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Reviews certain contact problems in the two-dimensional theory 
of elasticity when round bodies touch without friction along 
most of their boundary and, therefore, Herz' hypothesis on the 
smallness of the contact area cannot be used. Derives 
fundamental equations coinciding externally with the equation in 
the theory of a finite-span wing with unknown parameter. These 
equations are solved using Multhopp's well-known technique, and 
numerical calculations are performed in specific examples. 

17. Key Words (Selected by Author(1)) I t .  Pir~r ik tba Sto~omont 

. . unlimited 

. . 
. .  . -  - 



ON CONTACT PROBLEMS OF E L A S T I C I T Y  THEORY 

A. I .  Kalandiya  

/389* - T h i s  a r t i c l e  r e v i e w s  c e r t a i n  c o n t a c t  problems i n  t h e  t w o -  
d i m e n s i o n a l  t h e o r y  of e l a s t i c i t y  when round b o d i e s  t o u c h  w i t h o u t  
f r i c t i o n  a long  most of  t h e i r  boundary and,  therefore,  Herz '  
h y p o t h e s i s  on t h e  s m a l l n e s s  of t h e  c o n t a c t  area c a n n o t  be used .  
I t  d e r i v e s  fundamenta l  e q u a t i o n s  c o i n c i d i n g  e x t e r n a l l y  w i t h  t h e  
e q u a t i o n  i n  t h e  t h e o r y  of a f i n i t e - s p a n  wing w i t h  unknown 
pa rame te r .  These e q u a t i o n s  a r e  s o l v e d  u s i n g  Mul thopp ' s  
well-known technique ' ,  and numerical c a l c u l a t i o n s  a re  
per formed i n  specific examples. 

1. L e t  a r i g i d  die  w i t h  f l a t  symmet r i ca l  b a s e  be prev l r td  
by a f o r c e  a c t i n g  along '  t h e  d i e ' s  a x i s  i n t o  a n  e l a s t i c  medium 
which i s  a n  i n f i n i t e  p l a n e  with a round opening .  

I t  is assumed t h a t  t h e  d i e  c a n  move o n l y  fo rward  and ,  i n  
a d d i t i o n ,  t h a t  t h e r e  are  no stresses o r  r o t a t i o n  a t  i n f i n i t y .  

The shape o f  t h e  d i e ' s  base ( c l o s e  t o  t h e  c o n t o u r  of t h e  
open ing)  and t h e  main v e c t o r  of e x t e r n a l  f o r c e s  s q u e e z i n g  t h e  

d i e  toward t h e  medium's boundary are g iven .  

The s t r e s s e d  s ta te  of t h e  e las t ic  body is sough t .  

L e t  t h i s  e las t ic  medium occupy t h e  p l a n e  o f  v a r i a b l e  
c = E + i ~ ,  from which a c i rc le  wi th  c e n t e r  a t  p o i n t  <=O w i t h  
r a d i u s  1 is removed. We w i l l  assume t h a t  a s i n g l e  force of 
magnitude P, d i r e c t e d  o p p o s i t e  a x i s  9, ac ts  on  t h e  d i e .  

~~ ~~ 

*Numbers  i n  t h e  margin  i n d i c a t e  p a g i n a t i o n  of t h e  f o r e i g n  t e x t .  
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Boundary conditions for the task are written as (cf. [2], 
p. 4 2 9 ) :  

whereby the second of these conditions are fulfilled at contact 
arc L2, not given beforehand, while the first is fulfilled at 
the rest of the circumference L, L=L +L Here, N and T 
are, respectively, the normal and tangential components of 
external stress acting on contour t, v is normal (elastic) 
shift; g ( b ) ,  given at La, is a true function P of pointd=e ia , 
which describes the shape of the die's base and, by virtue of 
symmetry, satisfies the condition g(tf)=g(-z). 

1 2' 

Henceforth, we will assume that g ( a )  has a second 
derivative along the arc of the contour- which satisfied 
Gel'der's equation. 1 

/39c To solve the problem, we will introduce Kolosov- - ._ 

Muskhelishvili's functions and W ( < ) .  As we know, the 
following relation exists at the boundary of the area ( 1 2 1 ,  P. 
335) . 

According to the condition accepted above, at infinity we 
will have the following if is large 

b 
0 (:) = + + 0 (?), w (C) = 7 + 0 (C-2) 

whereby coefficients A and b are expressed as follows by 
components of the main vector (0 ,  -PI of external forces; 

ixP 
( x  = 3 - 44 2;: (1 + x )  

b= i P  
2r ( I  + w )  ' a- 

(1.3) 

( 1 . 4 )  

4 "' 

Here V is Poisson's coefficient. 



