NASA Contractor Report 4019

Simulated Flight Acoustic Investigation of Treated Ejector Effectiveness on Advanced Mechanical Suppressors for High Velocity Jet Noise Reduction

. 5 .

5

J. F. Brausch, R. E. Motsinger, and D. J. Hoerst

CONTRACT NAS3-23275 NOVEMBER 1986

Simulated Flight Acoustic Investigation of Treated Ejector Effectiveness on Advanced Mechanical Suppressors for High Velocity Jet Noise Reduction

J. F. Brausch, R. E. Motsinger, and D. J. Hoerst General Electric Company Cincinnati, Obio

Prepared for Lewis Research Center under Contract NAS3-23275

national Aeronautics and Space Administration

Scientific and Technical Information Branch

TABLE OF CONTENTS

••••••			SECTION	PAGE
1.0	SUMM	ARY	1	
2.0	INTR	3		
	2.1	Backur	ound	3
3.0	FXPF	Q		
0.0		5		
	3.1	9		
		3.1.1	Anechoic Free-Jet Facility	9
		3.1.2	Aerodynamic Data Acquisition & Reduction Procedures	11
		3.1.3	Acoustic Data Acquisition & Reduction Procedures	11
		3.1.4	Laser Velocimeter System Diagnostic Shadowgnaph System	15
		5.1.5	Diagnostic Shadowgraph System	10
	3.2	Scale	Model Test Hardware	18
		3.2.1	Suppressor-Ejector Model Definition: Configurations	18
		3.2.2	Acoustic Treatment Definition	41
		3.2.3	Aerodynamic $P_S \& T_S$ Instrumentation	49
	3.3 Acoustic & Diagnostic Test Matrices		61	
		3.3.1	Acoustic Test Matrices	61
		3.3.2	Laser Velocimeter Test Summary	95
		3.3.3	Shadowgraph-Photograph Test Summary	95
		3.3.4	Aerodynamic P _S & T _S Test Summary	95
4.0	ACOL	99		
	4.1	Effectiveness of Baseline Configuration TE-1 Relative to Conical Nozzle and to Previous Multi-Chute Inverted- Velocity-Profile Suppressor System		101
		<i>ו</i> ו <i>ו</i>	Conical Nozzla Pacolina Substantiation	101
		4.1.2	Effectiveness of Baseline Configuration TE-1	115
	4.2	Overvi	146	
		4.2.1	Ejector System Minimum Effectiveness	146
		4.2.2	Ejector Axial Spacing Variation	158
		4.2.3	Treatment Design Variation	165
		4.2.4	Ejector Length Variation	169
		4.2.5	Extent of Treatment Application Within the Plug/Eject	ur 172
			System Cort of Anno	NT SH MAD
			iii PRECEDING PAGE DELAT	TIVI CHARGE

			SECTION	PAGE		
	4.3	Variat	ions of Ejector Axial Spacing & Treatment Design	175		
		4.3.1 4.3.2	Acoustic Data Presentation & Evaluation Aerodynamic Performance Data	175 192		
	4.4	Rankin Applic	g of Individual Suppression Sources of Ejector ation	195		
		4.4.1	Overview of Individual Suppression Source	196		
		4.4.2	Detailed Data Comparisons Relative to Individual Suppression Source Effectiveness	199		
	4.5	Ejector Length Variation				
	4.5.3	4.5.1 2 Deta 4.5.3	Overview of Ejector Length Variation Acoustic Impact iled Data Comparisons for Ejector Length Variations Diagnostic Data Review	231 238 257		
	4.6	6 Effectiveness of Plug Treatment on Shock Noise Alleviation				
		4.6.1 4.6.2 4.6.3	Background and Overview Detailed Acoustic Data Presentation Diagnostic Data Review	265 266 271		
	4.7 Aerodynamic Performance Evaluation from Chute Base Pressure Measurements		namic Performance Evaluation from Chute Base re Measurements	281		
		4.7.1	Thrust Loss Estimates Based on Chute Base Pressure	281		
		4.7.2 4.7.3	Measurements Thrust Loss Calculation Procedure Thrust Loss Calculation Data Presentation	281 283		
5.0	EJECTOR TREATMENT THEORY/EXPERIMENT CORRELATION					
	5.1	Objective				
	5.2	2 Prediction Methods for Effect of Shroud, Hardwall and Treated				
		5.2.1 5.2.2	Effect of Shroud on Farfield Radiation Acoustic Treatment Impedance Prediction	294 301		
	5.3	Summar	y of Measured Data and Comparison with Prediction	304		
	5.4	Discussion		314		

-	SECTION		
6.0	CONCLUSIONS	315	
7.0	NOMENCLATURE	317	
8.0	REFERENCES	322	
APP	ENDICES		
Α.	Algorithm for Predicting the Ejector Suppression, Hardwall and Treated	325	
Β.	General Electric Laser Velocimeter System	353	
с.	Measured Suppressions from the Ejector	359	

In pursuit of an acoustically acceptable, high performance exhaust system capable of meeting Federal Aviation Regulation Stage 3 (FAR36 Stage 3) noise goals for an Advanced Supersonic Transport (AST) application, a design study was conducted within NAS3-23038 (Reference 1) to incorporate an acoustically treated ejector shroud into a 20-chute suppressor exhaust system. That contract additionally evaluated the aerodynamic performance of the suppressor/ ejector exhaust design in a scale-model system at various flight mission points including takeoff, subsonic cruise, transonic cruise, and supersonic cruise; results are presented within Reference 1. This reports acoustic performance evaluation contract utilized the NAS3-23038 "takeoff" design point's aerodynamic flowlines as a starting point around which to evolve a scale-model system for acoustic testing. Ten scale-model nozzles were tested within the General Electric, Evendale Anechoic Free-Jet Facility, obtaining an acoustic data base of 188 static/simulated-flight test points. The test points primarily patterned the operating throttle line of an Advanced Supersonic Transport/Variable Cycle Engine (AST/VCE) utilizing an inverted-velocityprofile coannular propulsion nozzle. Within this report overview acoustic parameters such as OASPL, PNL and EPNL are presented for the full operating cycle time; more detailed comparisons of spectra and directivity are presented at the primary cycle points of takeoff, intermediate and cutback.

An additional diagnostic measurements data base was acquired on select configurations/test points in the forms of a) laser velocimeter (LV) mean and turbulent velocity plume surveys, b) shadowgraph-photographs, and c) P_S and T_S surface measurements on the suppressor chutes and within the ejector's inner flowpath. The LV measurements are used primarily to compare plume structure and decay rates among various configurations as an aid in understanding acoustic trends. The shadowgraph photography allowed for improved understanding of shock-cell-noise contributions to total jet noise and its subsequent alternation through application of treatment to the plug surface and through ejector application. The P_S measurements on the suppressor surface allowed for estimating thrust degradation due to chute base drag, a primary thrust loss mechanism for mechanical suppressor nozzles.

The scale model test configurations investigated ejector variables of a) hardwall ejectors application to a coannular nozzle with a 20-chute outer annular suppressor, b) ejector axial positioning, c) ejector length variation, d) extent of treatment application within the ejector system, i.e., treatment application to ejector surface only and treatment application to both ejector and plug surfaces, and e) treatment design through variation of acoustic impedance. Additionally, the baseline unejected coannular-suppressed nozzle was tested to reference its performance level to a previous similar suppressor system. Acoustic treatment was also applied to the plug surface of the baseline unejected coannular-suppressed nozzle to investigate a pseudo-porous plug concept's impact on potential shock noise alleviation.

1

Salient results from analysis of the measured data include: a) application of hardwall ejectors is significantly beneficial in reduction of both forward and aft quadrant noise, b) application of treatment to plug and ejector surfaces is additionally effective, primarily at forward and broadside acoustic angles and in the cutback to intermediate cycle range, c) the optimum treated ejector system added $5.5 \ \Delta EPNL$ suppression to the baseline mechanicallysuppressed nozzle at takeoff cycle, d) all ejector systems yielded high forward quadrant suppression, not previously experienced with non-ejector systems, e) axial location of the ejector is very significant, further aft location being both aerodynamically and acoustically superior, f) treatment design variation, within limits evaluated, was not critical to suppression, and g) treatment application to the plug surface of a non-ejector system was not effective in further reduction of shock noise.

An existing computations methodology to predict ejector/treatment suppression was refined to handle treatment on both the shroud and plug surfaces and to improve the modal propagation model, including effects of flow on mode cut-on-ratio. Comparisons of predicted and measured suppression levels show a) good agreement in frequency bands dominated by the mid-to-low frequency jet noise, b) the effect of hardwall shroud by itself is predicted very well, c) relative benefits of the long versus short ejectors and of treatment on the outer wall, only, versus on both walls, are predicted reasonably well, and d) at high frequencies a discrepancy occurred that is thought to stem from noise leakage out the gap between nozzle exit and ejector inlet, a flanking path.

2.0 INTRODUCTION

Environmentally acceptable acoustics has been one of the major technical challenges to be met prior to the development of an Advanced Supersonic Transport (AST) by American industry. A dominant problem has been community jet noise associated with the propulsion system and more specifically the propulsion exhaust system. Traditionally, noise abatement schemes have been applied to exhaust systems with some success; however, the performance penalties previously associated with these schemes have been large and thus have not been economically viable for an AST application. Recent Contract NAS3-23038, sponsored by NASA-Lewis as the counterpart aerodynamic performance study to this program's acoustic effort, as well as this contracts work efforts, have offered the potential of accomplishing acoustic suppression with favorable trades on propulsion performance. The results of these works indicate that a superposition of three acoustic suppression schemes in a single exhaust system offers the potential to satisfy stringent noise goals with the potential for performance levels appropriate to the attainment of an economically feasible AST aircraft.

The NAS3-23038 contract's final report, Reference 1, presented the results of design studies to identify important features for a viable aero/acoustic AST/VCE exhaust system plus scale model test results to investigate aerodynamic performance of the fully integrated ejector shroud system at the important flight points including takeoff, subsonic cruise, transonic cruise and supersonic cruise. This acoustic performance evaluation contract utilized the "takeoff" aerodynamic flow-line design of the NAS3-23038 contract to evolve a base scale-model hot flow nozzle system around which important features were evaluated for impact on noise suppression. Acoustic treatment design, areas of treatment application, ejector length and ejector axial location were detail evaluated over an AST/VCE cycle line from subsonic exhaust nozzle operation to beyond takeoff cycle. Primary regions of investigation were the takeoff and community-cutback cycles. Results of this acoustic evaluation study are detail-presented herein.

2.1 BACKGROUND

Under NASA Contract NAS3-23038 (Reference 1), a two part program was conducted, consisting of a design study and a subscale model wind tunnel effort to define an exhaust system for supersonic transport application. In the design study three exhaust systems were evaluated, i.e., coannular, 20-chute suppressor, and suppressor ejector shroud system. Study results were used in a mission analysis scenerio; aircraft takeoff gross weights were determined to perform a nominal design mission, constrained by Federal Aviation Regulation (1969) Part 36, Stage 3 noise requirements. Mission trade study results confirmed that the suppressor/ejector shroud design was the best of the three exhaust systems studied. This Advanced Supersonic Technology (AST) exhaust system, shown schematically in Figure 2-1 in takeoff mode and in Figure 2-2 in supersonic cruise model, is documented in Reference 2. In the subscale model wind tunnel test program, this AST exhaust system was used as the base for model design, developing a .123 scaled version of the full scale study nozzle. In this report's contract effort the AST exhaust system in takeoff mode was modeled in a .135 scaled version of the same full scale study It was then subjected to extensive acoustic and diagnostic test nozzle. efforts within the General Electric, Evendale Anechoic Free-Jet Facility.

20-CHUTE SUPPRESSOR EJECTOR SHROUD NOZZLE (TAKEOFF MODE) FIGURE 2-1

FIGURE 2-2 20-CHUTE SUPPRESSOR EJECTOR SHROUD NOZZLE (SUPERSONIC CRUISE MODE)

The AST exhaust system is a high radius ratio plug nozzle with a fixed primary nozzle cowl and a translating center plug nozzle. A translating outer shroud adjusts the exit area ratio for high performance throughout the pressure ratio range. The outer shroud inner surface is contoured to closely match the primary throat area requirements at the more important operating The translating center plug nozzle exhausts the excess bypass airflow points. that cannot flow through the primary nozzle throat. During noise suppression/ takeoff, bypass flow is ducted from the outer fan passage through eight strut-ducts into the plug beam and then to the center plug nozzle. This arrangement, along with the high radius ratio primary nozzle, provides the characteristic inverted-jet-velocity-profile coannular suppression. Additional suppression is obtained by deploying 20 chutes in the outer stream during suppressed-takeoff operation. Still higher suppression is obtained by shrouding the nozzle discharge with ejected ambient air using a mechanical shroud and lining the shroud and plug surfaces with sound absorbing material. The ejector shroud is attached to the aft end of the translating shroud. For unsuppressed operation, most of the bypass air is mixed with the core stream. the suppressor chutes are stowed in the nozzle plug outer surface, and the ejector inlet is closed for high internal performance. The ejector shroud is made of variable area flaps and seals so that the required expansion ratio for good performance can be met throughout the wide pressure ratio operating range.

The exhaust system includes a cascade type thrust reverser. The thrust reverser cascades are attached to the forward end of the translating outer shroud. When the shroud is fully extended, the cascades are exposed on the outside and inside and a shroud mounted door assembly is expanded to contract the fixed plug crown to block the flow through the primary nozzle. The cascades occupy three quarters of the circumference, but may be positioned in the total circumference if the reverser discharge efflux can be controlled to prevent airframe impingement and engine reingestion. A low temperature rise augmentor is used in the exhaust system to provide augmented thrust during acceleration.

The following sections discuss details of the design study nozzle's individual components plus operational characteristics in the suppressed-takeoff mode.

Translating Outer Shroud

The outer shroud is a cylindrically shaped fabrication made up of matched rings, sheet metal rolled rings and honeycomb. The aft end is shaped to provide a path for ambient airflow ventilation of the backside of the suppressor chutes. Twelve reverser blocker doors are contained in a cavity near the middle of the cylinder. The thrust reverser cascade boxes are located near the forward end of the shroud. They occupy 270° of the circumference and can be arranged in any desired circumferential location to prevent a) exhaust gas impingement on the aircraft and/or b) engine hot gas reingestion. The forward end of the shroud supports the linkage which drives the reverser blocker doors. The inner liner of the shroud provides convective cooling for the shroud inner surface to the end of the liner and film cooling beyond the end of the liner. The aft cavity of the shroud contains the support and positioning system for the ejector shroud.

Ejector Shroud

The ejector shroud is composed of a flap support ring forming the aft surface of the ejector inlet and containing the flap actuators, 20 variable area flaps, 10 support beams and an actuating ring housed in the aft cavity of the translating outer shroud. The forward outer end of the flap support ring contains the seal for the ejector inlet in the inlet closed position. The inner surface of the support ring contains 20 chute-inlet cavity fillers to provide a continuous inner flowpath when the inlet is closed. The flaps are conventional sheet metal fabrication and incorporate sound absorption panels on the inner surface of the flaps. The sound absorption panels are constructed similar to honeycomb with the chambers vented to the inner flowpath.

Outer Cowl

The outer cowl provides the outer flow surface between the aft end for the aircraft nacelle and the translating shroud. It also retains the cowl to shroud seal at the aft end and thus functions as the outer container wall for the bypass cooling air for the shroud liner.

Outer Structure

The outer structure is a cylindrical structure with a bulkhead at the forward end and a stiffening ring at the aft end. The outer forward end of the bulkhead has a step to provide for the nacelle-exhaust nozzle interface. The aft ring contains the inner shroud seal to separate the shroud cooling air from the main stream. Two sets of longitudinal tracks are contained in the cylindrical portion of the outer structure. One set of four tracks support the outer shroud. The other set of twelve tracks provide for positioning of the reverser blocker doors.

Strut Structure

The strut structure is composed of eight pairs of radial beams (slanted 60° to the engine centerline) joined by outer and inner circumferential rings. The forward outer ring is joined through vanes in the bypass stream to the bypass duct outer spacer ring. The supporting loads for the inner nozzle are thus transferred to the engine outer bypass duct through radial beams and strut sidewalls for the bypass air duct. Upper and lower cylindrical surfaces between struts form the boundary for the core engine airflow passage, and the upper surface supports the VABI doors. This strut structure is encased with cooling air liners that blend with the turbine frame liner to form continuous struts from the turbine frame entrance to the bypass strut exit. A portion of the liner is sound absorbing material.

VABI Doors

Twenty-four Variable Area Bypass Injector Doors, in sets of three between each of the eight struts, are hinged to the forward outer part of the strut structure. One power hinge per set of three doors maintains the VABI door position. The doors are conventional sheet metal structure with sound absorbing panels on the core flowpath side.

Outer Plug Structure

The outer plug structure is composed of welded sheet metal and machined rings to form the core flow inner flowpath. It is supported at the forward end by the strut structure aft inner ring. The aft end ring forms the outer flowpath of the inner nozzle. This structure also contains the suppressor chutes and their actuation mechanism.

Inner Plug Structure

The inner plug structure consists of a truss support attached at the forward end of the strut structure aft inner ring, a mid ring that supports an aft stiffened cylinder which in turn supports the four sets of guide rollers, and the actuator for the translating plug.

Translating Plug

The translating inner plug is composed of welded sheet metal and machined rings stiffened at the forward end with honeycomb and containing a honeycomb type sound absorption covering cone. Thus, the inner bypass flowpath contributes to the jet noise suppression. The inner plug is supported by four sets of guide tracks that engage the guide rollers on the plug structure.

Suppressor Chutes

Twenty suppressor chutes are mounted in the outer plug structure. Each chute is supported by a link and a set of two rollers engaging tracks attached to the plug. The chute construction can be sheet metal or cast. The 1.75 nozzle-to-base area ratio suppressor allows a lightweight simple stowed position arrangement that does not require a cover door and a cover door actuation system. The chutes are retracted into cavities on the outer plug surface such that they blend with the plug outer contour to form the inner flowpath of the outer stream.

Suppressor Takeoff Operating Mode

The suppressor chutes are deployed and the translating outer shroud is positioned to mate with the chute outer edges. The translating shroud forms the outer flowpath of the high pressure outer stream, and the outer nozzle throat is formed between chutes at their aft edges. The ejector shroud is translated aft relative to the translating shroud to enable ejector ambient air induction and allow mixing of ambient air and the outer stream discharge from the suppressor chutes. The ejector flaps are positioned to match the full expansion area requirement of the mixed ambient air, outer stream and inner stream. Most of the bypass air flows from the bypass duct through the eight struts to the inner annulus and then exhausts through the open-positioned inner plug nozzle. Some of the bypass flow passes through the twenty-four Variable Area Bypass Injector (VABI) doors and is mixed with core flow. This feature allows the engine to be operated efficiently with the limited variation in the outer nozzle throat area.

For use within this test program, the above described design study nozzle was developed into a basic model exhaust system. Variations of the full scale ejector positioning and length, as well as treatment design and areas of application, were exercised. Details of this scale model hardware system are discussed in Section 3.2, "Scale Model Test Hardware".

3.0 EXPERIMENTAL PROGRAM

All of the acoustic and diagnostic tests of this program were conducted in the General Electric Anechoic Free-Jet Facility located in Evendale, Ohio. Brief descriptions of the facility, data acquisition and data reduction procedures are presented in Section 3.1. Detailed descriptions of the facility plus acoustic data acquisition, reduction and flight transformation procedures are provided in this contracts comprehensive data report, Reference 3. Section 3.2 detail defines the ten model test configurations, method of acoustic treatment application and aerodynamic Ps and Ts instrumentation. It also presents the methodology adopted to systematically evaluate parameters which impact acoustic performance, describing the chronology of test configurations needed to "on-line" select optimum design parameters. Further details of treatment development can be found in Reference 4, also included as part of this reports comprehensive data report.

Tabulations that summarize the aerodynamic flow conditions and extent of tests conducted for the acoustic, laser velocimeter, shadowgraph-photograph and aerodynamic Ps/Ts investigations are provided in Section 3.3. Measured acoustic and diagnostic data are reported in detail in the comprehensive data report.

3.1 TEST FACILITY, DATA ACQUISITION AND REDUCTION SYSTEMS, DIAGNOSTIC TEST APPARATUS

3.1.1 Anechoic Free-Jet Facility

The General Electric, Evendale, Anechoic Free-Jet Facility, schematically shown in Figure 3-1, is a cylindrical chamber 13.1 meters (43 feet) in diameter and 21.95 meters (72 feet) high. The inner surfaces of the chamber are lined with anechoic wedges made of fiberglass wool to yield a low frequency cutoff below 220 Hz and an absorption coefficient of 0.99 above 220 Hz. Descriptions and results of the tests conducted in order to determine the acoustic characteristics of the anechoic chamber (such as inverse square law tests) and the mean velocity and turbulence intensity distributions in the free jet are presented in Reference 5.

The facilitity can accommodate model configurations up to a size of 17.3 cm (6.8 inch) in equivalent flow diameter. The required streams of heated air for a dual-flow arrangement, produced by two separate burners, flow through silencers and plenum chambers before entering the test nozzle.

The tertiary air system consists of a 250,000 scfm (50 inches water column static pressure) fan and a 3,500-hp electric motor. The transition duct work and silencer route the air from the fan discharge to the tertiary silencer plenum chamber. The air is then discharged through the 1.2-m (48 inch) free-jet exhaust. Tertiary flow at its maximum permits simulation up to a Mach number of 0.41. Mach number variation is obtained by changing the tertiary airflow rate achieved by adjusting the fan inlet vanes. The combined airflow is exhausted through a "T" stack directly over the nozzles in the ceiling of the chamber.

FIGURE 3-1. ANECHOIC FREE-JET/JET NOISE FACILITY SCHEMATIC.

3.1.2 Aerodynamic Data Acquisition and Reduction Procedures

Facility Operational Method

The facility operating parameters are monitored during testing at the control console to a) ensure that prescribed facility limits are not exceeded, and b) set the test-point conditions.

The core and fan discharge pressures are measured on rakes at the metering station and are used for setting the desired nozzle pressure ratios. These parameters also are routed through the Dymec scanning system and recorded along with nozzle performance data by the aerodynamic data management (DMS) system.

Facility temperatures are monitored at the control console using a Doric multichannel temperature indicator. The unit has a 24-channel capability and is designed for use with Type K thermocouples (chromel-alumel). It is used for safety monitoring and setting test-point temperatures for the dual-flow system. A system schematic is shown in Figure 3-2.

Nozzle Pressure and Temperature Measurement

A critical parameter used in evaluating acoustic test results is nozzle exhaust velocity. Determination of this velocity depends on an accurate measurement of the exhaust temperature and pressure which, in turn, depends on adequate sampling across the stream to account for profile effects. Special multi-element rakes have been designed for use on the dual flow systems. The system uses four rakes, two on each stream, each having three pressure and three temperature elements with spacing of the elements corresponding to centers of six equal area annular segments of the flow stream. These rakes use shielded Type K thermocouples (chromel-alumel) which have a recovery factor very close to unity.

Pressure measurement accuracy is controlled by the accuracy of the transducer used for the measurement. The scanivalve transducers that are used are rated 0.1% of full-scale range.

Performance Data Processing

Aerodynamic parameters are calculated based on the acquired temperature and pressure information. The input information for nozzle performance consists of ambient pressure (P_{amb}), nozzle discharge total temperature (T_T), and nozzle total pressure (P_T). For the case of dual flow and tertiary flow, similar parameters are required for each stream.

Output of the processing program consists of tabulations of the individual input parameters with their identification, averages of similar parameters (e.g., P_T rake average), and calculated parameters such as flow rates, Mach number, ideal velocity, and ideal thrust.

3.1.3 Acoustic Data Acquisition and Reduction Procedures

A flow chart of the acoustic data acquisition and reduction system is shown in Figure 3-3. This system has been optimized for obtaining the acoustic data up to the 80 kHz 1/3-octave-band center frequency. The

FIGURE 3-2. GENERAL ELECTRIC ANECHOIC CHAMBER AERODYNAMIC DATA PROCESSING SYSTEM.

FIGURE 3-3. ACOUSTIC DATA ACQUISITION AND REDUCTION SYSTEM.

microphones used to obtain 80 kHz data are the B&K 4135, 0.64 cm (1/4 inch), condenser microphones with the microphone grid caps removed to obtain the best frequency response. The cathode followers used in the chamber are transistorized B&K 2619 for optimum frequency response and lower inherent system noise characteristics. All systems utilize the B&K 2801 power supply operated in the direct mode.

The output of the power supply is connected to a line driver adding 10 dB of amplification to the signal as well as adding "preemphasis" to the high frequency portion of the spectrum. The net effect of this amplifier is a 10 dB gain at a'l frequencies, plus an addition 3 dB at 40 kHz and 6 dB at 80 kHz due to pre-emphasis. This increases the ability to measure low amplitude, high frequency data. In order to remove low frequency noise, high pass filters with attenuations of approximately 26 dB at 12.5 Hz, decreasing to 0 dB at 200 Hz, are installed in the system.

The tape recorder amplifiers have a variable gain from -10 dB to +60 dB in 10 dB steps and a gain trim capability for normalizing incoming signals. High pass filters are incorporated in the acoustic data acquisition systems for microphones from 110° to 160° to enhance high frequency data otherwise potentially lost in the tape recorder electronic noise floor. The microphone signal below the 20-Hz 1/3-octave band is filtered out, and the gain is increased to boost the "signal-to-noise" ratio of the remaining high frequency signal. For microphones from 110° to 160° , both the filtered and unfiltered signals are recorded on tape. The sound pressure levels for frequencies below 20 kHz are obtained using the unfiltered signal; above 20 kHz the filtered and de-emphasized signal is used. The final jet noise spectra at a given angle is obtained by computationally merging these two spectra.

The prime system used for recording acoustic data is a Sangamo/Sabre IV, 28-track FM recorder. The system is set up for wide band Group I (intermediate band double extended) at 120-ips tape speed. Operating at 120-ips tape speed provides the improved dynamic range necessary for obtaining the high frequency/low amplitude portion of the acoustic signal. The tape recorder is set up for \pm 40% carrier deviation with a recording level of 8 volts peak-to-peak. During recording, the signal gain is adjusted to maximum without exceeding the 8 volt peak-to-peak level.

Individual monitor scopes are used for observing signal characteristics during operation. On-line data monitoring is available through a Rockland narrowband analyzer or a General Radio 1921 1/3-octave analyzer with their outputs on display scopes or hard copy through a Tektronic plotter.

Standard data reduction is conducted in the General Electric AEBG Instrumentation Data Room (IDR). The analog data tapes are played back on a CDC3700B tape deck with electronics capable of reproducing signal characteristics within the specifications indicated for wide band Groups I and II. An automatic shuttling control is incorporated in the system. In normal operation, a tone is inserted on the recorder in the time slot designed for data analysis. Tape control automatically shuttles the tape, initiating an integration start signal to the analyzer at the tone as the tape moves in its forward motion. This motion continues until an "integration complete" is received from the analyzer at which time the tape direction is reversed and the tape restarts at the tone in the forward direction, advancing to the next channel to be analyzed until all the channels have been processed. A time code generator is also utilized to signal the tape position of the readings as directed by the computer program control. After each total reading is completed, the tape is advanced to the next reading.

All 1/3-octave analyses are performed on a General Radio 1921 analyzer. Normal integration time is set for 32 seconds to ensure good integration for the low frequency content. The analyzer has 1/3-octave filter sets from 12.5 Hz to 100 kHz with a rated accuracy of + 1/4 dB in each band. Each data channel is passed through an interface to the GEPAC 30 computer where the data are corrected for microphone frequency response. Also, the data are corrected to standard day (59° F, 70% RH) atmospheric attenuation conditions using the Shields and Bass model (Reference 6) and then processed to calculate the perceived noise level and overall sound pressure level from the spectra. For calculation of the acoustic power, or scaling to other nozzle sizes, or extrapolation to different farfield distances, the data are sent to the Honeywell 6000 computer for data processing. This step is accomplished by transmitting the SPL's through a direct time-share link to the 6000 computer through a 1200 Band Modem. In the 6000 computer, the data are processed through the Flight-Transformed Full-Scale Data Reduction (FTFSDR) program where the appropriate calculations are performed. The data printout is accomplished on a high-speed "remote" terminal.

The detailed FTFSDR program flow chart is shown in Figure 3-4. The as-measured data are first extrapolated from the measured distance to a common 40 foot arc. This is accomplished by subtracting both the distance correction that is, 20 log (40-foot distance/measured distance) and the atmospheric attenuation correction over the measured distance R_{obs} , where R_{obs} is measured in feet. The Shields and Bass Pure Tone Method (Reference 6) is used for all atmospheric attenuation corrections. The data are then coverted to standard day at the 40-foot arc location by adding in the standard day correction. The data are printed in tabulated form for SPL, OASPL, and PWL (for full sphere and based on the lossless data). For this program, scale model data below the chamber cutoff frequency are ignored, data are presented for 250 Hz and above, model size.

The scale model simulated-flight data are corrected next for background noise using the background noise spectra obtained with the tertiary jet at the required simulated flight velocity. The corrected scale model data are processed next through a flight transformation procedure to obtain results that are representative of the noise produced in actual flight. In addition, the FTFSDR program writes a magnetic tape for computer plotting of the data used in the course of data analyses of the test results.

3.1.4 Laser Velocimeter System

The laser velocimeter (LV) available for use during this program is a system developed under a USAF/DOT-sponsored program and reported in detail in Reference 7. The basic optics system is a differential doppler, backscatter, single-package arrangement that has the proven feature of ruggedness for the severe environments encountered in close proximity to high velocity, high temperature jets. Figure 3-5 shows a photograph of the LV system in the General Electric Anechoic Test Facility. The dimensions of the control volume are 0.636 cm (0.25 inch) for the major axis and 0.518 cm (0.020 inch) for the minor axis. The range of the LV control volume from the laser hardware is 2.16 m (85.0 inches). The three steering mirrors and the beam splitter are mounted on adjustable supports, all of the same aluminum alloy, which minimizes temperature-alignment problems.

Details of the LV system are included in Appendix B of this report.

FIGURE 3-4. ACOUSTIC DATA PROCESSING FLOW CHART.

- -----

ORIGINAL PAGE IS OF POOR QUALITY

3.1.5 Diagnostic Shadowgraph System

A shadowgraph system, illustrated in Figure 3-6, has been employed in the anechoic free-jet facility to accomplish flow visualization and documentation. The system includes:

- o A mounting in close proximity to the free jet nozzle for good resolution
- o A steady-state light system
- o A 10-inch-diameter mirror system to collimate the light through the test volume
- o A backdrop screen of sufficient size to encompass the total test section
- A mounting platform for the light source, mirror, and camera system so as to control remotely and record the position of the shadowgraph system for an approximate 3-foot vertical plume definition.

3.2 SCALE MODEL TEST HARDWARE

3.2.1 Suppressor-Ejector Model Definition: Configurations TE-1 to TE-10

The AST exhaust system of Figures 2-1 and 2-2 was modeled (.123 scale factor) within Contract NAS3-23038 (Reference 1) for wind tunnel aerodynamic performance testing. Within this program's effort, the Figure 2-1 takeoff mode system was modeled (.135 scale factor) for evaluation of acoustic peformance. The basic acoustic model suppressor-ejector system layout is shown in Figure 3-7. It essentially duplicates the full scale study nozzle, is a 1.093 scaled version of the aerodynamic model, and consists of a) a coannular inverted-velocity-profile plug nozzle with 20-shallow chute outer stream suppressor, b) an acoustically treated center plug, and c) an acoustically treated ejector system. Geometric variables identified to potentially influence acoustic performance were:

- o Ejector length
- o Ejector axial location
- o Treatment design
- o Extent of treatment application

To study these variables within the model hardware system, variations were introduced in the hardware geometry, per Figure 3-8. Specific variables and extent of variation allowed for acoustic study were:

- o Ejector axial location: S1 = nominal, S2 = extended
- o Treatment design: Tl = high density, T2 = low density
- o Ejector length: L1 = nominal, L2 = extended
- o Treatment application extent:
 - Fully treated on ejector and plug surfaces
 - Treated ejector surface only
 - Hardwalls, no treatment

Details of these design variables will be discussed in later text.

SCHEMATIC ARRANGEMENT OF THE SHADOWGRAPH SYSTEM IN THE ANECHOIC JET FACILITY. FIGURE 3-6.

BASIC SUPPRESSOR/EJECTOR SYSTEM LAYOUT SHOWING NOMINAL LENGTH TREATED EJECTOR AND TREATED PLUG FIGURE 3-7

20

a) Supplemental Assembly, Nominal Length Treated Ejector, Hardwall Plug

b) Supplemental Assembly, Extended Length Treated Ejector, Treated Plug

c) Supplemental Assembly, Extended Length Treated Ejector, Hardwall Plug

FIGURE 3-8 SUPPLEMENTAL SUPPRESSOR/EJECTOR SYSTEM LAYOUTS SHOWING EJECTOR AND PLUG VARIATIONS

To systematically study the influence of these variations, ten test models were selected, defined as follows:

- Configuration TE-1: Baseline Coannular Inverted-Velocity Profile Plug Nozzle with 20-Shallow Chute Outer Stream Suppressor, Hardwall Plug and No Ejector; Figure 3-9.
- Configuration TE-2: Baseline Nozzle with Hardwall Plug and with Hardwall Ejector of Nominal Length, Ll, at Extended Spacing, S2; Figure 3-10.
- Configuration TE-3: Baseline Nozzle with Hardwall Plug and with Treated Ejector, T2, of Nominal Length, Ll, at Extended Spacing, S2; Figure 3-11.
- Configuration TE-4: Baseline Nozzle with Treated Plug, T2, and Treated Ejector, T2, of Nominal Length, L1, at Extended Spacing, S2; Figure 3-12.
- Configuration TE-5: Baseline Nozzle with Treated Plug, Tl, and Treated Ejector, Tl, of Nominal Length, Ll, at Nominal Spacing, Sl; Figure 3-13.
- Configuration TE-6: Baseline Nozzle with Treated Plug, T2, No Ejector; Figure 3-14.
- Configuration TE-7: Baseline Nozzle with Hardwall Plug and with Treated Ejector, T2, of Extended Length, L2, at Extended Spacing, S2; Figure 3-15.
- Configuration TE-8: Baseline Nozzle with Treated Plug, T2, and with Treated Ejector, T2, of Extended Length, L2, at Extended Spacing, S2; Figure 3-16.
- Configuration TE-9: Baseline Nozzle with Treated Plug, Tl, and with Treated Ejector, Tl, of Nominal Length, Ll, at Extended Spacing, S2; Figure 3-17.
- Configuration TE-10: Baseline Nozzle with Hardwall Plug and with Hardwall Ejector of Extended Length, L2, at Extended Spacing, S2; Figure 3-18.

Figures 3-19 and 3-20 photos show the baseline Configuration TE-1 details and as-mounted in the Anechoic Test Facility, respectively. Figure 3-21 photo shows the details of Configuration TE-6 with application of treatment to the plug surface. Photos of the full suppressor-ejector system assembly, as mounted in the Anechoic Test Facility, are shown in Figures 3-22 through 3-24.

In order to systematically evaluate parameters which impact acoustic peformance, a chronology of test configurations was developed, per Figure 3-25. The methodology of comparisons evolved as follows:

FIGURE 3-9 CONFIGURATION TE-1; BASELINE COANNULAR INVERTED-VELOCITY-PROFILE PLUG NOZZLE WITH 20-SHALLOW CHUTE OUTER STREAM SUPPRESSOR, HARDWALL PLUG AND NO EJECTOR

FIGURE 3-10 CONFIGURATION TE-2; BASELINE NOZZLE WITH HARDWALL PLUG AND WITH HARDWALL EJECTOR OF NOMINAL LENGTH, L1, AT EXTENDED SPACING, S2

FIGURE 3-11 CONFIGURATION TE-3; BASELINE NOZZLE WITH HARDWALL PLUG AND WITH TREATED EJECTOR, T2, OF NOMINAL LENGTH, L1, AT EXTENDED SPACING, S2

FIGURE 3-12 CONFIGURATION TE-4; BASELINE NOZZLE WITH TREATED PLUG, T2, AND TREATED EJECTOR, T2, OF NOMINAL LENGTH, L1, AT EXTENDED SPACING, S2

FIGURE 3-13 CONFIGURATION TE-5; BASELINE NOZZLE WITH TREATED PLUG, T1, AND TREATED EJECTOR, T1, OF NOMINAL LENGTH, L1, AT NOMINAL SPACING, S1

FIGURE 3-15 CONFIGURATION TE-7; BASELINE NOZZLE WITH HARDWALL PLUG AND WITH TREATED EJECTOR, T2, OF EXTENDED LENGTH, L2, AT EXTENDED SPACING, S2

FIGURE 3-16 CONFIGURATION TE-8; BASELINE NOZZLE WITH TREATED PLUG, T2, AND WITH TREATED EJECTOR, T2, OF EXTENDED LENGTH, L2, AT EXTENDED SPACING, S2

FIGURE 3-17 CONFIGURATION TE-9; BASELINE NOZZLE WITH TREATED PLUG, T1, AND WITH TREATED EJECTOR, T1, OF NOMINAL LENGTH, L1, AT EXTENDED SPACING, S2

FIGURE 3-18 CONFIGURATION TE-10; BASELINE NOZZLE WITH HARDWALL PLUG AND WITH HARDWALL EJECTOR OF EXTENDED LENGTH, L2, AT EXTENDED SPACING, S2

ORIGINAL PAGE IS OF POOR QUALITY

FIGURE 3-19. CONFIGURATION TE-1 ASSEMBLY DETAILS

FIGURE 3-20. CONFIGURATION TE-1 ASSEMBLY AS-MOUNTED IN THE ANECHOIC FREE JET FACILITY

ORIGINAL PAGE IS OF POOR QUALITY

FIGURE 3-21. CONFIGURATION TE-6 ASSEMBLY DETAILS

FIGURE 3-22. TYPICAL SUPPRESSOR-EJECTOR MODEL INSTALLATION WITHIN THE ANECHOIC FREE-JET FACILITY

CRIGINAL PAGE IS OF POOR QUALITY ORIGINAL FROM IS OF POOR CHALITY

OF POOR QUALITY

TYPICAL SUPPRESSOR-EJECTOR MODEL INSTALLATION WITHIN THE ANECHOIC FREE-JET FACILITY

FTGURF 3-24

38

FIGURE 3-25 FLOW SCHEMATIC OF TEST CONFIGURATIONS RELATIVE TO EVALUATION OF ACOUSTIC PERFORMANCE

- Configuration TE-1, Baseline nozzle system to which all ejector/ treatment systems would be referenced. This configuration is somewhat similar to previous Configuration 10.1 of NASA-GE study Contract NAS3-21608 (Reference 8).
- Configuration TE-6, in comparison to Configuration TE-1 would study the potential influence of a softwall plug on alleviation of shock-cell strength and subsequent shock related noise.
- o Configurations TE-5 and TE-9 would optimize ejector axial positioning between S1 and S2. The S1 ejector setback distance is compatible with the full scale design value of 11.0" (1.484" model scale). The S2 position (18.5" full scale and 2.496" model scale) was that found optimum among the positions tested for aerodynamic performance while at takeoff cycle pressure ratio (Reference 1). The S2 position was judged acoustically more favorable from on-line acoustic data during test, and, therefore, maintained for all subsequent test configurations.
- Configurations TE-9 and TE-4 would optimize treatment performance between Tl and T2 designs. The treatment designs are documented in detail within Reference 4, appended within Volume II of this program's comprehensive data report. The T2 design was judged acoustically more favorable from on-line acoustic data during test, and, therefore, maintained for all subsequent test configurations.
- Series TE-4, TE-3 and TE-2 would allow systematic evaluation of treatment extent-of-application, from fully treated to no treatment hardwall surfaces, within the nominal length, Ll, ejector system. The nominal length ejector was scaled directly from the full-scale design of Reference 2 and allowed for acoustic treatment application over approximately 70% of the ejector flap length.
- Series TE-8, TE-7 and TE-10 would allow similar evaluation within he extended length, L2, ejector system. This ejector applies treatment to a length equivalent to that of the full flap length of the nominal length ejector system. The additional untreated closure length is similar to that of the nominal length ejector.
- Configurations TE-2 and TE-10 relative to TE-1 would allow evaluation of hardwall ejector system to the baseline suppressor/coannular nozzle system.

3.2.1.1 Baseline Nozzle System

The baseline nozzle system, per Figure 3-19 schematic and photo, was a coannular inverted-velocity-profile plug nozzle with 20-shallow-chute outer stream suppressor (hardwall plug and no ejector). The nozzle "as-built" geometric parameters are as per Figure 3-19. Previous model studies on shock noise alleviation (References 9 and 10) indicated a sharp-tipped plug was beneficial in reducing shock strength and associated shock-cell noise. This plug-tip design was adopted in this study program's models, and, therefore, deviated from the full scale study nozzle of Figure 2-1. The model system, with $A^{O}_{flow} = 22.75 \text{ in}^2$ and $A^{I}_{flow} = 4.747 \text{ in}^2$, was a .135 scaled version of the full scale study exhaust system.

3.2.1.2 Ejector Systems

Two ejector systems, designated nominal length, Ll, and extended length, L2, were designed and fabricated. The nominal length system, shown schematically as influencing test configuration variations, in Figures 3-10, 3-11, 3-12, 3-13 and 3-17 and photographically in Figures 3-26 and 3-27, was scaled directly from the full scale and aerodynamic scale-model systems (Reference 1 and 2 and Figure 2-1). The nominal length ejector is 8.68" long model-scale and allows for acoustic treatment application over approximately 70% of its flap length. The extended length ejector system is shown schematically as influencing test configuration variations in Figures 3-15, 3-16 and 3-18 and photographically in Figure 3-28. This ejector is 10.80" long model-scale and applies treatment to a length equivalent to that of the full flap length of the nominal length ejector system. The additional untreated closure length is similar to that of the nominal length ejector.

The two ejector systems used a common ejector inlet ring (Figures 3-26 and 3-28) and common (10) support rods (Figure 3-27) to mount the systems to the primary nozzle. The ejector rods had two fixed-location mounting points to accommodate the S1 and S2 axial positions. Each ejector assembly had (10) treatment trays; (8) regular width (36° angular sector) and (2) narrower width (31.5° angular sector). The narrow trays allowed accommodation of P_S and T_S instrumentation bars within the ejector shells. Note that full definition of all test hardware is available within the comprehensive data report, Volume II, Appendix B, "Model Hardware Design Documentation". All hardware manufacturing drawings are presented within that appendix.

3.2.2 Acoustic Treatment Definition

Acoustic treatment application within the ejector systems was accomplished through use of "packed" compartmentalized treatment trays, shown photographically in Figure 3-29 for the nominal length ejector and in Figure 3-30 for the extended length ejector. The nominal length trays each had (4) compartments of approximately 1.1" length; the extended length trays each had (5) compartments of approximately 1.3" length. Compartmentalized trays, per Figure 3-31, were also used for acoustic treatment application to the plug surface. As defined in individual configuration sketches (Figures 3-10 through 3-18) and as summarized in Figure 3-32, the tray construction/treatment packing consisted of:

- o Perforated sheet faceplate of 37% porosity
- 0.08" thick Retimet metal foam, 95% porous, trimmed to fit individual tray cavities; applied to protect the treatment from degradation due to flow turbulence
- o Astroquartz style 550 mat, packed to specifications of Figure 3-32.
- o Solid cover plates over each compartment

Layers of the .2" thick Astroquartz blanket were applied and compressed within the cavities to attain the desired treatment density. Treatment design procedure and final selections are documented within Reference 4, TM 84-395; included within this program's CDR Volume II as Appendix C.

41

FIGURE 3-26. NOMINAL LENGTH EJECTOR ASSEMBLY, FWD-LOOKING-AFT

ORICINAL PAGE IS OF POOR QUALITY

FIGURE 3-27. NOMINAL LENGTH EJECTOR/SUPPORT ROD ASSEMBLY, SIDE VIEW

ORIGINAL PAGE IC OF POOR QUALITY

ORIGINAL PAGE IS OF POOR QUALITY

ACOUSTIC TREATMENT TRAYS FOR NOMINAL LENGTH EJECTOR, REGULAR AND NARROW WIDTH FIGURE 3-29.

FIGURE 3-30. ACOUSTIC TREATMENT TRAYS FOR EXTENDED LENGTH EJECTOR, REGULAR AND NARROW WIDTH

ORIGINAL PAGE IS OF POOR QUALITY

FIGURE 3-31. ACOUSTIC TREATMENT TRAYS FOR PLUG SURFACE APPLICATION

47

FIGURE 3-32 TREATMENT DESIGN SPECIFICATIONS FOR EJECTOR AND PLUG TRAYS

To convert the ejector internal flow surface to "hardwall", the trays were voided of Astroquartz and Retimet metal foam, fitted with hardwall inserts (see Figures 3-29 and 3-30), then reassembled with metal foam, acoustic treatment and the treatment retainers. The repacking assured compaction and retention of the hardwall inserts against the perforated faceplate. To "hardwall" the plug surface, the treatment trays were directly replaced with a hardwall plug sleeve, per Figure 3-33.

3.2.3 Aerodynamic P_S and T_S Instrumentation

Instrumentation for aerodynamic peformance and thermal environment evaluation was applied to various surfaces of the suppressor-ejector system. Primary purposes of application were:

- Base pressure measurements for base drag estimation for the 20-Shallow chute suppressor.
- o Skin temperature measurements along the chute forward edge; to verify metal temperatures for mechanical design purposes.
- o Base pressure measurements along the ejector inlet lip and along the length of the ejector inner flowpath, for base drag estimation.
- Skin temperature measurements along the length of the ejector inner flowpath, to document thermal environment for mechanical design of treatment trays.
- o Static temperature measurements within the packed treatment cavities to aid in treatment performance analysis.

The instrumentation details are described as follows:

On Primary Nozzle System

Figure 3-34 schematically locates a) P_S taps Number 1 through 8 on the 20-chute suppressor in the chute base region, b) T_S Item Numbers 9 and 10 on the chute metal surface, and c) P_S Tap Numbers 11 and 12 on the suppressor nozzle sleeve. Figure 3-35 photo shows instrumentation applied to the base region of the 20-chute suppressor. Figure 3-36 photo shows (2) P_S surface taps applied to the suppressor nozzle sleeve.

On the Ejector Inlet Ring

Figure 3-37 sketch and Figure 3-38 photo show P_S tap Number 13's location on the ejector inlet ring, common to both the nominal and extended length ejector assemblies.

Within the Nominal Length Ejector

Figure 3-39 schematically locates P_S tap Item Numbers 14 through 21 along the ejector inner flowpath, T_S Item Numbers 22 through 27 along the same, and T_S Item Numbers 28 and 29 within the ejector tray Astroquartz material (after tray/shell assembly). The P_S and T_S instrumentation bars for the nominal length ejector are shown unassembled in Figure 3-40 and as applied to the ejector in Figures 3-41 and 3-42 for P_S and T_S , respectively. The two taps within the nominal length ejector shell are shown in Figure 3-43 photo.

ORIGINAL PACE IS OF POOR QUALITY

VIEW B, AFT LOOKING FWD

FIGURE 3-34 $\ensuremath{\,\mathsf{P}_{\mathsf{S}}}$ and $\ensuremath{\,\mathsf{T}_{\mathsf{S}}}$ instrumentation on primary nozzle system

ORIGINAL PAGE IS OF POOR OUALITY FIGURE 3-35. INSTRUMENTATION APPLICATION TO 20-CHUTE NOZZLE ASSEMBLY

Ps INSTRUMENTATION APPLICATION TO THE SUPPRESSOR NOZZLE SLEEVE FIGURE 3-36.

4013312-428 P14 EJECTOR INLET RING

FIGURE 3-37 $\ensuremath{\,\mathsf{P}_{\mathsf{S}}}$ instrumentation on ejector inlet ring

ORIGINAL PAGE IS OF POOR QUALITY

FIGURE 3-38. Ps TAP APPLICATION TO THE EJECTOR INLET RING

FIGURE 3-39 $\ensuremath{\,\mathsf{P}_{\mathsf{S}}}$ AND $\ensuremath{\mathsf{T}_{\mathsf{S}}}$ instrumentation within the nominal length ejector

PS AND TS INSTRUMENTATION BARS FOR APPLICATION WITHIN THE NOMINAL LENGTH EJECTOR FIGURE 3-40.

FIGURE 3-41. INSTALLATION OF THE P_S INSTRUMENTAION BAR WITHIN THE NOMINAL LENGTH EJECTOR ASSEMBLY

ORIGINAL PACE M OF POOR QUALITY

FIGURE 3-42. INSTALLATION OF THE T_S INSTRUMENTATION BAR WITHIN THE NOMINAL LENGTH EJECTOR ASSEMBLY

Within the Extended Length Ejector

Figure 3-44 schematically locates P_S Item Numbers 30 through 37 along the ejector inner flowpath, T_S Item Numbers 38 through 43 along the same, and T_S Item Numbers 44 and 45 within the ejector tray Astroquartz material (after tray/shell assembly). The P_S and T_S instrumentation bars for the extended length ejector are shown unassembled in Figure 3-45 and as applied to the ejector in Figures 3-46 and 3-47 for P_S and T_S , respectively. The two T_S taps within the extended length ejector shell are shown in Figure 3-48 photo.

Measurements obtained during acoustic testing through use of this aerodynamic instrumentation are presented within this report's comprehensive data report, Volume II, Section 6.0, "Aerodynamic Static Pressure and Static Temperature Data Summary".

3.3 ACOUSTIC AND DIAGNOSTIC TEST MATRICES

A summary of the acoustic and diagnostic tests conducted with the ten model configurations is presented in this section. The acoustic test matrices are described in Section 3.3.1, the laser velocimeter tests within Section 3.3.2, the shadowgraph diagnostic tests within Section 3.3.3, and the aerodynamic P_S and T_S tests within Section 3.3.4.

For detailed reduced test data, refer to this contract's comprehensive data report (CDR) as follows:

- o CDR Volume I Section 4.0 Acoustic Test Results
- o CDR Volume II Section 5.0 Laser Velocimeter Tests
- CDR Volume II Section 6.0 Aerodynamic Static Pressure and Static Temperature Data Summary
- o CDR Volume II Section 7.0 Shadowgraph Tests

3.3.1 Acoustic Test Matrices

The aerodynamic flow conditions corresponding to the acoustic test points taken on each of the test configurations are tabulated in this section. An overview of the test program and details of cycle point selection are included in Section 3.3.1.1. Definition of variables used in data reduction and tabulation is discussed in Section 3.3.1.2. Section 3.3.1.3 presents the aerodynamic test conditions for the 10 individual test configurations, both in International (S.I.) Units and in English Units.

3.3.1.1 Test Matrix Overview

In total, 188 acoustic data points were acquired, distributed over 10 scale model nozzle configurations; 87 points under static and 101 points under simulated flight conditions. These data points are summarized versus nominal cycle conditions and test configurations in Table 3-1. The table is presented in chronological order of test dates (Build Number 1 through 10), rather than in test configuration number numerical order.

As a general guide, typical Advanced Supersonic Technology/Variable Cycle Engine (AST/VCE) cycle conditions for a product GE-21 engine were used in planning the inner and outer stream flow conditions, for a major portion of the test points. The engine operating line was developed utilizing cycle

FIGURE 3-44 PS AND TS INSTRUMENTATION WITHIN THE EXTENDED LENGTH EJECTOR

FIGURE 3-45. P_S AND T_S INSTRUMENTATION BARS FOR APPLICATION WITHIN THE EXTENDED LENGTH EJECTOR

ORIGINAL PAGE IS OF POOR QUALITY 13

FIGURE 3-46.

FIGURE 3-47. INSTALLATION OF THE TS INSTRUMENTATION BAR WITHIN THE EXTENDED LENGTH EJECTOR ASSEMBLY

FIGURE 3-48. Ts INSTRUMENTATION APPLICATION TO THE EXTENDED LENGTH EJECTOR SHELL

0[TE-6	11/16,18/8:	-		-2		6001	6002	6003	6204	6004	6005	9009	6105	6106	6007	6008	6009	6210	6010	6019	6110	1109	6012	6013	6014	'	'	ı	ı
6	TE-10	9/24/83					1000	0002	0003		0004	5000	0006	1	-	0007	8000	6000		0100	6010	0110	,	'	0013	0014	0403	0409	'	'
8	TE-7	9/22/83			21 21	H 25	1002	7002	70U3 7303	-	7004	7005	7006	1	-	7007	7008	7009		7010 7310		•	1	-	7013	7014	,	•	I	1
7	15-8	9/21/83			21	21 Las	8001	8002	8003	8204	8004	8005	8006	8105	8106	8007	8008	6008	8210	8010	8109	8110	1108	8012	8013	8014	'	,	8200	8400
9	TE-2	9/16/83					2001	2002	2003		2004	2005	2006			2007	2008	2009		2010	2109	2110	1	1	2013	2014	1	,		1
2	TE-3	9/15/83					3001	3002	3003	-	3004	3005	3006	1	•	3007	3008	3009		3010	3109	3110	•	1	3013	3014	-	-	1	1
4	TE-4	9/8,9,12/83			12		4001	4002	4003	4204	4004 4304	4005	4006	4105	4106	4007	4008	4009	4210	4010	4109	4110	4011	4012	4013	4014	4		,	
3	TE-9	9/6/83			·-1 1_ -1_1		1006	9002	9003	9204	9004	9005	9006	9105	9106	2006	9006	6006	9210	0106	6016	9110	1106	9012	613	9014	,		,	
2	TE-5	68/1/6		, <u>'</u>	-/-/-		5001	5002	5003	5204	5004	5005	5006	5105	5106	5007	5008	5009	5210	5010	5109	5110	5011	5012	5013	5014	•		5200	5400
-	TE-1	8/26,27/83	-	<u> </u>	[[±] /	V	1001	1002	1003	1204	1304	1005	1006	1105	1106	1007	1008	1009	1210	1010	1109	0111	101	1012	1013	1014	5	ı	,	,
D NC.	G. NC.	DATE	Γ			FREE JET VEL. (fps)	0	400	0	200	400	0	400	0	400	c	400	0	200	400	0	400	0	400	0	400	0	0	200	400
3011	CONFI	131				Vj j (fps)		95 1.88 1290 1600		50 2.21 1370 1830			2025	50 2.63 810 1545			2185		2320		1830		2245			2390	1960	2495	ł	4
	Jet Ye	Point.		2	MIXED	"""""""""""""""""""""""""""""""""""""							0:1440				4 1525				13 870		7 1555		-	7 1545	5 1530	0 1730	1	1
nts	condit) S Free	t Test		NDITIO	-	E ^r							2				50 2.8		2.5 5.5			2.7	95 2.5		-	65 3.3	60 2.2	95 3.4	1	1
ata Poi itions. 11ght 2001/ Repea				VCLE CO	OZZLE	R) (fr		20 16		19			17 020	310 15			730 23	730 24	+7 nc/		870 18		730 24			730 25	530 19	730 24	- 2	4
OINTS Istic D	ulated idicate	dicate		AINAL C	OUTER N	04 1				11							1 06.3					8.47	.40			1 02.	. 25 1!	.40 1		
DATA P ed Acou	er Simt No. Ir	No.		Ŷ		۲ ⁵ , ۴		245 1		390 2			5 <u>7</u>	 	525		1625					1720	1270 3			775		, ,	230	400
Acquir Acquir	COUSTIC Acquinte and Are unde t Point t Point				R NOZZI	T _T , (⁰ R) (008			800		810		C18			840		8/0		870		870		-	068		,		
resent	oints in Tes	in Tes			INNE	·~ *		MIXED SUBSONIC 1.85		2.20			2.60		2.60		2.90		3.20			3.20	. 80			3.40	,	'		
E 3-1. SUMMARY OF ACOU Numbers in Table Rep Odd Numbered Test Po	<pre>>> Even Numbered Test F >> Second Digit of '2'</pre>	Second Digit of '3'								CUTBACK		INTERMEDIATE		SIMILAR TO INTER- Mediate at t ^d =810 ⁰ r			CYCLE LINE POINT		TAKEOFF		SIMILAR TC TAKEOFF AT T ^O = 870 ^O R		TAKEOFF OUTER SUBSONIC INNER		MAY CYCLE		CUTBACK - NO INNER FLOM	TAKEOFF - NO INNER FLOW	FREE JET AMBIENT	
TABL		-				TEST POINT NO.			~			m		•	4		<u>د</u>	م				~ 8		.	6		01	=		12

ORIGINAL PAGE IS OF POOR QUALITY

67
information from preliminary design studies with AST/VCE applications, tempered by facility operating limits. Comparisons of the select test point aerodynamic conditions to those of the GE-21 engine cycle are made in Figures 3-49 and 3-50. Table 3-1's test points 1 through 12 can be categorized as follows:

- o Test Point Numbers 1, 2, 3, 5, 6 and 9 Cycle line points representative of GE-21 operation, tempered at high T_T operation by facility limits; refer to Figures 3-49 and 3-50.
- o Test Point Numbers 4 and 7 Similar to cycle line points 3 and 6 at intermediate and takeoff, respectively, but with $T_T^o = 870^{\circ}R$. These points are at outer stream Mach numbers equivalent to the hot flow case, but at low T_T^o to study the effect of shock noise while generating lower jet mixing noise. These low temperature points are also used for shadowgraph plume studies where stream density variations are more readily documented photographically.
- o Test Point Number 8 Outer stream at takeoff cycle, inner stream at subsonic P_r ; to study the effect of subsonic inner flow on shock of the supersonic outer stream.
- o Test Point Numbers 10 and 11 Outer stream similar to cycle points 2 and 6 at cutback and takeoff, respectively, however, with inner nozzle flow completely shut off.
- Test Point Number 12 Free stream at either 200 or 400 ft/sec for measurement of background noise levels of the free-jet facility. Inner and outer nozzles are also set a similar 200 or 400 ft/sec velocity so that no abrupt velocity changes are seen in the vicinity of the nozzle exists.

