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1. SUMMARY 

M i c r o s t r i p  l i n e s  used i n  microwave i n t e g r a t e d  c i r c u i t s  a r e  

d i s p e r s i v e .  Because a m i c r o s t r i p  l i n e  i s  an open s t r u c t u r e ,  the 

d i s p e r s i o n  can n o t  be der ived with pure TEM, TE, o r  TM mode anal -  

y s i s .  D ispe rs ion  a n a l y s i s  has commonly been done us ing  a spec- 

t r a l  domain approach, and d ispers lon measurement has been made . 

w i t h  h i g h  Q m i c r o s t r i p  r i n g  resonators. Since t h e  d i s p e r s i o n  o f  

a m i c r o s t r i p  l i n e  i s  f u l l y  character ized by the  frequency depend- 

e n t  phase v e l o c i t y  o f  t he  l i n e ,  d i s p e r s i o n  measurement o f  micro- 

s t r i p  l i n e s  requ i res  the  measurement o f  t he  l i n e  wavelength as a 

f u n c t i o n  o f  frequency. I n  t h i s  paper, a swept frequency tech- 

n ique f o r  d i s p e r s i o n  measurement i s  described. The measurement 

was made us ing  an automatic network analyzer  w i t h  t h e  m i c r o s t r i p  

l i n e  terminated i n  a s h o r t  c i r c u i t .  Experimental da te  f o r  two 

m l c r o s t r i p  l i n e s  on a 10 and 30 m i l .  Cuf lon subst rates were  

recorded over a frequency range o f  2 t o  20 GHz. Agreement w i th  

t h e c r e t i c a l  r e s u l t s  computed by t h e  s p e c t r a l  domaln apprcach i s  



good. Poss ib le  sources o f  e r r o r  f o r  t h e  discrepancy a r e  

discussed. 

2. INTRODUCTION 

M i c r o s t r i p  l i n e s  used i n  microwave i n t e g r a t e d  c i r c u i t  ne t -  

work and dev i ce  designs are  very a t t r a c t i v e  because o f  low cos t  

and easy f a b r i c a t i o n .  Un l i ke  o r d i n a r y  t ransmiss ion  l i n e s  o f  TEM 

mode, the a n a l y s i s  o f  a m i c r o s t r i p  l i n e  I s  very  complex and 

requ i res  t h e  h y b r i d  mode expansion of bo th  t h e  TE and TM modes t o  

account f o r  t h e  f r i n g i n g .  Furthermore, a m i c r o s t r i p  l i n e  i s  more 

d i f f i c u l t  t o  des ign because o f  i t s  d i spe rs ion  c h a r a c t e r i s t i c s .  

The d i spe rs ion  c h a r a c t e r i s t i c s  o f  m i c r o s t r i p  l i n e s  have been 

inves t i ga ted  exper imenta l l y  and t h e o r e t i c a l l y .  l P 2  

ana lys is  has commonly been done us ing  a spec t ra l  domain approach, 

and d i spe rs ion  measurements have been made w i t h  a h i g h  Q micro-  

s t r i p  r i n g  resonator .2  This  paper descr ibes a swept f requency 

technique f o r  d i spe rs ion  measurements. The technique i s  app l i ed  

D ispers ion  
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. t o  analyze t h e  d i spe rs ion  c h a r a c t e r i s t i c s  o f  an open m i c r o s t r i p  

s t r u c t u r e  as shown i n  F ig .  2. The measured r e s u l t s  a re  compared 

t o  t h e  a n a l y t i c a l  r e s u l t s  computed by a spec t ra l  domain method. 

