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ABSTRACT

This study produced a detailed system level design of an Optical Transceiver
Package (OPTRANSPAC) for a deep space vehicle whose mission is outer planet
exploration. In addition to the terminal design, this study provides
estimates of the dynamic environments to be encountered by the transceiver
throughout i1ts mission 1ife. Optical communication link analysis, optical
thin lens design, electronic functional design and mechanical layout and
packaging are employed in the terminal design. Results of the study describe
an Optical Transceiver Package capable of communicating to an Earth Orbiting
Relay Station at a distance of 10 Astronomical Units (AU) and data rates up to
100 KBPS. The transceiver is also capable of receiving 1 KBPS of command data
from the Earth Relay. The physical dimensions of the terminal are contained
within a 3.5' x 1.5' x 2.0' envelope and the transceiver weight and power are
estimated at 52.2 Kg (115 pounds) and 57 watts, respectively.
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NEW TECHNOLOGY

The design of the OPTRANSPAC has required the development of the following New
Technology. The development of the Offset Dichroic Optical Boresight
Alignment Device provides for continuous alignment of the transmit and receive
paths (refer to Appendix £-1 for detatls). The Offset Dichroic Optical
Boresight Alignment Device was conceived by W. L. Casey and first reported in
the monthly review for OPTRANSPAC (JPL Contract #957061) dated 15 February
1985. It was also reported in the OPTRANSPAC Midterm Review on 2-3 Apri)
1985, Pages 41, 47, 48 and 65 and is included in this report on Pages 47, 48,
49, 57, 58, 60, 72, 75, 76, 116, 117, 118, 120, 126, 127, C-31 through C-81,
D-5, D-6 and D-7. |
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1.0 INTRODUCTION

The objective of this study was to produce a detailed design of an Optical
Transceiver Package (OPTRANSPAC) for a deep space vehicle whose mission 1is
outer planet exploration. The optical communication system must be capable of
transmitting up to 100KBPS of data to a relay station located in low earth
orbit. The  transceiver design must provide accurate estimates of the
OPTRANSPAC size, weight and power as well as a definition of the overall opera-
tional characteristics. Operationally, the OPTRANSPAC must be capable of com-
municating at the desired data rate from a distance of Saturn and beyond.
Figure 1-1 1llustrates the operational OPTRANSPAC scenario.

In addition to the terminal design, the study was toﬁprov1Qe estimates of the
dynamic environments (see Figure 1-2) to be encountered by the transceiver
package throughout its mission life.

Results of the study indicate a transceiver design capable of performance meet-
ing the specified requirements. The physical envelope of the OPTRANSPAC is
$1lustrated in Figure 1-3. The transceiver consists of an eleven inch aperture
telescope fixed mounted to an optical baseplate. Imaging optics provide relay
paths to and from the telescope, laser and detectors. Three separate elec-
tronic boxes provide for power regulation, transceiver control and communica-
tion functions. The detailed weight and power estimates, outlined in Figure
1-4, indicate a transceiver weight of 115.0 pounds and power consumption of 57
watts.
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2.0 SYSTEMS OVERVIEW

2.1 REQUIREMENTS - The specified system level requirements for the OPTRANSPAC
are outlined in Figure 2-1. The OPTRANSPAC.-is required to communicate with an
Earth-Orbiting Relay Station (EORS) at a maximum distance of 10 Astronomical
Units. Downlinking of data from the OPTRANSPAC to the EORS at discrete rates
of 10KBPS, 30KBPS and 100KBPS at a bit error probability of 10-3 s required.
The OPTRANSPAC must also be capable of receiving command data on an optical up-
1ink from the EORS at a 1KBPS data rate (10‘3 BER).

Choice of useful wavelengths were set by the statement of work requirements.
The downlink wavelength could not exceed 1.0 micron while the uplink wavelength
was limited to under 2.0 microns. Outages, attributed to all factors excluding
earth blockage, were required to be less than 10%. This resulted in an avail-
ability requirement of 90 percent and accounts for outages when the sun is in
close proximity to the OPTRANSPAC or EORS optical boresights.

Maximum Weight and Power Requirements for the OPTRANSPAC were set at 50 kilo-
grams and 50 watts, respectively. Technology to be employed in the CPTRANSPAC
design was restricted to that “reasonable by 1988". Where the term "reasonable
by 1988" means laboratory demonstrated feasible, but not necessarily space
qualified by 1988.

2.2 EORS CHARACTERISTICS - While not specifically part of the OPTRANSPAC
design, the EORS characteristics directly affect the terminal design. The
major characteristics that contribute to OPTRANSPAC design considerations are
outlined in Figure 2-2. The EORS transmits a 10 watt average power, 5 micro-
radian laser beam at the wavelength less than 2 microns. The EORS platform
stability and other dynamic instabilities were assumed controlled such that
open loop pointing of the transmit beam at the OPTRANSPAC is accomplished with
zero pointing loss. As a receiver, the EORS consist of a 10 meter effective
clear aperture with a 1 microradian field-of-view. The receiver consists of a
photomulitiplier based direct detection system. The quantum efficiency of the
detector at a nominal wavelength of 532nm was assumed to be 30 percent.

2.3 MAJOR DESIGN ASSUMPTIONS - The major assumptions made in the design of the
OPTRANSPAC terminal are outlined in Figure 2-3. The assumptions specify cer-
tain design aspects of the OPTRANSPAC that should be carefully, noted. Any
change in these assumptions may affect the completed design of the transceiver
terminal.

Spacecraft attitude control to within *2 milliradians s assumed. This cri-
teria provides for accurate pointing of the OPTRANSPAC telescope viewfield to-
wards the Earth. Without this accurate knowledge, much larger telescope view-
fields would have to be employed or a system design which included a gimballed
telescope would have to be implemented. 1In the former this would require a
large and bulky optical system causing added system weight and complexity. In
the latter decreased pointing accuracy (due to gimbal jitter effects) would re-
quire a larger beam divergence resulting in an increase in system power in
addition to weight and complexity increases associated with including the
gimbal. Thus, this assumption provides for an OPTRANSPAC design which mini-
mizes weight, power and complexity of the transceiver terminal.
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In the event of attitude control disruption (outside of the +2 milliradian
knowledge) and associated break-lock of the optical 1inks, it is assumed emer-
gency command data 1s available to reestablish the +2 milliradian knowledge
and restore the pointing of the OPTRANSPAC boresight towards the Earth. The
OPTRANSPAC system relies on this emergency control to reestablish communication
after a disturbance to the spacecraft attitude control accuracy.

The electrical interface between the spacecraft and the OPTRANSPAC is assumed
serial digital for all data transfer to and from each side of the interface.
Data, including the spacecraft sensor 1inputs, spacecraft telemetry, and space-
craft attitude reference system data will be transferred to the transceiver
along these serial data ports. The redundancy philosophy is assumed to put the
burden on the source to handle all redundancy switching. That is, signal flow
from the source (be it the transceiver or the spacecraft) will determine which
side of the load (prime or redundant) will be passed the signal. This tech-
nique is employed in current Lasercom systems.

A11 command data sent via the optical uplink is assumed passed to the space-
craft command decoder for processing. Commands pertinent to OPTRANSPAC opera-
tion are decoded by the spacecraft and returned to the transceiver via the
serial interface. This simplifies the command data format and allows for com-
mand decoding at only one location.

A final assumption deals with system acquisition time. It was assumed that
transceiver acquisition time was not a critical system parameter and was not
critical to spacecraft functions. For this reason 1t was not considered a
major system driver to the transceiver design. Later, analysis indicated that
this was true and average acquisition times were calculated to be less than
three seconds.

2.4 SYSTEM DESIGN RATIONALE - For purposes of this transceiver design study,
the following rationale outlined in Figure 2-4 was chosen. The environmental
factors that are prime system design drivers were identified. These included
optical backgrounds, orbital dynamics, point-ahead angles, Doppler, vibration
and range to name a few. Mission specific constraints such as the lack of a
continuous track beacon from EORS were also identified.

Candidate system designs were selected for consideration based upon the envi-
ronmental effects, mission constraints and system requirements. Preliminary
1ink analysis was performed to verify the validity of the designs. Initial
size, weight, power and complexity comparisons were then made. One or more
designs were then chosen and the link analysis was refined and components de-
fined (lasers, detectors, telescopes, etc). Finally, a baseline configuration
was selected for its performance, size, weight, power, reliability and design
simplicity. Detailed mechanical, optical and electrical component design was
then performed to yield the final OPTRANSPAC terminal design.
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3.0 DYNAMIC ENVIRONMENTS

The dynamic environments assumed to be encountered by the OPTRANSPAC on its
mission are analyzed and defined herein. A complete dynamic environment speci-
fication is included in Appendix A.

3.1 ORBITAL DYNAMICS - A generic transfer orbit was generated for a deep space
probe from Earth to Saturn. The orbit pictured in Figure 3-1 is a Hohmann
transfer, which is the minimum energy orbit for transfer. Transit time is 1827
days (details of the orbit are given in Figure 3-1 and Appendix A). This orbit
was used to calculate the relative velocities between the Earth Orbiting Relay
Station and the OPTRANSPAC spacecraft for use in the Doppler and point-ahead
calculations. Figure 3-2 11lustrates the range versus time between the earth
and the OPTRANSPAC spacecraft using the Hohmann transfer orbit. The range in-
creases rapidly at first as the spacecraft is on the closest part of the orbit
to the Sun and the Earth is also swinging away from the spacecraft's orbit.
The Earth's orbital motion 1s the most obvious feature of the range, with os-
cillations of 2 AU superimposed upon the distance of the spacecraft from the
Sun. After one year, the range to the spacecraft 1s almost 5 AU, or nearly
half the distance to Saturn.

3.2 POINT-AHEAD AND DQPPLER - The Doppler shift of the 1ight transmitted be-
tween the OPTRANSPAC and the Earth Orbiting Relay Station and the point-ahead
angle necessary for correct i1lumination were determined by the relative vel-
ocity between the two platforms. The four contributors to this velocity when
the spacecraft is encountering Saturn are 1) Earth's orbital rate around the
Sun; 2) Saturn's orbital rate around the Sun; 3) The EORS orbital rate around
the Earth; and 4) The spacecraft's flyby or orbital rate around Saturn. A fly-
by was assumed because it results in higher relative velocities than does a
Saturn orbit. A flyby with a periapse of twice the radius of Saturn and an
EORS altitude of 300 nautical miles were assumed. The contributing velocities
of each of these in the directions defined are given in Figure 3-3.

Figure 3-4 shows the maximum contributions to Doppler shift and point-ahead
angles from the velocities noted in Figure 3-3. For point-ahead, all four con-
tributors may have their total velocity perpendicular to the line-of-sight and,
thus, apply to point-ahead. However, the maximum angle contribution from the
EORS 1s T1imited by the extremes of where it can be in its orbit around the
Earth. As the OPTRANSPAC range increases, the effective angle traversed by the
Relay Station back and forth around the Earth is inversely proportional to the
range. The maximum point-ahead angle which the OPTRANSPAC must use is 440
microradians. Because the contribution of Saturn's velocity is only in one di-
rection, the maximum point-ahead angle in the opposite direction is 312 micro-
radlans.

The Doppler shift is caused by the instantaneous velocity along the line of
sight. The contribution of the EORS was therefore, not 1imited as it was for
point-ahead. Saturn's velocity, however, only contributes through the sine of
the minimum angle of itself with respect to the line-of-sight. Defined by the
minimum distance from the Earth to Saturn and the maximum crossrange of the
tarth's position. The Earth and spacecraft flyby contributing velocities are
the same as for the point-ahead case. The four contributions were summed to
get a maximum Doppler shift at 1064 nanometers of 2.3 Angstroms and at 532
nanometers of 1.15 Angstroms.
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Figure 3-5 through 3-8 analyze Doppler and point-ahead. Prior to the Saturn
encounter, only the Earth, the EORS, and the spacecraft transfer orbit motion
apply. Figure 3-5 shows the velocities of the Earth and spacecraft in the dir-
ections of the axes of the transfer orbit. The spacecraft has an original vel-
ocity of about 10Km/second more than the Earth's in the minor axis direction
and a velocity the same as the Earth's in the major axis direction. As the
spacecraft travels farther from the Sun, its velocity decreases as potential
energy increases. The Earth's velocity follows the expected sinewave pattern
as it orbits the Sun.

The velocities of Figure 3-5 were rotated into the 1ine-of-sight direction bet-
ween the Earth and the spacecraft. The relative velocities between the Earth
and spacecraft in this coordinate system, parallel to and perpendicular to the
1ine of sight are plotted versus flight time (See Figure 3-6). These, when
combined with the Earth-Orbiting Relay Station maximum velocity contribution,
noted previously, determine the necessary point-ahead angles and expected dop-
pler shift during the Earth to Saturn transfer.

Figure 3-7 shows the necessary point-ahead angles for the OPTRANSPAC during the
Hohmann transfer between the Earth and Saturn due to the relative velocities
shown in Figure 3-6. Adding the point-ahead angle needed to compensate for the
EORS motion (51 microradians maximum) creates a total point-ahead angle of 322
microradians during the transfer as compared to 440 microradians during the
Saturn encounter

The max1mum Doppler shift expected durfng the Hohmann transfer w1thout the
Relay Station contribution is plotted versus flight time (See Figure 3-8).
Adding in the maximum velocity contribution of the Relay Station yields an ex-
pected Doppler shift of approximately 1.7 Angstroms (x = 1064 nanometers)
during the Hohmann transfer from Earth to Saturn. This value is less than the
maximum expected during the Saturn encounter.

Figures 3-5 through 3- 8 11lustrate the effects of Dopp1er "and point-ahead dur-
ing the Hohmann transfer are less than those during the Saturn encounter.
Thus, the OPTRANSPAC design must accommodate the maximum Doppler and point-

ahead effects defined by the Saturn encounter and in doing so will also accom-
modate any Doppler or point-ahead contr1but10ns during transfer.

3.3 METEOROID ENVIRDNMENT - Figure 3- 9 tabu1ates the meteoroid environment
design requirement for travel to Saturn. This data was derived from the
Galileo Orbiter environmental design requirements, GLL-3-240 Rev. A, JPL, 1982.
The integral fluence numbers from the Galileo environment were increased by the
ratio of relative transit times to Saturn instead of Jupiter. This ratio cal-
culation assumes 90% of the Galileo environment fluence was attributed to the
asteroid belt and did not change. The mean relative speed was increased by
one-haif the velocity change difference from transfer to Saturn instead of
Jupiter.

Contact with the meteoroids occurs when the spacecraft collides with the slower
moving particles. Upon encountering the micrometeoroids the spacecraft's vel-
ocity vector is assumed normal to the meteoroids' velocity vectors. Nominal
spacecraft velocity (approximately 15 km/sec) is orders of magnitude greater
than the velocities of the micrometeorites. Vector algebra will show the con-
tribution from the particles' velocities are negligible when compared to the
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spacecraft velocity. Thus, 1t is concluded that the collistons occurs along
the direction of the velocity vector.

The critical component in the OPTRANSPAC system when considering the micro-
meteoroid environment is the telescope mirror. Since the primary mirror is not
shielded it could possibly be exposed to the incident meteoroids. However, the
OPTRANSPAC telescope boresight s assumed to be pointed towards the Earth (ap-
proximately directly opposite the velocity vector). Due to this reasoning,
shielding requirements for the OPTRANSPAC terminal are assumed no larger than
the nominal shielding required for the entire spacecraft.

3.4 GRAVITATIONAL, MAGNETIC, ELECTRICAL AND THERMAL RADIATION - The data given
in Figure 3-10 was collected from several sources. They are given below.

A) Galileo Orbiter Environmental Design Requirements,
GLL-3-240 Rev. A, JPL, 1982. ’

B) Space Vehicle Design Criteria (Environment), The
Planet Saturn, NASA SP-8091, 1970. ' :

C) Space and Planetary Environment Criteria Guidelines
for use in Space Vehicle Development, NASA TM-82501,
1982.

D) Space Shuttle System Payload Accommodations, NASA
JSC-07700, Volume XIV, Rev. H, 1983.

The maximum gravitational, magnetic, electrical and thermal radiation environ-
ments are within present Lasercom capabilities. the Earth, the shuttle and
near-Earth orbit provide the largest values of these environments to be encoun-
tered by the OPTRANSPAC. Saturn's environments are less than these because
encounter is assumed at a distance of twice the Saturnian radius from the
planet's surface. Minimum thermal radiation at 10 AU may require a thermal
design that includes heaters to keep the components within specified operating
Timits.

3.5 VIBRATION ENVIRONMENT - The Space Shuttle vibration environment during
launch is 11lustrated in figure 3-11. This data was taken from Space Shuttle
System Payload Accommodations, NASA JSC-07700, Volume XIV, Rev. H, 1983. This
environment 3is within present Lasercom system capability. Current Lasercom
systems are designed and tested to withstand the Space Shuttle vibration envi-
ronments. o

3.6 ACOUSTIC ENVIRONMENT - Figure 3-12 1llustrates the Space Shuttle acoustic
environment during launch. The data was also taken from Space Shuttle System
Payload Accommodations, NASA JSC-07700, Volume XIV, Rev. H, 1983. This envi-
ronment is also within present Lasercom system capability. Current Lasercom
systems are designed and tested to withstand the Space Shuttle acoustic
environment.

3.7 PYROTECHNIC SHOCK - Figure 3-13 depicts the spectrum of the expected pyro-
technic shock environment. This 4s the maximum spectrum during spacecraft
launch/separation. It will be attenuated by intervening spacecraft structure.’
The data was taken from the Galileo Orbiter Environment Design Requirement,
GLL-3-240, Rev. A, JPL, 1982. Present Lasercom design capability for pyro-
technic shock is a factor of 10 less at the spacecraft/Lasercom interface. If
the attenuation of the spacecraft structure (which is as yet undefined) is
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greater than a factor 6f ten, the design will be within present Lasercom capa-
byl1ity. If not, shock 1isolation must be provided between the spacecraft and
the OPTRANSPAC system.

3.8 SATURNIAN_RADIATION ENVIRONMENTS - The OPTRANSPAC radiation environments
associated with the charged particle and radioisotope thermoelectric generator
are given in Figure 3-14. The trapped proton and electron environments were
taken from the Pioneer 11 and Voyager missions. Electron and proton doses are
representative of a Jovian flyby environment. From the data it was determined
that this environment was worst case for Saturn, and therefore, representative
radiation 1eve1s for the OPTRANSPAC system were chosen as 100 KRADS total dose
and 1 x 1014 (1 MeV damage equivalent) neutrons/cmé displacement damage.

The OPTRANSPAC can expect to see a Galactic particle environment on the order
of that shown in Figure 3-15. This environment interacts with the system elec-
tronics introducing soft errors in the LSI/VLSI devices. Hard errors or single
event latch-up of devices will be eliminated by device selection.

Mitigation of the single event upset environment can be handled by system cir-
cumvention (i.e., redundant storage of critical data, error detection/
correction, watchdog timer, reasonableness of data checks, etc.). Appropriate
device selection can reduce the probability of soft errors and aid in the miti-~
gation of these effects.

