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We consider the problem of identifying the spatially varying coefficient 

of elasticity using an observed solution to the forward problem. Under 

appropriate coditions this prchlem can h e  t r e s t e d  as s first c rde r  hyperbol ic  

equation in the unknown coefficient. We develop some continuous dependence 

results for this problem and propose a spline-based technique for 

approximating the unknown coefficient, based on these results. We establish 

the convergence of our numerical scheme and obtain error estimates. 
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1. INTRODUCTION 

A class of control and identification problems for which the models are 

based on the equations for elastic structures are those dealing with large 

space antennas. Mathematical models of these problems are based on the 

partial differential equation 

( 1 . 1 )  a au a au 
ax ax ay ay 
- (e -) + - (e -) = f 

where u(x,y) is the vertical displacement of the antenna surface, f(x,y) is 

the distributed loading force per unit area, and e(x,y) is the distributed 

coefficient of elasticiy of the antenna surface 111. 

The identification of e using measured u and f values for the 

antenna surface is an important inverse problem. A common identification 

strategy is the "indirect" one in which one minimizes via an iterative process 

the deviation between a computed forward solution and the observations 

(see, for example [ l ] ) .  Alternatively, e can sometimes be identified by a 

direct approach involving approximate solution of the hyperbolic equation 

ue 

( 1 . 2 )  Ve 6 Vu + eAu = f, 

for example, by seeking the finite dimensional representation for e which 

minimizes the residuals of a difference approximation for equation ( 1 . 2 ) .  

This is ref erred to as the "equation-error" method. 

A practical limitation to the direct approach for identifying e is that 

the coefficients of the hyperbolic problem ( 1 . 2 )  involve derivatives of the 

measured quantity U. However, when it is feasible it is simpler and cheaper 

than the indirect approach. 
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In [ 2 ]  Richter presented a systematic analysis of the inverse problem 

(1 -3) Ve Vu + eAu = f, x n  P, 

in which the coefficient e is to be determined on the basis of an observed 

(f,u) pair. He showed that the hyperbolic problem (1.3) has a unique 

solution assuming prescribed values along the inflow portion of 

an for fELw(S1), provided 

inf [maxi IVu(P> I 2, Au(P)} I > 0. 
PEO 

He also proved that if condition (1.4) holds, then e depends continuously 

on f in L~(Q). 

In this paper, we show that if condition (1.4) holds then e depends 

continuously on f in Lp(Q) for all p [l,~). We then use this 

continuous dependence result in to propose a spline-based technique L2 ($2) 

for approximating the unknown coefficient e in equation (1.3). We prove 

that our scheme converges to the actual solution e of (1.3) and obtain error 

estimates. 

In [2]  Richter proposed especially favorable "test conditions" for 

observing a forward solution u to the elliptic problem for (1.3): 

inf f > 0, u = 0 on an. 
$2 

Under these conditions (1.4) will be satisfied and the hyperbolic problem 

(1.3) with the resulting (f,u) pair will require no Cauchy data for e 
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because t h e  c h a r a c t e r i s t i c s  of e w i l l  o r i g i n a t e  a t  p o i n t s  of degeneracy 

w i t h i n  Q, r a t h e r  t han  on an .  
Typ ica l ly ,  c o n d i t i o n  (1.5) holds f o r  antenna problems. Thus, t h e  

numerical  a lgo r i thm we propose i n  t h i s  paper ,  and which i s  based on a 

cont inuous dependence r e s u l t  in L2(Q), would be p a r t i c u l a r l y  s u i t a b l e  f o r  

antenna problems. I n  a companion paper [4], we p resen t  a m u l t i g r i d  a l g o r i t h m  

f o r  approximating e numerically.  

2. m I N U O U S  DEPENDENCE OF TEE BYPERBOLIC PROBLEM 

L e t  B(u)e be t h e  o p e r a t o r  

X Q C  *, - B(u)e = v (eVu) = f ,  

where e and u are def ined i n  a connected, bounded domain 52C - p. 

Throughout t h i s  paper we s h a l l  assume tha t  u€C2(z) and e€C1(z), where 

Ci(h) 

i n  52. 

