++++ | į. | * | | | | | | 900000000000000000000000000000000000000 | 0.1 | 0000000000000 | | | ů | + + + + + + + + + + + + + + + + + + + | | ມແມ່ນເຄີຍເລີຍເປັນສົ່ວໄດ້ເຂື້ອກີ່ປະຊຸດ ຕາມຕ້ອງກ່ອງກ່ອນ ຂອງກ່ານກໍ່ເຄື່ອກີ່ກຸ່ນກໍ່ຄຸ້າການກໍ່ຄຸ້າການກໍ່ຄຸ້າກໍ່ຄຸ້ນ
ກໍ່ສຸກກໍ່ທຸກເກັດ ການ ຄວາມການກໍ່ຄຸ້າການ ສຳພັດກອນ ສະຕຸດເຄື່ອກີ່ກຸ່ນການ ຄວາມກໍ່ຄຸ້ນ ຄວາມການ ຄວາມການກໍ່ຄຸ້າກໍ່ຄຸ້ນ
ການການການກໍ່ຄຸ້າການກໍ່ຄຸ້າການກໍ່ຄຸ້າການກໍ່ຄຸ້າກໍ່ຄຸ້າກໍ່ຄຸ້າການກໍ່ຄຸ້າການກໍ່ຄຸ້າການກໍ່ຄຸ້າການກໍ່ຄຸ້າການກໍ່ຄຸ້າ | 1 0.47 | これちとはこれれらないこうと | | 12121000000000000000000000000000000000 | ~ | きいりん カンドー もりかいてき | | •••••••••••••••••• | • | 000-11-11-11-11-11-11-11-11-11-11-11-11- | | | 3 | | | 000000000000000000000000000000000000000 | - | 22000000000000 | | | - | 000000000000000 | | พิทิศสภาคาดเกลา อากาคาดเกลา เกลา เกลา เกลา เกลา เกลา เกลา เกลา | 24 K | | | \$-000\$\rightarrow\000\000\000\rightarrow\00\00\00\00\00\00\00\00\00\00\00\00\00 | 5,5 | 450c ひらてちまをひきちてき
まちきられるをおいるひとり
りがまるちのものものまかま | | NOMEDONARIA DE CARACA DE CARACA DE CARACA DE CARACA PARACA DE CARACA DE CARACA DE CARACA DE CARACA DE CARACA D
CONTROL DE CARACA | | じじりままさきらんろんろん
みられるろうできませらりだけれ | | THE TOTAL CONTRACTOR OF OT THE TOTAL CONTRACTOR OF OT THE TOTAL CONTRACTOR OF OT THE TOTAL CONTRACTOR OF THE TOTAL CONTRACTOR OT TO | • | | | | _ | | | 90909000000000000000000000000000000000 | - | 0000000000000 | | • • • • • • • • • • • • • • • • • • • | • | *********** | | And Aldred Control of the | | 4以1242×4 × 5 4 4 5 5 5 4 | | | 73.4 | 430.00F3U400UVF4 | | × × × × ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° | 6 | | | สสสสสสสสสสสสคายที่เกิดเกิดเกิดเกิดเกิดเกิดเกิดเกิดเกิดเกิด | - | | | | | 0 | | 050000000000000000000000000000000000000 | | * | | ան, մանանական մանանանանակին արև արև հանականանական հարարարարության և հանանանանության արև հարարանանան արև հարարա
 | 11 11 | しょうしょうしょう こうしょりしゅう | | MED HAR DIO DE LA COMPANA DE MONTO DE MANO DE LA COMPONS DE LA COMPONS DO DE LA COMPONS DO COMPONS DE LA D | ~~ | ■ ここと うっから らっしょう トート とうこう なんしょく しゅうり こうしゅう しゅうしゅう しゅう | | MUNUNUNUMAHAHAHAHAY DEN YAQUDUN 4 NUMNUNUMAHAHAHAHA EN KU) 44MUNAHAEN N | - | -0-2xx | | • | | | | K NIVNNUNNIN 6 4 4 4 4 4 4 4 4 4 4 4 JUNINNINNINNINNINNINNINNINNINNINNINNINNIN | | 13444444444
67644444444444444444444444444 | | | | | ## ORIGINAL PAGE IS OF POOR QUALITY | | _ | 0000000 | |--|----------------|---| | 00000000000000000000000000000000000000 | 7 | ***** | | | بان
بان | التالية المالية التالية
