
N87- 16761 f.

198b

NASA/ASEE SUMMER FACULTY FELLOWSHIP

MARSHALL SPACE FLIGHT CENTER

THE UNIVERSITY OF ALABAMA

PROGRAM

AN EVALUATION OF THE

DOCUMENTED REQUIREMENTS OF THE SSP UIL

AND A REVIEW OF COMMERCIAL SOFTWARE PACKAGES

FOR THE DEVELOPMENT AND TESTING OF UIL PROTOTYPES

Prepared By:

Academic Rank:

University and Department:

NASA/MSFC:

Laboratory:

Division:

Branch:

MSFC Counterpart(s):

Date:

Contract No.:

Esther Naomi Gill, Ed.D.

Associate Professor

Oakwood College

Department of Business and

Information Systems Management

Information & Electronic

Systems
Software & Data Management

Systems Software

John W. Wolfsberger and
Robert L. Stevens

August 8, 1986

NBT 01-002-099

The University of Alabama

XIX

2.0 ACKNOWLEDGEMENTS

Thanks go again to the Information and Electronics
Systems Laboratory, W. C. Bradford, Director, Gabe Wallace,
Assistant Lab Director; Software & Data Management Division,
Jack Lucas, Chief| Systems Software Branch, Walter Mitchell_
Chief; and Counterparts_ John Wol+sberger and Robert Stevens
who for the second year opened their laboratory, shared their

facilities, and gave o+ their expertise and time which

another year enabled the successful completion of this
research effort.

Thanks also go to Cathy White, who shared her library

and reviewed my efforts at various stages. To Mike Kynard
and Ken Williamson who aided with computer equipment and

salvaged this document when I thought all was lost--"You

saved my sanity."

My appreciation to Ernestine Cothran_ F. A. Speer,

Mike Freeman, and Dina Conrad, NASA/ASEE and University of

Alabama Summer Faculty Fellowship Program C_,dtQrs and

Secretary for giving opportunities for teachers to get into

th_ dynamic work environment so their teaching can be

relevant, their students might hav_ employment opportunities,

and the dynamic work environment might be shared in the

classroom through grants proposed and sponsored. The informa-
tive seminars and tours were also appreciated.

Last, but not least, highest praise goes to the ASEE

organization whose vision it was to design this worthwhile
NASA/ASEE Summer Faculty Fellowship Program, and also to NASA

for sharing in its implementation.

Esther Naomi Gill

XIX-i

AN EVALUATION OF THE
DOCUMENTEDREQUIREMENTSOF THE SSP UIL

ANDA REVIEW OF COMMERCIALSOFTWAREPACKAGES
FOR THE DEVELOPMENTAND TESTING OF UIL PROTOTYPES

BY

Esther Naomi Gill, Ed.D.
Associate Professor of Computer Science

Oakwood College
Huntsville, AL 35896

ABSTRACT

This study will report the progress toward the development

of the User Interface Language (UIL) for the NASA Space
Station.

First, an examination was made of each Center's role in

this development; namely, Goddard Space Flight Center (GSFC),

Johnson Space Center (JSC), Kennedy Space Center (KSC), and
Marshall Space Flight Center (MSFC).

Secondly, a review was conducted of software packages cur-

rently on the market which might be integrated with the

interface language and aid in reaching the objectives of

customization, standardization, transparency, reliability,

maintainability, language substitutions, expandability,

portability, flexibility; and recommendations are given for

best choices in hardware and software acquisition for in-

house testing of these possible integrations.

Finally, software acquisition in the line of tools to

aid expert-system development and/or novice program develop-

ment, artificial intelligent voice technology and touch

screen or joystick or mouse utilization as well as networking

were recommended. Other recommendations concerned using the
language Ada for the UIL shell because of its high level of

standardization, structure, and ability to accept & execute

programs written in other programming languages, its DOD

ownership and control (already written and owned by US

Government), and keeping the user interface language

R!--(something that is truly USER FRIENDLY) so that
multiples of users (both national and international) will

find the commercialization of space (at non-prohibitive

costs) within their realm of possibility which is, after all,
the purpose of the Space Station.

XIX-ii

AN EVALUATION OF THE
DOCUMENTEDREQUIREMENTSOF THE SSP UIL

AND A REVIEW OF COMMERCIALSOFTWAREPACKAGES
FOR THE DEVELOPMENTAND TESTING OF UIL PROTOTYPES

4.0 TABLE OF CONTENTS(OUTLINE)

1.0 TITLE PAGE

2.0 ACKNOWLEDGEMENTS.................. i

3.0 ABSTRACT ii

4.0 TABLE OF _n_Tc_T=_,_ iii

5.0 INTRODUCTION 1

5.1 Purpose 1

5.2 Status 1

5.3 Users 2

6.0 NASA U_NIERS SS UIL _T_I, T_v _in _rTTUTTV_ . . 3

&.l Scientific Community and Commercial Customers
(BSFC) 3

&.2 Mission Control and Crew Operations (JSC) . . . 5

6.3 Integration, Test, and Launch Tool (KSC) 8

6.4 Software Development--Operational and Support
Activities (MSFC) 11

6.5 Ground Operations and Support (Joint-Center
Involvement) 15

6.6 NASA Centers SS UIL Requirements and Activity
Evaluation 15

7.0 REVIEW AND IDENTITY OF UI AVAILABLE TOOLS, SYSTEMS

AND/OR LANGUAGES 17

7.1 Management Tools 17

7.2 Software Development Tools 19

7.2.1 4GLs 19

7.2.1.1 End-User Tools 19

XIX-iii

7.2.1.2 Productivity Gains 20

7.2.2 Artificial Intelligence (AI) 20

7.2.2.1 Expert Systems 21

7.2.2.1.1 Teknowledge 21

7.2.2.1.1.1 S.1 . . 22

7.2.2.1.1.2 M.1 . . 22

7.2.2.1.2 Intellicorp (KEE). . 22

7.2.2.1.3 Carnegie Group, Inc. 22

7.2.2.1.3.1 Language
Craft . 23

7.2.2.1.3.2 Knowledge
Craft . 23

7.2.2.1.4 Inference Corp (ART) 23

7.2.2.2 Ada 23

7.3 Interfaces 24

7.3.1 TAE (Transportable Applications
Executive) 24

7.4.1 TEN/PLUS 24

7.4 CASE (Computer-Aided Software Engineering). . . 24

8.0 UIL REQUIREMENTSEVALUATION_ ISSUES_ AND COMMENTS.. 26

9.0 SOURCESUSED 27

10.0 ILLUSTRATION 30

11.0 GLOSSARYOF ACRONYMSUSED.............. 31

XIX-iv

5.0 INTRODUCTION

5.1 PURPOSE STATEMENT

While the U.S. Space Program is recovering from the

shock of the Challenger accident, life and the challenge of a

permanently based, manned Space Station go on. NASA likewise

can, will, and must lick its wounds, overcome its difficul-

ties, face its critics, surmount its obstacles, learn from

its mistakes and proceed with cautious optimism and expertise

to meet this challenging goal in the next decade. A part of

this goal, which is the purpose of this paper, includes

the development of a Space Station common module User

Interface Language (UIL) that is effective and efficient.