The mission environments contributing to total dose include the interplanetary
electrons, protons and solar flare particles plus the Saturn electron and
proton Van Allen belts. Figure 3-16 11lustrates that under nominal spacecraft
shielding of one gram per cm? (A1), the total dose experienced by semi-
conductor electronics will be 60 KRADS (S1).

The major contributing environments to displacement damage in semiconductor
electronics are the protons trapped in Saturn's Van Allen belt and the inter-
planetary cosmic ray protons. Minor contributions are made by the nuclear
power source and mission e]ectron environments. Figure 3-17 indicates under
nominal spacecraft shie]din% gram/cm2 (A1)) the electronics will expe-
rience 2.5 x 1013 neutrons/cm (1 MeV neutron equivalent damage in silicon).

The total dose level of 100 KRADS as determined from the electron/proton data
is currently within the capability of Lasercom systems. Development data and
hardness assurance results from Lasercom hardware programs on electronic,
electro-optic and optical plece parts support this conclusion. The required
radiation design margin for the system can be accommodated with a hardness as-
surance test program during the production phase of the program.

The displacement damage fluence is currently higher than Lasercom design lev-
els, however, within the capability of selected electronics. Care in device
selection and appropriate development testing may be necessary.

3.9 OPTICAL BACKGROUND RADIATION - Five specific background noise source sce-
narios were defined for the OPTRANSPAC design. Figure 3-18 outlines the five
scenarios. On the uplink to the OPTRANSPAC from the EORS, background radiation
from the Earth as well as off-axis scattering of sunlight onto the detector
must be considered. The earth tracker must also deal with off-axis
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scattering of 1ight onto the array detector. On the downlink, the EORS re-
ceiver must concern itself with the radiation from Saturn and also off-axis
scattering of solar radiation.

3.9.1 EARTH BACKGROUND AT OPTRANSPAC - The calculation of the Earth background
at the OPTRANSPAC follows from the following analysis. The energy incident
upon the Earth in a particular wavelength band was reduced by the albedo
factor. The albedo factor of the Earth was taken to be approximately 30%.
[Ref. 1]. The Earth was then assumed to re-radiate this energy 1into a 2«
steradian half sphere. The energy flux at the OPTRANSPAC 1is then simply a
function of the range from the OPTRANSPAC to the Earth. Figure 3-19 shows the
range relationship on Earth background flux at the OPTRANSPAC for three dis-
tinct wavelengths of interest. Note, although the Earth moves through phases
as viewed from the OPTRANSPAC, the radiant background energy was calculated on
a "“full Earth" assumption.

3.9.2 SOLAR BACKGROUND AT OPTRANSPAC - The amount of solar background incident
upon the OPTRANSPAC detectors is a function of the Sun angle geometry, the off-
axis solar rejection function and the wavelength of interest. For the
OPTRANSPAC, the Sun angle geometry is sketched in Figure 3-20. The 90% avail-
ability requirement set forth in the statement of work defines the Sun angle
requirement. As is seen in Figure 3-20, the Earth orbit has two places in each
half orbit where the OPTRANSPAC to Sun Angle, a , is identical. Simple geom-
etric algebra yields the expression of a as a function of link distance, D.
Figure 3-21 shows the minimum Sun angle is given as approximately one degree
off of boresight.

To determine the amount of solar energy that reaches the detectors, an off-axis
stray 1ight model was defined for the optical system. The off-axis stray light
rejection model is pictured in Figure 3-22 and was taken from previous analysis
performed for a similar telescope design on another Lasercom project. The re-
Jection function, S(© ), was obtained from a complex modeling of the stray
1ight rejection properties of anti-reflective coatings, aperture, stops, tele-
scope cleanliness levels, and baffle designs for specific telescopes. The as-
sumption made here, with high confidence, was extrapolation to similar tele-
scope designs with differing aperture sizes and viewfields was valid. The
optical background power on the detector was readily obtained from this model.

The effective background radiance at the OPTRANSPAC due to the off-axis solar
scattering is plotted versus 1ink distance. The worst case angle (i.e. small-
est off-axis angle) occurs at the maximum range from the Earth (smallest solar
intensity). The two phenomenon, range loss and scatter function, tend to off-
set each other. As can be seen by the curves in Figure 3-23, the solar scat-
tering background flux can be modeled as a constant over all range. To this
end, the background radiant flux was modeled as the constant levels 11lustrated
in Figure 3-23 for each of the three wavelengths.

3.9.3 SATURN BACKGROUND AT EORS - The background flux at the EORS platform due
to Saturn was taken from recorded Earth orbit measurements of Saturn's irradi-
ance [Ref. 2]. Since the EORS characteristics specify a one microradian view-
field and Saturn subtends approximately 95 Microradians when viewed from the
Earth, the Saturn background flux must be expressed in terms of a radiance
function (1.e. only a fraction of Saturn, about one ninetieth is viewed by the
EORS). Figure 3-24 tabulates the effective Saturn background available at the
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EORS. The radiance function was used directly with the field-of-view, aperture
size, optical filter bandwidth and optics transmission, to obtain the back-
ground optical power on the EORS detector.

3.9.4 SOLAR_ BACKGROUND AT EQORS - Once again the amount of solar background
radiation is a function of the Sun angle geometry and off-axis solar rejec-
tion. The EORS Sun angle geometry (See Figure 3-25) was calculated similar to
the OPTRANSPAC geometry (See Section 3.9.2) except the 90% availability re-
quirement encompasses only the "backside" EORS position. The angle y was
fixed at 18 degrees and the off-axis angle, B, was given by the range between
the EORS and the OPTRANSPAC. The off-axis scattering angle versus range for
the EORS receiver boresight is 11lustrated in Figure 3-26.

The scatter function, S(©), defined in Figure 3-22, was used in conjunction
with the solar radiance measured in the Earth's atmosphere to define the back-
ground radiance. Figure 3-27 shows the effective background radiance as a
function of the link distance for the EORS. The background radiant flux 1is
larger at close range and becomes less at long ranges (i.e., the off-axis angle
increases). The link margin close in was sufficiently large to offset the in-
crease in background power. Thus, the 1inks were designed to accommodate maxi-
mum range background.
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4.0 FUNCTIONAL ORGANIZATION

Various system configurations were envisioned as possible solutions to the
OPTRANSPAC design. From these, one configuration was selected as the baseline
design. A detalled system block diagram and functional description was also
generated for the baseline design. A detailed optical layout was then genera-
ted based on the configuration selected.

4.1 BASELINE SELECTION RATIONALE - Eight possible system configurations were
considered for the OPTRANSPAC terminal design. Five major functions were iden-
tified as trade space. The design rationale was to minimize system complexity
and weight. Continuous or static alignment was necessary to maintain transmit/
receive path alignment during OPTRANSPAC 1ifetime. Point-ahead compensation
was necessary to correct for line-of-sight variations due to platform velocity
aberrations. Earth tracking was considered as necessary to provide track capa-
bi11ty when no beacon is present (i.e., the EORS disappears behind the Earth).
Beacon track existed as a trade parameter or option. Beacon communications was
required by the statement of work.

Figure 4-1 shows the baseline configuration selection rationale trade matrix.
Figures 4-2 through 4-9 {1lustrate the optical systems associated with each of
the eight systems configurations. The baseline selection process quickly elim-
inated options B,C,E,F, and & since no beacon communication was possible.
Option H was ruled out because the wide viewflields required severely taxed the
quadrant detector Earth tracker option. Options A and D became the only viable
solutions out of the original eight. Option A was chosen over option D because
it offered a lighter weight and less complex (fewer mechanisms) solution to the
OPTRANSPAC design.

4.2 SYSTEM CONFIGURATION - The top level OPTRANSPAC terminal configuration 1is
shown in Figure 4-10. The OPTRANSPAC system at the box level consists of an
Electronics Assembly and Electro-Optics Assembly. The Electronics Assembly
consist of a Power Conditioner Unit, a Communications Electronics Assembly and
a Control Electronics Assembly. The Electro-Optics Assembly contains a tele-
scope, imaging optics, downlink laser, Earth tracker head assembly, and beacon
communication detector. Figure 4-11 {llustrates the OPTRANSPAC signal flow
from, and to, each of the subassemblies. The functional description of each
subassembly is listed below:

Fixed Mounted Telescope:
- The uncertainty area of the platform is within its viewfield.
- Allows diffraction 1imited transmit operation.
- Collects beacon and Earth radiation and relays 1t to the imaging optics.
Imaging Optics:
- Provides for dichroic separation of transmit and receive paths.
- Allows for co-alignment of transmit and receive paths.
- Transfers optical energy from laser to telescope and from telescope to
appropriate detectors.
- Contains tracking mirrors for vernier tracking function and viewfield
scan.
Downlink Laser:
- Generates 532 nm laser radiation in a pulsed format encoded with
information from the communication electronics.
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Earth Tracker Head Assembly:
- An array detector used for point-ahead and Earth tracking functions.
Beacon Communication Detector:
- An avalanche photodiode used for beacon communication
Communication Electronics: |
- Provides for pulse position modulation conversion of input data from
the spacecraft.
- Encodes input data from spacecraft into a rate 7/8 Reed-Solomon code
word.
- Decodes rate 7/8 Reed-Solomon data from beacon 1ink.
- Demodulates the pulse position modulated signal in a "greatest-of"
format.
Control Electronics:
- Provides for Earth track capability.
- Controls all OPTRANSPAC modes of operation.
- Controls alignment function.
- Interfaces with spacecraft attitude reference system and Earth tracker
error signals to provide TMBS track commands. -
- Calculates point-ahead angle offsets to be used by the Earth tracker.
- Communicates with spacecraft control processor for time of day and
orbital information.
Power Conditioner Unit:
- Provides all prime power conditioning for the various OPTRANSPAC
components.
- Provides telemetry multiplexing of monitor signals for telemetry 1ink.
- Controls all OPTRANSPAC redundancy switching

4.3 OPTICAL SYSTEM DESCRIPTION - The system level layout of the optical train
is given in Figure 4-12. Descriptions of the optical elements employed in the
OPTRANSPAC system are given in Figure 4-13. The optical design consists of a
diffraction 1imited eleven inch modified Cassegrain Telescope coupled into an
jmaging optics assembly. The telescope maintains an image quality of at least
2/20 RMS at the transmit wavelength of 532 nanometers over a * 2.5 milli-
radian transmit viewfield.

The imaging optics contains beam steering mirrors for vernier tracking and op-
tical relay elements that transfer the transmit laser energy to the telescope
as well as transfer the received energy to the appropriate detectors. Dichroic
f11ters were used to differentiate between the transmit and receive paths which
allowed use of common path optics. Redundant paths around active elements were
used to eliminate single point failures. Redundant switching of active ele-
ments, such as lasers and detectors was accomplished through use of solenoid
driven "pop" mirrors. The Earth track optics path offset dichroic boresight
alignment device allowed for Earth track, continuous alignment, and electrical
point-ahead functions to be implemented in one optics path design.

i
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FIGURE 4-13
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5.0 COMPONENT SELECTION RATIONALE

The rationale behind selection for each major OPTRANSPAC component is outlined
below. Also, rattonale for selection of modulation type and coding is given.
Specifications for major components (laser, telescope, optics, detector/
preamplifier and Earth tracker) are detailed in Appendices B-1 through B-5.

5.1 LASER SOQURCES - Laser source selection for the OPTRANSPAC encompassed com-
parisons of a variety of laser sources. Three types of lasers were consid-
ered; gas, solid-state, and semiconductor. Figure 5-1 outlines the laser
sources considered as candidates for the OPTRANSPAC terminal. The figure 11-
lustrates the lasers' operational wavelengths and defines their typical opera-
tional characteristics. The selection of the downlink and uplink laser sources
was made simple by the reduced trade space set forth by the system require-
ments. It was determined through preliminary 1ink analysis that the Gallium
Arsenide sources could not provide enough power to sufficiently operate at a
range of 10 AU. The Helium Neon source provided low reliability in meeting the
Tifetime needed. The Carbon Dioxide laser did not fall within the wavelength
requirements. The only viable sources found to close the DPTRANSPAC 1inks were
the Nd:YAG and frequency doubled Nd:YAG sources. The doubled Nd:YAG laser was
chosen as the downlink source as it met the wavelength requirement and the PMT
receiver provided an adequate quantum efficiency at 532 nanometers. The Nd:YAG
source was then selected as the uplink source. 1In addition, high quantum effi-
ciency APD's enabled good uplink operation at the Nd:YAG frequency.

5.1.1 DOWNLINK LASER - The downlink laser on-board the OPTRANSPAC terminal was
specified as a frequency doubled Nd:YAG (532 nm) source in a diode pumped slab
configuration. The diode pumped slab design enables high efficiency laser op-
eration effectively reducing the required prime pump drive power. A functional
specification for the downlink laser is given in Appendix B-1.

The downlink laser was specified to operate at three distinct pulse rates cor-
responding to the three distinct data rates. The nominal pulse rates of opera-
tion are 14.285 KPPS, 4.285 KPPS and 1.429 KPPS. The laser pulsewidth was spe-
cified at 10 nanoseconds (FWHM) and the average output power was specified to
be 400 milliwatts. An isometric view of an external cavity frequency doubled
diode pumped slab laser is illustrated in Figure 5-2. For high efficiency, the
laser is pumped by laser diode bar arrays matched in wavelength to the absorp-
tion band of the Nd:YAG material. The frequency doubling can either be inter-
nal or external to the laser cavity. Figure 5-3 outlines the specific design
considerations associated with each device. A specific choice of cavity design
was left as a design choice further into actual hardware implementation.

5.1.2 UPLINK LASER - While not a part of the OPTRANSPAC design, the charac-
teristics of the uplink laser are governed by the OPTRANSPAC command receiver
implementation. To that end, the uplink laser shall transmit 10 nsec FWHM
pulses at a nominal rate of 142.86 PPS. The transmitted wavelength shall be
1064 + 0.5 nm. The energy per pulse, referenced to the nominal wavelength,
shall be 70 millijoules and the interpulse period shall be 70 msec + 25.6
usecond,
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FIGURE 5-3
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5.2 TELESCOPE SELECTION - To meet the specified requirements outlined in Ap-
pendix B-2, a mirror based reflective telescope was chosen over a refractive
system. An 11" aperture refractor would likely require several lens elements
to meet the image quality requirements over the viewfield and, and a result,
would be heavy. A refractive design would also be too prone to thermal gradi-
ents, which adversely affect transmitted wavefront by the large temperature
dependence of the glass refractive indices .

Figure 5-4 1llustrates the wide variety of reflective telescopes available.
The 1image quality requirements over the viewfield 1imit the choice of tele-
.scopes. The Newtonian form was unacceptable over this field due to the coma
inherent in the base paraboloid mirror. The Gregorian form was too long and
bulky. The Maksoutoff arrangement tended to be either too long (with a thin
corrector plate) or too heavy (the corrector plate thickness increases as tele-
scope length is reduced to maintain the required correction). The Cassegrain
design form, in one of its many variants, offered the best approach to meeting
the diffraction 1imited performance requirements over the viewfield with a com-
pact, 1ight weight, stable package.

The "Classical Cassegrain” consists of a paraboloid primary mirror with a
hyperboloid secondary mirror. This arrangement can cover a larger viewfield
than the single paraboloid mirror with substantially better imaging perform-
ance. It will, however, not be able to cover the full +2.5 milliradian field
with the required near diffraction 1imited performance.

Several variants to the "(Classical Cassegrain" offer improved image quality
over the field at a cost in complexity. One variant is the Ritchey Chretien
which consist of aspheric primary and secondary mirrors whose zonal curvatures
are slightly weakened with respect to the paraboloid/hyperboloid mirrors of the
Classical Cassegrain. Another variant is the Schmidt Cassegrain which incor-
porates a full aperture aspherized reflective plate to correct the resulting
spherical aberration. This plate covers the full aperture and is prone to
thermal gradients perturbing the wavefront quality. A final variant is to in-
corporate small refractive correcting elements in the converging beam after the
secondary. This allows additional aberration correction. It was this final
variant that offered the best approach to meeting the image quality over the
full telescope viewfield.

5.3 OPTICAL MECHANISMS - The use of optical mechanisms should be minimized to
provide a design with the fewest possible moving parts. However, gimbals, beam
steerers, and optical mechanisms (select mirrors, shutters, adjustable, field
stops, etc.) are usually needed (in some combination) to accommodate dynamic
system fluctuations and provide for redundancy switching.

The OPTRANSPAC system design accommodates pointing and tracking with a single
set of beam steerers. Gimbal pointing was determined as not being necessary.
Many types of beam steering mechanisms were considered; pilezoelectric deflec-
tors, torque motor types and acousto-optic deflectors. One and two axis de-
flector mechanisms were considered. Plezoelectric steerers require high
voltage drivers for the crystal. They also exhibit an inherent mechanical
weakness of the crystal to the mechanical deflection inputs at the structural
resonant frequency. Acousto-optical deflectors, although widely used commer-
clally, exhibit optical transmissions of about 70% for a single axis and about
50% for both axes. It was this Tloss in optical signal power that made AQ de-
flectors undesirable for the OPTRANSPAC design.
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The OPTRANSPAC design employs two single axis torque motor beam steerers in an
X-Y configuration. The torque motor devices were chosen because of their long
development heritage and low risk design. Space qualified torque motor beam
steerers already exist and are being integrated into a spaceborne optical com-
munication terminal.

Other mechanisms required in the OPTRANSPAC design include a commandable focus
drive to ensure diffraction limited beam quality over the design 1ife and re-
dundancy select fl1ip mirrors that allow selection of redundant optical paths or
electro-optic devices (detectors, laser). The use of solenoid and motor driven
select mirrors for redundancy switching is a proven method for redundancy man-
agement. Redundant drives were associated with each mechanism to ensure reli-
able switching.

5.4 MODULATION FORMAT SELECTION - Laser sources cannot be modulated in all
possible modulation formats. Because of this fact, the choice of a particular
laser affects the selection of an applicable modulation type. The selection of
the Nd:YAG lasers and the high peak powers needed to communicate from deep
space, yleld a short pulse, high peak power laser source.

The most efficient pulsed modulation format to use with a narrow pulse Jaser is
an M-ary pulse position format. M-ary Pulse Position Modulation (PPM) with
"greatest-of" detection provides the most sensitive receiver in terms of bits
of information per photons transmitted. The PPM format employed in the
OPTRANSPAC system is 31lustrated in Figure 5-5. Electronic speeds as well as
hardware maturity drove the design to a 256-ary (8 bits/pulse) pulse position
format. Compatibility with eight bit Reed-Solomon encoders and decoders made 8
bit PPM an attractive solution to the OPTRANSPAC design.