3. DISPERSION MEASUREMENT 

Since t h e  d i spe rs ion  o f  an open m i c r o s t r i p  l i n e  i s  f u l l y  

charac ter ized  by i t s  frequency dependent phase v e l o c i t y ,  d i spe r -  

s i o n  measurement o f  t h e  m i c r o s t r i p  l i n e  requ i res  t h e  measurement 

o f  t h e  l i n e  wavelength as  a func t i on  o f  f requency. 2 Troughton 
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first proposed a technique for measuring wavelengths and dis- 

perison characteristics using a microstrip ring resonator. By 

capacitively coupling RF power into and out of the ring resonator 

with 50 II transmission test probes, the line wavelength is 

determined by measuring the transmitted power as a function of 

frequency. The effective dielectric constant at each-resonance 

frequency, f, is.obtained from 

where c is the velocity of light and n = 1,2,3 .... The mean 

radius, r, of the ring is approximated from Wheeler's results 

which are valid for frequencies below 6 GHz.  

resonator approach eliminates errors in determining the-electri- 

cal length due to fringing, the curvature of the ring and the 

coupling probes may introduce errors in the resonance frequency 

measurements. At high frequencies, the validity of Wheeler's 

theory, for approximating the mean radius r is also question- 

able. In fact, large discrepancies between calculated and 

measured results have been reported. The swept frequency 

technique shown in Fig. 2 is based on the transmission line 

theory. The dispersion measurement was made using an automatic 

network analyzer with the microstrip line terminated in a short 

circuit. Treating the microstrip line like a quarter-wavelength 

resonant stub, the line wavelength, 1, may be calculated by 

measuring the input impedance as a function of frequency. The 
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effective dielectric constant, teff, at each resonance can be 

determined from the followlng relations: 

nh e = -  (n = 1,2,3 ...) 4 

where !t Is the electrical length 

of the measurements were made on 1 

Cuflon substrate (tr = 2.1). 

a low-frequency characteristic imp 

The 

of the microstrip jine. All 

i n .  long microstrip lines on a 

ine width i s  chosen to provide 

!dance of approximately 50 $2. 

A SMA/MIC flange mount connector was used to connect the micro- 

strip line to the automatic network analyzer and the short cir- 

cuit termination. 

4. NUMERICAL ANALYSIS 

A spectral domain method as outlined in Ref. 3 i s  utilized 

to analyze the disperison of an open microstrip structure. 

brief, the formulation of the problem yields a hybrid mode solu- 

tlon of linear combinations of TE and TM fields. 

fields in the spectral domain are given by 

In 

The hybrid-mode 
. 
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The s u b s c r i p t s  1 = 1,2 designate t h e  regions 1 ( s u b s t r a t e )  and 

2 ( a i r ) .  The F o u r i e r  transforms o f  s c a l a r  p o t e n t i a l s  s a t i s f y  t h e  

homogeneous Helmholtz equation 

o r  

where 

2 2 2 2  
Y1 = = + k Z  - ko cryr  

2 2  2 2  
+ k z  - ko Y2 = a 

By matching t a n g e n t i a l  components ( x  and z)  o f  t h e  f i e l d s  a t  

t h e  a i r - d i e l e c t r i c  i n t e r f a c e ,  and s a t i s f y i n g  t h e  r a d i a t i o n  con- 

d i t i o n  and a p p r o p r i a t e  boundary c o n d i t i o n s  a t  t h e  conduct ing 

s t r i p ,  t w o  coupled equations o f  t h e  unknown transformed c u r r e n t s  

(yx*Tz) and t h e  transformed l o n g i t u d i n a l  f i e l d s  ( r z2 ,Hz2)  a r e  

obtained. 

N 
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where the expressions f o r  t he  Green's func t ions  Gll(a,kZ), 

G21(a,kz) e t c .  a r e  g iven i n  Ref. 3. 

g a t i o n  constant  . k Z ,  Ga le rk in ' s  method i n  t h e  spec t ra l  domain i s  

app l i ed  t o  reduce the  coupled equat ions t o  a m a t r i x  equat ion.  