P 
denotes  t h e  class of piecewise cont inuously d i f f e r e n t i a b l e  f u n c t i o n s  

- 

We s h a l l  denote t h e  boundary of Q by y.  L e t  

a U  
a n  y 1  = {xy: - <  01, 

a U  is t h e  outward normal d e r i v a t i v e  of u a long y .  y1 is  t h e  an where 

in f low p o r t i o n  of t h e  boundary y o  

Suppose t h a t  u s a t i s f i e s  t he  condi t ion 
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- 
where IVu(P)1* = 1 (ax,) a U  . Then fl can be divided i n t o  compact 

subregions Q1 and f12 such t h a t  
i = 1  , n  

lvu12 - > a i n  n l ,  Au - > a i n  Q2, 

- 
and Q = Ql Q2. 

We introduce some n o t a t i o n  we s h a l l  need later. L e t  

U = max u(P) ,  

P Z  

max 

U = min u (P) ,  

P T i  

min 

[u]  = u ‘ U  max min’ 

a U  s = max I- a n  
PEY 

We now o b t a i n  an a p r i o r i  bound on t h e  s t a b i l i t y  of t h e  hype rbo l i c  

problem (2.1). 
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Theorem 1: Suppose u satisfies condition ( 2 . 2 ) .  Then for any f for - 

y1 
which B(u)e = f has a solution e assuming prescribed values along 

the solution is unique, and 

for all pc[l,m). Here 

and 2 P 1 (L)l/P(P - 1) 
C' - Ap(u) = -  

P U P  P 

C (u> is defined as ? 

s 1 c (u) = mint- , 1 - -} exp(-p~[uI) P P P - if B > 0, 

1 1 c (u) = min{- 1 - -} exp(-[ul) g B - < 0, P P '  P 

Proof :  Let g(u) be a smooth function of u, which we shall specify 

later. Multiplying equation (2.1) by g(u) lelP-'sgn(e) and integrating 

over Q, we obtain 

- 



-6- 

Here sgn(e) is the function defined as 

-1 9 e < 0, 
0, e = 0, 

1, e > 0. 
sgn(e) = 

Integrating the r.h.s. of ( 2 . 4 )  by parts gives 

Now 

Integrating the r.h.s. of (2.6) by parts, we obtain 

Combining (2.5) and (2.7) gives 



1 
g(u)lelP-'sgn(e)(V*(eVu))dx = [- dg lVu12 + ( 1  - -)g(u)Au] lelPdx 

Q P du P n 

We wish to choose g(u) so that 

1 [- -- dg + (1 - -)g(u)Au] > 0 ,  
P du P 

2). Let - Au(P) 
We first treat the case B > 0 ,  where B = max { 

P a l  IVuCP>I 

Then 

1 -1% 1VuI2 + ( 1  - -) g(u)Au = [B a 
P du P 

If Au - > a it is easy to see that 

2 
Next, suppose Au < a.  Then !Vu1 - > a.  From the definition of B we 

have 

1 
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Hence we ob ta in  

1 B 
P du . P  - P  
-1 dg -- + (1 - ->g(u)Au > - exp [-pf3[u]). 

C l e a r l y  

Next, we treat  the  case B < 0. Then Au > 0 f o r  a l l  X E ~ .  L e t  - - 

1 
a m i  n g (u>  = - exp(-(u - u 1). 

Then 

1 1 Au 
P Pa P a  

-1 dg + (1 - -)g(u)Au = (M + (1 - -) -)exp(-[u]). 
P du 

It is  easy t o  see t h a t  i n  t h i s  case 

- !- * 1Vu1* + (1 - -)g(u)Au 1 > min (1 1 - -) 1 exp(-[u]) .  
P du P P Y  P - 

Also 

1 
- a  

exp(- [u l )  < g(u )  < - . - a 
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Substituting g(u> in (2.8) we obtain the following inequality 

Cp(u) I lelPdx + - 1 (g(u> =)le1 au P ds 
n P Y  

where 

Now 

II g(u)l I p - '  
n 

.. 
But by Holder's inequality 

1 1  
P Q  

where - + - = 1. 

Hence 

Applying Young's inequality to the r.h.s. of (2.10),we obtain 
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(2.11) 

Thus 

S ince  p 1 1 ,  t h i s  imp l i e s  

Hence 

And t h i s  gives us the  r equ i r ed  r e s u l t .  

Remark 1 :  It is i n t e r e s t i n g  t h a t  t h e  continuous dependence estimate 

( 2 . 3 )  breaks down f o r  p = 0 0 .  Rich te r  [2]  proved t h a t  t h e  r e s u l t  ho lds  

f o r  p = m. Combining Richter’s r e s u l t s  wi th  Theorem 1 , w e  conclude t h a t  

e .  depends continuously on f i n  LP(n) f o r  a l l  p ~ [ l , = ] ,  assuming t h e  

va lue  of e i s  prescr ibed  a long  t h e  inf low boundary. 