Some words to NASA leaders would be to hang in there and

see what the end will be--don't give up the ship! A team

doesn't need to finish the ball game with a new manager, a

relief pitcher, and all pinch hitters--th_t_s like going to

the locker room before the inning is over, throwing in the

towel, starting from scratch when you're ahead in the game,

abandoning ship when there's no danger of it sinking. Once

you've made the team and are in the game, you have to play

until the game is over; and unless you're thrown out, you

don't have the option to quit.

5.2 STATUS

The development of the SS offers NASA a chance both to

advance the technology of automation and robotics and to put

that technology to use. It was at this point that the wand

was picked up and a progress report and evaluation of NASA's

SS software UIL development, and operational activities were

made.

Finally a review of existing (commercial) and/or created

(off-the-shelf) software packages were discussed in the light

of the possibility of integrating their technology for

analysts and programmers productivity increases, purchasing

feasibility, and checking out various UILs. The UIL will

support software development, onboard and ground operations,

tests and diagnostics, and a family of languages (Assembly,

COBOL, FORTRAN, BASIC, C, Forth, Pascal, Ada, etc.). It will

be device independent and transparent (friendly) to the user.

XIX-1

5.3 USERS

Interface users have been described as being

requirement/specificati°n engineers

software designers

coding and testing engineers

maintenance engineers

experi reenters

managers
crews (astronauts, science,

control)

payload operators
application customers

developers

These users

operations as:

flight control &

will be using the UIL to support

ground

such SS

Performing, Planning and Scheduling
Interacting with Real-Time Module/Payload Satellite Processes

Performing In-orbit Checkout, Repair and Servicing
Controlling and Monitoring Space Environmental Control and

Life Cycle Support System (ECLSS)

Communicating with Other Languages

Detecting and Diagnosing Equipment Malfunctions
Interacting with Configuration Management Malfunctions

Monitoring On-going Systems and Making Adjustments or
Trouble-shooting Where Needed

Examining and Updating Databases
Monitoring and Reporting Observations
Interacting and Communicating with Ground Systems

Interpreting, Recording and Presenting of Data

Communicating with Payloads
Forecasting Potential Conditions and Making Contingency

Analyses
Validating Systems Performance
Creating and Describing Graphic Displays

Examining Programs' Performance

Monitoring User's Use of UIL

XIX-2

6.0 NASA CENTERSSS UIL RESPONSIBILITY AND ACTIVITY

The operations perspective and requirements responsibili-
ties for the UIL were divided among three NASA Centers:
Goddard Space Flight Center (GSFC) - Scientific Community,
Commercial Customers and Customer Data and Operations Lan-
guage (CDOL), Johnson Space Center (JSC) - Mission Control
and Crew Operations and the compilation of the requirements
from the three centers to form the User Interface Language
(UIL), Kennedy Space Center (KSC) - System Integration and
Test Function Support and Space Station Operating Language
(SSOL). Marshall Space Flight Center (MSFC) - Aid Software
Development and Operational Support Activities. Ground
Operations and Support will be a joint-Center effort.

A review of each Center's effort follows with the idea

of recognizing similarities and differences and attempting to

determine to what degree each is or is not important to the

successful development of the SS UIL:

6.1 GODDARD SPACE FLIGHT CENTER (GSFC) -SCIENTIFIC COMMUNITY

AND COMMERCIAL CUSTOMERS

Goddard Space Flight Center (GSFC) described the

requirements for Commercial Customers via the Customer Data

and Operations Language (CDOL). This language provides

access to support functions required by both internal and

external SS operators, commercial customers, science

researchers, science operators, mission operators, test and

Integration engineers, scheduling, and flight controllers,

etc.

Some services related to payload development, test,

integration scheduling operations are made available by CDOL
to both internal and external users.

CDOL is a user-oriented, easy-to-use, standardized

interface to the non-mission-unique ground functions provided

by the Customer Data and Operations System (CDOS). CDOL

represents the platform, and payload operations perspective

of the Space Station User Interface Language (SS UIL). CDOL

is either equivalent to UIL or is a proper subset of UIL.

UIL provides the standard access to all Space Station Infor-
mation System (SSIS) services and facilities including CDOS,

onboard Data Management System (DMS), and Science Application

Information System (SAIS) segments.

XIX-3

CDOL represents one of the three operations perspectives for
which user interface requirements have been defined. The

requirements associated with these varied operations perspec-

tives will be integrated to form the requirements for the
NASA-wide UI language.

The requirements definition effort of the Customer Data

and Operations Language lead by GSFC include payload and

platform operations and payload test support.

The goal of CDOS is to support user and customer needs

in all phases of mission planning_ scheduling, and opera-

tions. CDOL supports the following modes of operation: Imme-

diate execution, background execution_ and batch execution.

The major functions provided by CDOS are planning and

scheduling of platform and payload activity, real-time

monitoring, control and verification for platform and

payloads, access to data management services in support of

platforms_ payloads, and customer applications_ system

integration, test_ simulation, and training support and

platform and payload operations support. These functions

will be provided and/or supported by a variety of support

services (including SSIS services, user applications

software, operating systems_ and database management systems
(DBMS) which execute at various locations in a distributed

processing environment.

CDOL provides the user interface to the mission planning_

scheduling, operations and data handling capabilities pro-

posed by CDOS. CDOL provides the mechanism for user access

to both local and distributed support services.

The availability of sophisticated_ low-cost terminals_

personal computers_ and workstations argues strongly that

several_ widely availablep common configurations should be

chosen as a basis for the initial core and operations CDOL
tel eases.

CDOL General Requirements:

1. CDOL must provide a standarized user interface to payload

platform operations and data analysis functions provided
by CDOS.

2. CDOL shall be responsible for limited validation of user
inputs.

Command Procedure Requirements: CDOL shall support

1. the definition of structured command procedures.

2. the creation of libraries of frequently used
procedures.

command

XIX-4

Language Element Requirements:

1. The language shall provide a mechanism for assigning
values to variables.

2_ Th_ lanouaae shall provide a branching or selection
control mechanism.

3. The language shall provide an iteration control (looping)
mechanism.

4• The language shall provide ÷or command procedure activa-
tion or suspension at a user-specified time or after a
specified time interval.

Human-Machine Requirements:

Interactive Dialog Style

1. The language shall support advisory, warning, and alarm
messages that alert the user to problems.

2. The system feedback message shall utilize various visual
display attributes actuated by system or user-defined.

3. The language shall support HELP messages in support of
all defined alert messages.

User Assistance:

• Three levels of HELP shall be available on the basis of

user experience level_ very concise assistance (for ex-

perts), brief assistance (for intermediate users), and
extended assistance (for novices).

Optional Capabilities:

I •

m

Depending on availability of appropriate workstation

support and on the so÷tware system chosen to _port

g_o_ _C_, there are a variety of optional

capabilities that should be provided via the CDOL inter-

face to graphics services_ such as, window outlining; low

resolution color graphics, high resolution bit-mapped

graphics; icons; and a variety of character attributes,

fonts, and styles•

To the degree provided by CDOS, and as authorized by

local management, CDOL should permit full interaction
with Electronic Mail functions.

6.2 JOHNSON SPACE CENTER (JSC) - MISSION CONTROL AND

OPERATIONS

CREW

The Tri-Center Committee focused on a command and

control language (UIL) having keywords, arguments, syntax,

rules, conditional statements, etc. Other groups have

XIX-5

focused on I/O devices (e.g., keyboards_ cathode ray Tube,
mouse, or touch screen) and the human factors involved that

allow the user to interface with the computer in an efficient

manner. All of these considerations are important in
building a good user interface_ which is really user-machine
communications. JSC was also responsible for crew

interfaces, and putting together data from other centers and
writing the final UIL.