5.5 DETECTOR-PREAMPLIFIER SELECTION - The command uplink communication detec-
tor selection involved comparisons of five applicable optical detectors. The
detector types chosen for comparison are listed along with their important
characteristics in Figure 5-6. Front end detector gain, quantum efficiency,
internal noise mechanisms (i.e. dark current, ionization coefficient) and reli-
ability are listed for each detector. The selection criteria for the uptink
communication detector are listed in Figure 5-7. Moderate to high front end
gain 1s necessary to partly offset the effects of the preamplifier noise con-
tributions; high quantum efficiency 1s necessary to provide high efficiency
conversion of optical to electrical energy: low internal noise yields good
receiver sensitivity; and high reliability 1is necessary for the long 1ife re-
quired. As is seen (Figure 5-7), the silicon APD provides the best fit to the
selected criteria. The low-k device with dimpled design provides good quantum
effictency and low noise operation. An avalanche gain on the order of 200
helps to reduce the effective preamplifier noise contributions and the proven
reliability of the silicon APD offers the desired lifetime operation.

Low noise transimpedance preamplifiers were interfaced with the command uplink
recelver avalanche photodiode to provide good overall system sensitivity. The
noise current effects of the preamplifier were reduced by the front-end ava-
lanche gain of the APD. The increased gain, however, increases the internal
APD noise as well as the received background noise. An optimum APD gain was
found when the contributions of the preamplifier noise and detector noise (in-
cludes background) were equal. Thus, low noise preamplifiers are important in
achteving the greatest possible receiver sensitivity.
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FIGURE 5-5
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For the OPTRANSPAC system, the selection of an appropriate preamplifier with
low noise occurred from the extrapolation of present measured device values to
the system technology time frame. The preamplifier noise current is bandwidth
dependent and Figure 5-8 shows this relationship for a few low noise devices
manufactured by MERET, Inc. Extrapolation to the 50MHz preamplifier bandwidth
required to pass the received 10 nsec pulsewidth resulted in a selection of a
preamplifier with a noise equivalent current of approximately 1.4 picoamps per
root Hertz. Figure 5-9 1llustrates the effect on uplink margin sensitivity
resulting from an increase or decrease in the preamplifier noise current. The
OPTRANSPAC detector and preamplifier design parameters are specified in
Appendix B-4.

5.6 EARTH_TRACKER DETECTOR SELECTION - In order to provide track capability by
the OPTRANSPAC such that a narrow divergence beam can be transmitted back to
the Earth, a method of beacon tracking had to be devised. Most narrow diver-
gence optical communication systems cooperatively track each others transmis-
sfons. However, the OPTRANSPAC scenario required communication with an EORS
that disappeared every 45 minutes. With round trip transmit times to Saturn of
approximately 2.75 hours, tracking the EORS command beacon was not feasible.

A solution to this problem involved tracking the Earth with a quadrant or an
array detector. Quadrant detectors did not provide the sensitivity (due to in-
sufficient background rejection) necessary to track the Earth under the speci-
fied availability requirements. An array tracker implementation provided the
best background rejection available due to the small pixel angular viewfjelds.
Random readout and access techniques offered multiple target tracking. This
multiple target tracking enabled the elimination of the point-ahead beam ste-
erer group and made the selection of option A (See Section 4.1) possible.

The selection of an array tracking detector enabled the same detector to per-
form point-ahead, boresight alignment and Earth tracking functions. The point-
ahead function of the OPTRANSPAC was designed to be an electrical rather than a
mechanical (i.e. beam steerer) compensation. An area of the array detector,
not used for Earth tracking, was used to determine the boresight of the trans-
mit signal (See Figure 5-10). The artificial point-ahead boresight was com-
manded by the processor based on a known point-ahead angle and with respect to
the transmit boresight. Alignment of the transmit and receijve paths can also
be achieved in this manner.

The requirements of the OPTRANSPAC on the Earth tracker (track, point-ahead,
and alignment) made the choice of a Charge Injection Device (CID) as the Earth
tracker, a good one. Random access (single pixel addressing) and nondestruc-
tive readout capability led to the choice of the CID over other array detectors
such as Charge Coupled Devices (CCD). CID's, where readout does not involve
destruction of the stored charge, have increased sensitivity over CCD's.

The Earth tracker design was based on developed CID technology. The CID con-
sist of an array of photosensitive picture elements (pixels) which integrate
incident signal charge, store it, and enable readout at the individual pixel
site. The OPTRANSPAC Earth tracker was designed around a ST-256-CID developed
by General Electric. The physical size of the array was 5.12mm x 5.12mm and
encompasses 256 x 256 pixel. The 1 mrad by 1 mrad OPTRANSPAC field of view was
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FIGURE 5-10
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mapped into a 200 x 200 pixel area providing excellent background rejection due
to small (5 microradian) pixel viewfields. A specification for the Earth
tracker is given in Appendix B-5.

5.7 CODING SELECTION - Both the uplink and downlink were selected as candid-
ates for channel coding. Coding of these links provides for a reduction in
aperture size and laser power at a small cost in weight and complexity. Using
a block code over the pulse position modulation frame provides the largest
degree of error correction [Ref 3]. The selection of the Reed-Solomon block
code for the OPTRANSPAC 1inks was based primarily on the maturity of the tech-
nology, particularly the 8-bit Reed-Solomon encoders and decoders.

The spacecraft or command data 1s encoded into B8-bit Reed-Solomon channel
symbols by a rate 7/8 Reed-Solomon encoder. These 8-bit channel symbols are
further encoded into PPM symbols by appropriate pulse timing into one of 256
slots. At the receiver the PPM symbols are decoded in a "greatest-of" fashion
selecting the slot with the greatest pulse amplitude out of the 256 possible
slots. The PPM symbols are then converted back to channel symbols for the
Reed-Solomon decoder, which in turn converts the channel symbols to source bits.

Figure 5-11 shows the relationship between the uncoded PPM bit error proba-
bility and the Reed-Solomon encoded bit error probability. It can be seen that
to achieve a final bit error probability of 10-3, the PPM channel must sup-
port a bit error probability of approximately 0.02 for a rate 7/8 Reed-Solomon
code. Further coding gain is possible with higher order codes (i.e., rate 3/4,
rate 1/2) but the increase in laser pulse. rate required to accommodate the
higher order codes reduces the available peak laser power per pulse. This ef-
fectively offsets a portion of the coding gain and from Figure 5-12 it 1is
readily seen by the uplink example that the rate 7/8 code provides the largest
available coding gain.
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FIGURE 5-11
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6.0 LINK ANALYSIS

The analysis that supports the validity of the OPTRANSPAC system operation is
presented below. Because the two are interrelated, the system Tinks from an
acquisition and tracking standpoint as well as from a communication standpoint
were analyzed.

6.1 ACQUISITION AND TRACKING - System concerns when considering the acquisi-
tion and tracking performance of the OPTRANSPAC include spacecraft dynamic
characteristics, spacecraft uncertainty, tracking detector accuracy, boresight
uncertainty and beam steerer noise to name a few. The acquisition and tracking
system must compensate for some of these concerns and operate through others.

6.1.1 SPACECRAFT CHARACTERISTICS - The following spacecraft characteristics
were assumed in order to estimate the spacecraft attitude dynamics for
OPTRANSPAC inputs [Ref. 4]. A spacecraft whose mission is close scrutiny, deep
space, has a mass of between 1000 and 3000 Kg. By choosing the smaller mass, a
more conservative estimate of attitude motion was assumed. It was assumed a
three axis stabilized attitude control system was needed to perform precision
pointing and rapid retargeting tasks. The spacecraft was also assumed to em-
ploy an articulated science platform with a mass of about 80 Kg for tracking a
target during close scrutiny. The respective control bandwidths of the space-
craft and the platform were assumed 1 and 0.1 Hertz. Control accuracy of the
spacecraft was specified as 2 milliradians and the control stability of the
platform was assumed to be 550 microradians. During target tracking the
science platform slews at 1.2 milliradians per second and siews at a maximum
rate of 35 milliradians/second during retargeting. Figure 6-1 outlines the
spacecraft assumptions used.

6.1.2 ACQUISITION - The assumptions made during OPTRANSPAC acquisition of the
Earth are outlined in Figure 6-2. The figure 1ists the driving assumptions for
acquisition scanning and acquisition time. The spacecraft attitude control
system, with a 2 milliradian accuracy, places the Earth inside the telescope
field-of-view. A one milliradian square viewfield detector provides angle
error updates at a 200/second rate. The false alarm rate was assumed to be
once in two seconds and the computer switching time is 0.1 second. The beam
steerer bandwidth required for acquisition was calculated to be 20Hz.

In order to cover the entire uncertainty area of the telescope viewfield, the
detector array was assumed scanned in the pattern shown in Figure 6-3. This
type of pattern, a raster scan, was chosen over a conical scan because of ease
of implementation and no need for the most rapid average acquisition time pos-
sible. In order to assure no gaps are left in the scan coverage, an overlap of
around 30 percent is usually allowed. For the telescope field-of-view and de-
tector array size noted in Figure 6-2, a pattern of six swaths was determined
necessary. This yielded an overlap factor of about 29 percent. Two alterna-
tives existed for the sequence in which swaths were searched. In the first,
the scan covered the inside two swaths first, as they were most likely to con-
tain the target, and then proceeded outward to the next most 1ikely swaths. A
disadvantage of this general sequence in some laser communication systems was
the separation between sequential swaths, which allowed more time for attitude
drift between adjacent swaths. This was true of this application, where space-
craft attitude drift rates, on the order of 350 microradians per second, could
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cause the target to move from one swath to the adjacent one before the detector
array arrives at the original target position. 1In the other alternative for
the search sequence of the swaths, the first swath was on one edge of the un-
certainty region, and the next sequential swath was the adjacent one. This se-
quence did not search the highest probability areas first, so the average ac-
guisition time was higher than the first alternative. However, since the adja-
cent swaths were searched sequentially, the attitude drift rate will not carry
the target out of the swath before the detector array arrives at that posi-
tion. Since acquisition time was not pressing in this application, this type
of pattern and sequence was chosen. Given the above scan description, the ac-
quisition time was calculated using the rationale outlined in Figure 6-4.

6.1.3 TRACKING - Tracking error contributors are separated into two categor-
jes, random and systematic. Random errors (or jitter terms) are assumed to be
higher frequency and uncorrelated, so a root sum square gives the total ex-
pected error from these sources. Systematic errors (or bias terms) are assumed
to be low frequency, and may be correlated, so the maximums may all occur si-
multaneously over a long period of time. The systematic errors must therefore
be summed together. The total error budget for the tracking system is the sum
of the 3 sigma random errors (RSS'ed together) and the systematic errors.
Figure 6-5 indicates the tracking error contributions to the transmit beam
pointing. While this represents a budget for each particular entry, the
numbers were determined considering device l1imitations. The error magnitude
determinations are evident from the comments, except for the last two. Space-
craft dynamics and spacecraft attitude are further explained below.

Three sources of spacecraft dynamic tracking error were considered (See Figure
6-6): Spacecraft maneuvers, with an attitude control bandwidth of 1 Hz; space-
craft vibration from control moment gyros or other machinery; and science plat-
form slewing at maximum rate for retargeting. For a detector array update rate
of 200/second, a tracking loop bandwidth of at least 20 Hz can be supported.
Spacecraft maneuvers with a 1 Hz loop will therefore cause no significant
errors. Vibration is expected to cause the science platform stability accuracy
error quoted earlier. Since the science platform has a bandwidth of 0.1 Hz,
and the OPTRANSPAC has a bandwidth of 20 Hz, the expected OPTRANSPAC error due
to vibration was calculated to be less than 0.02 microradians. The largest
contributor to tracking error is expected to be the science platform retarget
slewing. The platform will jump to maximum rate as fast as possible to mini-
mize retargeting time. This rate will be transmitted to the spacecraft by the
ratio of the platform and spacecraft inertias, which are roughly proportional
to the square of their masses. A step in attitude rate of that size, into a 20
Hz type II tracking loop with the beam steerers, causes a tracking error of 0.3
microradians. This value was inserted on the tracking budget chart.

Figure 6-7 depicts a three dimensional layout of the point-ahead angle neces-
sary between the OPTRANSPAC and the target (Earth Relay Station). The tracking
1ine is the 1line between and perpendicular to the reference plane of the
OPTRANSPAC and the reference plane of the target. The point ahead angle is the
angle away from this tracking line at which 1ight has to be sent in order to
compensate for relative velocities between the two platforms. This angle
should 1ie within the plane defined by the tracking line and the velocity
vector. The creation of this angle by the OPTRANSPAC may not be perfect,
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FIGURE 6-5
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because the spacecraft may have an attitude error around the axis of the track-
ing line of up to 2 mrad. The exploded view in Figure 6-7 shows the effect of
this attitude error projected by the point-ahead angle. The tracking error due
to this effect 1s nearly 900 nanoradians. This error was too large to allow in
the tracking budget.

The error can be reduced by compensating for the rotational error of the space-
craft around the tracking 1ine with the point ahead, 1f the attitude of the
spacecraft is known. Assuming that the attitude knowledge of the spacecraft 1is
0.1 times the control accuracy, the point-ahead induced pointing error can be
reduced to less than 0.1 microradian. If the spacecraft attitude knowledge is
worse than the above assumption, it would still be possible to reduce the
tracking error contribution to about the same value by implementing a star
tracking function around the tracking line with the detector array, and essen-
tially determining the OPTRANSPAC's 1nertial attitude independently of the
spacecraft.

6.1.4 EARTH TRACKING ANALYSIS - Figure 6-8 shows the relationship between
Earth tracker angle error noise and aperture size at various ranges. The
tracking budget amount is also indicated. The Earth tracker error becomes a
function of the distance from the Earth, the optical resolution and the cen-
troiding algorithm.

The range between the OPTRANSPAC and the Earth determines the amount of stgnal
energy incident upon the array detector. The solar energy reflected from the
Earth was assumed to be Lambertian distributed in intensity. The factor asso-
ciated with the partial Earth phase was assumed to be 5%. That is, only 5% of
the energy reflected by a full Earth 1s reflected by the partial Earth. The
range also plays an important role in determining the spot size on the detec-
tor. The physical angular subtense of the Earth varies from 85 microradians at
1 AU to 8.5 microradians at 10 AU. The more Earth tracker pixels with 5 micro-
radian fields of view required to receive the incident energy, the more noise
incurred in the angle error measurements (3.e. the more signal required to
maintain an acceptable signal to noise ratio).

The actual spot size on the detector array is a function of the optical resolu-
tion of the system. Figure 6-9 shows the relationship between the blur circle
on the detector versus range for various receive path optical resolutions.
Analysis determined a comfortable 30 microradian resolution would be sufficient
for the receive tracking path part of the optical system.

The centroiding algorithm is the final measure of the angle error accuracy.
The algorithm used must be able to accurately centroid the energy received even
under Earth partial phase conditions. Knowledge of orbital position is impera-
tive in the Earth tracker design. The actual centroiding algorithms used are
beyond the scope of this report, rather the analysis was based on star tracker
designs employing CID technology.

It 1s widely accepted [Ref. 5] that for a uniform circular spot, the slope at
the origin is a function of the spot angular size and is given by
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The angle error is then calculated using the following expression [Ref 4].

0 = 1 2F,
RMS™ — SF « SNV ¥,
where
SF = Slope Factor
sw = ShR 172
Fc = Tracking Loop Bandwidth
Fr = Output Sample Rate
SNR = Total Signal Power

Total Noise Power

The total noise power is composed of background power from solar scattering and
the detector noise terms specified in Appendix B-5. The recelved signal fis
composed of a complex function involving non-destructive readouts and addition-
al averaging times. These techniques are documented in [Ref. 6].

6.2 COMMUNICATION LINKS - With component values identified in Section 5.0 and
background levels determined in Section 3.9, the final sizing of the OPTRANSPAC
1inks involves definition and trades of laser powers and aperture sizes. The
design rationale 1involving link margin analysis is outlined in Figure 6-10.
The environment and pointing control as well as communication link parameters
must be traded to obtain an overall acceptable 1ink design with confidence. By
the time the 1inks are finalized, many iterations have occurred involving the
control and communications aspects. Only the final links are given. The in-
termediate iterations are not shown, but their importance in optimizing the
design should be noted.

6.2.1 TRANSMIT GAIN/POINTING LOSS RELATIONSHIP - The transmit gain intensity
of a Gaussian fed Cassegrain telescope falls off in magnitude as a function of
off-axis angle. Zero pointing error results in maximum on-axis gain. However,
perfect pointing is unachievable with most real platforms and this results in a
loss (from maximum on-axis gain) assoclated with the magnitude of the pointing
error. This loss is referred to as pointing loss. Figure 6-11 1llustrates the
resulting transmit/gain pointing 1loss relationship for wvarious diffraction
1imited transmit apertures and pointing errors. Note that large diffraction
1imited apertures cannot be supported by large pointing errors. Thus, minimum
pointing errors become a design driver,

The tracking budget developed in Section 6.1.3 indicates a maximum tracking
error of 1 microradian. From the curves in Figure 6-11, it is evident the
maximum diffraction 1imited aperture size is approximately sixteen inches. The
minimum aperture size will be set by one of two criteria; the transmit gain
required on the downlink or the receiver gain required for the uplink. From a
system point of view, the aperture size was determined by optimizing OPTRANSPAC
weight and power. Figure 6-12 shows the OPTRANSPAC telescope weight versus
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prime power delta (from 400 mW average transmit power) needed to close the
downlink with 3 dB of margin. The system design point is indicated. Weight
and power indicate a baseline design of 115 pounds and 57 watts. The minimum
system aperture size was limited to eleven inches by the uplink command beacon
margin. As can be seen, an increase of 12 pounds (14" aperture) would yield a
decrease in required prime power, but this amount is minimal when high effici-
ency lasers are used. The baseline design point appears on the bend in the
curve and any increase or decrease in aperture size causes either a large
weight increase for small power gain or large power need for small weight re-
duction. Weight was assumed most critical in meeting the overall OPTRANSPAC
requirement, and thus, an eleven inch OPTRANSPAC aperture was chosen as base-
Tine.

6.2.2 DOWNLINK MARGIN - The OPTRANSPAC downlink consists of a frequency
doubled Nd:YAG laser modulated in a PPM format at one of three distinct rates
(100 KBPS, 30 KBPS, and 10 KBPS). The transmit source radiates 400 miliiwatts
of 532 nanometer average power into a 3.4 microradian beam. The maximum range
between the two platforms is 10 AU. The EORS detector is a photomultiplier
with a 30 percent quantum efficiency at 532 nanometers. The receiver viewfield
s one microradian and the worst case background is the off-axis scattering of
solar energy into the telescope. The sens1t1v1ty of the receiver was calcu-
lated to be 0.9 nanowatts, peak (at 10-3 BER, RS coded). The 1ink 1s gilven
in Figure 6-13 with a design margin of 3dB.

The downlink margin versus aperture size relationship is given in Figure 6-14
for various ranges and data rates. The increase in margin at the lower data
rates can be used to decrease the system bit error grobab111ty. Figure 6-15
indicates that bit error probabilities less than 10~/ can be achieved at the
1ower data rates with 1ink margﬁns in excess of 3dB.

Extrapolation of the downlink data rate to 300 KBPS requﬁres modification of
the transceiver design. If the same 8 bit per pulse PPM format 1s used, laser
power or aperture size or both would need to be increased to accommodate this
change. Increased prime power, added weight and possibly a new laser design
may be required. If the PPM format is changed (more bits per pulse), a new
Reed-Solomon encoder/decoder design and a new PPM electronics design would have
to be required. Added weight and prime power may also be required. Overall, a
modification to the present design by increasing the data rate will ripple
through the entire system design.