The majority of the above test conditions were acquired at both static and simulated flight velocity of 400 ft/sec. Cutback and takeoff points were also selectively acquired at 200 ft/sec simulated flight velocity to investigate forward flight effects on noise generation and base drag of the suppressor.

3.3.1.2 Definition of Variables

The presented variables are defined in Table 3-2. Sample sheets specifying the variables listed in the tables that summarize the aerodynamic flow conditions are presented in Tables 3-3 and 3-4. In addition to the inner and outer stream flow parameters, the tabulated data contain the mixed stream conditions that were calculated after assuming that the two streams were mixed perfectly. The mixed stream velocity (V_j^{mix}) and the mixed stream total temperature (T_T^{mix}) were calculated using the following expressions:

$$v_{j}^{mix} = \frac{v_{j}^{o} u^{o} + v_{j}^{i} u^{1}}{u^{o} + u^{i}}$$

and

$$T_T^{mix} = \frac{T_T^0 W^0 + T_T^1 W^1}{W^0 + W^1}$$

From the known mixed stream velocity and total temperature, other mixed flow parameters have been calculated by using standard isentropic relations. The ambient pressure and temperature, along with the relative humidity in the GE Anechoic Facility at the time of the test, are presented in these tables.

. م

F	Total thrust; lbs, N
Fref	Reference thrust; 22,820 N (5130 lb)
LVM	Defined as 10 log ($V_j mix/a_{amb}$)
LBM	Defined as 10 log β eff,
M NF	where, $\beta^{eff} = \sqrt{(M_j^{eff})^2 - 1}$; $M_j^{eff} = \frac{2}{\gamma - 1} \left[(P_r^{eff})^{\frac{\gamma - 1}{\gamma}} - 1 \right]$; $P_r^{eff} = \frac{P_r^o \Lambda^o + P_r^i \Lambda^i}{\Lambda^o + \Lambda^i}$ Mach No. PNL normalization factor; defined as -10 log $\left(\frac{F}{F_{ref}}\right) \left(\frac{\rho}{\rho_{emb}}\right)^{\omega - 1}$, dB
OAPWL	Overall Power Level, dB re 10 ⁻¹² watts
Pamb	Ambient pressure; Pascal, psia
PNL	Perceived Noise Level, dB
Pr	Nozzle pressure ratio
RH	Relative Humidity, %
Tamb	Dry bulb ambient temperature; ^O K, ^O R
TT	Nozzle total temperature; ^O K, ^O R
Vac	Free-jet velocity; m/s, ft/sec
Vj	Nozzle exhaust velocity (ideal); m/s, ft/sec
W	Ideal calculated weight flow rate; kg/s, lb/sec
Q	Density
ω	Density exponent, (Ref. 11, Hoch)

SUPERSCRIPTS

i	Inner Jet (Nozzle) Conditions
mix	Mass Averaged Conditions
0	Outer Jet (Nozzle) Conditions

SUBSCRIPTS

amb	Ambient
j	Jet
r	Ratio
ref	Reference
Т	Total (Stagnation)

TABLE 3-3. DESCRIPTION OF AERODYNAMIC DATA SHEET, INTERNATIONAL (S.I.) UNITS

TABLE 3-4. DESCRIPTION OF AERODYNAMIC DATA SHEET, ENGLISH UNITS

In addition, the measured far-field PNL data extrapolated to a 731.5-m (2400-ft) sideline and scaled to an AST product size of $0.903m^2$ (1400 in.²) also are presented in the tables. The selected data correspond to microphone locations of $\theta_{\rm j}$ = 50°, 60°, 70°, 90°, 120°, 130° and 140°.

The normalization factor (NF) found in these tables is employed to normalize the measured noise levels to a reference thrust, as an example with PNL, as follows:

PNLN = Normalized PNL = PNL + NF

where NF is given by -10 log $\left(\frac{F}{F_{ref}}\right) \cdot \left(\frac{\rho}{\rho_{amb}}\right)^{\omega-1}$

In this case, the normalized data are used to determine the dependence of aft angle jet noise on the acoustic Mach number by plotting PNLN against 10 log (V_1^{mix}/a_{amb}).

The aerodynamic flow conditions and the selected PNL data corresponding to the acoustic test points are presented in the following section.

3.3.1.3 Test Matrices for Scale Model Configurations

The test matrices for the 10 scale model configurations are presented in test configuration number numerical order in Tables 3-5 through 3-24, as follows: the aerodynamic values are presented in both International (SI) units and in English units:

- Tables 3-5 and 3-6; Test Matrices for TE-1; Baseline Nozzle; Coannular Inverted-Velocity-Profile Plug Nozzle with 20-Shallow Chute Outer Stream Suppressor; Hardwall Plug and no Ejector.
- Tables 3-7 and 3-8; Test Matrices for TE-2; Baseline Nozzle with Hardwall Plug and with Hardwall Ejector of Nominal Length, Ll, at Extended Spacing, S2.
- Tables 3-9 and 3-10; Test Matrices for TE-3; Baseline Nozzle with Hardwall Plug and with Treated Ejector, T2, of Nominal Length, L1, at Extended Spacing, S2.
- Tables 3-11 and 3-12; Test Matrices for TE-4; Baseline Nozzle with Treated Plug, T2, and Treated Ejector, T2, of Nominal Length, L1, at Extended Spacing, S2.
- Tables 3-13 and 3-14; Test Matrices for TE-5; Baseline Nozzle with Treated Plug, Tl, and Treated Ejector, Tl, of Nominal Length, Ll, at Nominal Spacing, Sl.
- o Tables 3-15 and 3-16; Test Matrices for TE-6; Baseline Nozzle with Treated Plug, T2; no Ejector.
- Tables 3-17 and 3-18; Test Matrices for TE-7; Baseline Nozzle with Hardwall Plug and with Treated Ejector, T2, of Extended Length, L2, at Extended Spacing, S2.

TEST MATRICES FOR TE-1; BASELINE NOZZLE; COANNULAR INVERTED-VELOCITY-PROFILE PLUG NOZZLE WITH 20-SHALLOW CHUTE OUTER STREAM SUPPRESSOR; HARDWALL PLUG AND NO EJECTOR. (INTERNATIONAL UNITS) TABLES 3-5

sq.m.																																							
11006	- × ⁻	97 O	0.72	0.72 0.72	0.72	0.73	0.71	0.69	8.0	0.70	0.70	0.0	0.69	0.98	0.97	0.51	0.52	0.70			đB	72.0	70.6	76.6	E.47	74.5	13.9	19.6	14.8	76.9	81.3	6.0g	n	82.	0.67	31.2	67.58 6 1 1 1	6.18	82.3
י ד = 0	۲ ۲	N	1796	10250	10165	10225	12674	12675	13019	14863	14917	18172	18177	18357	18727	16478	16381	20220	č	5	0	2	-		ະ ເ	2	-	د	0 -	8	£ 2	₽: 9 (≍ ∓ n m	;≓	6 1:	7 1	ຂະ ຄ	• -	:≃ . c
- TOTA	->	kg/s	252	288 292	290	295 293	328	325	444	354	359	014 004	412	547	548	370	115	446	ę	9	14	94.	.68	97.	. 76	93.	93.	88	- E0	.68	101.	6	<u>5</u>	<u>5</u>	38.	96	<u>6</u>	<u>3</u> <u>8</u>	10
SIZE	۲	10	.875	207	199	. 208	.527	.531	129.	.818	.831	263	265	.341	196.	.075	.066	505	LINE)	EGREES	130	94.7	92.7	99.2 99.2	0.06	96.8	96.3	100	6.001 9.48	6.66	102.4	102.4	- 104 - 104	103.4	98.8	100.1	103.7	105.0	104
: בחרר	T ∎ × ie T	٠ وي د م	404	432 2419 2	421 2	410	442 2	450 2	C 670	474 2	464 2	5 4 / 4 5 4 / 4	468 3	269 3	276 3	497 3	490	472 3 472 3	CIDE	LET. D	120	97.2	96.7	100.5	200	99.5	1.99	102.5	5 90 90	97.9	104.4	104.8	105.4	106.2	100.7	103.1	105.5		- u 200
0.0147	× ¥E	s/m	494	568 558	559	553 447	616 616	622	4/0	670	664	60/	207	536	545	711	705	261			06	95.3	95.3	98.e	6. 16 19 19 19	38.5	98.1	61.0	902.4 90 7	9.00	102.9	6.50	0.00	02.0	8.60	6.601	6.40	04.9 01.9	
TER = 0	- u	Z	1316	1753	1743	1751	2260	2240	95256	2638	2631	3023		0200	3008	1257	1249	9270		FI ATTVF	10	91.6	94.5	96.4	- C - C - C - C - C - C - C - C - C - C	97.5	97.2	8.66	- 20 00	2.10	01.9	8		0.0	02.6	04.6	0.0	א ת קיים	
1 00	- 3	\$/6	- 4	- u	20.0	ຕ. ອີ		2.2	ю-	4	6		, o 		÷	н. а	ი. ლ. ი	ວ. ຜູ້ຜູ້			60	8.7	2.0	ь. С. С. С.	טיכ שיכ	0.0	8, 8	9.6	₽ ° • •		9.7 10	5.2 7 7	× ₹ 80.9	0 - E	÷ ÷	a.5 ±	÷. •.•		:∓ •••
TS ** =0.003	- L	, , , , , , , , , , , , , , , , , , ,	861 5	210	207 6	213	620 7	611 7	618 7 608 7	920 8	921 8	227 9	5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	225 9	216 9	812 5	808 5	426		PNL	20	80 	6 0	ი "	ה ה ר	, o , o	8.	4. 6	4 u 0 a	າ ຫ . ຫ	6 8.	5 10	₽ ₽ ₽	0 0 0	2 <u>0</u>	.9 10	¢.	0.0	2⊊ ∘
L. UNI INER	•	, x q	 2 24	0 c	5 F	0 1	N 01	12	20	24	1 2.				е 8	-			;		-	98 (91	500	55	94	94	95	66	586	96	ē.	860	501	16	102	97	102	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
** S ZE . J	~~ F		44	4 4	50	8 0) @	4	0 1	0.0	Q 4	0 0		4	1 50	2 45	0 I	5 0 7 0		μ Π		- 10.0	- 10.00	-2.60	9 F		-2.70	- 30			-0.55	-0.5		50	00	0.1	9 0 0	0.0	; č 5 c
0EL SI		È	88 38 38	43	14 14	64	4 6 7 7 7 7	4 46	7 47 c 46	4 4 20	5 50	8 23	1 1 1	1 52	8 53	1 39	38	- 1 2 2 4 2 4 0		E V M		1.47	1.52	2.10	5.03	2.01	2.03	2.46	2.52	1.25	2.82	2.80	3.07	50.5	1.84	1.95	Э.08 10	80.0 0	35
EA [MO	°	z	644 648	849	842	847	1041	1043	1088	1222	1228	1518	9101	1533	1571	1522	1513	1694		Ż	뜅	-5.2	-5.1	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -	0 U 0 U	-5.7	-5.6	e. 9-	9 9	, e , o	6.9	6.9-	5. r	n o	- 10.6	- 10.5	-7.2	-1.2	1 1 1 1 1
01 AR	•.₃	kg/s	199.0 196.8	224.7	225.6	230.2	251.5	248.4	369.9	271.2	275.0	319.4	8 / 15	456.1	458.7	319.3	320.4	346.0		ž,	a] %	. 63	. 71	. 63	E9		. 74	. 63		74	. 63	. 7	69	74	. 44	11	. 63	. 74	2 F
EL TE	٥ د د		1.887	2.238	2.230	2.238	2.235	2.576	2.630	2.869	2.884	3.363	3.364	3.365	3.428	3.367	3.356	3.652		- ;	Pasc	99738	99332	67796	99535	00100	99433	99671	99231	69566	99671	99366	99502	197.66 00700	99502	99502	99535	99366	10499
- MOC	⁰⊢⊢	° 1	798 819	878	859 859	833	845 915	938	457	981	961	970	976	507 101	504	973	958	974		- 410	DEG. k	305.1	302.0	305.1	305.1	302.0	303.4	305.1	302.0	306.5	305.1	302.0	305.1	4 . EOE	306.5	302.0	305.1	303.4	
NOZZLE	° > ¬	s/u	517 526	605	297 297	589	592 662	672	470	721	714	760	763	100	548	762	755	783		TEST		1001	1002	1003	EOEI	1004	1304	1005	1006	5.5	1001	1008	1009	1210	6011	1110	1011	1012	201
	9 9 0	s/m	12 ¹ 0	00	ဝဝဝ	121	121	121	0	ŝ	121	0	60		121	0	121	•;	171		-																		
	TEST Point		1001 1001	1003	1303	1004	1304	1006	1105	90CF	1008	1009	1210		1110	1011	1012	E101	4101																				

ORIGINAL PAGE IS OF POOR QUALITY

TEST MATRICES FOR TE-1; BASELINE NOZZLE; COANNULAR INVERTED-VELOCITY-PROFILE PLUG NOZZLE WITH 20-SHALLOW CHUTE OUTER STREAM SUPPRESSOR; HARDWALL PLUG AND NO EJECTOR. (ENGLISH UNITS) TABLES 3-6

NDZZLE - MODEL TEO1 AREA [MODEL SIZE - INNER = 4.75 , DUTER = 22.75 ; FULL SIZE - TOTAL = 1400.00] SQ.IN.

	^ ` - `, `	-	0.76	22	0.70	0.72	0.73	5.4		8	0.99	<u>6</u>	22	0.69	0.69	0.98	0.97	0.51	0.52	2. 2	0.70	¥		~	0	9	9	- 0	שר	າຫ	9	m 1		סר	ით	0	6	- (0.	NE	ົດແ) m	.
	-		-		Ť	Ĩ	Ť				-	Ť.,			Ū	-	-	Ŭ	•		٠	ΑÞ		Ð	2	2	9	5	1 5	2	5	ອ່	4	ė :	ğ	ŝ	ŭ	ğ	0.	<u>.</u> 2	: =	7	2
	u.	LB	27939	36872	36758	36564	36779	36694	45592	47278	46832	53463	53658	65365	65384	66032	67363	59274	58923	12143	72733	9			÷	÷	-	÷:		:::	11	=:				- -	#	₽:			: #	18	18
		ů		чm	m	(0	(D)	~ ~	• •		60	0	n a	2	2	_	-	-	~ .	-	~			ç		2	<u>،</u>			! -	5.5	80.1	-	ю. и —	9	ິ	e.		۰ ف	20	00	1	0
	×	J FT/SI	161	186.	183:	183(181	182	204	154	153(220	218(233:	231:	1758	179	233	2313	240	2379	89	s	2	1 94	7 85	2 97	6		, .	7 100	6.6		59 F	. 66	104	0 10	• 50			; <u>6</u>	106	a 102
		α																				G	١ ٣	30	4	М	5		 0 u	5 10	0	0	с. С			4	Å.			5 6		5 10	् च
	Ě	DEG	1311	1417	1377	1383	1347	1365	0141	823	819	1556	1523 4 R R R	1561	1535	883	906	1633	1608	1568	1548	E LIN	DEGR	-	6	7 9	б 0	ი ი ი /	ם ת היי)	ţ,	ē.	5	bi¢ n ₽	20	Ŷ	¢ •	₿ i	5 ¢	<u>5</u> <u>2</u>	2 <u>0</u>	2 <u>0</u>	è
																						ЮI	Ŀ.	30	-	6	0	0.0	, . 		2	0. 0.1				00	5			- u:	2.0		
÷	ž.		5	50	0	66	80	302	2 6	27	Ξ	18	50	6	65	41	6	75	99	96	3	S	٣	-	σ	ō	₫	₫ĕ	» d	່ຫໍ	ĝ	ĝ	5	₽Ç	₽ĝ	ę	ġ	ğ	ě	ź₽́	įĝ	žğ	ş
	` ۵		÷.,	- 0	2	Ň	2	0.0			ž	ш. М.					с <u>,</u>		01		ີ	F	Ľ		~	~					~	_						. .					
		ы													•	.,	.,	.,			.,	8	p	8	Ю	ŝ	8.		ם ע ה מ	; -, 	7	41		0.0	207	0		00		הית היו			6.0
		S S		_ ຕ	<u>د</u>	<u>۳</u>	0		<u> </u>	. 6	0.	α	•	: °	٢.	ų	٢.	o.	٩	-	۲.	24	W		σ	ō	õ	ີ ຫ	ñ ō	ິດ	₽	<u>ë</u>	ő j	ğģ	ĕğ	ğ	ğ	ğ	ğğ	žğ	įõ	≥ğ	ş
	-	Ľ	100	4	146	143	44	46	25	691	5	681		$\overline{2}$	202	3	86	Ë	Ξ:	-	22	:	2				_							_			_						
		U															-	-	- (IZE	Ā	2	ω. Ψ.	ц. 	Ā.		- u		8.6			2	2	5	2	<u>ن</u> و	ω 		່ອ	::	Ξ
		SE	ω, r	~ v	o	ø	5	с и	0 4	2	1	- 1	0 0) 4	0	თ	3	æ	م .	-	თ	ŝ	REI	•	ō	ດັ	ő	ຫໍ່ຄ	n 0	ົ່ດ	ő	õ	ő j	<u>o</u> ç	ğ	ğ	ð	õ	õ g	20	20	200	10
	` > `	<u> </u>	128	4 4	37	40	40	410	202	54	52	99	9 6	EL	72	72	75	28	51	6	77	5	щ			_		_															
						•	-				-			-	-	-	-	-		-	-	F.U	ğ	ŝ	5	2.0	5	0,0		0.00	9.	2	ופס			8.	8.	5		n u 	<u>``</u>	2	<u>ہ</u>
		~	ŝ	و و	3	ŝ	-	0.4	ي ي	94	0	- 1	տ տ	0	~	ഗ	÷	4	ທ	0	n,	_	ā	Ŭ	õ	ö	ö	ິດ (ð ö	5 0	ົດ	δį	6	ő ð	ĕ₿	ĕ	õ	ĝ	ğğ	şç	Śĝ	έē	ĝ
•	+	- 8	8	. 6	78	80	80	80.0		88	8	8	80 0	88	86	87	ရွ	88	87	8	83	ď			_	~	_				_									_			
		0																						ŝ		5	Ξ.		יי		4	4.	9	ה היו	ຸ ທີ່ -	-	9.	41		2	្ត		Ξ
			64	<u> </u>	80	01	33	29	2 -	80	80	30	2 10	33	3	25	9	5	80	26	8		•		õ	თ	თ	<u>ດັ</u> ່	n d	ō	້	ő (ה i	ñð	έġ	ຄັ	ő	õ	ົດ ຊີ	26	۶ĝ	50	ş
	٩	-		- 0	2	2	2	200	שיפ אינ	. Q	8.	2	0,0		5	 	<u> </u>	<u>۳</u>		4	<u>с</u> .				~	~	_				~		_								-		_
		U										•••	•••		.,	.,	.,			.,	.,	M			ğ	Š	ő	ů, i	- 4	57	ĕ	2	÷.	÷. 4	3 6	=	Ę	<u>-</u> :	-		10	164	39
	~	SE,		ະ ຕ			4	ຕຸມ	n u	. 4	8.	0	<u>N</u> -	1		9	e.	0	4	ø,	80	Ξ			6	ę	٢	Ϋ́	<u>י</u> יי	19	7	T	7 '	79	ò	0	0	0	o d	sç	ò	0	o
	≊	B	838		496	497	õ	ο i	6 C 6	1.0	50	865	õ s	50	5	Š	Ξ	§	§ 3	62	22	~					~	<u>.</u>	<u> </u>			•	_				_						
		_	·				-				~		•		•	÷	¥			-	• -	Ś			4	ιų.	¥.	8	őč	δ δ	4	5	2	Ň		6	ő	8 0	<u>6</u>	ກໍ່ຮັ	30	38	E
		с Ц	5	ກ ບ	ø	ò	2	n c	າ ຫຼ	<u>ب</u>	8	ω i	ທູ	2	N	ŝ	ŋ	ğ	م	-	ю				-	-	2	2	2 1	1 (1	2	2	-	- 0	1 (1	e e	e	e .		- 6) m	5 0	e
	o -		ų i	196	196	196	6	194		12	153	236	234	250	248	176	179	250	247	221	254			~	2	-	4	91	1 0	φ.	m	2	.	m o	ი	ດ	თ	თ (ωı	ົ່	• •	• 4	ŝ
	`>	i.								•		•••		• • •								ž		B	ະກ	ທ່	ທ່	ហុ់	កំពុ	່ທ	φ	φ	ດຸ່ (קיים	φ	5	5	Ļ.	ġ	įŗ		÷	
		ß	Ω.	n .	2	5	8		ρg	2	Ξ	5	<u>0</u> r		2	ŝ	œ	e	ഗ	4	თ	_								•		·				·		·	ì	• '		•	•
	ᅆᄂ	- 0	4	4 5	155	154	50	192	101	60	8	176	5	12	172	88	ရ	175	212	12	172	표		×	69	5	ទ	63	4 5	4	63	1	4	4 6	22	63	74	44	4	25	14	63	74
		ō												•	•						•		0	4	-	+	~	स ।	~ ~		(0	~	÷.		·	~	^	~	~ ~		• -		_
	~		187	86.03	197	e e	38	502	4 9 9	ŝ	12	69	80	9 4	÷.	65	28	67	26	52	1 8		Ē	SI	4	4	4	4	4 4	4	4	ñ,	4	4 4	4	4	¥,	4	4	4 4	4	4	ဖိ
	പ	-		50	2	2	2	~ ~			2.6	8.0				е.	4	<u>е</u>	с і С		e.	۵.		٩	4	4	4	4	4 4	4	4	4	4	4 4	4	4	4	4	7	4 4	14	1	4
											•••													α	~	-	2	2	N *	. ~	~	~	~	~ ~		~	2	2					~
		a S E C B C B C	0	20	0	8	8	8 d	s g	20	8	0	80	8	8	0	8	0	8	0	8		ę	5	ი	0	5				5		_	- 6	: . ຕ	5	9	6			; `` 0 u	: ``. 0 0	5
	-	1/5		N.		"	4	4		r	4		4	3	4		4		4		4	F	ø	5	54	54	54	5	0 H	540	54	54	22	202	54	54	54	8	52	4 4	14	54	54
		i.																																									
			59	202	õ	04	Š	00 00 00 00 00 00 00 00 00 00 00 00 00	n N N	200	8	5	8 g	29	5	60	<u>0</u>	Ξ	2	5	4	ST	ŧ		õ	ğ	õ	ŝ	5 6	58	ŝ	۶:	S	86	58	8	₽	2	8	2∶	2	: <u>e</u>	4
i	Fod		¥	29	÷	=	¥	ψ,	ž÷	÷Ŧ	÷	2	₽;	2 12	5	÷	Ξ	₽	₽ :	ę	₽	ΞE	<u>Po</u>		\$	₽	₽	₽ :	2	2 🛱	\$	₽:	Ŧ	÷ \$	20	2	5	₽ :	= :	2€	20	?₽	9

MON	
0F	
EJECTOR	
HARDWALL	
WITH	
AND	
- PLUG	UNITS)
HARDWALI	VTIONAL 1
MITH	NTERNA
NOZZLE	S2. (II
BASEL INE	SPACING.
TE-2;	ENDED
FOR	T EX1
ICES], А
MATR	Н, Г
TEST	LENGT
3-7	
TABLES	

		NOZZLE	dom -	EL AX	ARE *	.******* A [MODE	***** L SIZE	S.I.	UNITS ER =0.C	******	******** OUTER =	** 0.0147	; FUL	L SIZE	- TOT	AL = 0	. 9031]	sq.m.
TEST V POINT	ac	° > ``	⁰⊢⊢	᠂ᠳ	°.≽	ᅆᇿ		ч , ,	۰۰ ۵ ^۱	- 3	~ μ.	, c j x	т ×	ية د ×	⊢ · >	⊢⊾	, v v/ i i	
E	ı∕s	s/m	°۲		kg/s	z	m/s	٥¥		kq/s	z	s/E	°۲		ka/s	z		
2001 2002	210	517 521	801 808	1.882	197.6 197.6	6393 6436	377 387	442 462	1.843	54.9	1295 1306	487 492	396 402	1.860 1.868	252	7688 7742	0.73	
2003	0	594	852	2.223	226.0	8390	420	438	2.190	65.6	1723	554	416	2.188	291	10113	0.71	
2004	51	598 657	863	2.224	224.9 767 E	8406	427	454 454	2.184 2.500	64.3 76 E	1718	560	424	2.190	289	10125	0.71	
2006	2,5	661 661	915 915	2.553	250.2	10341	464	456	2.588	76.0	2219	615 615	443	2.515 2.515	326	1258/	0.71	
2007	0	712	996	2.841	270.5	12045	495	468	2.886	83.6	2591	661	465	2.788	354	14637	0.70	
2008	21	713	996	2.850	271.4	12098	499	475	2.887	83.1	2593	663	466	2.798	354	14692	0.70	
2009	• ?	753	020	3.329	318.5	15008	521	480	3.188	91.3	2978	702	467	3.234	409	17986	0.69	
2109	- 0	1 c / 5 6 O	500 2700	3.411 3.411	446.0	15040	526 526	484 488	3.189 3.194	91.0 90.6	2982	/05 554	4 / 1 286	9.273 9.373	408 536	18018 18604	0.69	
2110 1	21	557	523	3.402	447.2	15581	526	489	3.192	90.6	2982	552	284	3.366	537	18564	0.95	
2013	0	779	967	3.627	345.4	16815	541	495	3.389	95.6	3233	727	474	3.510	440	20048	0.69	
2014	21	777	965	3.616	344.9	16762	540	495	3.387	95.6	3232	726	473	3.501	440	19995	0.70	
	ſ	TEST	⊢	٩	ня	NF N	LVM	LBM	Nd	r (FULL	SIZE,	2400 F	T SIDE	LINE).	đB	D	APWL	
	т		amo DEG.K	Pasc	al %	명			50	ANGLE 60	RELATIV 70	10 I I	120 120	DEGREES 130	1	1 0	B	

- - -	amb	amb	Ľ	L	E >		τ.	ANGLE	L SLZE, RELATI	VE TO II	NLET. D	LINE). EGREES	30	UAPWL
	DEG.K	Pascal	%	뗭			50	60	70	06	120	130	140	đb
	299.3	99517.	85	-5.1	1.47	- 10.00	81.3	83.8	86.3	91.3	91.7	87.2	83.8	165.8
	298.2	99586.	87	-5.0	1.53	- 10.00	86.0	87.7	89.0	91.4	91.7	85.5	81.0	165.6
	299.3	99495.	85	-5.5	2.04	-2.78	84.3	87.5	89.9	95.1	94.9	92.7	89.5	170.4
	298.2	99662.	87	-5.4	2.09	-2.79	89.9	92.3	93.2	95.5	95.1	89.6	85.9	170.1
	299.3	99550.	85	-6.3	2.47	-1.33	87.8	91.2	93.4	98.0	98.1	96.8	95.4	174.6
	299.3	99581.	85	-6.2	2.50	-1.34	92.9	94.7	95.9	98.1	97.3	93.7	90.4	173.4
	299.3	99520.	85	-6.8	2.80	-0.64	90.5	94.3	96.2	100.0	100.8	100.0	0.06	177.7
	299.3	99513.	85	-6.8	2.82	-0.63	63.9	96.5	97.5	99.8	99.5	96.3	93.7	175.1
	299.3	99653.	85	-7.8	3.06	0.08	96.2	98.7	100.1	102.9	104.8	104.7	105.2	181.7
	299.3	99595.	85	-7.8	3.08	0.08	99.7	101.2	101.8	102.8	103.4	101.3	98.5	179.5
	298.2	99544.	87 -	-10.3	2.05	0.16	96.2	98.5	99.8	101.3	100.3	1.99	98.5	178.1
	298.2	99621.	87 -	-10.3	2.03	0.15	100.7	102.1	102.2	102.3	98.5	95.2	91.5	178.4
	299.3	99591.	85	-8.3	3.22	0.40	96.6	99.1	100.6	103.1	105.7	106.2	107.6	183.5
	299.3	99650.	85	-8.3	3.21	0.39	101.0	102.5	102.9	103.8	104.3	102.2	100.9	180.5

TEST MATRICES FOR TE-2; BASELINE NOZZLE WITH HARDWALL PLUG AND WITH HARDWALL EJECTOR OF NOMINAL LENGTH, L1, AT EXTENDED SPACING, S2. (ENGLISH UNITS) TABLES 3-8

ż								
1 SQ.I	° > [^ / f	0.73 0.74 0.71 10.71	0.70 0.70 0.69 0.69	0.95 0.69 0.70	WL 18	894-6	04646	ດ. 1 4 ເດ ເ
1400.00	ц Ц Ц	27655 27849 36377 36420 45276	52650 52650 52847 54898 54812 54812	56775 56775 72114 71921	DAF	165 170 170 170		171 1808 1808 1808
TAL = .	mix J T/SEC	1598 1615 1820 1820 2008 2008	2313 2313 2313 2313 2313 2313 2313	1812 2386 2382	dB 140	83.8 89.0 85.95	99.04 99.04 93.7 105.2	98.5 98.5 91.5 107.6 100.9
ZE - TO	× EG R F	302 367 436 436	00000000000000000000000000000000000000	933 557 554	LINE), EGREES 130	87.2 85.5 89.6 89.6	93.7 93.7 96.3 96.3	101.3 99.1 95.2 106.2 102.2
NLL SI	ĕ⊢⊢ō ×			01 10 11 0	SIDE LET, DI 120	91.7 91.7 95.4	97.3 97.3 99.5 104.8	103.4 100.3 98.5 105.7 104.3
75 ; F		100860- 1012-4-4 1012-4-4	04-008 000000 000000	8 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	400 FT T0 IN 90	94.9 95.4 95.5	98.4 99.8 99.8 02.9	02.8 01.3 02.3 03.1 03.8
22.	EC LB/	121. 119. 144. 168.	16/. 184. 201. 201.	199. 210. 210.	SIZE, 2 ELATIVE 70	0.088.0	95.9 95.9 97.5 00.4	01.8 99.8 02.2 1 02.9 1
, OUTE!	r J FT/SH	1238 1270 1378 1402 1523	1532 1626 1628 1712 1712 1718	1728 1775 1774	(FULL (NGLE RI 60	87.00 87.00	- 4 4 0 8 - 4 4 6 1 - 4 - 4 6 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -	2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0
4.75	1 T DEG R	796 832 788 818 811	821 855 855 871 871	881 891 891	O PNL		ຑຉຑຉຑຉ	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
NNER =	≁ <u></u>	1.850 1.850 2.190 2.184 2.588	2.588 2.886 3.188 3.189	3. 192 3. 192 3. 389 3. 387	ى 	00800 88888 99888	5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	00 36 36 36 36 36 36 36 36 36 36 36 36 36
ZE - I	w B/SEC	135.7 135.6 198.3 195.8	551.7 596.3 598.4 702.2 700.7	985.8 985.8 761.4 760.4	H LBW			00000
IS 1300	/SEC 1	0 4 4 0 8 4 4 0 8 4 4 0 8 4 4 0 8 4 1 0 8 4 1 0 8 4 1 0 8 4 1 0 8 4 1 0 8 4 1 0 8 4 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	44308 9443 94430 9440 944		L V			9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
REA [MC	a م ک آج س ا	4 10 10 10 10 0 10 10 10 10 0 1 1 1 1 10 0 1 1 1 10 0 1 1 10 0 1 1 10 0 1 10 0 10	8 4 6 6 7 4 9 8 0 6 7 0 4 8 0 6 7 0 4	2 4 4 8 8 7 7 8 7 5 7 4 6 7 6 7 7 8 7 7 7 8 7 7 8 7 8 7 8 7 8 7 8 7 8	H NF dB	יש מיש מיש יים מיש מיש יים מיש מיש	φ φ φ φ φ ι ι ι ι ι ι ι ι	5
X. AI	T 0 DEG	8 8 8 2 8 4 4 5 7 4 4 5 7 4 4 5 7 5 7 5 7 5 7 5 7 5 8	30 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	202 27 16 17 9 9 77	amb SIA	444 6466 66466 66666	4 4 7 4 4 4 4 6 6 6 6 8 8 8 8 8 8	44 45 45 45 45 45 45 45 45 8 8 8 8 8 8 8
DEL A	0 - - U U	00000	00000 000000 000000	0000 99999 99999	<u>م</u> م	+ + + + + + + + + + + + + + + + + + +	L L L L L L 4 4 4 4 4 4	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
E MO	r v a FT/SE	4 4	4 4 4 0 0 0	4 4	T DEG		8 8	233 233 233 233 233 233 233 233 233 233
NOZZL	TEST POINT	2001 2003 2003 2005 2005	2006 2007 2008 2009 2010	2109 2110 2013 2014	TEST Point	2001 2003 2003 2003	2005 2006 2008 2008	2010 2109 2110 2110 2013 2013

sq.m.				
.9031]	, v v/ v i	0.72 0.73 0.69 0.72 0.72 0.70	0.68 0.69 0.70 0.91 0.93 0.69 0.69	(APWL dB 66.2 71.2 77.7 77.7 77.7 77.7 77.7 79.9 81.8 81.2 81.2 81.2 81.2 81.2 81.2 81.7 81.7 81.7 81.7
ر ۲	۲.	N 7769 7745 10185 10187 10187 12721 12721	14863 14823 18181 18150 18150 18856 18856 18856 18641 20235 20370	пъичимачие 4 0
TOTA	⊢	kg/s 255 252 292 292 331 327	360 356 411 411 411 533 533 446 448	dB 14 14 14 10 10 10 11 10 10 10 10 10 10 10 10 10
- SIZE -	e r ×ie r	1.866 1.867 2.192 2.199 2.530 2.530	2.813 2.811 3.262 3.260 3.260 8.3398 8.379 8.379 8.531	LINE), 130 130 86.8 88.8 88.8 892.3 92.8 92.8 95.3 103.8 95.0 105.8 105.8
: FULI	т т х	X 8005 X 9005 X	461 467 467 460 460 460 470 470 470 470 470 470 470 470 470 47	SIDE (LET, C 120 90.8 99.8 97.1 99.8 99.8 99.8 99.8 99.8 99.8 99.8 99
** 0.0147	× ž ř	щ∕з 481 556 556 613 613 618	660 664 705 558 558 724 724	VE TO IN 89.9 89.9 97.4 97.4 97.4 97.4 97.7 99.5 99.5 99.5 99.5 102.2 102.2 102.3 102.3 102.3 102.3 102.3
***** UTER =	÷.	N 1313 1742 1731 2242 2229	2621 2611 3010 3022 3022 2996 3267 3267	RELATI 70 86.5 86.5 89.7 92.8 92.3 92.3 92.3 92.3 93.4 100.5 100.5 100.5 102.1 102.1
****** 031 , D	-3	kg/s 56.2 57.6 67.1 78.0 76.0	85.8 84.4 91.6 93.4 93.4 97.5 87.8	L (FULL ANGLE 60 83.3 83.3 83.3 93.0 93.0 93.0 93.0 93.2 95.0 95.0 95.0 95.3 101.6 98.9 98.9
UNITS ER =0.0	~ <u>د</u>	1.854 1.854 2.202 2.195 2.603 2.603	2.909 2.902 3.215 3.218 3.218 3.218 3.218 3.218 3.218 3.218 3.218	PN 2000 100 100 100 100 100 100 100 100 10
S.I. - INN		44444 644444 700000000000000000000000000	451 465 484 469 486 488 488 480	LBM CO CO CO CO CO CO CO CO CO CO
*****		m/s 374 415 459 459	488 495 525 525 526 534 535	× × × × × × × × × × × × × × × × × × ×
****** [MODE!	°Ľ	N 6455 6446 8443 8455 10478 10458	12242 15170 15170 15147 15834 15834 15644 15697 17107	
** Area	°.≆	(9/s 17.8 17.7 17.7 12.0	100000	RH RH 663 643 643 772 772 772 772 86 772 86 772 86 872 86 872 86 872 872 872 872 872 872 872 872 872 872
TEO3	0 (74 233 249 46 46 47 47 47 47 47 47 47 47 47 47 47 47 47	75 4 4 5 2 3 2 2 7 4 5 5 6 8 3 2 2 7 4 5 5 6 8 3 2 2 7 4 5 5 6 8 3 2 2 7 4 5 6 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5	ascal ascal 336. 586. 586. 586. 745. 745. 745. 745. 745. 745. 745. 559. 559. 559. 559. 559. 55559. 555
DDEL	čα ¯	5 5 5 5 5 7 7	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
т Т Ш	⁰⊢└	9 803 863 863 863 863 967 863 918 918	962 971 963 960 960 538 538 960 961	T ample DEG ample DEG ample DEG ample DEG ample DEG ample DEG ample DEG ample DEG 2995.9 2095.9 2005.9 20
NOZZL	° > [.]	m/s 519 521 538 538 564 660	714 757 755 755 567 566 777 777	7EST 201NT 3001 3002 3003 3005 3007 3007 3007 3007 3007 3007
	a (a/s 121 121 121 121	2 2 2 2 2 2 2 2 2 2 2 2 2 2 0 2 2 0 2 2 0 2 2 0 2 2 0 2 2 0 0 2 0 0 2 0 0 2 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 2	_
	TEST POINT	3001 3002 3003 3004 3005	3007 3008 3009 3109 3110 3013 3013	

TEST MATRICES FOR TE-3; BASELINE NOZZLE WITH HARDWALL PLUG AND WITH TREATED EJECTOR, T2, OF NOMINAL LENGTH, L1, AT EXTENDED SPACING, S2.(ENGLISH UNITS) TABLES 3-10

NI.
SQ
[o
o o
140
н
LAL
TOT
Т
SIZE
Ļ
FU
 ທ
2.7
5
۳ ۲
UTE
•
75
4
" ~
NNE
-
SIZE
ب
[MODE
EA
AR
03
ŢĘ
DEL
N W
υ υ
NDZZL

0 	< >	ب		0.72	0.73	0.69	0.72	0.70	0.71	0.68	0.69	0.69	0.70	0.91	0.93	0.69	0.69		APWL		dB	56.2	55.7	71.2	70.5	75.1	75.4	7.7	7.7	31.8	31.2	79.2	9.9	1
	LL.		LB	27945	27861	36638	36644	45757	45639	53463	53319	65397	65285	67824	67051	72785	73270	l	õ			9 16	4 16	÷	÷-	1.1	÷	1	7 15	3 15	3 15	÷	5	
mix	>	. . ,	FT/SEC	1599	1611	1826	1825	2012	2030	2166	2180	2316	2313	1832	1835	2377	2383	ļ	dB		140	83.9	80.4	90.6	85.5	95.3	30.9	66.0	94.1	104.8	66.0	66.0	92.5	(
ni×		۲	JEG R	1298	1315	1373	1367	1435	1461	1513	1533	1543	1538	947	954	1538	1542		LINE),	DEGREES	130	86.8	84.6	92.3	89.1	96.8	92.8	99.7	96.3	103.8	100.7	99.1	95.0	
mix r	-	د	-	866	867	192	199	230	530	813	811	262	260	398	379	531	547		T SIDE	NLET. C	120	90.8	90.2	94.4	93.8	97.8	97.1	100.6	99.8	104.4	103.4	100.0	98.7	
	×		B/SEC	3.9 1.	0.3 1.	7.9 2.	3.8 2.	2.0 2.	7.6 2.	9.2 2.	6.0 2.	2.0 3.	1.2 3.	6.0 3.	0.5 3.	5.6 3.	5.0 3.		2400 F	VE TO I	06	89.9	90.6	94.0	93.9	97.4	97.7	99.5	99.8	102.2	102.7	101.3	102.3	
			/SEC L	27 12	50 12	52 14	34 14	17 17	39 16	33 18	25 18	24 20	20 20	37 20	30 20	53 21	56 21		. SIZE.	RELATI	70	86.5	89.7	90.2	92.8	94.1	95.3	97.2	98.4	100.5	102.7	100.9	103.5	
	>	. ,	R FT,	5 122	9 125	5 136	3 135	2 15(7 150	3 16(7 162	2 172	6 172	5 165	0 173	4 175	8 175		L (FULL	ANGLE	60	83.3	87.2	86.6	89.8	90.2	93.0	93.2	96.0	97.5	100.8	98.4	101.6	
	+	⊢	DEG	4 77	5 80	12 76	5 80	3 79	3 82	9 81	2 83	5 87.	9 87	8 84	6 88	8 86	1 86	-	Nd		50	81.4	86.0	83.9	88.5	87.1	91.3	90.06	94.4	95.1	98.9	96.4	6.00	
•,	٩	Ľ	υ	1.85	1.84	2.20	2.19	2.60	2.59	2.90	2.90	3.21	3.20	3.21	3.20	3.41	3.41		Ξ			00.	8	. 74	. 73	. 28	. 29	. 58	59	11	.11	61.	. 17 1	
0	3		LB/SE	438.3	436.0	497.5	502.1	559.5	555.5	604.6	600.6	706.1	706.8	984.8	975.0	769.6	774.0		<pre>CM</pre>			50 - 10	53 - 10	08 -2	07 -2	50 -1	53 - 1	82 -0	84 -0	11 0	10 0	0 60	0 60	
0	,		T/SEC	1705	1711	1964	1949	2167	2179	2343	2353	2486	2480	1861	1857	2552	2558		L L		8	.1 1.	.0 1.	.4 2.	.5 2.	.3 2.	.2 2.	.8 2.	.8	.8 3.	. 8 .9	.3 2.(.2 2.	
0	-	⊷	EG R	1446	1455	1554	1528	1634	1653	1732	1749	1735	1728	696	970	1728	1730		RH	-	°	72 -5	68 -5	72 -5	68 -5	72 -6	68 -6	72 -6	68 -6	72 -7	68 -7	72 - 10	68 - 10	
0	٩	٤	۵	1.889	1.890	2.230	2.233	2.574	2.571	2.874	2.869	3.358	3.354	3.439	3.417	3.654	3.674	1	۵.	amb	PSIA	14.48	14.44	14.46	14.45	14.47	14.46	14.43	14.43	14.44	14.44	14.48	14.43	
	>	ac	T/SEC	0	400	0	400	0	400	0	400	0	400	0	400	0	400	I		amb	DEG R	532.7	534.2	532.7	534.2	532.7	534.2	532.7	534.2	532.7	534.2	532.7	534.2	1
TEST	POINT		Ŀ	3001	3002	3003	3004	3005	3006	3007	3008	3009	3010	3109	3110	3013	3014		TEST	DINT	•	3001	3002	3003	3004	3005	3006	3007	3008	3009	3010	3109	3110	

TEST MATRICES FOR TE-4; BASELINE NOZZLE WITH TREATED PLUG, T2, AND TREATED EJECTOR, T2, OF NOMINAL LENGTH, L1, AT EXTENDED SPACING, S2. (INTERNATIONAL UNITS) TABLES 3-11

	-	NOZZLE		JEL AX	. AR	******	DEL SI	** S.I 2E - IN	UNITS NER =0.	0031		** 0.0147	; FUL	L SIZE	- TOTA	ור = 0	9031] ;	sq.m.
EST	>	° > `	° + '	°⊾	°.∍	۰.	->`	~ ⊢ '	- <u>-</u>	- ≥	- r	ج ×	Ě	Ě		⊢⊾	° ^ ` - ^ `	
DINT	ac	-	⊢ ,	Ľ		•	*1	⊢ (L				⊢ (L			+ •	
	m/s	m∕s	• ×		kg/s	z	с/ш	° ×		kg/s	z	m/s	• ×		kg/s	z		
58	•	521	806	1.894	198.9	6486	376	436	1.855	55.9 54.4	1315	489	398	1.870	254 766	7802	0.72	
	50	110	187 1865	100.0	2002	8435	42.5	444	2,207	56. 1 66. 1	1750		422	2.193	291	10188	11.0	
1204	90	606	882	2.236	224.1	8494	43	464	2.199	64.2	1742	568	433	2.202	288	10236	0.72	
1004	121	597	860	2.231	226.5	8461	415	433	2.203	66.6	1745	557	418	2.195	293	10207	0.70	
1304	121	599	866	2.229	223.3	8360	47	446	2.202	64.9	1727	560	423	2.195	288	10096	0.71	
500	° ;	663	515	2.576	253.5	90401		438	2 612	C.8/ 8/9/	9022	6 10 0 10	4 4 4	2552.2	255	12/64	59.0 70.0	
105	0	477	473	2.614	362.3	10820	426	438	2.612	78.5	2255	474	256	2.613	440	13075	0.96	
4106	121	480	480	2.605	355.4	10672	46	1 442	2.606	77.3	2228	477	259	2.604	432	12901	0.96	
4007	0	714	965	2.869	274.0	1224	490	455	2.913	85.9	2633	661	462	2.810	359	14874	0.69	
1008	121	719	776	2.868	271.9	12221	49	462	2.919	85.3	2638	665	468	2.810	357	14860	0.69	
	00	758	965	3.360	320.9	11241		8 4/2 8 4/2	3.222	93.2	3024	40 Z	468	922.5	4 4 4	18235	89.0 89.0	
4210	ç	762	575	3.360	316.7	15031		1 482	3.208 B02.E	1.16	2984	602	474	0.259	407	18079	0.69	
1010	121	758	967	3.345	319.2	15132	25	476	3.201	92.2	3000	705	470	3.245	411	18132	0.69	
4109	0	560	526	3.423	450.1	15756	515	9 473	3.215	93.0	3021	553	284	3.386	543	18777	0.93	
4110	121	549	505	3.443	457.7	15725	511	469	3.215	92.6	2992	544	274	3.403	550	18721	0.94	
t 011	0	755	961	3.344	320.2	15121	380	489	1.801	51.1	1246	705	491	3.055	974	16368	0.52	
t 012	121	758	965	3.352	320.3	15175	38.	484	1.797	51.3	1241	106	493	3.060	371	16416	0.51	
1013	• ;	178	962	3.644	348.5	16953		483	0.4.0	5 5 5 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5	3266	725	014	3.522	446	20219	0.69	
4014	121	784	974	3.660	347.7	17041	232	482	3.415	97.7	3270	729	675	3.533	445	20311	0.68	
	-	FEST	F	٩	HX	NF	LVM	LBM	ā	NL (FUL	L SIZE,	2400 F	T SIDE	LINE),	Ð	6	APWL	
	2	DINT	ame	am	•					ANGLE	RELATI	VE TO I	NLET.	DEGREES				
			DEG.K	Pasci	2	뜅			50	60	70	6	120	130	4	ç	8	
	v	1001	301.5	99886	32	-5.2	1.48 -	10.00	81.8	83.5	85.4	89.6	90.3	87.0	84.	5	54.3	
	4	1002	295.4	99816	51	-5.2	1.47	10.00	85.7	85.6	86.5	88.8	88.9	83.3	. 61	¥: ⊳:	52.7	
	~ ~		C. 105	998942	2 2	ດ ທີ່ ທີ່ ເ	8 <u>-</u>	5 - 7 - 7 5 - 7	20.02 20.02 20.02	7.C8	9.08 9.08	0.00 0.00	0.47 0.0	4.75	ວິສ ກິສ	9 F	2.2	
	· •	1001	295.4	99845	22	, 10 10 14	2.09	-2.73	88.2	6.98	90.6	93.5	4.66	88.3			1.1	
	ч	1304	297.6	98886	87	-5.4	2.10	-2.74	88.2	£.08	91.6	94.3	95.1	89.4	86.	7 16	58.2	
	4	1005	301.5	99884	32	-6.4	2.47	-1.27	86.8	89.2	92.4	97.1	98.1	97.1	95.	4 17	73.2	
	4	1006	297.6	99029	81	-6.2	2.51	-1.28	92.0	93.8	95.1	98.2	98.0	94.0	91.	- 1	12.0	
	~ ~	n 0 0 0	6.10p	99848		20	6 .	2.1		0. 10 0. 10	94.30	0.00	0.45	0.0	20	≓: ຄ•		
	4	200	301.5	99786	6) 0. 1. (2)	61.6	-0.59	1.68	60.00	8.95	0.00	100.5	100.00	. 86		5. C	
	4	8001	295.4	99688	22	9 9 9	2.86	-0.59	94.0	95.0	96.8	99.4	6.99.9	97.1	93.	ະ 🚅	13.9	
	4	6001	301.5	99755	32	-7.9	3.06	0.12	93.1	95.9	98.9	101.7	103.9	104.0	103.	7 18	30.2	
	ч	1309	295.4	99680	57	-7.8	3.12	0.10	94.2	96.9	99.66	102.6	105.0	104.4	104.	+	30.7	
	4	1210	297.6	98980	87	-7.8	3.12	0.1	97.1	100.7	102.6	104.4	104.6	102.7	<u>8</u>	5 1	30.6	
	4	1010	295.4	99833	57	-7.8	Э. Т	0 . 0	97.7	99°5	101.4	102.8	103.5	6.00 0	86 0	;;; 0 0		
	4 4	601	301.5	999910	88	-10.4	2.01	8 9 9 9	96.0	91.9	85	101.9	8.66	8.86	. 86	0.	0.0	
	4° •		0.167	01800	0 U				38	1.20		- - - - - -	36		- 60	2 \$2 0 \$5		
	4		1.002	99845	5	-		10.0-	96.96	0.86	8 66	102.1	102.7	100.3	61	• •	19.1	
	14	100	295.4	99779	5	- 8 -	3.23	0.42	98.0	90.00 00.00	102.2	104	106.9	106.6	107.	:₩	33.3	
	4	1014	295.4	99713	57	-8.3	3.26	0.43	100.7	102.8	103.6	104.6	105.6	103.1	101.	3 18	10.1	

TEST MATRICES FOR TE-4; BASELINE NOZZLE WITH TREATED PLUG, T2, AND TREATED EJECTOR, T2, OF NOMINAL LENGTH, L1, AT EXTENDED SPACING, S2. (ENGLISH UNITS) **TABLES 3-12**

NOZZLE - MODEL AX. AREA [MODEL SIZE - INNER = 4.75 , DUTER = 22.75 ; FULL SIZE - TOTAL = 1400.00] SQ.IN.