The condition T=O at L by virtue of (1.2) is presented as 

Hence, performing the operation 
1 ds -- 2:.i .I s -: 

L 

and taking (1.3) into account, we immediately find 

To determine constant A,  we will multiply (1.2) times 
cS-’d and integrate the resulting equality along L. We will 
have 

On the basis of (1.6), equality (1.2) takes the form: 

Hence, as above, we find 

Differentiating (1.8) in terms of < and taking into account 
the continuity2 of normal stress n(d) at boundary L, we obtain 

To determine N ( 6 )  at L, we will use the well-known formula 
((23 I P. 135) 

(1.10) 
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If we take (1.5) into account, we obtain the following /391 
equation from this equality by differentiating in terms of c& 

(1.11) 

Introducing here the limit values for the functions d ( < ) ,  
gb'(c) given by equations (1.8) and (1.9) and the expression for 
the left side of (1.6), on the basis of the latter, from 
condition (1.1) we obtain the equation 

To determine the integration line in this singular integral- 
differential equation, we have one more relation 

(1.13) 

After finding N(u) and L2, we will determine stress 
functions with (1.8) and (1.6). In the particular case when the 
rigid die is a round washer inserted into an opening of the same 
radius, we will have g(a)=O at L2, and equation (1.2) will 
take the form: 

Note. Equation (1.12) (or, more precisely, the equation 
derived from (1.12) when its right side is replaced with a 
certain approximate expression) is found in V. V. Panasyuk's 
article [3]. 

This equation is derived somewhat differently on the basis 
of the results of I. N. Kartsivadze (e.g. [2], paragraphs 125, 
126). The author apparently was not familiar with relatively 

(1.12) 

6 
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new analytical tools recently developed to solve this integral- 
differential equation (cf. below, paragraph 3 ) .  

Note also that the case of a round die (of the same radius 
as the opening) was considered by M. P. Sheremet'yev [41, who 
proposed a method for constructing equation (1.14) somewhat 
different than that used here. 

However, the author's reasoning contains an omission 
because of which the equation derived in [4] is incorrect. 

A s  we know, in the two-dimensional deformed case, 
deformation ea and stresses d U* in polar coordinates are, 
according to Hook's law, related as follows 

e' 

where E is the modulus of elasticity. A similar formula 
suitable for the case of a generalized two-dimensional stressed 
state, takes the form: 

M. P. Sheremet'yev [ 4 ]  uses only equation (1.16) ([41, p. 
439, equatton (l.lO)), in view of which his reasoning is sound 
only in the second of the two-dimensional cases. In this case, 
the author's equation [p. 441, (2.15)l indeed coincides with 
(1.14) (only this time one must takep~=(3-~)/(1+J). One must 
take into account that, in reference [51, force P is directed 
along axis t. 

This note pertains also to the author's reasoning in other 
cases of the equilibrium of an infinite plane which were 
considered in the same work [41. 
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2. Let a round elastic washer, generally with other /392 
elastic properties, be inserted into a round opening in an 
infinite medium, the opening and washer having the same 
radius. It is assumed that the washer is squeezed toward the 
surrounding material by a concentrated force applied to its 
center. ( A s  before, we will assume that stresses and rotation 
disappear at infinity.) 

All elements relating to the washer (elastic constants, 
stress functions, etc.) are symbolized by 0, and we will write 
contour conditions of the task in the form (cf. [2] , p.  207) 

The stress functions @(<) and W (c) , which correspond to an 
infinite plate, will, as before, be expressed by equations- 
(1.8) and (1.6). 

Functions 6, ( 5 )  and yo (<) 8 which correspond to an 
elastic washer, will obviously take the form: 

Q0 (C) = t + @,*(:), 'Yo (i) = * . + Vk';(C) 
i P  

whereby functions 4,*(<) and yo*(<) are holomorphs in a 
unitary circle. 