TO f i n d  t h e  unknown propa- 

By 
hl 

expanding the transformed c u r r e n t  J x  and 5 i n  terms o f  some 

known b a s i s  f unc t i ons  yxn and J,,, i.e., 

Z 
N 

A m a t r i x  equat ion o f  t he  unknown constants  Cn and dn 

i s  obtained. 

where 
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- K ( 2 ' 2 )  mn = Lm Jxm(a)G22(a,kz) JZn(a)da 

The unknown propagation constant, k 

by finding the root to the determinant of the matrix equation 

Is calculated numerically Z' 

[K] = 0 

The root to the determinant is computed by iteration technique. 

Romberg's numerical integration algorithm has been used to com- 

pute Kmn. The numerical result is strongly dependent on the 

choice of the basis functions. Different bases function for yx 
and J, have been reported in the open literature. l S 6  For the 

work here, the following basis functions have been chosen. 

N 

W W - - < x < -  20 
J 

Jz(x) = p 2 2 u@T- 
= o  otherwi se 

W 0.8 < 1x1 5 T WX 
= Jxo cos 6.2x 

5. COMPARISON OF CALCULATED AND MEASURED VALUES 

Figure 3 shows the measured and computed values of the 

effective dielectric constant, teff, as a function of fre- 

quency for a microstrip line o f  0.89 mm line width on a 10 mil 

Cuflon substrate ( e r  = 2.1). The measured curve exhibits the 
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the 

wi 1 

due 

osc 

usual oscillatory characteristics of the coaxial microstrip 

transition.' 

transition effect is enhanced as clearly indicated in Fig. 4 for 

30 mil substrate. The transition effect, if not removed, 

If the substrate thickness is increased, the 

obscure the small deviations in impedance and pbase velocity 

to the dispersion of the microstrip line. 

llations experimentally requires a broadband, well matched 

To remove the 

coaxial-microstrip transistion. However, by fitting the measured 

data to an interpolating polynomial to smooth out the transition 

characteristics, the measured curves show good agreements with 

the computed curves. The maximum deviation is approximately 

5 percent over a frequency range of 2 to 20 GHz. The discrepancy 

between the measured and the calculated values can be traced to . 

different sources of error. Since the physical line length is 

used to determine the line wavelength, the effective dielectric 

computed from the measured line wavelength gen- constant, c 

. erally has a higher value. The fringing at the end of the line 

tends to increase the electrical length of the line, and thus, 

lowers the value of the measured E 

ing effect, a closer agreement between the measured and the com- 

puted values can be obtained. Also, It has been observed experi- 

mentally that the type of short terminatlon has a profound effect 

on E 

shbrt and by wire bonding the microstrip line to its ground 

eff' 

By including the fring- eff' 

By terminating the microstrip line with a SMA coaxial eff' 
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plane, the measurements can be changed by a few percent. For 

the latter case, the impact of fringing on the electrical length 

is significant. Better agreement between the analytical and 

experimental results are also possible if a more accurate basis 

function for the unknown current or a better analytical model for 

the microstrip line is used. Finally, the impedance variation 

along a short-circuit microstrip line can be obtained by measur- 

ing the input impedance as a function of 

lengths. Figures 5 and 6 show the variation of the normalized 

resistance and reactance with frequency. The resistance curve 

shows an impulse type of response at resonant frequencies, while 

the reactance curve demonstrates similar characteristics of a 

lossless short-circuited transmissions line of TEM modes. It 1s. 

important to point out that because of the dispersion of the 

microstrip line, the resonant frequencies for the higher order 

modes do not always occur at exactly the multiple of the funda- 

mental frequency. A s  a consequence, the phase velocity and the 

effective dielectric constant are frequency-dependent. 

frequency or electrical 

7. CONCLUSION 

A swept frequency technique for dispersion measurement of 

microstrip lines has been described. The technique is easy to 

apply, and yet, yields fairly accurate results for both thin and 

thick substrate over a frequency range of 2 to 20 GHz. 

technique, one is able to obtain the impedance variation along a 

From this 
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dispersive line, and a better physical understanding o f  the dis -  

persive characteristlcs o f  an open microstrip line. 
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