6.2.3 UPLINK MARGIN - The up11nk command beacon consists of a Nd:YAG Laser
modulated in a PPM format at 1KBPS. The transmit source radiates 10 watts of
average power into a 5 wradian beam. The maximum range between the two term-
inals is 10 AU. The OPTRANSPAC receive aperture is 11 inches in diameter and
has a 22% obscuration. The viewfield is 1 milliradian and 1s driven by the
Earth tracker and a11gnment requ1rements

The beacon communication detector is an ava1anche photodiode which, under the
worst case background conditions (i.e., solar light scattered 1nto the aper-
ture) and associated preamplifier noise, provides a sensitivity of 2.6 nano-
watts, peak (at 10-3 BER, RS coded). Figure 6-16 shows the OPTRANSPAC uplink
sized for 3dB design margin. Figures 6-17 and 6-18 11lustrate the effect of
receive aperture size on uplink margin and the effect of 1ink range on uplink
margin. The OPTRANSPAC 1is l1imited in aperture size to 11 inches, minimum, by
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the command uplink. The maximum range offered to maintain the 3dB design
margin is 10 AU. Command 1link operation out to approximately 14 AU may be
possible with no design margin.

The_specified command 1ink bit error probability may require a decrease from
10-3 to 10-% under certain command uplink conditions. Figure 6-19 shows
the relationship between error probability and uplink margin for the OPTRANSPAC
system. At all ranges less than 9.3 AU, this increase in bit error probability
is offset by added margin. However, at ranges greater than 9.3 AU, the margin
for a 10-5 command uplink is less than 3dB, becoming 2.4 dB at 10 AU. Thus,
the maximum cost of maintaining a 10-% command uplink 1is approximately 0.6dB
at 1KBPS.
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7.0 ELECTRONICS DESIGN

The electronics as configured consist of three assemblies which provide con-
trol, communication and power conditioning functions. A digital computer,
input/output circuitry, and drive circuits within the Control Electronics As-
sembly provide the acquisition and tracking functions. The communication func-
tions of coding/decoding and modulating/demodulating are provided by circultry
within the Communication Electronics Assembly. The Power Conditioner Unit con-
verts the spacecraft power to the required secondary voltage levels, provides
redundancy switching, mechanism and heater control, as well as command and
. telemetry interfaces.

7.1 CONTROL ELECTRONICS ASSEMBLY - The Control Electronics functional block
diagram is depicted in Figure 7-1. Command signals to position the torque
motor beam steerers (TMBS's) to direct the incoming and transmitted optical
signals 1s the principle output of the Control Electronics digital processor.
These commands are based on orbital ephemeris data, spacecraft position sensor
data and Earth tracker angle error calculations. These outputs are provided at
a 200 Hz rate to support the 20 Hz TMBS loop bandwidth and become the drivers
for the operations rate of the control processor. Command signals for posi-
tioning the command focus mechanism are initiated by ground command. Mode con-
trol of the OPTRANSPAC operation 1is provided by the digital processor or via
ground commands. Figure 7-2 describes in general terms the processor opera-
tions in each operating mode. Further description of the control electronics
assembly including TMBS position commands and mode logic are given in Appendix
C-1; a design note on the OPTRANSPAC electronics.

7.2 COMMUNICATION ELECTRONICS ASSEMBLY - The functional block diagram of the
Communication Electronics Assembly is depicted in Figure 7-3. Both receive and
transmit functions are required. The receijve function consists of condition-
ing, decoding and formatting of the data pulses from the communication detec-
tor. The transmit function involves data formatting, encoding and generation
of the required laser modulator drive signal. Further details of the Communi-
cation Electronics can be found in the design note in Appendix C-1.

7.2.1 RECEIVE FUNCTION - The output of the communication detector preamplifier
consists of the electrical signal amplified and applied to a PPM decoder that
operates on a "greatest-of" principle to select the slot containing the signal
pulse. The output of the decoder 4s an NRZ data stream containing rate 7/8
Reed-Solomon encoded data at 1142.86 symbols per second. This data 1s applied
to a Reed-Solomon decoder which produces a 1000 bit per second output. Final-
1y, the 1000 bit per second data is formatted as spacecraft command data. The
output of the formatter is applied to a command decoder located within the
Power Conditioning Unit.

7.2.2 TRANSMIT FUNCTION - Transmit data consists of a fixed rate serial tele-
metry data stream from a telemetry formatter located in the Power Conditioner
Unit or a serial data stream from the spacecraft sensor. Spacecraft sensor
data rates can be 10,000 bits per second, 30,000 bits per second or 100,000
bits per second. This data is assumed to contain overhead including synchroni-
zation information. When spacecraft sensor data is available for transmission,
the telemetry data is not transmitted. The output of the data selector is rate
7/8 Reed-Solomon encoded and output to a PPM encoder. The output data from the
Reed-Solomon encoder is applied to a PPM encoder that produces output symbol
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information at 1428.57, 4285.71 or 14285.71 symbols per second depending upon
the sensor data rate. Symbols are encoded by outputting a pulse in one of 256
data slots following a fixed time interval that is referenced to the previous
fixed time interval using an internal clock. The output of the PPM encoder is
input to modulator drive circuitry. The circuitry converts the logic level in-
put to signal levels required to operate the laser modulator located within the
laser assembly.

7.2.3 DOPPLER CONSIDERATIONS - Vvariations in timing due to Doppler has been
analyzed. Maximum velocities encountered are defined in Section 3.2. The tem-
poral shift 1is dependent upon the instantaneous pulse rate. Because Pulse
Position Modulation involves a variable interpulse period, a minimum and maxi-
mum temporal shift is associated with each specific data rate. For the speci-
fied slot widths at the receiver of 100 nanoseconds, the clock center frequency
is 10 MHz. The Doppler shift associated with the specified data rates is cal-
culated to be 2400 Hz. This equates to 240 parts per million which can be
readily covered by a voltage controlled crystal oscillator driven by ephemeris
data.

7.3 POWER CONDITIONING UNIT - Primary power from the spacecraft's electrical
system is conditioned to provide secondary power for the OPTRANSPAC equipment.
The power conditioning unit pictured functionally in Figure 7-4, provides the
conversion and regulator circuitry required to produce the redundant secondary
voltage outputs. Command and telemetry circuitry are also located within the
power conditioning unit. Serial command data from the spacecraft's command de-
coder or the Communications Electronics Assembly is decoded. The output from
this circuitry is provided to discrete drivers which control the OPTRANSPAC re-
dundancy switching mechanisms, the active focus mechanism, or power control
relays. Serial magnitude commands are relayed to the Control Electronics As-
sembly via bi-directional serial interface circuitry located within the PCU.
This sertal interface receives telemetry and heater control data from the Con-
trol Electronics Assembly. The telemetry from the Control Electronics Assembly
as well as internal analog and discrete data is multiplexed to form a serial
data output. This data is transmitted to the EORS via the Communication Elec-
tronics Assembly. Circuitry required to condition internal analog and discrete
telemetry parameters is provided within the PCU. OPTRANSPAC heater drive cir-
cuitry is also located internal to this assembly. Further description of the
Power Conditioning Unit is found in Appendix C-1.

7.4 _REDUNDANCY IMPLEMENTATION - Figure 7-5 shows the OPTRANSPAC redundancy
philosophy. A1l OPTRANSPAC electronics and mechanisms are redundant with the
exception of the command focus mechanism. Cross-strapping for selected func-
tional circuit blocks is provided to minimize the probability of system failure.

The elements of the control function and the cross-straps provided are des-
cribed in Figure 7-6. A1l elements of the function are cross-strapped to other
redundant elements with the exception of the beam steerers. Experience has
proven that cross-strapping of the drivers and beam steerers does not provide
significant enhancement of system reliability since the reliability of the
drivers and beam steerers is high compared to other elements. In addition,
this makes the design of the beam steerer drivers much simpler.
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The elements of the communication function and the cross-strapping provided are
detalled in Figure 7-7. Cross-straps are not provided between the communica-
tion avalanche photodiode and the preamplifier due to the low signal levels and
noise sensitivity at this point. Similarly, design considerations are the
principle reason for not cross-strapping the Communication Electronics to the
laser assembly. :

Figure 7-8 detalls the elements and cross-strapping of the power conditioning
function. Implementation of these cross-straps is accomplished by use of re-
lays controlled via EORS generated commands. Fuses are provided at the input
to each converter to prevent load or converter failure propagation to the re-
dundant converter.

7.5 ELECTRONICS PACKAGING - The OPTRANSPAC electronics are housed in packaged
assemblies that are designed for minimal size, weight and power and provide
thermal radiation through coverplates. A detatled breakout of the size, weight
and power is given in the Electronics Design Note in Appendix C-1.

The Control Electronics design is based on 14 ceramic and 2 polyimide circuit
boards. Digital circuits in leadless chip carrier packages will be mounted on
the ceramic circuit boards. The polyimide boards will be populated with analog
integrated circuits and discrete components. Dimensions of all circult boards
are approximately 4.6" by 3.8". Both prime and redundant circuitry will be im-
plemented on the 16 circuit boards.

A total of 12 circuit boards are estimated for the redundant communication
electronics. A pair of polyimide boards will be used for the analog integrated
circuits and discrete components required. A1l other circuit boards will be
populated with leadless chip carrier digital integrated circuit packages.

The circuitry required for the converters, regulators and relays will be imple-
mented using a module concept. Each module will consist of two (prime and re-
dundant) polyimide circuit boards housed in a frame. The dimensions of each
module will be approximately 6" by 6" by 0.3". A total of 5 modules is re-
quired.
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8.0 OPTICAL DESIGN

The optical system consists of two basic subassemblies: A telescope and an
imaging optics assembly (I0A). The system performance requirements of each
subassembly are outlined in Appendices B-2 and B-3. an optical system design
was developed from the functional requirements through the thin lens stage.
The details of the optical analysis can be found in the optical system design
note - Appendix C-2. An optical isometric showing the lens layouts is given in
Figure 8-1. An orthographic of the optical system is pictured in Figure 8-2.

In the design of the telescope and imaging optics for a spaceborne system, the
size and number of optical elements used are kept to a minimum providing neces-
sary functions within the required system performance levels. System optical
transmission 3s usually maximized while system size, weight and procurement
costs are minimized. Diffraction T1imited optical systems such as OPTRANSPAC
require the use of multiple element lens components with moderately slow opti-
cal speeds to meet image quality requirements. Field of view and spectral
range requirements further add to the design complexity. These requirements
exact design constraints on optics transmission, optical system envelope and
optical system weight.

8.1 TELESCOPE DESIGN - The telescope selected for the OPTRANSPAC system is a
modified Cassegrain with refractive correcting elements in the converging beam
after the secondary. The selection rationale is outlined in section 5.2. The
telescope design is shown in Figure 8-3. Geometric ray tracing of this design
both on-axis and at full field confirms that this design fulfills the image
quality requirements over the +2.5 milliradian viewfield. Diffraction analysis
indicates this telescope's wavefront quality is approximately A/30 RMS at a
wavelength of 532 nanometers. The telescope aperture diameter 1is eleven inches
(297.4 mm) with a central obscuration of twenty-two percent. This section of
the optical system is designed to be afocal and maps the 0.5 inch diameter
axial bundle of the 1imaging optics paths to the eleven inch primary mirror
diameter.

The Cassegrain telescope optics are designed to produce an f/10 output cone.
This allows for a component package whose optical speed is still slow enough to
ensure good image quality and readily manufacturable components. Ffurther tele-
scope ahalysis can be found in Appendix C-2. -

8.2 IMAGING OPTICS DESf@N -”}or clarification {heffmabing optics paths are
subdivided into four areas: the common path (prime and redundant), the trans-
mit path, the receive communications path, and the receive tracking path.

In the common path and throughout the imaging optics it was desirable to use
only a few basic lens groupings in a repetitive way to simplify the design and
procurement of the optics. Such repetitive lens groupings must relay the tele-
scope pupil through the imaging optfcs with minimal vignetting. This requires
that sections of collimated space used for locating beam steerers or beam-
splitters be rather short to minimize the need for large (> 50 mm diameter)
optics. - Further detatls and ray traces of the common path are given in
Appendix C-2.

The optics in the transmit path are handling monochromatic (532 nanometer)
1ight which is of small divergence and remains on-axis (all steering of the
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transmit beam 1s accomplished in the common optics path). The prime and redun-
dant lasers are selected by a "pop mirror" mechanism. The output laser 1light
passes through an afocal relay. One of the components of this relay can be
shifted axtally to introduce specific amounts of focus error to partially com-
pensate for wavefront errors introduced by component shifts. These component
alignment shifts can arise from the forces during launch, from stress relief of
structural parts over time, or from long term temperature changes during the
course of the mission. (In a diffraction 1imited system even such minor
motions can have a serious effect on performance). Upon exiting the focus
mechanism, the beam enters an afocal beam expander to increase the beam in dia-
meter to 12.7 mm for entry into the common optics path. Specific details of
the transmit optics path are found in Appendix C-2.

The receive communication path consists of all elements from the recejve/trans-
mit dichroic beamsplitter through to the communications detectors. The re-
ceived 1064 nanometer 1ight from the EORS is received by the telescope and re-
layed through the common path optics. The received energy is reflected at the
receive/transmit beamsplitter and relayed to the communications/tracking dic-
hrolc beamsplitter where the 1064 nm energy is reflected and filtered by a 25
Angstrom bandpass filter and focussed onto a communication detector (avalanche
photodiode). The avalanche photodiodes are operated in a slightly defocussed
position to keep the spot size large enough that the variation in detector re-
sponsivity over its surface has a negligible effect on communication 1ink
margin. Further design of the communication optics path details are given in
Appendix C-2.

To accommodate the tracking and point-ahead functions on the same array detec-
tor an offset is introduced between the broadband reflected sunlight from the
Earth and the 532 nanometer transmit spot retroreflected from the transmit
beam. A dichroic beamsplitter separates the broadband and 532 nm 1ight into
two separate channels. A wedge prism deviates the 532 nm 1ight prior to enter-
ing the tracking detector lens. The broadband l1ight enters the tracking detec-
tor lens undeviated yielding the angular offset required. The tracking detec-
tor lens axis 1s decentered with respect to the input receiver axis to accom-
modate the two spatially separated Earth track and point-ahead track channels.
Details of the receive track channel are given in Appendix C-2.

8.3 OQPTICAL TRANSMISSION - A summary of overall optics path transmission is
given in Figure 8-4. The transmission estimates for beginning of 1ife and end
of 1ife are listed. The individual component performance estimates given are
readily manufacturable specification values and are based on the measured per-
formance of optical components built and used in Lasercom systems over the past
eight years. The component substrates and coating materials are restricted to
materials with demonstrated radiation resistance. Transmissions are based on
optical surface counts for each path. Specific transmission values for lenses,
mirrors, filters and dichroics are multiplied to yield the values 1in Figure
8-4. Monochromatic performance numbers for the transmit and receive communica-
tion paths are based on measured values from previous systems. The coatings
are optimized for the monochromatic paths.

The antireflection coating performance will be substantially poorer over the
broadband visible and near infrared band of the reflected sunlight. The same
will be true over the blue-green end of the spectrum for the high reflectance
coatings on telescope primary and secondary minors. The overall transmission
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for the tracking receive path will be substantially less because of this.
Detatled transmission estimates on an element basis is given in Appendix C-2.

8.4 WAVEFRONT ERROR AND IMAGE QUALITY - In order to meet the image quality
requirements at 10 AU, a near diffraction limited wavefront needs to be radi-
ated from the transmitter. Both the telescope and imaging optics are required
to maintain A/20 RMS wavefront quality at 532 nanometers. This equates to a
total system performance of /14 RMS. Analysis indicates surface quality of
/104 RMS (x/20 - A/30 peak to valley) per element is required. This is
within the state of the art for today's optical fabrication technology but 1is
considerable more labor intensive than for the more commonly encountered A/4
or A\/8 peak to valley surfaces. Other sources of wavefront error including
glass inhomogeneity, thermal gradients, mounting stresses, misalignments and
residual uncorrected design aberrations are not included in the above design.
Further discussion of transmit wavefront error is given in Appendix C-2.

The 9image requirements are less stringent for the recejve path than for the
transmit path. Receive image quality is driven by the tracking requirements.
Figure 8-5 11lustrates the varlation in the size of the Earth image on the
tracking detector as a function of range. Diffraction limited image quality is
not necessary to meet the required tracking uncertainty. An optics resolution
in the 15-25 microradian range is acceptable.
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9.0 MECHANICAL DESIGN

The OPTRANSPAC terminal design is the result of various trades which culminated
in the final baseline mechanical design. Maximum use of existing space quali-
fied optical communication components and packaging techniques were employed in
the final design. Weight and power guidelines were imposed to obtain the opti-
mum configuration. The envelope size was not considered a large design driver
because a specific host platform was not known.

The OPTRANSPAC terminal is pictured isometrically in Figure 9-1. An ortho-
graphic view is given in Figure 9-2. A single baseplate concept was employed
which provides interface mounting surfaces between the host platform, the opti-
cal assembly and the electronics. The plate is thermally isolated from the
spacecraft to maintain and adiabatic interface. Three lap pads are provided to
allow a strain free attachment to the spacecraft. The plate is composed of two
Beryllium facesheets with an aluminum honeycomb core. The strength to weight
ratio 1s optimized with this baseplate concept and the Beryllium facesheets
provide a good optical bench. For the telescope mount, a truss structure has
been designed to provide a strain free, three point mount to the baseplate.
The cover has been designed for minimum weight and size and does not obstruct
the laser's view of space for a radiator to reject heat.

The optical elements are all supported by the single baseplate. The optics
path includes two flip mirrors which provide a totally redundant optics path.
An optical isometric is pictured in Figure 9-3. The baseplate supports optical
elements from both faces, and openings in the baseplate are provided to relay
the optical signals from the top side to the bottom side of the optical base-
plate.

The electronics have been divided into three boxes; the Power Conditioning
Unit, the Control Electronics Assembly, and the Communications Electronics As-
sembly. The Power Conditioning Unit was located at the bottom of the baseplate
with the laser assembly so it can reject heat into space. Figures 9-4 and 9-5
depict isometric and orthographic views of the PCU. The PCU has been designed
using the module concept where appropriate. These modules are attached to a
thermally conducting top housing plate with the components mounted in such a
manner as to place the hottest closest to the plate.

The Communication Electronics Assembly (see Figures 9-6 and 9-7) and the Con-
trol Electronics Assembly (see Figures 9-8 and 9-9) are structured using the
doubled sided card concept. This allows tight packaging into reduced volumes.
The boxes provide slide mounts with end connectors for each of the electronics
cards. The heat is dissipated through the top face plate surface away from the
optical baseplate. .
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10.0 WEIGHT AND POWER

The OPTRANSPAC final weight and power summary 1is presented in Figure 10-1.
These results of 115.0 pounds and 57.0 Watts are broken down by the major com-
ponents defined by the functional block diagram. The welight allocations were
optimized within the constraints of the functional requirements, materials,
environments and cost. Whenever possible these allocations were also modified
to reflect 1988 technology to further ensure the achievement of a minimum
weight design.