From the appropriate conditions (2.1), we obtain the 
following, which is entirely similar to the previous 

{a; (C) + C W o  (C) ='a0 (C - :-I), IClSl 

where constant A is given by equation (1.7); it is assumed that 
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In1$~*(0 )=0 .  From ( 2 . 4 )  , u s i n g ,  a s  before, t h e  c o n d i t i o n  

U,, -d* are end p o i n t s  of arc L w e  f i n d  2' 

S u b s t i t u t i n g  t h e  l e f t  s i d e  fo r  and v, and e x p r e s s i n g  
t h e  e q u a l i t y  

w e  have  

I n t r o d u c i n g  t h e  c o r r e s p o n d i n g  e x p r e s s i o n s  g i v e n  by t h e  
p r e v i o u s  formulas, a f t e r  c e r t a i n  s i m p l i f i c a t i o n  w e  o b t a i n  

k N ( a o ) + ~ J ~ - -  -- -Z P (eo - - ao) 
- U  gi 2 E l  

Lr 

where /393 

( 2 . 9 )  
(2 .10)  

whereby E r e p r e s e n t s  t h e  modulus o f  e l a s t i c i t y ,  The c o n t a c t  a rc  
L2 is, a s  b e f o r e ,  unknown, by v i r t u e  of which r e l a t i o n  (1.13) 
s h o u l d  be a t t a c h e d  t o  e q u a t i o n  (2.8)  as  b e f o r e .  

When t h e  washer and t h e  p l a t e  are made of t h e  same mater ia l  
(V -b, E -E), c o e f f i c i e n t  k i n  (2 .8)  becomes z e r o ,  a s  a 
r e s u l t  of which t h i s  e q u a t i o n  is solved i n  c l o s e d  form. The 
s o l u t i o n  (closed) t o  t h e  problem i n  t h i s  case w a s  found i n  (51 .  

0- 0- 
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Moving in equation (2 .6 )  to the limit at Eoad, we come to 
the case of an absolutely rigid washer -- equation (1.14). 

If E=m, we have the case of a round, elastic washer 
inserted into an opening of equal radius in an absolutely rigid 
plate pressed toward it by a concentrated force applied to the 
center of the washer. Equation (2.8) gives 

whereby ?L is the washer's elastic constant. 

Equation (2.8) is an example of an equation for a two- 
dimensional contact problem covered without any limiting 
assumpt iws. 3 

3. Let us add to equation (2 .8 )  a new variable 
introduced by the relation 

(2.11) 

The previous function, as we know, gives the conversion of 

to segment [-1, 1); the point -&, & on the 
the unitary circumference 161 =1 into real axis x, transferring 
arc L 
circumference is transferred respectively to points x=-1, x=l. 4 2 

After the obvious transformations, we will have 

N(1)  = N(-l)--n 
whereby, for simplicity, we again assume N(d)=N(x) . The 
equality (1.3) is transformed to 
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/394 If we disregard unknown parameter p, equation (3.2) is - 
the familiar equation of the theory of a finite-span wing, which 
is usually written as: 

-1 

Here B and f are assigned functions at segment [-1, 11, 
wherein B(x) is zero nowhere except the ends of this segment, 
while f(x) is the desired function subordinate to condition 
r(l)=r(-l)=o. 

Many articles have been devoted to the wing theory equation 
(cf. e.g. [ 7 ,  8 1 ) .  Among the countless methods of numerical 
solution devoted to this equation, the most successful from the 
standpoint of practical applications is Multhopp's (direct) 
method [l], which, because of its simplicity and efficiency, is 
'still considered the best mathematical device for aerodynamic 
calculation of a wing. 

According to those methods, the desired r takes the form of 
a trigonometric interpolation polynomial 

and, after application of a certain squaring formula to a 
special integral on the left side of ( 3 . 4 ) ,  this equation is 
replaced by a system of linear equations of relatively 
approximate values $, of the desired function in the given 
(Chebyshev) nodes x,. This system takes the form 

11 



where Bm+B (x,) , fm=f (xm) ; bmk is also known, so that 
=O at m-k =2, 4 . . .  Substituting the solution to this bmk 

System into the right side of (3.5) instead of rk, we obtain 
the approximate solution to the equation (3.4) 

Multhopp's article [l] proved that consecutive 
approximation method for (3.6) always converges if B(x) is 
negative [l]. With negative B ( X ) ,  which occurs (as can be seen 
from equation (3.2)) in applications to elasticity theory, 
iteration method as applied to system (3.6) also yields a 
converging p.rocess, provided that B(x) satisfied the condition 6 

(3.7) 

We will apply this method to solving the equations derived 1395 
here. 

Solving (3.2) and (3.3) together, we will, according to 
(3.51, find the approximate solution to (3.2) in the form 

The function Um - ,(x) is a polynomial of the x-th order of 
m-1 (a second-order Chebyshev polynomial). 