The user interface language (UIL) crew and

control operations support; requirements definition
was led by JSC.

mission

effort

The real requirements have to do with making it easy to

do the job, so that interfacing with the computer is not

another difficult task that has to be conquered. The goal
then is to have a standard user interface where similar

functions should be done in similar ways across all applica-
tions and system services.

There will be a SSIS (Space Station Information System)
software service called the User Interface (UI) which will

interpret human inputs and route them to the appropriate

application/service to be performed and will interpret appli-
cation/outputs and present them in an understandable form to

the human user. The User Interface forms a shell around the
SSIS and its services.

The user interface provides the means whereby the user

can effectively and efficiently communicate with a supporting

computer system. The interface consists of three parts: UIL

defined syntax and semantics; man-machine interface (MMI)

techniques; and a set of supporting services for the language

and interf_co techniques. Associated with these three parts

are standards, guidelines and managerial constraints.

UIL syntactic and semantic definitions specify the
characters, words and structures used for communication

between users and computer system. It permits the users to

precisely and concisely define their processes in the
terminology that is best suited to their job.

The UIL is required for the following reasons:
familiarity, documentation (self-documenting or readable

languages provide records of instructions that are easy to

understand and maintain), portability of procedures and

command sequences (a common UIL supported at all or most SS

program sites--a solution to the portability problem), and

commonality. As long as the diverse, specific needs of
various users can be translated into a common UIL syntax and
command structure, this level of standardization can be met.

XIX-6 O_JGi_AL PAGE
OF POOR_UALITY

Users can select the interactive method (menus,

graphics, etc.) that best meet their needs.

commands,

Standards:

When coordination and transfer of information between

user groups occurs, then standardization of the language is

clearly needed. However, when language statements support

needs that are unique to a particular group of users or

specific function, standards that guide the language subsets

may be useful.

Another reason for standardization that involves UIL is

the concept of the format for recording (or logging) the

user's actions that were specified through other MMI techni-

ques--language becomes a readable "history" of choices and

selections made by the user.

Capabilities--The basic capabilities that the UIL needs

to support are Systems Operations, Simulations, and Queries.

Execution Modes--Several modes of operation for the UIL

are Batch (the process of requesting processing for a

sequence of statements and awaiting the results); the other

operating modes apply to an Interactive Environment or a

dialog between man and machine (is most useful for systems

operations and quary capabilities); and predefined sequences

(in this case, the user has the ability to interface to the

sequence through the UIL, and predefined sequences could be

partially processed ahead of time).

Man-Machine Interface Techniques--MMI techniques refer

to the different methods and devices that can be used for the

machine (computer system) to present (output> information to

the users, and for the users to present (input) information

(data and commands) to the machine. Regardless of the MMI

technique chosen to interface by the user, all information

presented to the user must be clear, concise, and precise.

The reason for having a wide variety of MMI techniques

(displays, Texts, Graphics, Menus, Forms, Prompts/Responses)

is to provide the users with (the natural language, voice

recognition/actuation, interface devices; such as, lights and

alarms, buttons, programmable keys; pointing devices; such

as, mice, joystsicks, trackballs, touch screens, light pens,

and cursor keys; and hardcopy devices; such as, printers,

plotters, and cameras) their choice for most effective and

efficient interaction with each system function.

The following list specifies the currently identified

requirements criteria for the SSIS user interface:

XIX-7

1. Provide all users with a friendly, automated, easy-to-use

means of accomplishing the functions of developing, test-
ing, operating, managing, and maintaining the various
elements of the SSP.

2. Support all users regardless of their level of expertise.
3. Place support of the users' performance with respect to

speed, accuracy, and ease of use above ease of implemen-
tation considerations.

4. Meet the objectives of upgradeability, maintainability,

readability, writeability, and learnability.

5. Be easily managed, maintained and transported to the

users' site with the assurance of function repeatability

and no degradation of system integrity.
6. Be independent of the host and target computer system.

7. Easily accommodate growth and technological advances with

minimal or no impact on the user or the interface pro-
ducts developed by the user.

8. Not preclude other languages and systems from co-existing
with it.

9. Be standardized as well as all of its lower-level inter-

faces to SSIS applications and data.
10. Be common across all elements of the SSIS.

6.3 KENNEDY SPACE CENTER (KSC)--UTILIZE !_E _!L AS AN
INTEGRATION_ !_!_ AND LAUNCH TOOL

The systems integration and test function support

requirements definition effort was led by Kennedy Space

Center (KSC). The Space Station Operating Language (SSOL) is

an automated environment, where SS Integration and Test
(I&T) activities can be designed, developed, tested, and

performed. The SSOL will be responsive to users, independent
of their, location and it will promote standardization and

transportability of user developed procedures from site to

site, capitalizing on the functional commonality of the I&T

activities at these sites. SSOL system will take full
advantage of advances in the state-of-the-art in both

software and hardware development. Advances in the user

friendliness of commercial real-time operating systems, data

base management systems, supporting software development

tools, processing speed, and memory capacity are only a few

of the anticipated technological improvements which may
enhance the SSOL system.

KSC logically derived and established a set of require-

ments and concepts! the acceptance, design, and

implementation of the same will result in the development of
an evolutionary user environment in which a diversified user

group may accomplish all phases of Space Station I&T.

XIX-8

The requirements provide a functional description of the
SSOL System that can be applied or adapted to any computer
system architecture. The concepts and requirements are pre-
sented in three basic parts: the SSOL System; the SSOL
Language; ana _he _uL _uppurL Environment.

The SSOL System provides the Space Station I&T community
with a consistent, automated, user-friendly means to accom-
plish integration and testing activities. It supports all
phases of I&T activities from factory through launch, and on-
orbit, maintaining system integrity and ensuring test repeat-

ability at all I&T sites. The SSOL System is designed to meet
the objectives of readability, writeability, learnability,

maintainability, transportability, and standardization.

The SSOL coexists with other Space Station application

software. Standard interfaces allow other Space Station

software to access and make use of the SSOL System, and the

test products developed on the SSOL System. These standard

interfaces also permit the SSOL System and test products to

access and make use of other Space Station software and data.

The SSOL System consists of two parts, the SSOL language

and the SSOL Support Environment (SSOL SE). The SSOL

Language provides the means for user communication and

control of his test articles, support equipment and real-time

computer systems. The SSOL SE provides the environment which

supports the use of the SSOL language, allowing the users to

develop, verify and perform their I&T activities.

The SSOL System provides a consistent, friendly user

interface to its Support Environment functions. The primary

purpose of the Support Environment is to allow the I&T users

to develop and verify their own "user interface" to the Test

System for the performance of their specific test activities.

The SSOL System maintains commonality between the user
interfaces to the SE functions and the user developed

interfaces to the Test System. The basic capabilities

provided by the SE user interface can be applied to the

interface developed by the user. These capabilities include

interactive graphic displays, menus, prompts, and an

interfacing/command language. The language used to interface

to the SSOL SE functions is, in essence, the User Interface

Language (UIL). The language that interfaces with the Test

System is the SSOL language.