TEST POINT	v ac FT/SEC	٥ ۲	T o T T o DEG R	v J FT/SEC	w LB/SEC	- <u></u> - L	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	t f fT/SEC	t ₩ LB/SEG	و ۲ ج	T T DEG R	m1× v j FT/SEC	۳ 13	° ~
4001 4002	4 0 0	1.894 1.881	1452 1408	1712 1677	438.6 442.5	1.855 1.845	786 809	1236 1249	123.2 120.6	1.861	1306 1279	1607 1585	28066 27747	0.72 0.75
4003	0 00	2.227	1558	1965	496.9	2.207	794 835	1390	145.7 141 6	2.193	1384	1834	36648	0.71
4004	84	2.231	1549	1961	499.3	2.203	780	1376	146.8	2.195	1374	1828	36716	0.70
4304	400	2.229	1560	1968	492.2	2.202	803	1396	143.1	2.195	1389	1839	36316	0.71
4005	° ;	2.576	1645	2176	558.9	2.612	789	1508	173.1	2.532	1442	2018	45913	0.69
4006	\$ o	2.614	1644 852	21/4 1568	9.535 798.7	2.612	788	1507	159.4	2.532	1447 841	1557	47033	0.96
4106	400	2.605	864	1576	783.6	2.606	796	1513	170.4	2.604	852	1565	46405	0.96
4007	0	2.869	1737	2345	604.1	2.913	819	1610	189.3	2.810	1518	2169	53503	0.69
4008	004 004 004	2.868	1759	2360	599.4 707 E	2.919	832	1624	188.0	2.810	1537	2184	53452 66603	0.69
5007	> c	3.351	1748	2494	702.6	3.212	854	1705	4.00	022.0	1546	2316	65236	0.68
4210	200	3.360	1756	2502	698.1	3.209	868	1719	200.9	3.259	1557	2327	65030	0.69
4010	4 0	3.345	1742	2488	703.8	3.201	858	1707	203.3	3.245	1543	2313	65223	0.69
4109	0 00	3.423	848	1838	992.3	3.215 612.6	852	1704	205.1	3.386	100	1814	6/541	0.93
40110	3 c	544 E	018	2479	705 9	3.215 108 1	845 880	1697	204.1	3.403 3.055	899 1613	98/1	54875	0.4
4012	400	3,352	1738	2487	706.1	197.1	871	1270	113.0	3.060	1618	2319	59051	0.51
4013	0	3.644	1733	2554	768.3	3.410	870	1758	215.0	3.522	1544	2379	72728	0.69
4014	400	3.660	1754	2573	766.5	3.415	868	1756	215.4	3.533	1559	2393	73060	0.68
TEST	+	٩	ня	μĿ	LVM LBI	7	DNL	FULL SIZ	ZE, 2400	FT SID	E LINE).	98 19	DAI	⊳wL
POINT	ama	amb					ĀN	GLE REL	ATIVE TO	INLET.	DEGREES			
	DEGR	PSIA	*	В		ល័	ē	0 10	06	120	130	140	Ū	ер П
4001	542.7	14.49	32	-5.2 1	.48 -10.(81	.8 83	.5 85.	4 89.	6 90.	3 87.0	84.5	16	6.1
4002	531.7	14.48	57	-5.2 1	.47 -10.(30 85	.7 85	.6 86.	5 88.	88.8	9 83.3	79.0	16:	2.7
4003	542.7	14.48	32	-5.5 2	.06 -2.	75 83	.8 85	.7 88.	6 93.	5 94.	5 92.4	90.6	163	9.2
4204	531.7	14.49	57	-5.2	.17 -2.	71 85	.3 87	.5 89.	93.	~.66 8	89.1	85.7	9	0.
		04.40 VC VV	20	4 4 6 4 1		22 00 01	50 7.			ר. המ ה ה		7.47 7.47 7.47		
4005	542.7	14.49	32	1 4 9	47 - 1.	27 86	7. 68.	2 92.	4 007		1.00 1	95.4	2	10
4006	535.7	14.36	87	-6.2 2	.51 -1.2	28 92	E6 0.	.8 95.	1 98.	2 98.(0.94.0	91.1	17:	0.
4105	542.7	14.48	32	-9.2	.35 -1.	19 89	.1 91	.5 94.	5 97.	0 94.0	91.0	5 68 2	11	0
4106	535.7	14.36	81		- 40 	21 92	.1 95	.2 96.	2 98.	067	6 88 3 6 6 7 6 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7	84.8	11	0.
4008	1.165	14.46	27	2 8 9 7	- 98 - 0- 198	60 63 67 67	026			26	2.25	0.00	17	- 0
4009	542.7	14.47	32	-7.9 3	.06 0.	12 93	.1 95	.98	9 101.	7 103.5	104.0	103.7	18	
4309	531.7	14.46	57	-7.8 3	. 12 0.	10 94	.2 96	.99 .99.	6 102.	6 105.(0 104.4	104.1	180	.7
4210	535.7	14.36	87	-7.8 3	12 0	11 97	÷.	.7 102.	6 104.	4 104.6	5 102.7	100.7	180	9.0
4010	531.7	14.48	57	-7.8 3		010	1. 99	50. 101.	4 102.	8 103.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.89		F. 0
		14.40 14.40	1 1 7 0 7 0	2 2 4 4 4 4	10.	8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2	29.5 7 10	5 5 5 7	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			-	. .
4011	531.7	14.48	22	E - 1.2-		54 93	1.96		2 102.	104.6	104.0	103.5	175	. 4
4012	531.7	14.48	57	-7.1 3	. 12 -0.2	23 96.	86 8.	.0 99.	8 102.	1 102	1 100.3	97.4	176	. 7
4013	531.7	14.47	57	-8.4 3	.23 0.4	12 98	.0	9 102.	2 104.	4 106.5	9 106.6	107.4	183	ю. -
4014	531.7	14.46	57	с с. с	26 0.4	1300.	7 403	8 103	6 104.	6 105.6	103.1	101.3	180	-

ORIGINAL PAGE IS OF POOR QUALITY TEST MATRICES FOR TE-5; BASELINE NOZZLE WITH TREATED PLUG, T1, AND TREATED EJECTOR, T1, OF NOMIN. LENGTH, L1, AT NOMINAL SPACING, S1. (INTERNATIONAL UNITS) TABLES 3-13

Ė		OF	IGINAL	PAGE IS
sq.		OF	POOR	QUALITY
0.9031]	, ' v v/ į	00000000000000000000000000000000000000	2 0.69 DAPWL dB	164.8 1683.3 1683.3 1683.3 1683.6 1744.3 1744.3 1744.3 1744.3 1745.8 1778.4 1778.4 1778.4 1778.4 1778.4 180.4 180.4 180.4 180.4 180.4 180.4 180.4 180.4 180.4 180.4 180.4 180.4 180.4 180.4 180.4 180.4 1778.5 180.4 1778.5 180.4 1778.5 180.4 1778.5 180.4 1778.5 180.4 1778.5 1777.5 1778.5 1777.5 177
TOTAL =	⊢⊾ ⊢₃	995 557 1200 557 778 557 778 557 778 557 778 557 778 557 1200 557 1200 557 1200 557 1200 557 1200 557 1200 557 1200 557 1200 557 1200 557 557 557 557 557 557 557 557 557 5	45 2020: B 140	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
- 32IS	×	8080225566665555555555555555555555555555	131 4. NE), dl 130 130 130 130 130 130 130 130 130 130	88888888888888888888888888888888888888
FULLS	ĔĊŗ	2 X F 8 5 5 8 8 8 8 8 8 8 8 8 8 9 8 5 8 9 5 8 8 8 8	71 3.5 SIDE LI ET, DEG 120	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
.0147 :	u ai×	F 4 8 05 05 4 4 9 05 05 05 05 05 05 05 05 05 05 05 05 05	726 4 400 FT 70 INL 90	986 2000 2
****** Ter = 0	> ≁ ⊾	N 11293 11293 11733 11733 11733 22238 2238 2238 2238 2238 2238 2238 2238 2238 2238 2238 2238 2238 2238 2238 2238 2238 2238 2238 2238 2338 2238 2338	3263 SIZE, 2 ELATIVE 70	888 88 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
31 , OU	· 3	555 555 555 555 555 555 555 555 555 55	97.3 (FULL: NGLE RI	22 25 25 25 25 25 25 25 25 25
NITS * R =0.00	÷ _ د	1 843 1 843 2 200 2 200 2 607 2 607 2 607 2 607 2 607 2 14 8 22 2 607 2 14 8 22 2 607 2 2 14 8 22 2 14 8 2 2 14 8 2 2 14 8 2 2 14 8 2 2 14 8 2 14 8 2 14 8 2 14 14 14 14 14 14 14 14 14 14 14 14 14	50 PNL	73 73 74 75 75 75 75 75 75 75 75 75 75
S.I.U - INNE	∽⊢⊢	0 444444 444444 444444 444444 44444444	L8M 484	00000000000000000000000000000000000000
****** El Size		922 922 922 922 922 922 922 922 922 922	536 LVM	22100 2010 2010 2010 2010 2010 2010 201
****** EA [MOD	°ພ	64737 64737 64737 64737 64737 88484 104284 84239 107229 1122004 1122004 1122309 115139 115105 115005 11505 115005 110005 110005 110005 110005 110005 110005 110005 110005 110005 1100050	16938 NF dB	
O5 AR	°.∍	841-14 841-14	347.8 15 RH 13 X	
DEL TE	٥٣٢	221234888 22225240 2225740 2225740 2333333 2333333 25240 25475 255	3.652 X Pasc	99325 99289 99287 99225 99225 99287 99287 99287 99287 99287 99287 99287 99287 99287 99287 99287
LE - MO	⁰⊢⊢	88888888888888888888888888888888888888	963 1 amb DEG.	2009 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ZZON	°>~	E 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	779 TEST POINT	5001 5001 5001 5001 5001 5001 5001 5001
	> .		121	
	TEST Point	5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5014	

TREATED PLUG, T1, AND TREATED EJECTOR, T1, OF NOMINAL UNI TS) TEST MATRICES FOR TE-5; BASELINE NOZZLE WITH LENGTH, L1, AT NOMINAL SPACING, S1. (ENGLISH 3-14 TABLES

- TOTAL = 1400.00] SQ.IN . . <u>^</u> ^ $\begin{array}{c} 0 & 0 & 7 \\ 0 & 7 & 3 \\ 0 & 7 & 7 \\$ 164.8 163.7 163.7 168.8 176.9 1774.6 1774.6 1774.6 1774.6 1774.6 1778.0 1778.0 1778.0 1782.1 1782.1 1781.4 1782.1 1781.4 1782.1 1783.0 DAPWL 뗭 46840 53299 652286 65259 65259 65259 65281 65581 658581 6558 27735 27992 36563 36598 36703 46624 58965 72647 45541 72667 45782 В u. 85.88 81.3 87.88 87.88 87.88 87.48 87.65 995.65 10.22 999.65 10.22 999.65 10.22 999.52 10.22 999.52 10.22 10 10.22 10 10.22 10 100 100 100 100 100 100 100 1 J. FT/SEC 140 жiх 뗭 98.0 98.0 98.0 98.0 103.6 101.6 95.2 95.2 95.2 100.7 100.7 90.9 90.7 94.1 92.8 92.8 PNL (FULL SIZE, 2400 FT SIDE LINE), ANGLE RELATIVE TO INLET, DEGREES 60 70 90 120 130 88.1 84.9 93.4 ۵ 1303 1375 1375 1375 1375 1373 1373 1573 855 855 855 1522 15523 155 DEG 22.75 ; FULL SIZE ž 91.4 89.9 95.1 102.6 101.2 105.7 105.2 104.2 98.8 98.8 98.8 98.8 105.2 106.9 93.5 94.4 98.5 97.0 96.6 95.7 Ĕ Ķ

 1.864

 1.875

 2.1955

 2.1955

 2.529

 2.529

 2.542

 2.555

 3.260

 3.2555

 3.2555

 3.2555

 3.530

 3.530

 3.531

 LB/SEC 144.4 172.6 170.1 169.7 186.2 1887.1 1887.1 1887.1 1887.1 186.4 1980.1 1990.1 1990.1 1990.1 1986.4 114.1 114.1 114.1 2203.3 2203.3 2215.0 2215.0 2215.0 2215.0 2215.0 2215.0 2215.0 2215.0 2215.0 2215.0 2205.0 2000.0 2005.0 2000 121.7 121.4 145.7 144.5 з R FT/SEC OUTER > 881.0 885.1 882.1 882.2 882.2 882.2 882.2 882.2 882.2 882.2 882.2 883.2 833.2 . DEG R 4.75 ⊢ 50 IJ

 1
 843

 1
 856

 2
 201

 856
 201

 2
 201

 2
 201

 2
 201

 2
 201

 2
 201

 2
 201

 2
 201

 2
 201

 2
 201

 2
 201

 2
 201

 2
 2

 3
 2

 3
 4

 3
 4

 3
 4

 3
 4

 3
 4

 3
 4

 3
 4

 3
 4

 4
 4

 - INNER ` **د** ' • •••• -10.00 -2.73 -1.25 -1.128 -2.73 -2.73 -2.73 -2.73 -2.73 -2.73 -2.73 -2.73 -2.73 -2.73 -2.73 -2.73 -2.73 -2.73 -1.128 -2.73 -2.75 -2.73 -2.73 -2.75 -2.75 -2.75 -2.75 -2.75 -2.75 -2.75 -2.75 -2.75 -2. -0.23 -0.23 0.43 LBM LB/SEC 435.5 438.9 497.4 498.4 499.7 558.0 559.3 801.4 788.2 601.6 602.2 711.6 703.8 703.8 884.5 703.8 703.8 703.7 703.0 703.0 705.0 705.0 ° **∍**. SIZE ۲V AREA [MODEL FT/SEC ° > ۳ ġ DEG R 1448 1545 1545 1545 1545 1626 1626 1632 867 867 1739 867 1739 17735 17775 1777 F ゃ ∘⊢⊢ TEOS amb PSIA 14.41 14.40 14.42 3.355 3.361 655 652 ៰៓៵ ٩ - MODEL

 538

 538

 538

 549

 559

 569

 569

 569

 569

 569

 569

 569

 569

 569

 569

 569

 569

 569

 569

 569

 579

 579

 579

 579

 579

 579

 579

 579

 579

 579

 579

 579

 579

 579

 579

 579

 579

 579

 579

 579

 579

 579

 579

 579

 579

 579

 579

 579

 579

 579

 579

 579

 579

 5 amb DEG R 000 ac 0 0 0 0 400 FT/SEC > 40ZZLE TEST TEST TNIO 5014

TABLES 3-15 TEST MATRICES FOR TE-6; BASELINE NOZZLE WITH TREATED PLUG, T2; NO EJECTOR. (INTERNATIONAL UNITS)

0.9031] sq.m. TOTA EILL ST7E ΧV MODEI ND771 F

. 5031]	¢ 1 ^ ^ ^ ^	> - -		0.74	0.73	0.71	0.71	0.71	0.0	0.98	0.97	0.70	0.69	0.69	0.70	0.95	0.93	0.51	0.51	0.71	0.69	APWL		đB	71.9	70.3	75.6	76.7	74.8	7.07	75.6	77.1	30.0	80.9	82.1	32.7	82.1 20.0	9.5	31.4	32.2	33.3	32.7
	⊢⊔	L	z	7620	7755	10089	10258	10282	12260	12974	13242	14693	15032	18149	18158	18538	19096	16423	16592	20107	20435	D		Q	8	7 1	7 1	7 1	9		-÷-	-	∓ 0	e ₽	8	÷ ;	; ;		° ►	- 2	1 18	£ ₩
- 101	۲.,	E	ka/s	253	253	291	288	293	126	436	444	356	360	411	412	544	548	372	374	442	448	đB		4	94.	87.	98.	95.	93. 27	. <u>6</u>	. 96	91.	103.	99.	105.	103.	101.	2 2 8	104.	101	108.	102.
L 312E	ž	<u>،</u> د		1.861	1.876	2.200	2.216	2.222	2.555 2.555	2.623	2.654	2.817	2.856	3.274	3.277	3.391	3.455	3.095	3.104	3.555	3.573	LINE),	DEGREES	130	97.2	92.0	100.8	98.6	97.3	20.1	98.6	95.6	105.0	102.8	106.6	105.6	104.7	102.7	106.2	104.4	107.8	105.3
: דער	Ě	- ⊢	۰×	386	397	412	430	417	438	256	254	459	465	467	466	275 :	283	486	491	470	470	T SIDE	NLET, C	120	99.8	97.3	102.8	102.8	101.4		100.6	100.5	106.5	106.5	107.9	107.5	107.6	4. 401 4. 401 4. 401	107.6	108.0	108.7	108.6
0.0147	mix v	>	m/s	480	490	553	568	560	616 616	475	476	629	706	705	704	545	556	704	709	726	728	2400 F	/E TO II	06	95.1	94.5	98.6	0.66	98.5		1.00	100.7	103.1	103.7	105.2	105.2	105.1	104 . k	105.1	105.0	105.8	105.7
JULEK =	u	L	z	1285	1298	17 19	1745	1729	2229	2228	2231	2585	2092	2992	2989	2967	2995	1218	1246	3224	3255	SIZE,	RELATIV	70	91.5	92.9	95.4	96.8	96.7	23. V	98.7	100.2	101.3	103.2	103.2	103.9	104.7	102.5	103.2	104.2	103.7	104.6
· 1FO	÷.3	B	ka/s	54.8	54.6	65.1	64.5	65.0	76.3	76.3	76.8	83.3	9.00 00	91.3 0	90.9	90.8	91.5	50.5	51.4	94.0	96.6	ר (EULL	ANGLE	60	89.8	0.69	94.4	95.8	96.9	4 0 C	93.6	100.1	100.6	103.3	102.0	103.0	104.0	- i 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	101.9	104.3	102.7	104.4
ЕК ≝О.С	<u>-</u> م	،		1.845	1.852	2.201	2.214	2.203	2.606	2.614	2.610	2.900	2.909	3.217	3.213	3.207	3.218	1.793	1.809	3.409	3.419	Nd		50	86.3	90.4	91.2	92.0	94.0	20. Z	94.5	98.2	97.2	100.2	98.9	99.7	01.0	50.1 101 7	5.86	01.9	99.7	02.3
	÷ +		°×	436	446	439	459	446	453	452	448	467	469	483	486	480	480	483	480	506	488	-BM			0.00	0.00	2.72	2.62	6.50	57.1	16	1.08	0.59	0.51	0.15	0.13	. 13	00 7	, 1 8	0.47	.44	0.47
L 312E	->	`	a/s	375	380	422	433	425	467	467	464	496	4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	524	526	523	523	386	387	548	539	WA-			.57 -10	61 -10	18	. 25	<u>0</u>		- 52	48	94 -(92 -(54	<u>6</u>	20 C	<u>v</u> <u>v</u>	23	21	37 (33
A LMUUE	۰.	L	z	6334	6457	8370	8513	8555	10547	10746	11011	12107	12429	15157	15168	15571	16100	15204	15346	16882	17180	NF		dB B	4.8 1	4.8 1	5.1 2	5.1 2	0 0 0 0	2 + 2 +	8.8	9.0 1.	6.6 2.	6.7 2.	7.6 3.	7.7 3.		• • - • - ○ ⊂		7.0 3.	8.1 3.	8.3 3.
AKE	°. 3	F	ka/s	198.8	198.4	226.4	224.4	228.6	255.1	360.6	367.9	273.3	277 2	320.6	321.7	453.3	457.4	322.2	323.0	348.5	352.3	RH		۲ ۲	- 68	62 -	- 68	76 -	- 007	1037	- 68	62 -	י 88	76 -	- 68		9/	0 0 1 1	 - 000	- 91	- 68	- 91
EL AA.	° _	<u>د</u>		1.882	1.899	2.234	2.251	862.2	2.598	2.625	2.664	2.870	076.7	3.371	3.373	3.430	3.505	3.392	9.403	3.667	3.700	٩	amb	Pasca	98552.	98878.	98521.	99074.	98918. 06547		98554.	98876.	98592.	98827.	98483.	98928.	.66899.	70400. 08037	98411.	98936.	98513.	99095.
	۰,	-	∘≚	778	800	844	877		905 905	469	467	949	707	957 3	952	506	524	950	961	951	958	F	amb	DEG.K	279.3	285.1	279.3	284.8	285.1	8 980	279.3	285.1	279.3	284.8	279.3	284.8	284.8	213.0	279.3	284.8	279.3	284.8
	۰>	,	m/s	509	520	591	606		661	476	478	708	757	756	754	549	563	754	760	775	780	TEST	INID		6001	6002	6003	6204	6004		6105	6106	6007	6008	6009	6210		0 1 0 0 0 1 1 0	6011	6012	6013	6014
	>	ac	m/s	0	121	0	99		121	0	121	•		09	121	0	121	0	121	0	121		Ľ																			
	TFST	POINT		6001	6002	6003	6204	6004 6005	6006	6105	6106	6007	8008 8008	6210	6010	6109	6110	6011	6012	6013	6014																					

TABLES 3-16 TEST MATRICES FOR TE-6; BASELINE NOZZLE WITH TREATED PLUG, T2; NO EJECTOR. (ENGLISH UNITS)

IN.			
so.	ح آ	L	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
[00	>		8883 8832 8832 8832 8832 8832 8832 8832
1400.	н г. т.	27410 27890 36291 36291 36591 36591 45586 45586 45586 45585 47658 65534 65534 65534 65534 65534 65534 773507 73507	
raL ≖	nix /SEC	1577 1577 1864 1864 1864 1558 1553 1553 1553 1553 1553 1553 1553	
10	->''⊑		384139446666666666666666666666666666666666
1 Z E -	mix T DEGR	1268 1302 1302 1411 1411 1411 1437 1533 1533 1534 1534 1533 1534 1534 1534	5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
-ر د	+ ~		0 0 0 0 0 0 0 0 0 0 0 0 0 0
FUI	Ē	855 876 876 877 877 877 877 877 877	
 ري	ပ္ထ		
22.7	± ₩ -B/S	C 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
11			
TER	1 /SE(64882628282828282849 R 0002448828282849 R 0002488474759849 R 0002488474759849 R 00024884747554 R 000244884 R 000248484 R 0002484 R 00024 R 00000 R 0000 R 00000 R 0000 R 0000 R 00000 R 00000 R 00000 R 00000 R 00000 R 00000 R 00000000 R 000000 R 0000000 R 0000000 R 0000000	
5	FT		² 80.480.480.480.480.000.000.000.000.000.0
د	Ω.	ちほうてゅうちゅうちゅうちょうちょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
4.7	T DEG	7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	64000000000000000000000000000000000000
li CY		# C - 4 C B & 4 5 0 0 5 5 5 5 6 8 8 8 9 0 0	8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
NNE	τ <u>α</u> -	+ - < < < < < < < < < < < < < < < < < <	000000000-0000-47
п ,	с ш	ບກວ∞ວ≁40≁ກຽກ໑ຬຓ440ຬຓ 」 Σ	00000000000000000000000000000000000000
ZE	w o B/S		
. SI	ب ب	L 4444000000000000000000000000000000000	
DEL	/SEC	00000000000000000000000000000000000000	
Ŭ.	بر د ۲		<u>8</u> 44พพพพดดชองดด/////000/88
REA	۵	-04-8880044408-01-4448-01 I	« თოთდოთდითოდდიითდი
٩	T DEG	44 <u>0</u> 0000000 <u>c</u> 440000000 <u>c</u> 2000 <u>c</u> 2000 2	
X	. .	00030000000000000000000000000000000000	5 IA 5 2 4 5 5 5 5 1 4 5 5 5 1 4 5 5 5 1 4 5 5 5 5
•	۰ <u>۰</u>	- $ -$	T 444444444444444444444444444444444444
DDEI	с С С	၀၀၀၀၀၀၀၀၀၀၀၀၀၀၀၀၀ ဦ	
Σ	v 1/Si	4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
ш Ц	ы не	1234456567890090-234 FF	
zzoi	TES	6000 6000 6000 6000 6000 6000 6000 600	600 600 600 600 600 600 600 600 600 600
Z	<u>н</u>	٩	

0F	Ē														0	F	P	00	R	Q	U,	L	Т	ſ											
12,] 20	۰.							_	_																									
"	9031		< > ``			0.73 0.73	0.71	5.5	0 2 2 2 2 2 0 0	0.70	0.70	0.69	0.69 0.69	0.69	0.69	0.69	0.69	0.69	PWL	ļ	В	9.9	÷.	с. Т	ດ ດ		4 + -	- G - G	ю. Э	с. 3	<u>م</u> د	סי	<u>د</u> .	6.4	
ECTO	0	⊢				0 0 7 7	20	51	5 4	. 6	60	50	N K	່ຄ	99	53	23	е С	DAI			166	16	1	100	99	ő -		178	175	8	178	177	183	
EJI	r AL	ł	Ŧ		Z		101	5		126	127(148	148.	181	181	181	202	202		9	0	ო	4	ស	ف	ю ,	4 C	1 00	m	e	~ •	0 54	9	Q ←	
ATED	TOT	۰.	3		kg/s	255 254	292	292	167	332	020	359	805	+++	413	412	445	445	8		4	85.	81.	91.	6.	. 98 80	0 0 0	. 06	<u>8</u>	94.	106.	. 86	98.	108. 101.	
TRE	ZE -	×				- 0	9	~ 1	~ @	0	ດ	ທ ເ	~ σ) (თ		• •	ч Ю	<u>.</u>	E E S	130	0.0	9.0	4.8	0	4.	4 C		-	ر .	~ ~	v 0.	-	0.0	
ITH (STI	L SI	Ē	۲ <mark>۲</mark>			1.86 1.86	2.18	2.18	2 4	2.52	2.52	2.80	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3.24	3.24	3.24(3.52;	3.52	LIN	JEGRI		8	ŝ	ິ ຕໍ	ດີ	5	ກີອ	5 0	5	6		20	<u>5</u>	106 102	
L UN	; FUL	та Х	_ -	0	×	565 966	417	417	42.4	135	139	163	170	110	167	01	171	172	SIDE		120	90.7	91.1	94.6	95.2	95.0		98.4	01.3	9.00	04 04 04 0	0.00	02.7	05.5 04.5	
JG A IONA	147	×			s u	<u>م</u> د	4	ы С	σα		4	- ,	NIC) 4	, N	້ທາ	ې س	• •	E C		õ	۲.	ອ	0	0,0		ຸດ	> œ	र च	9	4 U	, o	5	- n	
PL	0.0 * 0	Ē	> ``		È	4 4 7 8 8 8	52	ມ ມີ ມີ		61	6	9 i 9 i	0 0 0 0	è è	20	Ö İ	12	72(2400		•	89	68	94	4 6	4 6 6 7	, t- 0	. 16	66	66	<u>5</u> 5	<u>5</u>	101.	102. 102.	
WALL NTER	* * * * TER * *	÷- ر	L		z	1302	1739	1730	1726	246	235	625	600	003	1003	012	264	1259	IZE.		70	5.2	9.9 9	8.2	80 (4 (9.0 4 1	n c > +	о г .	3.6	5.0	0 + 9 4	4.6	7.9	7.5 8.5	
HARD (I	* 8					~ ~						(N (2)		ю —	0 1 0 1	-	ო ი	ייי ור צ	n X U	_	80	80	00	ω (ກ ເ	η σ	00	σ	ດ (50 0	ით	თ	ດ ດັ	
TH F S2.	*** 031		3		Хġ,	20. 20. 20.	66.4	65.0	65.6 65	77.9	77.3	80	92.4	91.7	92.3	91.0	6.79	97.0	- (FU	ANGL ANGL	60	79.8	86.7	83.3	86.7	0.0	- 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	92.4	91.3	94.2	94.2 04.2	1.96	96.9	96.2 97.9	
E WI NG,	TS =0.0		٤			844	196	183	188	601	596	904	202	201	201	204	407	403	INd	Ç	õ	5	م	4	ກ່	א <u>ה</u>		80	2	2	nα	2 0	б	ហេល	
)ZZL ACI	. UNI NER	6	L		•		<u>ю</u> .		, u	<u>ہ</u>	ы. Ч		N 00	с.	ຕ່		m (ო		-		82	86	84	84			9.0	89	ຕິດ	20.0	60	95. 9	94 96.	
D SF	s. 1.s	÷- ⊢		٥	× (440 440	434	184	439	443	448	461	478	483	476	483	485	487	BM			8	8	61.	6/.	202		. 29	.60	. 61	2 g	<u></u> 22.	60.	42	
ENDE	312E	- 、	,		n/s 70	376	611		120	161	63	500	21	123	20	24	90	31	ب _			-10	10	1 1	N 0	1 1	۰.	1	Ŷ	ρ (o c	0	0	00	
BAS EXT	**** DEL	-				,	` 			+	۲ س		- 10	0	۳ ۳	0.0			LVN			1.54	1.57	2.12	2 C	5 - 7 - 7 - 7	2.54	2.57	2.88	2.90	0 	3, 15 3, 15	3.17	3.28 3.30	
-7; AT	0W]	۰.	-		z	644	841	847 877	842	1045	1047:	1221	15 195	1510	15163	1515(16955	1698	NF	ą	a D	0.0	ה. או	ה ה ה ו	י י י	у с 1	• •	-	5.7	<u> </u>	- 9		1.7		
R TE L2,	** Area	0	_		s r	. 80	ю і		2	ŝ	æ.	- o	n u	en.	س	<i>.</i> , .	ף ו	1.	I	/0	~	1 1	i o	4.0	0 U	i ī o u	ঁ ন স্ব	-	ĭ v	, .	- i + ic	 	۱ ۵	₩₩ ₩₩	
S FO	507		•		× ç	198	226	222	225	254	253	274	320	319	321	320	240	348	<u>م</u>	2 6		α	90	ю (ם ע	ο α) (c) 	ن	cò	ίο.	ò ữ	ò cò 	۰ ق	ού όο 	
LEN	ц Ц	۰ ۵	<u>د</u>		000	.885	. 220	222.	225	. 563	570	. 862 862	349	. 338	347	342	5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	.647	۵ م		Pasc	0128	99916			00220	0075	9870	9945	9882	00000	9946	0073	9838 9851	
MA TF DE D	MODE	0	⊢		х и •	- -	50	ч с ч с	14 10	4	2		10	ю Ю	ຕ່ ຕ		יי סימ עיק		Ę	2	2	₽ ₽	2010	, c	0 0	ο α	5 10	9 9	۔ م	9 r 9 r	20 - 00 - 00	0 0 0	8 8	6 9 9	
EST XTEN	ı س	-4	•	0	02	n Ö	ເດີຍ ເ	n ù n à	98	80	6	9 9 5 0	6 6 6	3 6	õ	ůů o o		40°	μ,	5 ŭ 2	í A	288	987		, 00 v	286.	288.	287.	288.	287.	286.	288.	286.	288. 287.	
	IZZO	° >	·		ต∕ย ช1ช	518	594	100	598	657	660	5 F F	758	756	755	756 778	0	2	EST			001			25		005	900	201	800	5 00	010	99	014 014	
3-17	2		с С		νC) -	00	> -	-	0	<u>-</u> (۰ <u>-</u>	0	0	<u> </u>	- 0	.	-		-		ř.	- 1				~	7	ř i	< 7		ž	i i	* *	
ES		>	. " . 5		È -		.						!	•	сі : Сі :	0	,																		
FABL		TES	POIN		7001	2007	2002	2004	7304	7005	800		2006	1306	2010	10102		1014																	

TABLES 3-17

TEST MATRICES FOR TE-7; BASELINE NOZZLE WITH HARDWALL PLUG AND WITH TREATED EJECTOR, T2, OF EXTENDED LENGTH, L2, AT EXTENDED SPACING, S2. (ENGLISH UNITS) **TABLES 3-18**

NOZZLE - MODEL TEO7 AREA [MODEL SIZE - INNER = 4.75 , OUTER = 22.75 ; FULL SIZE - TOTAL = 1400.00] \$Q.IN.

	÷ _ز	7 4 4 7 4 4 7 4 4 7 4 4 7 4 4 7 4 4 7 4 4 7 4 4 7 4 4 7 4 4 7		დ - იეი 4 - ი იითი ითი ი 4
	LB <	88334 8515 8515 8515 8515 8515 8515 8515 851	816 0 0APW dB	166 177 177 177 177 177 177 177 177 177
	i× /SEC	200 200 200 200 200 200 200 200	384 72 3 140	885.3 91.5 91.5 91.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90
			08., 23.	00404400-000000
	mix ⊤ DEG R	1292 1301 1302 1368 1368 1377 1377 1374 1441 1544 1554 1554 1553 1553 1553 155	1549 LINE DEGRE	888 9999993558 9999999999999999999999999
	ie r X	861 886 1887 1887 1887 1887 1887 1887 18	525 T SIDE NLET, 120	9 9 1 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
			3 3. 10 F 90 F	00000000000000000000000000000000000000
	FB/3	1452 1452 1452 1452 1452 1452 1452 1452	213.8 E, 24 TIVE	
	SEC	0.0.0.0.0.4.1.0.0.4.0.2.0.1	4 SIZ RELA 70	888899999999999999999999999999999999999
	- > _ F		176 IFULL SO	878700000000000000000000000000000000000
	i T EG R	792 792 792 793 793 793 793 793 793 793 793 793 793	877 PNL (Ah	
	- 4	04000000000000000000000000000000000000	20 20	88888888888888888888888888888888888888
	Ψ Δ ⁶		6. 2 .	000008850001000077
	o /SEC	00000000000000000000000000000000000000	8.8 LBI	000000
	a ≰ L	4 4 4 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0	76 LVM	308 328 415 54 57 54 57 57 57 57 57 57 57 57 57 57 57 57 57
	o j T/SEC	1691 1950 1950 1950 1966 1966 1966 1966 1966 1966 1966 196	2557 F B	0.
•	> u 2	24086964465866	2 0 9	1111111111111111 0400000000000000000000
	DEG 10	4400000000040000	27 7 7 7 7 3 3	80800080808080808080808080808080808080
• 	٥ ٢	1.8852 2.22855 2.22855 2.22255 2.22255 2.2255 2.2555 3.3255 3.349	3.647 P amt PSI4	
	v ac T/SEC	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	400 amb DFG R	8 8 8 8 8 8 8 8 8 8 8 8 8 8
	TEST POINT F	7001 7002 7003 7004 7005 7005 7005 7005 7005 7005 7009	7014 TEST POINT	7001 7003 7003 7004 7005 7005 7005 7005 7005 7005 7010 7010

sq.m.																																							
.9031]	¢ ^ [;]	, ,	0.74	0.74	0.72	0.72	0.71	5.0 6	0.99	0.70	0.70	0.70		200	0.97	0.52	0.52	0.70	0.70	APWL		đВ	64.7	64.3	69.3	68.4	68.6 73.7	72.0	69.4	70.7	51.3	74.5	01.0 4 4	6 77	75.6	76.0	80.3	(6.5	79.2
AL = (۳.	z	7735	10162	10124	10136	12636	12669	12982	14766	14770	18116	10100	18665	18685	16342	16390	20146	20172	0)	40	8.	8 .	т. С.	• •	- • - •		+	8.	.7	0,0	ب م	- -		7 1	æ:		• 5
- 101	≮ ′	ka/s	251	253 289	289	288	328	328	438	356	356	409		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	551	370	369	442	443	B		÷	85	79	91	87	90	000	89	83	8	90 7 0	<u>6</u>	80	97	90	40 40	200	<u>8</u>
L SIZE	ية م ×		1.868	1.868 2 198	2.192	2.195	2.528	2.534	2.610	2.809	2.810	3.260	0.2.0 727 C	3.384	3.387	3.062	3.069	3.528	3.532	LINE).	DEGREES	130	88.5	84.1	93.9	89.8	9.98 00	93.8	91.8	88.9	101.6	97.2	2.001	100	98.3	94.4	104.5	100.3	102.9
: FUL	T mix	° ×	401	396 474	423	424	440	442 053	255	465	466	2/4	7 7 7	271	273	491	495	475	472	r side	JLET.	120	90.1	88.2	94.5	91.6	9.55 80	96.00	93.7	94.0	101.0	98.9	5.40L	101.7	98.2	98.3	103.7	101.0 105.5	103.3
:** : 0.0147	× E > T	s/m	491	488 561	560	561	615	471	473	663	663	101	001	541	542	705	709	729	727	2400 F	VE TO I	06	88.8	88.3	92.5	63.4 1	97.4 00	95.4	92.1	92.4	98.2	97.8		100 4	98.0	97.9	100.0	401.5	100.8
****** 0UTER =		z	1299	1306	1733	1737	2237	2245	2228	2614	2610			3015	3001	1239	1236	3261	3254	. SIZE.	RELATI	70	84.6	85.7	87.9	6.88 6.0	ים סקים ס	91.5	87.3	88.5	92.8	94.6	ς 20.00	8.76	93.7	94.1	94.9	1.12	98.2
****** 0031 .	-3	ka/s	54.2	54.6 64.8	64.3	64.4	76.2	1.61	76.0	83.5	83.8	50.0 0 0		0.10 0.10	90.7	50.6	50.5	95.3	96.2	ור (בחרו	ANGLE	60	83.2	84.2	83.4	87.7	4 0 0 a	89.8	84.3	86.5	89.3	92.3	97.90 97.90	95.2	91.3	92.8	92.4	04.0	96.2
.UNITS NER =0.	~ _ `		1.847	2.206	2.197	2.202	2.604	2.611	2.600	2.904	2.904	517.5 514 C C	202	3.222	3.212	1.800	1.797	3.412	3.412	ā		50	82.8	85.5	84.6	87.1	80.0 80.0	90.8	83.5	87.2	89.6	93. 1	0, 20 0, 20	95.9	90.3	92.6	92.1	4 CR	96.4
** S.I 2E - IN	۰ ـ ·	°×	455	452	460	459	459	454	459	476	470	494		487	492	494	494	504	493	LBM			10.00	10.00	-2.74	-2.78	9/.7-	-1.29	-1.20	-1.20	-0.61	-0.60	27	0 10	0.17	0.18	-0.24	2 C	0.42
*****		, <u> </u>	38.0	380 4 30	40,4	431	460	468	469	501	498	ο α α α α α		527	523	391	391	547	541	۲VM			- 09.	. 57 -	18	- 12	ο - α - α	. 59	.42	.44	.90	06. 90	<u>n</u> -	18	.02	E0.	÷;	2 5	. 90 . 30
*******	°ᡅ	z	6435	6430 8419	8390	8399	10398	10745	10753	12152	12159	15123	15007	15649	15683	15102	15154	16885	16917	NF		đB	-4.8 1	-4.9	-5.2		7 C - U -	- 9 -	-9.0 1	-9.0	-6.6 2	9 0 1 0 1 0	0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	-7.6 3	10.4 2	10.4 2	с с. с. с. с.	2 0 0 - 10 0 - 10 0	-8.2 3
38 AR	°. з	ka/s	197.4	198./ 224.8	225.0	224.6	252.3	364.0	362.8	272.8	272.2	0.815 0.815		460.4	460.4	319.8	319.3	346.8	347.7	НЯ		۱ %	6 8	6 8	68 1	7 2	7 08	68	89	72	68	0 0 00 0	50 7 0 7	68	- 68	- 68	680	ით ით	20 80
DEL TEC	٥ ٢		1.890	1.888 2.229	2.222	2.225	2.564	2.608	2.612	2.859	2.864	202.5	00000 0000 0000 0000 0000 0000 0000 0000	3.417	3.424	3.351	3.360	3.640	3.649	٩	amb	Pasca	99414.	99478.	99467.	99573.	994/0.	99442.	99463.	99348.	99504.	99336.	00444	99344.	99457.	99435.	99390.	99533.	99376.
WOL	° + +	°×	808	/ 8 / 8 6 5	860	864	907	909 463	466	962	966 700	000 000	000	497	498	959	967	965	962	+	amb	DEG.K	287.6	288.2	287.6	287.6	201.0 287 6	288.2	287.6	287.6	287.6	288.2	201.0	288.2	287.6	288.2	287.6	201.0	287.6
NOZZLI	° > ``	m/s	521	7 L C	596	598	659	472	474	712	714	759	252	543	544	755	759	617	778	TEST	TNID		8001	8002	8003	8204	8005	8006	8105	8106	8007	8008	8040 8040	8010	8109	8110	8011	8013	8014
	ac ac	m/s	0	0	60	121	•	- 0	121	0	121	c g	50	0	121	0	121	0	121		-																		
	TEST POINT		8001	8003	8204	8004	8005	8105 8105	8106	8007	8008	80108 8010		8109	8110	8011	8012	8013	8014																				

OF POOR QUALITY

OF EXTENDED LENGTH, L2, AT EXTENDED SPACING, S2. (INTERNATIONAL UNITS)

ļ

TEST MATRICES FOR TE-8; BASELINE NOZZLE WITH TREATED PLUG, T2, AND WITH TREATED EJECTOR, T2, OF EXTENDED LENGTH, L2, AT EXTENDED SPACING, S2. (ENGLISH UNITS) TABLES 3-20

NDZZLE – MODEL TEO8 AREA [MODEL SIZE – INNER = 4.75 , DUTER = 22.75 ; FULL SIZE – TDTAL = 1400.00] SQ.IN.

0 1/ 1 0 1/ 1 1	0.74 0.72 0.72 0.72 0.71 0.71 0.99	0.100 0.110 0.110 0.110 0.110 0.110 0.100 0.100 0.100	PwL d8	440888000004-00000 00040000-000000
L F	27823 27823 36555 36416 36416 45555 46528 46528	46698 53116 651127 65165 65240 67137 67211 58982 72466 72561 72561	OA	\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$
mix / j :T/SEC	1613 1603 1842 1837 1841 2018 1541 1547	1553 2175 2177 2322 2322 1775 1775 2326 2335 2335 2335 2335	dB 140	858 967 966 966 966 966 967 966 967 966 967 966 967 966 966
ix EGR	33 33 33 33 33 33 33 45 45 83 1 83 37		LINE), EGREES 130	88 5 93 9 93 9 93 9 93 9 93 8 93 8 93 8 94 9 102 12 102 12 10 10 10 10 10 10 10 10 10 10 10 10 10
	0034 001 11 11 11 10 10 10 10 10 10 10 10 10	22222222222222222222222222222222222222	T SIDE VLET, D 120	90.1 94.5 94.5 93.6 93.6 94.0 94.0 94.0 94.0 94.0 94.0 94.0 94.0
/ · · ·		· · · · · · · · · · · · · · · · · · ·	2400 F F TO II 90	88 88 88 92 14 14 14 14 14 14 14 14 14 14 14 14 14
L × L SEC	001 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SIZE, RELATIV 70	88888888888888888888888888888888888888
R FT <	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11288325344 1738835544	(FULL 60	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
DEG	8200 8200 8200 8200 8200 8200 8200 8200	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	50 PNL	22222222222222222222222222222222222222
- -	++000000000000000000000000000000000000	00000000000000000000000000000000000000	M	004747200000000000000000000000000000000
.w .B/SE	8435.3 495.6 495.6 8026.3 8026.3 8026.3 8026.3 8026.3 8026.3 8026.3 8026.3 8026.3 8026.3 8026.3 8026.3 8026.3 8026.3 8026.3 8026.3 8026.4 8020	799.8 601.4 601.4 703.2 703.2 703.2 1015.0 705.1 704.0 766.5 766.5	M V	660 111 111 111 111 111 111 111
v j fT/SEC	1711 1966 1968 1963 1963 2169 2169	1556 2339 2339 24845 24992 24992 24992 2555 24993 25556	dB L	4466666666677777 6777777777777777777777
T O T O C	1455 1455 15557 15556 1633 1633 1633	840 1733 1733 1733 1739 1738 895 895 895 1727 1727 1727 1738	н % Н	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
- o r	2.553 2.523 2.5555 2.55555 2.55555 2.55555 2.55555 2.55555 2.555555 2.555555 2.5555555 2.55555555	2.612 2.859 2.859 3.352 3.417 3.417 3.351 3.454 3.351 3.664 3.654 6490	P amb PSIA	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
v v T/SEC	4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	T amb DEG R	55555555555555555555555555555555555555
POINT	8001 8002 8003 8204 8005 8005 8005	8106 8007 8008 8008 8200 8210 8110 8011 8011 8013 8013	TEST	8001 8003 8003 8004 8005 8005 8005 8005 8005 8005 8005

- --

Τ1,	
EJECTOR,	
TREATED	
AND WITH	UNITS)
, T1,	TIONAL
D PLUG	NTERNA'
TREATE	2. (II
HTIW	ING, S
NOZZLE	D SPAC
BASELINE	AT EXTENDE
TE-9;	L1, /
ES FOR	-ENGTH,
MATRI CI	DMINAL 1
TEST	OF N(
3-21	
TABLES	

0			
i 	0.75 0.73 0.73 0.71 0.71	0.71 0.71 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95	JAPWL 163.2 163.2 163.2 163.2 163.2 163.2 171.2 171.2 170.9
۴ س	N 7687 7697 10111 10111 10111	12568 12568 12905 12923 18727 18023 18023 18036 18036 18253 18253 16266 16266 16265 16265 16265 162655 20042 20042	6 wvavw-un-vuavv-un
⊢ .	kg/s 250 290 288 290	328 326 4326 4356 407 405 537 406 537 406 8337 406 8337 406 8337 422 8327 8422 8422	dB 8 7 9 9 7 9 8 8 9 9 9 7 9 9 9 9 9 9 9 9
ĔŢŗ	1.869 1.868 2.196 2.196 2.198	2.529 2.530 2.530 2.530 2.607 2.607 2.553 3.254 3.255 3.255 3.255 3.058 3.058 3.058 3.058 3.058 3.058 3.058	PEGREES 1300 88.7 88.7 92.8 87.4 92.0 92.0 92.0 92.0 92.0 92.0 92.0 92.0
т т	0 86444 X 86444 X 86444 X 86444	4 4 0 0 4 4 4 4 0 0 4 4 4 0 0 4 4 4 4 0 0 4	T SIDE NLET, [120 99.15 99.15 99.10 99.10 99.10 99.10 99.10 99.10 99.10 99.10 99.10 99.10 99.10 100.9 100.9 100.9 100.9 100.9 100.9 100.9 100.0 100.0 100.0 99.10 90.10 90.00000000
×. E > .	д/s 557 557 556	614 616 616 474 481 481 705 705 709 705 7255 7255 7255 7255	VE T0 11 90 93.7 93.7 93.7 93.7 93.7 93.7 93.7 93.7
- ц	N 1299 1727 1727	2226 22112 22112 22113 22114 2214 22959 29697 298000 29800 20800 200000000	RELATIT 70 70 88.7 886.7 886.7 99.5 992.5 992.2 995.8 995.8 995.8 995.8 995.8 995.2
- 3	kg/s 54.2 55.1 65.7 65.0	99951-09999-14-75 9991-1-0999-14-75 9991-1-099-14-75 9991-1-099-09-14-75 9991-1-099-09-14-75 9991-1-099-09-14-75 9991-14-75 9001-14-75 90000-14-75 90000-14-75 900000	L (FULL ANGLE 60 85.9 85.9 88.7 88.7 88.7 88.7 88.7 88.7 92.7 92.7 92.7 92.7 93.7 93.7 93.7 93.7 93.7 93.7 93.7 93
÷ ۲	1.853 1.846 2.203 2.197 2.197	2.597 2.597 2.597 2.600 2.600 3.200 3.198 3.198 3.209 3.209 3.209 3.209 3.209 3.209 3.209 3.209 3.209 3.209 3.209 3.209 5.5975 5.5975 5.5975 5.5975 5.5975 5.5975 5.5975 5.5975 5.5975 5.5	900.5 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
۰ ۲	0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	44 45 45 45 45 45 45 45 45 45 45 45 45 4	LBM CO000000000000000000000000000000000000
, > ⁻	383 383 420 425 423	46633 46633 46633 466555 466555 466555 466555 466555 466555 4665555 4665555 4665555 4665555555 46655555555	LVM 49 49 44 46 44 46 34 47 48 00 74 40 00 74 40 00 74 80 14 80 16 80 16 80 16 80 16 80 16 80 16 80 16 80 16 80 16 80 16 16 16 16 16 16 16 16 16 16 16 16 16
°ᡅ	N 6388 8384 8384 8389 8389	10374 10356 10356 10687 12130 15053 15053 15053 15055 155655 155655 155655 155033 150030 150030 150030 150030 150030	Σ Π Π Π Π Π Π Π Π Π Π Π Π Π
°.₃	kg/s 200.1 196.0 224.5 223.5 225.5	2551.4 2550.6 2550.6 2752.5 2722.5 2722.5 2722.5 2722.5 2722.5 2722.5 2722.5 2722.5 2722.5 2722.5 2722.5 2722.5 2722.5 2722.5 2725.5 27	R 8008070808878878878878878987898789878987
ᅌᇍᄕ	1.888 1.891 2.231 2.237 2.232	2.570 2.5700 2.57000 2.57000 2.57000 2.57000 2.57000 2.57000 2.570000 2.57000000000000000000000000000000000000	Pascant Pascan
⁰⊢⊢	o K 8173 859 859 853 853	907 910 910 910 910 910 910 910 910 910 910	П в в в в в в в в в в в в в в в в в в в
° > ¯	ш/s 509 503 602 595	660 661 7435 7661 7661 7661 7758 7758 7758 7758 7758 7788 7788	PDINT PDINT PDINT PDINT PDINT 99005 99005 99005 99005 99005 99005 99000 99010 99010 99011
ac <	a/s 121 121 121	1201	-
TEST POINT	9001 9003 9203 9003	9005 9105 9105 9105 9106 9010 9011 9011 9011 9011 9011	

TEST MATRICES FOR TE-9; BASELINE NOZZLE WITH TREATED PLUG, T1, AND WITH TREATED EJECTOR, T1, OF NOMINAL LENGTH, L1, AT EXTENDED SPACING, S2. (ENGLISH UNITS) **TABLE 3-22**

AL = 1400.00] SQ.IN.	ix F i o /v /v /sec LB j j	583276520.75514363720.73329363720.71327364830.71347363690.71327363720.71327363590.71327363690.71327452080.71327452080.71321452290.71551464210.95581464210.95320648780.68321670680.95321670680.953216587100.51380721490.69380721490.69	140 dB 140 dB 84.3 163.2 79.7 162.8 90.4 168.2 95.1 172.5 99.7 177.0 98.7 170.9 98.7 170.9 93.7 170.9 97.6 177.5 97.6 177.5 97.6 177.5 97.6 177.5 97.6 177.5 97.6 177.5
SIZE - TOT	T T DEG R FT	122 122 122 122 122 122 122 122	LLINE), dl 6GREES, dl 130 887.7 887.7 887.0 992.0 992.0 1002.6 1000.6 10000.6 10000.6
.75 ; FULL S	i mix SEC r 1 SEC	6 1 8 1 8 8 8 8 8 8 8 8 8 8 8 8 8 1 8 8 8 1 8 8 1 8 8 1 1 8 8 1 1 8 8 1 1 8 1	400 FT SIDE T0 INLET, 90 120 89.1 99.1 99.1 9 93.3 94.5 93.3 94.5 9 93.7 93.7 93.7 9 94.5 93.7 93.7 9 94.5 93.7 9 94.6 9 94.6 9 94.0 9 95.7 9 96.7 9 97.1 9 96.7 9 97.1 9 97.1 9 96.7 9 97.1 9 97.1 9 98.0 0 03.3 9 98.6 0 03.3 9 98.6 0 03.3 9 98.6 0 03.3 9 98.6 0 03.3 9 98.6 0 03.3 9 98.6 0 03.3 1000 0 000 0 000 0 000 000 0 000 000 000000
OUTER = 22	t v w j FT/SEC LB/	1257 119 1249 119 1380 144 1395 144 1395 144 1395 144 1519 166 1519 166 1528 168 1528 168 171 1494 17106 202 17106 202 17106 202 17106 202 17106 202 17106 202 17106 202 17106 202 17106 202 1723 202 1753 202 1753 202 1753 213 1746 213 1753 213 1746 213	LLL SIZE RELATIC RELAT
= 4.75 ,	i T DEG R	8 8 4 4 5 7 5 9 7 4 7 8 8 4 4 8 4 4 8 4 4 5 7 4 7 8 8 8 8 4 4 8 7 8 6 6 7 4 7 8 8 8 7 8 6 7 4 7 8 8 8 8 4 7 8 7 8 7 8 7 8 7 8 7 8	PNL (FI ANGI 50 60 50 60 50 55 55.5 85.5 85.5 85.5 85.5 85.5 83.7 7.6 992.7 92.7 5 92.7 5 92.
ZE - INNER	w P W P B/SEC	3.2 3.4 3.4 3.5 5	Cocococococococococococococococococococ
. [WODEL SI	o y FT/SEC L	1466 14755 14755 14755 14755 147555 14755 147555 1475555 147555	MF LVM dB dB dB dB -5.5 2.049 -5.5 2.044 -5.5 2.044 -5.5 2.044 -5.6 3 2.446 -6.3 2.446 -6.466 -7.488 -7.488 -7.488 -7.488 -7.488 -7.488 -7.488 -7.488 -7.488 -7.488 -7.486 -7.488 -7.488 -7.486 -7.488 -7.486 -7.496 -7.4866 -7.4866 -7.486 -7.4866 -7.4866 -7.4866 -7.4866 -7.4866 -7.4866 -7.4
. AREA	o T DEG R	13 1392 1547 1547 1547 1547 1557 1535 1558 1535 1573 1535 1752 1752 1752 945 945 945 1731 1733	Θ 4 4 6 7 6 7 6 7 <th7< th=""></th7<>
EL AX.	۰ ۲		α τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ
E - MOC	V ac FT/SEO		н 0 449 4444 44444 444444 444444 44444 44444 44444 44444 4444 44444 44444 44444 44444 44444 444444
NOZZL	TEST POINT	9001 9003 9003 9004 9005 9005 9005 9005 9005 9005 9005	T T E ST 01 NT 01 NT 01 NT 09000 09000 09000 09100 09100 09100 09100 09100 09100 0001 00000 0000 00000 00000 00000 00000 0000

2 OF	
EJECTO	
HARDWALL	
-UG AND WITH [ONAL UNITS]	
H HARDWALL PI . (INTERNAT)	
WIT S2	
NOZZLE SPACING,	
: BASELINE EXTENDED S	
- 10 AT	
L2,	
FOR H,	
MATRICES DED LENGT	
TEST XTEN	
23 I E	
μ	
TABLES	

sq.m.

			Ĩ			· * * * * * *	* * i * * - * -	* S . I	. UNITS	* * *	* * *	* *	ī		TOT.	(- F C C C
		NUZZL	н М	VEL IE	TU AR	EA (MUI	JEL SI	7F - 1V	NEK #C			0.0147		L 512E .		С #	11508.
) (:	۰,	۰,	۰,	°. :	۰'	· :	÷-,	· - (÷.:	·- ,	mix X	ж. Ж.	, a X	⊾:	⊢.	i
POINT	ac >	>		י י	3	L	> -		۲ <mark>۲</mark>	3	Ŧ	>	- +	<i>۔</i>	3	L	> , ' ,
		n					ר					٦					י י
	•		0		•		•	0					0		•		
	a∕s	m/s	¥		kg/s	z	Ē	ω ×		kg/s	z	m/s	¥		kg/s	z	
-	0	516	802	1.872	200.2	645	1 37:	3 431	1.85	2 57.0	1332	484	395	1.852	257	7790	0.72
0	121	518	806	1.877	199.3	6453	38	2 451	1.84	8 55.2	1319	488	400	1.858	254	7772	0.74
ო	0	594	852	2.224	223.4	848:	3 42	2 440	2.20	0 66.4	1753	555	417	2.191	294	10236	0.71
4	121	594	854	2.224	229.5	8523	9 42:	3 445	2.18(5 66.0	1745	556	418	2.190	295	10275	0.71
ഹ	0	656	906	2.542	256.2	1050	3 4 5	7 439	2.57	7 78.9	2255	609	436	2.501	335	12763	0.70
9	121	657	305	2.556	255.8	10515	5 46:	3 448	2.59	1 77 9	2255	612	438	2.517	333	12770	0.70
7	0	715	968	2.867	275.1	12309	9 49	5 464	2.90	7 85.3	2642	663	466	2.810	360	14951	0.69
œ	121	716	963	2.867	276.6	1238	1 49.	4 465	2.89	4 85.4	2641	664	466	2.809	361	15022	0.69
თ	0	757	963	3.357	322.5	15276	52	1 477	3.21	5 93.0	3033	705	469	3.258	415	18309	0.69
0	121	755	960	3.346	324.1	1530	1 52	1 479	3.199	5 92.8	3023	203	467	3.248	416	18325	0.69
109	0	561	528	3.421	452.3	15862	221	3 491	3.20	2 91.7	3028	555	286	3.383	544	18890	0.94
110	121	555	517	3.423	458.8	15920	52(3 490	3.20	1 91.9	3034	550	281	3.384	550	18955	0.95
13	0	775	953	3.650	352.4	1707	I 54	1 493	3.416	5 97.2	3290	724	468	3.535	449	20362	0.70
14	121	774	953	3.651	352.7	17080	54:	3 497	3.416	5 96.8	3290	725	469	3.537	449	20370	0.70
403	0	598	866	2.225	274.6	10277		0 255	1.000	0.0	0	598	475	2.225	274	10277	0.00
409	0	760	972	3.354	389.5	18523	õ	0 255	1.00	0.0	0	760	533	3.354	389	18522	0 [.] 0
		TEST	⊢	٩	КH	ΝF	L VM	LBM		NL (FUL	L SIZE.	2400 F	T SIDE	LINE).	dB	00	DWL
	-	TNIO	qme	amt	0		1	}	•	ANGLE	RELATI	VE TO I	NLET	DEGREES	1	,	
			DEG.	< Pasci	ał %	dB			50	60	70	06	120	130	14(0	dB
		•	277 6	000101	0	r 4 -	5.5		0	0	000	, , ,	(()	•	U		ų
		- 0	288 7	100857	787	- 0	20.1		0.40 87.8	0.00	88 2.00	0.00 0.00	0.10		0 a		0. F
		i m	277.6	100526			2.21	-2.77	86.0	87.7	90.4	96.8	96.1	94.1	5		2.0
		4	277.6	101104	92	-5.1	2.22	-2.78	91.3	91.6	0.69	96.4	95.3	90.6	86	16	6.6
		ۍ ۲	277.6	101824	. 92	-6.0	2.61	-1.37	88.4	90.4	93.0	99.8	9.66	0.66	97.	2 17	4.6
		9	277.6	101070	. 92	-6.0	2.63	-1.33	93.0	93.7	94.7	99.7	98.3	94.8	91.	2 17	Э.О
		7	277.6	100421	. 92	-6.5	2.98	-0.60	90.7	92.5	95.1	101.3	102.5	101.9	100.	5 17	7.7
		ø	277.6	101006	. 92	-6.6	2.98	-0.60	94.5	95.4	96.6	101.0	100.6	97.8	94.	1 17	4.9
		თ	277.6	100301	. 92	-7.6	3.25	0.11	93.5	94.9	97.1	102.9	105.0	105.1	106.3	3 18	1.2
		ç	277.6	100887	. 92	-7.6	3.23	0.10	96.6	97.7	0.09	102.7	103.2	101.3	86	1 17	7.3
		60	288.7	100691	. 78	-10.2	2.13	0.17	91.2	92.9	95.4	100.6	99.2	98.5	97.8	5	7.9
		<u></u>	288.7	100979	. 78	-10.3	2.09	0.17	95.1	96.0	97.5	101.5	100.4	96.2	6 7	1	8.7
		÷,	277.6	100264	65 67 7		3.36	0.42	95.4	96.6	98.4	103.7	106.3	106.7	108.	e :	6, 1 8, 1
		4 04	D. 112	1002/3	207	- 1	10.0	- 0.4X	ים. מעיים	90.00 00.00	00	103.1	104.1 05 0	102.1	20		~ c x c
		5 C C	1.000	100/68	2 Q 2 / Q	 	04.7 07	+	50.00 100	80.4 0	01 N	20.02 10.00	0.02 P. 101	0.00 104			
		カンナ	1.002	P 2122	<u>•</u>	7.1-	ם. בע	±.0	1.72	+ D	0.10	102.4	1. +2	1.40		0	<u>ה</u> .

C-2

TEST MATRICES FOR TE-10; BASELINE NOZZLE WITH HARDWALL PLUG AND WITH HARDWALL EJECTOR OF EXTENDED LENGTH, L2, AT EXTENDED SPACING, S2. (ENGLISH UNITS) TABLES 3-24

DEL	а Ц	10	AREA	(MODEL	. Şıze o	-	- NER	. .	, OUTER i	= 22.7	75 :	FULL S mix	IZE - T mix	DTAL = mix	1400.0	0] SQ.IN.
P T V ac r J j c DEG R FT/SEC	T V T J DEG R FT/SEC	r j R FT/SEC	v j FT/SEC			SEC	- د د	T T DEG R	v j FT/SEC		SEC P		T Deg r	v j FT/SEC	г ц	v∕v į į
0 1.872 1445 1693	2 1445 1693	145 1693	1693		441	4	1.852	775	1226	125.	7 4.	852	1296	1589	28021	0.72
00 1.877 1451 1700	7 1451 1700	151 1700	1700		439	ю. -	1.848	813	1254	121.8	+	858	1312	1603	27958	0.74
0 2.224 1535 1949	4 1535 1949	535 1949	1949		503	9.	2.200	793	1386	146.4	4 0	191	1368	1822	36821	0.71
00 2.224 1538 1951	4 1538 1951	538 1951	1951		505	ס י	2.186	802	1389	145.4	4 0 0 0	190	1373	1825	36960	17.0
0 2.542 1631 2153	2 1631 2153	531 2153	2153		564	.ч. ю, о	119.7	0.57	0051	1/4	N C		00t-			
0 2.556 1630 2158	6 1630 2158 7 1744 7349	530 2158	2158		505	ייר קיינ	199.2	807	1019	1881	, .	018	1529	2177	53780	0.69
0 2 8 6 7 1745 2350	7 1745 2350	145 2350	2350	-	609		2.894	837	1623	188.		809	1531	2178	54035	0.69
0 3 357 1735 2486	7 1735 2486	735 2486	2486		711	0	3.215	860	1712	205.0	Э.	258	1539	2313	65859	0.69
0 3.346 1728 2478	6 1728 2478	728 2478	2478		714	ເດ ເຄ	3.195	862	1710	204.6	ю. Э.	248	1535	2307	65916	0.69
0 3.421 952 1841	1 952 1841 9	952 1841 9	1841	0,	997	5	3.202	884	1733	202.3	2 3.	383	940	1822	67947	0.94
0 3.423 932 1822 10	3 932 1822 10	332 1822 1C	1822 1C	ę	11	ີ ເ	3.201	883	1732	202.7	7 3.	384	923	1806	68182	0.95
0 3.650 1717 2543 7	0 1717 2543 7	117 2543 7	2543 7	7	11	0	3.416	888	1777	214.3	а. С	535	1538	2377	73241	0.70
0 3.651 1716 2542 7	1 1716 2542 7	716 2542 7	2542 7	~	17	ی و	3.416	894	1783	213.		537	1539	2378	73273	0.70
0 2.225 1559 1965 60	5 1559 1965 6C	559 1965 6C	1965 6C	မ္မ	ຫຼ	e.	1.000	460	0	0.0	2.	225	1558	1964	36967	0.00
0 3.354 1750 2496 85	4 1750 2496 85	750 2496 85	2496 85	80	8	8 .	1.000	460	0	0.0	ю. О	354	1749	2496	66626	0.00
P RH NF LVM	RH NF LVM	2H NF LVM	NF LVM	۲٧M		LBM		PNL	(FULL SI	IZE, 2,	400 F	T SIDE	LINE).	명	DA	PWL
din amb	qu						I	Ā	NGLE REI	ATIVE		NLET.	DEGREES			Ę
s R PSIA % dB	IA % dB	°d₿	QВ				ŭ	0	09	0	06	120	051	140		80
9.7 14.71 92 -4.7 1.62	71 92 -4.7 1.62	32 -4.7 1.62	4.7 1.62	.62	í.	10.00	94	.0	5.0 86	6.9 6.0	93°3	92.6	89.1	86.(0 16	6.6
9.7 14.63 78 -4.9 1.57	63 78 -4.9 1.57	78 -4.9 1.57	4.9 1.57	. 57	i.	10.00	97	8	7.3 86	3.2	92.6	91.5	85.9		9 i 16	7.5
9.7 14.58 92 -5.1 2.21	58 92 -5.1 2.21	32 -5.1 2.21	5.1 2.21	5	·	-2.77	7 86	8	7.7 90	4.0	96.8	96.1	94.1	- - -		
9.7 14.66 92 -5.1 2.22	66 92 -5.1 2.22	32 -5.1 2.22	5.1 2.22	. 22	•	-2.75	91	б С.	1.6	0.0	96.4 96.4	95.3 00.3	9.06 00	98 98 91	16	٥. •
9.7 14.77 92 -6.0 2.61	77 92 -6.0 2.61	32 -6.0 2.61	6.0 2.61	. 61	•	- 1 - B	88	4. 9.0	4 1) :	י מ ה ה ה	0.0 0.0				, 9 c
3.7 14.66 92 -6.0 2.63	66 92 -6.0 2.63	12 -6.0 2.63	6.0 2.63 7 5 5 5	20 0		5 C	ה מ ה ה	5 č 7 r	- 10 - 10 - 10	~ + H		20.02 10.02	0.40			2
9.1 14.36 32 -6.3 2.36 3 7 14 CE 00 -6 6 2 08	100 32 -0.0 2.30 16 00 -6 6 7 00	00'7 C'0- 76	0.7 7.30 10 7 9 9	0 0 0 0				ס ה ציי		- 4		201	α 10	94		0.4
3.1 14.00 32 -0.0 2.30 0 7 44 66 00 -7 6 3 76	50 32 -0.0 2.30 FF 07 -7 6 3 75	27 - 2, 2, 30 27 - 7 6 - 2, 30 20 - 7 6 - 2, 30	7 6 2 2 26	0 U 0 C		5 -		ה ס ה ני				105.0	105.1	106.3	18	2
2 1 1 1 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3	53 97 -7 6 3 73	12 -7 6 3 73	76303				96		56 2.2	0.0	22.7	103.2	101.3	98.	17	7.3
3.7 14.60 78 -10.2 2.13	60 78 ~10.2 2.13	78 -10.2 2.13	0.2 2.13	<u></u>			5	.2	2.9 95	1.4	9.00	99.2	98.5	97.8	3 17	7.9
9.7 14.65 78 -10.3 2.05	65 78 - 10.3 2.05	78 -10.3 2.09	0.3 2.09	ŏ		0.1	1 95)6 	6.0 97	7.5 1(01.5	100.4	96.2	92.5	5 17	8.7
9.7 14.54 92 -8.1 3.3	54 92 -8.1 3.3	32 -8.1 3.3	8.1 3.3	<u>е</u> .	9	0.42	26 2	.4 9(6.6 98	3.4 1(73.7	106.3	106.7	108.3	3 18	2.8
9.7 14.54 92 -8.1 3.3	54 92 -8.1 3.3	32 -8.1 3.3	8.1 3.3	ε.	7	0.42	2 98	.3	8.8 100	0.1 ±	03.7	104.7	102.7	100.9	÷	8.7
9.7 14.62 78 -4.7 2.4	62 78 -4.7 2.4	18 -4.7 2.4	4.7 2.4	4	ທ	-2.74	1 85	ЭВ С	0.0		96.3	95.8	93.6 93.6	91.		21.2
9.7 14.61 78 -7.2 3.4	61 78 -7.2 3.4	78 -7.2 3.4	7.2 3.4	4	თ	0.14	1 92	.7	4.7 97	7.3 10	02.9	104.7	104.7	104.	9 18	ь. г

- Tables 3-19 and 3-20, Test Matrices for TE-8; Baseline Nozzle with Treated Plug, T2, and with Treated Ejector, T2, of Extended Length, L2, at Extended Spacing, S2.
- o Tables 3-21 and 3-22, Test Matrices for TE-9; Baseline Nozzle with Treated Plug, Tl, and with Treated Ejector, Tl, of Nominal Length, Ll, at Extended Spacing, S2.
- o Tables 3-23 and 3-24, Test Matrices for TE-10; Baseline Nozzle with Hardwall Plug and with Hardwall Ejector of Extended Length, L2, at Extended Spacing, S2.