To calculate the desired values for the problem, it is 
convenient to shift from the physical plane of variable 5 to the 
plane of variable z=x+iy with the relation 

(3.9) 

which accomplishes the conformal transformation of the circle 
\t\<l to the upper half-plane IM z)O. 

obtain the formula 
After transformations, we 
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(3.10) 

But the Koche integral on the right side of (3.10) is 
calculated in final form if N(x) takes the form of (3.8). 
Consequently, after Multhopp's method is used to solve the 
equation in the contact problem, the corresponding functions for 
stress are determined in closed form. 

Example 1. An absolutely rigid round washer squeezed 
against an elastic plate (external problem). The problem's 
equation is derived from (1.1) by substituting (3.1) or the 
limit transition in (3.2) at Eo+&. 
equation as 

We will write this 

where 
1 

1 r l V ( t ) d t  
q = T J  t'f;32 

-1 

(3.11) 

(3.12) 

Let us remember that parameter p,  introduced into (3.11) 
and characterizing the size of the contact area, is unknown and, 
in addition, the right side of the equation contains the still 
undefined constant q in the form of functional (3.12). In the 
rest, (3.11) coincides with ( 3 . 4 ) ,  so that BJx)) 0 at [-1, 11. 

Equality (3.3) is rewritten as: 

(3.13) 

In our (symmetric) case of equation (3.11), if n is odd, 
system (3.6) will take the form: 

(3.14) 
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where 

Solving this ,system for a certain parameter (e.g. at /396 
Q=l) 8 we will find unknwon Ek in the form 

ak=&:)q +Nf) @ = = I ,  ... ] w )  (3 . 16) 
whereby Nk ( O )  8 Nk will be known. The corresponding 
approximate solution to g(x) will obviously contain constant q, 
defined as a result of (3.12). Then, after E(x) is calculated, 
the left side of equality (3.13) is determined. To determine q 
and c(p), a Gaussian squaring formula is used (e.g. (91 ,  p. 617). 

(3.17) 

The value of (3 which we have taken and the N(x) 
correspnding to it will generally not satisfy equality (3.13). 
Therefore, selecting new Q values, we will repeat our 
calculations until this equality is satisfied with necessary 
accuracy. As a result, we will have certain approximate values 
for Q and N(x) for a given n. 
these calculations repeated. 

Then other n's are taken and 

In system (3.14), we will first assume n=7 and will set 
Poisson's coefficient equal t o  1/3 for further calculations. In 
expanded form the resulting system appears as: 7 
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[4 (cos2 ’ 8,+ J2) 4 2.i64S]83= 

$2 5 , cos283-$ P =0.9142 g*+ 0.8536 %, + --2 - -- cos 83 + p -!- a ? (cos2 s3+ p2)2 x 
[ 4 (cos3 a,+ ’ $2) + 2.82841 x2 = 

ks 
QL. = - 8 ’  k = 1 ,  2 , 3 , 4  (3 .18)  

S o l v i n g  t h i s  sys tem t o g e t h e r  w i t h  (3 .17 ) ,  w e  w i l l  h ave  
( v a l u e s  f o r  q and N k  [ l ]  i n  (3.16) a s  w e l l  as  Ek are g i v e n  
i n  ~ / n )  

(3.19) 9 1.20886, q =: -0.52422 

N, = 0.48035 q - 0.29067 = 4 .54248 ,  AT? =0.91050 q - 0.63176 = -1.10906 
(3 .20)  - 

r V , ~ ~ . ~ ~ ~ 1 7 g - l . 0 0 9 2 G = - l . 6 5 5 7 1 ,  LV~ =1.359007- 1.20474~--1.91715 

The v a l u e  of  t h e  fo l lowing  p o l a r  a n g l e  c o r r e s p o n d s  t o  t h e  /397 
which h a s  been found 

2, =-10’48’12” (3  . 2 1 )  

w i t h  which c o n t a c t  arc L2 i s  c a l c u l a t e d .  
f o r  t h e  unknowns, t h e  l e f t  s i d e  o f  (3.17) equals 

Given t h e s e  v a l u e s  

c @)= 0.99947 

For  maximum pressure i n  our  a p p r o ~ i m a t i o n , ~  a c c o r d i n g  t o  
(3.20) w e  w i l l  have 

Later i n  (3 .14)  we“ w i l l  u s e  n=15. T h i s  sys tem of e i g h t  



equations (with five separate unknowns in each) will be solved 
by consecutive approximation method, wherein we will use the 
values in (3.20) with unknown q as the zero approximation of 
N2, N4, Ng, N8. 