The SSOL language is an English-oriented, user-friendly

tool, that establishes standard terminology and methods for
the performance of I&T activities for the Space Station. The

use of a standard I&T language ensures a common set of I&T

capabilities independent of specific implementation, test

articles, and host and target computer systems.

XIX-9

The basic function of the SSOL language is to provide a
consistent interface for control and monitoring of the Test
System.

The SSOL SE provides the users with an integrated,
automated environment to design, develop, maintain, and
execute their test products, including the SSOL proce-
dures/statements. In addition the SSOL language, the user
can create graphic displays for his interface to the Test
System. These displays have the potential to provide
friendly, easy-to-understand interfaces. They can be used to
initiate action, provide response data, monitor the Test

System, interact with SSOL procedures, and provide operator
notification of critical conditions.

SSOL SYSTEM CONCEPTUAL REQUIREMENTS

The conceptual requirements for the SSOL System provide
a set of goals or objectives for which the eventual

implementation of the SSOL System should strive. The

conceptual requirements will provide a qualitative means of

judging system implementation effectiveness:

i. The SSOL System shall be user-friendly, in all aspects.
2. The SSOL System shall strive to meet the objectives of

readability, writeability, learnability, and maintain-

ability in all aspects, with emphasis placed in areas o÷
user interfaces.

3. The SSOL System shall provide an automated environment

in which SS I&T activities can be designed, developed,

tested_ and performed.

4. The SSOL System shall effectively & efficiently support

I&T activities from factory test through on-orbit.

5. The SSOL System shall support I&T users in their environ-

ments with no degradation of system integrity and with

the assurance of test repeatability.

6. The SSOL System shall be host, target, and Test System

independent, allowing the SSOL System to be easily
transported from site to site.

7. The SSOL System shall be designed to produce SSOL

products that are easily transported from site to site.

8. The SSOL System design and implementation shall be
configuration manageable

9. The SSOL System shall be designed to easily accommodate
technological changes and advances with minimal or no

impact on existing SSOL products and on itself.

10. The SSOL System design shall incorporate functional
modularity to allow subsets of the SSOL and/or SSOL SE
to be used.

11. The SSOL System and its interfaces shall be standardized.

XIX-IO

12. The SSOL System shall not preclude other systemsp
languages, or software utilities from co-existing or in-
terfacing with the SSOL System and SSOL products.

The basic ÷unction of the SSOL language is to provide a
means of communication and control within the framework of
I&T. The I&T users need not be highly skilled in computer
systems programmming techniques, but will have the capability
to perform I&T ÷unctions using familiar terminology and
uniform test notations.

The SSOL is adaptable to the I&T users' environments
ranging from development testing to integrated systems
testing. It is technically capable of performing the I&T
functions required by the various user disciplines,
including (but not limited to):

Command and monitoring
Data sampling
Data comparison
Data manipulation

Data organization
Data presentation
Data recording
Time controlled events

Workstation interaction
Communications with otherslanguages
Communications betweem procedures
Test article identification
Exceptions processing

The language will maintain a functional modularity enab-
ling efficient, easy upgrades and modifications, the SSOL
qualities of readability, learnability, changeability, and
writeability allow the language to be self-documenting.
These are key features in achieving reduced I&T life cycle
costs and a high degree of user-friendliness.

The SSOL will support interfaces to other languages or
routines. This will make available to any user, the capabi-
lities of any language supported by the SSOL SE. This will
enable a user who desires to use other programming environ-
ments, or who desires to program in languages like LISP,
PASCAL, Ada, or Assembly language to access the capabilities
of that environment.

6.4 MARSHALL SPACE FLIGHT CENTER (MSFC)--SOFTWARE DEVELOP-

MENT AND OPERATIONAL SUPPORT

NASA/MSFC Information and Electronics Systems

Laboratory, Software and Data Management Division, Systems

Software Branch reviewed all the specifications and

requirements documents of GSFC, JSC, and KSC and raised

questions needing answers and made comments and

XIX-11

recommendations. They also held an open forum in which some
300 plus software vendors, prime contractors, MSFC, GSFC,
NASA Headquarters, JSC, KSC, LeRC, and foreign participants
from Canada, Japan, the Netherlands, ESA, and ESTEC were in
attendance entitled, "Space Station Software Recommendations
(April 25, 1985)."

Some recommendations of note which came out of that
meeting were:

1. Using existing (inherited) software as an alterna-
tive to a totally new development.

2. Developing policies and procedures to accommodate
modern, appropriate software development methodology.

3. Developing policies and procedures for the
acquisition of software rather than the development
of software.

4. Developing policies and procedures for insuring non-
loss of software and continuous operations due to
inadvertent and/or catastrophic loss of operational
or support hardware.

UIL is a set of signs and symbols whereby a user
communicates with a system (universal). It is a formal
language consciously constructed for definite and restricted
purposes (functional). The SS UIL will consist of the user
interface standard and a family of UILs built around that
standard.

According to Peter Prun, the UIL is an English-like,
user-friendly tool used to communicate with and control the
Space Station Environment. The UIL selected must provide a
standard interface to the various computerized functions of
the Space Station. The language will be a user-oriented,
high-level language using English-like commands. It will be
a tool by which a user will communicate with and control
his environ in a simple manner without being skilled in
programming techniques.

Commonalit_ - UIL supports standardization of user
interface to multiple subsystems. It will provide a common
and consistent user interface throughout all stages of tests
and operations both on ground and in-orbit.

_ Friendliness - UIL will be user friendly in all
man-machine interfaces. UIL will be a high-order language
requiring little skill in programming techniques and will be
straight-_orward, English-like commands.

Reduce Life C_c_e Costs - In order to minimize costs in
time and resources, the UIL will make use of the similarity

XIX-12

of operations requirements at different stages of test, inte-

gration, and operations. It will reduce costs by meeting

the goals mentioned in the UIL purposes.

_r+_h_l_+v - The UIL should be easily transoorted to

different computer systems and locations assuring consistency

and independence from system hardware and also assure system

integrity.

Maintenance - The UIL should be easily maintained

throughout its like cycle and provide a toolset to assist in

maintaining its products and interfaces.

Flexibilit_ - The UIL should be adaptable to growth in

capability and new technology, it should meet the needs of

the users. It should be flexible enough to easily adapt to
different situations and user needs.

The language structure should support real-time command-

ing and monitoring in a simple manner as well as lead to

automation of many tasks. This would make it adaptable to

the user's environment from testing to operations. It should
provide a short form for real-time interactive control.

Functional modularity will allow language subsets and enable

eTTicient easy upgrades =,,d .,,_--_f__=__.._. .T+_...____,,=+__h=+=rh-.....
nically adequate in fulfilling the requirements of users. The

language should provide meaningful, accurate, and easy-to-

understand communication between the user and the subsystem.

Characteristics - The user must be able to interrogate
the system to obtain answers, to monitor the system to deter-

mine performance, to create, modify and interact with graphic

displays, to obtain readouts, to indicate status and diagnose

failures, to examine databases for updates, retrieval, and
management, to exert manual control over applications for

real-time management or for overriding system software.

The UIL will provide an extensive control and monitor

capability which will interact with space station's systems,

payloads, and platforms both on the ground and in-orbit. The

UIL will have the capability to communicate with other

processes as well as concurrent processing. It should have

the ability to handle real-time functions in an efficient,

simple manner. This includes fault and warning detection and

handling. The UIL should support individual commanding of SS

systems, payloads, and platforms. It should also provide a

multifunction scan with error reporting capabilities.