3.3.2 Laser Velocimeter Test Summary

Mean velocity (axial component) and turbulent velocity (axial component) measurements of twenty-one (21) selected flow conditions with five (5) test configurations were performed employing the laser velocimeter (LV). Measurements were acquired on Configurations TE-1, TE-4, TE-5, TE-6 and TE-8. The nominal aerodynamic flow conditions of the LV test points are summarized in Table 3-25. Twenty-one (21) aero plumes were LV studied in varying degrees of detail; these 21 configuration/plume combinations being identified by "LV Test Point No." for ease of reference in the Table 3-25 summary. "Match Acoustic Test Point Number", also in the table, is a cross reference to the same acoustic test point number of Section 3.3.1's Table 3-1; the same nominal aerodynamic flow conditions being maintained. As noted from the table, 7 plumes were documented on Configuration TE-1, 4 on TE-6, 6 on TE-4, and 2 each on TE-8 and TE-5. A brief description of the test point is also included.

The detailed LV measurements are included in this contract's comprehensive data report. Select data are included within the reports Section 4.0, "Acoustic and Diagnostic Test Results".

3.3.3 Shadowgraph-Photograph Test Summary

In addition to the acoustic, LV and aerodynamic instrumentation performance tests, diagnostic shadowgraph-photography testing was conducted on Configurations TE-1, TE-4 and TE-6. Table 3-26 summarizes the shadowgraph test matrix, covering (6) similar plume/aero cycle conditions on each of the (3) test configurations. The nominal aerodynamic flow conditions are summarized in this table. Test point numbers again match the acoustic test points of Section 3.3.1's Table 3-1; the same aerodynamic flow conditions being maintained. The detailed shadowgraph-photographs are included in this contracts comprehensive data report. Results of these data are referenced within Section 4.0, "Acoustic and Diagnostic Test Results".

3.3.4 Aerodynamic Ps and Ts Test Summary

Instrumentation for aerodynamic performance and thermal environment evaluation were applied to various surfaces of the suppressor/ejector systems in order to a) estimate chute base drag, b) measure chute metal temperature and skin temperature along the ejector inner flowpath plus cavity temperature within the packed treatment trays, and c) measure static pressure along the ejector inner flowpath. To acquire said measurements, this instrumentation was utilized, whenever possible, during the prime acoustic test matrices as TABLE 3-25. LASER VELOCIMETER TEST MATRIX

						NON	MINAL A	ERODYN	AMIC CY	CLE		
					A	INER			ITUO	ER		
	TEST POINT DESCRIPTION	LV TEST	MATCH ACOUSTIC TEST	а/а	ч,	۰, ľ	м,	я/d	т,	νj,	м,	ν _{fs} ,
		NUU.	NDUN.	E / D	°R	fps	bps	VI / 7	° _R	fps	sdd	sdi
	τ/ο HOT STATIC	-	1009	3.20	870	1720	4.0	3.40	1730	2495	13.9	0
		2	1010	3.20	870	1720	4.0	3.40	1730	2495	13.9	400
	$r/0$ $r^{1}=r^{0}= 870^{0}R$. STATIC	ę	1109	3.20	870	1720	4.0	3.47	870	1850	19.5	0
CONFIG.	\mathbf{T}_{1} , \mathbf{T}_{1} , \mathbf{T}_{2} , \mathbf{T}_{2} , \mathbf{T}_{1} , \mathbf{T}_{2} , \mathbf{T}_{1} , \mathbf{T}_{2} , \mathbf{T}_{2} , \mathbf{T}_{1} , \mathbf{T}_{2} , \mathbf{T}	4	1110	3.20	870	1720	4.0	3.47	870	1850	19.5	400
TE-1	T T T T T T T T T T T T T T T T T T T	5	1011	1.80	870	1270	2.3	3.40	1730	2495	13.9	0
-	T/O OUTER. NO INNER, STATIC	9	1409	I	I	ı	0	3.40	1730	2495	13.9	0
	C/B. FLIGHT	7	1004	2.20	800	1390	2.9	2.25	1530	1960	9.8	400
	T/0, HOT, STATIC	8	6009	3.20	870	1720	4.0	3.40	1730	2495	13.9	0
UT THOU	T/0, HOT, FLIGHT	6	6010	3.20	870	1720	4.0	3.40	1730	2495	13.9	400
TE-6	T/0, SUBSONIC INNER, STATIC	10	6011	1.80	870	1270	2.3	3.40	1730	2495	13.9	0
_	T/O, OUTER, NO INNER, STATIC	11	6409	I	'	1	0	3.40	1730	2495	13.9	0
	T/0, HOT, STATIC	12	4009	3.20	870	1720	4.0	3.40	1730	2495	13.9	0
	T/O, HOT, FLIGHT	13	4010	3.20	870	1720	4.0	3.40	1730	2495	13.9	400
TE-4	$T/0, T_{r}^{i}=T_{r}^{0}=870^{0}R$, STATIC]4	4109	3.20	870	1720	4.0	3.47	870	1850	19.5	0
	T/0, T ¹ =T ⁰ = 870 ⁰ R, FLIGHT	15	4110	3.20	870	1720	4.0	3.47	870	1850	19.5	400
	T/O OUTER, NO INNER, STATIC	16	4409	ı	1	1	0	3.40	1730	2495	13.9	0
	C/B, FLIGHT	17	4004	2.20	800	1390	2.9	2.25	1530	1960	9.8	400
CONFIG.	T/O, HOT, STATIC	18	8009	3.20	870	1720	4.0	3.40	1730	2495	13.9	0
TE-8	T/O, HOT, FLIGHT	19	8010	3.20	870	1720	4.0	3.40	1730	2495	13.9	400
CONFIG.	T/O, HOT, STATIC	20	5009	3.20	870	1720	4.0	3.40	1730	2495	13.9	0
TE-5	T/O, HOT, FLIGHT	21	5010	3.20	870	1720	4.0	3.40	1730	2495	13.9	400

SHADOWGRAPH-PHOTOGRAPH TEST SEQUENCE AND DATA SUMMARY TABLE 3-26.

ні Х 2338.8 2469.0 2501.5 2328.3 2325.5 1773.4 1792.3 1773.4 2342.6 2330.0 2319.8 Ft/Sec 2325.4 1792.2 2493.4 1781.3 1776.9 2334.6 2328.9 2500.4 > 3.387 3.377 3.454 3,447 3,389 3. 386 3. 389 Ο ۲. a. 1740 1727 881 903 1745 1740 882 Deg. R 1705 742 906 1743 1733 1734 1734 1726 1726 895 1750 1737 1743 Ο ۲ OUTER Ft/Sec 2469.0 2501.5 2500.1 2496.8 1782.7 1804.8 2506.1 2487.8 1779.7 1802.9 2504.8 2493.4 2485.3 1794.5 1789.5 2505.4 2495.5 2500.4 2494.1 Ο > 1.000 3.195 3.189 1.000 3.210 3.190 1.000 1.798 3.208 3.209 3 189 1.796 3.189 1.803 3.185 3.194 3.186 0.994 3.217 r • ---1 ū. 1366 859 870 875 876 886 894 1183 892 891 905 894 766 880 867 866 878 789 887 Deg.R **I NNER** 1740.5 1736.5 ः ० 1736.4 Ft/Sec ہ ۔ د 0. 0 1725.5 752.6 1713.9 261.9 1720.9 (728.8 1727.8 1712.8 286.4 1725.5 7161.8 1285.1 • লা > Ft/Sec ± 10 10 400 400 400 400 400 400 $\circ \circ$ \odot \circ 0 0 0 \circ ୦ ୍ \circ \circ 0 > SHADOWGRAPH AERO DATA 1109 5010 6110 6109 6009 6409 409 011 1009 1110 1010 4009 4109 4110 4010 PN. 409 6011 4409 POINT 4011 224 225 226 227 228 2 230 236 236 238 238 20 M 240 241 DMG NO. CONFIGURATION TE-1 TE-6 TE-4 97

described in Section 3.3.1 Table 3-1. Aerodynamic data were acquired and reduced to engineering units, along with the standard aerodynamic flow monitoring instrumentation for both flow streams, on the Data Management (DMS) System. Detailed Ps and Ts measurements are tabularized in this contract's comprehensive data report, Section 4.7, "Aerodynamic Static Pressure and Static Temperature Data Summary". Select results of these measurements are within this report's Section 5.8, "Aerodynamic Performance Evaluation from Chute Base Pressure Measurements" for chute base drag impact on nozzle thrust coefficient and within Section 4.0, "Acoustic and Diagnostic Test Results".

4.0 ACOUSTIC AND DIAGNOSTIC TEST RESULTS

Within this section, the acquired acoustic and diagnostic data are analyzed and results reported. As discussed in Section 3.1, "Scale Model Test Hardware", a chronology of test configurations was developed to systematically evaluate parameters which were judged influential to suppressor/ejector acoustic performance. This chronology, diagrammed in Figure 4-1, was also followed in identifying the methodology of comparisons for analysis and presentation of results. The following report subsections present results of various study areas, as follows:

Section 4.1: Establish performance of the baseline TE-1 unejected nozzle in relation to a previous similarly designed 20-chute coannular nozzle of NASA-GE Contract NAS3-21608. Additionally, as no conic nozzle data were acquired within the current program, establish conical nozzle acoustic performance curves for reference in evaluating suppressor/ejector effectiveness.

Section 4.2: Provide an overview of effectiveness of parameters influencing suppressor/ejector acoustic performance and summarize the impact of geometric/aerodynamic variables.

Section 4.3: Verify the on-test selections of optimum peformance of ejector axial position S2 (TE-9) over S1 (TE-5) and treatment application T2 (TE-4) over T1 (TE-9).

Section 4.4: Rank and quantatively evaluate the individual sources of ejector effectiveness, i.e., a) application of hardwall ejector, b) application of acoustic treatment to ejector flow surface, and c) application of acoustic treatment to plug surface. These are reviewed within the nominal length ejector set; TE-4, TE-3 and TE-2, and within the extended length ejector set; TE-8, TE-7 and TE-10.

Section 4.5: Evaluation of effectiveness of ejector length variation within the comparisons of a) hardwall ejector TE-2 and TE-10, b) treated ejector flowsurfaces, TE-3 and TE-7, and c) fully treated ejector/plug, TE-4 and TE-8.

Section 4.6: Review effectiveness of softwall plug surface for potential of diminishing shock-cell strength and subsequently alleviating shock-cell related noise.

• OVERVIEW OF SUPPRESSOR/EJECTOR PERFORMANCE - SECTION 4.2

FIGURE 4-1 FLOW SCHEMATIC OF TEST CONFIGURATIONS RELATIVE TO EVALUATION OF ACOUSTIC PERFORMANCE

As acoustic performance can be gauged through comparison of a variety of standard noise parameters, i.e., PWL, PNL, OASPL, EPNL, and basic spectra, it is of interest to present representative samples of these types of data sets for overall trend evaluation. Many of the physical changes incorporated in ejector model variations produced minor changes in acoustic levels and in many cases the changes are not methodically consistent. For example, as primary nozzle thermodynamic cycle is changed or as simulated flight is introduced, mechanisms of noise generation and subsequent ejector suppression are altered. Therefore, to gauge effectiveness of a physical change in ejector design, i.e., length increase, ejector axial location, hardwall, ejector flowpath treatment, or plug surface treatment, review of a representative sample of comparisons is generally warranted to discern general trends of effectiveness. More specifically, if a select cycle condition and acoustic parameter is of interest, exact comparisons at those conditions are most helpful. Therefore, for evaluation of acoustic peformance of the baseline and treated ejector variations, this section will present an array of detailed data comparisons, primarily to augment observation of trends, but also to benefit the readers future use. General peformance trends elicited from the comparisons are then summarized.

4.1 EFFECTIVENESS OF BASELINE CONFIGURATION TE-1 RELATIVE TO CONICAL NOZZLE AND TO PREVIOUS MULTI-CHUTE INVERTED-VELOCITY-PROFILE SUPPRESSOR SYSTEM

Within this section, the baseline TE-1 unejected 20-chute suppressor nozzle is compared to a reference conical nozzle for establishing its level of suppression. It is also compared to a previously tested, similarly designed 20-chute outer annular suppressor to validate consistency of jet noise suppression level attained, plus, to evaluate whether additional forward quadrant shock noise suppression was achieved. Prior to this presentation, however, conical nozzle data from previous NASA-Lewis sponsored contracts are summarized in order to document reference nozzle performance curves for use throughout the report.

4.1.1 Conical Nozzle Baseline Substantiation

This program's test effort did not include testing of a reference conical nozzle. As acoustic performance of jet noise suppressors is always referenced to a baseline conical nozzle, previous NASA sponsored test efforts on conic nozzles within the General Electric Anechoic Free-Jet Facility and a full scale conic nozzle engine test are summarized within this report section to provide said baseline. Data from References 5 and 12 through 14 have been reviewed and used to establish nominal performance curves, the nominal curves then used as reference to which suppressor/ejector systems' suppression is quoted in various report sections. Except for the Reference 14 YJ101 engine test static data, the conic nozzle data have been acquired and reduced in the same manner described in Section 3.1 of this report. The YJ101 data have acquired, reduced and scaled in similar manner and represent compatible conic nozzle data for a full scale engine sized to the AST/VCE study system. Unless otherwise stated, presented data are for a full scale 1400 in² exhaust nozzle total area, corrected to a 59°F 70% relative humidity standard day and presented on a 2400' sideline.

The conic nozzle performance summaries, where applicable, are presented as direct comparisons of static and simulated flight. The simulated flight range being 370 to 400 ft/sec, representative of takeoff flight speed for an AST/VCE system. Compared as such, influence of flight can readily be seen on all presented parameters, i.e., spectra, OASPL, PNL and PWL. These results will be later referenced in relation to flight influence on the suppressor/ejector acoustic performance.

A quick review of flight effects on jet noise may be in order for the sake of qualitatively understanding the major changes seen in static-to-flight data comparisons. Flight effects can be examined by reviewing the methodology in which the General Electric M*G*B prediction model, Reference 15, handles said effects on the basic noise generation/emission mechanisms of a) basic turbulent mixing, b) convective amplification of the turbulent eddy sources, c) fluid shielding and refraction of mixing noise, and d) shock cell associated noise.

First, the basic turbulent mixing noise generation is altered in several ways. The forward flight is seen in a nozzle-fixed reference frame as a co-flowing medium; hence the shear between the jet flow and the ambient medium is reduced. Simultaneously, the mixing rate coefficients are reduced which tends to elongate or stretch out the jet. The result of these competing effects is a reduction in the basic turbulent mixing noise level (typified by the $\theta_{\rm I}$ = 90° spectrum), but more reduction occurs at high frequencies than at low frequencies. In addition, the "source" frequencies, which are determined by intensities and length scales of the generated jet shear layer turbulence, become smaller so the resultant spectrum shifts to lower frequencies. This is illustrated qualitatively in Figure 4-2a.

The second mechanism which is altered by forward flight is the convective amplification of the turbulent eddy sources due to motion relative to the observer. Typical convective amplification trends on OASPL are shown in Figure 4-2b. The effect of forward flight is to change the convection speed of the eddies relative to the observer from M_C (relative to the nozzle) to M_C-M_O . Thus, the "observed" convection speed $M_{CO} = M_C-M_O$ is reduced, and the directivity pattern due to convection becomes less steep. This results in an increase in the forward-arc level relative to the 90° level, and a corresponding decrease in the aft-arc level relative to the 90° level, as compared to the static levels.

The third mechanism which is altered by forward flight is the fluid shielding and refraction of the mixing noise as it propagates through the jet flow itself to the ambient field. This mechanism only plays an important role in the aft quadrant, above $\mathfrak{G}_{\mathrm{I}} = 120^{\circ}$ to 130° , depending on the jet velocity. Since the amount of shielding or attenuation provided by the jet flow itself increases with increasing jet velocity, the effect of forward flight is to reduce the flow shielding, since the jet flow velocity level relative to the ambient medium is reduced. This results in an increase in noise in the aft arc, above the critical angle or "zone of silence" where shielding occurs, $\mathfrak{G}_{\mathrm{I}}$ = 120° to 130°. This effect is illustrated qualitatively in Figure 4-2c. The shielding effect diminishes at low frequencies, having negligible impact below about 1/2 the peak noise frequency at 90°.

(a) Basic Source Spectrum Mixing Noise Reduction Due to Forward Flight

(b) Convective Amplification Directivity Alteration Due to Forward Flight

(c) Fluid Shielding Alteration
 Due to Forward Flight

(d) Shock Cell Noise Spectrum Modification Due to Forward Flight

FIGURE 4-2 QUALITATIVE EFFECTS OF FORWARD FLIGHT ON VARIOUS JET NOISE EMISSION/GENERATION MECHANISMS.
Finally, the fourth mechanism of jet noise generation which is altered by forward flight is shock cell noise generation. The shock cell noise generation "sources" are fixed (on a time-averaged basis) to the nozzle reference frame, i.e., they are not convected sources. This is because the nozzle plume shock fronts formed in the jet flow at supersonic pressure ratios are the noise radiators, producing acoustic emission as a result of jet flow turbulence convecting through and over the shock cell fronts. The noise "source" locations, i.e., the shock fronts, are fixed relative to the nozzle, but the emission spectrum shape depends upon the turbulence characteristics (intensity, length scale and convection speed). To the extent that forward motion modifies these turbulence characteristics, the shock cell noise emission spectrum will also be altered. For low flight speeds ($M_0 \ge 0.3$), this effect will be small, since we are concerned with changes close to the jet exit plane where flow velocities are high. For high flight speeds ($M_0 \ge 0.5$), this effect could be substantial.

In addition to the above effects (modification of shock-cell noise source spectrum due to changes in turbulence characteristics), the shock-cell noise spectrum suffers a dynamic and doppler effect due to source motion similar to that of a moving point source, of the form

SPL_{static} - SPL_{flight} = 40 log₁₀ (1-M_o cos θ_{I})

 $f_{flight} = f_{static}/(1-M_0 \cos \sigma_I)$

Again, for large M_o, these level and frequency corrections can be quite substantial. This effect is illustrated qualitatively in Figure 4-2d.

For presentation of the summarized conic nozzle data, standard methods for correlating jet mixing noise are followed and resultant curves presented in the following:

- o Figure 4-3: Normalized OAPWL versus normalized jet velocity for static and simulated-flight.
- o Figure 4-4 and 4-5: Normalized OASPL and PNL, respectively, versus normalized jet velocity parameter, static and flight, for $\sigma_I = 60^\circ$, 90°, 130° and peak value.

Noteworthy in reviewing these figures are the following:

- o Substantial reduction of flight OAPWL for all but the highest velocity test points. At the high velocity points, forward quadrant shock noise amplification overrides influence of aft quadrant jet noise reduction.
- For OASPL and PNL, a) the significant aft quadrant ($\theta_I = 130^{\circ}$ and peak value) reduction of jet mixing noise over the entire jet velocity range of operation, and b) the flight amplification of forward quadrant, $\theta_I = 60^{\circ}$, and broadside, $\theta_I = 90^{\circ}$, noise levels at cycle conditions above critical nozzle pressure ratio $(10_{\log}(V_j/A_0) \ge 3.0)$, due to influence of shock noise.

CONICAL NOZZLE NORMALIZED OASPL AS A FUNCTION OF JET VELOCITY PARAMETER, STATIC AND SIMULATED-FLIGHT AT $\theta_{\rm I}$ =60°, 90°, 130° AND PEAK VALUE. FIGURE 4-4

FIGURE 4-5 CONICAL NOZZLE NORMALIZED PNL AS A FUNCTION OF JET VELOCITY PARAMETER, STATIC AND SIMULATED-FLIGHT AT $\theta_I = 60^\circ$, 90°, 130° AND PEAK VALUE.

To exemplify flight noise influence on conical nozzle spectral content, Figures 4-6, 4-7 and 4-8 present static to flight comparisons at $\theta_{\rm I}$ = 60°, 90° and 130° for three cycle points. The points have been selected as nearest match to the suppressor/ejector coannular nozzle's mixed jet aerodynamic cycle at "cutback", "intermediate" and "takeoff" power settings for the study AST/VCE system (see Section 3.3.1 for test point definition). Conic nozzle cycle parameters are noted on the figure and have pressure ratio ranging from 2.16 at cutback to 2.92 for takeoff; from slightly supersonic where shock noise is non-influential to highly super-critical where shock noise is quite dominant. Review of these figures elicits the following influences of flight on conic nozzle noise:

- o Aft quadrant jet-mixing-noise-dominated spectra are significantly reduced for all frequencies at all three cycle points.
- o 90° spectra show slight reduction for all frequency bands for cutback and intermediate cycle, but amplification of the peak shock broadband frequencies and above for the takeoff cycle point.
- o Forward quadrant mid-to-high frequency noise is amplified for all three cases; for the intermediate and takeoff cases where shock peaks are seen in the static spectrum, flight amplifies the level and shifts these peaks to higher frequencies, as would be expected from the dynamic and doppler effects discussed earlier.

A further comparison of general data trends and influence of flight can be seen in Figure 4-9, presenting directivity patterns of OASPL and PNL at the representative cycle points of cutback, intermediate and takeoff for both static and flight. Trends in this data follow those previously observed, i.e.:

- o Aft angles controlled by jet mixing noise (for all three cycle points) are substantially reduced by flight effects.
- o Forward quadrant OASPL and PNL for cutback and intermediate are of similar level due to the offsetting balance of slight low-frequency reduction and slight high-frequency amplification, PNL being amplified slightly more than OASPL due to its mid-to-high frequency weighting.
- For takeoff, the forward quadrant PNL and OASPL are substantially amplified, primarily due to the strong influence of shock cell noise amplification, even though very low frequency jet mixing noise is still slightly reduced.

A further correlation of conical nozzle shock noise influence can be seen in Figures 4-10 and 4-11 where forward quadrant measured OASPL and PNL are presented as a function of the shock strength parameter, ℓ . Harper-Bourne and Fisher, Reference 16, have developed theoretical and experimental guidelines for estimating the characteristics of broadband shock noise for jets operating above critical pressure ratio. They suggest that shock noise can be correlated on the basis of the shock strength parameter, ℓ , defined as $\sqrt{M_{\star}^2-1}$, and used in plotting as $10Log_{10}\ell$. The graphs presented correlate data at angles of $\ell_{\rm I}$ = 50, 60, 80, 90 and 100° and directly compare static to flight data. Previous correlations have shown static data to have a ℓ dependency of near 4.0. Figures 4-9 and 4-10 data show:

NORMALIZED 1/3 - OCTAVE BAND SOUND PRESSURE LEVEL, 1/3- OBSPLN, dB

FIGURE 4-9 CONIC NOZZLE STATIC-TO-FLIGHT DIRECTIVITY COMPARISONS OF OASPL AND PNL AT

OVERALL SOUND PRESSURE LEVEL, OASPL, dB

FIGURE 4-11 CONIC NOZZLE STATIC AND FLIGHT CORRELATION OF FORWARD QUADRANT OASPL DEPENDENCY ON SHOCK STRENGTH PARAMETER.

- o Static OASPL and PNL correlate in the range of $e^{4.2}$ to $e^{5.1}$ for the shown angles in which shock noise is present.
- o Flight QASPL and PNL correlate on slightly higher slopes, from $6^{5.2}$ to $6^{6.4}$, due to a) the basic forward quadrant amplification of shock by flight, and b) the stronger intensity of shock influence at higher β (pressure ratio) values relative to the diminished shock at low ℓ values.
- o As shock cell-noise spectrum suffers a dynamic effect of $-10Log_{10}$ (1 $M_0 \cos \sigma_I$) due to flight; more forward quadrant levels are more severely amplified by flight, therefore, the flight noise lines should progressively increase above the static lines as viewed from $\sigma_I = 90^{\circ}$ to 50° ; which they do by observation.

Note that these correlations and trends will be compared to the suppressor/ejector data in later text.

A final conical nozzle acoustic performance correlation is presented in Figure 4-12 as normalized EPNL as a function of normalized jet velocity. The calculated EPNL are based on simulated-flight measured data projected to a 2400' sideline and are for two nominal flight speeds, i.e., a) 370 to 400 ft/sec, and b) 280 ft/sec. Presented on this basis the EPNL correlate as a straight line dependency on velocity to an approximate V^{10} slope.

4.1.2 Effectiveness of Baseline Configuration TE-1

4.1.2.1 Comparison of NAS3-23275 Configuration TE-1 to NAS3-21608 Model 10.1

The TE-1 baseline suppressor design is detail-defined in Section 3.2.1, sketch and photo being repeated herein as Figure 4-13, for easy reference. The nozzle essentially duplicates the full scale study nozzle of Contract NAS3-23038 (Reference 1 and Figure 2-1). The details of the full scale nozzle, as far as parameters judged to influence potential for jet noise suppression, were heavily influenced by results of previous test programs, primarily Contract NAS3-20582, Reference 17, "Core Driven YJ101 AST/VCE Coannular Plug Nozzle Investigation" and its scale model counterpart, Contract NAS3-21608, Reference 8, "Free-Jet Investigation of Mechanically Suppressed High-Radius Ratio Coannular Plug Model Nozzles". The coannular nozzle developed under these two contract efforts was a pseudo-optimum jet noise suppressor, implemented in an inverted-velocity-profile exhaust nozzle of the AST/VCE concept. Its model test results, per Reference 8, showed strong peak jet noise suppression, but retention of some forward quadrant shock-cell noise, though substantially reduced below the level of a reference conical nozzle. The NAS3-23038 full scale study nozzle, and therefore the TE-1 baseline nozzle for the treated ejector study, maintained the physical parameters of the pseudo-optimum suppressor that were most influential in jet mixing noise suppression, i.e.:

- 20-shallow chutes
- Suppressor area ratio near 1.75
- Suppressor radius ratio = .72
- Inner-to-outer nozzle area ratio ≈ 0.2

FIGURE 4-12 CONIC NOZZLE EPNL CORRELATION WITH JET VELOCITY PARAMETER.

NORMALIZED EFFECTIVE PERCEIVED NOISE LEVEL, EPNLN, dB

"AS BUILT" PARAMETERS			
Parameter	Outer Nozzle	Inner Nozzle	A32 (A, 1 N2 22 350 4, 24 2 23 32 1 2 2 32 1 2 2 32 1 2 2 32 2 32 2 32 2 32 2
Туре	20-Chute	Annular	
A _{flow} , in ²	22.75	4.747	
D _{flow,eq} , in.	5.382	2.458	
A blocked' in?	17.634	-	
Area Ratio	1.775	-	
Angle Re Vert., Degrees	U	15	
R _{tip} , in.	5.162	3.190	
R _{hub} , in.	3.713	2.952	
Radius Ratio	.719	. 926	
A inner / A outer	.2	1	
			ORIGINAL PASE IS OF POOR QUALITY

FIGURE 4-13. CONFIGURATION TE-1; BASELINE COANNULAR INVERTED-VELOCITY-PROFILE PLUG NOZZLE WITH 20-SHALLOW CHUTE OUTER STREAM SUPPRESSOR, HARDWALL PLUG AND NO EJECTOR However, the chute cross sections and the plug closure were altered to attempt to further weaken shock structure and associated shock-cell noise. This report section, therefore, has a twofold purpose, i.e., a) to document the suppression levels and noise characteristics of the baseline TE-1 configuration, and b) to compare its acoustic/aerodynamic performance levels to that of its similarly designed predecessor, Model 10.1 of Contract NAS3-21608.

A schematic and photograph of the Model 10.1 are per Figure 4-14. The following is a comparison of pertinent geometric parameters:

Ĩ	NAS3-23275 C	ONFIG. TE-1	NAS3-21608 MODEL 10.1		
PARAMETER	OUTER NOZZLE	INNER NOZZLE	OUTER NOZZLE	INNER NOZZL	
Туре	20-Chute	Annular	20-Chute	Annular	
A _{flow} , in. ²	22.75	4.747	19.88	4.00	
D _{fl} o _{w, eq., in.}	5.382	2.458	5.03	2.25	
Area Ratio-Suppressor	1.775	-	1.75	-	
Radius Ratio	.719	.926	.718	.941	
Throat Plane∡ Re Vert., Degrees	0	15	0	15	
Plug Truncation	-	Sharp Tip	-	Truncated	
A _{TOTAL} , in. ²	27.49	97	23.88		
D _{TOTAL} , eq., in.	5.917		5.514		
Ainner/Aouter	.21		.20		

The primary differences between the two nozzles are a) chute cross section contours, b) contour-truncated plug termination versus sharp-tipped truncation, and c) flow areas. The difference in flow areas is compensated for within the method of scaling to a full size engine; described in Section 3.1.

4.1.2.2 Acoustic Comparison of Configuration TE-1 to Model 10.1 and to Conic

On the basis of normalized power level, per Figure 4-15, the new TE-1 configuration is seen to be approximately 1 dB noisier than the previous Model 10.1 at static. In flight, it has slightly higher total acoustic energy at low and intermediate velocities, is similar at takeoff, and just slightly lower at max cycle.

CONTRACT NAS3-21608 MODEL 10.1 COANNULAR INVERTED-VELOCITY-PROFILE NOZZLE WITH 20-CHUTE OUTER STREAM SUPPRESSOR FIGURE 4-14.

FIGURE 4-15 NORMALIZED PWL AS A FUNCTION OF JET VELOCITY PARAMETER FOR COMPARISON OF CONFIGURATION TE-1 TO MODEL 10.1, STATIC AND SIMULATED-FLIGHT

A second basis of comparison is presented in Figures 4-16 through 4-19; normalized OASPL and PNL versus jet velocity parameter for static and flight at $\Theta_{\rm I}$ = 60°, 90°, 130° and peak value. On a peak noise level basis, the two configurations are very repetitive in suppression level, the nominal suppression levels relative to a conic nozzle summarized at the takeoff and cutback cycles as follows:

		△P0ASPL		△PPNL	
	(1010g ₁₀ (V ₁ ^{mix} /a _{amb})	Static	Flight	Static	Flight
Takeoff	ン 3.0	11.2	10.7	10.5	5.8
Cutback	≈ 2.1	11.3	7.5	6.2	0.5

At broadside, $\theta_{I} = 90^{\circ}$, and forward quadrant, $\theta_{I} = 60^{\circ}$, the TE-1 OASPL and PNL levels are normally slightly above those of Model 10.1

More thorough noise level comparisons at cutback, intermediate and takeoff are afforded in the following graphs:

- Figures 4-20, 4-23 and 4-26: Directivity patterns of OASPL and PNL at cutback, intermediate, and takeoff cycles, respectively, for both static and flight.
- o Figures 4-21/-22, 4-24/-25 and 4-27/-28: Sets of spectra at $\theta_{\rm I}$ = 60°, 90° and 130° for cutback, intermediate and takeoff, respectively, for both static and flight.

The data comparisons indicate, in general:

o Peak noise levels are very similar for TE-1 and 10.1 for all comparisons.

- o. Forward quadrant noise levels are normally slightly higher for TE-1 and aft quadrant levels are normally slightly lower.
- Spectra comparisons generally indicate very similar frequency distribution of noise levels with no major shape differences. Minor differences between TE-1 and 10.1 are seen for all static and flight comparisons and all cycle points, but no consistent pattern is obvious. The most consistent data repetition is at the highest takeoff cycle comparison.

FIGURE 4-16

NORMALIZED OASPL AS A FUNCTION OF JET VELOCITY PARAMETER FOR COMPARISON OF CONFIGURATION TE-1 TO MODEL 10.1, STATIC, AT θ_{T} =60°, 90°, 130°, and PEAK VALUE

FIGURE 4-18 NORMALIZED PNL AS A FUNCTION OF JET VELOCITY PARAMETER FOR COMPARISON OF CONFIGURATION TE-1 TO MODEL 10.1, STATIC, AT $\theta_1 = 60^{\circ}$, 90°, 130° AND PEAK VALUE

FIGURE 4-19 NORMALIZED PNL AS A FUNCTION OF JET VELOCITY PARAMETER FOR COMPARISON OF CONFIGURATION TE-1 TO MODEL 10.1, SIMULATED-FLIGHT, AT $\theta_I = 60^\circ$, 90°, 130° AND PEAK VALUE

ANGLE TO INLET, $\theta_{\rm T}$, DEGREES

FIGURE 4-22. NORMALIZED SPECTRA AT $\theta_{T}=60^{\circ}$, 90° & 130[°] FOR COMPARISON OF CONFIGURATION TE-1

FIGURE 4-23.

NORMALIZED 1/3-OCTAVE BAND SOUND PRESSURE LEVEL, 1/3-OBSPLN, dB

:

STATIC AND SIMULATED-FLIGHT DIRECTIVITY COMPARISONS OF OASPL AND PNL AT TAKFOFF FOR COMPARISON OF CONFIGURATION TF_1 TO MODEL 10 1 FIGURE 4-26

o The suppressor nozzle spectra, particularly at takeoff, show less of a peakness than the conic nozzle. The conic nozzle spectra are very peaked at 400 to 500 Hz from broadband shock noise. The suppressor spectra do show a slight peak at 1250 to 1600 Hz, possibly from the shadowgraph-observed less intense shock structure.

As a gauge of shock noise control effectiveness, Figures 4-29 and 4-30 present measured OASPL and PNL as a function of shock strength parameter, \mathcal{O} . To directly gauge changes relative to a reference nozzle, conic nozzle correlations of Section 4.1.1's Figures 4-10 and 4-11 are included. Also, to directly evaluate impact of simulated-flight, data are correlated for both static and flight for conic, TE-1 and 10.1. Reviewing the two figures, the following are noteworthy:

- o Forward quadrant noise levels, particularly at higher values of 6° (higher nozzle pressure ratio) are very substantially reduced by the multi-element suppressor nozzle systems. As an example, at $\Theta_{\rm I}$ = 60° for takeoff cycle (10 log₁₀ 6 = 0.1), OASPL is reduced by 7 dB static and 12 dB flight whereas PNL are reduced by 5 dB static and 7 dB flight. Suppression levels relative to conic are less at lower 6° values as shock noise is less dominant at lower pressure ratio.
- Suppressor nozzles' forward quadrant data correlate at a much lower slope, i.e., & dependency, than do conic measurements, again indicative of the sharp reduction in shock noise content. Conic nozzle data correlated with & within a range of a 4.2 to 5.1 power for static and 5.2 to 6.4 for flight. TE-1 and 10.1 data correlate with & to the 2.0 to 3.0 power for OASPL and PNL, static and flight.
- o For both OASPL and PNL, static and flight, TE-1 forward quadrant levels are seen to be equivalent to slightly higher than those of 10.1, indicative of no further reduction of shock cell noise, as originally hoped for during design.

A review of the comprehensive data report's (Reference 3) shadowgraph documentation for TE-1 test points 1009 and 1010 shows fairly strong shock structure just aft of the suppressor nozzle exit plane, for the extent of the plug structure, but no shock structure aft of the plug tip. The shock structure is not as intense as conic nozzle shock at similar jet Mach No.

o As noted previously, shock cell noise spectrum suffers a dynamic effect of -10 Log₁₀ (1 - Mo cos $\theta_{\rm T}$) due to flight; far forward quadrant levels are more highly amplified by flight. Therefore, the flight noise correlated data lines should progressively increase in level above the static lines as viewed from θ_1° of 90° toward 50°; presuming shock noise is present. This progression is very dramatically seen for the conic nozzle, for OASPL and PNL; flight data lines being near similar to static at $\theta_1 = 90^\circ$ and progressing to well above static at 50°. The slopes of the flight data lines also increase due to the higher shock noise content at high & (pressure ratio) values. For the suppressor data, however, the progressively larger separation between flight and static data is not as readily observed nor is a noticable change in slope. This is attributed to the lower shock noise content. For OASPL, the static and flight levels are very similar from 90° through 60° and show slight increase at 50°. For PNL the increase is more noticable for 80° to 50° as suppressor spectra are high frequency dominated and the slight amplification due to flight is more readily seen in the PNL weighting.

FIGURE 4-30 STATIC AND SIMULATED-FLIGHT CORRELATION OF FORWARD QUADRANT PNL DEPENDENCY ON SHOCK STRENGTH PARAMETER FOR COMPARISON OF CONFIGURATION TE-1 TO MODEL 10.1

Further comparisons for flight effect trends on the TE-1 suppressor are shown in Figures 4-31 through 4-34. Figure 4-31 presents directivity patterns of static and flight OASPL and PNL at cutback, intermediate and takeoff. Figures 4-32, -33 and -34 similarly present $\theta_{\rm I}$ = 60°, 90° and 130° spectra. Flight influences observed are:

- Aft angle OASPL and PNL, controlled by jet mixing noise, are all reduced by flight effects. Aft angle low-frequency spectra are very significantly reduced and high-frequency levels remain similar to slightly amplified.
- Forward quadrant OASPL and PNL levels are all amplified by flight, by fairly similar levels for each cycle point. Conic nozzle trends of Figure 4-9 showed this forward quadrant magnitude of amplification to be cycle/pressure ratio/shock noise dependent. Forward quadrant high frequency spectra are all flight amplified and low frequency are lowered.

4.1.2.3 Diagnostic Data Presentation

As an indication of simulated-flight effects on jet plume characteristics, Figures 4-35 and 4-36 compare select laser velocimeter mean velocity traces for static and flight operation of Configuration TE-1 at takeoff. The axial traces of Figure 4-35, along and parallel to the nozzle centerline at three radial locations, in general show a stretching of the jet. This is due to reduced shear between the jet flow and the ambient medium. The mixing rates are lowered by flight motion and this tends to elongate or stretch-out the jet. Jet exit close proximity velocity levels are relatively unaffected, whereas higher velocity levels are maintained quite further aft. Figure 4-36, showing radial variations of mean velocity at select axial locations, mimics the trends of the axial traverse data, showing flight plume-velocity-levels to be near similar to static near the jet exhaust (with some slight peak variance possibly due to exact measurement location within the shock structure) and higher in level at all further aft locations.

4.1.2.4 Aerodynamic Base Pressure/Chute Drag Comparisons; TE-1 to 10-1

Figure 4-37 presents the Configuration TE-1 calculated thrust loss coefficient variance with outer stream pressure ratio (Refer to Section 4.7 for detailed method of calculation). Additionally, it compares Model 10.1 static data from Reference 8. The comparison indicates that the two model designs are essentially compatible in ability to ventilate the chute base region and, therefore, have near similar levels of thrust loss due to chute base drag.

CONFIGURATION TE-1 STATIC-TO-FLIGHT NORMALIZED SPECTRA COMPARISONS AT FIGURE 4-34

. . . DADIAL VADIATION OF THE MEAN VELOCITY (AXIAL COMPONENT) IN THE PLUME OF CONFIGURATION TE-1

Thrust Loss Due to Chute Base Drag, ΔC_{fg} ,

96

THRUST LOSS COEFFICIENT DUE TO CHUTE BASE DRAG OF CONFIGURATION TE-1 MODEL 10.1

ల

[GURE 4-37

4.2 OVERVIEW OF TREATED EJECTOR APPLICATIONS EFFECTIVENESS

The previous section summarized acoustic performance of the baseline 20-chute coannular nozzle and reviewed previously accumulated reference conical nozzle data; both for the purpose of establishing baselines to which ejector and special study acoustic measurements could be referenced. Later report sections discuss detailed analyses of various acquired data bases to establish the impact of ejector geometric variations on performance. This section, however, is intended as an overview, i.e., a brief summary establishing ejector maximum effectiveness and presenting trends of performance for ejector system design variables. The design variables overviewed will include ejector axial location, treatment design, ejector length, and extent of treatment application within the ejector/plug flowpaths.

4.2.1 Ejector System Maximum Effectiveness

Ejector geometry and treatment design variations were limited to the extent accomplishable within eight model test configurations. Variables investigated were, therefore, "optimized" only within the limited range of geometry and design tested. Two axial locations, S1 and S2, and two treatment designs, T1 and T2, were tested. Extended axial location, S2, and less dense treatment, T2, were judged optimum and maintained for all further test configurations. Verification of these selections will be accomplished by data presentations in later report sections. The later test configurations varied ejector length, L1-nominal and L2-extended, and region of treatment application, i.e., a) hardwall-no treatment applied, b) treated ejector flowsurface only, and c) treated ejector and plug flowsurfaces; these variations intended to isolate the individual sources of ejector acoustic effectiveness.

The Ll ejector length duplicated the full scale study nozzle design length, Reference Figure 2-1 of Section 2.1, however, in model size the treatment application was not feasible along its entire length, as the full scale study nozzle called for, due to thin-walled closure. A longer ejector, L2, was therefore tested to extend length beyond that allowed in the full scale nozzle. It was anticipated that additional length would allow greater suppression due to more extensive physical shielding and greater area of treatment application. If so, a practical design may precipitate from further noise/weight/performance trade studies. The L2 ejector applied treatment to a length equivalent to the entire ejector length of the L1 model. Untreated closure length of the ejector was similar to that of the shorter system, therefore, total length increased 24%.

In final analysis, the L2 ejector system in the TE-8 configuration with S2 ejector-axial positioning and with T2 treatment applied to ejector and plug flowsurfaces, was most effective in suppression. Its characteristics are summarized in terms of normalized peak OASPL and PNL plus EPNL in Figure 4-38, 4-39 and 4-40, respectively. If reviewed at nominal takeoff and cutback cycles, i.e., at jet velocity parameter of approximately 3.1 and 2.15, suppression performance relative to the reference conical nozzle can be summarized as follows; suppression levels for the baseline unejected TE-1 configuration are also included:

FIGURE 4-38. NORMALIZED PEAK OASPL AS A FUNCTION OF JET VELOCITY PARAMETER FOR COMPARISON OF CONFIGURATION TE-1 AND TE-8 TO SHOW EJECTOR MAXIMUM EFFECTIVENESS, STATIC AND SIMULATED-FLIGHT.

FIGURE 4-39. NORMALIZED PEAK PNL AS A FUNCTION OF JET VELOCITY PARAMETER FOR COMPARISON OF CONFIGURATION TE-1 AND TE-8 TO SHOW EJECTOR MAXIMUM EFFECTIVENESS, STATIC AND SIMULATED-FLIGHT

¢C/B

2

/0

3.5

FIGURE 4-40. EPNL CORRELATION WITH JET VELOCITY PARAMETER FOR COMPARISON OF CONFIGURATION TE-1 AND TE-8 TO SHOW EJECTOR MAXIMUM EFFECTIVENESS

2.0 2.5 3.0 JET VELOCITY PARAMETER, 10LOG₁₀(V^{eff}/a_{amb})

90

80

1.0

1.5

	NOMINAL CYCLE	10Log10 (vjeff/a _{amb})	A PEAK OASPL		APEAK PNL		
t			STATIC	FLIGHT	STATIC	FLIGHT	FLIGHT
TE-1	Cutback Takeoff	2.15 3.1	11.0 10.4	7.0 11.2	5.7 10.6	0.5	- 0.3 4.6
TE-8	Cutback Takeoff	2.15 3.1	13.5 10.2	13.0 10.7	10.8 12.0	7.3 11.4	6.0 9.8

Review of the above figures and table yields the following interesting observations:

- o At takeoff cycle, peak PNL suppression referenced to the conic nozzle is 11.4 \triangle PNdB, a very significant 4.8 \triangle PNL greater than the baseline 20-chute suppressor.
- o At the 400 ft/sec simulated-flight speed and 2400 ft. sideline distance, the \triangle PNL values translate into 4.6 \triangle EPNL for the TE-1 baseline and 9.8 \triangle EPNL for the suppressor/ejector system, an addition of 5.2 \triangle EPNL attributable to the treated ejector/treated plug system.
- o Ejector performance at lower velocity, i.e., cutback cycle, is even more significant, 6.8 △ peak PNL and 6.3 △ EPNL relative to the TE-1 performance. The retention of acoustic suppression effectiveness to very low operating cycles is uncharacteristic of most mechanical jet noise suppressor (unejected) systems previously investigated. Most have followed the pattern exhibited by the TE-1 nozzle, where suppressor absolute noise levels approach those of the reference conic nozzle at low jet velocity. Retention of suppression at low cycles offers a significant advantage for quiet part power, e.g., cutback, operation.
- o Comparing static to flight performance on a peak PNL basis, Figure 4-39, the TE-8 ejector system does not lose suppression nearly as rapidly as the TE-1 baseline nozzle. For example, at takeoff, the TE-1 suffers 4.0 \triangle PNL static-to-flight loss and the TE-8 loses only 0.6 \triangle PNL. At cutback, similar comparisons show 5.2 and 3.5 \triangle PNL losses for TE-1 and TE-8, respectively.

Inspection of PNL directivity patterns and spectral content aid in understanding ejector peformance characteristics. Figures 4-41 through 4-44 present static and simulated-flight normalized PNL and normalized spectra at takeoff and cutback cycles. Review indicates:

o At takeoff, per Figure 4-41, peak static PNL levels are near similar, however, the ejector alters the directivity pattern significantly, moving the peak from near 100° for the unejected to $130^{\circ}/140^{\circ}$ for the long ejector. Simulated-flight, Figure 4-42, lowers ejector noise levels substantially further than the TE-1 nozzle, allowing significant peak noise reduction of approximately 4.8 \triangle PNL due to ejector application. Of primary significance is the high level of forward quadrant suppression afforded by the ejector, both static and flight,

NORMALIZED 1/3 - OCTAVE BAND SOUND PRESSURE LEVEL,

per Figures 4-41 and 4-42. The basic unejected suppressor significantly lowers the forward quadrant shock noise content relative to the conical nozzle, approximately 3 dB at $\theta_{\rm I}$ = 60°. The ejector, however, further reduces shock and jet mixing noise by a substantial 5 to 7 Δ PNL.

- At cutback cycle, Figures 4-43 and 4-44, the ejector allows an additional 4.0 peak PNL suppression statically and approximately 6.0 in flight, again beyond that exhibited by the 20-chute suppressor. Forward quadrant suppression is again significant and of magnitude similar to the takeoff cycle. The flight TE-8 noise levels are reduced below that of the conic whereas the unejected TE-1 model was noisier than the conic baseline.
- Review of spectral content shows that the 20-chute TE-l suppressor substantially reduces the low and mid-range frequency levels relative to the conic nozzle. It, however, has little effect on the high frequency energy as the multi-jet segmentation transfers energy to the high frequency range, characteristic to the dimensions of the smaller segmented jets.

On occasion, such as cutback cycle of Figure 4-43, high frequency energy levels exceed that of the conical nozzle. The 20-chute suppressor is very effective in reducing the takeoff cycle conic nozzle shock noise as seen in Figure 4-41. In itself, it still exhibits slight shock noise, but in a much higher frequency range, more characteristic of the smaller dimensions of the segmented jet. No low frequency shock noise is seen in the TE-1 spectra as no post-merged stream shock structure is present in the jet plume past the nozzle's plug tip region, verified by shadowgraph photographs within CDR Volume II.

Application of the TE-8 ejector, reference to all spectra plots of Figures 4-41 through 4-44, is seen very effective in reducing the high frequency content of the 20-chute suppressor nozzle. The high frequency noise sources, due to jet segmentation, are sufficiently contained within the ejector to allow treatment effectiveness. In itself, however, a hardwall ejector, due to physical shielding and noise redirection, lends to a major portion of the ejector's effectiveness, as will be seen later.

Of further aid in understanding ejector application effectiveness are the laser velocimeter plume surveys of Figures 4-45 and 4-46. Figure 4-45 displays normalized mean velocity data acquired during axial traverses within the plume of Configurations TE-1 and TE-8 at takeoff cycle. Traces are at radjal locations of a) centerline, b) 1.54", c) 3.07" and d) 4.09/4.22" for R/R_{s}^{c} values of 0, .3, .6 and .79/.82, respectively. Figure 4-46 presents normalized mean velocity data acquired during radial traverses at various axial locations, as noted on the figure. From the axial traverses at $R/R_{s}^{c} =$.79/.82, it it seen that the unejected plume decays quite rapidly by nature of free-mixing with ambient air. The ejected plume also decays quite rapidly within the length of the ejector, but not to the level of the free mixer. The higher velocity of the ejector plume persists for quite some distance before decaying to similar levels at far aft distances. These results indicate that forced mixing of ejected ambient air does not readily occur within the ejector and does not allow substantially reduced mean velocity at the ejector exit.

Enhanced mixing was initially anticipated to occur and would be accompanied by lower levels of jet mixing noise. The somewhat higher velocity levels are felt to account for the aft quadrant (Figure 4-41, $\theta_{\rm I}$ = 130°) noise increase in low-to-mid frequency range.

Axial traces at R/R_s^t = .3 and at centerline show unejected and ejected plumes to be of identical velocity levels, again indicating no forced mixing of ambient air to the center of the jet.

Review of the Figure 4-45 radial traverses fairly well substantiates the axial traverse data. At the first comparison location, approximately 1/8" aft of the ejector exit, the TE-8 velocity levels are somewhat below those of TE-1. At further aft locations, all peak velocity levels are above those of the TE-1 and near-centerline levels are fairly similar. The lower initial levels of TE-8 may be measurements within an area of shock structure at the ejector exit. Review of shadowgraph photographs within CDR Volume II shows presence of shock at the ejector exit for the takeoff cycle operation.

4.2.2 Ejector Axial Spacing Variation

Configurations TE-5 and TE-9 varied ejector axial spacing, within a nominal length, Ll, ejector system using Tl treatment design applied to ejector and plug flowsurfaces. The Sl ejector setback distance (1.484" model scale/11.0" full scale) was compatible with the original full scale design of Figure 2-1, Section 2.1. The S2 position (2.496" model scale/18.5" full scale) was that found optimum among the locations tested for aerodynamic performance at takeoff cycle pressure ratio during conduct of the NAS3-23038 wind tunnel test effort (Reference 1). Details of the many acoustic data comparisons are found in Section 4.3.

Acoustic performance comparisons on the basis of peak normalized OASPL and PNL, static and simulated-flight, are presented in Figure 4-47 and 4-48; accompanied by the TE-1 and reference conic nozzle baseline data. S1 setback, Configuration TE-5, is normally slightly less efficient in suppression for lower velocity conditions and is particularly poorer at higher cycle conditions when evaluated on a PNL basis. At takeoff cycle, nearly 2 dB increased suppression is noted for static and 1 dB for flight PNL by using the S2/TE-9 ejector position.

Laser velocimeter plume measurement comparisons for the two ejector locations are shown for the static takeoff cycle in Figure 4-49 and 4-50 and for the simulated flight takeoff cycle in Figures 4-51 and 4-52. Note that these comparisons are for Configurations TE-5 (S1) and TE-4 (S2), not for TE-9; however, the only variances between TE-9 and TE-4 is treatment design, not anticipated to influence plume mixing and decay characteristics.

The axial traverses, Figures 4-49 and 4-51, particularly at R/R_s^{t} = .3 and .6 locations, indicate that a) the initial velocity at the ejector exit for the S1 spacing is somewhat higher than for the further aft S2 position, and the higher velocity levels continue for a substantial distance downstream, b) mild shock structure is present in the plume aft of the ejector exit for the tigher-spaced ejector. This is as observed in shadowgraph photographs included in CDR Volume II. The centerline-plume decay rates are similar for both ejector locations.

FIGURE 4-47.

7. NORMALIZED PEAK OASPL AS A FUNCTION OF JET VELOCITY PARAMETER, STATIC AND SIMULATED-FLIGHT, FOR COMPARISON OF EJECTOR SETBACK, S1-CONFIGURATION TE-5 VERSUS S2-CONFIGURATION TE-9

FIGURE 4-48 NORMALIZED PEAK PNL AS A FUNCTION OF JET VELOCITY PARAMETER, STATIC AND SIMULATED-FLIGHT, FOR COMPARISON OF EJECTOR SETBACK, S1-CONFIGURATION TE-5 VERSUS S2-CONFIGURATION TE-9

NORMALIZED MEAN VELOCITY, \overline{V}/v^{mix}

FIGURE 4-50

NUKMALIZED MEAN VELOCITY, V/V

GURE 4-51 AXIAL VARIATION OF THE MEAN VELOCITY (AXIAL COMPONENT) IN THE PLUME OF CONFIGURATIONS TE-4 & TE-5 AT TAKEOFF, SIMULATED-FLIGHT, TEST POINTS 4010 & 5010, FOR COMPARISON OF EJECTOR SETBACK S1 & S2

The radial cross section mean velocity traverses substantiate the axial traverses; i.e., peak velocity levels are normally considerably higher for the TE-5 configuration and near-centerline levels are similar for both configurations.

As seen in later Section 4.3 Figure 4-75, aerodynamic performance in the form of ΔC_{fg} attributable to chute base drag is dramatically improved for the S2 ejector location. The aft ejector location allows for improved chute ventilation, decreased base drag and, therefore, less C_{fg} degredation.

In summary, the aft ejector S2 location is both aerodynamically and acoustically superior to the closer S1 spacing.

4.2.3 Treatment Design Variation

Within the fully treated ejector/plug system of Ll ejector length, two variations of treatment design were investigated. The selections were made with the intent of achieving acoustic resistance of approximately 1 ec and reactance as close to zero as possible in the frequency range of interest for the temperature and pressure of the test conditions. Because the test conditions within the ejector depended upon the simulated engine power setting, two treatment designs were selected to achieve or bracket the intended values of acoustic impedance. In both cases, the nominal thickness of the model treatment in the full-depth regions was 1.016 cm (0.4 inch). The first design, treatment Tl, used an Astroquartz density of 0.0401 gm/cc (2.50 lb/cu. ft.) and the second, treatment T2, used 0.0160 gm/cc (1.00 lb/cu. ft.). The laboratory values of D.C. flow resistance for these two designs were 41.0 and 12.5 Rayls (cgs), respectively. Details of ejector and plug surface "tray packing" to achieve Tl and T2 treatment designs are described in Section 3.2.2 and in particular in Figure 3-32.

For direct comparison of treatment effectiveness, Configurations TE-9 and TE-4 were evaluated, each using the Ll ejector system at S2 ejector spacing. Treatments Tl and T2 were alternately applied to effect Configurations TE-9 and TE-4, respectively. Application was to the full ejector flowsurface as well as to the plug. Details of various data comparisons are found in Section 4.3.

Overview data comparisons in terms of peak OASPL and PNL, static and flight, are presented in Figures 4-53 and 4-54. On an OASPL basis, static and flight, T2 performs very similar to T1, showing only very slight improvement at the higher velocity region. On a PNL basis, statically T1 and T2 perform nominally similar for all cycle conditions. In simulated-flight, T2 is seen more effective by approximately 1 \triangle PNL near the takeoff cycle point.