Solving this system with the @ found together with (3.171, 
we obtain Multhopp’s second approximation 

q=-O.52418 ( 3 . 2 3 )  
- - 

S I  = 0.24397 q - 0.14220 = -0.27008, 
~\5=O.7O465~-OO.45269=-O.822OG, -VI=O.91061 (I- 0.63180 =-1.10913 

Rg= 1.35877 q- 1.20437=-1.91G63 

N, = 0.48Q54 q - 0.29080 = -0.54269 - - 
- IV,= 1.09038q-0.82382=--1.39535, Ec= 1.23312q- 1.00‘327 =--1.65565 

(3.24) - 
,Y;= 1.32624q- i.i5058=--1.84575, 

For these- values of and ik( k=l, . . . , 8 )  I the left side 
of (3.17) gives 

c (3) = 0.99933 

For maximum stress, we have 

(3.25) 

A s  we can see, the desired values in the first and second 
approximations differ little from one another. 

2. A round, elastic washer, squeezed against an opening 
in a rigid plate (internal problem). The appropriate equation 
is derived from (2.11), if we introduce (3.1) into it. It takes 
the form: 

(3.26) 

This equation (with the stipulation made above relative to 
p )  also coincides with ( 3 . 4 ) ,  so that, this time, B(x) 0 at 1-1, 
11 
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System ( 3 . 6 )  for equation (3.26) externally differs little 
from system (3.14). It takes the form: 

(m = 1.. . . , ’!? (n  -!- I)) 

This system should be solved, as before, by satisfying 
equation (3.17) and simultaneously determining parameter (3. At 
n=7, we will have the following values for the desired parameters 
(iik is given in P/II): 

8-  0.9‘1612 (3.28) 
(3.29) 

- 
= -0.37480, iT2 -0.85751, Z3 = -1.47396. 1V4 = -1.84453 

Given these values, c(p)=1.00034. 

From this we obtain the following for the desired value of /398 
angle*, which corresponds to the end of the contact arc 

i+ = 5 O  00‘ 46” (3.30) 

and maximum pressure will equal 

In (3.27) we will then assume n=15. Solving this system 
10 with (3.28), we obtain 

Theh c(p)=O.99905. Specifically, for maximum normal stress 
in the second approximation we will have 

17 



According to the values found for G(x) and 9 ,  we can, as 
indicated above, calculate all other desired values for the 
corresponding contact problem. Specifically, it is easy to 
calculate normal shifts which will satisfy the contour condition 
of the problem with a certain error. 11 

In conclusion, let me note that these calculations were 
done at the USSR Academy of Sciences' Computing Center. I will 
take the opportunity to thank the directorate of the Computing 
Center for its assistance, as well as Ye. S. Bogomolova and T. 
M. Kopylova of the Computing Department for their rapid and 
accurate work. 
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FOOTNOTES 

1. The last condition of (1.1) should have been written more 
=g(d)+c sin oc, where c is the forward "f: accurately: 

movement of t e die; but one can do without this shift 
since it can be eliminated by the rigid forward shift of 
the entire system. 

2. It is assumed that the die has no angular points at the 
contact boundary. On this assumption N(6) will be a 
continuous function at L, becoming zero at the ends of the 
contact arc. 

3. Contact problems of this type, which result in equations of 
the same structure, were first considered apparently in I. 
Ya. Shtayerman's work (e.g. 1 8 1 ) .  In this article, we 
direct our attention primarily to the possibility of 
efficiently solving these problems. 

4 .  6+ denotes the end point of arc L2 for which Red*)O. 

5. The functions B(x) are exclusively such in application to 
wing theory. 

6. Justification of Multhopp's method and its application in 
problems discussed here are found in the author's 
dissertation ("Certain Mixed Problems of Elasticity 
Theory," Steklov Mathematical Institute, USSR Academy of 
Sciences, 1955). 

7. Reference 111 has tables for calculated values of bmk at 
n=7.15.31. 

8. Here and henceforth we will require that relative error in 
(3.17) not exceed 0.1%. 

9. The solution to G(x) which corresponds to n=7 is assumed, 
according to Multhopp, to be the first approximation. 

10. Given our and the Poisson's coefficient taken above, 
function B(x) in (3.26) satisfies condition (3.7) . 
However, we must state that consecutive approximation 
method converges much more slowly in this case than in the 
previous case. For this reason, the method cited, when 
applied to system (3.6) given negative B(x) [even with 
(3.7)], may not always be preferable. 

11. *For exam le, the absolute error forp/P(vp+ 
+d2v /da fl ) for the external problem does not exceed 
0.0072. 
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