1- (ما 12 - 14 مراكية 12 مراكية 14 مراكية 14 مراكية 14 مراكية 14 مراكية 14 مراكية 14 م | | 10000000000000000000000000000000000000 | ~~ | F1 98. 90- C4 | | - A - AND COMPANDA AND AND AND AND MANY ARE ARABIN DIGGINAL AND AND ARE ARRESTED ARE ARRESTED AND AREA ARE ARRESTED AND AND ARRESTED AREA. | 6.0 | 00004054
450000000 | | | • | | | | • | | | | _ | 0000000 | | 00000000000000000000000000000000000000 | 5 | 000000 | | | L | ب ب ب ب ب ب ب
نیاریا لیالیا لیانیا | | ជាដំណើយដល់ជាជុំ ជាសេរបើដោយ ដោយជាមាយជាមួយមួយដែលដល់ដាំ និងមានប្រើប្រើប្រជាជាជាថា មេបាយជាមានជាមួយមួយមួយ បានជាជា
ស្រាស់ ១ ចំណែងអសិស្សាសាសាសាស្រាស់ ១៤ មាន សេរបាស់ ១០ សេវបាស់ ១៤ សេវបាស់ ១៣ សេវបាស់ ១៣ ២០១ ស្រាស់ ១៣ ១០១ បានប្រើ | 6. 20 | C1-0-1-0-11 | | | 9.0 | もちがららてち | | OwinDe Gulfille Bridge Oper Cook Opposition Cook Opposition (India 4 # 4 # 4 # 4 # 4 # 4 # 4 # 4 # 4 # 4 | č | 000-0-4 | | | : | | | สสายารายารายารายารายารายารายารายารายาราย | • | | | | | 0000000 | | 000000000000000000000000000000000000000 | ت | 6000000 | | | l
Uz | * * * * * * *
************************ | | LE LEDICINIE CONTROL L'ENTERNE DE UIT UNE EN ENTERNE L'ENTERNE DE LE | ∝ | ~ (. D()-0 m | | ᲠᲮᲮᲠᲠᲡᲡᲡᲔᲠᲡᲡᲠᲠᲠᲢᲮᲡᲡᲚᲚᲡᲠᲡᲠᲡᲠᲡᲠᲡᲠᲡᲓᲚᲚᲠᲠᲡᲠᲡᲚᲡᲚᲡᲚᲡᲚᲚᲚᲚᲡᲚᲡᲚᲡᲚᲡ | 4.0 | よいちょらてち
こらさらてて ロ4 | | DATE TO THE TAKE DECIDED OF DOLLD OF THE CHECK DOLLD COCCOCO | 5 | DOG-CIF:4 | | ###################################### | | | | | | | | | - | 0000000 | | 000000000000000000000000000000000000000 | - | | | التا منافقة بالمال بالمنافقة ومن ما من بالمنافق والمنافق والمنافقة | ب | 50 C1 40 C1 44 C1 40
50 C1 40 C1 44 C1 40 | | DE SE L'ESTRATORE ENGLEST, DÉMINE L'ELLE LINDERES DE L'ELLES DE LES DES L'ALTERES DE L'ESTRATORE EN L'ESTRATOR
EN ETTRATORIANCE EN EXCONTRAMENTA CAUTAGE EN MANTE CONTRA L'ESTRATORE DE L'ANTORE MANTE ANTORE L'ANTORE | 7.7 | 20000000 | | | - a. | 4 5 10 0 0 0 1 5 1 | | | | J | | วามมา เกาะเกาะ เกาะเกาะเกาะเกาะเกาะเกาะเกาะเกาะเกาะเกาะ | • | | | | | | | 000000000000000000000000000000000000000 | 0.1 | 0000000 | | | | | | العالم المناط الماء المناط الم | ت . | لياليالياليالياليا | | and a deal and a deal of the second | 4.00
40.00 | 5455F04
FC-GEOGEO | | ONE UND HAULE HOROUS OF CONTRACTOR OF CANADA SA | άc | 4 ちゅうかん あんち | | ANNANAZZ ZZOG CCOGO OROGO DOGO DOGO DOGO DOGO DOGO OROGO DOGO OROGO DOGO OROGO DOGO OROGO DOGO OROGO DOGO OROGO | σ. | 000-11-54 | | and de annous de annous de la companie compan | • | | | | | 0000000 | | a cede para para para para para para para par | 0. | 0000000 | | | | | | English and the about a control of the t | نیا ن | ע אין | | | S | 20 | | マッチ・フェー・ファー・ファン はんしょう