The power allocations for the OPTRANSPAC system were established by reviewing
each plece of equipment to determine it's power requirements. This data was
compared to similar hardware program equipment, and/or data taken from bread-
board circuits, in order to provide substantiation. This analysis also allowed
for a 3 percent line loss and conversion efficiencies of 68 percent. An addi-
tional 10 percent was allocated for heater power. The electrical power design
provides the user with both flexibility and growth.

The OPTRANSPAC component weight summary 1is presented in Figures 10-2 and 10-3.
A1l of the weights presented are nominal weights. Nominal weight is the most
probable weight and it is composed of a base weight plus contingency. Contin-
gency 1s defined as that weight which must be added to a base weight to obtain
a nominal weight. Contingency includes such things as an allowance for gage
tolerances in sheet metal or machined parts, weight from correlation factors,
or an assigned weight based on the type of subsystem and 1ts current develop-
ment state. In general the base weights for this study were derived using one
of the following methods: analytical models, empirical equations, detalled
component analysis, or weights of similar existing components with allowances
for modifications.

A1l of these methods of weight analysis have been employed in the electrooptics
assembly. The basic telescope weight was derived from an analytical model.
Even though this approach gives proper trends for the critical system param-
eters, the model fails to account for the entire system weight. Therefore, by
using the model on existing hardware, a plot of estimated versus actual weights
was obtained. The correlating factor which resulted from this plot accounts
for the added contingency. The structural weights in the imaging optics and
laser assemblies were derived by using a schematic. A weight was determined
for each component on the schematic. These component weights were based on
similar on-going laser communication hardware program components and on vendor
supplied data. The weight of all the other components of these assemblies such
as wire and fasteners were based on empirical equations. The detector and
Earth tracker assemblies were primarily based on vendor supplied data.

In the electronics area the weight is primarily driven by the design and size
of the circuit boards. The control electronics design features 14 ceramic
boards populated with leadless chip carrier packages containing the digital
circuits, and 2 polyimide boards populated with analog circuits and discrete
components. The communication electronics i1s a similar design with 10 ceramic
and 2 polyimide boards. The size of each of these boards 1is approximately
4.6 inches by 3.8 inches. The welght of these boards was derived from actual
weights of similar existing boards. This resulting pounds per square inch was
applied to the area of the OPTRANSPAC boards. All other weights in these
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assemblies were derived from modifications to existing hardware. The Power
Conditioner unit weight was based on vendor supplied data. The circuitry re-
quired for the converter, regulators, etc. is in module form. Each module con-
sists of two polyimide circuit boards housed in a frame. Five modules are re-
quired for the OPTRANSPAC design.

In the structures area, the weight of the support structure was based on the
material gages necessary to provide strength and structural stiffness, while
the miscellaneous structural weight was based on empirical equations. The wire
and connector weight was obtained from existing wire bundles modified to meet
the requirements of the OPTRANSPAC design.
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11.0 GROWTH AND UNCERTAINTY

Areas in the OPTRANSPAC design that may require further examination beyond the
scope of this study are identified. At the level of system maturity and anal-
ysis performed under this study, detailed thermal design, structural dynamic
design, electronics design, optical design and host interface design have not
been performed. Detail design considerations associated with each of these may
slightly perturb the OPTRANSPAC design in terms of size, weight or power.
Figure 11-1 outlines the OPTRANSPAC design considerations where a variation
from the baseline in size, weight or power may occur.

Due to the harsh Saturnian radiation environments identified in Section 3.8,
additional shielding may be required beyond the nominal shielding provided by
the baseline design. The Earth tracker and the command uplink detector may re-
quire localized shielding to reduce radiation induced false detections. Radia-
tors and/or heaters may be required to maintain the OPTRANSPAC components with-
in the specified operating and non-operating temperature limits. Structural
analysis using launch loads and acoustic environments may indicate the need for
strengthening and prudent material selection. Further detailed optical anal-
ysis (ray tracing, telescope baffling design, and element definition) will
determine the exact number of elements required.

Because of the detail design that already exists and because of the few design
considerations still unknown, a growth and uncertainty factor of only 10-15%
for both weight and power is recommended. The margin for weight and power
growth then becomes 11.5 to 17.25 pounds and 5.7 to 8.55 watts above the 115
pounds and 57 watts determined for the baseline design.
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12.0 FOLLOW-ON HARDWARE DESIGN

To achieve the 1988 technology base required for the OPTRANSPAC design, funding

of key component technologies is required. Although some of these technologies
are advancing through other funding centers, design criteria specific to the
OPTRANSPAC may not be advanced to the desired state-of-the-art level by 1988 if
development 1s not pursued with the OPTRANSPAC terminal in mind. The specific
technologies that require special attention are: 1) The downlink laser: 2)
the Earth tracker; and 3) the offset dichroic optical boresight alignment de-
vice in the Earth tracker optics.

The OPTRANSPAC technology advancements required in the area of the downlink
laser include the development of a high efficiency (> 10% optical output power
to pump source input power) frequency doubled (532 NM) Nd:YAG laser and the de-
velopment of a compatible cavity dumped modulator capable of operation at pulse
repetition rates from 1 KBPS to 25 KBPS. These technologies are vital to the
OPTRANSPAC system design.

The advancements required in the area of the array tracker involve Earth track
capabiiity along with continuous tracking of the transmit laser to provide
alignment and electrical point-ahead capability. Centroid algorithms that pro-
vide the required accuraclies and resolutions at the desired output rates must
be determined and made compatible with the array tracker design. The capa-
bility of Earth track is imperative to the OPTRANSPAC design and the develop-
ment of electrical point-ahead will provide a reduced weight optical design by
eliminating additional redundant point-ahead beam steering mirrors.

The final technology area needing development involves the novel offset align-
ment device that allows a common boresight to be tracked at two positions on
the array tracker. Fabrication and testing of this design will allow for veri-
fication of the design and will define the optical tolerances required for such
a design.

Beyond tracking and developing pertinent hardware designs for the OPTRANSPAC,
breadboard design of the terminal to demonstrate system concepts appears as the
next logical step. Because a host platform s still unknown, the breadboard
design will demonstrate the operational feasibility and allow for design modi-
fications where appropriate.

The final hardware follow-on 1involves the design and fabrication of an

OPTRANSPAC terminal for a specific JPL spacecraft employed in outer planet ex-
ploration.
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13.0 CONCLUSION

The net effect of this study has been to prove the feasibility of operating a
laser communication 1ink from a deep space probe to an Earth Orbiting Relay
Receiver. A system level terminal design of an optical transceiver package has
been performed. System analysis supported by communication 1ink analysis indi-
cates an OPTRANSPAC system design that is capable of communication from Saturn
at data rates up to 100 KBPS (‘IO'3 BER). Reception of command data at 1 KBPS
is also possible. First order optical, electrical and mechanical analysis and
design has been performed. A system mechanical envelope based on the optical
system layout and electrical component packaging has been developed. System
weight and power estimates of 115 pounds of 57 watts have been established.

A1l system level requirements, outlined in Section 2.1, with the exception of
the weight and power estimates, were met. Although not within the specified
1imits required, the weight and power estimates establish the best fit terminal
design based on data from existing laser communication components and system
designs.

143



THIS PAGE LEFT INTENTIONALLY BLANK



APPENDIX A

OPTICAL TRANSCEIVER PACKAGE (OPTRANSPAC)

DYNAMIC ENVIRONMENTS

SPECIFICATION
28 JUNE 1985



1.0

1.1

1.2

2.0

SCOPE

Definition

This document defines the dynamic environments that the Optical
Transcelver Package (OPTRANSPAC) is expected to encounter during

its mission.

OPTRANSPAC Definition

OPTRANSPAC is an optical communications terminal to be mounted to a
deep space vehicle whose mission 1Is outer planet exploration. The
transceiver will communicate with an Earth-orbiting relay station
(EORS) from distances of Saturn and beyond, at downlink data rates
up to 100 Kbps, and an uplink rate of 1 Kbps. The transceiver
package must be reliable enough to ensure full operation over the

10 to 20 year life of such a mission.

PURPOSE

This document shall be used as a reference to develop adequate
design specifications to ensure proper OPTRANSPAC operation in the

presence of the dynamic environments specified herein. k



3.0

3.1

3.1.1

3.1.2

3.1.3

3.1.4

3.1.4.1

OPTRANSPAC DYNAMIC ENVIRONMENTS

Orbit Analysis

Earth to Saturn Transfer Orbit - A generic Hohmann (minimum energy)

transfer orbit for a deep space probe from Earth to Saturn 1Is shown
in Figure 3.1-1. The semi-major axis of this eliptical orbit is
5.67 astronomical units (AU) and the eccentricity is 0,826.

Transit time is 1827 days. The true anomaly at launch is 6.9
degrees and at Saturn encounter is 172 degrees. This orbit was
used to calculate the relative velocities between the Earth and the

OPTRANSPAC spacecraft for Doppler and point ahead calculations,

Earth to Spacecraft Range - Figure 3.1-2 is a plot of range versus

time between the Earth and the OPTRANSPAC spacecraft for the
transfer orbit. The 2 AU oscillations are due to Earth orbital

motion.

Earth and Spacecraft Velocities - Figure 3.1-3 shows the velocities

of the Earth and spacecraft in the directions of the axes of the
transfer orbit. The spacecraft has an original velocity of about
10 km/sec more than the Earth's in the minor axis direction and the
same as Earth's in the major axis direction. The relative
velocities between the Earth and spacecraft in axes parallel and
perpendicular to the instantaneous line-of-sight are plotted versus

time in Figure 3.1-4.

Point Ahead Angle and Doppler Shift

Point Ahead and Doppler Contributors - The Doppler shift of light
transmitted between the OPTRANSPAC and the Earth relay satellite
and the point ahead angle necessary for correct illumination are
determined by the relative velocity between the two platforms. The

four contributors to this velocity when the spacecraft is



3.1.4,2

encountering Saturn are the Earth's and Saturn's orbital rates
about the sun, the relay satellite's orbital rate around the Earth,
and the spacecraft's flyby or orbital rate around Saturn. The
maximum velocity contribution of each is given in Figure 3.1-5. Up
to the time of Saturn encounter, only the Earth, the relay

satellite, and the spacecraft transfer orbit motion apply. ,

Point Ahe;d Angle ~ Figure 3.1-6 shows part of the necessary point
ahead angle for the OPTRANSPAC during the Hohmann transfer between LA
Earth and Saturn due to the relative velocities in Figure 3.1-4,
The other part of the necessary point ahead angle 1s that needed to
compensate for the relay satellite motion. The maximum angle
contribution from the Earth relay station is limited by the
extremes of where it can be in its orbit about the Earth. That
contribution of up to 51 microradians, which is reduced by the
inverse of range after a range of 1.8 au, creates a total point

ahead angle of 322 microradians maximum for the Hohmann transfer.

During the spacecraft's encounter with Saturn, Saturn's velocity
also contributes to point ahead. Since all four contributors may

have their total velocity perpendicular to the line-of-sight, the

. maximum velocity of each contribute to point ahead. The maximum

contribution to point ahead of each velocity is given below.

Point Ahead Maximum Contributions (urad)

Earth 199

Relay Satellite 51, range 1.8 AU
92.7/R, range 1.8 AU

Saturn 64

Spacecraft Flyby 167

440, range = 9.5 AU



3.1.4.3

3.2

3.2.1

Since the contribution of Saturn's velocity is only in one
direction, the maximum point ahead in the other axis direction is

only 312 microradians.

Doppler Shift - The Doppler shift expected during the Hohmann

transfer without the relay satellite contribution is plotted versus
flight time in Figure 3.1-7. Adding in the maximum contribution of
the relay satellite gives a maximum expected Doppler shift of 1.67

angstroms during the transfer from Earth to Saturn.

During the Saturn encounter, Saturn's velocity contributes through
the sine of the minimum angle of it with respect to the
line~of-sight, defined by the minimum distance from Earth to Saturn
and the maximum cross-range of the Earth's position. The Earth and
spacecraft flyby contributing velocities are the same as the point

ahead case. The maximum Doppler contributions are shown below.

Doppler Maximum Contributions (A)(A = 1.064y m)

Earth 1.06
Relay Satellite .27
Saturn .08 sin (arc tan (2/8.5))factor
Spacecraft Flyby _.89
2.30

Solid Particles — Meteoroids

Nominal Enviromment Meteoroids - The OPTRANSPAC should expect to

encounter the meteoroid fluences and particle characteristics

tabulated in Figure 3.2-1, for a deep space mission which includes
crossing Saturn's E-ring. Column two of the figure provides the
total number of impacts on each square meter of exposed spacecraft
surface for meteoroids having mass greater than the value specified
in column one. The meteoroids are omnidirectional having no

preferred direction.



3.3

3.4

3.5

3.6

Magnetic Field

The OPTRANSPAC will be subjeéted to the magnetic fields defined

below,

Earth (non-operating) 5 x 10% nT @ surface
Interplanetary 25 nT

Saturn 8 x 103 nT @ 2 Ry
Shuttle (non-operating) 32 mT

Gravitational Field

The OPTRANSPAC will encounter the following gravitational field

differential accelerations.

Earth (non-operating) 3.0 x 1076 m/sec/m @ surface
Sun 7.9 x 10714 p/sec/m @ 1 AU
Saturn 4,3 x 1078 n/sec/m @ 2 Rg

Thermal Radiation

Exposed portions of the OPTRANSPAC should expect to encounter the

thermal radiation levels specified below.

Earth Reflected 57.3 mWem™2 @ Rg
Solar 163.0 mWen™2 @ 1 AU
Saturn Reflected 1.1 oWem™2 @ Rg

Electrical Field

The maximum expected Saturn induced electric field is
116 v/m @ 2 Rg.



3.7

3.8

3.9

3.10

3.10.1

3.10.2

Launch Vibrations

The expected Space Shuttle vibration environment is shown in Figure
3.7-1, The OPTRANSPAC shall be designed to operate after exposure

to this environment.

Launch Acoustic

The OPTRANSPAC shall be designed to operate after exposure to the

expected Space Shuttle acoustic environment shown in Figure 3.8-1.

Pyrotechnic Shock

Figure 3.9-1 shows the maximum shock spectrum during
spacecraft/launch vehicle separation. This spectrum shall be

attenuated by intervening spacecraft structure.

Radiation Environments

Total Dose — The mission environments contributing to total dose

include the interplanetary electrons, protons, and solar flare
particles plus the Saturn electron and proton Van Allen belts. The
proton and electron-dose environments are shown as a function of
shielding in Figures 3.10-1 and 3.10-2, The total dose environment
is shown in Figure 3,10-3.

Displacement Damage - The major contributing environments to

displacement damage in semiconductor electronics are the protons
trapped in Saturn's Van Allen belt and the interplanetary cosmic
ray protons. Minor contributions are made by the nuclear power
source and the mission electron envirouments. The proton,
electron, and total displacement damage environments are shown as a
function of shielding in Figures 3,10-4, 3,10-5, and 3.10-6,

respectively.



3.10.3

3.11

3.11.1

3.11.2

3.11.3

3.11.4

Galactic Particles - The OPTRANSPAC can expect to see a galactic

particle environment on the same order as shown below.

Atomic Number Particles/cm?-sec
1 (proton) 5.0
2 (alpha particle) 0.5
8 (oxygen) 3.0 x 102
14 (silicon) 7.0 x 10-3
26 (ironm) 3.0 x 1074

Optical Background

Earth Background at OPTRANSPAC - The expected worst case Earth
background at OPTRANSPAC is shown in Figure 3.11-1. These data

were developed assuming "full Earth™ illumination.

Solar Background at OPTRANSPAC - The effective background radiance

at the OPTRANSPAC due to the off-axis solar scattering is plotted

versus range in Figure 3.11-2.

Saturn Background at EORS - The background flux at the Earth

Orbiting Relay Satellite (EORS) platform due to Saturn is given in
Figure 3.11-3. These data are from recorded Earth orbit
measurements of Saturn's irradiance. The radiance function is used
directly with the field-of-view, aperture size, optical filter
bandwidth, and optics transmission to obtain the optical background
power on the EORS detector.

Solar Background at EORS - The solar background radlance at the

EORS due to off-axis scattering is shown in Figure 3.11-4,
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APPENDIX B-1

DOWNLINK LASER
SPECIFICATION

0o

Type
Configuration
Output Wavelength

Interpulse Period

Nominal Repetition Rates

Pulsewidth

Energy Per Pulse(4)

Efficiency
(Regulated Pump Power
To Optical Output)
Weight
Power

Envelope

Frequency Doubled Nd:YAG
Diode Pumped Slab
532 Nanometers + 5 Angstroms
70 + 25.6 wusec (1)
233.3 + 25.6 usec (2)
700.0 + 25.6 usec (3)
.14285.71 PPS (1)
4285.71 PPS (2)
1428.57 PPS (3)
10 nsec FWHM
28 u Joules (1)
93 u Joules (2)
280 u Joules (3)

>10%

20 LBS

tA

4 Watts

IA

[2]

.2" x 9.5" x 5.0"

100 KBPS Data Rate

30 KBPS Data Rate
10 KBPS Data Rate
Based On Nominal
Repetition Rates
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APPENDIX B-2

TELESCOPE
SPECIFICATION
Type Fixed Mounted
Clear Aperture 11 inches (279.4 mm)
Obscuration 61.47 mm
Wavelength
Receive 400-1700 Nanometers
Transmit 532 Nanometers
Quality Diffraction Limited Transmit
at 532 Nanometers
Wavefront Error < A\/20 RMS at 532 Nanometers
Viewfield + 2.5 Mi1liradians
Collimated Beam Size < 0.5 inches
Transmission > 95% (excluding wavefront loss)
Magnification < 24:1
Weight < 18 pounds
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Type

Transmission

Wavefront Error

Filter Bandwidth

Filter Transmission
Collimated Beam Size
Commandable Focus
Alignment Path
Weight

APPENDIX B-3

OPTICAL SYSTEM
SPECIFICATION

Common Path With Dichroic
Combined Transmit - Receive

> 65% Transmit at 532 NM

> 65% Receive Com at 1064 NM
20% Earth Track

> 40% Alignment at 532 NM

v

A

A/20 RMS Transmit

25 Angstroms Centered About
1064 NM

> 70% at 1064 NM
< 0.5 inches

Yes

Yes

< 13.5 Pounds
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APPENDIX B-4

DETECTOR/PREAMPLIFIER

Detector
Type
Configuration
Quantum Efficiency
Iontzation Coefficient
Avalanche Gain

Noise Equivalent Power

Bandwidth
Preamplifier

Type

Bandwidth

Noise Equivalent Current

SPECIFICATION

Silicon Avalanche Photodiode
low -k, dimpled

> 40% at 1064 nm

< .007

210

< 2.1 x 10-14 W/Hz1/2
Based on RCA 30954E

> 50 MHz

Transimpedance
> 50 MHz
< 1.4 x 10-12 a/Hz1/2
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Type

Sensitive Area

Pixel Size

Earth Track Active Area
Alignment Active Area
Earth Track Viewfield
Earth Track Pixel FOV
Pixel Saturation

Dark Current

Dark Current Variations
Readout Noise Constant
Response Variation

Quantum Efficiency

APPENDIX B-5

EARTH TRACKER DETECTOR
SPECIFICATION
Charge Injection Device (CID)
5.12mm x 5.72mm
20 microns
4.0mm x 4.0mm
4.0mm x 1.12mm
1.0 mrad x 1.0 mrad
5 wrad x Syrad
> 1.5 x 106 e-
6.2 x 104 e~/sec-pixel @ 23°C

{A

.022 (RMS) for adjacent pixels

A

3.16 e-/Hz1/2

[

.006 (RMS) For adjacent pixels

IA

>40% for 0.4 ym <A < 1.0 um
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OPTRANSPAC
DESIGN NOTE

TITLE: : NUMBER 1
REVISION
ELECTRONICS SYSTEM DESIGN DATE 22 July 1985
TOTAL SHEETS
SUMMARY:

The baseline OPTRANSPAC Electronics are described. The electronics as

configured consist of three assemblies which provide the control, communication,
and power conditioning functions. The functional requirements of each assembly

are presented. A redundancy implementation based on attaining the highest

achievable probability of mission success is presented. The physical
characteristics of the electronic assemblies are presented.
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OPTRANSPAC ELECTRONICS
1.0 INTRODUCTION

The OPTRANSPAC Electronics assemblies (reference shaded blocks of Figure 1)
provide the acquisition and tracking control function as well as the
communication function. A digital computer, input/output circuitry, and drive
circuits within the Control Electronics Assembly provide the acquisition and
tracking function. The communications function 1is provided by circuitry within
the Communication Electronics Assembly. The Power Conditioning Unit converts
the spacecraft power to the required secondary voltage levels, provides
redundancy switching, mechanism, and heater control as well as command and
telemetry interfaces.