It should allow simultaneous viewing of displays. It

should perform distributed protocal data handling, control

and display functions.

XIX-13

The language must provide a flexible data storage
analysis, retrieval, manipulation, and recording capability.
It should provide capability task control such as initiation,
termination, suspension, and resumption.

The UIL should provide an interface to:

--minimal operator attendance
--software development tools
--free/flexible access to Resources

--program generation and debug

--minimul skill requirements

--health and status monitoring

--visual imaging for

proximity operations

--payloads
--audio devices

--electronic mail

--models/simulations

--subsystem performance and trend data --other languages

--network operating systsem --display graphics
--high level of information --common databases

The language implementation should stress ease of use.

UIL should provide an easy interactive mechanism for entry of
commands. It should make use of menus techniques, function

keys, icons, mouse, track balls, and other manual computer

devices or techniques. It should make good use of graphic
displays.

The UIL should support different levels of interaction

to accommodate infrequent users as well as skilled users. It

should use menus for tutored input and also allow command

inputs for fast, efficient communication needed for r_ i_

time applications. The UIL should support two modes of

operation, interactive and precompiled and linked programs.

The UIL should support a comprehensive "HELP" system

giving multiple levels of user self help for all software

processes and combinations of software processes. The UIL

should support automatic error exception/fault detection

notification and processing for Space Station System.

Definitions - A User Interface Language is a language

that is invoked to communicate with various processes on a

computer. It contains a set of command words, the rules for

combining them (syntax), and their meaning (semantics).

_o_al Form - Imperative statement, conditional prefix,
direct object, prepositional phrase.

S_ntax of a UIL Statement - Contains at most 4 terms:

COND (Conditional Term) - IF/THEN.

CMD (Command Term) - VERB

ELEM (Element Term) - Direct Object

ARG (Argument Term) - Prepositional Phrase

XIX-14

--May be invoked at any time
--May be embedded in user definitions

Input Capabilit_

--keyboard
--Touchscreen

The user inter÷ace is the set of system interfaces,
guidelines, tools, features, and the interface language that
support the user's ability to communicate with the processes.

Dr. Thomas Tu!!is and Glen Love in their writing
concerning SSP UIL gave a description of current work being
done in the human-computer interface field that appears to
have application to UIL and the Space Station.

M. Guillebeau, F. Nixon, S. Owens, and M. Ulehla
sponsored by Martin Marietta Denver Aerospace and prepared by
TRW System Development Division, Defense System Stoup, Hunts-
ville Operations describe MSFC UIL requirements perspective
and can be used as MSFC input to the NASA inter-Center UIL
specification activity.

UIL Tests--It was MSFC's inter-Center activity to:

--Evaluate Tools and Provide Experience
--Prepare UIL Prototype and Detail Requirements
--Share Lesson Learned from Space Lab Experience
--Describe Life Cycle Management Function
--Aid in Software Development
--Evaluate Documented Requirements
--Research Commercial Packages for Possible UI Incorpor-

ation
--Act as Checkout Tool Facility

6.5 GROUNDOPERATIONSAND SUPPORT

Support for Ground Operations was a joint-Centers'
(GSFC, asc, KSC, and MSFC) effort. Therefore, my research
did not cover this phase although a couple of centers' views
on the subject have been included from my literature review.

6.6 NASA CENTERSSS UIL REQUIREMENTSACTIVITY & EVALUATION

With every center utilizing the objectives of:

XIX-15

Portabilit_ - Hardware & Software independence which assures
consistency and integrity.

Maintainabil_t_ - Upkeep throughout life cycle.

Flexibilit_ - Easily
users' needs.

adapted to different situations and

Userfriendliness - High-level, English-like, transparent to

User, interface which works for different levels of interac-

tion (unskilled, semi-skilled, skilled users) and utilizes

(prompts, touch screens, mice, keyboards, function keys,

menus, etc.) for interactive, real-time or batch process-

ing. The terms readability, writeability, and learnability
which have been used by some centers as separate objectives

are synonymous with userfriendliness.

Commonalit_ - Standardization assures same

system for ground and in-orbit operations.

(consistent)

It is felt that if the common objectives (listed above)

are strictly adhered to, a consistent automated user-friendly
means of communicating with ground and in-orbit users and

crew members can be achieved within the time frame of the
Space Station launch (1992).

XlX-16

7.0 REVIEW AND IDENTITY OF UI
aVAILABLE TOOLS. SYSTEMSAND/OR LANGUAGES

7.1 MANAGEMENTTOOLS

Libraries have finally become su÷ficiently refined so
that few programmers can realistically object to them on
purely technical terms. The libraries save so much time and
effort that no software developer--excepting those working in
demanding environments--can afford to do without them. Some-
day they may even take on the traditional roles of 4GLs and
application generators.

Libraries of subroutines and functions that developers
can incorporate into their own products dramatically reduce
software development time and cost. There are two types of

programmers' tools sold today. The first, and by far the

most common, comprises source code libraries of subroutines

and functions that developers can incorporate into their own

software. The second is of programs that assist a developer

in the writing, management, and maintenance of code.

Vendors maintain collections of subroutines for jobs

such as screen handling, mathematical operations, database-

search methods, and graphics and string functions that

address common programming tasks. Developers can purchase

them in source code so that they can be modified and further

specialized to fit their particular application. Most source
code libraries are written in BASIC or C.

Phoenix Computer Products Corporation (PCP) markets a

broad line of programming tools in the microcomputer-based

MS-DOS world. Their current offerings include Pmate, a

programmer's editor; _C_Z_L, a C _og_am anal_ze_ for the _Z

RQ_ environment; Plink, a linking editor; Pf_, a high-level

debugger; and _D_, a program which allows user to inden-

tify inefficient areas of code. A particularly unusual

programmer's tool, Pfinish allows MS-DOS programmers to find

problem areas, not only in application programs, but also in

their compilers and operating systems. Polytron Corp.

markets a very broad line of programming aids; such as,

Pop,Make, which the company describes as "an intelligent

program builder and maintenance tool." Essentially, Eo_Mate

is an MS-DOS version of utility in the UNIX operating system

known as "make." If a programmer makes in one module of code

a change that requires other modules to be likewise modified,

Po_yMake will automatically go through the program and

update the files that have not been changed. It costs $99.

XIX-17

Keyboards are the most commonly used devices for getting
data into and out of computers; however, there are some
easier-to-use devices that are catching on including mice,
trackballs, touchscreens, graphic tablets, touchpads and even
voice input devices. All of them appeal to a class of users
who may be intimidated by keyboards.

Pencept Inc.'s Penpad 320, for the IBM PC and compatible
systems, combines the capabilities of a keyboard, a mouse, a
touchpad, and a digitizing tablet in one device. Penpad
simplifies the production of business-presentation graphics
by permitting the drawing, coloring, labeling, and position-
ing of elements directly through the pad. Making
transparencies for business presentations is facilitated by
the ability to integrate text and labels into the graphics.
Application interfacing is available for LOTUS 1-2-3 and
templates. Interfaces for WordStarL dBaseII, and others are
under development. Penware software is also available. A
software tool kit provides the ability to customize the
0 for unique software and programming applications for
the IBM PC.