We would now like to investigate the rather general situation where at 

least one of the coefficients of the hyperbolic problem is nonvanishing at 

each point of Q ,  i.e., we wish to see.whether the continuous dependence 

results remain valid if we replace condition (2.2) by the condition 

(2.13) 

First suppose that 

( 2 . 1 4 )  

Replacing u by -u and f by -f in (2.1) so that it takes the form 

B(-u)e = -f, 

it is trivial to see that Theorem 1 remains valid if the following 

modifications are made: 

inf [max IV~(P> I 2 ,  - A~(P)} I = a > 0. 
PEQ 
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au > 01, i.e., y1 now represents the outflow (iv) Y 1  = ( P Y :  an 
portion of the boundary y .  

Richter notes in [2] that if Au is not always positive or negative 

where Vu = 0 it may or may not be the case that B(u)e = f has a unique 

solution for all fELaD(Q), with appropriate initial data for e. For the 

sake of completeness we cite two examples from his paper illustrating this. 

In Figures 1 and 2, the curves indicate characteristics of u, with arrows 

pointed in the direction of increasing u. Both configurations have one 

maxima and one minima. 

yB 

Figure 1 

The first depicts a situation where Q can be separated along a 

to y,) into two subregions YA characteristic (any one from 

Ql and Q2 such that 

(2.15) ]Vu1 or Au > 0 in Ql, I V U ~  or - AU > o in n2. 
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Thus the corresponding hyperbolic problem can be solved uniquely for e with 

initial data specified along YA Or Yg' Clearly the continuous dependence 

result ( 2 . 3 )  remains valid for this situation. 

I 

Figure 2 

This is not so for the second configuration because of the presence of 

This difficulty characteristics going between the maximum and minimum points. 

can be circumvented by cutting the domain across characteristics by a line 

into subregions Ql and Q 2 .  The resulting e would in general be 

Clearly such a solution depends on the 

and hence is not unique. Note that Cauchy data would not be 

Y A  

discontinuous at the interface yA. 

choice of 

required at such an interface. 
YA 

3. TEE NUMERICAL SCHEME 

Our method uses the results of Theorem 2.1 with p = 2. We describe our 

method for the two dimensional parameter estimation problem restricting 

ourselves to the case where the domain Q is the unit square, i.e., 
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The results desc r ibed  would carry through f o r  t h e  more g e n e r a l  s i t u a t i o n  

where t h e  boundary of a is  piecewise smooth, w i th  some t e c h n i c a l  

modif icat ions.  

The two dimensional problem can be formulated as follows: 

L e t  L be a g r i d  of p o i n t s  

where A is a f i n i t e  index set i n  &. Given a d a t a  set of obse rva t ions  

N 

tu(;,, "y)},  y j ) }  f o r  u and f a t  t h e  p o i n t s  Gi, yUj)€L 

determine e(x)  t h a t  s a t i s f i e s  t h e  equat ion 

( X , Y ) € E ,  a a U  a a U  

a x  a Y  a Y  
B(u)e = -(e z) +-(e -) = f ,  

assuming t h a t  t h e  inf low s e c t i o n  of the boundary y1 i s  void.  

We assume t h a t  u,  e, and f are smooth and t h a t  u satisfies condition 

( 2 . 2 ) .  

Divide the square [0,1]  x [0 ,1]  i n t o  a g r i d  of p o i n t s  

where 

1 < j < N+I). A~ = { ( i , j ) :  1 - -  < i < N+I, - -  

We assume t h a t  L h C  L. - 
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The g r i d  is dep ic t ed  i n  Figure 3. Consider now t h e  case where t h e  in f low 

p o r t i o n  of t he  boundary y 1  # 9. Let 

f o r  any 6 > 0. We assume t h a t  we a r e  provided Cauchy d a t a  f o r  e a t  a se t  

of p o i n t s  

N 

): ( i , j ) E A  C A}. B = {(:i, yj - 

Here ( i , j ) € A  whenever Gi, y j ) ~ y ; ,  but  A may c o n t a i n  o t h e r  elements 

besides .  We d e f i n e  A p r e c i s e l y  below.  