More detailed comparisons within Section 4.3 will view impact of treatment design on spectral suppression, directivity alterations, and changes in effectiveness of flight relative to static. An example of treatment effectiveness on spectral suppression is shown in Figure 4-55 for the takeoff cycle during static and simulated-flight operation. The graph exhibits the effect of treatment only, comparing TE-9 and TE-4 spectra directly to those of TE-2, the hardwall plug/hardwall ejector system. Treatment effectiveness is seen primarily in the 500 to 8 KHz frequency range with shapes of effectiveness patterns being fairly similar for both treatments. In this takeoff case, the T2 treatment shows slightly greater suppression for static, whereas, in flight, the T1 treatment is slightly more effective.

FIGURE 4-53 NORMALIZED PEAK OASPL AS A FUNCTION OF JET VELOCITY PARAMETER, STATIC AND SIMULATED-FLIGHT, FOR COMPARISON OF TREATMENT T1-CONFIGURATION TE-9 TO TREATMENT T2-CONFIGURATION TE-4

NORMALIZED PEAK OVERALL SOUND PRESSURE LEVEL, OASPLN, dB

FIGURE 4-54 NORMALIZED PEAK PNL AS A FUNCTION OF JET VELOCITY PARAMETER STATIC AND SIMULATED-FLIGHT, FOR COMPARISON OF TREATMENT T1-CONFIGURATION TE-9 TO TREATMENT T2-CONFIGURATION TE-4

NORMALIZED PEAK PERCEIVED NOISE LEVEL, PNLN, PNdB

▲ 1/3 - OCTAVE BAND SOUND PRESSURE LEVEL, dB

Later results will also show the Tl and T2 treatments equally effective on an EPNL basis. In summary, Tl versus T2 treatment selection was not a critical parameter in providing total ejector system acoustic effectiveness.

4.2.4 Ejector Length Variation

Ejector length was varied within three comparative model sets, i.e., a) hardwall ejector and plug systems using TE-2 and TE-10, b) treated-ejector-surface systems using TE-3 and TE-7, and c) fully treated ejector/plug systems using TE-4 and TE-8. All ejector axial locations for these models were set at the S2 extended position. The L1-nominal length ejector was 8.68" long model-scale and was scaled from the full scale nozzle design of Reference 1 shown in Figure 2-1. It had acoustic treatment application over approximately 70% of its flap length. The L2-extended length ejector was 10.8" long model-scale and had treatment applied to a length equivalent to the full flap length of the L1 ejector system, for an increase in treated surface area of approximately 35%.

As discussed in detail within Section 4.5, primary effectiveness of the extended length system was seen in the forward quadrant with up to 3 \triangle PNL additional suppression gained for the takeoff case at $\Theta_{I} = 60^{\circ}$ due to ejector length increase, for both static and flight. In most cases, added length was most beneficial in the fully treated plug/ejector system. At broadside, e.g., $\Theta_{I} = 90^{\circ}$, the longer ejector showed only slight improvement and only for the fully treated system. At the $\Theta_{I} = 130^{\circ}$ aft quadrant location, all three long ejector systems created noise levels in excess of the shorter ejectors, by up to 1 to 1.5 \triangle PNL.

Peak noise level comparisons are shown in Figure 4-56 and 4-57 for normalized OASPL and normalized PNL, static and flight, for the TE-4 and TE-8 model set. The comparisons show mostly mixed results relative to length effectiveness for the aft quadrant peak noise levels. Peak PNL is, however, reduced by approximately 1.5 \triangle PNL near takeoff cycle.

On a spectral suppression basis, the longer ejector normally increases low frequency noise levels by 1 to 2 dB for 50 to 500 Hz. This can be correlated to LV plume decay data which show mean velocity to decay less rapidly for long ejectors than for short ejectors, thereby allowing longer zones of turbulent mixing noise generation of low frequency. Maximum spectral suppression due to ejector length is in the forward quadrant for the frequency range of 800 to 8 KHz, reaching suppression of 6 to $8 \triangle dB$ near 2 KHz.

On the basis of aerodynamic performance, the extended length ejector system's thrust loss attributable to chute base drag is significantly below that of the nominal length ejector, indicating that it has better pumping/ ventilating characteristics which raise chute base pressure and lower base drag.

FIGURE 4-56 NORMALIZED PEAK OASPL AS A FUNCTION OF JET VELOCITY PARAMETER, STATIC AND SIMULATED-FLIGHT, FOR COMPARISON OF EJECTOR LENGTH, L1-CONFIGURATION TE-4 VERSUS L2-CONFIGURATION TE-8

FIGURE 4-57 NORMALIZED PEAK PNL AS A FUNCTION OF JET VELOCITY PARAMETER, STATIC AND SIMULATED-FLIGHT, FOR COMPARISON OF EJECTOR LENGTH, L1-CONFIGURATION TE-4 VERSUS L2-CONFIGURATION TE-8

NORMALIZED PEAK PERCEIVED NOISE LEVEL, PNLN, PNdB

4.2.5 Extent of Treatment Application Within the Plug/Ejector System

The ejector system's acoustic effectiveness can be attributed to three individual sources, i.e.:

- a. application of hardwall ejector
- b. application of treatment to the ejector inner flowsurface, and
- c. application of treatment to the plug surface, in conjunction with the ejector treatment.

The extended length, L2, and nominal length, L1, ejector sets, comprised of Configurations TE-7, TE-8, TE-10 and TE-2, TE-3, TE-4, respectively, allowed for evaluation of these individual suppression sources within two ejector length systems. Detailed data are presented and discussed in Section 4.4.

Static and flight peak PNL comparisons for the extended length ejector in Figure 4-58 are good examples of trends exhibited by more detailed data comparisons. They indicate that a) hardwall and treatment applications are more effective for flight PNL and in the low-to-moderately high velocity range, b) the hardwall ejector application, TE-10, provides a significant portion of the ejector system's aft quadrant PNL suppression effectiveness in flight and a small portion statically, c) application of treatment to the ejector inner flowsurface, TE-7, very effectively further reduces PNL levels except at high cycle conditions, and d) further treatment application to the plug surface, TE-8, allows still further static and primarily flight PNL reduction.

A broader view of individual source effectiveness is seen in Figure 4-59's \triangle PNL suppression plot. This figure compares the extended and nominal length ejector configurations directly to the baseline TE-1 configuration, showing PNL suppression as a function of \Im_I for three cycle conditions of cutback, intermediate and takeoff at simulated-flight. The \triangle 's represent incremental changes in suppression due to a) hardwall ejector applications, b) treated ejector applications, and c) treated ejector/treated plug applications. When comparing effectiveness between individual lines on the graph, incremental changes can be seen for a) treatment application to ejector surface relative to hardwall, and b) treatment application to the plug surface relative to treated ejector flowsurfaces only. The graphs reveal:

o The hardwall ejector, due to its physical shielding, provides the major portion of the ejector system's suppression effectiveness. In itself, it contributes substantially in both forward and aft quadrant suppression. Loss of effectiveness, particularly in the aft peak noise quadrant, is at the higher jet velocity takeoff cycle. Absolute levels of inlet quadrant suppression are normally somewhat greater than broadside and aft quadrant, particularly as the cycle is increased from cutback to takeoff. Of major significance is that the forward radiated jet noise is still reduced substantially at all cycle conditions, even though aft quadrant suppression levels diminish.

FIGURE 4-58 NORMALIZED PEAK PNL AS A FUNCTION OF JET VELOCITY PARAMETER, STATIC AND SIMULATED-FLIGHT, FOR IDENTIFICATION OF INDIVIDUAL SUPPRESSION SOURCE EFFECTIVENESS, CONFIGURATIONS TE-7, TE-8, AND TE-10.

INDIVIDUAL SUPPRESSION SOURCE EFFECTIVENESS ON PNL SUPPRESSION, SIMULATED-FLIGHT, AT CUTBACK. INTERMEDIATE AND TAKEOFF.

FIGURE 4-59.

174

- o Application of treatment to the ejector inner flowsurface is primarily effective within the extended length ejector, effectiveness being marginal within the nominal length ejector as many of these data comparisons show minimal to no increase in \triangle PNL when the single surface treatment is added. For the extended length ejector system, the single surface treatment, however, is seen primarily effective on forward angle radiated noise suppression, peak noise angles being minimally effected.
- o Addition of further treatment to the plug surface significantly improves suppression of both Ll and L2 systems, the magnitude of improvement varying with cycle as internal flow conditions change, but showing no trend to implicate either ejector length or cycle as a dependent variable regulating improvement. The plug surface treatment again is more beneficial to forward quadrant suppression, aft quadrant peak noise being reduced just slightly further. In general, the conclusion can be drawn that plug surface treatment improves acoustic performance by a noteworthy amount, however, levels and trends are not easily predictable from the data comparisons.

4.3 VARIATIONS OF EJECTOR AXIAL SPACING AND TREATMENT DESIGN

Reference to Section 4.0 and Figure 4-1 indicates that chronology of tests was developed in order to reflect optimum ejector setback and treatment design during conduct of the test series. Optimum in these analyses are interpreted as "best between set comparions", S1 to S2 and T1 to T2, not absolute optimum available. The selections of optimum were to be made based on evaluation of on-line model size OASPL and spectra, the final full scale spectra and PNL values not being available in real-time. The test chronology and selections of optimum proceeded as follows:

- o TE-5, Ejector L1 of treatment T1 at axial spacing S1
- o TE-9, Ejector Ll of treatment Tl at axial spacing S2
- o TE-4, Ejector L1 of treatment T2 at axial spacing S2

From Configurations TE-5 and TE-9, varying ejector axial spacing, the on-line acoustic data indicated slightly better suppression performance for the S2 ejector positioning, thus it was retained for all further testing. From Configuration TE-9 and TE-4, varying ejector treatment design, the on-line acoustic data indicated slightly better performance for T2 treatment, thus this design was retained for all further testing. This report section presents final scaled, flight transformed (where applicable), extrapolated data comparisons for these three configurations to substantiate whether initial selections of S2 and T2 were accurate. In retrospect, the final processed data bear out the on-line selections and verify that a) S2 ejector setback is superior in both acoustic suppression and aerodynamic performance above the S1 location, and, b) T1 versus T2 treatment designs present mixed results, in some areas the T1 showing slightly increased suppression and in other areas T2 being slightly superior.

4.3.1 Acoustic Data Presentation and Evaluation

Examination of acoustic data is introduced with comparisons of normalized PWL for static and flight in Figure 4-60. Using this overview parameter, the conclusions are:

FIGURE 4-60. NORMALIZED PWL AS A FUNCTION OF JET VELOCITY PARAMETER FOR COMPARISON OF EJECTOR SETBACK, S1 VS. S2, AND EJECTOR/PLUG TREATMENT, T1 vs. T2; STATIC & SIMULATED FLIGHT

- o Ejector setback S2 allows more efficient suppression over S1, the trend maintained for all cycle conditions and for both static and flight.
- o Ejector treatments Tl and T2 are marginally similar for static, the Tl showing less than .5 dB greater suppression, however, in flight PWL suppression is more efficient using T2 design, particularly at high V_j values with approximately .7 dB \triangle at takeoff.

Further acoustic performance comparisons are presented for OASPL and PNL, static and flight, in Figures 4-61 through 4-64. Each of these graphs presents $\vartheta_{I} = 60^{\circ}$, 90° , 130° and peak values for TE-5, TE-9 and TE-4. Additionally, each contains conic nozzle and TE-1 baseline data. Scanning the graphs for comparisons of TE-9 versus TE-5 indicates:

 Sl setback, TE-5, is normally slightly less efficient at low jet velocity settings for all parameter comparisons and is particularly poorer at higher cycle settings when evaluated on PNL basis. At takeoff cycle, nearly 2 dB increased suppression is noted for static and 1 dB for flight PNL using the S2/TE-9 ejector position.

Examining the same graphs for comparisons of TE-4 to TE-9 concludes:

- o On an OASPL basis, static and flight, T2 performs very similar to T1, showing only very slight improvement for most angles in the higher velocity region. This would be expected as the treatment is designed primarily for high frequency suppression, normally beyond peak frequency of jet-controlled spectra where little impact on OASPL is expected.
- o On a PNL basis, statically T1 and T2 perform nominally similar for all angles at all cycle conditions. In flight, T2 is seen more effective only at forward quadrant and peak values and then by lor less \triangle PNL.

More detailed comparisons of data on a directivity basis are shown in Fiures 4-65, 4-66 and 4-67 for three cycle points of cutback, intermediate and takeoff, respectively. Each graph presents both normalized OASPL and PNL versus angle relative to inlet, $\theta_{\rm I}$, and for both static and flight. TE-1 and conic nozzle baselines at similar cycle conditions are also included. Detailed review of ejector setback comparisons of TE-9 versus TE-5 indicate:

o For all comparisons, the S2 setback's suppression exceeds that of S1, particularly so for the high jet velocity takeoff cycle. At takeoff, the S2 improvement is exemplified by a Δ plot in Figure 4-68. The figure shows improved PNL and OASPL suppression as a function of \mathcal{O}_I for S2 spacing for both static and flight.

Examining the same Figure 4-65 through 4-67 graphs for comparison of TE-4 to TE-9 for treatment effectiveness indicates:

- o Mixed regions of effectiveness for optimizing T1 versus T2.
- At cutback and intermediate, statically Tl and T2 perform similarly; in-flight, Tl is slightly more efficient for OASPL and PNL.
- o At takeoff, T2 is slightly more efficient statically and T1 is slightly superior in flight; each on both PNL and OASPL.

FIGURE 4-62. NORMALIZED OASPL AS A FUNCTION OF JET VELOCITY PARAMETER FOR COMPARISON OF EJECTOR SETBACK, S1 vs S2, AND EJECTOR/PLUG TREATMENT, T1 vs T2; SIMULATED FLIGHT, AT $\theta_I = 60^\circ$, 90°, 130° & PEAK VALUE

FIGURE 4-63. NORMALIZED PNL AS A FUNCTION OF JET VELOCITY PARAMETER FOR COMPARISON OF EJECTOR SETBACK, S1 vs S2, AND EJECTOR/PLUG TREATMENT, T1 vs T2; STATIC, AT $\theta_I = 60^\circ$, 90°, 130°, AND PEAK VALUE

FIGURE 4-64. NORMALIZED PNL AS A FUNCTION OF JET VELOCITY PARAMETER FOR COMPARISON OF EJECTOR SET BACK, S1 vs S2, AND EJECTOR/PLUG TREATMENT, T1 vs T2; SIMULATED FLIGHT, AT $\theta_I = 60^\circ$, 90° , 130° AND PEAK VALUE

NORMALIZED OVERALL SOUND PRESSURE LEVEL, OASPLN, dB

NORMALIZED OVERALL SOUND PRESSURE LEVEL, OASPLN, dB

FIGURE 4-68. PNL AND OASPL SUPPRESSION BENEFIT OF EJECTOR SETBACK, S2 VS S1, AT TAKEOFF, STATIC & SIMULATED-FLIGHT

In the previous comparisons of OASPL and PNL directivities for S1 versus S2 and T1 versus T2, the largest variations for the three cycle conditions were seen at takeoff. Figures 4-69 and 4-70 present spectra comparisons at that condition, for static and flight, respectively. The figures exemplify select angles of $\mathcal{O}_{\rm I}$ = 60°, 90° and 130°. Observations from these data are:

- TE-5 spectra for S1 spacing are significantly above the levels of TE-9 with S2 spacing, for all three angles, static and flight; therefore, again indicating S2 as more effective.
- Low frequency humps occur for TE-5, levels being substantially above those of the TE-1 baseline unejected model, indicative of potential induced shock noise. The peaks, particularly in the forward quadrant, are well above those of TE-9, although still slightly present in TE-9 spectra.
- o In comparing TE-4/T2 treatment versus TE-9/T1 treatment, the results bear out the observations made from the PNL and OASPL directivity graphs, i.e., statically the T2 treatment is more effective, particularly in mid-to-high-frequency and at sideline to inlet angles. In-flight, the T1 treatment is slightly more effective in the mid-to-high-frequency spectra.

To further exemplify the effect of treatment design, Figures 4-71, 4-72 and 4-73 show treatment effectiveness as a function of 1/3-octave band frequency at cutback, intermediate and takeoff cycle cases, respectively. The graphs were developed to show the effect of treatment only, therefore, TE-9 and TE-4 spectra were compared directly to those of TE-2, the hardwall plug/hardwall ejector system. Each model was, therefore, of Ll ejector length and S2 spacing; the only variation being application of either T1 or T2 treatment versus hardwall.

NORMALIZED 1/3 - OCTAVE BAND SOUND PRESSURE LEVEL, 1/3 - OBSPL, 4B

, 90⁰ & 130⁰ FOR COMPARISON OF EJECTOR SETBACK, S1 VS S2, F1 VS T2. SIMULATED-FLIGHT, AT TAKEOFF. NORMALIZED SPECTRA AT $\Theta_{I}=60^{\circ}$ AND EJECTOR/PLUG TREATMENT, FIGURE 4-70

Data are presented at $\theta_{I} = 60^{\circ}$, 90° and 130° and for static and flight; observations indicate:

- o In all cases, suppression of either Tl or T2 occurs primarily in the 500 to 8 KHz frequency range; shapes of effectiveness patterns are generally the same for both.
- Static results for all three conditions are generally a mixed choice of optimal effectiveness, both designs performing near similarly with the exception of slightly improved suppression for T2 at takeoff.
- In-flight results for all three cycle points and at all three presented angles, however, show slightly increased effectiveness of the Tl treatment.

A final acoustic comparison of the three models is presented in Figure 4-74 as normalized EPNL variation against the jet velocity parameter. The EPNL calculations are based on the 2400 ft sideline PNL directivity patterns and are for a nominal aircraft (simulated-flight) speed of 400 ft/sec. Conical nozzle and baseline TE-1 data are included for reference. Observations elicit:

- o Comparison of S2/TE-9 versus S1/TE-5 show the S2 setback superior to S1, by approximately 1 \triangle EPNL at cutback and takeoff.
- o T1 and T2 treatments perform equally on the basis of EPNL.

Laser velocimeter plume measurements for comparison of the two ejector axial locations were previously presented in Section 4.2's Figures 4-49 through 4-52. The data indicated that a) the initial velocity levels at the ejector exit for SI spacing are somewhat higher than for the S2 position and the higher velocity levels persist for a substantial distance aft of the exit, and b) mild shock structure is present in the plume just aft of the S1-located ejector, however, none is seen in the S2-located ejector plume. These observations aid in understanding the source of higher noise levels for the S1 positioned ejector model.

4.3.2 Aerodynamic Performance Data

As an indication of relative aerodynamic performance, Figure 4-75 compares thrust loss due to base drag for the TE-4, TE-5 and TE-9 configurations. Section 4.8, "Aerodynamic Performance Evaluation" describes how chute base pressure instrumentation is used to calculate base drag. This is subsequently used as an indication of thrust coefficient degredation, expressed as a percentage of outer stream (suppressor) ideal thrust.

NORMALIZED EFFECTIVE PERCEIVED NOISE LEVEL, EPNLM, dB

FIGURE 4-74. EPNL CORRELATION WITH JET VELOCITY PARAMETER FOR COMPARISON OF EJECTOR SETBACK, S1 VS S2, AND EJECTOR/PLUG TREATMENT, T1 VS T2.

FIGURE 4-75. VARIATION IN THRUST LOSS COEFFICIENT DUE TO CHUTE BASE DRAG AS A FUNCTION OF a) ADDITION OF EJECTOR TO BASELINE, AND b) EJECTOR AXIAL LOCATION; TE-1, TE-5 AND TE-9

Chute base drag is a major portion of the total thrust loss of mechanical chute suppressors. The base drag results from low static pressure on the chute surface, low pressure indicative of inability to well-ventilate the chute. The Figure 4-75 comparison can be summarized as follows:

- o The unejected TE-1 configuration, trendwise, performs similarly to previous chute models by exhibiting substantially greater thrust loss in flight than statically. This results from the forward velocity over the chute tips not readily allowing flow to turn and ventilate the chute base area; thus causing lower base pressure and increased drag.
- o Application of TE-5 ejector with close, Sl, spacing dramatically increases base drag, both static and in flight, resulting from poorer chute ventilation. Levels as high as $12.5\% \Delta C_{fg}$ static at cutback and 4.6% at takeoff are seen.
- Axially relocating the ejector to S2 location (18.5" full scale; 2.496" model scale) from the S1 location (11" full scale; 1.484" model scale) allowed for substantial improvement in chute ventilation capability and decreased base drag to even below that of Configuration TE-1 in simulated-flight. A summarization at cutback and takeoff shows:

	ΔC_{fg}			
	C/B, PR ≈ 2.25		T/0, PR ≈ 3.4	
	STATIC	FLIGHT	STATIC	FLIGHT
TE-1	1.2	3.9	0.8	3.0
TE-5 (S1)	12.5	10.2	4.6	3.4
TE-9 (S2)	3.6	2.7	1.8	1.5

The ejector application, properly spaced, thus enhances flight aerodynamic performance in this $V_{a/c} \approx 400$ ft/sec operational range.

4.4 RANKING OF INDIVIDUAL SUPPRESSION SOURCES OF EJECTOR APPLICATION

This report section isolates the effectiveness of individual aspects of ejector/treatment application to the primary 20-chute suppressor nozzle. Reference to Section 4.0 and in particular to Figure 4-1 indicates from the test chronology that two model sets were tested to isolate suppression sources, i.e.:

o Extended length ejector set: TE-7, TE-8 and TE-10.

o Nominal length ejector set: TE-2, TE-3 and TE-4.

Within the comparisons for each test set was envisioned the capability of isolating effects of:

- o Application of hardwall ejector to primary nozzle system
- o Application of treatment to ejector inner flowsurface
- o Application of treatment to both the ejector and plug flowsurfaces

By comparison of test data among the three models of each set and then back to the reference TE-1 model, magnitudes of suppression attributable to each source were evactuated; results are discussed in this section.

4.4.1 Overview of Individual Suppression Source Effectiveness

As the primary gauge of acoustic effectiveness is PNL suppression, an overview of individual suppression source effectiveness can be gleaned by review of \triangle PNL comparisons in Figures 4-76 and 4-77. The two figures each compare the extended and nominal length ejector sets directly to baseline Model TE-1 on the basis of 2400' sideline PNL suppression as a function of angle to inlet, Θ_I . The first figure is a static data comparison and the second is for simulated-flight. Each figure presents data for the three cycle conditions of cutback, intermediate and takeoff. As the presented \triangle PNL's are directly in comparison to the TE-1 noise levels, they represent incremental suppression changes due to:

- a) Application of extended and nominal length hardwall ejectors
- b) Application of extended and nominal length treated ejectors while maintaining a hardwall plug surface.
- c) Application of extended and nominal length treated ejectors plus treatment to the plug surface.

Comparison of Δ 's between the individual lines on the graphs then represents the incremental changes in noise levels due to:

- a) Treatment application to the ejector surface relative to hardwall
- b) Treatment application to the plug surface relative to treated ejector flowsurface only.

Review of the graphs reveals the following interesting results:

- o The hardwall ejector, due to its physical shielding, provides the major portion of the ejector system's suppression effectiveness. In itself, it contributes substantially in both forward and aft quadrant suppression, levels being fairly consistent from static to flight and with loss of effectiveness, particularly in the aft peak noise quadrant, at the higher jet velocity takeoff cycle. Absolute levels of inlet quadrant suppression are normally somewhat greater than broadside and aft quadrant, particularly as the cycle is increased from cutback to takeoff. Of major significance is that the forward radiated jet noise is still reduced substantially at all cycle conditions, even though aft quadrant suppression levels diminish.
- o Application of treatment to the ejector inner flowsurface is primarily effective within the extended length ejector, effectiveness being marginal within the nominal length ejector as many of these data comparisons show minimal to no increase in \triangle PNL when the single surface treatment is added. For the extended length ejector system, the single surface treatment, however, is seen primarily effective on forward angle radiated noise suppression, peak noise angles being minimally effected.

o Addition of further treatment to the plug surface significantly improves suppression of both Ll and L2 systems, the magnitude of improvement varying with cycle as internal flow conditions change, but showing no trend to implicate either ejector length or cycle as a dependent variable regulating improvement. The plug surface treatment again is more beneficial to forward quadrant suppression, aft quadrant peak noise being reduced just slightly further. In general, the conclusion can be drawn that plug surface treatment improves acoustic peformance by a noteworthy amount, however, levels and trends are not readily predictable from the data comparisons.

A further overview parameter to gauge suppression source effectiveness is presented in Figure 4-78, i.e., normalized EPNL as a function of cycle operation. The EPNL values are based on 2400' sideline data with nominal 400 ft/sec simulated flight speed. The top of the graph presents the extended length ejector set; TE-10, TE-7 and TE-8. The lower half presents the nominal length ejector set, TE-2, TE-3 and TE-4. Conic nozzle and baseline TE-1 data are included. Relative to reviewing for ejector source effectiveness, these EPNL comparisons indicate:

- o For the extended length ejector, approximately 4.2 \triangle EPNL is gained relative to the baseline suppressor at takeoff by application of the hardwall ejector. An additional 1.3 \triangle EPNL suppression is gained by treating the ejector flowsurface, for an ejector/treatment system effectiveness of 5.5 \triangle EPNL. Plug treatment is of no further benefit. Total suppression relative to the conical nozzle is 9.3 \triangle EPNL.
- o The nominal length hardwall ejector at the same takeoff cycle afforded 3.5 \triangle EPNL suppression relative to the baseline suppressor. Addition of ejector flowsurface treatment further improved suppression by 0.5 \triangle EPNL, yielding a total of 4.0 \triangle EPNL for the ejector/treatment package. Plug treatment application is again of no further benefit. Total suppression relative to the conical nozzle is 7.8 \triangle EPNL.
- o At cutback cycle, gain similar to takeoff is afforded by the hardwall ejector application, i.e., 4 \triangle EPNL for both extended and nominal length systems. Ejector shell treatment improves the long ejector by about 2 \triangle EPNL and the short ejector by about 1.5 \triangle EPNL. Plug surface treatment is, however, effective at this cycle setting by 2 \triangle EPNL for the long ejector and 0.5 \triangle EPNL for the short ejector. Total suppression relative to the conic nozzle is 6.5 \triangle EPNL for both systems.
 - 4.4.2 Detailed Data Comparisons Relative to Individual Suppression Source Effectiveness

As mentioned previously, acoustic peformance can be gauged through comparison of a variety of noise parameters. Additionally, physical changes incorporated in ejector model variations often produce minor variations in acoustic levels and in many cases the changes are not methodically consistent. This is the case for analysis of individual suppression source effectiveness in this section. Therefore, the following text presents an array of detailed data comparisons, general review of the data then necessary to discern trends of effectiveness. The general trends are summarized after the data presentation.

FIGURE 4-78. EPNL CORRELATION WITH JET VELOCITY PARAMETER FOR INDIVIDUAL SUPPRESSION SOURCE EFFECTIVENESS, NOMINAL AND EXTENDED LENGTH EJECTOR SYSTEMS.

4.4.2.1 Data Comparisons for the Extended Length Ejector System: TE-7, TE-8 and TE-10

The following data comparisons are included for the extended length, L2, ejector systems, comparing Configurations TE-10, hardwall, TE-7, treated ejector flowsurface, and TE-8, treated ejector and plug. The data graphs additionally include Configuration TE-1 baseline unejected suppressor and the reference conical nozzle.

- Figure 4-79; Normalized PWL for static and flight as a function of cycle line of operation.
- o Figures 4-80 and 4-81; Normalized OASPL for static and flight, respectively, at $\Theta_I = 60^\circ$, 90° , 130° and peak value, as a function of cycle line of operation.
- o Figures 4-82 and 4-83; Normalized PNL for static and flight, respectively, at $\Theta_I = 60^{\circ}$, 90° , 130° and peak value, as a function of cycle line of operation.
- o Figures 4-84, 4-85 and 4-86; OASPL and PNL directivity for static and flight, for select cycle points of cutback, intermediate and takeoff.
- o Figures 4-87 through 4-92; 1/3-OBSPL spectra for static and flight, for select angles of $\theta_1 = 60^\circ$, 90° and 130° , for cutback, intermediate and takeoff cycle points.

4.4.2.2 Data Comparisons for the Nominal Length Ejector System: TE-2, TE-3 and TE-4

Similar to those for the extended length ejector system, the following data comparisons are included for the nominal length, Ll, ejector system, comparing Configurations TE-2, hardwall, TE-3, treated ejector flowsurface, and TE-4, treated ejector and plug. As previously, the graphs include baseline unejected suppressor TE-1 and the reference conical nozzle.

- Figure 4-93; Normalized PWL for static and flight as a function of cycle line of operation.
- o Figures 4-94 and 4-95; Normalized OASPL for static and flight, respectively, at $\Theta_I = 60^\circ$, 90° , 130° and peak value, as a function of cycle line of operation.
- o Figures 4-96 and 4-97; Normalized PNL for static and flight, respectively, at $\theta_1 = 60^\circ$, 90° , 130° and peak value, as a function of cycle line of operation.
- o Figures 4-98, 4-99 and 4-100; OASPL and PNL directivity for static and flight, for select cycle points of cutback, intermediate and takeoff.
- o Figures 4-101 through 4-106; 1/3-OBSPL spectra for static and flight, for select angles of $\Theta_1 = 60^\circ$, 90° and 130° , for cutback, intermediate and takeoff cycle points.

FIGURE 4-79. NORMALIZED PWL AS A FUNCTION OF JET VELOCITY PARAMETER FOR IDENTIFICATION OF INDIVIDUAL SUPPRESSION SOURCE EFFECTIVENESS WITHIN THE EXTENDED LENGTH EJECTOR SYSTEM.

FIGURE 4-80. NORMALIZED OASPL AS A FUNCTION OF JET VELOCITY PARAMETER FOR IDENTIFICATION OF INDIVIDUAL SUPPRESSION SOURCE EFFECTIVENESS WITHIN THE EXTENDED LENGTH EJECTOR SYSTEM, STATIC, AT $\theta_I = 60^\circ$, 90°, 130° AND PEAK VALUE

FIGURE 4-82. NORMALIZED PNL AS A FUNCTION OF JET VELOCITY PARAMETER FOR IDENTIFICATION OF INDIVIDUAL SUPPRESSION SOURCE EFFECTIVENESS WITHIN THE EXTENDED LENGTH EJECTOR SYSTEM, STATIC, AT $\theta_I = 60^\circ$, 90° , 130° AND PEAK VALUE.

NORMALIZED 1/3-OCTAVE BAND SOUND PRESSURE LEVEL, 1/3-OBSPLN, dB

NORMALIZED 1/3-OCTAVE BAND SOUND PRESSURE LEVEL, 1/3-OBSPLN, dB

FIGURE 4-93. NORMALIZED PWL AS A FUNCTION OF JET VELOCITY PARAMETER FOR IDENTIFICATION OF INDIVIDUAL SUPPRESSION SOURCE EFFECTIVENESS WITHIN THE NOMINAL LENGTH EJECTOR SYSTEM

FIGURE 4-95. NORMALIZED OASPL AS A FUNCTION OF JET VELOCITY PARAMETER FOR IDENTIFICATION OF INDIVIDUAL SUPPRESSION SOURCE EFFECTIVENESS WITHIN THE NOMINAL LENGTH EJECTOR SYSTEM, SIMULATED FLIGHT, AT $\theta_I = 60^\circ$, 90° , 130° , AND PEAK VALUE

NORMALIZED OVERALL SOUND PRESSURE LEVEL, OASPLN, dB

LENGTH EJECTOR SYSTEM.

NORMALIZED OVERALL SOUND PRESSURE LEVEL, OASPLN, dB

NORMALIZED 1/3 - OCTAVE BAND SOUND PRESSURE LEVEL, 1/3- OBSPLN, dB

=60°, 90° AND 130° FOR IDENTIFICATION OF INDIVIDUAL SUPPRESSION THIN THE NOMINAL LENGTH FJECTOR SYSTEM. STATIC. AT INTERMEDIATE

 $\theta_{T} = 60^{\circ}$

FIGURE 4-103. NORMALIZED SPECTRA 0

THE NOMINAL LENGTH EJECTOR SYSTEM, STATIC, AT TAKEOFF

WITHI

NORMALIZED 1/3 - OCTAVE BAND SOUND PRESSURE LEVEL, 1/3 - OBSPLN, dB

4.4.2.3 Review of Detailed Data Comparisons for Nominal and Extended Length Ejector Systems

The power level graphs of Figures 4-79 and 4-93 show that total acoustic energy is reduced quite substantially by the hardwall ejector applications, i.e., TE-10 and TE-2. In each comparison, however, the ejector treatment application, TE-7 and TE-3, decreased the level of PWL reduction to below that of the hardwall. Treatment on both surfaces, TE-8 and TE-4, further reduced the total acoustic energy to below that of the hardwall system. Changes of PWL are most dramatic at low to intermediate cycle points, compared to TE-1 unejected system, and diminish to minimal at highest cycle points.

As the greatest benefit of ejector and treatment application is in the mid-to-high frequency regions of the spectra for most all presented comparisons, Figures 4-87 through 4-92 and 4-101 through 4-106, impact on PNL suppression is normally greater than on OASPL. However, as seen from many of the spectra plots, the effectiveness is sufficiently broad to extend to low frequency peaks which control OASPL, therefore, OASPL reduction is also significant.

The most significant review of individual suppression source effectiveness is afforded by scanning the PNL and OASPL directivity plots for static and flight; Figures 4-84, -85 and -86 at cutback, intermediate and takeoff for the long ejector models and Figures 4-98, -99 and -100, similarly, for the shorter ejector models. In most all comparisons, the pattern of trends is consistent, i.e.:

- Application of the hardwall ejectors substantially reduce both OASPL and PNL, both static and flight. Levels of reduction are most significant in the forward quadrant and broadside angles.
- o Applications of ejector and then plug treatments allow incremental steps of additional OASPL and PNL suppression, primarily in the forward and broadside angles for the long ejectors; aft angle levels being altered little. Levels at angles of peak noise, however, are still reduced by the treatment. For the shorter ejectors, these incremental steps of \triangle OASPL and \triangle PNL are much less than those of the extended length system and are not as systematically identifiable.
- o In most all comparisons, however, the fully treated ejector system is judged most effective on both OASPL and PNL bases.

4.5 EJECTOR LENGTH VARIATION

This report section isolates the impact of ejector length variation. Reference to Section 4.0, and in particular Figure 4-1's test chronology, indicates that three model sets were tested within which ejector length variation may be influential. These were:

- o Hardwall ejector/plug systems: TE-2 of Ll and TE-10 of L2 (Reference Figures 3-10 and 3-18).
- Treated ejector flow surface systems: TE-3 of Ll and TE-7 of L2 (Reference Figures 3-11 and 3-15)
- o Fully treated ejector/plug systems: TE-4 of L1 and TE-8 of L2 (Reference Figures 3-12 and 3-16)

Within the comparisons for each test set, the impact which ejector length variation has on acoustic and aerodynamic (base pressure) performance can be evaluated. All ejector axial locations were maintained at the S2 (extended) position, the optimum of the two locations evaluated; see Section 4.3 "Variations of Ejector Axial Spacing and Treatment Design" for details. In review, the L1-nominal length ejector was 8.68" long model-scale and was scaled from the full scale nozzle design of Reference 1, shown in Figure 2-1. It had acoustic treatment applied over approximately 70% of its flap length. The L2-extended length ejector was 10.8" long model-scale and treatment was applied to a length equivalent to that of the full flap length of the nominal length ejector system. The additional untreated closure length is similar to that of the nominal length ejector.

4.5.1 Overview of Ejector Length Variation Acoustic Impact

To gauge ejector length impact on an overview acoustic parameter, EPNL is presented as a function of the jet velocity parameter in Figure 4-107. The EPNL values are based on 2400' sideline data with nominal 400 ft/sec simulated-flight speed. The figure compares a) TE-2 to TE-10, bottom, b) TE-3 to TE-7, center, and c) TE-4 to TE-8, top, and includes nominal lines for conic and TE-1 reference nozzles. Reviewing the curves for ejector length impact reveals:

FIGURE 4-107. EPNL CORRELATION WITH JET VELOCITY PARAMETER FOR COMPARISONS OF EJECTOR LENGTH VARIATION.

NORMALIZED EFFECTIVE PERCEIVED NOISE LEVEL, EPNLN, dB

- o Ejector length variation, from Ll to L2, has insignificant impact for mixed subsonic to intermediate cycle operation, $1.5 \le 10\log_{10}$ ($V_j eff/a_{amb}$) ≤ 2.6 , but definitely shows bias toward longer ejector length to improve suppression at takeoff through maximum-cycle operation.
- o At takeoff cycle and above (mixed velocity parameter ≈ 3.0) the longer ejector gains a) up to 1 \triangle EPNL in a hardwall version, b) approximately 2 \triangle EPNL for the treated ejector system, and c) from 1.5 to 3.0 \triangle EPNL for the treated ejector/treated plug system.

A primary gauge of acoustic effectiveness is PNL suppression. An additional overview of ejector length impact can be gleaned from \triangle PNL comparisons within Figures 4-108 and 4-109, for static and simulated-flight, for $\Theta_I = 60^\circ$, 90°, 130° and peak value. Further similar comparisons on a OASPL basis are in Figures 4-110 and 4-111. Each graph shows the change in PNL/OASPL as effected by ejector length change alone, i.e., by comparing TE-2 to TE-10, TE-3 to TE-7 and TE-4 to TE-8. Positive values indicate suppression increase due to length increase, negative values indicate greater noise levels with the longer ejector. In review:

- o Forward quadrant, $\mathfrak{G}_{\mathrm{I}} = 60^{\circ}$, suppression is increased quite substantially with ejector length increase; near takeoff, up to 3 dB additional \triangle PNL is gained for static and flight. Progression of increased effectiveness, from hardwall to treated ejector to treated plug and ejector is fairly systematic; in most comparisons the fully treated system is most beneficial.
- o Broadside, at $\Theta_I = 90^{\circ}$, length increase impact is very consistent though not as beneficial. The fully treated ejector/plug shows slight improvement with extended length; approximately 2.0 PNL near takeoff cycle for static and flight. The treated ejector/hardwall plug shows similar results with both ejectors and the hardwall long ejector increases PNL/OASPL levels by 0.5 to 1.0 dB for most cycle points.
- o Aft quadrant, $\sigma_I = 130^{\circ}$, comparisons show all long ejectors to degrade acoustic performance, each being 1.0 to 1.5 \triangle PNL/ \triangle OASPL noisier than short ejectors.
- o Peak value comparisons are similar to $\mathcal{B}_{I} = 130^{\circ}$ data. On the \triangle PNL basis the fully treated system shows slightly greater suppression for the long ejector. The partially treated and hardwall systems are equivalent and noisier, respectively, for length increase.

FIGURE 4-108. PNL SUPPRESSION CHANGE DUE TO EJECTOR LENGTH INCREASE; TE-8 VERSUS TE-4, TE-7 VERSUS TE-3, AND TE-10 VERSUS TE-2, STATIC, AT $\Theta_I = 60^\circ$, 90° , 130° AND PEAK VALUE

FIGURE 4-109. PNL SUPPRESSION CHANGE DUE TO EJECTOR LENGTH INCREASE; TE-8 VERSUS TE-4, TE-7 VERSUS TE-3, AND TE-10 VERSUS TE-2, SIMULATED-FLIGHT, AT Θ_I = 60°, 90°, 130° AND PEAK VALUE

FIGURE 4-110. OASPL SUPPRESSION CHANGE DUE TO EJECTOR LENGTH INCREASE; TE-8 VERSUS TE-4, TE-7 VERSUS TE-3, AND TE-10 VERSUS TE-2, STATIC, AT $\Theta_{\rm I}$ = 60°, 90°, 130° AND PEAK VALUE

FIGURE 4-111. PNL SUPPRESSION CHANGE DUE TO EJECTOR LENGTH INCREASE; TE-8 VERSUS TE-4, TE-7 VERSUS TE-3, AND TE-10 VERSUS TE-2, SIMULATED-FLIGHT, AT Θ_I = 60°, 90°, 130° AND PEAK VALUE

A final overview evaluation of ejector length is seen per Figures 4-112 through 4-114's spectral suppression comparisons. The graphs show $\Delta 1/3$ -OBSPL versus frequency at $\Theta_1 = 60^\circ$, 90° and 130°, for static and flight, at cutback, intermediate and takeoff. Again, the Δ 's are from direct comparisons of TE-2 to TE-10, TE-3 to TE-7 and TE-4 to TE-8; positive values indicating increased suppression from length increase and negative values indicating higher noise levels with longer ejectors. Trends are similar to those of the Δ PNL/ Δ OASPL comparisons but on a spectral basis now indicate:

- o For most all comparisons the longer ejector increases low frequency noise levels by 1 to 2 dB for 50 to 500 Hz. (This can be correlated with later presented LV plume decay plots which show the plumes for a long ejector to decay less rapidly than for the short ejector, thus, allowing longer zones of turbulent mixing noise generation of low frequency.)
- o Maximum increase in spectral suppression due to ejector length is seen in the forward quadrant and for the frequency range of approximately 800 to 8 KHz, reaching suppression of 6 to 8 \triangle dB near 2 KHz.
- o Moving broadside, 90°, and toward the aft quadrant, 130°, most of the high frequency suppression due to ejector length increase diminishes. Statically, all long ejector systems generate higher aft quadrant noise levels for all frequencies at all three cycle points; simulated-flight shows only light mid-frequency suppression for the higher cycle condition and greater noise for all others.
- o Where increased ejector length does increase spectral suppression, the fully treated plug/ejector system is normally most beneficial.

4.5.2 Detailed Data Comparisons for Ejector Length Variations

In order to view ejector length acoustic impact within a more detailed data base, the following data sets are presented for review:

- o For comparison of TE-2 to TE-10, for length variation within the hardwall ejector/plug geometry, Figures 4-115 through 4-119 present normalized PWL, OASPL and PNL correlated with the jet velocity parameter, for static and simulated-flight. The OASPL and PNL are presented at $\theta_{\rm T}$ = 60°, 90°, 130° and peak value.
- For comparison of TE-3 to TE-7, for length variation within a treated ejector/hardwall plug system, Figures 4-120 through 4-124 present data similar to that above for TE-2/TE-10.
- For comparison of TE-4 to TE-8, for length variation within a fully treated ejector/plug geometry, Figures 4-125 through 4-129 do likewise to those above.

These data sets are included primarily for the readers extended use as a detailed data base. Trends from the PNL and OASPL data, in regards to ejector length impact, were summarized and reviewed in the previous $\Delta PNL / \Delta OASPL$ graphs of Figures 4-108 through 4-111.

FIGURE 4-114. EJECTOR LENGTH INCREASE EFFECTIVENESS AS A FUNCTION OF 1/3-OCTAVE BAND FREQUENCY AT TAKEOFF, STATIC AND SIMULATED-FLIGHT, $\Theta_{\rm I}$ = 60°, 90° AND 130°

FIGURE 4-115. NORMALIZED PWL AS A FUNCTION OF JET VELOCITY PARAMETER FOR COMPARISON OF EJECTOR LENGTH VARIATION, HARDWALL EJECTOR/ PLUG, TE-2 VERSUS TE-10, STATIC AND SIMULATED-FLIGHT

FIGURE 4-118. NORMALIZED PNL AS A FUNCTION OF JET VELOCITY PARAMETER FOR COMPARISON OF EJECTOR LENGTH VARIATION, HARDWALL EJECTOR/PLUG, TE-2 VERSUS TE-10, STATIC, AT $\Theta_I = 60^\circ$, 90°, 130° AND PEAK VALUE 245

FIGURE 4-119. NORMALIZED PNL AS A FUNCTION OF JET VELOCITY PARAMETER FOR COMPARISON OF EJECTOR LENGTH VARIATION, HARDWALL EJECTOR/PLUG, TE-2 VERSUS TE-10, SIMULATED-FLIGHT, AT $\Theta_I = 60^\circ$, 90° , 130° AND PEAK VALUE

FIGURE 4-120. NORMALIZED PWL AS A FUNCTION OF JET VELOCITY PARAMETER FOR COMPARISON OF EJECTOR LENGTH VARIATION, TREATED EJECTOR, TE-3 VERSUS TE-7, STATIC AND SIMULATED-FLIGHT

FIGURE 4-122. NORMALIZED OASPL AS A FUNCTION OF JET VELOCITY PARAMETER FOR COMPARISON OF EJECTOR LENGTH VARIATION, TREATED EJECTOR, TE-3 VERSUS TE-7, SIMULATED-FLIGHT, AT $\Theta_I = 600$, 900, 1300 AND PEAK VALUE

FIGURE 4-124. NORMALIZED PNL AS A FUNCTION OF JET VELOCITY PARAMETER FOR COMPARISON OF EJECTOR LENGTH VARIATION, TREATED EJECTOR, TE-3 VERSUS TE-7, SIMULATED-FLIGHT, AT $\Theta_I = 60^\circ$, 90°, 130° AND PEAK VALUE 251

NORMALIZED PERCEIVED NOISE LEVEL, PNLN, PNdB

FIGURE 4-125. NORMALIZED PWL AS A FUNCTION OF JET VELOCITY PARAMETER FOR COMPARISON OF EJECTOR LENGTH VARIATION, TREATED EJECTOR/PLUG, TE-4 VERSUS TE-8, STATIC AND SIMULATED-FLIGHT

FIGURE 4-126. NORMALIZED OASPL AS A FUNCTION OF JET VELOCITY PARAMETER FOR COMPARISON OF EJECTOR LENGTH VARIATION, TREATED EJECTOR/PLUG, TE-4 VERSUS TE-8,STATIC, AT $\Theta_I = 60^\circ$, 90° , 130° AND PEAK VALUE

NORMALIZED OASPL AS A FUNCTION OF JET VELOCITY PARAMETER FOR COMPARISON OF EJECTOR LENGTH VARIATION, TREATED EJECTOR/PLUG, TE-4 VERSUS TE-8, SIMULATED-FLIGHT, AT $\Theta_I = 60^\circ$, 90° , 130° AND PEAK VALUE 254

FIGURE 4-128. NORMALIZED PNL AS A FUNCTION OF JET VELOCITY PARAMETER FOR COMPARISON OF EJECTOR LENGTH VARIATION, TREATED EJECTOR/PLUG, TE-4 VERSUS TE-8, STATIC, AT $_{\rm OI}$ = 60°, 90°, 130° AND PEAK VALUE

FIGURE 4-129. NORMALIZED PNL AS A FUNCTION OF JET VELOCITY PARAMETER FOR COMPARISON OF EJECTOR LENGTH VARIATION, TREATED EJECTOR/PLUG, TE-4 VERSUS TE-8, SIMULATED-FLIGHT, AT $\Theta_I = 60^\circ$, 90°, 130° AND PEAK VALUE

4.5.3 Diagnostic Data Review

Representative comparisons of jet plume characteristics for nominal, Ll, and extended length, L2, ejectors are available from laser velocimeter plume measurements at takeoff cycle for Configurations TE-4 and TE-8. Normalized mean velocity data are presented for static data points 4009 and 8009 as follows:

- o Figure 4-130: Axial traverses at centerline, 1.54"R, 3.07"R and 4.22"R.
- o Figure 4-131: Radial traverses at various locations aft of the ejector exit, starting at $1/8^{\circ}$ aft and progressing to \times /Deq = 10.0.

For the simulated-flight data points 4010 and 8010, similar comparisons to those of the static are presented in Figures 4-132 and 4-133.

In reviewing the plume measurements, the following are noted:

- o Just aft of the ejector exit planes, at \times /Deq = 1.6 for TE-4 and 1.96 for TE-8, the mean velocity is somewhat higher in the peak velocity zones for the shorter TE-4 ejector configuration. This is due to the closer proximity of the measurement plane to the exit plane and, therefore, the shorter decay distance for the TE-4 plume.
- o From the plug tip and aft, the TE-8 mean velocity levels are always slightly higher. This is felt contributes to the increased low and mid-frequency noise levels observed in the three length comparison sets of Figures 4-112, 4-113 and 4-114. The longer region of turbulent mixing zone produces a higher content of mid-to-low frequency noise.
- o Distributions of mean velocity at any radial cross section are fairly similar for the two ejector lengths, however, the longer ejector tends to wash out identity of the inner nozzle stream sooner than for the short ejector. This is expected attributable to the longer length of forced high speed jet flow toward the center of the jet causing faster outer/inner stream mixing.

As an indication of relative aerodynamic performance changes due to ejector length variation, thrust loss due to base drag for the length comparison model sets, i.e., TE-2 versus TE-10, TE-3 versus TE-7, and TE-4 versus TE-8 are presented in Figures 4-134, 4-135 and 4-136, respectively. Static and simulated-flight values are provided for each. Review suggests:

- Performance of the short and long ejector sets are compatible within themselves, i.e., TE-2 = TE-3 = TE-4 and TE-10 = TE-7 = TE-8. This would be expected as the thrust loss calculated is due to chute base drag and changes in treatment application are not anticipated to effect pumping/ventilating characteristics.
- o In each comparison, the simulated-flight thrust loss is lower than the static by a slight amount, indicating forward motion with an ejector still allows enhanced pumping/ventilation capability and the chute base areas are better ventilated. This is exactly opposite to non-ejected systems where forward velocity prohibits easy turning of the externally flowing media and causes poorer ventilation/lower base pressure and subsequently higher base drag.

258

ł

FIGURE 4-131. RADIAL VARIATION OF THE MEAN VELOCITY (AXIAL COMPONENT) IN THE PLUME OF CONFIGURATIONS TE-4 AND TE-8 AT TAKEOFF CONDITION, STATIC, TEST POINTS 4009 AND 8009

FIGURE 4-133. RADIAL VARIATION OF THE MEAN VELOCITY (AXIAL COMPONENT) IN THE PLUME OF CONFIGURATIONS TE-4 AND TE-8 AT TAKEOFF CONDITION, FLIGHT, TEST POINTS 4010 AND 8010

Suppressor Stream Pressure Ratio, ${\rm P_{r}^{0}}$

FIGURE 4-134. VARIANCE IN THRUST LOSS COEFFICIENT DUE TO CHUTE BASE DRAG AS A FUNCTION OF EJECTOR LENGTH: TE-2 (L1) VS TE-10 (L2); HARDWALL EJECTOR AND PLUG

FIGURE 4-135. VARIANCE IN THRUST LOSS COEFFICIENT DUE TO CHUTE BASE DRAG AS A FUNCTION OF EJECTOR LENGTH: TE-3(L1) VS TE-7 (L2); TREATED EJECTOR-HARDWALL PLUG

FIGURE 4-136. VARIANCE THRUST LOSS COEFFICIENT DUE TO CHUTE BASE DRAG AS A FUNCTION OF EJECTOR LENGTH: TE-4 (L1) VS TE-8 (L2); TREATED EJECTOR AND PLUG

• In each figure, the extended length ejector's thrust loss is significantly below that of the nominal length ejector, indicating that it has better pumping/ventilating characteristics, which raise chute base pressure and lower base drag.

4.6 EFFECTIVENESS OF PLUG TREATMENT ON SHOCK NOISE ALLEVIATION

4.6.1 Background and Overview

Just prior to the time period during which this program's work scope was being formulated, NASA and industry became interested in furthering the work of Dr. Lucio Maestrello on shock noise reduction through the porous plug concept. Dr. Maestrello's earlier work on jet noise suppression, Reference 18 and 19, had shown that a plug nozzle with porous centerbody provided shock free flow over a wide range of pressure ratios. The elimination of "shock associated noise" and "screeching" was accomplished by equalization of pressure along the jet axis through use of the porous plug surface. The interior cavities of the centerbody were vented to the jet stream all along their lengths and acted as settling chambers whose pressures were nearly equal to ambient. The vented interior cavities tended to equalize the abrupt positive and negative pressure gradients of the jet stream.

NASA-Langley had issued a request for proposal and subsequent contract to further study this porous plug concept in a more detailed and parametric test phase. In the meantime, this contract's model system afforded an opportunity to explore a variation of the porous plug concept, i.e., use of a softwall plug surface, through acoustic treatment application, to attempt to accomplish the same purpose. Configuration TE-6 was thus developed to apply treatment to the centerbody of the inner flow plug nozzle. Figures 3-14 and 3-21 show the test model in sketch and photograph; treatment panels are constructed per Figure 3-31 and acoustically packed per Figure 3-32. In several respects, this model was significantly different than those of early work on the porous plug concept: a) it incorporated a dual flow coannular nozzle with outer stream mechanical suppressed, whereas, early porous plug studies evolved around single flow high radius ratio plug nozzles, and b) shock noise from this 20-chute suppressor was already substantially reduced below that of a reference conical nozzle without aid of additional porous or softwall plug techniques. The test objective for Configuration TE-6, in comparion to the similar hardwall plug test of Configuration TE-1 (per Figures 3-9 and 3-19), was to evaluate potential for still further reduction of shock-associated noise through further weakening of the shock structure.

Testing was performed along the same cycle line of engine operability as for other test configurations, per Table 3-1, however, interest was primarily in the higher pressure ratio points of takeoff and above. In summary, acoustic test results were not encouraging:

o Forward quadrant shock noise is nominally similar to that of the hardwall plug case. Individual angle comparisons show that a) at many angles, noise levels for TE-6 are the same as TE-1 and correlate equivalently to the shock strength parameter β, b) for static operation, TE-6 levels are slightly higher at several angles, and c) in simulated-flight, TE-6 levels are slightly lower at several angles.

- o EPNL is unchanged at T/O cycle and above, where shock noise is normally quite influential.
- o Peak jet noise in the aft quadrant increased several \triangle PNL for static and increased slightly for flight at high cycle conditions.

4.6.2 Detailed Acoustic Data Presentation

As softwall plug application was anticipated to impact only forward quadrant shock noise (assuming that aft quadrant shock noise is dominated by jet mixing noise, as it is for most nozzles) the first check, of necessity, would compare forward quadrant measured data as a function of shock strength parameter \emptyset . Harper-Bourne and Fisher, Reference 16, have developed theoretical and experimental guidelines for estimating the characteristics of broadband shock noise for jets operating above critical pressure ratio. They suggest that shock noise can be correlated on the basis of this shock strength parameter, \emptyset , defined as $\sqrt{M_j^2-1}$. This finding has been verified by numerous other studies; References 8, 9 and 20 through 24. Figures 4-137 and 4-138 compare the TE-6 and TE-1 data at $\theta_I = 50^\circ$ through 100° as a function of the \emptyset parameter, i.e., on 10 Log \emptyset eff, for static and simulated flight conditions, respectively. (\emptyset^{eff} is defined in Section 3.3.1.2 and is a mixed stream parameter.)

The data are only for those points operating at supercritical mixed pressure ratio, i.e., cutback cycle and above. Review of the two figures indicates:

- o For static, the softwall plug does not reduce forward quadrant noise any further than the hardwall plug, in fact, for angles of $\theta_{\rm I}$ = 60°, 80° and 100°, the softwall levels are slightly above those of the hardwall. At 70° and 90°, levels for the two configurations are identical.
- o The simulated-flight correlated data show similar minimal changes between soft and hard plug surfaces; small changes do occur, but show mixed conclusions. Softwall levels are the same as hardwall at $\theta_{\rm I}$ = 80°, 90° and 100°, slightly above the hardwall at 60° and slightly below at 50° and 70°.
- o The data correlate very uniformly against the shock strength parameter, showing \mathcal{P} dependency in the range of 2 to 2.7 for all data. Conical nozzle shock noise dominated data, as reference, normally correlate with a \mathcal{P} dependency near 4.0.

Further comparisons of the measured data are made in Figures 4-139 and 4-140 for jet noise dependency. Normalized PNL, static and flight, are correlated with the mixed jet velocity parameter, 10 Log (V_j^{eff}/a_{amb}) . These comparisons are at $\mathfrak{O}_I = 60^\circ$, 90°, 130° and peak angle. Results at forward angles compare similarly to those of Figures 4-137 and 4-138 in that levels are nominally the same for the two configurations. In the aft quadrant, $\mathfrak{O}_I = 130^\circ$ and peak value, static noise levels for the treated plug are substantially above the hardwall configuration, 2 to 2.5 dB for all cycle points. For simulated flight, however, the levels are similar at $\mathfrak{O}_I = 130^\circ$ and peak angle except at highest cycle points of takeoff and above. Here, again, the softwall plug is slightly noisier than the hardwall plug, by .5 to 1.5 dB, indicating aft quadrant jet mixing noise is somehow slightly amplified by use of the non-smooth plug surface.

FIGURE 4-137. CORRELATION OF FORWARD QUADRANT PNL DEPENDENCY ON SHOCK STRENGTH PARAMETER FOR CONFIGURATIONS TE-1 AND TE-6, STATIC

E 4-138. CORRELATION OF FORWARD QUADRANT PNL DEPENDENCY ON SHOCK STRENGTH PARAMETER FOR CONFIGURATIONS TE-1 AND TE-6, SIMULATED-FLIGHT

PERCEIVED NOISE LEVEL, PNL, PNdB

FIGURE 4-139. NORMALIZED PNL AS A FUNCTION OF JET VELOCITY PARAMETER FOR COMPARISONS OF CONFIGURATIONS TE-1 AND TE-6, STATIC, AT θ_T =60°, 90°, 130°, AND PEAK VALUE

FIGURE 4-140. NORMALIZED PNL AS A FUNCTION OF JET VELOCITY PARAMETER FOR COMPARISON OF CONFIGURATIONS TE-1 AND TE-6, SIMULATED-FLIGHT, AT $\theta_I = 60^{\circ}$, 90° , 130° , AND PEAK VALUE

If gauged on the "overview parameter" of EPNL (based on 2400' sideline PNL directivity at 400 ft/sec simulated-flight speed) per Figure 4-141, the TE-6 soft plug is seen no more effective than the TE-1 hard plug at the higher cycle conditions where shock noise would be of prime consideration. At lower cycle conditions, the soft plug is seen to lower EPNL very slightly.