2,0 FUNCTIONAL REQUIREMENTS

2.1 CONTROL ELECTRONICS (Reference Figure 2)

Command signals to position the torque motor beam steerers (TMBSs) to direct
the incoming and transmitted optical signals is the principal output of the
Control Electronics Digital Processor. These outputs must be provided at a
200 Hz rate to support the 20 Hz TMBS loop bandwidth and are the drivers for
the processor operation rate. Command signals for positioning the command
focus mechanism are initiated by ground command. Mode control of the
OPTRANSPAC operation 1s provided by the digital processor or via ground
commands. Figure 3 describes (in general terms) the processor operations in
each operating mode.

2.1.1 TMBS Command Operations - Command signals for TMBS position are computed
using the formula described in Figure 4,

2.1.2 Command Focus - Positioning of the command focus mechanism is
accomplished via ground command. The ground command is processed to generate a
discrete output which causes the focus mechanism to move until its position
sensor signal fed back to the processor is equal to the commanded position.

2.1.3 Mode Logic - The operational modes of the OPTRANSPAC are depicted in
Figure 5 and the mode logic is described in Figure 6.

2.2 COMMUNICATIONS ELECTRONICS (Reference Figure 7)

Both receive and transmit communication functions are required. The recelive
function consists of conditioning, decoding, and formatting of the data pulses
from the communicarion detector. The transmit function is data formatting,
encoding, and generation of the required laser modulator drive signal.

2.2.1 Receive Function — The output from the Communication Detector's
preamplifier consists of an electrical signal with the following
characteristics:

Rate: 142,86 pulses/sec

Coding: PPM data with 8 bits/pulse
Pulse Width: 10 nS

Amplitude: 0.100 to 1.0 volts-peak
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OPTRANSPAC OPERATIONS LOGIC
EARTH TRACK
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TRACK

|
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o

OUTPUT EARTH
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PROCESS EARTH
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OSITION INPUTS
COMPUTE TMBS
COMMANDS

DOWNL INK
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NO
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OPTRANSPAC OPERATIONS LOGIC
BEACON COMMUNICATION
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COMM
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| PROCESS TMBS |
POSITION INPUTS

l
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OPTRANSPAC OPERATIONS LOGIC
DOWNLINK COMMUNICATION
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OPTRANSPAC OPERATIONS LOGIC
ALTGNMENT

AL IGNMENT

)

ACTIVATE
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PROCESS EARTH
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EARTH
TRACK

FIGURE 3
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OPTRANSPAC OPERATIONS LOGIC
STANDBY

STANDBY

——

PROCESS
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OPTRANSPAC OPERATIONS LOGIC
EARTH ACQUISITION
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This signal is amplified and applied to a PPM decoder that operates on a
“"greatest of” principle to select the slot containing the signal pulse. The
output of the decoder is a NRZ data stream containing rate 7/8 Reed-Solomon
encoded data at 1142.86 bits/sec. This data is applied to a Reed-Solomon
decoder which produces a 1000 bit/sec output. Finally, the 1000 bit/sec data
is formatted to be identical to the command data received via the radio
frequency command link. The output of the formatter is applied to a command
decoder located within the Power Conditioner Unit.

2,2.2 Transmit Function - Transmit data consists of a fixed rate serial
telemetry data stream from a telemetry formatter located in the Power
Conditioner Unit or a serial data stream from the Spacecraft sensor.

Spacecraft sensor data rates can be 10,000 bits/sec, 30,000 bits/sec or 100,000
bits/sec. Figure 8 illustrates the transmit data frame. Overhead is limited
to less than 3%. When spacecraft sensor data is available for transmission,
the telemetry data 1s not transmitted. The output of the data selector (either
telemetry or sensor data) is rate 7/8 Reed-Solomon encoded and output to a PPM
encoder. The Reed-Solomon encoder adds a coding bit to each input word
resulting in the following output rates: '

Input Rate Output Rate

10,000 bits/sec 11,428.57 bits/sec

30,000 bits/sec 34,285.71 bits/sec

100,000 bits/sec 114,285.71 bits/sec

The output data from the Reed-Solomon encoder is applied to a PPM encoder that
produces output symbol information at 1428,57, 4285.71, or 14,285.71
symbols/sec depending upon the sensor data rate. Symbols are encoded by
outputting a pulse in one of 256 data slots following a fixed time interval
that is referenced to the previous fixed time interval using an internal
clock. The following are the timing requirements for the PPM encoder:

Slot Width: 100 nsec
Fixed Interval: 1/fg, where fg is the transmitted symbol rate

The output from the PPM encoder is input to modulator driver circuitry. The
circuitry converts the logic level input to signal levels required to operate
the laser modulator located within the Laser Assembly.

2.3 POWER CONDITIONING (Reference Figure 9)

Primary power from the spacecraft's electrical system is conditioned to provide
the required secondary power for the OPTRANSPAC equipment. The Power
Conditioning Unit provides the conversion and regulator circuitry required to
produce the following secondary outputs:
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Level Current User
+ 5 Vde 1.2 A Earth Tracker
+ 5 Vde 0.3 A Control Electronics
+ 5 Vde 0.2 A Control Electronics
+ 5 Vde 1.3 A Control Electronics
+ 5 Vde 0.6 A Control Electronics
+ 5 Vde 1.0 A Comm. Electronics
+ 5 Vde 0.5 A Power Conditioning
+/- 15 Vdc 0.1 A Earth Tracker
+/- 15 Vdc 0.013 A Control Electronics
+/- 15 Vde 0.11 A Control Electronics & TMBS's
+/- 15 Vdc 0.05 A Comm. Electronics
+/- 15 Vde 0.01 A Comm. Detector
+/- 15 Vdc 0.02 A Power Conditioning
+ 28 Vdc 0.01 A Power Conditioning
+ 28 Vdc 0.04 A Comm. Electronics
+ 400 Vde 250 wA Comm. Detector

Figure 10 describes the converter implementation. Command and telemetry
conversion circuitry is also located within the Power Conditioning Unit.

Serial command data from the spacecraft's command decoder or the Communication
Electronics is decoded. The output from this circuitry is provided to discrete
drivers which control OPTRANSPAC redundancy switching mechanisms, the active
focus, or power control relays. Serial magnitude commands are relayed to the
Control Electronics via bi-directional serial interface circuitry located
‘within the Power Conditioning Unit. This serial interface receives telemetry
and heater control data from the Control Electronics. The telemetry from the
Control Electronics as well as internal analog and discrete data is multiplexed
to form a serial data output. This data is transmitted to the Earth station
via the Communication Electronics or on the spacecraft radio frequency links.
Circuitry required to condition internal analog and discrete telemetry
parameters is provided within the Power Conditioning Unit. OPTRANSPAC heater
drive circuitry is also located internal to this unit.
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3.0 REDUNDANCY

3.1 CHARACTERISTICS

Redundancy implementation shall be provided to eliminate single-point failures
and provide the highest possible probability of success consistent with
practical weight and complexity constraints. The following "ground rules”
regarding cross—strapping of redundant elements have been established.

A. All cross-straps at source.

B. All cross—-strap selection via power command in the PCU and digital
serial magnitude commands for addressing the selected memory block or
1/0 port. - . ,

C. The Communication Electronics 1s block redundant with cross-strapping
at the output to PCU Command Decoder and inputs (provided by source)
from PCU TM and S/C SenSor.

D. The Power Conditioner Unit converters are dedicated to the load. There
is no power converter output cross—strapping.

3.2 REDUNDANCY IMPLEMENTATION

All OPTRANSPAC electronics and mechanisms are redundant with the exception of
the Command Focus Mechanism. Cross-strapping for selected functional circuit
blocks is provided to minimize the probability of system failure.

3.2.1 Control Function - The elements of the function and the cross-straps
provided are described in Figure 11. All elements of the function are
cross—strapped to other redundant elements with the exception of the TMBS's.
Cross~strapping of the drivers and TMBS's does not provide significant
enhancement of system reliability since the reliability of the drivers and
TMBS's 1s high (based on previous designs) compared to other elements. In
addition, a simpler design for the TMBS drivers 1s possible.

3.2.2 Communications Function - The elements of the communication function and
the cross-strapping provided are detailed in Figure 12. Cross-straps are not
provided between the Communications Avalanche Photodiode and the preamplifier
due to the low signal levels and noise sensitivity at this point. Similarly,
design considerations are the principle reason for not cross-strapping the
Communication Electronic - Laser interface.

3.2.3 Power Conditioning Function - Figure 13 details the elements and
cross—strapping of the power conditioning function. Implementation of these
cross—straps 1s accomplished by use of relays controlled via Earth station
generated commands. Fuses (reference Figure 10) are provided at the input to
each converter to prevent load or converter failure propagation to the
redundant converter.
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4,0 DESIGN IMPLEMENTATION

The OPTRANSPAC Electronics are housed in package assemblies having the
following characteristics (estimated):

Assembly Power Disc. Welight Length Width Height
Control Electronics 14.5 ﬁ 12,5 1b 9.0" 6.0" 6.0"
Communication Electronics 7.7 W 9.0 1b 7.07 6.0" 6.0"
Power Conditioning Unit 17.1 W 19.5 1b 6.0" 8.0" 7.57
Earth Tracker 4.6 W 4,5 1b ——- - -
Comm, Detector 0.4 W 1.0 1b - -—= -
TMBS's 1.4 W (Included in Imaging Optics)

Laser 4,0W (Included as Laser)

Wire and Misc. 6.7 W

4.1 CONTROL ELECTRONICS

The Control Electronics design is based on 14 ceramic and 2 polyimide circuit
boards. Digital circuits in leadless chip carrier packages will be mounted on
the ceramic circuit boards. The polyimide boards will be populated with analog
integrated circuits and discrete components. Dimensions of all circuit boards
is approximately 4.6" x 3.8". Both prime and redundant circuitry will be
implemented on the 16 circuit boards.

4,2 COMMUNICATION ELECTRONICS

A total of 12 circuit boards are estimated for the redundant Communication
Electronics. A pair of polyimide boards will be used for the analog integrated
circuits and discrete components required. All other circuit boards will be
populated with leadless chip carrier digital integrated circuilt packages.

4.3 POWER CONDITIONING UNIT

The circuitry required for the converter, regulators, relays, and etc. will be
implemented using a module concept. Each module will consist of two (prime and
redundant) polyimide circuit boards housed in a frame. The dimensions of each
module will be approximately 6" x 6" x 0.3", A total of 5 modules are required.



OPTRANSPAC ELECTRONICS

Control Electronics Circuit Boards

Qey*
2

Function

CPU and Clock

Analog I/0

Memory

Serial Interface & ARS Logic
Discrete I1/0

TMBS and Command Focus Drive

Earth Tracker Readout Logic

Communication Electronics Circuit Boards

Qey*
2

Function

Post Amp. & PPM Decode

Rate 7/8 Decode & Sunc. Det.

Data Mux., Data Format., & Clock

Modulator Drivers

Temperature Controller

Power Required

2.0 W
4.b W
3.0 W
1.0W
0.5 W
2.1 W
1.5 W

14.5 W

Power Required

1.0W
1.0W

1.0 W

*Prime and redundant, only 1 board powered.
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OPTRANSPAC ELECTRONICS

Power Conditioning Unit Power

OQutput Current in Amps

Converter +28 Vdc +/-15 Vdc +5 Vdc Bias Total Power
Earth Tracker 0.1 0.32 4,6 W
Earth Tracker Readout 0.3 1.5w
Serial Int. & ARS 0.2 1.0w
CPU and Clock 0.4 2.0W
I/0 (analog & discrete) 0.013 0.9 4.9 W
Memory 0.6 3.0 W
TMBS, TMBS and

CMD, Focus Dr., 0.01 0.11 4,1 W
Comm. Elect. 0.04 0.05 1.0 7.7 W
APD 0.01 250 uA 0.4 W
Misc/Wire 6.7 W
Laser 4.0W
TOTAL 39.9w
Converter Losses (based on 70% eff.) 17.1 W
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1.0 OPTICAL SYSTEM REQUIREMENTS

The basic configuration of the OPTRANSPAC optical system is defined in Figure
1. OPTRANSPAC optical system performance requirements are summarized in Table
1. The receiver aperture size and path transmissions are governed by the
range losses out at the maximum range of 10 AU. The fields of view are
selected for background rejection and to support the chosen acquisition sequ-
ence. The angular steering range 1is governed by the limitations on the
pointing ability of the spacecraft attitude control system. The wavelength
range is set by the need to track the Earth in broadband visible light (re-
flected sunlight) and the need to monitor the frequency doubled Nd:YAG laser
transmitter.

The optical system consists of two basic subassemblies: a telescope and an
imaging optics assembly (or IOA). The optical system performance of Table 1
can be flowed down to the individual subassemblies. This 1s 1llustrated in
Table 2.

2.0 TELESCOPE SELECTION

The performance requirements of the telescope flow down from the system level
requirements for OPTRANSPAC. These telescope requirements are defined in
Table 2.

To meet these requirements a mirror based (reflective) telescope is the system
of choice. An 11" aperture refractor would require several lens elements to
' meet 1image qua11tym}equ1rements and would be heavy as a result. A refractive
telescope would also be prone to thermal gradients, which would adversely
affect the transmitted wavefront by the temperature induced change of the

glass refractive indices.

The wide variety of reflective telescope design forms is {1lustrated in Figure
2. The image quaTity requirements over the field of view 1imif the choice of
" telescopes. The Newtonian form 1s unacceptable over this field due to the
coma inherent in the base paraboloid mirror. The Gregorian form is too long



and bulky. The Maksoutoff arrangement tends to be either foo long (with a
thin corrector plate) or too heavy. The corrector plate thickness must 1in-
crease as the telescope length is reduced to maintain the required state of
correction. The Cassegrain design form, in one of 1ts many variants, offers
the best approach to meeting the diffraction limited performance requirement
over the field of view with a compact, 1ight weight, stable package.

The Classical Cassegrain consists of a paraboloid primary mirror with a hyper-
boloid secondary mirror. This arrangement can cover a larger field of view
than the single paraboloid mirror with substantially better imaging per-
formance. It will however not be able to cover the full 5 mrad field with the
required near diffraction 1imited performance.

There are several variants of the Classical Cassegrain whﬁch offer improved
image quality over the field at the cost of an increase in design complexity.
One of these variants is the Ritchey Chretien. This configuration consists of
aspheric primary and secondary mirrors whose zonal curvatures are slightly
weakened with respect to the paraboloid/hyperboloid mirrors of the Classical
Cassegrain to reduce <coma over the field. Another wvariant is the
Schmidt-Cassegrain which dispenses with the aspheric primary mirror and incor-
porates a full aperture aspherized refractive plate to correct the resulting
spherical aberration. This plate must cover the full aperture and is prone to
thermal gradients perturbing wavefront quality. Another variant on the
Classical Cassegrain (and on the Ritchey Chretien) 1s to 4incorporate small
refractive correcting elements in the converging beam after the secondary.
This allows additional aberration correction. It 1s this final variant that
offers the best approach to meeting the rigorous image quality requirement of
A/20 RMS over the relatively large 5 mrad field of view.

In the OPTRANSPAC telescope design the primary mirror is an f/1.75 hyperboloid
(only siightly changed from a paraboloid). A hyperboloid secondary mirror,
operating at a magnification of 5.7, produces a final f/# of =f/10 for the
telescope. The refractive correctors are of zero net power and affect the



final f/# very 1ittle. A field lens of =600 mm focal length relays the sys-
tem aperture stop (at the primary mirror) into the rest of the optical
system. A thick lens design of this telescope was not completed during the
study. However, a very similar telescope designed on a different program was
available for study. This telescope design, 1incorporating small refractive
correcting elements, 1s shown in Figure 3. A detailed design prescription is
Tisted in Table 3. Geometric raytracing of this design both on axis and at
full fleld (Figure 4) confirms that this design fulfills the OPTRANSPAC image
duality requirements over the field of view. Diffraction analysis indicates
this telescope's design wavefront quality is = A/30 RMS at a wavelength of
A = 532 nm.

3.0 QPTICAL SCHEMATIC

Following the definition of the optical system performance requirements and
selection of a telescope type, the optical paths need to be defined. The op-
tical schematic (Figure 5) shows the general arrangement of the Cassegrain
telescope and the 1imaging optics that 4interfaces the telescope with the
system's transmitter 1laser source and various detectors. Table 4 lists the
components in the optical schematic. ‘

Figure 6 breaks down the schematic into the individual optical paths. The
telescope section serves as the common antenna for both transmit and receive
channels. The prime and redundant common optical path are also shared by the
transmit and recelve channels. These paths incorporate the fine beam steering
function. The chosen beam steering mechanism is a torque motor beam steerer
(TMBS). Selection between the prime and redundant common path is accomplished
by means of rotary mirror mechanisms. The final component in the common op-
tical path is the transmit/receive beamsplitter. This 4s a dichroic beam-
splitter set to transmit 532 nm 1ight while reflecting the 1064 nm uplink
1ight and broadband visible 1ight (earth tracking).

The transmit path consists of prime and redundant lasers with a "pop mirror"®
select mechanism, a focal beam expanding optics, and a commandable focus.