アット・ファー・ファー・ファー・ファー・ファー・ファー・ファー・ファー・ファー・ファー | 9 6 | 4000 HUMA | | | • | | | ๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛ | • | | | 900120001200000000000000000000000000000 | _ | 0000000 | | | ٥ | 0000000 | | | L.I | | | and a garage general material and succession and succession because the deciration of the contract cont | 41- | てるできるので | | OHY MIDDOHIMMACHAULHTAPACHOLOHMAN POPAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG | Ψ. | よちけんらているよう | | | 6 | 0004004 | | กลดา เกลาการ กลาม เกลา เกลา เกลา เกลา เกลา เกลา เกลา เกลา | ; | | | | | | | ac 20000000000ccccc0000000000000c.000c0000c000cc00cc000cc000cc | | 0000000 | | | P | 00,00000 | | <u> </u> | L. | المادة المالية المالية | | also Edition and the second of the company c | 4.2 | そうちゅゅうら | | D-MANDO-MANDED-10-0000-000-00-00-00-00-00-00-00-00-00- | ~ | 4 5,0 500-0 | | ++++++±±±±±100 | c | 00.240W4 | | คลักสักรายเกิดเกิดเกิดเกิดเกิดเกิดเกิดเกิดเกิดเกิด | 4 | | | | | 000000 | | acconnectuada we can transfer ou construction of the constructio | 9.1 | 0200000 | | | đ
Li | | | abbulberandistraterandistration of the state | (va) | トットゅうころ | | ■というロロロロがんだけが必要のですといけるだけである。 また は ままる ネレントレイパ かいれんりょう はっかん まっかっ | 25 | ************************************** | | 00000000000000000000000000000000000000 | 0 | 000-000 | | ละครามการการการการการการการการการการการการการก | | | | | | | | ac caaacanaaacaaaaaaaaaaaaaaaaaaaaaaaaa | - | 0000000 | | | P | 000000 | | ບັນໄດ້ຜົນຄົນໄດ້ຜົນຊີ ຜົນໄດ້ຜົນໄດ້ເກັນໃຕ້ເກັນໃດໃດໃດ ເປັນຕົ້ນໃດໃດໃດໃດໃດໃດໃດໃດໃດໃດໃດໃດໃດໃດໃດໃດໃດໃດໃດ | ú. | تبالبانيانيانيان | | มิ ผลิกษณะและเกลา เกลา เกลา เกลา เกลา เกลา เกลา เกลา | 3.2 | | | | - 6 | 4000000 | | NA PROPERTY EXTERNATION OF THE PROPERTY | • | | | สสาสสาสสาสสาสสาสสายเหนือเนื้องเมื่องเมื่องเมื่องการเกมียนเกลียนเกมียนเกมียนเกมียนเกมียนเกมียนเกมียน | 4 | | | | | 0000000 | | 111111111111111111111111111111111111111 |
 | | المراجعة المانية المراجعة المر | 0.0 | りかりなべれる | | まち 200 4 4 4 4 5 7 7 2 4 7 4 7 4 7 4 7 4 7 4 7 4 7 4 7 4 | ~~ | としょう ひょうごく | | HE TO THE PROPERTY OF PROP | | 0.110124-11 | | บาง จังจังที่ที่ที่พัฒน์เห็น เพื่อเลือนสังเลือน เพื่อเลือน เพื่อเลือน เพื่อเลือนสังเลือน เพื่อเลือน เพื่อเลือน | | HO:CZQZF | | | | FOORFARIA | | ของอย่งของอาการเกิดเกิดเกิดเลี้ยง ราย เลือง ราย เลือง ราย เกิดเกิดเกิดเกิดเกิดเกิดเกิดเกิดเกิดเกิด | | | ### ORIGINAL PACE IS 4.0995 TARREST TO THE TARRES 4.09776-01 74 4.7961E-01 P 72 71 アファフタムともによるなななられた。そこのなりでもももももももなるようなものできるとうなった。人々では、これでは、これでは、これをはまれることが、とこれをはませる。 