VOICE/SPEECH SYSTEMS

Voice recognition has been like the pretty girl everyone
admires but is afraid to ask out. However, with tremendous
price reductions, the influence of personal computers, and
the gathering interest of original-equipment manufacturers,

voice recognition is being "asked out" increasingly to manu-

facturing applications and sized up by the business software
and computer community.

The big change is price: Voice recognition, data-input

method similar to a keyboard or a mouse is inexpensive. A

few years ago, a voice-input device would run $10,000 or

more. Now new plug-in voice boards for the IBM PC go for as

little as $1,000, voice recognition chip sets are $100_ and

sophisticated algorithms go for $10 a copy.

Speech synthesis, a natural complement to voice recogni-

tion, completes the I/O loop. This technology has been

around for a while and is inexpensive enough for many firms
to justify its use. Voice vendors have begun to

incorporate the technology so that PCs input terminals, and

other devices can "listen" and "talk." Many of these

applications consist of the hands-and-eyes-busy scenario,

which vendors currently consider the mosts appropriate use
for voice. S_eechLink Access lets Lotus 1-2-3 receive vocal

commands, & an attendant program provides speech-synthesized

XIX-18

prompts. Key Tronics' speech-recognition package, _!_2_,
includes a speech-recognition unit housed in a keyboard, a

noise-cancelling microphone, a footswitch, and vocabulary-

management software. The speech-recognition board has a 160-
werd voc_bularv. It is speaker dependent: The unit

recognizes the unique sound patterns of persons for which iL

is trained. Speech & key input can be performed concurrently.

The 5152V is compatible with the IBM PC and PC/XT.

7.2 SOFTWARE DEVELOPMENT TOOLS

7.2.1 4GLS

Fourth-generation languages are new languages different

and presumably better than their third-generation "cousins"

such as BASIC, COBOL, FORTRAN, or PL/1. According to Dr.

George Schussel, president of Digital Consulting Associates,

Inc., a fourth-generation language is a single, integrated

system development tool that offers 10:1 productivity

improvement over third-generation languages and has a kernal

(subset) which can be learned and used in two days.

An ideal 4GL supports both a procedural language and a

nonprocedural facility. Access to COBOL or other third-
generation facilities is an alternative to the self-contained

language.

The nonprocedural language allows the user to state his

or her needs in business or logical phrases, leaving creation
of code to meet those needs up to the language processor. A

screen-painting facility is characteristic of 4GLs, allowing

the user to create systems by defining the form, sequence and

content of input and output screens, and the storage of data

received through input screens. A word processing facility

should be part of a 4OL. Ideally such a facility should be

complete, but, minimally, it should be an editor.

Summing up the benefits of using a 4GL: Systems can be

built more quickly, systems work faster, program development

process speeded, and quality improvement, fine-tuned to

users' needs, and coding is logically the best.

7.2.1.1 End-User Tools

Developers who want to use traditional programming

languages; such as, COBOL, C, or BASIC, and want to control

much of the coding, but still want to reduce their own ef-

fort, can exploit the libraries of subroutines already on the

market. These subroutines involve window managers, terminal

XIX-19

emulators, report generators, string manipulators,
communications functions, database-search software; and de-
vice, printer, screen, mouse, and terminal drivers. The
Programmer's Shop, a software-supply house that specializes
in tools, carries over lO0 versions in the MS-DOS environment
alone. So if developers want to minimize coding--or even do
no coding at all--they can exploit a host of fourth-genera-
tion languages (4GLS) and application generators that have
recently come on the scene. Informix-4GL and Accell make it
extremely easy either to link their UNIX-based DBMS with
other applications or to build new products on top of them.

One new wrinkle in the 4GL market is machine-specific
4GLs. Integrated-software developers working in the IBM
area, for example, can take advantage of such languages as
Mach 2 from Tominy, Inc. Capable of producing code for the
entire spectrum of IBM machines from mainframes to microcom-
puters, Math 2 uses an English-like structure, menus, and
forms-based visual programming. A similar product in the
Digital Equipment Corp. sphere is SmartStar from Signal
Technologies, Inc. In addition to performing some office-
automation functions, SmartStar contains a 4GL that allows
developers to link code in third-generation languages (3GLs),
such as, COBOLand C, with SmartStar applications into one
integrated product.

7.2.1.2 Productivity Gains

A 4GL can cut programming time by upwards of 90 per c_r_
but requires the developer to buy into somebody else_s pro-
duct. Tools can vastly reduce programming time and even make

for better products by allowing developers to incorporate

other vendor's standalone applications into their packages.

7.2.2 ARTIFICIAL INTELLIGENCE (AI)

Artificial Intelligence (AI) has been defined as the

computer program that is knowledge based (logically) rather

than digital in its handling of the data (numeric or text).
Several programming tasks could be written in AI structure

and format. These programs if they use knowledge and

reasoning techniques to solve problems which normally require

the abilities of human experts would be described as expert
systems.

The growth of this industry, however, has not made it

any easier to decide what to do about artificial intelligen-

ce. Basic questions--such as, what it is and what it's good
for--remain unanswered. One reason for such questions is that

XIX-20

artificial-intelligence systems and conventional data
processing systems are dramatically different. Conventional
data processing solves problems by performing rote functions,

using unambiguous data presented according to a strick
format. On the other hand artificial intelligence, at least

in the theory, solves problems by applying a kind of

reasoning_ which can accommodate uncertainty and incomplete

information. It is conceivable that someday artificial intel-

ligence might be able to perform automatic programming, guide

intelligent robots, and allow machines to talk to people.

7.2.2.1 Expert Systems

Expert systems draw on a body of knowledge and make

decisions more or less like people do--using fragmentary

information, adjusting for uncertainty, applying informal
rules of thumb where no hard and fast formulas exist. They

store and use not only large amounts of data, but also

patterns, rules, and strategies that mimic human reasoning.

The working parts of an expert system are a knowledge

base and an inference "engine." The knowledge base stores

data, rules about how to deal with the data, and statements

about how they are related. The inference engine draws on

the knowledge base to come up with answers.

Teknowledge, Intellicorp, Carnegie Group, and Inference

all sell expert systems • expert-system development software.

7.2.2.1.1 Teknowledge

Teknowledge, Inc. of Palo Alto, California, is the

second-largest artificial intelligence software vendor. The

company sells two standard packages that allows users to

develop their own expert systems, but the bulk of its

business lies in using products itself to tailor systems for
individual customers.

Its packages are not written in LISP or PROLOG, the

languages used by most artificial-intelligence programmers,
but in the C language. That allows them to run on any UNIX-

based system which make it easier and less expensive to use

Teknowledge software_ compared with packages that can run

only on specified LISP or PROLOG machines.

The company's standard products are _!, which is used
by programming teams to develop large-scale systems, and _!,

which is used by individuals or small groups to develop small

systems. Teknowledge offers two versions of the software:

The "development environment: is used by programmers to write

expert systems. Once the system is developed, users can run

XIX-21

it on a less-expensive version of the product, usually called
a "delivery system. "

7.2.2.1.1.1 _!--A development system for large
knowledge-based systems, is Teknowledge's premier product.
The first version, written in LISP, runs on LISP machines

from Xerox Corp. and Symbolics Corp., as well as on VAX
minicomputers from Digital Equipment Corp. equipped with

DEC's LISP compiler. Version 2, written in the C language,

runs under the UNIX operating system on the AT&T PC 7300,
the DEC MicroVAX, the NCR Corp. Tower 32, and workstations

from Sun Microsystems and Apollo Computer, Inc. Teknowledge

plans to offer versions that run on other large UNIX systems.
The price of the S. 1 package that is used to develop expert

systems ranges from $18,000 to $45,000, depending on the

quantity ordered. The package used to run the expert systems
after they have been developed costs from $1,500 to $9,000.