The receive path is subdivided into a communication and a tracking section.
The communication section consists of prime and redundant avalanche photo-
diodes selected by the *"pop mirror® mechanism, 25 A band pass filters cen-
tered on the 1064 nm uplink for backéround rejection, and a dichroic beam-
splitter to reflect 1064 nm light and pass the shorter wavelengths used 1in
tracking. The tracking section is somewhat more complex. The broadband solar
energy reflected off the Earth 1s used for tracking. Prime and redundant
charge transfer detectors (CTD) selected via "pop mirrors" are used to track
the Earth and hence the low Earth orbit terminal. The point ahead function
ys accomplished via offset tracking. A small amount of the transmit 532 nm
Tight 1s continuously leaked by the transm1t/rece1ve beamsplitter into the
receive/tracking path. A 532 nm bandpass filter reflects the broadband light
and admits the 532 nm light to a deviating prism which steers this transmit
1ight to an offset point on the CTD.

4.0 FIRST ORDER LAYOUT OF OPTICAL PATHS

In design of the telescope and imaging optics for a spaceborne system one must
keep the size and number of elements used to the minimum necessary to perform
all system functions within the required system performance levels. This max-
imizes system optical transmission while minimizing system size, weight, and
procurement cost. In diffraction 1imited optical systems such as this, one is
forced to multiple elements less components with moderately slow optical speed
to meet image quality requirements. Field of view and spectral range require-
ments further complicate the lens components. This exacts a penalty on optics
transmission, optical system envelope and optical system weight.

4.1 FIRST ORDER LAYOUT OF TELESCOPE - The elements and their first orders
properties for the telescope section are given in Table 5. A thin lens ray
trace through this section both on axis and at full f1é1d is shown in FigUre
7. This section 1s designed to be afocal. It maps the 0.5" (12.7 mm) dia-
meter axial bundle of the imaging optics paths (i.e. common path) to the 11"
(279.4 mm) diameter of the primary mirror. The system aperture stop and




entrance pupil are at the primary mirror. This pupil 1is relayed by the tele-
scope field lens to a convenient location within 30.5 mm of the first colli-
mator lens in the common path of the imaging optics.

The Cassegrain telescope optics are designed to produce an f/10 output cone.
This allows for a compact package whose optical speed is sti11 slow enough to
ensure both good image quality and readily manufacturable components. The
£f/1.75 concave hyperboloid primary and f/2.0 convex hyperboloid secondary
mirror are well within the state of the art for aspheric fabrication.

4.2 FIRST ORDER LAYOUT OF COMMON PATH (PRIME/REDUNDANT) OPTICS - In the
common path throughout the imaging optics 1t 1s desirable to use a few basic
lens grouping in a repetitive way to simplify the design and procurement of
the optics. Such repetitive lens groupings must relay the telescope pupil
through the imaging optics with minimal vignetting. This requires that the
sections of collimated space used for locating TMBS mirrors or beamsplitters
be rather short to minimize the need for large (> 50 mm diameter) optics.
This 1s because the local fileld of view covered by the imaging optics com-
ponents is 88 mrad (+ 2.5°), a factor of 18 times the telescope field. A
typical grouping of collimator - field lens - collimator ("CFC Group") is
shown in Fiéure 8. The two collimators symmetrically flanking the field lens
work at f/5. This f/# was selected as the best compromise between the two
extremes of fast f/#, compact, many element lens components and slow f/#,

space wasting, few element lens components.

The elements and first order properties for the prime and redundant common
path optics are given in Table 6. A thin lens ray trace on axis and at full
field through the common path are given in Figure 9.

4.3 FIRST ORDER LAYOUT OF TRANSMIT PATH - The optics in the transmit path are
considerably simplified by the fact that they are handling monochromatic (532
nm) 1ight which is of small divergence and remains on axis (all steering of
the transmit beam 1s accomplished in the common optics path). The prime and
redundant lasers are selected by a "pop mirror" mechanism. The laser light
passes through an afocal relay. One of the components of this relay can be
shifted axially to 1introduce specific amounts of focus error to partially
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compensate for wavefront errors introduced by component shifts. These com-
ponent alignment shifts can arise from the forces during launch, from stress
relilef of structural parts over time, or from long term temperature changes
during the course of the mission. In a diffraction limited system even such
minor variations can have a serious effect on performance. After leaving the
focus mechanism relay the beam enters an afocal expander to increase the beam
to 12.7 mm diameter for entry into the common optics path.

Table 7 1ists the transmit path optics properties. Figure 10 shows a ray
trace of the emerging transmit beam.

4.4 FIRST ORDER LAYOUT OF RECEIVE COMMUNICATION PATH - The 1064 nm uplink
from the terminal in low Earth orbit is collected by the telescope, and re-
layed through the common path optics, reflected by the dichroic transmit/re-
celve beam splitter, relayed by a CFC lens group, reflected by the dichroic
communication/tracking beamsplitter, and filtered by a 25 A bandpass
filter. The prime or redundant detector are selected by a "“pop mirror"
mechanism. The elements and first order properties for the receive path from
the transmit/receive beamsplitter through the communication detectors are
given in Table 8. On and off axis ray traces are shown in Figure 11. Note
that the avalanche photodiodes are operated in a slightly defocussed position
to keep the spot size large enough that the variation in detector responsivity
over its surface has a negligible 1mpéct on communication Tink margin.

4.5 FIRST ORDER LAYOUT Of_RgpﬁlyE_}RACKINQ PATH - To accommodate the tracking
and point ahead functions on the same detector, an offset 1s introduced
between the broadband reflected sunlight from earth and the 532 nm transmit
spot retroreflected from the transmit beam. A dichroic beamsplitter separates
the broadband and 532 nm 11§ht into two separate channels. A wedge prism de-
viates the 532 nm 1ight prior to entering the tracking detector lens. The
broadband 11ght enters the tracking detector lens undeviated ylelding the
angular offset required. Note that the tracking detector lens axis 1s decen-
tered with respect to the input receiver axis to accommodate the two spatially
separated Earth track and point-ahead offset track channels. The elements and
first order properties of the receive path from the communication/tracking



beamsplitter through the tracking detector are shown in Table 9. On and off
axis ray traces for the broadband visible 1ight are shown in Figure 12. On
and off axis ray traces for the 532 nm 1ight are shown in Figure 13.

5.0 MECHANICAL LAYOUT, PACKAGING, AND ENVELOPE

Using the component distances and sizes given in Secton 4.0 the optical paths
can be layed out to determine the envelope of the resulting package. Figure
14 1l1lustrates an fisometric view of this layout. Figure 15 shows the same
layout 1in orthographic projection. The optics are divided into two planar
sections above and below a mounting baseplate.  To this same baseplate the 11"
telescope is attached in a cantilevered configuration. When baseplate, optics
covers and electronics boxes are included a more complete picture of the
system envelope emerges (Figure 16). The entire system fits within a 2'x2'x4’
envelope yet offers uncrowded, ready access to the optical paths for align-
ment, adjustment and performance characterization.

6.0 TRANSMISSION BUDGETING

A summary of overall path transmission 1is given in Table 10. A detailed
breakdown on the contributers to transmission in each path is included in this
Section. These numbers are for beginning of 1ife. The individual component
performance estimates contained herein are readily manufacturable specifi-
cation values and are based on the measured performance of optical components
built and used in Lasercom systems over the past eight years. The component
substrates and coating materials are restricted to materials with demonstrated
radiation resistance. Radiation resistance test 1indicate element trans-
mittance degradation 1is typically small ( = 0.2% per element at = 105
Rad (S1)). Equivalent end of 1ife transmissions based on this are also shown
in Table 10.

6.1 TELESCOPE PATH

6.1.1 TRANSMIT (532 nm) USAGE



Telescope Collimator (4 Element) - - T1 = (0.998)8
Field Lens/Refractive Corrector Lens Set (3 Element) - - T2 = (0.998)6
Secondary Mirror/Primary - - T3 = (0.98)2

Telescope Transmission At 532 nm = T1T2 T3 = 0.93

6.1.2 RECEIVE (1064 nm) USAGE

Telescope Transmission at 1064 nm = Te1éscope Transmission at 532 nm

= 0.93

6.1.3 RECEIVE (BROADBAND 400 nm - 100 nm) USAGE

Unlike the monochromatic performance numbers in Section 6.1.1 and 6.1.2, the
antireflection coating performance will be substantially poorer over the
broadband visible and near infrared band of reflected sunlight. The same will
be true over the blue-green end of the spectrum for the high reflectance
coatings on telescope primary and secondary mirrors. This 1s due to the in-
herent 1imitations in multilayer interference coatings which can only function
at their maximum performance over spectral bandwidths much less than the re-
quired 700 nm.

Telescope Collimator (4 Element) - - T, = (0.99)°
Field Lens/Refractive Corrector Lens Set (3 Element) - - T2 = (0.99)6
Secondary Mirror/Primary Mirror - - T3’- (0.97)2

Telescope Transmission (400-1100 nm) = T]T T3 = 0.82

2



6.2 COMMON (PRIME/REDUNDANT) PATH

6.2.1 TRANSMIT (532 nm) USAGE

Transmission of Basic Collimator Field Lens - Collimator Group on "CFC" Group

(Consisting of 9 Elements) = (0.998)'° = 0.965 = T

Reflectance of Fold Mirror Or TMBS Mirror = (0.98) = Rm
Transmittance of Dichroic At 532 nm = (0.98) = Td

The Common Path (Prime or Redundant) consists of three CFC groups, two
prime/redundant select mechanism mirrors, two TMBS mirrors, and two passive
fold mirrors. The resulting transmission is given by .
T of Common Path at 532 am = (T_. )° (Rm)* T
= N efe d

= 0.81

6.22 RECEIVE (1064 nm) USAGE

Common Path performance at 1064 nm is similar to that at 532 nm except for the
dichroic transmit/receive performance.

RD = Dichroic Reflectance at 1064 nm = 0.95

So, we have

T of Common Path at 1064 nm = (chc)3 (RM)* Ry

- (0.965)° (0.98)* (0.95)

= 0.79



6.2.3 _RECEIVE (BROADBAND VISIBLE) USAGE

Broadband Transmission of Basic CFC Group (9 Elements) = (0.99)18

' =0.83 =T
Broadband Reflectance of Fold Mirror or TMBS = (0.97) = Rm
Broadband Reflectance of Dichroic = (0.90) = RD

CFC

The resulting Common Path broadband transmission is given by

T Common Path Broadband = (0.83)3 (0.97)4 (0.90)
= 0.46

6.3 TRANSMIT PATH

6.3.1 TRANSMIT (532 nm ONLY) USAGE

Transmission of Focus Compensator Group (4 Elements) = (0.998)8 = 0.984

= Tre

Transmission of Beam Expander (4 Elements) = (0.998)8 = 0.984 = TBE

Transmission of Transmit Path at 532 nm = TFc TBE = 0.97

6.4 RECEIVE COMMUNICATION PATH

6.4.1 RECEIVE COMMUNICATION (1064 nm ONLY) USAGE

Transmission of CFC Group at 1064 nm = (0.965) = TCFC

Reflectance of Passive Fold Mirror = (0.98) = RM

Reflectance of Communication/Track Dichroic = (0.95) = RD

Bandpass Filter Tranmsmittance = (0.70) = TBPF



Detector Lens Transmittance (3 Element) = (0.998)6 = (0.988) = TDL

Transmission of Receive Communicaton Path at 1064 nm

= TCFC’RH RD TBPF TDL = (0.62)

6.5 RECEIVE TRACKING PATH

6.5.1 BROADBAND VISIBLE USAGE
CFC Group Transmission = (0.99)'° = 0.83 = T,
Passive Fold Mirror Reflectance = (0.97) = RM
Dichroic Transmittance = (0.90) = TD
Variable Attenuator Base Transmittance = (0.99)2 = (0.98) = TVA
532 nm Bandpass Filter Reflectance = (0.90) = RBPF
Tracking Lens Transmittance (3 Element) = (0.99)6 = (0.94) = TTL
Total Transmission In Broadband Visible Light For Tracking

2
- ;ngc (Ry)™ (Tp) (Typ) (Rgpg) (Tqy)

6.5.2. TRANSMIT (532 nm) USAGE FOR OFFSET TRACKING

Reference Transmit Path Trasmittance At 532 nm
= (0.97) = TTP
"Transmittance" of Xmit/Receive Dichroic (Leakage to Corner Cube and
Retransmission into Tracking Path) = (0.005) (0.98) - 0.00490 = Topa

Transmittance of CFC Group at 532 nm = (0.965) = TCFC
Reflectance of Fold Mirror = (0.98) = RM



Transmittance of Tracking/Comm Dichroic Beamsplitter = 0.98 = TD

Variable Attenuator Transmittance = (0.998)° = T,,

Band Filter Transmittace = (0.70) a TBPF

Wedge Transmittance = (0.998)° = (0.996) =T,

Tracking Lens Transmittance (3 Element) = (0.998)6 = (0.988) = TTL

Total Transmission For 532 nm Offset Tracking

= (Trp) (Tppa) Teped (R0 Tp) (Typ) (Tgped (T (Tyy)
= 0.0030
7.0 IMAGE QUALITY AND WAVEFRONT BUDGETING

The most critical requirement on image quality for the OPTRTANSPAC system is
that for the transmit path. 1In order to meet 1ink margin requirements at the
10 AU maximum range a near diffraction 1imited wavefront needs to be radiated
from the transmitter. Both telescope and imaging optics are each individually
required to maintain the transmiter wavefront to < A/20 RMS (A = 532 nm).

The total system performance resulting from combined telescope and imaging
optics will then be =\/14.1 RMS.

For the telescope to maintain A/20 RMS what is required of the individual
optical surfaces within the telescope? Recall that the total RMS wavefront
error of a system is given by the root sum square of the individual contri-
butors:

For each individual refracting surface the RMS uaygftontvgfror contributor 1is
given by:

Wi, Refracting = (N2 - N]) ERMS



where N2 - N] = index difference across refracting surface
= 0.5 for "air" spaced elements

and ERMS = RMS surface error specified for surface (in waves)

For each individual reflecting surface the RMS wavefront error contributor is
given by:

2 El"ms
CoS ©

Ni, Reflecting =

where ERHS = RMS surface error specified for surface (in waves)
© = incidence angle on mirror

It can be seen from these two expressions that the contributions to wavefront
error from mirrors are far larger than for lens elements specified to the same
amount of figure error. Strain free mounting of the optics is an important
requirement on the mechanical packaging of the system, particularly with re-
gard to mirrors.

In the telescope part of the system there are two mirrors (primary and second-
ary) at near normal incidence, six refractive elements located away from the
telescope focal plane (the 4 element telescope collimator and the two element
refractive corrector) and one lens in or very near the focal plane (telescope
field lens). The impact of the field lens on transmit wavefront error can be
ignored due to the very small section of the clear aperture actually used.
This section has figure errors far smaller than the value specified over the
entire clear aperture. 1In the root sum square process producing the total RMS
wavefront error of the system this very small contributor is swamped by the



much larger contributors from the colliimator lenses and mirrors. In the
imaging optics paths that carry the transmit beam to the telescrope there are
four mirrors at 45° incidance, and 33 lens elements (not including 3 single
element field lenses).

If we designate E = alloted RMS surface error then we have

E J Mo® 2 + Mpce2V/Z + L

wrms,Tota] N

where Mo = # of mirrors at near normal incidence
a 2 for telescope and imaging optics
together
H45 = # of mirrors at 45° incidence
= 4 for telescope and imaging optics together
L = # of lens elements
= 39 for telescope and imaging optics together

Yielding W total = (7.37) E.

RMS’

To meet a requirement of “RMS' total = A/14.1 suggests that surfaces
would need to be specified to above A/100 RMS (i.e. =\/20 Peak-to-
Valley). This requirement is within the state of the art for today's optical
fabrication technology. Performance 1ike this has been successfully demonstr-
ated on the Laser Crosslink program. The fabrication and testing of surfaces
to this quality level 1s considerably more labor intensive (and therefore
costly) than for the more commonly encountered A/4 or A/8 peak-to-valley

surfaces.

The above analysis does not address the other potential sources of wavefront
error. These other sources include glass inhomogeneity, thermal gradients
over optical components, mounting stresses, misalignments and residual uncor-
rected design aberrations.



Glass 1inhomogeneity effects are controlled by using only optical glasses
available in the better homogeneity grades. Fused silica and the radiation
resistant (i1.e, cerium doped glasses) are available 1in these better homo-
geneity grades for the small (< 60 mm) lenses used in the OPTRANSPAC optical
system. In fact most of the lenses are < 25 mm 1in diameter. Homogeneity for
the large telescope mirrors 1s inconsequential since the 1ight never transmits
through them. This 1s one benefit of the reflective telescope over a refrac-
tive design.

Assessment of the effects of thermal gradients on the optics is not possible
without a representative thermal model of the system. Typically, imaging op-
tics subsystems can be kept at a fairly constant temperature. this is accomp-
Tished passively by the thermally conductive (typ1ca11y aluminum) box en-
closure. This tends to evenly distribute the heat throughout the sub-system.
If necessary one can also emplace an active heater and insulation over the
imaging optics baseplate to aid the process (at the cost of the power needed
to run and control the heater). Imaging optics wavefront performance can be
degraded by the heat generated internally by mechanisms or electronics boxes.
This can be kept under control by ensuring an adequate heat flow out of these
source locations coupled with insulation of critical components from the heat
loading. The OPTRANSPAC 1imaging optics are inherently 1insensitive to
thermally or structurally induced misalignments of the transmit and receive
paths due to the basic optical design which allows continuous pointing read-
Justment based on offset tracking information.

Typically, telescope optics are more often affected by thermal gradients than
are imaging optics. The large aperture optics in telescopes can have far
larger temperature differences over their clear apertures than one would find
over a typical 25 mm diameter imaging optics lens cell. This can perturb the
figure of the mirror surface and degrade the transmitted wavefront. Passive
thermal control 1s not always effective since the telescope faces directly out
into space (there must be a hole in any thermal shrouding to allow the trans-
mitted and received beams to pass). The telescope primary to secondary mirror
alignment 1s generally critical to the maintenance of a good transmit wave-
front. Only slight (say 3 wm) motions can severely degrade the image
quality of a near diffraction limited system. This can happen from very small
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thermal gradients even when the telescope structure is made from low expansion
materials such as Invar. If passive thermal control means are inadequate to
maintain the required image quality active heating may be required. The deci-
ston can only be made on the basis of a thermal model whose results are fed
back into the optics model to determine optical performance in the baseline
environment and configuration.

Mounting stresses can be mimimized by good mechanical design practices.
Stresses coupled 1nto the optical component will distort surface quality and
induce 1index changes 1in the glass. Both effects degrade the system image
quality. Stress free mounting techniques include component retention with
elastomeric agents, maintenance of sufficient clearance between cells and ele-
ments over thermal excursions, seating of components on either 3 point or
lapped multipoint pads, and the application of compressive rather than tensile
loads when loading of glass element 1s required.