h 

Figure 3 
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Consider t he  s i t u a t i o n  i n  Figure 3 where y; is  t h e  l i n e  segment AB 

of t h e  boundary x = 1. Here A and B do not belong t o  t h e  g r i d  of 

p o i n t s  Lh. We extend AB t o  the  sma l l e s t  p o s s i b l e  l i n e  segment 

y l y h ,  P1 P6 i n  t h i s  case, such t h a t  

( i )  y; Yl,h*  

belong t o  t h e  g r i d  Lh. ' l ,h  ( i i )  the end po in t s  of 

Then 

where 

Here t h e  union i s  taken over a l l  h such t h a t  

Thus we are provided with Cauchy d a t a  f o r  

Lh c_ L. 

e 

We assume the func t ion  w i s  smooth. 

L e t  

where 
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In the situation depicted in Figure 3 ,  Bh consists of the points P1 

through P6. 

From the data set of observations I f i j }  for f where 

- 
and fh is piecewise bilinear in Q. 

We approximate the unknown function e(x,y by a piecewise bi 

function eh(x,y). In case yl,h is not void there would be M 

near 

grid 

points belonging to an. Then eh(x,y) is the bilinear spline function that 

assumes the values 

and whose values at the other mesh points {(xi,yj): (i,j)€hh\Ah} have to 

be determined. 

Let sh denote the space of piecewise bilinear functions vh(x,y) where 

vh(xi,yj) = v for (i,j)EAh\Ah, and 
ij 

vh(xi,yj) = w(xi,yj> for (i, j )‘Ah. 
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Let 5 and & denote the vectors 

... 

Clearly there is a one to one correspondence between the linear spline 

functions eh(x,y), Vh(X,y), and the vectors 5 and 3. I& and 3 

belong to a vector space of dimension K = (N+1)2 - M. 
Finally, we approximate u(x,y) by its cubic B-spline interpolant 

uh(x,y). The cubic B-spline $(x) in one dimension is the function 

sketched below 131:  

A 

- X  
-2 -1 0 1 2 

Figure  4 



h X 
Let $j(x) = $(x - j ) .  Then 

where {qij} are obtained by solving a linear system of equations. 

The piecewise bilinear approximation for the unknown function e(x,y) 

that we choose is the function eh(x,y) that minimizes 

over all Vh&+,* 

Substituting the explicit form of the functions uh(x,y), fh(x,Y), and 

vh(x,y) in (3.2), we obtain 

( 3 . 3 )  

where 

ch is a symmetric matrix of dimension K by K depending only on 

uh(x,Y); 

Gh is a vector of dimension K depending on uh(x,y), fh(x,Y), and 

W(X,Y 1 ; 

& is a vector of dimension K that corresponds to the linear spline 

function vh(x,y); 
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We s h a l l  prove i n  Lemma 2 t h a t  ch is  p o s i t i v e  d e f i n i t e  f o r  a l l  

h - < ho, where ho i s  a p o s i t i v e  cons tan t .  

The piecewise b i  l i n e a r  func t ion  eh(x,Y) t h a t  minimizes (3.2) 

corresponds t o  the  vec tor  E+ - - { (eij ) }  (i ,  t h a t  minimj.zes 

T VTC v 41 h h -  '% 

over  a l l  vectors  %E*. Thus & is obtained by so lv ing  t h e  l i n e a r  system 

of equat ions 

(3.5) 

S ince  ch  i s  p o s i t i v e  d e f i n i t e ,  f o r  h small enough, t he re  e x i s t s  a unique 

s o l u t i o n  & of (3.5), and hence the  minimization problem (3.2) has a unique 

s o h  t ion. 

L e t  eh(x,y) be t h e  l i n e a r  s p l i n e  func t ion  t h a t  corresponds t o  the  

vec to r  s. We claim t h a t  eh(x ,y)  converges t o  t h e  t r u e  s o l u t i o n  e (x ,y )  

i n  the  L2 norm a t  a l i n e a r  rate of convergence. To prove t h i s  r e s u l t  we 

need f i r s t  to  prove a lemma. 

k m m a  1: - L e t  u(x,y) be a smooth func t ion  that  s a t i s f i e s  cond i t ion  

L e t  uh(x,y)  be the  cubic  B-spline 

i n t e r p o l a n t  of u (x ,y) .  Then f o r  h < ho, where is a p o s i t i v e  

cons t an t ,  and a l l  func t ions  v (x ,y )  t h a t  are piecewise cont inuous ly  

d i f f e r e n t i a b l e  i n  

- 
- (2 .2)  i n  t h e  u n i t  square n. 