Further detailed data at the takeoff cycle are presented in Figure 4-142 as OASPL and PNL directivity, static and flight, and in Figures 4- 143 and 4-144 as 1/3-OBSPL spectra at $\Theta_{\rm I}$ = 60°, 90° and 130° for static and simulatedflight, respectively. Directivity comparisons show mixed effectiveness in the forward quadrant and slight amplification of most aft quadrant and peak noise levels. The aft quadrant, $\Theta_{\rm I}$ = 130°, spectra are seen to be amplified over the entire frequency range for both static and flight whereas $\Theta_{\rm I}$ = 60° and 90° spectra are mixed.

Several post-analysis thoughts are offered relative to the data review:

- Early porous plug work of Dr. Maestrello indicated that a long plug was necessary to effect the porous plug concept's noise reduction; short plugs being ineffective.
- o The increase in aft quadrant noise levels is puzzling, no obvious explanation readily forthcoming, possible implication being the increased surface roughness of the plug treatment application. Concern is expressed as to whether this noise increase remains when the ejectors are applied, and if so, does it lend to less than full suppression potential being realized by the ejector/treatment systems. In another area of analysis, Section 4.4, addition of plug treatment to the already treated ejector/suppressor system was seen ineffective at high cycle operation; no further noise suppression was gained.

4.6.3 Diagnostic Data Review

Several laser velocimeter data comparisons are available for the TE-1 and TE-6 configurations at takeoff cycle conditions. For static test points 1009 and 6009, the normalized mean velocity data are presented in the following:

- o Figure 4-145 Axial traverses at centerline, 3.07"R and 4.22"R.
- o Figure 4-146 Slant traverses parallel to the 15° plug surface, initiated near the inner nozzle lip (3.19"R), at the center of the suppressor nozzle flow element (4.44"R), and near the tip of the suppressor nozzle (5.16"R).
- o Figure 4-147 Radial traverses just aft of the plug tip at \times/D_{eq} = 2.20.

For flight test points 1010 and 6010, the following comparisons are available:

- o Figure 4-148 Axial traverses at centerline, 3.17"R and 4.22"/4.44"R.
- o Figure 4-149 Radial traverses just aft of the plug tip at \times /D_{eq} = 2.20.

Review of the traces shows:

FIGURE 4-141. EPNL CORRELATION WITH JET VELOCITY PARAMETER FOR COMPARISON OF CONFIGURATIONS TE-1 AND TE-6, HARDWALL VS. TREATED PLUG

FIGURE 4-145. AXIAL VARIATION OF THE MEAN VELOCITY (AXIAL COMPONENT) IN THE PLUME OF CONFIGURATIONS TE-1 AND TE-6 AT TAKEOFF, STATIC, TEST POINTS 1009 AND 6009

FIGURE 4-146. COMPARISON OF AXIAL VARIATION OF THE MEAN VELOCITY DISTRIBUTION PARALLEL TO THE PLUG SURFACE IN THE PLUME OF CONFIGURATIONS TE-1 AND TE-6 AT TAKEOFF, STATIC, TEST POINTS 1009 AND 6009

FIGURE 4-147. RADIAL VARIATION OF THE MEAN VELOCITY (AXIAL COMPONENT) IN THE PLUME OF CONFIGURATIONS TE-1 AND TE-6 AT TAKEOFF CONDITION, STATIC, TEST POINTS 1009 AND 6009

• R^t=5.162"

TEST POINT --- 1010 -- 6010

1

۱

280

- Per Figure 4-146, the shock structure near the treated plug (bottom of figure) is indeed mitigated, as indicated by the lower level of mean velocity without variations in level due to passage through shock cells. However, the shock structure in the outer and center section of the jet (top and center of figure) is relatively unaffected. This is a strong shock structure of high-velocity-gradient content and controls the generated shock related noise.
- o Figure 4-145 axial traces indicate similarly that the center of the jet (bottom of figure) is slightly lower in mean velocity with the treated plug due to shock structure weakening and maintains slightly lower velocity for a long distance aft of the plug tip. The main jet flow (top and center of figure) is relatively unaffected, however, of slightly higher peak velocity for the TE-6 configuration, possibly accounting for the slight increase in aft quadrant peak noise levels.
- Simulated-flight, Figure 4-148 (bottom), again shows slight decrease in mean velocity aft of the plug tip for the center of the jet; the outer jet plumes (top and center of figure) are similar in structure except for a slight dip in the trace for TE-6/6010 at the outer radius (top of figure). This, however, is due to the trace being acquired at a slightly greater radius; 4.44" relative to 4.22" of trace TE-1/1010.
- o Radial traverses of Figures 4-147 and 4-149 near the plug tip each show slightly higher peak velocity for the soft plug configuration, again implicating the slightly higher aft quadrant jet noise.

Review of the shadowgraph data in CDR Volume II for test points 1009 and 6009 also show no discernable change in major shock structure in the axial region from suppressor exit to plug tip.

4.7 AERODYNAMIC PERFORMANCE EVALUATION FROM CHUTE BASE PRESSURE MEASUREMENTS

4.7.1 Thrust Loss Estimates Based on Chute Base Pressure Measurements

In order to assess the influence of ejector application to primary nozzle suppressor base pressure and hence the nozzle thrust coefficient, (8) static pressure taps were applied within the chute base regions. These are defined schematically and pictorially in Section 3.2.3's Figures 3-34 and 3-35, respectively. The measurements acquired from these instrumentation items during acoustic tests, summarized in CDR Volume I's Tables 6-1 through 6-10, were then used for estimation of a representative average pressure reading within the projected base area of the 20 chutes. From this, the change in the outer nozzle thrust coefficient, due to chute base drag, was calculated. In this section, the method employed to calculate the thrust loss is described and thrust loss data calculated for each test configuration are presented, both for the static and simulated-flight test conditions.

4.7.2 Thrust Loss Calculation Procedure

Locations of the (8) static pressure taps in the chute base region of the 20-chute suppressor nozzle are defined in Figure 4-150. The projected base area of each of the chutes is suitably divided into (8) elemental areas, A^i , each associated with a static pressure tap. The static pressure data, P_S^i , measured by each of the taps for a given nozzle flow condition, is assumed constant over its associated area. An area weighted chute average base pressure, PBAV, is calculated from the (8) static pressure measurements as follows:

FIGURE 4-150. CHUTE BASE AREA DISTRIBUTION ASSOCIATED WITH BASE PRESSURE INSTRUMENTATION

or

PBAV = .1176 PS01+.1257 PS02+.1260 PS03+.1258 PS04+ .1257 PS05+.1256 PS06+.1257 PS07+.1279 PS08, psia

The base drag, FDCHUT, associated with each chute, is then calculated as follows:

FDCHUT = (AVPT20-PBAV)≤A¹

FDCHUT = (AVPT20-PBAV) .8817 , Lb.

The total base drag, FD, associated with the base area of the 20 chutes is calculated by:

FD = 20 FDCHUT . Lb.

The ideal thrust, FSUPR, of the outer stream nozzle is calculated from:

$$FSUPR = W^{O}V^{O}/g$$
, Lb.

where W^O is the weight flow rate through the suppressor, V^O is the fully expanded jet velocity, and g is gravitational constant. The change in thrust coefficient, DLCCFG or ΔC_{fg} , due to the chute base drag is finally computed as:

DLCCFG = (FD/FSUPR)X100 , %

4.7.3 Thrust Loss Calculation Data Presentation

The above calculated values: PBAV, FDCHUT, FD, FSUPR and DLCCFG are summarized in CDR Volume I's Tables 6-1 through 6-10 for the ten test Configurations TE-1 through TE-10, respectively. The thrust loss parameter, ΔC_{fg} , is presented graphically in Figures 4-151 through 4-160 for Configurations TE-1 through TE-10, respectively; plotted as a function of suppressor stream pressure ratio, P_r° . Each figure has separate static (top), simulated-flight (center), and composite static/simulated-flight (bottom) data presentations. For static and simulated-flight plots, distinction is noted for a) cycle line of operation (see Section 3.3.1 for explanation), b) low T_{o}^{\circ} = 810 to 870^{\circ}R, and c) $V_{a/c} = 200$ and 400 ft/sec. For the composite plots of static and simulated-flight, only the data for cycle line of operation are overlain.
Thrust Loss Due to Chute Base Drag, ΔC_{fg} , %

Thrust Loss Due to Chute Base Drag, Δ Cfg, %

Thrust Loss Due to Chute Base Drag, $\Delta \text{Cfg},\ \text{\texttt{x}}$

FIGURE 4-154. THRUST LOSS COEFFICIENT DUE TO CHUTE BASE DRAG OF CONFIGURATION TE-4

287

C-4

FIGURE 4-156. THRUST LOSS COEFFICIENT DUE TO CHUTE BASE DRAG OF CONFIGURATION TE-6 289

FIGURE 4-157. THRUST LOSS COEFFICIENT DUE TO CHUTE BASE DRAG OF CONFIGURATION TE-7

FIGURE 4-158. THRUST LOSS COEFFICIENT DUE TO CHUTE BASE DRAG OF CONFIGURATION TE-8

5.0 EJECTOR TREATMENT THEORY/EXPERIMENT CORRELATION

This section presents and discusses the theoretical modeling and correlation of predictions with measured data for the effect of the treated shroud upon farfield noise.

5.1 OBJECTIVE

The purpose of this study is to establish a method for predicting the suppression to be expected from a treated shroud when used in conjunction with the type of dual-flow, multi-element suppressor nozzle in this program. Basic parameters include treatment impedance, length, and placement (i.e., shroud-only versus shroud-and-plug surfaces); and, nozzle exit temperature, pressure, and velocity. Measured data from the experimental program are used to establish the validity of the method.

5.2 PREDICTION METHOD FOR THE EFFECT OF THE SHROUD, HARDWALL AND TREATED

The method includes prediction of <u>source-location</u> (to enable prediction of the effect of treatment on that portion of noise generated within the treated section of the shroud), <u>duct-propagation effects</u> (to estimate the treatment suppression in terms of the modal-energy-distribution within the shroud), and treatment impedance (under the conditions of temperature, pressure, and flow velocities within the shroud). The method is intended to be suitable for engineering selection of design values for the basic parameters of concern.

5.2.1 Effect of Shroud on Farfield Radiation

5.2.1.1 Original M*S Method

The number of variables and complexity of the problem impose a need to use a combination of both engineering-analysis and empirical correlation of data. That was done in developing the original M*S method, documented in Reference 25, which includes correlation of the effect of basic parameters on source-generation (level versus frequency) and source-location (level versus axial distance from the nozzle in each frequency band). The original method assumed a model for duct-propagation effects which provided a reasonable first approximation to measured suppression for single-layer resonator treatment and farfield radiation patterns. The correlation of this method with prior data, both hardwall and treated, is documented together with a detailed description of the method in Reference 25.

The following summarizes that portion of the original method concerned with determining the suppression by the treatment and the farfield directivity of that suppression. The data on the effect of adding treatment were correlated in terms of reduction of sound power level and one-third-octave band SPL spectra, and of farfield directivity. The suppression expected from the treatment was predicted analytically, using the source-location information developed in Reference 25, by means of ray acoustics, taking into account the absorption of energy for each interaction with the treatment. The analysis assumes that the ejector does not perturb the noise generation.

The acoustic ray model used in the analysis is illustrated in Figure 5-1. ; consists of a line of 25 equally spaced sources, located axially from the izzle exit station to 2.5 times the peak location downstream of the nozzle it and located radially at the periphery of the outermost element. In a e-third-octave band, a range in relative levels from the peak to 8 dB below ie peak is covered. Angles of incidence from 10° to 80° are used in 10° crements, based on an omnidirectional source distribution, and the ductions in PWL are determined for the upper and lower band limits and the idpoint frequency of all one-third-octave bands. To determine the total PWL eduction, the number of reflections of the acoustic ray associated with an igle of incidence and source location are calculated based on the ejector ength and diameter. The power reduction for each reflection is determined and nen summed over all reflections. This is repeated for each source location, nd, taking into account the relative level of each source, the reduction is ummed over all sources. The reduction is summed over each angle of incidence) determine the total power reduction for each frequency. By antilogarithically averaging the reduction at the lower limiting, midpoint, and upper imiting frequencies, the reduction over a one-third-octave band is estimated.

To determine the reduction due to each reflection within the ejector, the reatment resistance and reactance must be known at the lower limiting, idpoint, and upper limiting frequencies of a given one-third-octave band. ne reduction in sound power level (PWL) is determined using the following two quations:

$$\alpha_{a} = \frac{4R \cos (\theta_{i})}{(1+R \cos \theta_{i})^{2} + (X \cos \theta_{i})^{2}}$$
(1)

where: α_a = absorption coefficient

ORIGINAL PAGE IS

R = normalized specific resistance
X = normalized specific reactance

 θ_i = incidence angle, as defined on Figure 5-1

 $\Delta PWL = -10 \log_{10} (1 - \alpha_a), dB$ (2)

n the case of SDOF treatment, a routine to determine the resistance and eactance is included in the original program. For other treatment materials, he resistance and reactance values can be input independently.

To convert this reduction in PWL to a reduction in SPL in the farfield, he directivity must be known. Figure 5-2 shows an example of the effect of a reated ejector. The change in SPL relative to the hardwall ejector is reatest and approximately constant where the hardwall ejector reduction in PL is smallest (70° to 120°), Reference 25. At other angles, the change in PL due to treatment is smaller but constant with angle. Data from references isted in Reference 25 have been used to develop the directivity correlation hown in Figure 5-2 and typical data are plotted on the figure to show epresentative correlation.

For angles of $\theta_{\rm C}$ - 50° to $\theta_{\rm C}$ ($\theta_{\rm C}$ is the critical refraction angle per eference 25) \triangle SPL = 1.2 x \triangle PWL. For all other angles, \triangle SPL = 0.6 x \triangle PWL.

FIGURE 5-1 ACOUSTIC RAY ANALYSIS FOR TREATED EJECTOR

FIGURE 5-2 DIRECTIVITY CORRELATION FOR EJECTOR TREATMENT EFFECTS

ţ

5.2.1.2 Improvements Incorporated in this Program

The original M*S method had a simplified model for duct propagation and was limited to treatment of the shroud surface only, not including the plug.

Since the original formulation, an improved analytical model has been developed for this program, based on References 26, 27, and 28 to handle annular geometry and to estimate the modal weighting function of all modes that can propagate. This improved model enables a better estimate of the energy attenuation of the treatment, because of its improved estimate of modal energy density and the effect of airflow Mach number.

The model incorporates a rectangular duct approximation to annular geometry which provides a very close approximation to annular duct eigenvalues when the annular hub-to-tip ratio is in the range of approximately 0.5 to 1.0. These eigenvalues determine the mode indices which then enable estimation of the cut-on-ratio parameter developed by Rice and Sawdy, Reference 29. The development of the rectangular duct approximation is based upon the coordinant systems defined in Figure 5-3. In an annular duct of inner radius r_1 and the outer radius r_2 , the sound propagating in the duct is represented by:

$$p(r,\theta,x,t) = \sum_{mn} \left\{ A_{mn} J_{m}(k_{r}^{mn} \cdot r) + B_{mn} Y_{m}(k_{r}^{mn} \cdot r) \right\} e^{i(\omega t - k_{x}^{mn} \cdot x)}$$
(3)

where $J_m()$ and Ym() are Bessel functions of the first and second kinds of the integer order m respectively, and k_r^{mn} is the nth radial mode of the mth circumferential order (spinning mode of m diametral nodes). In a duct with uniform flow at Mach, M_0 , the propagation wave number k_x^{mn} is related to the radial eigenvalue k_r^{mn} through the dispersion relationship:

$$k_{x}^{mn} = \frac{-M_{o}k + \sqrt{k^{2} - (1 - M_{o}^{2}) (k_{r}^{mn})^{2}}}{(1 - M_{o}^{2})}$$
(4)

where $k = 2\pi f/c$, c = speed of sound, and f = frequency.

The cutoff ratio of the (mn) mode is defined as $k/\{R\ell(k_r^{mn})\sqrt{(1-M_o^2)}\}$ where $R\ell(k_r^{mn})$ represents the real part of k^{mn} . For the mode to propagate, the cut-off ratio must be greater than 1.

FIGURE 5-3 RECTANGULAR DUCT APPROXIMATION TO AN ANNULAR DUCT

Now, in a rectangular duct of height H = (r_2-r_1) and width $2 \pi \bar{r}$, where $\bar{r} = \frac{(r_1+r_2)}{2}$, the pressure field can be represented by:

$$p(y,z,x,t) = \sum_{mn} \{A_n \cos(k_y^n \cdot y) + B_n \sin(k_y^n \cdot y) + C_m \cos(k_z^m \cdot z) + D_m \sin(k_z^m \cdot z)\}e^{i(\omega t - k_x^m \cdot x)}$$
(5)

the axial wave number, κ_x^{mn} , is related to the transverse eigenvalues, κ_y^n and κ_z^m as follows:

$$k_{x}^{mn} = \frac{-M_{0}k + \sqrt{k^{2} - (1 - M_{0}^{2})(K^{mn})^{2}}}{1 - M_{0}^{2}}$$
(6)
where: $(K^{nm})^{2} = (k_{y}^{n})^{2} + (K_{z}^{m})^{2}$
 $k_{y}^{n} = \frac{\pi n}{H}$
 $k_{z}^{m} = \frac{m}{\overline{r}}$
 $n = radial mode index = 0, 1, 2, ..., n$
 $m = circumferential mode index = 0, 1, 2, ..., m$

Based on the geometry defined in Figure 5-3, these equations simplify to:

$$K^{mn}H = \sqrt{(\pi n)^2 + \left[2\left(\frac{1-HTR}{1+HTR}\right)m\right]^2}$$
(7)

and the "Cut-off-Ratio" as defined in Reference 29 becomes, for the hardwall:

C.O.R. =
$$\frac{k}{\kappa^{mn}\sqrt{1-M_0^2}} = \frac{2\pi\eta_y}{\kappa^{mn}H\sqrt{1-M_0^2}} = \left(\sqrt{\left[\left(\frac{n}{2\eta_y}\right)^2 + \left(\frac{m}{\eta_z}\right)^2\right]\left(1-M_0^2\right)}\right)^{-1}$$
 (8)

where: $n_y = Hf/c$ and $n_z = 2\pi \overline{r}f/c$ f = sound frequency, Hz c = speed of sound

This specifies the cut-off-ratio in terms of geometry and the modal indices, m and n.

The degree of agreement for the rectangular versus exact solution is summarized in Table 5-1: for the hub-tip-ratio, HTR, equal to or greater than 0.5 the agreement is very good. Nevertheless, even at lower values of the ratio, this method is an improvement over the original.

In the modification to the M*S program, this approach was implemented to allow calculation of treatment either on the inner wall of the shroud, only, as in the original M*S, or on both the shroud and the plug. The geometry of the ray-acoustics model is given in Figure 5-4.

Equation (8) is used to determine the number of propagating modes. Propagation occurs only for C.O.R. > 1. Then the maximum number of modes are determined (from Equation (8)) by:

for n = 0
$$m_{max} = n_z \sqrt{1 - M_o^2}$$
 (9)

for m = 0
$$n_{max} = 2n_y / \sqrt{1 - M_0^2}$$
 (10)

Also, the ray angle is closely approximated by (Reference 30):

$$\Theta = \sin^{-1}(1/C.0.R.)$$
 (11)

A modal-weighting-function was derived by counting the modes in each 10° increment from 0° through 90° and dividing by the number of modes that would have been in the increment if the distribution had been uniform (i.e., total number divided by nine). This function was used to modify the original assumption of an omnidirectional source; otherwise, the same approach was used as in the original analysis, with the geometric model of Figure 5-4 rather than 5-1, and with the flow effects added to the propagation model.

The algorithm incorporating these improvements is included in Appendix A.

5.2.2 Acoustic Treatment Impedance Prediction

A complete description of the experimental and theoretical work carried out to define the designs of the acoustic treatment used in the models tested in this program, is included in the CDR Volume II Appendix B: it is the GE Report TM 84-395, "Acoustic Treatment Design for the AST Shroud (NASA Contract Number NAS3-23275)" by A.A. Syed. This document includes chapters on: prediction methods for bulk absorber impedance; measured impedance data for the Astroquartz material used in the models; in-situ measurements of the propagation constant of the Astroquartz material in a duct with airflow; and, design of the AST shroud treatment.

Impedance prediction was done by the Delany and Bazley method (Reference 31). Extensive measurements were made, and documented in Reference 4, of the Astroquartz D.C. flow resistance and Normal Impedance and compared with predictions from two methods: a "multi-degree-of-freedom method", and the Delaney and Bazley method. Based on the overall agreement for a large range of test parameters, the Delaney and Bazley method was adopted for this program.

COMPARISON OF THE PROPAGATING WAVE NUMBERS FOR ANNULAR SOLUTION AND RECTANGULAR DUCT APPROXIMATION

					HTR		
MOD	AL	EXA	CT SOLUTIO	0.75	Al 0,25	PROXIMATI	ON 0.75
1101							
m	n	(k _r mn	. н)		(Kmn	•	H)
0	1	3.337	3.195	3.15	3.142	3.142	3.142
	2	6.403	6.321	6.287	6.283	6.283	6.283
1	0	1.237	0.68	0.287	1.2	0.666	0.286
	1	3.758	3.285	3.167	3.36	3.211	3.154
	2	6.607	6.355	6.295	6.397	6.318	6.290
2	0	2.257	1.345	0.575	2.4	1.333	0.571
	1	4.77	3.535	3.205	3.95	3.413	3.193
	2	7.222	6.475	6.315	6.726	6.423	6.309
16	0	13.552	9.035	4.475	19.2	10.66	4.57
	1	17.45	11.63	5.7	19.45	11.12	5.54

-

$$H = D_0 \times \frac{(1-HTR)}{NST}$$

$$L = H \times Tan \Phi$$

$$HTR = Hub-Tip-Ratio = D_I/D_0$$

$$NST = Number of Sides Treated$$

$$= 1 for Outer Wall Treated$$

$$= 2 for Both Sides Treated$$

FIGURE 5-4 GEOMETRY OF THE IMPROVED RAY-ACOUSTICS MODEL

The in-situ measurements of the effect of grazing flow indicated there may be some influence but no significant impact on the acoustic properties in the first 1.27cm.

The design selection was made with the intent to achieve acoustic resistance of approximately 1(c and reactance as close to zero as possible over the frequency range of interest for the temperature and pressure of the test conditions. The analytical method described in Reference 4 was used to extrapolate from lab to model-test conditions; related experience with other treatment design applications at elevated temperature and pressure, using linear materials (resistance dependent upon air viscosity), has indirectly confirmed the validity of this analytical method.

Because the test conditions depended upon the simulated engine power settings, two designs were selected to achieve or bracket the intended values of acoustic impedance. In both cases, the thickness of the model treatment panel was 1.016 cm (0.4 inch); the first design was an Astroquartz density of 0.0160 gm/cc (1.00 lb/cu.ft.) and the second was 0.0401 gm/cc (2.50 lb/cu.ft.). The laboratory values of D.C. flow resistance for these two designs were 12.5 and 41.0 Rayls (cgs), respectively.

Evaluation of the measured temperatures and pressures during the model testing indicated that a range of conditions should be considered, including those listed in Table 5-2. The resulting impedance predictions for the two designs are in Tables 5-3 and 5-4. Design #1 (with a laboratory D.C. flow resistance of 41.0 Rayls (cgs) generally meets the design intent ($R/eC \approx 1.0$, $X/eC \approx 0.$) more uniformly than Design #2 (with a flow resistance of 12.5 Rayls). The effect of increasing temperature and pressure is seen to be relatively small, with Design #1 being less sensitive than Design #2.

5.3 SUMMARY OF MEASURED DATA AND COMPARISON WITH PREDICTION

Suppression data are included in Appendix C for all cases of interest, including hardwall shroud effects relative to the unshrouded exhaust system, and treatment effects relative to the hardwall shrouds (of both lengths). These data include power settings of "cutback", "intermediate", and "take-off".

For the theory-experiment comparison, data for 1/3-octave band PWL suppression are summarized in Tables 5-5 through 5-7 for "static" and 5-8 through 5-10 for "flight" conditions. Predicted suppression data are also shown in these tables, side-by-side with the measured data. The predictions were made with the revised M*S method, including the improved duct propagation analytical model. Predictions by the original version of the M*S where applicable, outer-wall treatment only, showed that there was essentially no difference between the original and revised model. The revised model is necessary, of course, to be able to predict the effect of treating the plug (both sides treated).

The measured data often shows positive or negative "suppression" at frequencies below 250 Hz, amounting to between 1/2 to 1 dB; this is probably an implicit indication of the data repeatability, and could be interpreted as a "tare" to be applied to the suppression in the frequency bands in which suppression is actually occurring.

MODEL TEST CONDITIONS FOR IMPEDANCE PREDICTION

	•	TEST CON	DITION
SHROUD LENGTH	POWER SETTING	TEMPERATURE (°C)	PRESSURE (Atm)
Short	Cutback Takeoff	340. 427.	2.14 2.34
Long	Cutback	427.	2.34
	Takoeff	571.	3.0
	1		

•

IMPEDANCE PREDICTIONS*, DESIGN #1 (41.0 RAYLS)

TEMPERATURE	3400	<u>рс</u>	4270	C	571	<u>oC</u>
PRESSURE	2.14	ATM	2.34	ATM	3.00	ATM
TEMPERATURE PRESSURE FREQUENCY (Hz) 50 63 80 100 125 160 200 250 315 400 500	340 2.14 R/Cc 0 0.11 0.38 0.5/ 0.69 0.77 0.82 0.86 0.88 0.90 0.93	РС ATM X/Сс -19.21 -14.85 -11.67 - 9.09 - 7.01 - 5.50 - 4.30 - 3.27 - 2.53 - 1.94 - 1.45 - 1.04	427° 2.34 R/ℓ⊂ 0 0.03 0.35 0.57 0.70 0.79 0.86 0.89 0.92 0.94 0.97	C ATM X/ C -20.75 -16.04 -12.61 - 9.81 -7.57 -5.94 -4.65 -3.53 -2.74 -2.11 -1.59 -1.59	571 3.00 R/&C 0 0 0.23 0.48 0.64 0.75 0.83 0.87 0.90 0.92 0.95	о <u>с</u> ATM -22.94 -17.74 -13.94 -10.85 - 8.37 - 6.57 - 5.15 - 3.92 - 3.05 - 2.36 - 1.78 - 1.31
630 800 1000 1250 1600 2000 2500 3150 4000 5000 6300 8000 10000	0.93 0.97 1.03 1.14 1.29 1.44 1.40 1.16 1.06 1.17 1.10 1.10 1.06	$\begin{array}{c} -1.43 \\ -1.04 \\ -0.73 \\ -0.46 \\ -0.25 \\ -0.15 \\ -0.20 \\ -0.40 \\ -0.41 \\ -0.22 \\ -0.20 \\ -0.21 \\ -0.14 \\ -0.13 \end{array}$	0.97 1.01 1.07 1.16 1.30 1.44 1.43 1.23 1.08 1.15 1.15 1.08 1.08 1.09	-1.15 -0.82 -0.55 -0.33 -0.21 -0.22 -0.39 -0.44 -0.28 -0.15 -0.22 -0.13 -0.15	0.92 0.95 0.98 1.03 1.11 1.23 1.37 1.47 1.33 1.12 1.10 1.19 1.08 1.12	$\begin{array}{c} -1.31 \\ -0.95 \\ -0.65 \\ -0.40 \\ -0.24 \\ -0.19 \\ -0.31 \\ -0.44 \\ -0.36 \\ -0.17 \\ -0.19 \\ -0.18 \\ -0.13 \end{array}$

*For Full Scale Frequencies: Calculated for Scale Model Thickness

306

- - - -

IMPEDANCE PREDICTIONS*, DESIGN #2 (12.5 RAYLS)

TEMPERATURE	340	oC	4279	20	571	<u>٥</u>
PRESSURE	2.14	ATM	2.34	ATM	3.00	D ATM
PRESSURE FREQUENCY (Hz) 50 63 80 100 125 160	0 2.14 R/& 0.21 0.40 0.51 0.57 0.59	ATM X/ C -17.67 -13.75 -10.89 - 8.56 - 6.68 - 5.31	2.34 <u>R/ℓ</u> 0 0.07 0.30 0.45 0.54 0.58	<u>АТМ</u> -19.02 -14.79 -11.70 - 9.18 - 7.16 - 5.68	57 3.00 R/Pح 0 0.23 0.41 0.52 0.57	-21.00 -16.32 -12.90 -10.12 - 7.89 - 6.26
200 250 315 400 500 630 800 1000 1250 1600 2000 2500 3150 4000 5000 6300 8000 10000	0.59 0.57 0.54 0.51 0.48 0.47 0.46 0.47 0.51 0.61 0.86 1.55 1.58 0.80 0.82 1.38 0.81 1.11	$\begin{array}{r} - 4.22 \\ - 3.26 \\ - 2.57 \\ - 2.01 \\ - 1.53 \\ - 1.12 \\ - 0.79 \\ - 0.48 \\ - 0.18 \\ 0.11 \\ 0.40 \\ 0.43 \\ - 0.55 \\ - 0.41 \\ 0.17 \\ - 0.24 \\ - 0.17 \\ - 0.26 \end{array}$	0.58 0.57 0.55 0.53 0.50 0.48 0.48 0.48 0.48 0.52 0.60 0.80 1.35 1.74 0.94 0.76 1.39 0.84 1.27	$\begin{array}{r} - 4.51 \\ - 3.48 \\ - 2.75 \\ - 2.15 \\ - 1.65 \\ - 1.22 \\ - 0.87 \\ - 0.56 \\ - 0.25 \\ 0.02 \\ 0.31 \\ 0.46 \\ - 0.30 \\ - 0.52 \\ 0.02 \\ 0.05 \\ - 0.18 \\ - 0.05 \end{array}$	0.59 0.58 0.56 0.54 0.51 0.49 0.47 0.47 0.47 0.49 0.55 0.69 1.07 1.74 1.26 0.73 1.08 1.10 1.00	$\begin{array}{r} - 0.20 \\ - 4.97 \\ - 3.84 \\ - 3.04 \\ - 2.39 \\ - 1.85 \\ - 1.38 \\ - 1.01 \\ - 0.68 \\ - 0.37 \\ - 0.09 \\ 0.19 \\ 0.47 \\ 0.16 \\ - 0.62 \\ - 0.21 \\ 0.26 \\ - 0.36 \\ 0.17 \end{array}$

*For Full Scale Frequencies: Calculated for Scale Model Thickness

•

STATIC	
POWER,	
CUTBACK	
5-5	
TABLI	

ONE-THIRD OCTAVE BAND POWER LEVEL SUPPRESSION, dB

	핀	م	00	00	00	0	0.2	0.5		-2	2.2	3.0	3.6	4.1	4.8	5.8	6.4	6.9	6.9	7.6	8°8	9.2	9.3
ENT #2	BO'	Σ	0.8 0.6	9°0	0.4	0.3	0.5	0,3	0.5	0.8		1.5	2.1	2.4	3.2	3.6	3.9	3.8	3.2	2.2	0.5	*	*
IROUD FREATM	ER	م	00	00	00	0	0.1	0.4	0.8	1.2	1. 8	2.5	3.1	3.7	4.4	5.4	6.2	6.8	6.5	7.1	8 . 5	8.7	8.8
LONG SF	LNO	Σ	0.8 0.7	0.7	0.5	0.4	0.8	0.6	0.7	1.0		1.8	2.3	2.4	2.9	2.7	2.1	0.8	0.8	*	*	*	*
	WALL	م	0.5 0.5	6°0	2.2	3.2	4.3	4.8	5.2	6.0	6.3	7.5	6.6	6.7	6.5	6.0	5.4	4.7	3.2	1.2	-2.5	-3.2	-3.2
	HARD	Σ	-0.8 -1.0	6. 0- 0-	-0.4	-0.4	0	1.3	3.0	4.9	6.0	7.4	6.8	6.2	5.2	4.6	4.5	4.4	4.4	*	*	*	*
		ما	00	00	00	0.1	0.1	0.3	0.7	1.0	1.4	1.9	2.4	2.9	4.4	3.9	4.8	4.8	5.1	5.4	5.9	6.4	6.5
ENT #2	BOT	Σ	0.2	-0.1	-0.2	-0.2	-0.1	-0.2	-0.3	-0.5	-0.2	0.6	1.3	1.5	1.7	1.9	1.8	1.4	0.1	-1.4	*	*	*
TREATM	ER	<u>م</u>	00	00	50	0.1	0	0.3	0.6	0.8	1.2	1.7	2.1	2.7	3 . 3	3.7	4.7	4.7	4.8	5.2	5.8	6.2	6.4
	OUT	Σ	-0.3	9.0- 0-	0 - - -	-0-7	-0.3	-0-5	-0.8	-1.0	-0.7	-0.3	0.1	0.4	0.7	1.0	l. l	0.5	-0.8	*	*	*	*
SHROUD	S2+	ما	00	00		0.1	0.1	0.2	1.0	1.4	1.7	2.5	2.9	3.5	4.l	4.2	4.7	4.7	5.4	5.7	5.9	6.6	6.6
SHORT T#1	BOTH,	Σ	0.4	0		-0.5	-0.4	-0.7	-0.8	-0.6	0.2	0.9	l.l	1.2	0.9	0.4	-0.2	-1.]	-1.4	*	*	*	*
REATMEN	S1+	م	00	0	50). 0.1	0.1	0.4	0.9	1.4	1.8	2.4	2.9	3.5	4.1	4.2	4.8	4.7	5.4	5.8	5.9	6.6	6.6
	BOTH,	Σ	0.2 0.1	0	- ~	-0-	0	-0.2	-0.4	-0.4	-0.1	0.4	0.8	1.2	1.3	1.5	1.7	1.7	1.4	1.3	*	*	*
	MALL	p**	0.5	6.0	- ° 4 °	3.1	4.3	4.7	5.1	5.9	6.1	6.3	6.5	6.5	6.3	5.9	5.3	4.5	3.1	1.0	-2.6	-3.3	-3.3
	HARE	M**	4.0	1.5			1.8	2.7	4.2	6.1	7.3	8.2	7.4	6.6	6.0	6.1	5.9	6.4	*	*	*	*	*
	1/3 0B	(Hz)	63 80	001	125 160	200	250	315	400	500	630	800	1000	1250	1600	2000	2500	3150	4000	5000	6300	8000	10000

NT #2	BOTH	⊾ ع	0.8 0.7 0.7 0.8 0.9 0.1 0.8 0.3 0.8 0.3 0.8 0.3 1.0 0.1 1.0 0.8 0.1 1.0 0.1 1.0 0.1 1.0	1.2 1.6 2.1 2 1.6 2.1 2 1.6 2.1 2 2.9 3.2 3.6 3.2 3.6 3.2 3.6 3.2 3.6 4.9 4.9 4.9 4.9 4.9 6.6 7.9 6.6
LONG SHROUD TREATME	OUTER	۵ ۳	0.8 0.9 0.9 0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.5 0.5 0.5 0.1 0.5 0.5 0.5 0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	
	HARDWALL	۵ ۳	-1.6 0.2 -2.1 0.6 -2.1 1.0 -2.1 1.0 -0.8 2.4 -1.6 2.4 -0.8 3.3 -0.8 4.0 -0.8 5.0 -1.6 5.0 5.0 -1.6 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	3.1 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
NT #2	BOTH	۵. ع	0.6 0.5 0.4 0.1 0.3 0.1 0.3 0.1 0.1 0.3 0.1 0.1 0.1 0.1 0.1	0 0.5 0.5 0.5 0.5 1.4 0.5 1.3 0.5 1.3 0.5 1.3 1.3 1.4 1.3 1.3 1.3 1.3 1.4 1.3 1.3 1.3 1.4 1.6 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3
TREATME	OUTER	_ ∞	-0.2 -0.3 -0.3 -0.5 -0.1 -0.1 0 -0.1 0 -0.1 0 -0.1 0 -0.1 0 -0.1 0 -0.1 0 -0.1 0 -0.1 0 -0.1 0 -0.1 0 -0.1 0 0 -0.3 00 0 -0.3 0 0 -0.3 00 0 -0.3 00 -0.3 0 0 -0.3 0 0 -0.3 0 0 -0.3 0 0 -0.3 0 0 -0.3 0 0 -0.0 0 0 -0.0 0 -0.0 0 -0.3 0 0 -0.0 0 -0.0 0 -0.0 0 -0.0 0 0 -0.0 0 0 -0.0 0 0 -0.0 0 0 -0.0 0 0 -0.0 0 0 -0.0 0 0 -0.0 0 0 -0.3 0 0 -0.3 0 0 -0.3 0 0 -0.3 0 0 -0.3 0 0 -0.3 0 0 -0.0 0 0 -0 0 0 0 -0 0 0 0 0 0 0 0	-0.3 0.1 0.1 0.5
SHORT SHROUD VT #1	BOTH, S2+	Δ	0.7 0.5 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	-0.5 1.4 0.3 2.0 0.3 2.0 0.3 2.0 0.2 2.6 1.6 3.0 2.1 3.0
TREATMEN	BOTH, S1+	d ₩	0.6 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	-0.1 1.4 0.4 1.6 0.6 1.6 0.6 2.0 1.5 2.6 1.3 3.0 1.3 3.0 1.3 3.0 1.3 3.0 1.4 + 4.1 3.1 1.5 2.6 1.4 + 4.1 3.0 1.7 3.0 1.7 3.0 1.4 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6
	HARDWALL	M** P**	0.2 0.5 0.5 0.5 0.3 0.5 0.3 0.5 1.6 0.3 3.2 5.4 5.4	5.1 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5
	1/3 OB	(Hz)	63 80 100 125 200 315 200 500	630 800 1000 1250 1250 1000 6300 6300 10000 10000

ONE-THIRD OCTAVE BAND POWER LEVEL SUPPRESSION, dB

TABLE 5-7 TAKEOFF POWER, STATIC

ONE-THIRD OCTAVE BAND POWER LEVEL SUPPRESSION, dB

	Ŧ	-	00	0	0	0	0	0	0.2	0.4	0.6	1.0	1.4	1.6	2.1	2.2	2.3	2.8	2.8	3.4	3.4	3.7	3.9	3.9
T #2	BOT	Σ	0.6 0.6	0.7	0.6	0.6	0.5	0.6	0.5	0.7	0.5	0.7		1.3	1.9	2.3	2.6	2.9	2.6	1.4	-0.4	*	*	*
ROUD REATMEN	ж.	۵.	00	0	0	0	0	0	0.2	0.3	0.5	0.8	1.2	1.4	1.9	2.0	2.2	2.7	2.8	2.9	3.3	3.7	4.8	3.8
ONG SHI	OUTI	Σ	0.4	0.5	0.7	0.6	0.6	0.5	0.6	0.5	0.7	1.0	1.4	1.5	1.9	2.1	1.9	1.4	0	-0.8	*	*	*	*
	ALL	٩	0.1	0.3	0.6	0.8	1.4	2.0	2.7	3.5	4.1	4.4	4.7	4.6	4.4	4.4	4.2	3 . 9	3.5	2.8	1.6	-0.5	-4.2	-4.9
	HARDW	Σ		-2.2	-2.7	-2.9	-2.9	-2.6	-2.3	-1.3	-0.8	-0.1	1.2	2.3	3.1	а. З	2.8	2.4	2.5	2.9	*	*	*	*
I I	1	I						-		.2	°.	.6	6.	<u> </u>	.2	<u>،</u>	. 0	.7	0.	0.		e.	ر .	4.
	픤	₽	00	0	0	0	0	0	0	0	0	0	0			-		-	2	2	~	2	2	2
ENT #2	BO	Σ	0.8	1.2	1.6	1.5	1.4	- -	1.5	1.2	1.2	1.6	2.2	2.5	2.7	2.4	1.8	1.3	0.9	0.2	*	*	*	*
TREATM	~	م	00	0	0	0	0	0	0.1	0.2	0.4	0.5	0.8	0.	[.]	1.4	1.5	1.6	2.0	2.0	2.1	2.3	2.2	2.3
	OUTE	Σ	-0 . 1	-0.2	0.5	0.3	0.5	0.7	0.8	0.3	0.4	0.7	0.8	0.8	6.0	l.	0.8	6.0	0.5	-0.2	*	*	×	*
9																								
SHROU	S2+	م	00	0	0	0	0	0	0.2	0.3	0.6	0.8	[.]	1.3	1.4	1.7	1.7	1.7	2.0	2.1	2.2	2.3	2.3	2.4
SHORT	BOTH,	Σ	-0.8 -0.6	-0.9	-0.6	Г. Г		6.0-	-0-7	0.[-	6. 0-	-0.2	0.4	0.6	0.6	0.3	-0.8	-0 .0	0. -	-1.4	*	*	*	*
REATMEN	S1+	م	00	0	0	0	0.1	0.1	0.2	0.3	0.6	0.8		1.3	1.4	1.7	1.7	1.7	2.0	2.1	2.2	2.3	2.3	2.4
	BOTH,	Ψ	0.4	0.9	1.5	1.3		1.2	1.2	0.7	8°0		1.4	1.3		0.9	0.3	0.3	0.5	0.3	0.4	*	*	*
	<u>IALL</u>	**	0.1	0.2	0.5	0.8	1.3	6.	2.6	3.4	3.9	4.2	4.5	4.4	4.2	4.2	4.0	3.7	3. 3	2.6	1.4	0.7	4.4	5.1
	HARDV	**W	-0.3	-0.7	-1.7	-1.7	-1.6	-1.8	-1.5	-0.3	0.1	0.5	1.5	2.4	2.8	2.5	2.7	2.9	а . 3	3.7	*	*	*	*
	1/3 OB FRFN	(HZ)	63 80	100	125	160	200	250	315	400	500	630 31	008 0	1000	1250	1600	2000	2500	3150	4000	5000	6300	8000	10000

ONE-THIRD OCTAVE BAND POWER LEVEL SUPPRESSION, dB

		ما	0	0	0	0.1	0.1	0.1	0.3	0.6	ו.ו	1.7	2.3	3.0	3.5	4.0	4.8	5.8	6.4	6.8	6.4	6.9	8.]	8.3	8.4
NT #2	BOTH	Σ	-0.4	- 1.4	-1.0	0.0-	0.7	0.6	0.7	0.1	0.1	0.6	1.5	2.2	3.1	3.8	4.4	4.6	4.1	3.0	2.0	1.0	*	*	*
HROUD Treatmei	TER	م	0	0	0	0	0	 9	0.2	0.4	6.0	1.3	1.9	2.6	3.0	3.6	4.4	5.4	6.2	6,7	6 .0	6.4	7.8	7.8	7.9
LONG S	8	Σ	-0.1	0	-0.2	0.7	0.1	0.0	0.3	-0.2	-0.1	0.5	0.8	1.2	1.9	2.1	2.4	2.8	2.3	1.6	0.4	*	*	*	*
	MALL	▲	1.2	2.0	2.8	3°.5	4.4	5.3	6.1	6.1	6.1	6.5	6.7	6.7	7.0	7.2	6.9	6.4	5.7	4.8	3.4	1.3	-2.3	-2.9	-2.9
	HARD	Σ	0.7	-0- 4		-0-2	-0.5	-0.8	۳. -		2.4	2.9	4.4	4.7	4.6	4.4	4.4	4.2	4.7	5.1	4.8	*	*	*	*
		<u>م</u>	0	0	0	0	0	0.1	0.2	0.5	0.8	1.1	1.5	1.9	2.3	2.7	3.4	3 . 9	4.7	4.6	4.7	4.9	5.5	5 . 9	6.1
NT #2	BOTH	Σ	1.1	0.4	0.2	4 .0	0.3	0.3	0.4	0.5	0.1	0.1	0.8	1.8	2.3	3.2	3.1	з. 3	3.5	3.3	2.5	2.0	*	*	*
TREATME	æ	۵	0	0	0 0) (0	0.1	0.2	0.4	0.7	6.0	1.2	1.7	2.1	2.5	3.2	3.7	4.7	4.5	4.4	4.8	5.4	5.7	5.8
	OUTE	Σ	-0.1	-0.2	0.0		-0-4	-0.1		-0.1	-0.5	-0.3	- - -	0.6	1.4	2.1	2.4	2.7	2.9	2.0	0.7	-1.2	*	*	*
SHROUD	54	<u>م</u>	0	0	0	5 0	0	0	0	0.3	1.2	1.5	1.8	2.4	2 . 8	3.3	4.0	4.2	4.7	4.6	4.9	5.2	5.5	6.1	6.6
SHORT S	BOTH, S	Σ	0.4	, 0 (0.1	ې م	-0.3	-0.2	0.4	0.4	0.6	0.4	0.3	0.7		2.2	1.8	- - -		0.5	0.6	-0.4	*	*	*
REATMENT	+[]	<u>م</u>	0	0 0		5 0	, 0	0.1	0.2	0.6	1.0].5 	- 8 -	2.4	2.9	а. С.	4. 0	4.2	4.8	4.6	5.0	5.2	5.5	6.1	6.1
Ĩ	BOTH,	Σ	6.0	0.0	ۍ د د	7.0	9.0 0	0.6 0	0.6 0	0.6	6.0	0.6	6.0	•	2.2		3.]		3•5	3.6	4.2	3.7	*	*	*
	MALL	**d	1.2	2.0	2°8	ς.γ	4°4	4.7	0 •9	5.9	5.9	6.4	6 . 5	6 . 5	8°9	0./	6. 7	6.2 2	2°2	4.6	ຕຸ ເ		-2.5	-3.1	-3.1
	HARD	* * W	2.0					0°2	9.0 1	1.2	2.9	ດ. ເ	4.5	4.3	3.7	4 · 3	2 .]	5°9	9.9	6 •5	0 •0	*	*	*	*
	3 0B FN	HZ)	63	08 0	00	6 7	00	8	50	15	00	8	30	00	33	50	83	00	3	50	8	8	8	00	00
					_ ,	- r	- (2	20	ŝ	4	ن ما م	، ق ۱۱	æ ¦	22	27	16	202	52 72	31	40	50	63	80	001

TABLE 5-9 INTERMEDIATE POWER, FLIGHT

-

_

ONE-THIRD OCTAVE BAND POWER LEVEL SUPPRESSION, dB

		_	م	0	0	00	0	0	0.1	0.2	0.5	0.7	1.2	1 . 7	2.1	2.2	2.8	3.6	3.7	4.1	4.8	4.2	4.5	5.2	5.3	6.0
	Z# IN	BOTI	Σ	0		0.1	0.4	0.6	0.4	0.3	0.2	0.3	0.5	1.5	2.0	2.7	3.4	3.7	4.0	4.3	3°2	2.8	1. 7	0.1	*	*
HROUD	TREATME	TER	۵	0	0	0 0	0	0	0	0.2	0.3	0.5	0.1	1.5	6.1	2.0	2.6	а. З.	3.6	4.0	3.8	4.0	4.3	5.1	5.2	5.8
LONG SI		.00	Σ	-0-1	0.1	0.2 0	0.3	0.3	0.3	0.1	0.2	0	0.5	6 .0	1.0	1.2	1.5	1.8	1.6		0.8	-0.3	*	*	*	*
		MALL	۹	0.9	1.4	2°0	2.6	3.7	4.4	4.9	5.2	5.9	6.1	6.3	6.8	7.1	6.8	6.3	5.9	5.4	4.4	3.4		6.0-	-3.3	
		HARD	Σ	-0.3	0.1	-1-5	-0-1	-0.2	0	0.3		2.0	2.8	4.3	4.9	6.0	5.8	6.1	6 .8	6.8	6.1	5.4	5°.	*	*	*
			م	0	0	0	0	0	0.1	0.2	0.3	0.5	0.7	l.'	1.2	1.5	1.7	2.3	2.4	2.9	2.6	2.6	3.2	3.6	3.7	3.7
	NT #2	BOTH	Σ	-0.2	-0.5	-0.5	-0.5	0. 9	-0.3	-0.7	-0.7	-0 . 8	-0.7	-1.0	-0.7	-0.5	-0.8	0.5	0.6	1.6	. 8	د. [1.0	*	*	*
	TREATME	R	م	0	0	0	0	0	0	0.1	0.2	0.3	0.6	6.0	l.	1.3	1.6	2.2	2.3	2.8	2.6	2.6	3.0	3.6	3.6	3.6
		OUTE	Σ	-0-3	-0.5	-0.6	-0 . 8	6. 0-	-0.4	-0.3	-0.6	-0.9		-1.2	-1.2	-0.2	-0.2		1.7	2.0	1.8	l.	6.0-	*	*	*
SHROUD		S2+	۵	0	0	0	0	0	0.1	0.1	0.4	0.6	6.0	1.4	1.5	1.8	2.0	2.6	2.6	2.8	2.6	2.7	3.3	3.6	3.8	3.7
SHORT	L # 1	BOTH,	Σ	0	-0.1	-0.6	-0.6	0.2	-0.2	-0.2	-0.2	-0.2	-0.4	0	0.4	0.4	1.6	1.7	l.,	1.8		1.0	0.5	*	*	*
	REATMEN	S1+	۵.	0	0	0	0	0	0.1	0.2	0.4	0.6	6.0	1.4	1.5	1.8	2.0	2.6	2.6	2.9	2.6	2.8	3.3	3.6	3.8	3.7
		BOTH,	Σ	0.1	0.2	0.1	0	0.2	0	-0.2	-0.2	-0.4	-0.6	-0.2	0	ю. -0	1.3	1.7		2.5	2.9	2.6	1.6	*	*	*
		MALL	**d	0.8	1.4	1.9	2.6	3.6	4.3	4.8	5.1	5.7	6.0	6.2	6.6	6.9	6. 6	6.1	5.7	5.2	4.3	3.2	1.7	-1.1	-3.5	-3.4
		HARD	**W	*	0.9	1.5	0.7	1.4	0.6	1.1	1.4	2.1	3.0	3.7	4.9	5.2	6.2	5.4	5.7	7.0	7.9	7.4	6.8	*	*	*
		1/3 OB	(HZ)	63	80	100	125	160	200	250	315	400	500	630	د 800 ۵0	00 12	1250	1600	2000	2500	3150	4000	5000	6300	8000	10000

TABLE 5-10 TAKEOFF POWER, FLIGHT

ONE-THIRD OCTAVE BAND POWER LEVEL SUPPRESSION, dB

	Ŧ	۹	0	00	0	0	0.1	0.1	с. 0 2	0.7	1.0	1.4	1.6	2.0	2 .]	2 0	2 2 2 2	2.7	3.1	3.4	3.7	2.2
NT #2	801	Σ	-0.3	-0-0- -0-0-	-0.6	-0.6	-0-5	-0.6	0°2	 -	0	0.3	1.5	1.3	1.9	2°2	0.4	1.2	0.1	*	*	*
HROUD TREATME	TER	-	0	00	0	0	0	0.1	0.3	0.6	0.8	1.2	1.4	1.9	2°0	- × ~		2.6	2.9	3.4	3.6	3.6
LONG SI	8	Σ	0.2	0.5 0.3	0	0.2	0.3	0.3	0.5	0.2	0.6	0.9	1.8]. 6		~~~	0.6	-0.1	*	*	*	*
	MALL	م	0.4).l	1.5	1.9	2.5	3.1	3.5 4.0	4.3	4.7	4.8	4.6	4.4	4.2	אי אי אי	,	2.3	1.2	8. 9-	-4.5	-5.2
	HARD	Σ	-0-5 -0	 	-1.2	-1.2	-].5	-1.0	8.0- 0-0		2.4	2.8	3.9	2°0	9.9	0°4	•	4.4	4.5	*	*	*
		م	00	- 0	0	0	0	0.1	0.2	0.5	0.6	0.8	1.0		 4	ں ہے ا	. 8.	1.8	1.9	2.1	2.2	2.2
NT #2	BOTH	Σ	0.8	0.5	0.4	0.8	0.4	0.2	 0.3	0.5	0.7].]	2.1	2.6	2.2	~	4 M 0 1	-0.7	-0.4	*	*	*
TREATME	R	م	00	- 0	0	0	0	0.1	0.1	0.5	0.5	0.8	6.0	0.1	-, 4, 1	 -		1.8	1.9	2.1	2.2	2.1
	OUTI	Σ	00	-0- 4.0-	-0.3	0.3	0.3	0	9.0 -0	0	0	0.1	[.]	6.0	\. 0	- - - -	-0.5	-1.5	*	*	*	*
SHROUD	<u>52+</u>	م	00	00	0	0	0.1	0.1	0.2	0.7	0.8	l. l	1.2		<u>``</u>	۰. د د	. 8. [9.1	2.0	2.1	2.2	2.2
SHORT	BOTH,	Σ	-0.2	•. - - -	-0.9	-0.2	۰. م	-0.6	-0-0	-0.4	-0.2	0.3	1.2	1.6		- ~	-0.2	0.4	-0.1	*	*	*
FREATMEN	S1+	م	00	- 0	0	0	0.1	0.2	0.2	0.7	0.8	[.]	1.2	ۍ ا س	<u></u>	 	. 8. [1.9	2.0	2.1	2.2	2.2
	BOTH,	Σ	[.]	1.0	0.8].]	6.0	0.5	0.6	6.0	1.1	1.5	2.4	0.0	л. Л.		0.4	0.3	1.4	*	*	*
	DWALL	**d	4.0	1.0	1.5	1.8	2.4	2.9	9. 6 4. 6	4.1	4.5	4.6	4.4	4.2	4 ¢		2.9	2.2	1.0	-1.0	-4.7	-5.3
	HAR	**W	-0.2	-0.2	-0.4	0.2	- - -	 	0-1-0-	-0-1	0.4	1.8	2.]	2.1	2.2	0.7 ₽ 0	4.1	4.3	3.7	*	*	*
	1/3 0B FRFD	(HZ)	63 80	100 00	125	160	200	250	315 400	500	630	800	1000	1250	1600	2500	2150	4000	5000	6300	8000	10000

5.4 DISCUSSION

The data in Tables 5-5 through 5-10 show remarkably good agreement between predicted and measured suppression for those frequency bands dominated by the mid-to-low frequency jet noise.

The largest suppression, both measured and predicted, occurs for the lowest power setting (cutback); it is less or the intermediate setting; and, least for takeoff. This trend is due to the shift of the source location further downstream as the nozzle exit Mach number increases so that there is less and less treatment length available between the local source location and the end of the shroud.

The hardwall shroud by itself suppresses the jet noise very effectively over the entire frequency range. This effect is predicted very well.

For the treated shroud, predicted and measured suppression is about the same for the two treatment designs. To a large extent, this is believed to be the result of relatively small differences in normalized impedances of the two designs under operating conditions and of axial variation of the temperature and pressure of the airflow within the shroud. The actual normalized impedances departed in localized areas significantly from these values tabulated in Tables 5-3 and 5-4 which are based upon the estimated average conditions listed in Table 5-2.

Relative benefits of the long versus short shroud and of treatment on the outer wall, only, versus on both walls, are predicted reasonably well.

At frequencies above 2000 Hz, the prediction of treatment suppression consistently is higher than the measured data. This discrepancy existed in the predictions by the original M*S method and is one of the main reasons that the improved analytical model, discussed in Section 5.2, was incorporated. The factor in the improved propagation model which was expected to improve this part of the correlation, was the effect of duct Mach number on the axial propagation constant, and the increase in modal cut-on-ratio associated with this factor. The discrepancies in the high frequency end of the spectrum did not show up in the original development of the M*S method because the correlation was made with treatment consisting of single-layer honeycomb with perforate facesheet, the so-called single-degree-of-freedom (SDOF) treatment, which had poor high frequency impedance properties. The Astroquartz bulk absorber used in this program, on the other hand, has near optimum impedance (particularly reactance) from 1000 Hz and above. That, in combination with the increasing number of higher-order modes with increasing frequency and with the source-location prediction that says the higher the frequency, the closer its source is to the nozzle exit plane, resulted in an increasing level of predicted suppression with increasing frequency.

This discrepancy in high frequency suppression, in fact, is probably a consequence of the gap between the nozzle exit plane and the beginning of the shroud. The highest frequencies are generated in close proximity to the nozzle and can very easily leak out that gap, which provides a flanking path that assumes more and more importance as the suppression of the shroud itself increases.

Overall, the suppression as predicted is the correct order of magnitude for the effects of the variations included in the comparisons of the Tables 5-5 through 5-10, and the algorithm in Appendix A is deemed a reasonably good method for engineering preliminary design studies.

6.0 CONCLUSIONS

This program, along with its companion aerodynamic performance investigation contract, NAS3-23038, was successful in establishing the chute-suppressor/ treated ejector system as a viable concept for AST/VCE application. A large acoustic and diagnostic measurements data base has been accumulated with pertinent results documented within this report. Detailed measurements are thoroughly documented within a two volume companion comprehensive data report (Reference 3) and stand ready for future developmental use, when required.

Within the design parameters investigated, the suppressor/ejector system has been found to allow substantially improved suppression levels, well beyond those attainable by the basic unejected coannular-chuted suppressor. The optimumtested suppressor/treated ejector system allowed 2400 ft. sideline peak PNL suppression at takeoff of 11.4 \triangle PNdB relative to a conic nozzle; a very significant 4.8 \triangle PNL greater than the baseline 20-chute suppressor. Simulation flight EPNL for the same condition yielded 9.8 \triangle EPNL for the suppressor/ejector system, an additinal 5.2 \triangle EPNL above that of the unejected system.