7 #### ORIGINAL PACE IS OF POOR QUALITY GOCHINASONIAGES PER ENTER TREE SEGGES OF COORDINGS OF CONTRACTOR CONT CORTANDA PARA A SUNDA CARACTA | 1. Report No. NASA CR-4021 | 2. Government Access | ion No. | 3. Recipient's Catalog | 3 No. | | |--|--|--|---|--|--| | 4. Title and Subtitle | | | 5. Report Date | | | | Computation of Multi-Dime | ensional Viscous | | October 1986 | | | | Supersonic Flow | | | 6. Performing Organiz | ation Code | | | 7. Author(s) | | | 8. Performing Organiz | ation Report No. | | | R. C. Buggeln, Y. N. Kim, | and H. McDonald | | None | (E-3211) | | | | | | 10. Work Unit No. | | | | Performing Organization Name and Address | | | 505-62-21 | | | | Scientific Research Assoc | | | 11. Contract or Grant N | lo. | | | P.O. Box 498 | | | NAS3-22027 | | | | Glastonbury, Connecticut | 06033 | | 13. Type of Report and | Period Covered | | | 12. Sponsoring Agency Name and Address | | | Contractor | Report | | | National Aeronautics and | Space Administra | tion | Final | | | | Lewis Research Center
Cleveland, Ohio 44135 | | | 14. Sponsoring Agency | Code | | | Project Manager, Thomas J
Research Center. | , | | | MACA LEWIS | | | A method has been developed viscous supersonic jet flow employs a reduced form of an initial-boundary value forward marching algorithm ing algorithms for flows witton of the reduced form of the boundary layers. Simultaneously calculated computational algorithm. associated with supersonic tions for axisymmetric case computational technique has of supersonic flow problem presented for the computer | ows interacting withe Navier-Stoke problem in spacem. Numerical inswith embedded sulof the Navier-Stoke and subject of control of the results | with an externes equations we, using an efstability associons regions bkes equations ubsonic portioly split linead computations fesented and colon calculations flow. Finall | al flow. The which allows so ficient nonite ciated with fo is avoided by in the subson or a series of mpared with ot calculating a v. a User's Ma | approach lution as rative rward march- approxima- ic regions field are plicit test cases her calcula- at the | | | 17. Key Words (Suggested by Author(s)) | | 18. Distribution Statem | nent | | | | Analysis
Nozzles | | Unclassifie
STAR Catego | d - unlimited
ry 02 | | | | Supersonic
Navier-Stokes | | | | | | | <u> </u> | | | | | | | 19. Security Classif. (of this report) Unclassified | 20. Security Classif. (of this Unclass | | 21. No. of pages
192 | 22. Price*
A09 | |