- - ho 

- 
Q, t h e  fol lowing i n e q u a l i t y  holds:  



Ilv12 < 2A2(u)llB(uh)VIl2 + 2D2(u)(J Iv(x,y)l 2 ds) 1/2 , (3.6) - 
'1 ,h 

where A2(u) and D2(u) are defined in (2.3). 

Proof: Since uh(x,y) is a cubic B-spline interpolant of u(x,y), 

uh(x,y) is twice continuously differentiable. 

By a standard result in approximation theory,the following inequalities 

IVu - Vuhl < K2h 3 , and - (3.7b) 

~ A u  - huh[ < K3h 2 - (3.7c) 

hold, for all (x,y)En. Here the constants K1 through K3 depend on 

higher derivatives of u(x,y). 

Since u(x,y) satisfies condition (2.2), there exists subregions 

Ql and Si2 of E such that 

any E > 0 we can choose ho so small that 

1VuI2 - > a in Ql, Au - > a in For 

Au > a - E  in Q2 (3.8) lvuh12 - > a - E  in fi1, h -  

for all h < ho. - 
Recall that 
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[u] = max {u(P>) - min {u<P>), and 
PEE P € 5  

We can now choose ho so small that (3 .8 )  and 

( 3 . 9 )  

hold simultaneously for all h < ho. Now - 

y; = {Pey: - aU < 6) 
an 

for some 6 > 0. Let y 2  = yl\yi. Then 

y 2  = {PEy: - au > 6). 
an - 

If we choose ho smaller, if necessary, we can obtain 

for all P€y2, aU 6 
- - h  (P) > - an - 2  ' 

whenever h < ho. Clearly the inflow section of the boundary for - 
Uh y; 'I,-,' 
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If we choose € small enough (and ho correspondingly small), we can 

always arrange 

(3.10) 

to hold for all h - < ho. We then obtain a cruder version of estimate (2.3) 

- au in the second term on the 
1 ,h replacing Y1 (W: an h (P) < 0 )  by y 

r.h.s. in (2.3). 

We shall use Lemma 1 to prove that the matrix ch defined in (3.3) is 

positive definite for all h < ho, where ho is a positive constant. - 

Le- 2: - Let ch be the matrix defined in (3.3). Then ch is positive 

definite for all h < ho, where ho is a positive constant. - 

Proof: Since the matrix ch depends only on Uh(X,y), we may, without 

loss of generality, choose w(x,y) 5 0. Then by (2.3) 
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By Lemma 1 

(3.11) 
2 

II vhll L 4(A2(u) l2  UB(uh)vhM 

s i n c e  vh(x,y) 5 0, f o r  a l l  ( x , y ) ~ y ~ , ~ .  

By elementary means one can show t h a t  

(3.12) 
2 h2 T n v n  > - v v  h 2 - 2 4  h h' 

Combining (3.11) and (3.12) we o b t a i n  

(3.13) 

The l e m m a  i s  proved. 

We can now prove the  main r e s u l t  of t h i s  s ec t ion .  

Theorem 2: Consider t h e  parameter e s t ima t ion  problem 

a a U  a B(u)e = ax ( e  E) + 5 ( e  au> = f 5 

i n  t h e  u n i t  square S l ,  and assume t h a t  we are provided wi th  Cauchy d a t a  

f o r  - e on - '1 ,h' 



Here u, e, w, and f are smooth functions, and we assume that u satisfies 

condition (2.2) Let eh(x,y) be the piecewise bilinear function that 

minimizes 

(3.2) 

over all piecewise bilinear functions vh(x,y)ESh. Then eh(x,y) converges 

to the true solution e(x,y) in the L2 norm at a linear rate of 

convergence. 

be the piecewise bilinear function E S h  that a Proof: Let eh(x,y) 

interpolates e(x,y) at the mesh points {<xi, yj>: (iyj)€Ah\Ah}* Then 

ez(x,y) interpolates e(x,y) at all the mesh points {(xiyyj): (iyj)€Ah}. 
1. 

Since eh(xyy) minimizes 

(3.2) 

over all piecew ~ ;e bil 

1 1  

iear functions Vh(X,Y)E%, the inequality 

1/2 1 1  a 2 
(3.14) (I I IB(uh)eh - fh12dxdy)1/2 < (I I lB(uh)eh - fhl dxdy) 

0 0  - 0 0  

holds. 
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By a standard result in approximation theory,we have the inequalities 

a 2 IIe - ehl12 < K4h , and - (3.15a) 

a llVe - Vehl12 - < K5h. (3.15b) 

Here K4 and Kg are positive constants depending on higher derivatives of 

e. 