Ejector performance at lower velocity, e.g., cutback cycle, is even more significant, 6.8 \triangle peak PNL and 6.3 \triangle EPNL additional suppression provided by the treated ejector/plug system. The retention of acoustic suppression effectiveness to very low operating cycles is undercharacteristic of most mechanical jet noise (unejected) systems previously investigated. Most follow the pattern where suppessor absolute noise levels approach those of the reference conical nozzle at low jet velocity. Retention of suppression at low cycles through ejector application offers a significant advantage for quiet part power, e.g., cutback, operation.

Other specific conclusions include the following:

- In comparing static to flight acoustic performance, the suppressor/ ejector system does not lose suppression nearly as rapidly as the unejected baseline suppressed nozzle.
- o Application of the hardwall ejector, in itself, provides a major portion of the ejector system's suppression effectiveness, contributing significantly to both forward and aft quadrant suppression. Of major significance is that the forward radiated jet noise is still reduced substantially at all cycle conditions, even though aft quadrant suppression levels may diminish.
- Application of treatment to the ejector inner flowsurface is primarily effective within the longer ejector system, effectiveness being marginal within the shorter ejector length. The longer ejector with the single surface treatment is, however, seen primarily effective on suppression of forward quadrant radiated noise, peak noise angles being minimally effected.
- o Addition of further treatment to the plug surface significantly improves suppression beyond that attained with just the ejector surface treatment.

- o Treatment design variation, within the limits evaluated with the bulk absorber Astroquartz material, was not critical to attained suppression levels.
- Ejector length increase was primarily effective in further reduction of forward quadrant radiated noise; the aft quadrant peak noise levels showed mixed results relative to short versus long ejectors.
- o Axial location of the ejector system was very significant, the further aft location showing both aerodynamic base pressure (ΔC_{fg}) and acoustic suppression superiority. At takeoff cycle, nearly 2 dB increased suppression was noted for static and 1 dB for flight PNL using the further aft ejector location.
- Use of a softwall plug surface as a pseudo-porous plug within an unejected/chute-suppressed nozzle showed no further reduction of forward quadrant shock associated noise, even though shock structure in the close vicinity of the plug surface was softened.

Of other major significance within the program was the updating of an existing computer coding to predict the suppression to be expected from a treated shroud used in conjunction with dual-flow multi-element suppressor nozzles. The original coding had a simplified model for duct propagation and was limited to treatment applied to the ejector surface only, not including the plug. The revised coding improved the analytical model to handle annular geometry and to estimate the modal weighting function of all modes that can propagate. This improved coding enables a better estimate of the energy attenuation of the treatment, because of its improved estimate of modal energy density and the effect of airflow Mach number. Comparisons of measured and predicted suppression levels, using the revised coding, showed very good agreement for many of the geometric and treatment design changes investigated.

Even though a significant acoustic data base was acquired and major advances were made in levels of suppression attainable, the suppressor/ejector system remains un-optimized in its maximum level of attainable suppression. The system was "optimized" only within the allowable range of parameters capable of investigation within the limited number of test configurations. Further investigation into certain aspects of ejector nozzle development will be beneficial in the future to enhance acoustic performance, particularly when a more exact aerodynamic cycle is selected for takeoff and cutback operation of a product AST/VCE. The revised predictive coding will also aid in pre-test optimization. Major technical goals yet to be achieved include development of high temperature acoustic treatments capable of sustained operation within the ejector environment.

7.0 NOMENCLATURE

a,c	Speed of Sound, m/s, f/s
A _{flow} = A8	Nozzle flow area, m ² , in ²
A _{chute} , A _{blocked}	Blocked area of chute, in ²
Ai	Chute elemental base area, in ²
AT	Total chute base area, in ²
AST	Advanced Supersonic Technology
AVPT20	Test Cell Average Barometric Pressure, psia
c,¢	Centerline
C/B	Cutback
CDR	Comprehensive Data Report
COR	Cut-off-Ratio
C _{fg}	Thrust Coefficient
Deq	Equivalent conical nozzle diameter based on total flow area, in.
D,d	Diameter, in
DLCCFG	Delta thrust coefficient, %
DMS	Data Management System
EPNL	Effective Perceived Noise Level, EPNdB
EPNLN	Normalized Effective Perceived Noise Level, EPNdB
f	frequency, Hertz
F	Thrust, Newtons, Lbs
FD	Total base drag of 20 chutes, Lb
FDCHUT	Base drag per chute, Lb
fps	feet per sec
Fref	Reference thrust, 22820 Newtons, 5130 Lbs
FSUPR	Ideal thrust of outer stream (suppressor) nozzle, Lb
FTFSDR	Flight Transformed - Full Scale Data Reduction

н	Histogram or Hardwall surface of plug/ejector
hp	Horsepower
Hz	Hertz, Cycles per Sec
L	Radial distance of instrumentation item to nozzle centerline, in.
L]	Nominal length ejector
L2	Extended length ejector
LBM	Defined as 10 log eff, where, $B^{eff} = \sqrt{(M_j^{eff})^2 - 1}; M_j^{eff} = \frac{2}{Y-1} \left[(P_r^{eff})^{\frac{Y-1}{Y}} - 1 \right] : P_r^{eff} = \frac{P_r^0 A^0 + P_r^1 A^1}{A^0 + A^1}$
LV	Laser Velocimeter
LVM	Defined as 10 log (Vj ^{mix} /a _{amb})
м	Mach No.
NF	Normalization factor; defined as -10 log $\left(\frac{F}{\Gamma_{ref}}\right)\left(\frac{P}{P_{amb}}\right)^{\omega-1}$, dB
Мс	Convection Mach No Relative to Nozzle
Мсо	Convection Mach No Relative to Nozzle - Convection Mach No Relative to Observer
Мо	Convection Mach No Relative to Observer
M*S	Motsinger-Sieckman Prediction Method
OAPWL, PWL	Overall sound power level, dB re 10 ⁻¹² watts
1/3 OBPWL	1/3 Octave band sound power level, dB re 10 ⁻¹² watts
OASPL	Overall sound pressure level, dB re .0002 dynes/cm ²
OASPLN	Normalized overall sound pressure level, OASPL+NF, dB re .0002 dynes/cm ²
1/3 OBSPL	1/3 Octave band sound pressure level, dB re .0002 dynes/cm 2
Р	Pressure, psia
Pamb	Ambient pressure, pascal, psia
PBAV	Chute average base pressure,psia
PNL	Perceived noise level, dB

PNLN	Normalized perceived noise level, PNL+NF, dB
P/R,Pr	Pressure ratio; defined as ratio of total to ambient
P _S , P ⁱ _s ,	Static pressure, psia
PRI,P	Inner nozzle pressure ratio
PRO,P ^o	Outer nozzle pressure ratio
rı	Inner duct radius, in
r ₂	Outer duct radius, in
R	Radial distance to location of axial LV traverse, in, and normalized specific resistance
R _{hub}	Radius to hub of outer stream suppressor, in
R _{obs}	Distance from exhaust nozzle to microphone, ft
R ^t s	Radius of suppressor at the chute tip, in
R _{tip}	Radius to tip of outer stream suppressor, in
S1	Nominal position of ejector axial location
S2	Extended position of ejector axial location
Scfm	Standard cubic feet per minute
SDOF	Single degree of freedom
SPL	Sound pressure level, dB
SPLN	Normalized sound pressure level, SPL+NF, dB
т	Temperature, ^o K, ^o R, ^o F
ті	High density acoustic treatment design
Τ2	Low density acoustic treatment design
TE	Treated Ejector
Τ/0	Takeoff
Τ _S	Static Temperature, ^o F, ^o R
ττι, τ _T i	Total Temperature of inner flow, ^o R, ^o R
tto, t _t o	Total Temperature of outer flow, ^o R, ^o R
۷	Velocity, n/s, f/s
۷	Mean Velocity, m/s, f/s
--------------------------	---
٧	Turbulent Velocity, m/s, f/s
VABI	Variable Area Bypass Injector
VAC,V _{a/c}	Simulated flight velocity, m/s, f/s
VCE	Variable Cycle Engine
٧JI,V _j i	Inner stream velocity, m/s, f/s
۷JO, V _j o	Outer stream velocity, m/s, f/s
VJMIX,V _j mix	Mixed stream velocity, m/s, f/s
W	Ideal calculated weight flow rate Kg/s, Lb/s
X	Normalized specific reactance
x	Axial distance of instrumentation item to ejector inlet surface, in, or, axial distance from exit plane of primary nozzle, in
x'	Axial distance from exit plane of ejector nozzle, in
da	Absorption coefficient
ß	Shock strength parameter
\mathbf{Y}_{c}	Ratio of specific heats
Δ	Delta
0°c	Critical refraction angle, degrees
0'i	Incidence angle, degrees
٥ı	Angle relative to inlet, degrees
l	Jet density
Pamb	Ambient air density
ນ	Density exponent

SUPERSCRIPTS

_

i	Inner Jet (Nozzle) Conditions
mix,eff	Mass Averaged Conditions
0	Outer Jet (nozzle) Conditions

SUBSCRIPTS

ac,a/c	aircraft
amb	Ambient
fs	free-stream
j	jet
r	Ratio
ref	Reference
S	Static
т	Total (Stagnation)

- Wagenknecht, C.D. and Bediako, E.O., "Aerodynamic Performance Investigation of Advanced Mechanical Suppressor and Ejector Nozzle Concepts for Jet Noise Reduction", Contract NAS3-23038 - GE Final Tech. Report (R83AEB122-3), NASA CR-174860, Feb. 1985.
- Wolf, J.P., "Preliminary Design of an AST Engine Exhaust System Incorporating an Ejector Shroud and a 20 Chute Noise Suppressor", NASA-GE Contract NAS3-23038, GE TM 82-219, April, 1982.
- 3. Brausch, J.F. and Hoerst, D.J., "Simulated Flight Acoustic Investigation of Treated Ejector Effectiveness on Advanced Mechanical Suppressors for High Velocity Jet Noise Reduction", Contract NAS3-23275 - GE Comprehensive Data Report R85AEB517, December, 1985.
- 4. Syed, A.A., "Acoustic Treatment Design for the AST Shroud (NASA Contract Number NAS3-23275)", GE TM No. 84-395, July, 1984.
- 5. Vogt, P.G., Bhutiani, P.K., and Knott, P.R., "Free-Jet Acoustic Investigation of High Radius Ratio Coannular Plug Nozzles", General Electric Company, Comprehensive Data Report, Volume I, R81AEG212, Contract NAS3-20619, January 1981.
- Shields, F.D., and Bass, H.E., "Atmospheric Absorption of High Frequency Noise and Application to Fractional Octave Bands", University of Mississippi, NASA CR-2760, June 1977.
- 7. Knott, P.R., "Supersonic Jet Exhaust Noise Investigation", Volume I, Summary Report, AFAL-TR-76-68, July 1976.
- 8. Janardan, B.A., Majjigi, R.K., Brausch, J.F., and Knott, P.R., "Free-Jet Investigation of Mechanically Suppressed, High-Radius-Ratio Coannular Plug Model Nozzles", Final Technical Report for NASA-GE Contract NAS3-21608, GE TM No. R81AEG484, NASA CR-3596, May, 1985.
- 9. Yamamoto, K., Brausch, J.F., et. al., "Experimental Investigation of Shock-Cell Noise Reduction for Single Stream Nozzles in Simulated Flight", Final Technical Report for NASA-GE Contract NAS3-22514, NASA CR-3845, December, 1984.
- Janardan, B.A., Yamamoto, K., et. al., "Experimental Investigation of Shock-Cell Noise Reduction for Dual-Stream Nozzles in Simulated Flight", Final Technical Report for NASA-GE Contract NAS3-23166, NASA CR-3846, November, 1984.
- Hoch, R.E., Duponchel, J.P., Cocking, B.J., and Bryce, W.D., "Studies of the Influence of Density on Jet Noise", Journal of Sound and Vibration, Volume 28, Number 4, 1973, pp. 649-668.
- 12. Janardan, B.A., et. al., "Free-Jet Investigation of Mechanically Suppressed, High-Radius-Ratio Coannular Plug Model Nozzles", Comprehensive Data Report for NASA-GE Contract NAS3-21608, GE TM No. R81AEG484, May, 1981.

- Blozy, J.T., et. al., "Acoustic and Aerodynamic Performance Investigation of Inverted Velocity Profile Coannular Plug Nozzles", Comprehensive Data Report for NASA-GE Contract NAS3-19777, GE TM No. R79AEG166, January, 1979.
- 14. Vdoviak, J.W., Knott, P.R., and Ebacker, J.J., "Aerodynamic/Acoustic Performance of YJ101/Double Bypass VCE with Coannular Plug Nozzle", Final Report for NASA-GE Contract NAS3-20582, GE TM No. R80AEG369, NASA CR-159869, January, 1981.
- 15. Gliebe, P.R., Motsinger, R.E., and Sieckman, A., "High Velocity Jet Noise Source Location and Reduction - Task 6 Supplement - Computer Programs: Engineering Correlation (M*S) Jet Noise Prediction Method and Unified Aeroacoustic Prediction Model (M*G*B) for Nozzles of Arbitrary Shape", GE TM No. R79AEG290, FAA Report No. FAA-RD-76-79, VIA, March, 1979.
- 16. Harper-Bourne, M., and Fisher, M., "The Noise From Shock Waves in Supersonic Jets", Proceedings of the AGARD Conference on Noise Mechanisms, Brussels, Belgium, AGARD CP131, 1973.
- Brausch, J.F., Whittaker, R.W., Knott, P.R., "Acoustic and Aerodynamic Nozzle Performance Design Considerations for the NASA AST/VCE Core Drive (CDFS) Acoustic Nozzle Program", GE TM No. TM80-216, March, 1980.
- NASA Technical Memo 78802, NASA-Langley, Initial Results of a Porous Plug Nozzle for Supersonic Jet Noise Suppression, Dr. Lucio Maestrello, November 1978.
- 19. AIAA 79-0653, An Experimental Study on Porous Plug Jet Noise Suppressor, L. Maestrello, NASA-Langley Research Center.
- Stringas, E.J., "High Velocity Jet Noise Source Location and Reduction, Task 2 - Theoretical Developments and Basic Experiments", Report Number FAA-RD-76-79, II, October, 1977.
- 21. Tanna, H.K., "An Experimental Study of Jet Noise Part II: Shock Associated Noise", Journal of Sound and Vibration, Volume 50, 1977, Pages 429-444.
- Sardhia, V., "Some Flight Simulation Experiments on Jet Noise From Supersonic Under Expanded Flows, "AIAA Journal, Volume 16, 1978, Pages 710-716.
- 23. Knott, P.R., Janardan, B.A., et al, "Free-Jet Acoustic Investigation of High Radius-Ratio Coannular Plug Nozzles", NASA CR-3818, October, 1984.
- 24. Janardan, B.A., Majjigi, R.K., et al, "Experimental Investigation of Shock-Cell Noise Reduction for Dual-Stream Nozzles in Simulated Flight", NASA CR-3846, November, 1984.
- ,25. Gliebe, P.R. Motsinger, R., and Sieckman, A., "High Velocity Jet Noise Source Location and Reduction, Task 3 - Experimental Investigation of Suppression Principles", Report Number FAA-RD-76-79, III-I (R78AEG627), December, 1978.

- 26. Syed, A.A., Private Communication, "3-D Rectangular Approximation to the Sound Propagation in an Annular Duct", February, 1981.
- 27. Mungur, P. and Plumblee, H.E., "Propagation and Attenuation of Sound in a Soft-Walled Annular Duct Containing Sheared Flow", Basic Aerodynamic Noise Research, NASA SP-207, Pages 305-372.
- 28. Yurkovich, R., Attenuation of Acoustic Modes in Circular and Annular Ducts in the Presence of Uniform Flow", AIAA Paper 74-552, June, 1974.
- 29. Rice, E.J. and Sawdy, D.T., "A Theoretical Approach to Sound Propagation and Radiation for Ducts with Suppressors", NASA TM 82612, May, 1981.
- 30. Rice, E.J., "Acoustic Liner Optimum Impedance for Spinning Modes with Mode Cut-Off Ratio as the Design Criterion", NASA TM X-73411, July, 1976.
- 31. Delaney, M.E. and Bazley, E.N., "Acoustical Properties of Fibrous Absorbent Materials", Applied Acoustics (3), 1970.

APPENDIX A

ALG	ORITHM FOR PREDICTING THE EJECTOR SUPPRESSION, HARDWALL AND TREATED
	FIGURE NUMBER
1.	Review of original M*S program "Subroutine EJECTS"
	• Flow Chart
	• Program ListingA2
2.	Summary of revised version of "Subroutine EJECTS"
	• Program ListingA3
3.	Listing of the complete revised M*S Program (Changes
	Annotated)A4

FIGURE A-1. ORIGINAL M*S ANALYSIS STEPS IN SUBROUTINE EJECTS

FIGURE A-1 (CONTINUED). ORIGINAL M*S ANALYSIS STEPS IN SUBROUTINE EJECTS

FIGURE A-1 (CONCLUDED). ORIGINAL M*S ANALYSIS STEPS IN SUBROUTINE EJECTS

_

_ _

SUBROUTINE EJECTS	76/76	001=1	11/18/77	14.09.165	PAGE	1

1		SUBROUTINE EJECTS			
	С	EJECTS EJECTOR EFFECT SUBROUTINE			
		COMMON /QM/ M,OJ			
		COMMON/CM1/L(9+24)+X(24)+F(24)+E(24)+S(15+24)+KK(24+5)+C	(15+5)+		
5		1 0(20) • RR(49) • RX(49) • P(20) • R(15•24) • Y1(24) • Y(24) • C1(15) • R	VE(20).		
		1 S1 (24) + G(2+24) + C2(15) + T (20) + D (20) + W (5) + A (4) + V (3) + E1 (15+2)	4)		
		COMMON /CM2/ V8+A0+W8+K1+Y9+T8+T5+R7+P1+Z9+DJ+AJ+H+U+E9			
	·	1 +T0+V9+C9+D8+D1+V0+09+A8+Q+L9+A6+A7+S6+P9+P9+ALT+SL+AN1			
		COMMON /CM3/ IIAS(2)+IICASE(6)+IDCASE(6)+IDENT(6)			
10		REAL LOKKOKI			
		REAL L8+L9+L2+K6+L3+M			
	<u> </u>	HARDWALL EJECTOR EFFECTS			
		DO 110 I=1+15		.	-
		00 110 J=1+24		Step	L
15	<u> </u>	$F_{1}(1,J)=0.0$			<u> </u>
		FP=.3*V8/SQRT(4*A8/P1)		<u>Step</u>	2
		L8=5*AL0610(L9/2)	<u> </u>	<u>Step</u>	3
		<u>U3=SQRT(A6*A7*A8*AN1/P1+S6*#2-A7*A8*AN1/P1)</u>		Step	4
•		A5=A6 \$ IF (Y9.GT.3) GO TO 133 \$ IF (R9.E0.0) GO TO 140		Step	5
20	133	A5=A6/(10**(12,/8*(03/56-))**2*,046))		0+	<u> </u>
	140	DZ=1.8-23.59*A5-(110*(ALU610(P9/1.91)**2)*.005*(18-10	1+30	Step	
				Step	<u>_/_</u>
	Ľ	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $			1
25		$\frac{100 270 1 \pm 1 + 15 3 AJ \pm (1 + 11 + 10)}{15 (A + 15 + 10)} = 6 - 64 \pm 02 = 6 - 60 = 70 - 220$			
C J	165	TE (AU, IT, OU=30) GO TO 180	Ť		
		$IF(A,L,GT_{-},0,L) = GO_{-} IO_{-} 200 S_{-} OF= -2002 S_{-} GO_{-} TO_{-} 220$			1
	180	$DF = D2^{\circ}(-4, 888F - 4^{\circ}(\Delta J - 0.1 + 60) + 2^{\circ} - 64)$	Step 9	S+	
		IF (DF.GT.0) GO TU 220 \$ DE=0 \$ GO TO 270	1	51	ep o
30	200	IF (AJ.GT.0J+20) GU TO 210 \$ DE=02*SQRT((AJ-0J)/20) \$ GO T	0 220		i
	210	DE=D2*(.00925*(AJ=0J=20)+1)	*		
	c	SPECTRAL EFFECTS			
	220	DO 260 J=1+24 \$ 1F(FP.GT.1.12*F(J)) GO TO 250			
		IF (F (J) / FP. GT. 8) GO TO 240			
35		E1(I+J)=.2*(F(J)/FP-1)**2-DF \$ GO TO 260	Step 1	0	
	24ū	F1(I,J)=9.5-DE 5 GO TO 260 Step 11	i i	•	
	250	E1(1.J)=-OE			
	260	CONTINUE			
	270	CONTINUE			1
40	280	IF (A(1),EQ.0) GO TO 820		Step	<u>12</u>
	С	EJECTOR TREATMENT EFFECTS		Step	13
	220	XJ=M/5.0 & IF (M.LI.1.13) GO IQ 330 \$ XJ=.226			
	220	D4=50KI(4*A8*ANI/PI) \$ L3=L9*04		Step	14
4E	-				
43	L.	SUUL RESISTANCE AND REACHANCE		1	
		10-+0210-2+0029+XJ 16/111 (10020) CO TO 444			
		Y 1- KASALIAA(0323) OU IU 400 Y 1- KASAL-3 (96668/Y 1- 69030)			
		$IE_{1} + UE_{2} + U$		1	
50		Y.J=,13819-2,00751#(X.J=,22321)		Step	15
		$IF(X, I_{-} T_{-}, 25786)$ GO TO 460		; = r	
		YJ=+0485590634#(XJ=+26786)			
		IF (XJ-LT-32143) GO TO 460			
		YJ=0			
.55	460	T1=(A(1)+.85*A(3)*YJ)/12			
		RS=(,3*XJ)/A(2)		Ļ	
	500	DO 815 J=1+24 \$ A4=0			
				Step	T0

FIGURE A-2. ORIGINAL M*S

	с	FREQUENCY DETERMINATION	St
		DO 755 K8=1+3 \$ IF (K8-2) 520+530+540	Step
60	520	P3=F(J)*6.28318*.89 \$ GO TO 550	
	530	P3=F(J)*6.28318 \$ G0 TO 550	Step 18
- <u></u>	540	P3=F(J)*6.28318*1.12	<u> </u>
	550	X4=(P3+T1)/(A0+A(2))-1/TAN((P3+A(4)/12)/A0)	Step 19
		IF (A(1) .NE. 10) GO TO 590	Step 20
65		Ib=K8+5+7-5	
		RS=RR(IP)	Step 21
		X4=RX(IP)	
	590	A3=0 \$ B0 730 I=9+15 \$ K6=0 \$ AJR=((I+1)*10-90)*	P1/180 Step 22
		A1=4*RS*COS(AJR)/((1+RS*COS(AJR))**2+(X4*COS(AJR))**	2) 01 02
70	с	ABSORPTION PER REFLECTION	- Step 23
		A2=10*ALOG10(1-A1)	•
		D0 690 K=1.25 \$ XJ=((2.5*X(J))/25)*K	Step 24
	с	SOURCE LOCATIONS	Step 25
		ZJ=XJ/X(J)	5CCp 25
75		S2J=-11.19136+32.76957+ZJ-37.633732+ZJ++2+23.970385+Z	
		S2J=S2J-10.115712*ZJ**4+2.4045214*ZJ**523576959*ZJ	••6 Step 26
		S2J=S2J-11.6	
	C	EFFECT FOR ALL REFLECTIONS	
		00 675 JJ=1.11\$TF(JJ.GT.1) GO TO 660\$L2=(03/2-S6)*TA	N(AJR)+XJ
8c		60 TQ 670	
•	660	$L_2=L_2+D_3*TAN(AJR)$	
	670	IF (L2.GT.L3) GO TG 680	Step 27
	675	CONTINUE	
	680	K6=K6+10++(((JJ-1)+A2+S2J)/10)	Step 28
- 85	690	CONTINUE	
	с	POWER LEVEL REDUCTION	Step 29
		AJ = (1+1)*10 \$ K6=10*AL0G10(K6)	-
		YJ=1.5*P1*(COS((AJ-5)*P1/180)-COS((AJ+5)*P1/180))	· · · · · · · · · · · · · · · · · · ·
		A3=A3+(2.227525E-6+4E-8+YJ+10++(K6/10))	
90	730	CONTINUE	Step 30
		A3=10*AL0610(A3)+130-6+45175	
		A4=A4+10**(A3/10)	
	755	CONTINUE \$ A4=10+ALOG10 (A4/3)	Step 31
	С	DIRECTIVITY EFFECTS	
95		DO 815 I=1+15 \$ AJ=(I+1)*10 \$ A5=A4	Stop 22
		IF (AJ.LT.0J-50) GO TO 800 \$ IF (AJ.LT.0J) GO TO 810	SLEP 32
	800	A5=A4/2	
	810	E1(I,J) = E1(I,J) + (A5*1,2)	Step 33
	815	CONTINUE	<u> </u>
100	820	RETURN S END	Step 34

FIGURE A-2 (CONCLUDED). ORIGINAL M*S

_

_

10460 SUBROUTINE EJECTS EJECTS -- EJECTOR EFFECT SUBROUTINE 1Ø47ØC 18488 COMMON JOM/ M.OJ 10450 COMMON/CM1/L(9,24),X(24),F(24),E(24),S(15,24),KK(24,5),C(15,5),O(20), 10500& RR(49),RX(49),P(20),R(15,24),Y1(24),Y(24),C1(15),RVE(20), 10510& S1(24),G(2,24),C2(15,2),T(20),D(20),W(5),A(4),V(3),E1(15,24) 10520 COMMON /CM2/ V8,A0,W8,K1,Y9,T8,T5,R7,P1,Z9,DJ,AJ,H,U,E9,AA 10530&,T0,V9,C9,D8,D1,V0,O9,A3,Q,L9,A6,A7,S6,P9,R9,ALT,SL,AH1,NFLT 10520 COMMON /CM2/ V8,A0,W8,K1,Y9,T8,T5,R7,P1,Z9,DJ,AJ,H,U,E9,AA 10535& HTR.NST, XMJIIIX, TJMX, VJMX 10540 COMMON /CM3/AS.CASEID.E3, FNL(20) 10550 REAL L,KK,K1,INH,INH1 10560 CHARACTER AS*20,NAME*60,ADDRES*60,IDENT*60,CASEID*60 REAL L8, L9, L2, KG, L3, M REAL MACH 19570 10580 1Ø59Ø DIMENSION IMH(1Ø), WTGFN(1Ø), IMH1(1Ø) 18688 INTEGER TM 10605 REAL LAMBDA 1Ø61ØC HARDWALL EJECTOR EFFECTS 1Ø63Ø SONSPD=49.Ø1*SORT(TJMX) 1Ø64Ø D3=SORT(A6*A7*A8*AN1/P1+S6**2-A7*A8*AN1/P1) <u>Sten 4</u> 10650 AITCH=D3*(1-HTR) 10660 RBAR=D3*(1+HTR)/2 10670 MACH=VJMX/SONSPD 10700 IF(MACH.GT..95).4ACH=.95 DO 11Ø I=1,15 11030 11848 DO 118 J=1,24 11858 118 E1(1,J)=8.8 11868 FP=.3*V8/SQRT(4*A8/P1) Step 1 11070 L8=5*ALOG10(L9/2) 11090 A5=A6 : IF(Y9.GT.3) GO TO 133 ; IF(R9.EQ.0) GO TO 140 ter Step 11100 133 A5=A6/(10**(12.78*(D3/S6-1)**2+.046)) 11100 133 A5=A6/(10**(12.78*(D3/S6-1)**2+.046)) 11110 140 D2=L8-23.59*A5-(110*(ALOGIO(P9/1.9))**2)+.005*(T8-T0)+30 11120 IF(D2.LT.0) GO TO 280 11130C DIRECTIVITY EFFECTS Step 5 Step 6 Step DO 27Ø I=1.15; AJ=(I+1)*1Ø IF(AJ.GT.OJ-6Ø) GO TO 165; DE=.64*D2; GO TO 165 IF(AJ.LT.OJ-3Ø) GO TO 18Ø IF(AJ.GT.OJ) GO TO 2ØØ; DE=.2*D2; GO TO 22Ø 1114Ø 11150 DE=.64*D2 ; GO TO 220 11160 11170 9 11180 18Ø DE=D2*(-4.888E-4*(AJ-OJ+6Ø)**2+.64) Step 11190 112ØØ 1121Ø GO TO 22Ø 112200 Step 8 22Ø DO 26Ø J=1.24 : IF(FP.GT.1.12*F(J)) GO TO 25Ø IF(F(J)/FP.GT.8) GO TO 24Ø 11230 11240 E1(I,J)=.2*(F(J)/FP-1)**2-DE 11250 ; GO TO 26Ø Step 11 Step 10 1126Ø 240 E1(I,J)=9.5-DE ; GO TO 260 25Ø E1(I,J)=-DE 26Ø CONTINUE 11270 1128Ø 1129Ø 27Ø CONTINUE 11295 $A(1) = 1\emptyset$ 28Ø IF(A(1).EQ.Ø) GO TO 82Ø EJECTOR TREATMENT EFFECTS XJ=M/5.Ø ; IF(M.LT.1.13) GO TO 33Ø ; Step 12 11300 1131ØC 13 Step 11320 XJ=.226 330 D4=SQRT(4*A8*AN1/P1) ; L3=L9*D4 11330 14 Step 1134Ø D3=D3*2.Ø 500 DO 815 J=1,24 ; A4=0 11470 TM=Ø.ØØ (Step 15 eliminated) 11475 1148ØC
 FREQUENCY DETERMINATION

 DO 755 K8=1,3 ; GO TO (520,530,540),K8

 520 P3=F(J)*6.28318*.89 ; GO TO 550
 11490 11500 11510 530 P3=F(J)*6.28318 ; GO TO 550 Step 18 54Ø P3=F(J)*6.28318*1 11520 11530 55Ø CONTINUE Steps 19 and 20 eliminated Step 16 11550 IP=K8+2*J-2 Step 17 1156Ø RS=RR(IP) 21 Step X4=RX(IP) 11570 11580 LAMBDA=2.*P1*SONSPD/P3 11590 ETAY=AITCH/LAMEDA 11600 ETAZ=2.*P1*RBAR/LAHBDA XMAX=(2*ETAY/SORT(1-MACH**2))+1 11610 11612 NMAX=IFIX(XMAX) 11628 YMAX=(ETAZ/SORT(1-MACH**2))+1

FIGURE A-3. PROGRAM LISTING OF REVISED VERSION OF SUBROUTINE EJECTS

11621	MMAX=1FIX(VMAX)	Step	17	Step
11624	IF(NMAX.EQ.1.AND.MMAX.EQ.1)GOTO 815		1	1
11626	DO 855 LZER=1,1 \emptyset ;IMH(LZER)=1E-1 \emptyset ;IMH1(LZER)=1E-1 \emptyset			
11629	TheØ			l
1163Ø	DO 88Ø NM=1,NMAX			
11640	DO 87Ø MM=1,MMAX			
1166Ø	MIND=MM-1			
1167Ø	IF (NIND.EQ.Ø)GOTO 83Ø			
11680	GOTO 84%			i
11700	PHI=Ø			
1171Ø	GOTO 850			
11719 11730	84Ø CONTINUE PARAM=SORT(/(RixNIND)***2)+(2*MIND*(1+HTR)//(1+HTR))***2)			
1174Ø	COR=2*P1*ETAY/(PARAM*SQRT(1-MACH**2))			
11750	IF(COR.LE.1.)GUTO 87Ø			
11760 11770	PHI=(ARSIN(1/COR))*180./P1 850 CONTINUE			
11800	DO 86Ø LDIF=1,9			
11810	BETA=LDIF*1Ø.			
11820	1F(PH1.GI.BETA)GOIO 860 TMH(1DTF)#TMH(1DTF)+1			
11835	GOTO 865			
11840	860 CONTINUE			
1185Ø	TM=TM+1			
11860	B7Ø CONTINUE			
1187Ø	880 CONFINUE DO 890 IANC=1 9			
11890	LL=10-LANG			
11900	IMH1(LL)=IMH(LANG)			
11920	89Ø CONTINUE			
11930	59Ø A3=Ø ; DO 73Ø I=9,17 ; K6=Ø ; AJR=((I+1)*1Ø-9Ø)*P1/18Ø	Step 22		
11940 1195Ø	N=1-8 A1=4*RS*COS(AJR)/((1+RS*COS(AJR))**2+(X4*COS(AJR))**2)			1
1196Ø	ABSORPTION PER REFLECTION	Step 23		
11962	XXX≠1−A1 IF(XXX T.Ø. @@@@@@01)XXX=@_@@@@@@01	500p 25		
<u>1197ø</u>	$A2 = 10^* A LOG 10(XXX)$			
1198Ø	DO 69Ø K=1,25 ; XJ=((2.5*X(J))/25)*K	Step 24		
12000	ZJ=XJ/X(J) ; S2J=-11.19136+32.76997*ZJ-37.633732*ZJ**2+23.97Ø385	*ZJ**3		ļ
12010	S2J=S2J-1Ø.115712*ZJ**4+2.4Ø45214*ZJ**523576959*ZJ**6 Steps	25 & 26		
12020	SZJ=SZJ-11.6			1
12040	DO 675 JJ=1,11; IF(JJ.GT.1) GO TO 660; L2=(D3/2-S6)*TAN(AJR)+XJ; GO	TO 67 <i>9</i>		
12050	660 L2=L2+03*TAN(AJR)*(1.0-HTR)/NST	C+ 07		
12056		Step 27		
12060	670 IF(L2.GT.L3) GO TO 680		ļ	
12070				
12078	FORK=((JJ-1)*A2+WTGFN(N)+S2J)/1Ø Revised	Step 28	1	
12080	<u>K6=K6+1Ø**FORK</u>			
12100	C POWER LEVEL REDUCTION			
12110	AJ=(1+1)*1Ø ; KG=1U*ALOG1#(K6)	Step 29		1
12120	YJ=1.5~P1*(COS((AJ-5)~P1/180)-COS((AJ+5)*P1/180)) A3=A3+(2.227525E-6*AE-8*VJ*10**(K6/10))			
12140	73Ø CONTINUE	Step 30		
12150	A3=10*AL0G10(A3)+130-6.45175	000F 00	. 🛓	
12150	<u>A4=A4+10**(A3/10); 755 CONTINUE; A4=10*ALOG14(A4/3)</u> C DIRECTIVITY FEFECTS FOD TDEATMENT	Scep 31		
12180	DO 8615 I=1,15 ; $AJ = (I+1)*10$; $A5=A4$	Stor 22		
12190	IF(AJ.LT.OJ-50) GO TO 800 ; IF(AJ.LT.OJ) GO TO 810	scep 32		
12210	810 E1(I,J) = E1(I,J) + (A5*1,2)	Step 33		
12215	8615 CONTINUE	<u> </u>	•	4
12220	815 CUNTINUE	Step 34		L
16630	CLO RETORN ; END	Deep J4		. <u> </u>

FIGURE A-3(CONCLUDED). PROGRAM LISTING OF REVISED VERSION OF SUBROUTINE EJECTS

```
TO ORIGINAL PROGRAM
                                                                                                                                                                                                                                                                                                                                                                                                                                                                     HTR = HUB-TIP-RATIO
NST= NUMBER OF SIDES TREATED
                                                                                                                                                                                                                                                                                                                              TUDICATES CHANGE
               1122 DATA FFLE /11/

1124 DATA FFLSH /10/

1124 DATA F566.63.88/1168'.2588.3568.3155.4689.5586.6389.6389.

1136.0ATA F566.63.88/1168'.2588.3558.4589.5589.6389.6538.

1136.0ATA F660.1568'.1588'.2588.1355.4489.5586.6389.165285.6588

2280.1586.55.54.54.54.51.55.168.2588.1315.548.57

2280.0TA F670.1568.

2280.0TA F670.1568.

2280.0TA F670.1568.

2280.0TA 6278.71.61.35.11.8.2.35.2.73.44.2.55.8

2280.0TA 6278.71.61.35.11.8.2.35.2.73.44.2.55.8

2280.0TA 6278.71.61.35.12.61.2.34.2.55.45.395144.5.7

2280.0TA 6278.71.61.30.612.30.21.24.55.45.395144.5.7

2280.0TA 6278.71.61.30.612.30.42.94.2.55.45.395144.5.7

2280.0TA 6278.71.61.30.612.30.42.94.2.55.45.395144.5.7

2280.0TA 6278.71.61.30.612.30.62.135.12.55.72.75

2280.0TA 6277.138.72.5.55.381.145.51.72.55.45.75

2280.0TA 6277.138.72.5.55.381.145.51.72.55.45

2280.0TA 6277.135.612.142.95.27.55.951445.5.77

2280.0TA 6277.15

2280.0TA 6277.138.72.5.55.381.145.55.72.55

2280.0TA 6277.15

2280.0TA 6277.17

2290.0TA 6277.17

2290.0TA 62
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            מ××מ
ENGINEERING CORRELATION FOR TASK 3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 ž
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   ××
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  XXXXXX
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   XXXXXX
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             ××
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                XXXXX
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        ××
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  ×

        1143
        1.458.1451

        1150C
        4.1478.481

        1150C
        8.1478.481

        1158
        REAL

        1162
        REAL

        1172
        DATA

        1172
        DATA

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         4286 58X, XX
4286 58X, XX
14386 58X, XX
14486 58X, XX
14486 58X, XX
14686 58X, XX
14686 48X, 41H
XXXX XX
14686 44X, 41H
XXXX XX
14986 44X, 41H
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       xxx
   ¦ Z
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       1496&/48X,41H XX)
1586&/48X,41H X)
1518&/48X,41HXXXX
   ş
                                                                                                                                                                                                                                                                                                                                                                                                                                                                        *
                                                                                                                                                                  *
```

FIGURE A-4. LISTING OF THE REVISED M*S PROGRAM

MINT IS MANTAGE ADDRESS IDENT MANTAGE ADD ADDRESS IDENT MANDE
 266
 MULI-TURE COMMULA ENTY

 261
 MULI-TURE COMMULA ENTY

 261
 MULI-CURE-STRIADSTRIAD

 261
 MULI-CURE-STRIADSTRIAD

 262
 MULI-CURE-STRIADSTRIADSTRIAD

 263
 MULI-CURE-STRIADSTRIADSTRIADSTRIADS

 264
 MULI-CURE-STRIADSTRIADSTRIADSTRIADS

 264
 MULI-CURESTORE COMMULAR ENTRY

 265
 MULI-CURESTORE COMMULAR ENTRY

 264
 MULI-CURESTORE COMMULAR ENTRY

 265
 MULI-CURESTORE COMMULAR ENTRY

 265
 MULI-CURESTORE COMMULAR ENTRY

 266
 MULI-CURESTORE COMPARENCE

 266
 MULI-CURESTORE COMMULAR E

2125 FORMAT(/* MERCED FLOW CONDITIONS*) PRINT 2004.10.18.05.45 2014 FORMAT(* US=*.F10.1.5X,*RHOS=*.F10.4.5X,*DS=*.F10.3.5X, 4.*45**F10.33 888 X2-X2:40 888 X2-X2:40 189 V1-X2-X2-80 189 V1-X2-X2-80 189 V1-V1-X-X2-80 189 V1-V1-X1-X0 189 V1-V1-X1-X0 189 V1-V1-X1-X0 188 F0WATC ROOT2-F18.4) 198 F0WATC ROO X1-X1-X1-V1*CK FOR OTHER POSSIBLE SOLUTIONS <u>0HX=VJ</u> 0HX=(P*B**F*B**,*B*76474)/(14.69597*R5) 11NT 2125 T3-T3*(1+((G8-1)/2)*M**2) T8-T5*(1+((G8-1)/2)*M**2) IF(Y9.GT.4) G0 T0 1515 Calculate Merged Noise C IF 1:5.17.788.3#2) GO TO 935 G8-2.237#8/T5**.#7#271 935_M=VJ/SORT(G8*T5*1716.49) 8 VJ VILINUE 8 85 CONTINUE 8 16 Relit . DID NOT CONVERGE 8 00 TO 9999 8 25 VJ-V1943 8 55.8087(1.273237*45) 8 55.8329.7(1(VJ/U3)**2*A1) VJ=.5 D0 8#5 1=1,5# F2=X#+X1=VJ+X2=VJ==2+VJ==3 F1=X1+2=X2=VJ+3=VJ==2 A1=A5/A3 GR=1.4 3.04.06 2 3.05.08. 33.848 1 331.8C 319.6 3240 3250 3250 3260 2882 3886 3886 168

332 56 K'-1:CALL SUB 372-29:CALL SUB 372-29:CURDE-MAILSONATIONE 372-29:CALL SUB 372-29:CURDE-MAILSONATIONE 472 CALCULATIONS 474
OF FOOR QUALITY

```
#5# 3-3.4.1/1( UJ.1, V.) G0 T0 158/V8-U3.17-T41V8-R3-V8-V8.100 T0 1588
154 70.1120
154 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
155 70.1120
15
```

572.8 34.81 CONTINUE; Y1(J)=Y(J); 34.82 CONTINUE; RETURN
 BB
 BA
 BA

 180
 015×L1*188. BAA
 86. CURVE FIT

 180
 015×L1*188. BAA
 86. CURVE FIT

 286
 408 C1)=(.2841185+.2854683*-12
 206. CU3+0155). 326564135-86

 210
 C13+(C13+0155). -326564135-86
 66

 210
 C13+(C13+0155). -326564135-86
 66

 210
 C13+(C13+0155). -326564135-86
 66

 211
 C13+(C13+0155). -326564135-86
 66

 211
 C13+(C13+0155). -346633728-85
 66

 213
 C13+(C13+0155). -13465337782-13
 26

 214
 C13+(C13+0155). -134633728-13
 26

 214
 C13+(C13+0155). -134633958-76
 26

 214
 C13+(C13+0155). -13463958-76
 27

 215
 C13+(C13+0155). -13463958-76
 26

 216
 C13+(C13+0155). -13463958-76
 26

 216
 C13+(C13+0155). -13463958-76
 26

 216
 C13+(C13+0155). -13463958-76
 26

 216
 C13+(C13+0155). -55566112
 26

 217
 C13+(C13+0155). -5556612
 26

 218 5388 P3-F(J) 6318 GO TO 528 628 518 P3-89-F(J) 6338C 18 P3-89-F(J) 6338C 18 P3-89-F(J) G3=8 D0P=1/(1-V&/A&*COS((AJ-AA)*P1/188)) IFH FUEC2.2.)41=4/SIN((AJ-AA)*P1/188) 0-28*(Alogis(L1/D1)) 0-28*(50.8.) 60 TO 478 6878 | [[[]].1.2.8) GO TO 488 6878 | [[]].1.2.8) GO TO 488 6898 | [[ALT./12].1.283] GO TO 488 6898 | [[ALT.11].184.8) GO TO 488 6188 DIS-L1*188.6/ALT G1=15.44841+.8881*(D1S-4888) 478 D0 678 J=1.24 1F(F(J).GT.4888) GO TO 518 P3=F(J) 5958 CU... 59684, T.M. V 5978 COMM D1S=L1 611.BC 040 6.06.0 6.07.0 6.08.0 6.08.0 9 9 9 9 9 9 2.8

OMARIAN PAGE IS OF POOR QUALITY

FIGURE A-4 (CONTINUED). LISTING OF THE REVISED M*S PROGRAM

strain stra

_

OF FOUR QUALITY

FIGURE A-4 (CONTINUED). LISTING OF THE REVISED M*S PROGRAM

24)

, KK(24,5), C(15,5), O(28) (15), RVE(28). I .NFLT

 99388
 15. 9195
 99455
 15. 241
 13. 241
 13. 244
 15. 241

 99388
 18. 5495
 95455
 15. 241
 13. 241
 15. 241
 15. 241

 99388
 18. 5495
 15. 54566
 14. 256
 14. 737891
 15. 54565

 99388
 18. 5495
 14. 266
 14. 449
 17. 241
 187 257

 99388
 18. 5455
 11. 111
 187 257
 15. 11456
 14. 1429

 99388
 18. 5455
 14. 1449
 14. 111
 147 57
 15. 14295
 14. 1429

 99388
 18. 5456
 11. 111
 187 257
 15. 14564
 14. 1429
 14. 1429
 14. 1429
 14. 1429
 14. 1429
 14. 1429
 14. 1429
 14. 1429
 14. 1429
 14. 1429
 14. 1429
 14. 1429
 14. 1429
 14. 1429
 14. 1429
 14. 1429
 14. 1429
 14. 1429
 14. 1429
 14. 1429
 14. 1429
 14. 1429
 14. 1429
 14. 1429
 14. 1429
 14. 1429
 14. 1429
 14. 1429
 14. 1429
 14. 1429
 14. 1429
 14. 1429
 14. 1429
 14. 1429
 14. 1429
 14. 1429
 14. 1429
 < -158,7574,-323,1343, -131,8188,-88,57726 ,-1Ø8.Ø8Ø6,-262.8197 3,24),X(24),F(24),E(24),S(99184 149 ŝ

OTMOSTER, REALE IS OF FOUR QUALITY

Hist Inversion Invers

This Birier subburine and alory THIS ENTIRE SUBROUTINE WAS ADDED 13380 COMMON/CM1/L(9,24),X(24),F(24),E(24),S(15,24),KK(24,5),C(15.5),O(28), 149284 R(149),RX(49),F(28),R(15,24),V(124),V(124),C(1(15),RVE(28), 149484 S1(24),G(2,24),C2(15,2),T(28),O(28),V(54),V(3),E(115,24) 14968 COMMON /CM2/V9,RAGWAR K1 V9,T8,T5,R7,P1,29,D0,A,H,U,C5,A4 14968 COMMON /CM2/V9,RAGWAR K1 V9,T8,T5,R7,P1,29,D0,A,H,U,C5,A4 14988 COMMON /CM2/V9,RAGWAR (19,26,A7,S6,P9,R9,A1T,SL,AM1,NFLT 15928C 14886 K 14886 SUBROUTIN - AEROSUMIVJINNER, TINNER, AINNER, VIMMER, VJOUTER, TTOVIER, K 148285 AOUTER, VOUTER, PANB, TANB, 2NJM) 1458 M. ((TT/TJ)-1.8)*(2.8/(GAMMA-1.8)))**8.5 14528 TF(MJ-1.8)38/48/48 14528 TF(MJ-1.8)38/48/48 14568 GOTO G# 14568 GOTO G# 14688 C=(GAMMA-1.8)/2.8 14688 C=(GAMMA-1.8)/2.8 14688 C=(GAMMA-1.8)/2.8 14688 C=(GAMMA-1.8)/2.8 14688 V=NUND(T-1.8)/2.8 14688 V=NUND(T-1.8)/2.8 14688 V=NUND(T-1.8)/2.8 14780 GF C=VJ3GISA 14780 GF C=VJ3GISA 14780 CF C=VJ3CISA 14 CAMMA-1.482 D0 13-1:58 C5-GAMMA-(GAMMA-1.8) T3-T12(CR**(1./C5)) GAMOLD-CAMMA CAMMA-GAMULD).LT.1.8E-5) GOTO 28 If GAMMA-GAMULD).LT.1.8E-5) GOTO 28 If CAMESCAMMA-GAMOLD).LT.1.8E-5) GOTO 28 28 VJ=SQRT((TT-TJ)*(2.*GISA*RISA*C5)) IF(TT.EQ.TJ)VJ=0.001 RHOJET=(PAMB*TISA*RHOISA)/(PISA*TJ) COMMON /QM/ M.OJ 5.0 RETURN END 14868 CC 14688C 14748

Charles (N. 1994) 2 18 Of POLA CULLITY

LISTING OF THE REVISED M*S PROGRAM

FIGURE A-4 (CONTINUED).

 5948
 COMHON /CH3/S.CASEID.E3.PM.(20)

 5950
 COMHON /CH4/ CASE

 5128
 CISA-32.174

 5128
 CISA-32.174

 5128
 FISA-14.67

 5228
 TH4-TTINKER-VINKER+TOUTER *VOUTER)/(VINKER+VOUTER)

 5228
 TH4-TTINKER-VINKER+TOUTER *VOUTER)/(VINKER+VOUTER)

 5228
 TTA-TAINAREADUTER

 5228
 TTA-TAINAREADUTER

 5228
 TTA-TAINAREADUTER

 5228
 TTA-TAINAREADUTER

 5228
 TTA-TAINAREADUTER

 5228
 TTA-TAINAREADUTER

 5288
 TTA-TAINAREADUTER

 5288
 TTA-TAINAREADUTER

 5288
 TTA-TAINAREADUTER

 5288
 TTA-TAINAREADUTER

 5288
 TTA-TAINAREADUTER

 5288</td

APPENDIX B

GENERAL ELECTRIC LASER VELOCIMETER SYSTEM

General Arrangement

The laser velocimeter (LV) available for use during this program is a system developed under a USAF/DOT-sponsored program and reported in detail in Reference B-1. The basic optics system is a differential Doppler, backscatter, single-package arrangement that has the proven feature of ruggedness for the severe environments encountered in close proximity to high velocity, high temperature jets. Figure 3-5 of Section 3.1.4 shows a photograph of the LV system in the General Electric Anechoic Test Facility. The dimensions of the control volume are 0.636 cm (0.25 inch) for the major axis and 0.518 cm (0.020 inch) for the minor axis. The range of the LV control volume from the laser hardware is 2.16 m (85.0 inches). The three steering mirrors and the beam splitter are mounted on adjustable supports, all of the same aluminum alloy, which minimizes temperature-alignment problems.

LV Actuator and Seeding

A remotely actuated platform is used which has three axes: vertical, horizontal, and axial. Travel capabilities are 0.813 m (32 inches), 0.813 m (32 inches) and 5.79 m (228 inches), respectively. Resolution is \pm .16 cm (\pm 1/16 inch) for each axis except for the last 5.28 m (208 inches) of axial travel, which hs a resolution of \pm .32 cm (\pm 1/8 inch).

Seeding is by injection of aluminum oxide (Al_2O_3) powder, nominal 1-micron diameter, into the supply air to the burner and into the region of the nozzle to seed the entrained air. The powder-feeder equipment used is described in Reference B-1, except that the fluidized bed column supply air is heated to about 394.1°K (250° F) to prevent powder aggregation by moisture absorption.

Signal Processing and Recording

The LV signal processor used is a direct-counter (time-domain) type similar to that reported in Reference B-1, but with improvements. These improvements result in a lowered rate of false validations and improved linearity and resolution. Turbulent-velocity probability distributions (histograms) are recorded by a 256-channel NS633 pulse-height analyzer. All the data acquired from the laser unit is transmitted to a minicomputer system which stores the data on diskettes and performs all the necessary data reduction functions.

The processing capabilities of the General Electric LV system are as follows:

- o Velocity range 10.7 to 1,524 mps (35 to 5,000 fps)
- Random error for single particle accuracy (error associated with system inaccuracies such as fringe spacing, linearity, stability, burst noise) - 0.75%

- o Bias error for mean velocity 0.5%
- False data rejection capability (possibility of accepting bad data)
 -<0.0002%.

The system uses a 16-fringe control volume where all of the eight center fringes are used in the data acceptance/rejection testing.

LV Data Reduction Procedures

The concept of using LV measurements for obtaining the mean and turbulent velocity profiles may be described as follows: Two beams of monochromatic light intersect at a point in space and set up a fringe pattern of known spacing (Figure B-1). The flow is seeded with small particles which pass through the measuring volume. The light scattered from the particles is collected, and the laser signal processor measures the time it takes for the particles to pass through each fringe. Knowing the distance and time for each validated particle enables the construction of the usual histogram (see insert on Figure B-1). Then by statistical techniques, the mean value (which corresponds to the mean velocity) and the standard deviation (which corresponds to the turbulent velocity) are constructed. The method of calculation used to obtain the mean and turbulent velocities from LV measurements is described below.

Histogram

A histogram is an estimate of the first-order probability density of the amplitude of a given sample. To obtain a velocity histogram, the time-dependent LV velocity, V(t), is accumulated and divided into classes bounded by values of velocity increments V_i . For each independent sample of velocity, a class interval is formed such that $V_i \leq V(t) \leq V_{i+1}$. During a measurement period, k_i number of velocity samples are accumulated in each sample class V_i . From the total sample of measured velocity points, the histogram is constructed as shown in Figure B-1. The mean velocity and turbulent velocity derived from the histogram are obtained as described below.

Mean Velocity

The mean velocity of the jet, V_j , obtained from the discrete velocity sample is calculated by:

$$\overline{v}_{j} = \sum_{All \ Class} \left(\frac{v_{i+1} + v_{i}}{2} \right) \frac{k_{i}}{N}$$

Intervals

where

 $\frac{V_{i+1} + V_i}{2}$ is the value of the sampled axial velocity component at the $\frac{V_{i+1} + V_i}{2}$ center of the class interval

k; is the number of velocity samples in the class interval

N is the total number of velocity samples (= $\leq k_i$) in the histogram

FIGURE B-1. SCHEMATIC OF LASER VELOCITY MEASUREMENTS
Turbulent Velocity

To obtain the turbulent velocity, v', from the sampled data contained in the histogram, the standard square root of the statistical variance is performed. This calculation is performed using the following equation:

Statistical Errors for LV Mean and Turbulent Velocity Measurements

With any large data sample, as obtained through the collection of velocity samples in an LV histogram, guidelines for estimating the accuracy of each measurement are required. Table B-1 provides estimates of the percent error obtained for a mean velocity or turbulent velocity LV measurement.

Table B-1 lists the percent error for a 95% confidence statement of mean velocity measurement as a function of the total number, N, of velocity samples contained in the histogram and the turbulence level, v'/V_j . Table B-1 also gives the percent error for a 95% confidence statement of the turbulent velocity estimate as a function of N, the total number of velocity samples. As can be seen from Table B-1, a fairly small sample of velocity measurements is required to obtain a good estimate of the mean velocity. For the turbulent velocity, the number of data samples required for a good estimate increases substantially. The usual number of samples obtained with the General Electric LV during a routine data-taking measurement performed during this program is approximately 1,000 samples. For a simple and quick diagnostic-type information, this amount of samples is sufficient.

LV Traverses for Mean Velocity Profiles

In addition to the above described stationary mode of LV operation for the determination of mean and turbulent velocities at discrete points, the LV can be operated also in a traversing mode to obtain continuous profiles of mean velocities. These traverses are possible along any of the three LV axes. During these traverses, the data describing the velocity levels and the location of the measurement volume are recorded continuously on an X-Y plotter. The traversing speeds are adjusted as well as traverses repeated for obtaining well-defined mean velocity profiles. While exact sampling rates during these traverses are not recorded in any way, it is felt that an estimated rate of approximately 250 samples per inch of traverse is needed for a well-defined smooth profile.

LV System for Minihistograms

The LV System has been modified to have the following additional features in a traversing mode:

A modified slant traverse mechanism that enables LV traverses to be 0 made along an axis that is other than truly vertical (i.e., parallel to the plug surface) of an annular plug nozzle.

TABLE B-1. ESTIMATES OF ERROR IN MEAN AND TURBULENT VELOCITIES MEASURED BY LV

N		v' /v	j	
	0.2	0.1	0.05	0.025
10	141	7	3.5	1.76
20	9.3	4.7	2.3	1.20
30	7.4	3.7	1.9	0.93
40	6.3	3.2	1.6	0.80
60	5.0	2.6	1.3	0.65
120	3.6	1.8	0.9	0.45

(a) Estimated Percent Error in the LV Measurement of Mean Velocity with 95% Confidence.

(Ъ)	Estimated Percent Error for LV
	Turbulent Velocity Measurements
	with 95% Confidence.

N	Percent Error
20	31.5
40	21.8
60	17.8
120	12.6
240	9.12
480	6.45
96 0	4.56
50 00	2.0
25000	0.89

- -

- A fine traverse mechanism (10 revolutions on a potentiometer for 33 inches of total travel; usable fine traverse distance is 20 inches) that is available during both the slant and vertical movements. This drive system allows for more smoothly controlled vertical traverses required for obtaining minihistograms.
- Modified software that enables mean velocity data to be obtained during any of the traverses (that is, axial or vertical, radial and slant) from minihistograms in the form of plots of mean velocity data points plotted as a function of their traverse location. During the current program, the mean velocity data measured with the minihistograms have been obtained from the acceptable data samples set to 20. This number of acceptable samples yields an estimated 5% error in the LV mean velocity measurements with a statistical 95% confidence level within a given flow regime having a turbulent velocity ratio $(v'/\overline{V_1})$ of 10%.

References

B-1. Knott, P.R., "Supersonic Jet Exhaust Noise Investigation", Volume I, Summary Report, AFAPL-TR-76-68, July 1976.