7.2.2.1.1._ _ M.1--Version___ 2 of M. 1 is written in C, runs

on the full IBM line of microcomputers and its clones. It

requires 512K bytes of memory and can store as many as 1,000

rules. The compiled C language produced by Version 2 runs

several times faster than Version 1, which produces inter-

preted programs in PROLOG. Teknowledge Inc. announced a

price cut in the form of a new package price for its existing
Quick Start products and services. The Quick Start package

consists of one copy of the firm's _! product for expert

systems development on personal computers, 10 copies of the

_! version that allows end users to run finished _! pro-
grams, and training and maintenance. The total cost of the

package is now $7,500 down from the $14,000 charged for the
separate items.

7.2.2.1.2 Intellico_ (KEE)

Intellicorp, in Mountain View, California, is the largest

of the four leading vendors of expert-systems software. Know-

ledge Engineering Environment, or _E_, introduced in 1983, is

an integrated package of software tools, which allows

programmers to develop expert systems without extensive

training in AI. It is based on L!_; applications developed

under KEE must run under it. Using only LISP restricts the

number of processors _EE runs on, most of KEE installations

run on computers from Symbolics, Inc. and Xerox Corp. The

price of the first KEE license is $30,000. Intellicorp won't

sell that license, however, unless the customer also buys a

minimum support package that costs $25,000. The package in-

cludes one year of customer support and product up-dates,

seven days training for two and four days on-site consulting.

7.2.2.1.3 Carneqie GrouQ_ !Q_ _ _Q_!_ California

XIX-22

To sell more products, the Carnegie Group is porting its
software from LISP to the C language, which makes its
software products compatible with UNIX and IBM's RT Personal
Comput ers.

7.2.2. 1.3. 1 Language Craft--is a $25,000 package for

developing natural-language interfaces to expert systems,

data bases, operating systems, and applications.

7.2.2.1.3.2 Knowledge Craft--is designed for building

large, complex industrial expert systems. The $50,000 pack-

age "is very rich in knowledge representation, and the more
complex the knowledge base, the better the fit it is."

Both are written in Common LISP. They run on Symbolics Inc.

3600 processors, the Texas Instrument Inc. Explorer, and the
DEC VAXstation.

7.2.2.1.4 Inference _L (ART)

Inference Corp. located in Los Angeles, California is

the oldest of the major expert-system software vendors (Octo-

ber, 1979). Inference' s package, the Automated Reasoning

Tool _B_I_, is the fastest, best integrated product on the

market. The $65,000 package was developed from scratch which

is why it is the only major expert-system development

software that includes a knowledge-base compiler. G_! has

the most powerful "inference engine" of the leading products,

meaning that it can deal with its knowledge base in more

sophisticated ways. _I is written in _!_, so current users

run it primarily on computers from Symbolics, Inc., Xerox

Corp., LISP Machines Inc., and Texas Instrument Inc. That

will soon change, however. A version of 8_! written in the C

language will be available by the end of 1986 for the IBM RT
PC and the DEC VAX minicomputer. Along with the University

of Houston, Inference Corp. is working on a version of B_I

written in B_ which probably will be the first expert-system

development software available in that language.

7.2.2.2 ADA

B_ developed to the specifications of the Department of

Defense in the late 1970s for military and commercial appli-

cations may be the most standardized language in the world.

The Government has reserved all rights to B_ and to market

an B_ compiler that does not meet exacting Federal require-

ments is to risk prosecution under the law. As a result,

B_ is so standardized that binary code produced from one

company's compiler should look exactly the same as binary

code generated by another company's compiler.

XIX-23

If Ada ever becomes a popular commercial language--and
Ada compilers for IBM PCs and compatibles have recently

appeared (You can't do large, serious expert systems on a PC

yet, but as PC memory grows toward 4 Mbytes, PC expert

systems are becomming more than toys)--it could land itself

in a library market larger than anything yet envisioned.

The ultimate objective of ariti_icial intelligence (AI)

software development is the embedment of AI capabilities in

target computing devices. Ada programming language appears
to be suitable as both a development and target language for
AI embedment.

7.3 USER INTERFACES

7.3.1 !_ (TRANSPORTABLE APPLICATIONS EXECUTIVE)

!_ was developed at Boddard Space Flight Center (GSFC)
to provide a standard interface to users for application

program control, data analysis, user interaction and

operating system services. It was developed for VAX under

VMS, VAX under UNIX, PDP 11 under RSX-11M, and Data General

under RDOS. Its interface modes are Menus, Command Mode, and

User Created Procedures. It appears to be an effective user

interface for infrequent as well as expert users. Its highly

portable (87% of code), supports system extendability, and

provides common interactive user interface to applications

programs. It does not have a graphics interface and is not in

use for real-time operations (some speed penalty) or Integra-

tion and Test which are primary user interface functions.

7.3.2 TEN/PLUS

An easy-to-use, easy-to-learn user interface, TEN/PLUS

supports editing, file manipulation, mail, and networking
functions. TEN/PLUS also can be extended to include new

applications as they are developed by virtually any vendor.

Interactive Systems Corp. has developed a family of products

that can build powerful networks connecting VMS-based

computer systems with UNIX- and PC DOS-based computers.

TEN/PLUS provides a consistent interface for computer

users. It aims at organizations seeking a standard, easy-to-

use environment that can run on different UNIX systems and on

various classes of computing equipment: personal computers,

multiuser microcomputers, minicomputers, and mainframes.

7.4 CASE (COMPUTER-AIDED SOFTWARE ENGINEERING)

XIX-24

Vendors claim their products help bring order to the
process of designing software. The products help only in the
beginning of the software-development process; they automate
the designing of software. Actually, generating code and then

.... _........ _a.i i.. --!_debugging _nu ,,,_i_#ainin§ _..... t_. _ p_=MM,_g I=

still beyond their grasp. The widespread availability of the

personal computer (See illustration XIX-30) provided systems

analysts an economical machine that could provide easy-to-

learn, high-resolution graphics and fast response time, and

facile graphics capabilities. CASE software runs on !_

PC/XTs and B!_- The system offers pull-down menus, mice or

other graphics facilities that let system analysts design on

screens instead of with pencils and templates.

Users may look forward to the day when the CASE products

can add some AI. Having an embedded expert system on board

could help an analyst find his way--and perhaps eventually

enable a non-data processor to design and generate his own

system and resulting code. As it becomes more sophisticated,

CASE will be called upon to automate as much of the analyst's

and the programmer's job as possible.

XIX-25

8.0 UIL REQUIREMENTSEVALUATION, ISSUES AND COMMENTS

Pre-existing Software--An important issue which remains
to be addressed is how commercial off-the-shelf products
(software) can be incorporated into the user interface.

gO Review b Users--The users should have an
opportunity for hands-on testing of prototypes of key portions
of the UI. This would enable users to provide feedback to
the developers on the potential design problems before final
development and delivery of the product.