Component misalignment effects can only be calculated when the structural and
thermal modeling can provide reasonable estimates of component motions over
environment. These motions can be inserted back into the optics model for an
assessment of the impact on transmit wavefront quality. Component misalign-
ments can arise from differential expansion with temperature excursions or
from thermal gradients across the optical system structure. Misalignments can
also result from component shifts as a result of launch loads, spacecraft in-
ternal vibrations, or mechanism vibrations coupled into the optical system
structure. Some misalignments can be built into a system while in the align-
ment process due to a lack of sufficient adjustment range or resolution of
motion on the optics mounts. The optics mount designs are based on a tradeoff
of the conflicting requirements of adjustability and stability under launch
loading. During the alignment process the test equipment used to monitor
alignment must have sufficient resolution to measure in or out of spec align-
ment conditions. For instance the OPTRANSPAC optics that carries the near
diffraction 1imited transmit beam will have to be aligned using an interfero-
meter.

While exact budgeting of the wavefront error associated with misalignment must
await a better definition of the mechanical structure and thermal environment



one can still make some conclusions based on alignment sensitivities. It is
anticipated that OPTRANSPAC, like most diffraction T1imited optical communica-
tion systems, will be sensitive to misalignments in the telescope. The teles-
cope misalignment sensitivities are shown in Table 11. It can be seen that
this telescope 1s fairly sensitive to despacing of the primary and secondary
mirrors. To maintain the specified wavefront quality the despace should re-
main well below =3um. Should the despace exceed this value the active
focus will need to be utilized to compensate for this added focus error. The
other misalignments cause smaller effects and the solution is the same.

Residual uncorrected wavefront errors can be left in the optical system by the
design process 1tself. This will leave a residual wavefront error in the op-
tical system regardless of the fabrication process errors or lack thereof.
The way to control this 1s to continue to increase the complexity of the op-
tical system and keep optimizing until either all wavefront requirements are
within spec, the number of elements start to increase weight and decrease
transmission to unacceptable levels, or the time or money spent exceed the
levels the contract will suppport. The amount of residual design aberrations
and their impact on wavefront error will have to await the performance of a
thick lens design and optimization of the OPTRANSPAC optical system.

The image quality requirements in the OPTRANSPAC recelve paths are far less
stringent than those for the transmit path. Receive image quality is driven
by the tracking requirements. Figure 17 i1llustrates the variation in the size
of the Earth image on the tracking detector as a function of range during the
mission. This image size vs range curve is plotted parametrically as a func-
tion of receive path image quality. Diffraction Timited performance is not
necessary to meet the required tracking uncertainity. An optics resolution in
the 15 - 25 yurad range 1is acceptable. This allows optics 1n the receive
only portion of the imaging optics to have much less stringent surface quality
requirements, say A/8 or A/10 peak-valley figure error (with » = 500 or
600 nm, i.e. st111 measured in the visible).



8.0 FUTURE WORK

This design note represents the results of work completed under the current
contract toward design of the OPTRANSPAC optical system. To carry on the
development of this system under future contracts the following tasks will
need to be accomplished next:

(a)

(b)

(¢)

(d)

Thick Lens Design and Optimization - The current thin lens design defined
herein will need to be converted to a thick lens prescription using the
optimization features of ACCOS V, Code V or an equivalent optical design
code. This 1is necessary to determine the number of optical elements
needed, determine nominal optical performance, determine required manu-
facturing tolerances, determine alignment requirements, and define the
system in sufficient detall for detailed mechanical design to proceed.

Thermal-Structure-Optical Analysis - Thermal and structural analysis of
the optical and mechanical design will need to be conducted to determine
the expected range of component motions and anticipated thermal
gradients. These results will be folded back into the optical model to
calculate optical performance of the perturbed optical system. The wave-
front budgets and alignment budgets can then be fully computed.

Breadboard Offset Tracking Configuration - To reduce risk and gain useful
engineering data 1t would be worthwhile to procure obtics and CTD camera
and breadboard the offset tracking configuraton. This will validate per-
formance of the optics and provide a useful test ‘bed for evaluatton of
electronics, computer interfaces, and tracking software
Baffle Design and Stray Light Analysis - The stsegréin te]eétope baffle
system is not yet designed. It needs to be designed and its performance
estimated using a stray light code such as APART or GUERAP (or, at least
Mini-APART) to ensure in specification solar rejection.
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TELESCOPE CONFIGURATIONS
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FIGURE 3
CASSEGRAIN WITH REFRACTIVE CORRECTING ELEMENTS
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TABLE 3 TELESCOPE PRESCRIPTION
EXAMPLE RITCHEY CHRETIEN WITH CORRECTOR LENSES

BASIC LENS DATA
SURF RD
0 0.000000
1 0.000000

2 -32.5919597

3 -6.785295
4 -1.309862
5 -91.157784
6 -.619316
7 -.808265
8 2.395433
9 —4.736221
10 0.000000

11 0.000000

REFRACTIVE INDICES

SURF N1
4 1.452590°
6 1.452590
8 1.452590

CC AND ASPHERIC DATA

SURF cc
2 -.10214E+01
3 -.25397E+01

13

13.

-4,

CLEAR APERTURES AND OBSTRUCTIONS

SURF TYPE

1 CIRCLE

1 (0B) CIRCLE

2 CIRCLE

2 (0B) CIRCLE

3 CIRCLE

6 CIRCLE

7 CIRCLE

8 CIRCLE

9 CIRCLE
REF OBJ HT
-.157700E+08 ( .12 DG)

EFL BF

145.4814 —-4,8856
WAVL NBR 1
WAVELENGTH .53200
SPECTRAL WT 1.0000

NO APERTURE STOP

LENS UNITS ARE INCHES

EVALUATION MODE IS FOCAL

™ MEDTUM RN OF
. 785700E+10 ATR '
.593396 AIR
,593396 REFL
049691 REFL
.271874 SILICA 1.452590 -52.364
.259634 AIR 1.452590 -52.364
543737 SILICA 1.452590 52,363
000000 AIR
,419493 SILICA 1.452590 -52.364
1520722 AIR
885582 AIR
000000 ATR
N2 N3 N4 N5
1.000000 1.000000 1.000000 1000000
1.000000 1.000000 1.000000 ©1.000000
1.000000 1. 000000 1.000000 1.000000
AD AE AF AG
CAY cax
5.4999
.9868
5.4999 )
9428 '
.9868
L4321 )
.6168
6796
6824
REF AP HT O0BJ SURF  REF SURF  IMG SURF
5.49990 0 1 11
F/NBR LENGTH GIH
10.39 18.0652 .2920
' 3 4 5
1.06400 183500 0.00000 00000
1.0000 1.0000 1.0000 1.0000
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OPTRANSPAC INTERFACE REQUIREMENTS

OPTRANSPAC STRUCTURE

« Defined in Figures 1 through 10

LOOK DIRECTION AND FIELD-OF-VIEW

o System pointed nominally towards earth +2 mrad
e Minimum unobstructed FOV: +2 mrad

MASS PROPERTIES

o Total weight less than 115 1bs. (see Figure 11)
« Center of Gravity defined in Figure 1
o Moving Parts
- Torque Motor Beam Steerers (4)
- Moment of Imertia: <5 x 1073 o0z-in-sec?
- Maximum Angular AcCeleration: <2 x 10° rad/sec?
- Control Loop Bandwidth: 20 Hz

INSTALLATION

« Mount: 3-point
e Mounting Surface Finish: see Figure 1
o Mounting Surface Flatness: see Figure 1

AL IGNMENT
« Installation Alignment: < + 0.17 mrad
o Alignment Stability: < + .60 prad, variations assumed slow. Use of auto

colTimators to indicate drift errors. Biases removed by control system.

ELECTRICAL POWER INTERFACES

o For details not given here, see OPTRANSPAC Design Note, "OPTRANSPAC
Electronics", by H. J. Mingo

o Bus Power: 28+6 volts direct current

« Total Power Requirement: 57 watts (see Figure 11)

o Telemetry - Analog, Serial, and Bi-level

o Command Control Data - Discrete and Serial

o Communication Data - <100 Kbps Pulse Position Modulation (PPM)



THERMAL CONTROL

« S/C Interface - Adiabatic
« Operating Temperatures

Median Variation

Operating From

Temperature Median

Electronics 30° +40°C

P Electro-optics 20°¢ 1306

« Survival Temperatures (Non-operating)

- Survival
Temperatures
Electronics 35% + 90%
Electro-optics | 0° i 35%
« Heat Rejection
Subassembly | Power Dissipated (Watts)
E]ectrb;optics 6.0
Detectors 5.0
Electronics 46.0

lw]
|
w
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PATENT CONTRACT

SRIGHAL FPASELIS
OF POOR QUALITY APPENDIX E

(V) EXECUTED e DATE _
4 TYPEWRITER
ECCESTIONS vES ~o )
MCDONNELL DOUGLA\S}_
(20 CHEZ . TED e DA o _ SATENT TERT CCCKkET ND
CORPORATION
EXTFIATIONS €5 ammmmmeer N e
EMPLOYE DISCLOSURE RECORD assiGNES vo.
'3V EXEC.TED ___DATE
(THIS FIRM AND ACCOMPANYING DRANING AND DESCRIPTION SHEETS
E<CESIONS rE DC 136-2 "1 .uL 69 YO BE COMPLETED FOR EACH ITE
EcEATIONS rES N0 . L:%.;‘-:\cﬂv;vsI'%)I'hAl;:c 0 THE BATEWT SEPARTGENTI

{SHORT TITLE OF ITEM THAEE AQORCS DR L ESS:

A CONTINUQUS LASERCOM OPTICAL ALIGNMENT DEVICE

i

Feowe NAVE'S, OF EMS_ Dy E°3

INMIZTDLE N Tra s

William L.

|
—{
S=DNE .

NAEINTOR S
TLAST

Casey

~OuE
ADCRESS €5

Rt. 1, Box 124,Marthasville,M0 63357

CLOCH OR
-0¢ 'DEPT

10187231 ™°

413 064552 8445

r

i
!
I tFIRS™
!
i
i
i
1
i

[
i INFORMATION
AND DATES

CONCERNING
THIS ITEM

NEEDED IN THE EVENT OF A CON-
TEST OF ARIONITY 4F (NVENTION
(M THE y.S. BATENT OFFICE, ALL
RECORDS CITED SHOULC BE DATED
AND SIGNED BY RESPONSIBLE
EMPLOYE!S), AND DATED AND
SIGNED BY TWwO INDEPENDENT
WITNESSES WHO HAVE READ AND
UNDESRSTAND TWE MATER AL,

ON WMAT DATE DID YOU FIRST THINK OF THIS INVENTION OR ITEM? (WHAT RECORDS SHOW T~IS"

08 Feb 1985 - Monthly Status Report MDAC-STL to CIT/JPL OPTRANSPAC
Study - Attachment (1)

GIVE DATE OF ANZ ICENTIFY EARCIEST SFETCH OR DRANING

[Tlustrated in above Monthly Status Report

WHEN WHERE AND TO AHOM DIC YOU MAKE THE FIRST DISCLOSUARE TO OTHERS OF ThHE |TEM
EITHER ORALLY OR IN ARITING?

In above Monthly Status Report !

CESCRIBE CETAILSOF ANY NORK DR TESTS DONE TO PRODLUCE DR OPERATE TWHE ITEM

GIVE DATES AND AITNESSES (U SE OTHER PAGES iF NECESSARY) R
eceijve qa%h ﬁnd use gf
nt-ahead go back many :

FilJter technology/alignment of laser to

qa%vanome%er drqzen m?rrors ?or a?1gnmen and po

CESCRIRE AND G vE DATES OF ANY OTHER SKETCHES, ORAWINGS OR REPORTS BERTINENT .TO HiS tTEM '
years in Lasercom.!

Only sketches in above Monthly Status Report

SALE OR
PUBLICATION

NEECEZ 5 ESTABLISH "<E DATE
OF ANy BRINTED PUBLICATION
BuBLIC USE JN SA_E 3INCE NO
BATENT AFE_I1ZATION vAY B
FILED AFTEN ONE YEAR FEOM
SuC= DATE

IF A DEVICE “wAS BEE~N SOLD OR LSED FOR PROF!I™ - WeEN AND TO WHOM DELIVERED OR WHEN AND

HOWN USED?

Not yet sold or delivered

~A5 A PR:NTED OESCRISTION OF THIS 1TEW BEEN MADE AVAILABLE TO PERSONS OUTSIOE THE CompPans
I1F SO ~ON AND wmEN AND WAS USE RESTRICTED?

Yes - To CIT/JPL in above referenced Monthly Status Report

POTENTIAL MARKET
INFORMATION

NEECED FIR 3)0SSI8.E wARKET.
ING IS ESTISATIONS AND A4S AW
AID TO POTENTIAL LCENSING 7O
oTHESS

OESCRIBE ANY PCTENTIAL OR EXISTING MARKET FOR SALE OR LICENSE OF THIS (TEM: s

A GOVERNMENT:

In Lasercom systems for space/air
2 COMMERC:AL:

In Lasercom systems for space/air

€ 'DENTIFY ANY KNOWN FIRMS 08 VENDORS WHO MAY BE (NTERESTEL IN THE 1TEM

CONTRACT
INFORMATION

NEEDED TO ASSESS TWE 2aM~™).
CULAM RiGHTS OF JARIOS
PARTIES IN TWE INVENT: DN Im
VYEN

(F THIS ITEM 43S FIRST CONCEIVED OR CONSTRUCTED IN CONNECTION WITH:

A. A GOVERNMENT CONTRACT GIVE GOVERNMENT CONTRACT WUMBER AND SHOP ORDER

B AN IRAD OR COMFANY PROJECT CI!IVE PROJECT IDENTIFICATION NUMBER

¢ nEvmem awoms exeeam CIT/JPL Contract No. 957601 for Design and
o /;‘;99 Liehudy,of .2 2racasnaft, Ontical, Transceiver package,
es

| (WE! HEREBY ASSIGN MY IOUR! ENTIRE INTEREST IN THE ABOVE ENTITLED ITEM OR INVENTION A4S SHOWN AnD DESCRIBEL ON THE
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1. In Lasercom systems, the narrowness of the transmit laser beam requires that the laser
needs to continuously be coaligned to the track detector in the presence of thermal/
structural bending. If continuous realignment is not performed, the transmit laser beam
divergence must be increased to accommodate the maximum misalignment between the track
detector boresight and the laser. If this is not done, the laser beam may be misdirected
and the peak laser power will not impinge on the lasercom terminal to which the laser

beam is directed. Conventional quadrant detectors are capable of only one track point

so two beams cannot be tracked simultaneously. Option D of Attachment (1) illustrates

the operation of conventional realignment techniques as follows; when not tracking another
terminal, the shutter in front of the alignment cube is pulled out of the way and laser
energy is then reflected from the beamsplitter to the cube and retroreflected back through
the beamsplitter toward the tracker. The tracker, a quadrant detectof receives the laser
signal and supplies error signals to the align/point-ahead beam sfeering mirrors to null

the track point. When it is necessary to provide a point-ahead function, the point-ahead
beam steerers (TMBSs) are driven to the calculated position which offsets the laser beam

to compensate for the velocity aberration of light. When the realignment is complete, the
shutter is closed and the terminal may function as a transceiver. Another realignment cannot
be performed until tracking is discontinued.

2. The proposed device offers the following advantages: i

a. Continuous alignment is possible even when the receive wavelength is very close
(20 angstroms) to the transmit laser wavelength. If polarization isolation is used,
continuous alignment should still be possible since polarization separation can be
performed at the device instead of spectral separation.
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b. An alignment shutter/drive is not required since continuous alignment is performed
and the alignment cube may be continuously utilized.

C. Weight, size, power and complexity should be reduced.

d. Continuous alignment is possible when wide band sources are tracked since the
Taser wavelength is "sliced out" of the wide band with only minor transmission loss

e. Diffraction limited optical quality beams can be accommodated with only minor..
degradation.

3. The device works as follows, referring to Figure 1: Collimated energy of wavelengths
A, and X, enter the device at point (A), pass through the block and reach the filter (B)
where the two wavelengths are spectrally separated. Lambdal is transmitted through the
filter (B) and X, is reflected from the filter (B)ktoward the mirror (C). Mirror (C)
raflects the ), energy at an angle that is not parallel to the A, optical axis. This
angular offset permits A, and A, to be tracked at two separate points on the CCD

"detector (F). The amount of angular separation determines the physical track point
_offset x and is a function of system requirements. Lambda tworenergy, following

reflection from mirror (C) exits the block at poiﬁf‘(D). Both A, and x, pass through
the lens (E) and are imaged onto the CCD track detector (F). With a po]ar1zat1on
separation of orthogonal linear polarizations a polarization beam splitter cube or
equivalent polarization element replaces the filter but the device functions the same
as for spectral separation. The CCD tracker track points for the two signals can be

extracted for alignment and/or point-ahead functions.
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Known or possible uses for the device include:

a. Continuous alignment of two narrow wavelength sources in a lasercom system.

b. Continuous alignment of a wideband source with a narrow wavelength source
embedded in it in a lasercom system.

c. Continuous separation of more than two sources by cascading two or more devices
and imaging onto a single CCD for a lasercom system.

d. Continuous alignment for laser systems other than lasercom.

e. Continuous alignment of polarization isolation lasercom systems by use of
polarization separation in lieu of spectral separation. .

b. Separation/alignment continuously in a lasercom system or elsewhere when two
sources are as close as 20 angstroms spectrally.

Features believed to be novel:

a. Continuous alignment of a lasercom system.

b. Close spectrél separation (20 angstroms) alignment of a lasercom system.

c. Continuous point-ahead funct1on with closed loop correction. Implementation is
norma11y open 1oop based on ca]cu1ated va]ues.

d. Cont1nuous aT1gnment of a lasercom system us1ng po]ar1zat1on isolation.

e. Continuous a11gnment of a lasercom system where the transmitter wavelength
71s embedded in a broadband track signal such as an earth-tracker.

f. Any of the apove not in a lasercom system,
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Al
APD
AU
BER
cCch
CID
cm
dB
EORS
FWHM
Hz
I0A
JPL
KBPS
Kg
Km
KPPS
KRADS
LSI
MeV
MHz
mm
msec
usec
mi
NASA

NASA-JSC
Nd:YAG

APPENDIX F

ACRONYM LIST

Aluminum

Avalanche Photodiode
Astronomical Unit

Bit Error Rate

Charge Coupled Device

Charge Injection Device
centimeter

decibel

Earth Orbiting Relay Station
Full wWidth Half Maximum
Hertz

Imaging Optics Assembly

Jet Propulsion Laboratory
K1lobits per second
Kilograms

Kilometers

Kilopulses per second
Kilorads

Large Scale Integrated

Mega Electron Volt

Megahertz

millimeters

millisecond

microsecond

milliwatts

National Aeronautics and Space
Administration

NASA Johnson Space Center
Neodymium Yttrium Aluminum Garnet



APPENDIX F
ACRONYM LIST

nm nanometer

NRZ Non-Return to Zero
OPTRANSPAC Optical Transceiver Package
PCU Power Conditioning Unit

PMT Photomultiplier Tube

PPM Pulse Position Modulation
PPS Pulse Per Second

RMS Root Mean Squared

RS Reed-Solomon

RSS Root Sum Squared

sec second

S Silicon

SNR Signal To Noise Ratilo

TMBS Torque Motor Beam Steerer
VLSI - Very Large Scale Integrated
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