Further, since f h  is the piecewise bilinear interpolant of f we have 

2 (3.16) IIf - fhl12 K6h , 

where K6 is a positive constant depending on higher derivatives of f. 

Using these and the earlier results ( 3 . 7 )  from approximation theory,it is 

easy to show that 

(3.17) 

By the triangle inequality 

(3.18) IB(uh)(et - eh)W2 5 llB(uh)et - fhl12 + IIB(uh)eh - fhl12. 

From (3.14) and (3.17) we conclude that 

(3.19) llB(uh)(et - eh)1I2 O(h). 
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Since both eE(x,y) and eh(x,y)  i n t e r p o l a t e  e (x ,y )  a t  t h e  p o i n t s  

{ (x i ,y j ) :  ( i , j ) E A h } ,  i t  is easy t o  see t h a t  

(3.20) 2 I 
'1,h 

l e i  - ehl ds  = 0. 

From Lemma 1 we have t h a t  

- f o r  a l l  func t ions  v t h a t  are piecewise cont inuous ly  d i f f e r e n t i a b l e  i n  51. 

Using (3.19) and (3.20) w e  conclude t h a t  

(3.21) a 
Ueh - eh12 - < 2A2(u)llB(uh)(ei - eh)l12 O(h). 

By (3.15a) 

IIe a - ell < O(h2). h 2 -  

Using t h e  t r i a n g l e  i n e q u a l i t y  once more we o b t a i n  the  r e s u l t  

(3.22) Ile - ehl12 O(h). 
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Remark: I f  we were t o  i n t e r p o l a t e  e ( x , y )  by piecewise Hermite cub ic s  

o r  by a B-cubic s p l i n e ,  our method would converge a t  a q u a d r a t i c  rate of 

convergence. It is easy t o  modify t h e  method t o  o b t a i n  h igher  o rde r s  of 

convergence. 

F ina l ly  we i n d i c a t e  how the  numerical  method we have proposed can be 

adapted i n  case  u does not  s a t i s f y  cond i t ion  (2.2) but  t h e  more g e n e r a l  

cond i t ion  

(2.13) 

Consider the  s i t u a t i o n  depic ted  i n  Figure 2 where u has  both a maximum 

and minimum. L e t  us suppose t h a t  f i s  such t h a t  a unique s o l u t i o n  e t o  

(2.1) exists. We do not need t o  s p e c i f y  any Cauchy d a t a  f o r  e i n  t h i s  

s i t u a t i o n .  A s  before ,  we cu t  t h e  domain Q ac ross  c h a r a c t e r i s t i c s  i n t o  two 

subdomains S l l  and i12 such t h a t  u s a t i s f i e s  condi t ion  (2.2) i n  Q1 

and condi t ion  (2.14) i n  Q 2 .  

L e t  

b (x ,y)  = e(x ,y)  f o r  ( x y y ) ~ G 2 .  

We can f ind  a s o l u t i o n  a of 2.1 i n  t h e  domain n l  without  any Cauchy 

da ta .  The same holds  f o r  b i n  t h e  domain 02. C lea r ly  i f  a s o l u t i o n  e 

t o  problem (2.1) e x i s t s  i n  Q then  e must be continuous a long  YA' 



Hence we must have 

a(P) = b(P) for all PeyA. 

Let ah and bh denote piecewise bilinear approximations for a and 

b respectively. Then ah and bh are the piecewise bilinear functions 

defined in !ill and Q2 respectively which minimize 

over all piecewise bilinear functions Vh and th defined in 

Ql and fi2 respectively. Here e is a weighting parameter. 

In case a smooth solution e to (2.1) exists, it is easy to show that 

the function eh defined as 

converges to the true solution e(x,y) in the L2 norm at a linear rate of 

convergence. 

In a companion paper [ 4 ] ,  we present a multigrid algorithm for parameter 

estimation problems. In this algorithm we seek a finite dimensional 

representation for e which minimizes the t2 norm of the residuals of a 
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second order difference approximation of (2.1). Extensive numerical 

experiments indicate that the method converges to the true solution in the 

g2 norm at a quadratic rate of convergence. 
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