The complexities of the system hardware and
should be user transparent.

software

There is no other language so structured or standardized
and portable as Ada. Ada is capable of satisfying any
practical algorithmic requirements for AI applications at
speeds 10 to 200 times faster than the equivalent LISP
programs. Ad_ was developed to the specifications of the
Department of Defense in the late 1970s for military and
commercial applications, and the Government has reserved the
rights to Ada and its exacting requirements which must be
meet by all Ada compiler vendors.

Given the wide range of users and user functions, it may
be difficult to satisfy adequately all users and their
functions with one language that still meets the objectives
of being easy to learn and easy to use. All of the language
requirements noted by the three NASA Centers are oriented
toward making the language intuitive, readable, writeable,
learnable, easy to use, easy to remember, system independent,
adaptable to future SSP growth and expansion, and flexible.
These features are intended to reduce the cognitive load on
the users, allowing them to concentrate on their particular
applications, and not on the details of interfacing with the
system.

Therefore, for these reasons, this researcher highly

recommends the use of Ada (the "Sleeping Beauty") to write

the UIL with off-the-shelf software packages integrated where

feasible and to have users access applications through user-

friendly menus and/or touch screens, etc. in the language of
their choice.

XIX-26

9.0 SOURCESUSED

Documents

KSC
PrototyQe.

(SSOL) Interactive

SSIS User Interface Definition and Integration Task, April

28, 1986, Kennedy Space Center (KSC).

Station Software Recommendations. Report of an open

forum held at NASA/MSFC, Huntsville, AL, April 24-25,

1985.

Customer Data and Operations Reguirements, Data

Systems Technology Division, NASA/GSFC, Greenbelt,

MD, April, 1986.

User Interface _og_g_ (UIL) for SQa_e Station Crew Control.

User Interface Reguirements Document (Problems OverviewS,

NASA/MSFC UI Activity, Prepared by TRW.

Botten, Leroy, Curtis Emerson, and Karen Moe. SQace Station

User interface L_Dg_g_ Conference, April 28_ 1986,

GSFC.

Dickerson, Larry R.

Dupree,

Elia,

0 Station OQerations _og_g_ (SSOL)

S_stem Level A Reguirements So_fication. Prepared

by KSC Engineering Development, March 28, 1986.

Holly and Peter L. Prun. _o_og the UIL A Total

S_stems Conceo_, MSFC, Martin Marietta, General

Digital Industries. 4/28/86.

Christine. Preliminarz _go and Integration of the

User Interface. Presented by SS UIL Coordination

Meeting at KSC, April 28, 29_ 1986.

Guillebeau, M., F. Nixon, S. Owens, and Martin Ulehla. _0_

Station User Interface _og_g_ Reguirements

SQecifica_O_, Sponsored by Marietta Denver Aero-

space. Prepared by TRW Systems Development Division

De4ense Systems Group, Huntsville Operations, MSFC.

Snyder, 3. and G. Weisskop4.
and Integration Task.

SSIS User Interface Definition

3SC, April 28, 1986.

XIX-27

Snyder, Joseph & George Weisskopf. _E_e Station Information
S_stem User Interface ConceEts. JSC, March, 1986.

Snyder, Joseph.
1986.

Status of SSE Procurement. JSC, April 28,

Tullis, Tom Dr. and Glen Love. _E_E_ Station P[ogram (SSP)
User Interface. Analysis Performed Under MDAC IRAD,
Project 238.

Articles

"AI Is Becomming Just Another Form of DP,"
May 5, 1986, Page 16.

InformationWEEK,

"Linking VMS with UNIX and PC DOS,"
February, 1986, P. 1.

SYSTEMS & SOFTWARE,

"New Products Microcomputer Software - Ada Offerings,"
SOFTWARENEWS, January, 1986, P. 64.

"The Current State-of-the-Art in User Interfaces," SYSTEMS &
SOFTWARE, March, 1985, Pp. 131-140.

"Uniform '86: The UNIX Connections," MINI-MICRO SYSTEMS,
January, 1986, Pp. 117, 118.

"Voice Recognition Starts Sounding Off," SYSTEMS &

March, 1985, Pp. 55-59.
SOFTWARE,

ben-Aaron, Diana, "Getting into AI: Proceed with

InformationWEEK, April 28, 1986, P. 40.
Care. "

Briday, Robert, "Making A CASE for Computer-Aided Software

Engineering," InformationWEEK, June 23, 1986, Pp. 33,
34.

Keller, Eric L., "Voice Board for IBM PC Recognizes

Continuous Speech," SYSTEMS & SOFTWARE, March, 1985.

Leavitt, Don, "More Than End-User Tools,

Productivity," SOFTWARE NEWS, April,
72, 74, and 77.

4GLs Add to

1986, Pp. 70,

Naedel, Dick, "Ada & AI," DEFENSE ELECTRONICS, April, 1986,
Pp. 90-100.

Schindler, Jr., Paul E., "At Teknowledge, Knowledge is

First," InformationWEEK, April 28, 1986, Pp. 26, 27.

XIX-28

........ , "Carnegie: Schooled in Expert Systems,"
InformationWEEK, April 28, 1986, Pp. 35-57.

........ , "Expert Systsems: AI Goes Commercial,"
InformationWEEK, April 28, 1986, Pp. 55-59.

........ , "Intellicorp Holds KEE to the AI Market,"
InformationWEEK, April 28, 1986, Pp. 30, 32.

........ , "The ART of Inference: Power and Flexibility,"
InformationWEEK, April 28, 1986, Pp. 38-39.

Tucker, Michael (Associate Editor),
Development Time," MINI-MICRO
Pp. 95-100.

"Software Tools Slash
SYSTEMS, June, 1986,

, "Tools Speed Software Integration, MINI-MICRO
SYSTEMS, February, 198b, Pp. 55, 56, 59, 60, and 63.

XIX-29

z

u_ _
om_O

>oN_

z
_0

I__ z
Z v-
< (

iu

I

i
i

;

8

5 N

9 8
0

Z _

m

<
.1
>

=

.J
n

<

e_
w

0

-I
.J
0

!
W

e

=

I11
>
ul

XIX- 30

D

0

.J
<
z
m

u_

Z
uU
t9
e

uU

Z
i

z
<
rr
0

(N

CO

UJ

<_

f-
!1

0
(/)

=3
¢.n
:E
LU

¢.n
>.
oo

10.0 GLOSSARY OF ACRONYMS USED

AI

ART

ECLSS

ESA

ESTEC

CASE

CDOL

CDOS

DBMS

DMS

GSFC

I&T

JSC
KEE

KSC

LeRC
MMI

- Artificial Intelligence

- Automated Reasoning Tool
- Environmental Control & Li÷e Cycle Support System

- European Space Administration

- European Space Technology

- Computer Assisted Software Engineering

- Customer Data & Operations Language

- Customer Data & Operations System

- Data Base Management System

- Data Management System
- Goddard Space Flight Center

- Integration and Test
- Johnson Space Center

- Knowledge Engineering Environment

- Kennedy Space Center
- Lewis Research Center

- Man-Machine Integration

MS DOS - MicroSoft Disk Operating System
MSFC

PCP

SAIS

SE

SS

SSD

SSIS

SSOL

SSP

TAE

UI

UIL

- Marshall Space Flight Center

- Phoenix Computer Products

- Science Application Information System

- Support Environment
- Space Station

- Space Station Data

- Space Station Information System

- Space Station Operations Language

- Space Station Program

- Transportable Applications Executive
- User Interface

- User Interface Language

XIX-31