APPENDIX C

MEASURED SUPPRESSIONS FROM THE EJECTOR

CASE	CONFIGURATION	PAGE NUMBER
TE1-TE2	SHORT HARDWALL SHROUD SUPPRESSION	
CBS ITS TOS CBF ITF TOF	Cutback, Static Intermediate, Static Take-off, Static Cutback, Flight (at 400 fps) Intermediate, Flight (at 400 fps) Take-off, Flight (at 400 fps)	C1 C2 C3 C4 C5 C6
<u>TE1-TE10</u>	LONG HARDWALL SHROUD SUPPRESSION	
CBS ITS TOS CBF ITF TOF	Cutback, Static Intermediate, Static Take-off, Static Cutback, Flight (at 400 fps) Intermediate, Flight (at 400 fps) Take-off, Flight (at 400 fps)	C7 C8 C9 C10 C11 C12
TE2-TE3	SHORT, TREATED DESIGN #2, OUTER WALL ONLY	
CBS ITS TOS CBF ITF TOF	Cutback, Static Intermediate, Static Take-off, Static Cutback, Flight (at 400 fps) Intermediate, Flight (at 400 fps) Take-off, Flight (at 400 fps)	C13 C14 C15 C16 C17 C18
TE2-TE4	SHORT, TREATED DESIGN #2, BOTH WALLS	
CBS ITS TOS CBF ITF TOF	Cutback, Static Intermediate, Static Take-off, Static Cutback, Flight (at 400 fps) Intermediate, Flight (at 400 fps) Take-off, Flight (at 400 fps)	C19 C20 C21 C22 C23 C24
<u>TE7 – TE10</u>	LONG, TREATED DESIGN #2, OUTER WALL	
CBS ITS TOS CBF ITF TOF	Cutback, Static Intermediate, Static Take-off, Static Cutback, Flight (at 400 fps) Intermediate, Flight (at 400 fps) Take-off Flight (at 400 fps)	C25 C26 C27 C28 C29 C30

CASE	CONFIGURATION								
<u>TE8 - TE10</u>	LONG, TREATED DESIGN #2, OUTER AND INNER WALLS								
CBS	Cutback, Static	C31							
ITS	Intermediate, Static	C32							
TOS	Take-off, Static	C33							
CBF	Cutback, Flight (at 400 fps)	C34							
ITF	Intermediate, Flight (at 400 fps)	C35							
TOF	Take-off, Flight (at 400 fps)	C36							
TE2-TE5	SHORT, TREATED DESIGN #1, OUTER AND INNER WALLS								
CBS	Cutback, Static	C37							
ITS	Intermediate, Static	C38							
TOS	Take-off, Static	C39							
CBF	Cutback, Flight (at 400 fps)	C40							
ITF	Intermediate, Flight (at 400 fps)	C41							
TOF	Take-off, Flight (at 400 fps)	C42							
TE2-TE9	SAME AS TE2-TE5, BUT WITH CLOSE SPACING								
CBS	Cutback, Static	C43							
ITS	Intermediate, Static	C44							
TOS	Take-off, Static	C45							
CBF	Cutback, Flight (at 400 fps)	C46							
ITF	Intermediate, Flight (at 400 fps)	C47							
TOF	Take-off, Flight (at 400 fps)	C48							

5JB86004

_

J

1111

IDENTIFICATION

X 1 ØØ35 X 2 ØØ35	
83F-ZER-1003 83F-ZER-2003	
(1)	
NPUT	

CBS TE1-TE2 XØ1Ø21 OUTPUT

ANGLES MEASURED FROM INLET, DEGREES

・ スタダダダダーー・ ダース ろうろう オーマー インクレイ マー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		
ら いちーーオーでもののすののららうメタークアのです		
AU11111104000000000000000000000000000000		
	ສ. ສ. ສ. ສ. ສ. ສ. ສ. ສ. ສ. ສ. ສ. ສ. ສ. ສ	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3.3 8.7 8.7 11.1	ORR Tr F LB
	4.7 8.3 8.3 10.8	AVG CC THRUS 7.1E 31
	3.7 6.5 7.8	к 0 ХРМ −1
ー ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	• • • • • • • • • • • •	AVG COF SPEEI 1E 31 F
ー ー ー ー ー クローーーーーーーーーーーーーーーーーーーーーーーーーーー	9.99 9.99 9.99 9.99 9.99 9.99 9.99 9.9	Е - Ø.
ー ダーダーレーーこころすちちろすろすなすすち ダーダーフーーこころすちらちろするすすすか。 ダーダーフーーこころする	0.00.4 0.00.4 0.0000	IC RANG
り の ちめーダダーーここれようよようううちょうかん ひんしダー ひんしかん ちょうしょうしょう ひょうしょう ひょうしょう ひょうしょう ひょうしょう ひょう ひょう ひょう ひょう ひょう ひょう ひょう ひょう ひょう ひ		100057
$\mathbf{\omega}$ $\mathbf{\omega}$	5554 5.77 8.77	₹ _H⊃
マ ダーミーーーここのするちららららののののののの 「・・・・・・・・・・・・・・・・・・・・・・・・・・・	4000 4000	DCATION ANECH
ちが しかがこ111134454656877677	8004 800 800 800 800 800 800 800 800 800	L0 C41
ひ ダーーダダクイネマウマキャラククのタイトのの ダー・マグクション・マック・マックの ダー・クロック・マック・マック・マック クロック・マック・マック・マック・マック	4.6 6.7 6.3	
オ ダーーダダダーーーーろうすちすすらららすうろ ダーダがちらららがなからうろうのなった。	4042 48	
96] 7 7 7 7 7 7 7 7 7 7 7 7 7	OASPL PNL PNLT DBA	

C TEST CASE FOR TREATED EJECTOR TE&1 VS TE&2

Ø2/27/86 7.936 PAGE 3

DELTA, SPL(1) - SPL(2)

IDENTIFICATION

X1,0055 X20055	XØ1Ø21
83F-ZER-1005 83F-ZER-2005	ITS TE1-TE2
(1)	
INPUT	ουτρυτ

ANGLES MEASURED FROM INLET, DEGREES

ב יי	Λ • ΛダダダダダーーーーダーーーΖΝΝΖΝΒΦΦΦ • • • • • • • • • • • • • • • • • •		
277	ダーダダダダダダーころすらららっちってァット、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、		
160.0	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	- Ø. 2 1.4 3.6	
150.0		.1666 .1666 5.166	RR LB
140.0		2.4 5.1 6.3 6.6	AVG CC THRUS 1.1E 31
130.0	ー のタータダダダーこすら775577790 、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、	0.440 0.60 0.00 0.00	P M
20.01	ー ののののかしのの12440005500のののののののののののののののののののののののののののののの	5.4 7.5 1.5	VG COR SPEED E 31 R
10.01	ダダダダダーダーーこころ5555555555555555555555555555	40004 4004	Е - Ø.1
00.01	。 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・		C RANG
1 0.06			COUSTI 2488.8
80.0	<i>88-8</i>	555 57 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	CH A
70.0	ダダダダーダーーころう445788767999	4.0 6.9 6.9 8 6.9 8 7 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	CATION
60.0	$\frac{1}{2}$	4001 	C41
50.0		5.5 7.55 8.2	
40.0	・ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	0.4 C C C C C C C C C C C C C C C C C C C	
	365 265 265 265 265 265 265 265 2	63888 888888 045 PL PNL DBA DBA	

TEST CASE FOR TREATED EJECTOR TEM1 VS TEM2

IDENTIFICATION

X1.0095	X 2 Ø Ø 9 5	
83F-ZER-1009	83F-ZER-2009	
<u>:</u>	(2)	
INPUT		

XØ1Ø21 TOS TE1-TE2 OUTPUT

ANGLES MEASURED FROM INLET, DEGREES

•	
8	
<u> </u>	
-	
ବ	
-	
ସ	
ഥ	
_	
~	
-	
. *	
8	
•	
-	
୍ୟ	
1	
्य	
m	
<u> </u>	
ø	
_	
. •	
0	
- 21	
1	
-	
୍ୟ	
~	
9	
-	
~	
ੁਕ	
3	
Ø. 6	
30.6	
00.6	
100.6	
100.6	
1 100.6	
0 100.6	
.0 100.6	
0.0 100.6	
10.0 100.0	
9.001 0.00	
9.001 0.00	
9.00 i 00.00	
r 9.00.10 100.0	
a 90.0 100.0	
. Ø 90.0 100.K	
1.0 0 100.00 100.0	
8.8 98.8 188.6	
8.00 10.00 100.0	
80.0 90.0 100.0	
8.00 1 0.00 100.00 100.00	
8.0.0 9.0.0 100.0	
g 8,8,8,8,9,8,8,1,8,8,1,8,8,1,8,8,1,8,8,1,8,8,1,8,1,8,1,8,1,8,1,8,1,8,1,8,1,8,1,8,1,8,1,8,1,8,1,8,1,8,1,8,1,8,1	
8 88.8 98.8 98.8	
.00 80.00 90.00 100.0	
0.0 80.0 90.0 100.0	
70.0 80.0 90.0 100.0	
7.0.0 80.0 90.0 100.0	
70.0 80.0 90.0	
70.0 80.0 90.0 100.0	
1 70.0 80.0 90.0 90.0 100.0	
x 7x,x 8x,x 9x,x 1xx,	
.00 7.00.00 8.00.00 9.00 1.00.0	
7.00 70.00 80.00 90.00 100.0	
3.00 70.00 80.00 90.00 100.0	
60.00 70.00 80.00 90.00 100.0	
60.0 70.0 80.0 90.0 100.0	
6.0.0 7.0.0 8.0.0 9.0.0 100.0	
1 6.0.0 7.0.0 8.0.0 9.0.0 1.00.1	
Ø 60.0 70.0 80.0 90.0 100.0	
.00 6.00.00 7.00.00 8.00.00 1.00.0	
<u>7.06 6.06.06 7.06.06 8.06.06 9.06 1.06.6</u>	
1.00.00 6.00.00 7.00.00 8.00.00 1.00.0	
50.00 60.00 70.00 800.00 90.00 100.0	
50.0 60.0 70.0 80.0 90.0 100.0	
50.0 60.0 70.0 80.0 90.0 J00.0	
r 5ø.ø 6ø.ø 7ø.ø 8ø.ø 9ø.ø 1øø.k	
<u></u>	
.00 50.00 60.00 70.00 80.00 90.00 100.0	
<u>.00 50.00 60.00 70.00 80.00 90.00 100.0</u>	
10.00 50.00 60.00 70.00 80.00 90.00 100.0	

	PVL	-0.2	-0%.5	- Ø. 8	-0.8	-1.9	-2.2	-2.5	-2.4	-2.2	-1.1	-Ø.1	Ø.6	1.5	2.2	2.9	2.8	3.0	6. <		ο σ • σ		5.0	י ע י י	5.4													
	s.D.	2.5	0.4	0.4	0.7	1.3	1.0	1.1	1.3	1.2	1.1	1.3	1.1	0.8	1.8	1.8	1.7	6.9	1.1		ια		2.0	-	IE 19													
	AVG	1.0	-0.3	-0.7	- 0.7	-1.7	-1.7	-1.6	-1.8	-1.5	-0.3	0.1	Ø.5	1.5	2.4	2.8	2.5	2.7	2.9	с.	2	V V	L . 4	יי ע	3.7.													
160.0	•	-1.7	-0.7	-1.5	-2.5	-3.5	-3.7	-4.0	-3.5	-4.5	-1.7	-2.0	-1.2	Ø.5	Ø.5	1.5	2.9 0	а. З	3.4	3.4	2 V	•										- 2 -	-2.5	-2.5	-2.8			
150.0		-06.3	-0.1	-0.6	-0.3	-2.1	-2.6	-2.8	-3.6	-2.6	-2.1	-1.1	-1.1	-00.6	-0.8	0.7	-0.5	2.5	с. С. С.		N C											- 1 -	-1.6	-0.5	-1.7		RR	۰LB
140.0		Ø.3	-0.7	-0.5	-06.2	-0.5	-1.7	-2.7	-2.2	-2.5	-1.7	Ø.5	Ø.8	1.5	2.0	1.8	2.6	2.8	3.6	4.0	2	2.9	7.0	2								- 0, 7	- 0 - 3	- 0. 2	0.2		AVG CO THRUS	1. IE 31
130.0		-0.5	-0.7	-0.2	0.0	-1.7	-06.7	-1.5	-1.5	-1.2	-1.0	-0.5	0.5	1.5	1.6	2.1	1.1	2.1	2.7	. n	▼ . C	4.6	4.6	 	•							л Ц	Ø.Ø	0.0	Ø.5		<u>م</u>	PM0
120.0		-0.5	-0.2	-1.0	-0.7	-0.5	-01.2	-1.2	-1.5	-2.0	-06.7	-0.2	Ø.8	2.3	2.3	2.1	2.1	3.4	3.4	4.2	1 C	200	2	7.5	2							- Ø	$\frac{1}{1}$	1.0	1.2		VG COR	E 31 R
110.0		4.8	Ø.2	-1.1	-01.3	-06.3	-06.2	-06.3	-06.1	-1.4	-0.2	-0.4	1.2	1.6	Ø.5	1.4	2.2	2.6	1.4	2.5		5			•							<u>д</u> Г	1.4	1.4	1.1		∢ 4	-0.1
100.0		7.3	-0.2	-1.0	-01.5	0.0	-1.0	-1.2	-1.2	-0.7	0.8	0.8	1.5	2.3	1.8	2.8	3.3	а. з Э. З	2.1	9 7	4.0	4.4	4.4	- -								1.4	2.3	2.3	2.2		C RANG	FT SL
0.00		2.8	-0.5	-0.7	-0.7	-1.5	-2.2	-1.7	0.0	-1.0	Ø.5	1.0	1.0	1.3	2.3	2.6	с. С.	с. С.	2.4	2.7	9	20 20 20		N N	3.7							1.1	2.1	2.6	2.3		COUST	2400.0
80.0		-0.5	-06.2	0.0	0.0	-00.5	-1.7	-06.7	0.0	-01.5	1.0	1.8	2.3	2.0	з. З	4.3	5.6	з.6	3.4	4.2		4.4	6.4		•							5	. 4 . 6	. 4	3.7		Ø	CH 2
70.0		0.2	-0.4	-1.3	-0.8	-1.5	-2.0	-1.0	-1.0	-0.5	0.7	1.3	1.7	1.5	4.3	6.8	5.1	а. 6	4.8	4.8	6.9	5	8.8	6 1								с Ц	 	9 9 9 9 6 9 6	4.4		NUTION	ANECH
60.0		Ø.5	-0.2	-0.5	-06.2	-2.7	-2.5	-1.5	-1.7	-1.0	0.3	1.3	Ø.5	Ø.8	4.5	5.1	2.3	2.6	3.6			8 V	4.5	ט ני ייני	•							ט -	2		3.1		č	C41
50.0		1.0	0.8	-01.2	-1.2	-3.7	-1.7	Ø.3	-3.2	Ø.3	Ø.8	Ø.8	-0.2	2.0	5.5	4.3	2.3	2.6	3.6	4.2	4 1 7	• • •	5.0	2								- ~	10		2.9	 -		
40.0		0.0	-0.2	-0.7	-1.2	-3.2	-1.7	-2.0	-3.2	-2.0	-0.2	-2.2	-1.2	2.5	3.Ø	Ø.5	ø.3	0.1	0.6	- 0 -		2 (C 	Ø. 4	2								- 0 -	- 2 -	ית ארי ית	ø. 6	1		
	FREQ	5.0	63	8.0	100	125	1600	2,00,0	250	315	4.01.0	500	63.0	8,0,0	1000	125.00	1600	2.88.0	2500	3150	AGGA	5000	5300 6300	0000	18888	12500	16000	20000 25000	31500	50000	630000 800000			PNI T	DBA			

TEST CASE FOR TREATED EJECTOR TEX1 VS TEX2

С3

16214ES/FSDR35/DELTA

• • PAGE 7.936 £2/27/86

DELTA, SPL(1) - SPL(2)

IDENTIFICATION

X 1 ØØ45 X 2 ØØ45 (1) 83F-400-1004 (2) 83F-400-2004 INPUT

XØ1Ø21 CBF TE1-TE2 OUTPUT

ANGLES MEASURED FROM INLET, DEGREES

8 110 0 150 6 120 Я or 1 or or 1 1 or or 1 2 or 20 2 80 2 2 2 Ş

	ž			-	2	2	3	2	2			2	<u> </u>	2	2	<u> </u>	2		ž	2	3	3												
	۰.	Ċ		-	Q	~	-	Q	Q	_	()		-	-	~	.,	ч	111		ω.	œ	G	0	(*)4										
		~	~		~	.0	~	_	~	~	~	~		~	~	_	"	~	~	_		~		~1										
	ġ	2		<u> </u>	5	2	2.	3	2	3	Ξ	_	~	~					3.	2														
	Ś	1			4		ÿ				•••	•••				.,																		
	/ n		~	_	~	~	~	-	~	~	~			~	~	~.	_		~ 1			_		~										
	ž			2	5	2	2		2	2		~	ž	_	-	2	2	2	2	2	7													
	٩	(.)		-	Q	-	Q	Q	g	_	()		4	7	~	ч	Δ,	ω.				G		(*)										
*		_	_	_	_	~	_	~				~			~	~		~ .		~										~				
7. 6					3	2		2		2	2	_					2	-	2	2	-									ц Ц	100		-	
58		1	ĩ	ĩ	1	9	8	ĩ	ï	Î	ĩ	-		ц,	ω.	œ	ω	ω	10	18	ω									9	i m	e	ষ	
-				~					_	_		_	~	_	~	~						_											_	
<u>.</u>		2	-	<u>م</u>	3		<u>۳</u>			5	2	7	3	<u>.</u>	ŝ	<u>.</u>	م			4	-	3								-	്റ	ц,	<u>ۍ</u>	
5,0		Q	-	Q	Q	-	Q	ĩ	7	9		T		ω	თ	σ	1.0	9	Ξ	Ξ	Ξ	Ξ								C.		~	~	. на В
		_		-	_			_			_			_	_	_																		an ST →
3		2		9	ى د	~	٦.	<u>ت</u>	3		5	-		<u> </u>	<u>.</u>	<u> </u>		<u>.</u>	5	٦.	~									- -		<u>с</u>	с.	0 D M
4.0		Ø	-	-	Q	ო	1	Q	Q	-	4	٥	œ	œ	თ	თ	ω	10	11	1	-	œ	Q							Ā	~	~	œ	1 A G
																																		<u>ه</u> ک
9		7	<u></u> .	•4	4	٢.	œ,	4.	۰.	Ŀ.	ر	ø	.	.	e.	ን	2	9	5	Ξ.	4.	æ.	9							<u>۲</u>		-	<u>۲</u>	1
3.0		90	2	2	Ø	4	1	2	-	ო	ഹ	و	ω	æ	ω	~	ω	σ	1.0	1.0	ნ	~	ڡ							LC.	~	2	7	Σ
-																																		* 0 * 4
ø.		ø	9	ω.	4.	9.	ŝ	2	ø	٢.	. و	4.	9.	4.	?	4.	ر	æ.	ω.	4.		9.	9.	:2						5	٩	<u>د</u>	ч.	L EC
2.0		7	Ø	Ø	0	2	Ø	Ø	Ø	0	2	2	ო	ო	4	4	ഹ	ഹ	ω	ω	~	و	4	-						<u>در</u>	4	4	4	ີ້ຄື
-																																		Ъ Ш Ч
8		r.	-	-	8	-	<u>ю</u>	ς.	s.	ς.	-	~	ø	ø	~	-	ົ	وە	9.	ო	ŝ	~	ۍ ا	N.						2	! -:	-	9.	
10		Ø	8	Ø	-	Ø	-	7	Ø	8	0	4	2	2	-	2	2	4	4	ഹ	ഹ	ഹ	с ,	-						~	1 M	ო	2	7
Ξ			•					•																										щ
ø		ດ	m	e	œ	ŝ	-	'n	-	4	4	-	ف	~	2	~	~	ە	2	-	თ	ອ	2	œ						α	~	~	2	SI
20		ف	2	0		8		8		ġ		2	¢,	2	¢,	N	'n	4	4	'n	ഹ	ທ່	ភ្	m.						~	i m	e	'n	3 F
16										•																								<u>్</u> ట్
8		ω	e	σ	-	ω	2	ŝ	2	ف	2	4	~	~	2	9	ø	8	8	σ	2	ഹ		ס						LC.	8	0	8	1.8
8		ഹ	8	ø	-	ø	ø	ġ	-	-	e,	2	2	2	2	2	с	2	с	4	4	ഹ	m	Ň						~	ი	с.	Ň	
οı			1	•	'	'	1																											50
8		2	. –	ø	ო	~	Ø	0	ω	4	თ	σ	2	~	2	4	ഹ	2	ഹ		ى	ø	~	Ø						ι c	ი თ	m	ъ	٩
ø.		8.	8	-	ø.		-	-	-		т. т	с.	4.	с.	ო	~	4.	4.	ы. С	۲.	<u>ن</u>	ف	ы. С	4						ſ	•	4	т.	_
8																																		CH
8		σ	6	ە ا	4	Ø	ო	~	-	ഗ	œ	2	4	8	ø	~	-	ഹ	ø	თ	ഹ		و	و						Ľ	ი	•	9	No 1
8.		1	8		б.	ø.	Ξ.	б.	-	Ξ.	~	т. т	т.		т. т	Ξ.	m	4.	م	9	7.	ف	8.	~						ć	, 4	4	3	EC
~		-	•			1																												
8		8	2	9	2	2			ო	~	ø	~	~	6	8	ო	8	ω	ഹ	-	4	ø	e	ហ						វ	<u>م</u> د	1	6	2-
8		1.		6		<u></u> .	Γ.	<u></u> .	<u>ه</u>	-	: m	~.	~	: m	~.				س	ف	س	с С	ف	م						0		 	N.	4
ġ			1	1	1	Ŧ	I	•																										_
8			. u		-	റ	ო	8	_	ച	ø	ø	~	8	œ	ო	м	œ	~	œ	Б	~	ო								• 00) co	5	
م		4.				8	-			2	7		-	7	~	~	m	-												-			e e e e e e e e e e e e e e e e e e e	
ភ្ល		-		-		-	,		.,		•	_,		-	.,		.,	-	-	-		_	_										••	
ř		۶.				~	~	~	~			~	~	×		~	~	~		~	~									*	۰- د	- م		
Υ.Υ		3				1.			2	2	2	2	2	3				2		3										-		~		
4 6		-	,		,	1	-			4	4	ų)	t Li	رى ا	رى ا	()		4												•	. 1			
	g	9	10	e e	8	S	8	10	20	ഹ	10	20	ğ	10	10	20	Ø	81	90	0	3.0	96	3.0	9.0	20	3.0	200	20	3.0	-	- -	i H	N.	
	2	- 43	, uc	, 00	16	1		26	2	ι Π	46	36	ö	3,8	96	2	66	9.6	5.6		0.6	Ø	33	3.01	52	1015	л Я С	101	3.01	0	į	Ż	0	
	u.														-		-	5	- N	- en	4	μJ	ų,	200	12	20	:22	<u> </u>	500	- 2	5	a	•	

364

TEST CASE FOR TREATED EJECTOR TEØ1 VS TEØ2

LOCATION C41 ANECH CH

IDENTIFICATION

X10065 X20065	
83F - 4 ØØ- 1ØØ6 83F - 4 ØØ- 2ØØ6	
(1)	
INPUT	

XØ1Ø21 ITF TE1-TE2 OUTPUT

ANGLES MEASURED FROM INLET, DEGREES

1	s.D.		•••	2.4	1.0	6 .0	<i>م</i>	200		2 m 2 m		· ·	4.	1.1	1.9	2.6	2.9	2.6	2.2	- ~	• • • •	21	2.7	2.8	1.9	1.7	2.5															
	AVG	с С		2.1	1.4	1.1	-	10	2-			9 C	0 1 1	3.8	4.9	4.8	6.2	5.6	6.3	ς α		\. 0	8.4	7.4	7.4	6.4	6.2															
160.0		- a E	2	-1.0	-06.2	0.0	- ~	- 0, -	2	- 1 - 6	2.0	* C	1	1.8	6.1	6.8	6.6	8.9	8.8	11 2		1.0.4	11.2	е. 6												1.0	4	4.6	6.2			
150.0		0	÷ •	-1.0	1.5	-Ø.6	ر د	- Ø -	20		α	0 F	~ ~ ~		7.9	9.0	11.0	9.8	1.0.1	13 4		1.21	13.4	11.9	10.7											9.6	7.3	7.3	8.6	RR	T	- B
14.01.01		с г	, s	1. <i>1</i>	2.1	1.0	1.6	9.9	, <i>σ</i>	× 1		• c	0 8 7 1	5. N	8.1	8.8	10.3	9.8	е. 9	13 4		0.11	12.2	11.6	8.3	6.9										A. A	7.5	7.5	8.5	AVG CO	THRUS	.1E 31
130.0		0	2.	I.3	2.9	Ø.5	2.0					+ 0 		4 ·	6.9	7.5	8.9	7.9	8.6	11.5		7.01	1.0.4	9.5	8.6	7.5	9.4									A . 7	6.8	6.3	7.4	~	:	P.M - 0
1206.00		a D	20	b .3	1.4	1.5	1.4	6.9	N		2	2	+ ·	9	<i>b.</i> .c	6.5	6.6	5.8	6.3	α α	000	0 0 0	ע. יע	9.5	8.9	7.3	6.4									A G	6.0	5.9	6.1	VG COR	SPEED	E 31 R
110.0		- 0		с. <i>В</i>	Ø.3	2.1	с С	<u>8</u> .8	, <i>2</i> . 7 . 7	1.7	. o	2 -		2.10	3.2	2.9	3.2	3.8	4.4	с Ø	2	4 ·	4 · 0	6.7	ъ. З	4.9	3.4									5	4.1	4.1	3.9	4	ш	-0.1
100.0		ю (20	Z • 3	Ø.5	1.4	1		N	20		20	9.0 9.0	8.7	2.6	3.5	4.2	4.7	3.4	V V	+ u		2. 2.	6.6	6.1	6.0	4.4									5	4.1	4.1	4.1		C RANG	FT SL
90.06		1	ו ה י ל י	۲.5 ا	Ø.5	Ø.8	д С	2	2	- - -	• •	• •	0 1 1		а. з С	а . 5	а. З	2.5	4.3	v v	- - -	4 I 1 1	ۍ . ۱	5.0	5.4	4.8	3.8									ר ה	4.3	4.3	3.9		COUSTI	2400.0
80.0		0 -	- -	1.2	1.5	1.0	V I	- -	η α • -	- C) и 1 с		4. v.	4.8	3.7	4.3	4.0	3.1	5.5	i u i u			6.1	6.3	6.6	5.8	5.3									L L		5.5	5.0		•	СH
70.0		0	0 V	6.5	1.9	Ø.8	ŭ O	 2	2 F	20	• r		4 ·	4.4	4.7	3.4	5.2	4.1	5.1	5		אי איי	8.8	6.9	8.8	9.0	10.0									רי ע		6.7	6.0		CATION	ANECH
60.0		0 0		2.9	0.6	Ø.8	-		, e , e	2 	• •		ה. היו	а. С	3.8	1.3	а. 8. 8	3.1	3.7	.α		0 . 0	6.6	4.5	6.6	5.7	6.6									2		5.4	4.8		ΓO	C41
50.0		2 1 1	a.11	7.0	3.8	2.6	- I	ס ס - ש	- e	- a	0 U • • •			4.5	4.0	1.7	4.3	4.0	6.2	ι- 	- L - C	יע יי	7.9	5.9	8.6	9.0										с Ц	, . , .	7.3	5.9			
40.0		- L	1.0	8. m	2.2	2.8) - 0	10	1 C	, α 1α	, ,	4 (0 L	ם י מי	5.5	5.0	3.0	6.3	5.7	ער יע) -	- 0	, . ,	6.4	2.1	4.5	о. С										5	- G - G	4	6.0			
	FREO		86	63	8.0	1 0.0	100	100		2000	2	ς, 2017	4 10 10	500	630	8,0,0	1000	125.0	1600	2000		8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	315.0	4000	5000	6300	8000	10000	12500	16000	20000	25000	00000	5 <i>0000</i> 63000	8,0,0,0			PNLT	DBA			

365

TEST CASE FOR TREATED EJECTOR TE&1 VS TE&2

16214ES/FSDR35/DELTA

Ø2/27/86 7.936 PAGE 3

DELTA, SPL(1) - SPL(2)

IDENTIFICATION

INPUT (1) 83F-488-1818 X18185 (2) 83F-488-2818 X28185

OUTPUT TOF TE1-TE2 XØ1Ø21

ANGLES MEASURED FROM INLET, DEGREES

:	PWL	ø.3	-0.2	-0.2	-0.4	Ø.2	-1.0	-1.3	-1.0	-0.7	-0.1	Ø.4	1.8	2.1	2.1	2.8	3.7	4.0	4.1	4.3		יי זי זי	· · ·	4 (- (י ר י ע	1.2														
1	s.p.	2.9	1.1	0.8	Ø.8	Ø.5	0.5	Ø.8	1.2	Ø.8	1.2	1.2	Ø.7	Ø.7	1.1	6.0	1.3	2.5	2.2	2.5	0. 0.0	2 r	- c - c	N L 		IE IJ														
	AVG AVG	2.0	Ø.1	-0.2	-0.4	-0.2	-0.8	-0.9	-0.6	-0.6	0.2	Ø.7	1.8	2.0	2.0	2.9	3.7	4.8	4.8	5.0	2.4	0 0 7 7	0 C	4 (2 1		ю. р.														
160.0	;	-06.8	-0.5	-1.3	-1.0	-Ø.2	-2.0	-2.6	-3.3	-1.5	-2.1	-1.1	2.0	1.5	1.8	2.9	3.5	6.8	6.5	7.7	ו נו - נו	י י											4	- <i>1</i> 9.8	Ø.3	1.4	Ø.8			
150.0	:	0.4	<i>1</i> .2	0.4	-0.3	Ø.6	-0.7	-1.8	-2.0	-1.4	-1.5	-1.5	2.7	3.0	3.8	5.1	5.9	8.9	8.8	6			0.0										1	19.4	2.8	2.8	2.9	1	RR T	LB LB
140.0	:	ø.2	-0.0	Ø.3	1.0	Ø.6	-06.3	-0.8	-01.8	-1.0	0.4	0.7	2.3	а. з С. С	3.6	4.0	4.5	8.7	7.8	6.8			4 L	ъ. ч									1	1.10	3.2	2.1	3.0			1.1E 31
130.0		-1.3	-1.0	-0.0	-1.7	0.1	-1.7	-2.0	-1.6	-1.0	-0.7	-0.0	2.1	2.3	2.9	2.4	3.1	6.8	6.2	6.7			4 •	4 : 	2.0									Ø.4	2.1	2.1	2.1	1	∝.	PM - 0
120.0		-0%.8	-1.3	-1.0	-Ø.Ø	ø.2	-1.0	-1.2	-1.0	-0.1	-0.4	Ø.8	1.8	2.1	2.3	2.9	3.7	6.1	6.4	6.4		+ C	יו לי די	4.	τ. τ									1.3	2.8	3.4	2.6		VG COR	E 31 R
110.0		4.2	Ø.5	-0.4	Ø.3	-0.1	-0.2	-0.8	- 01.5	-1.9	-0.4	-0.9	0.1	Ø.9	0.0	1.6	1.8	2.6	8°. 2°			- c . c	5 V 7 V	2.2	1.4								1	0.7	1.7	1.7	1.3		۲ ۱	- Ø. 1
100.0		6.2	Ø.5	-1.1	-06.8	- 04.3	-1.1	-0.5	-13.10	-0.6	1.2	Ø.8	1.3	1.9	1.8	2.6	3.0	4.0	4.4	с С	2 - 2 -		חת יינ	4. 7	4.2								•	2.1	3.0	3.0	2.8			C RANGI
9ø.ø		2.9	-1.1	- 0. 8	-1.1	-1.1	-0.6	-0.6	Ø.2	-0%.5	1.5	1.2	1.0	1.3	1.3	2.0	з . 3	3.2	3.0		- C	1 (1	, 1 1 1 1 1	1.9	- ' . 8	ю. Р								1.8	2.2	2.2	2.3		110100	2400.0
80.0		-0.2	- Ø. 1	9.9	- Ø. 1	-0.0	-0.3	-0.1	Ø.5	Ø.9	1.2	2.5	2.7	2.3	2.8	3.6	5.1	4.1	4.0	2.5	- c	י ח י	4	N . M	1.4									3.1	3.8	3.8	3.8		<	₹ CH
70.0		5.0	1.8	0.4	- 16.2	- 0, -	-0.6	-0.7	-0.1	Ø. 3	Ø.9	1.1	2.1	2.7	1.3	3.0	5.5	4.1	0	0 	2 C	4 ·	4 I	7.1	4.3									3.2	3.8	5.0	3.8			ANECH
60.0		1.0	- 0 -	6.0-	-1.6	- 0.4	-1.2	-0.9	-0.5	-0.0	0.9	1.7	1.6	1.9	Ø.6	2.4	3.5	2.4	10			, N	/ · N	5.4	2.0									2.0	2.5	3.2	2.5		-	C41
50.0		7.3	2.4	1.4	0.2	- 0	- Ø -	0.0	1.2	-0.8	1.0	1.7	1.6	2.0	6.0	3.0	3.6	(((ם היי	7 C	~ (• •	4.	4.4	6.4	3.5 3									2.3	2.7	3.5	2.7			
4.0.0		1.3	- 01 - 4		- 0. 0	- 0 -	- 0 -	- 0. 1	-0.0	-0.0	1.0	1.7	6.1	1.3	2.7	~ ~	1.6	0	۰ د ۱ -	- 1	 Q 2	0 0	- Ø -	0.7										1.3	1.1	1.1	1.7			
	FREQ	50	59	200	1 0.0	200	160	200	250	315	ANN	500	630	800	1 0 0 0	1250	1600	2000	2500		91015	4 10 10	5000	63000	8000	100000	12500	16000	250000	315.00	40000 50000	63 <i>000</i>	22220	OASPL	PNL	PNLT	DBA			

TEST CASE FOR TREATED EJECTOR TE&1 VS TE#2

IDENTIFICATION

X10035	X <i>ØØØ</i> 35
83F-ZER-1003	83F-ZER-ØØØ3
(1)	(2)
INPUT	

OUTPUT CBS TE1-T1.0 X011.01

		PWL Ø.1	-16.8	-1.8	-0.9	-0.4	-0.6	-0.4	9.8-	1.3	3.0	4.9	6.9	7.4	6.8	6.2	5.2		• •		4.4	5.4	6.9	10.3	2											
		s.b. 2.7	Ø.8	8.7	6.9	1.0	0.7	1.3	1.0	1.3	0.7	1.6	3.8	3.7	4.0	4.0	8. C		, .		4.7	4.7	4.1	3.1												
		A V G Ø.5	-1.8	-1.0	- 10 - 10 - 10	-0.5	- 03 . 4	0.1	Ø.2	1.4	3.1	4.5	5.6	7.2	7.3	7.1	7.1	1			7.1	7.3	7.6	8.4												
	160.0	-1.8	-1.2	-2.0	-1.7	-1.5	-1.7	-1.7	-2.0	-01.2	3.8	7.8	1.0.4	13.5	14.4	15.2	13.7	15.7			15.2										-19.6	4.5	4 .5	-		
S	150.0	0.4	-0.8	-Ø.8		-0.3	-1.3	-1.3	-0.3	6.0	4.2	7.4	11.0	13.9	14.5	13.3	13.0	12 8	 	14.5	15.8	18.2									1.3	6.8	8 6 9		RR T LB	
DEGREE	14.0.0	-0.5	-Ø.2	-00.2	-01.2	0.0	-0.4	- 06.7	0.3	0.8	3.8	6.2	4.6	11.3	11.3	11.1	1.0.8	1 0 2	10.11	9.11	12.1	13.6	15.3								2.2	6.2	6.1 8		AVG CO THRUS	
INLET,	130.0	-1.7	-03.7	-1.2	- 0. 5	-0.7	- Ø. 7	-06.2	-1.2	0.8	2.8	6.0	6.9	9.0	9.2	9.5	8.9	α 2	. a	9.0	7.8	9.8	13.2								2.0	5.1	9 8 9 9		PM BM	
FROM	1206.00	-1.7	-0%.5	-1.7	-1.7	0.3	-06.7	Ø.1	06.1	2.3	3.3	5.0	5.9	7.7	7.6	6.3	6.0		ע ר יייי		4.4	6.9	8.2	12.6							3.0	4.4	ຕິທ ທີ່ມີ		VG COR SPEED E 31 R	
ASURED	110.0	-06.2	-1.5	-1.5	-1.2	-1.7	-06.7	-1.2	-0.2	Ø.3	1.8	3.0	2.4	3.5	2.1	2.1	1.8		9 C - 0		1.4	2.3	4.1	6.2							1.3	1.1	1.1 ø		Е А -Ø.1	
LES ME	100.0	8.3	-06.7	-1.5	-1.0	-0.2	-0.5	-03.2	1.3	1.3	2.8	3.2	4.4	5.0	3.1	3.6	2.6) - 0			2.2	с. С.	5.2	7.8							2.8	2.3	3 - 7		C RANG FT SL	
ANG	9.8.9	3.3	-2.7	-1.0	-2.2	-1.0	06.2	- Ø.4	Ø.8	0.8	3.0	3.2	2.9	3.8	3.6	4.0	2.6			2	2.2	2.0	1.9	4.4							1.9	1.8	1.8 8.4	7	COUSTI 2488.8	S TEIØ
	80.0	0.0	-01.5	ø.ø	ø.3	1.3	Ø.5	1.1	Ø.8	3.0	3.5	4.7	5.1	6.0	6.4	5.4	4.6	יים עיו	0 -		5.7	5.2	6.2	8.0							3.7	5.0	ى م		À CH	TEØ1 V
	70.0	Ø.3	-0.5	-Ø.2	0.0	Ø.8	-0.6	1.4	1.4	3.4	3.4	3.5 2	4.4	5.6	6.4	6.8	7.4				8.2		с. 6	11.4							4.0	6.0	9 9 9	1.0	CATION ANECH	ECTOR
	60.0	Ø.8	-06.2	-06.2	Ø.3	Ø.3	Ø.8	Ø.6	Ø.8	ي 2	а. з	3.7	3.6	5.0	6.1	6.1	8		- 0	1.1	6.4	6.2	6.4								3.6	6.0	л 6 8 8 8	•••	L0 C41	TED EJ
	50.0	Ø.3	- Ø. 7	-1.2	-1.2	+2.0	Ø.3	2.6	ø.6	2.8	2.5	3.0	2.4	3.7	с. С	4.8	i u u	, r		е -	ເມ	4.7	5.9								2.6	5.1	5.1 7	4		R TREA
	40.0	-1.5	-2.2	-1.5	-2.0	-1.5	-01.5	-1.7	-0.2	-00.5	1.8	2.7	. 6 	5.0	4.6	1 1 1 1 1 1 1	~ ~		4 C			 	1								1.4	4.9	6.0 1	4.0		CASE FO
		FREQ 50	63	8.0	100	125	160	200	250	315	400	500	630	800	1 0 0 0	1250	1600	2000	2 E 0 0 0	2000	4000	5000	6300	8000	12500	16000	20000	31500 31500	4 0 0 0 0 5 0 0 0 0 6 2 0 0 0	80000	OASPL	PNL	PNLT	NBA		TEST (

16214ES/FSDR35/DELTA

ო PAGE 7.789 02/27/86

DELTA, SPL(1) - SPL(2)

IDENTIFICATION

X 1 ØØ55 X ØØØ55 (1) 83F-ZER-1005 (2) 83F-ZER-0005 INPUT

XØ11Ø1 ITS TE1-T10 OUTPUT

ANGLES MEASURED FROM INLET, DEGREES

2 2 5 Ļ 2 2 • 2 2001 2 201 2 2 ; 2 2021 2 2 ¢ 2 Ş Z

	PVL	-1.1	-1.6	-1.8	-2.0	-2.1	-1.7	-1.6	-1.6	-Ø.8	0.7	2.0	3.1	5.0	4.9	4.4	4.7	4.4	б С	5	ם פ ס פ	י ע י ע) r		16.9													
	s.D.	2.6	Ø.8	Ø.6	1.0	1.3	1.2	1.5	1.7	1.9	1.1	ø. 9	Ø.8	1.4	1.8	2.8	3.6	3.4		6.0) -	2 1	2 2 7 C	a. c													
	AVG	-0.5	-1.4	-1.7	-1.6	-1.8	-1.4	-1.3	-1.3	- Ø.6	Ø.9	1.7	2.9	4.7	5.4	5.7	6.4	6.2	6.0	5			.α		+ · Q T													
160.0		-2.0	-2.2	-2.2	-3.5	-4.2	-4.2	-4.7	-5.7	-5.2	-1.7	-01.01	2.9	5.3	5.9	6.4	6.7	8.4	8.3	6.8	19.2	2										Ċ	+ u - u - I		90. 1 1	5 · A		
150.0		-Ø.6	-1.6	-2.3	-2.3	-2.6	-3.3	-3.0	-2.8	-2.6	-06.1	1.1	3.5	5.9	6.0	4.6	4.8	5.5	6.2	7.7		10.01	1									с -	1 1 1	ი	- r	3.5	R R	LB
140.0		-1.5	-1.0	-0.7	-1.2	-1.5	-1.4	-1.4	-1.2	-03.7	1.5	3.2	4.9	7.5	7.6	6.6 0	6.3	6.2	7.3	6.7		V	τα 									د ع	3 (4 4	4 1	AVG COL	.1E 31
130.0		-3.2	-1.5	-1.5	-1.7	-2.2	-1.4	-1.9	-2.7	-1.2	-0.2	2.2	2.6	6.0	5.5	4.7	4.4	3.5	4.5	4.2	10		ט נ מ מ									د د	21	< r	, . 	3.5	2	PM - Ø
120.0		-2.0	-0.5	-2.0	-1.2	-1.0	6.0-	-0.4	-0.9	0.0	1.5	2.7	3.6	5.0	6.1	4.8	4.3	3.7	4.0	с. С	P	• u	ם מ יינ		n							1. •	ი. 	, u 1	, c	ن . ت	VG CORI	E 31 R
10.0		-1.2	-1.5	-2.0	-1.2	-2.8	-1.8	-1.7	-1.2	-0.7	Ø.5	1.2	1.6	2.3	2.1	1.6	2.1	1.8	Ø. 3	1.0	0		י כ ז נ	1 0 1 0	••••							ر ۲	2 0 2 0	9 L - 2	9 - 9	1.0	Ă	-0.1
1.00.001		7.0	-0.7	-1.5	-0.5	-1.0	-0.5	-06.4	Ø.6	Ø.3	1.5	2.0	3.1	4.5	2.9	2.9	2.6	2.3	1.2	2.3			ית ייי ייי	 - 0	- f • n							•	- 0	9.9 . 0	9 U U U	0 •7	C RANGE	FT SL
90.06		2.5	-3.0	-2.8	-2.5	-2.8	-1.2	-1.4	-0.4	-0.5	0.8	1.0	1.9	2.3	2.6	2.1	1.9	1.6	2.7	- 8	ט ני 	, .		+ u • •	0							2	0 L Q		- - -	1.4	COUSTIC	2400.0
80.0		- 0.5	-1.2	-1.2	-1.0	Ø.3	-0.2	-01.2	-0.2	Ø.5	1.8	2.5	2.6	4.0	4.6	4.1	5.1	6.8	6.7	5.0	, v 2 v	1 U 2 U	00	1	10.4								9 . 7	4.0	4	4 · D	Ā	CH :
70.0		-1.8	-1.7	- 10 - 7	- 0. 7	-0.5	-1-	0.2	0.7	1.2	1.9	2.2	2.9	4.4	5.4	7.3	9.6	1.01	8.6	ο	α	. c . o	1 1 1 1	- L 	C • 4 1							r c	~ (0 0 0	ء م م	9.1	CATION	ANECH
60.0		Ø.Ø	-0.5	-1.0	-0.2	- 0.7	0.1	Ø.1	-0.2	1.5	1.8	2.5	2.9	5.0	6.1	8.6	11.8	1.0.7	8.9	2.0	α	• •	л и И и И и	0.91								•	((N. 		c./	č	C41
50.0		-1.2	- 0.7	-2.2	-2.0	-3.2	- 0, 9	1.1	-1.7	1.8	1.8	1.5	2.4	4.2	7.3	10.3	11.8	6	. υ 	N	•••) () (9 0 7 0 7 0	7.01								•	າ ກາ	1.10	- i - i	2.1		
40.0		-2.2	-2.5	- 2 . 2	2.81	- 3. 2	-1. 0	-2.5	-1.5	-2.2	Ø. 3	Ø.5	2.6	4.8	7.6	6. 6	11.4	10.1	2	. ~ . 0	C	• • •	0.0										1.4	5.8 8	8.9 8.9	6.1		
	FREQ	5.0	63	8.0	1.6.6	125	16.0	2.00	250	315	4.0.0	500	630	8,0,0	1000	1250	1600	2000	2500	2150	00100		0000C	03200	8000 1 AAAA	12500	16000	20000	31500	4 <i>0000</i> 50000	63000 80000	2	OASPL	PNL	PNLT	DBA		

TEST CASE FOR TREATED EJECTOR TE&1 VS TEI®

IDENTIFICATION

INPUT (1) 83F-ZER-1009 X10095 (2) 83F-ZER-0009 X00095

XØ11Ø1	
TOS TE1-T1.0	
OUTPUT	

ANGLES MEASURED FROM INLET, DEGREES

:	٦Nd		۲. ر	1.4	α) (1		2.9	о 0			2.	1.3	Ø.8	-	• •		n	л. Э.Т	3.3		•••	4	ي. د	ۍ د		• •	ი	20	۰.															
			1	1	1		Ī	I	1	1	1		ĩ	ŀ	ī	ī	•			•••			•		•••			•••		3.	-															
	c			Ø.8	м Ц	2 C	n (1.2	1.0			, .	1.	1.1	1.4	6.1				4.6	4.2	с С		с. Э	3.0	3.1	2	5 C	5 2 2	5.5																
		, , _	_	~ '			~ ^	~	_	*			•	•	_	~			_		_			_				_		_																
	AVC		R	-		-	- (N N	רי יי	- 2 - 6	1		-	3.0	- 8	Ø. 5	0		5	4	4	~		ς. Γ	 m	3.6	L L		•••																	
6		r							ص	~	5		המ	N	, m	G			•	20	4		• •	N.	4	10				-										~						
6.0		-	- 1	9				י הי	m		~	- - -	• • •	N	2	- 2 -	i	•	- 1	- 19	-	2	2	2	9	- 0														Ņ	~	N	N N			
Ø 1		-		x	8				×	8	e	, , ,	.	م	5	2	100) LI	•	N	2	Z	ş (n 1	N	8	~	1												ຕ			٥			
15.0		Ī	- 1	2		1		• • •	m	ς Π	с Г		•	I	-2- -	-2-	1	•	- 2	9	,	7		8	8	Ю.	~													- -		;;		۲.	LB	
B		ø	2 1	ຄຸ	Ø	Ľ) L	<u>,</u>	ֿע	4	σ	1		2	9	ە	~	y u		-	Ø	۲.	3 6	n i	ŋ	و	L L	a	5											2	4		2	ROS	31.0	
14.0		î	J	V I	N	1	10	J C	N	m 1	~ 1		10	ų,	7	0	Ø	2	2 2	2	0	2	ş	ġ,	52	-	A	. u	5										1	N.		9 1		202	Ĕш	
9.		2	•••	ņ	<u>د</u>	2	2 11	، د		۲.	2	V	• •	8	Ņ	-	2	. 10	20	v	5.	×	, c	ņ	'n	<u>م</u>		י ע י	, c	2										~	-	s, r	n.		8	
13.0		<u> </u>	4 +	ī	1	1	• 0	.	ł	1	2-	1	• •	-	9	Ø	-	• •	1 (V	0	-	• •	-			Þ	· u) (1										1	1 1	8 1	Ø	~	Σ	
1.0		ď	5 6	9	ŝ	~	5	20	Ņ		2	~	1 1		9	٦.	2			æ.	œ.	2	• •		20.	6.	4	-	+ c											-	<u>م</u>	4 (COR	1.6	
12.6		ī	••	1	1	ī			ī	9	1	ī	4 0	20	1	-	-		1 -	-		-	• •	-	-	2	4	· u	-	-									1	9	203	- 9	-	50	с С Ш	
g. g		۲ ۲			1.1	-	• •		4.0	<u>ا</u> .5	1.1	σ	5	20	8.6	٩.2 .2	9.9	9	2	4 I 0 2	6.6	~		ŧ.	:	س	9.2		• 0										(4	4 0	1.1	٩	Ø.1	
11		-		ĩ	I	1	I		ĩ	1	1	1	1		ī	ī					-		Ì		-															1		2	×	Ļ		
Ø.Ø		7 8	1 (5		1.2	Ø. 7	· •		1.1	Ø.9	0.9	1.0	• 5 • 6	2 C	2.0	1.4	1.8	× -	• •	0	ъ.	с. С) r	- c - c	2.3	2.4	4.5	5	. a	2 • •									•	2.2 1.2	N C	8 9 7 0	2.1		IS I	
1.0		-		•	1	1	l		I	I	+	1																																Ļ	يان رون	
Ø. Ø		0.0	1 C			5.2		1 c 1 c	8	2.7	-1.4	0.0	19	9 9 9 0	5	Ø.1	Ø.8	- -	• •	ם. יים	5.I	3.8) ())		1 - 10	1.4	2.8	1											ו ז	8. 2.		0 - 4 -	1 • •	1311	0.0	
8		*			י הו	×		. 1	' ~	-	י ה				•	~	×				-	_			~															_	_		_		54	
8.0.1					202		5	2 0	, V	8	9.	- 10	2 2	2.	-	-	3.6	L.) r	-	Σ	7.1	u			م	9. 9			2 - -										NI	ר ה היי		•		-	
5		~	. 8	2	20	~		1-	-	m		~	ı	- 1		4	1		t u	ה ו	م	_			-	~	ഹ	α) -	•									,	~ 1	<u>م</u>	ח ת		2	5 5 ±	
7.01.		1 2 1	2 -	•	-		-	• •	n			Я	2 2	2.	-	2	م	σ			10.	8	a		0	α	10.	ĩ	• • •	•									¢		٥	יח	:	11	NEC	
8		e	1		2	~	5	s c	v	თ	თ	Ø	, 0	, ,	N	თ	2	1	<u>،</u> ر	٥	œ	4	5	20	o '	ە	2	T	5 0	,										N	ж (י ע די ני	ŧ	0		
6.0		Ø.	1	2	-	7						- 7		2 (N	~	9	10			Ξ.	8	a	; c		-	۰ م	=	• 14										(n r	:		C4	
		2			2	~ `	0	50		2	۲.	Ы	20	1 F	n'	9.	.7	~		0.0		~ `			'n	-	2.	σ	۱ •										,	و	٩	ດີເ	J			
5.0		10 -	1	R	2	ہ ۱	1) (יי	ī	ကို	2	20	2 2	Ø	N	ف	1 0	2 0	n (x	~	. a	5 U	ا م	~	00	1 01	2										•	- •	4 •	4 0	D			
8.		2	. U	ר י	ø	~			9	4.	ۍ ۲	с,			Ņ		Ø.	V	•		Ņ	4.		1 c	0		ۍ ۱	د د) •										¢	Ņ	s'o	ח ת				
4.0		ī	1	J	2	с 1	1		I I	т 1	2	î	ي ا	5 5	2	ო	~	α	7 (~ (æ	8	a	5	ים	ە	2	α	>										2	52 (، در	~ •	4			
ç	2	50		, i	30	Ø	L L	5	2	10	90	S	20	2 2	90	30	9.0	A OT	20	2,2	910	Ø	Y.O.	20	2	30	3.0	Y OT	X Ø	2 S		20	22	8	20	10	10	1.0			۲₽	- <	ť			
0 u	L K				~	11	-	• -	Ĩ	2	ن ة	ŝ		t L	ភ	ف	7 8	1 01	2 -	ų v	161	2.01	256) -) -	10	4.01	5.01	636	, α α 1 α	1 0 0 0		7 C 7 T		YNNZ	3156	4006	5.006	8.0.0.6	0	OASH	22		2			

TEST CASE FOR TREATED EJECTOR TE&1 VS TE10

369

IDENTIFICATION

X 1 ØØ45 X ØØØ45 (1) 83F-400-1004
(2) 83F-400-0004 INPUT

XØ11Ø1 CBF TE1-T1Ø OUTPUT

ANGLES MEASURED FROM INLET, DEGREES

0 1 4 0 1 5 0 1 5 0 1 6 0 1301 6 מ ויסמ 110 8 a 1 a a 2 1 2 2

ž	2	~	8	- ø.		- Ø -	- 01 -	- 0	2 0	2.	-	~	2	V	•	•••	4	4	4	Ą	-	+ L	n ·	4	4.	Ľ	. u		-																
(s.u.	5.0	2.8	1.8	1.1	1.3	Ø.9		• •		1./	1.7	1.4	с С		4 (ر. م	3.2	3.0	8		5 C	n . 7	2.4	2.4	0		•••																	
0	AVG	2.4	Ø.7	- Ø.4	-1.3	-0.8	- 01.7			4 2 1	0.7	2.1	3.0		1 C	- (+ ·	4.8	4.9	5.2	с С) U		1.6	5.4	5.1	4	- 0 -	י י י																	
160.0		-2.2	-1.6	-1.4	-1.3	0.1	- 0. 8) o 2		0.41	-2.1	-1.5	1.0		- - -	0 1 0 1	9./	7.7	8.4	V _ L	+ C • F		6.9	6.3													0.1	2.9	2.9	4 4	- -				
150.0		-1.4	-0.6	-1.4	-1.4	-1.2	ю С -		- (-1.0	1.0				0 · 0	1.0.4	10.0	10.4	11 0		יע קי	9.3	9.5 2	6.6	•											2.3	6.8	9 . 9 9 . 9			A R	έĻ	- B	1
140.0		-1.0	Ø.5	Ø.Ø	-Ø.8	Ø.6	10.1	- + - - -	4 X	я. Т-	0.7	3.2	l CS I LC	20	0 0 0 0	יפ	9.6	10.1	4. Р			۰ م ۵ (7.8	8.6	2.3												3.8	6.7			1.0	AVG CC	THRUS	9.1E 31	
130.00		-1.1	6.0	0.4	-1.3	1.0			4 0 4 0	<u>ы.</u> 3	2.6	4.7			9. ·	1.8	Ø.9	8.7	8) 	- r	7.7	6.4	6.5	ם ה ה ע	- (- (•••										4.5	- -		• u		۵	< _	M M d	
120.0		-1.8	- 6 -	- 0. 7	- Ø. 8	2 2 1) - 2 - 5 1		7. 9	- 10.4	1.9	2.3				ъ. И И	5.0	5.5	с с	ק ו • • •	41	ъ. З	4.5	5.4	י ה ה ה) 0 (с. v									3.3		4 -		4 • /	NC COR		E 31 R	;
110.0		- Ø - 3	-1.6	-1.7	-1.0	, - - - -	• •	+ + - (4.7-	- 10 . 3	-1.2	-07	2 0 2 0		1.1	2.7	1.9	2.7	α	, , ,	י. הי	3.0	3.1	ر ، د	1 a		4 I	л. г									1.7		-11	- (4.2	•	L	- 8	2
0.001		9.2	2.0	- 1 - 2	0			- 2 - 4 - 0	ית ואפ	1.0	-0.4	1 4	•	+ (N. 10	а. 5 С	Э . 0	3.0		- (- (2.0	2.2	а. 5 С	ч ~	о 9 9	2 C		b .4									2.7	. a	, c	5 C	5. L		UND D V D	ET SI	, -
90.06		ι Γ		4	- CC - CC - CC - CC - CC - CC - CC - CC	9 0 0 0 1	2 · · ·	- × - ×	Э. Б.	-06.3	ø.6	σ	, c , .		2.1	2.5	2.3	2.4		† -	7 · 7	2.9	3.0	с -	- c		1.10	4.2									2.0	2 - 1 c	 	- 0	2.3			24000	~
80.0		- 2, 6		ם י מי ו	9 9 9 1 9 1	2 - 2 -	a c - 2	20	Ø.3	1.0	4.2		‡ - + -	4 . 1	4.8	4.7	4.8	α 		4 I	5.0	5.6	7.0	. u	- C	າ ເ ຍ	ъ. С	6.5										- r -	4 -	4	4.b		<	ן היי	<u>ر</u>
70.0		107 2	2 U		19. 19. 19.		א מ פ ו	с. <i>В</i>	1.1	ø.5	۳ ۲	- (- (- 2	2.2	3.2	а. 8. 8	3.7		•••	4 · 1	4.7	5.6	7.0	2 U		ית פי	80. 10. 10.	7.2									с С	- L 	4 - 0 1	4 . /	4.2				ANECE
60.0		v v	1 - 2 - 1	1 U 2 C	2 		\	-1.4	-06.4	-0.4	5	б с		2.7	3.4	2.8	3	2 -		а. р	4.5	6.6	5			4 . 4	6.1	4.3									0 (4.	4.5	с. С		-	ן - כיייייייייייייייייייייייייייייייייייי	ر ب ۱
50.0		1 1 1	C • 1 1	- t 0 0	* c	1 L - 2 1	1.9-	-0.4	Ø.3	1.7		2 2 1	л. 1	2.7	3.4	2.6		+ u		н. Н	3.2	5.0	ο σ	• •	2.2	3.1	4.4										с с	3.1		с. С	3.0				
40.0	2	c c	0 U V		0 (2 (1	n 	ю. м	-1.6	-1.6	- 01, 6	, - 5		I.5	3.7	2.9	2.4	· •		0. N	1.1	2.4	3.2	1 r	- 0 - 0	2.8	6.Ø	3 . 0										•	۲. ۲ د	1.8	Ø.8	1.8				
	C D C D	ש נ ע ע ע	0 0 0	ה ס ס	2 2 2 2 2 7	1 20 20	125	160	200	250	2 - 2 - 2 -	0 T 5	4.00	500	630	RAG			NGZ I	1600	2000	2500		01015	4.00.0	5000	6300	8000	10000	12500	16000	20000	25000 31500	40000	5 <i>8888</i> 63 <i>888</i>	80000		OASPL	PNL	PNLT	0 B A				

しろて41258314947644271872枚8

TEST CASE FOR TREATED EJECTOR TEØ1 VS TEIØ

IDENTIFICATION

INPUT (1) 83F-488-1886 X18865 (2) 83F-488-8886 X88865

OUTPUT ITF TE1-TIØ XØ11Ø1

ANGLES MEASURED FROM INLET, DEGREES

			~	5 6	20	x		Q	თ	თ	-	-	σ	~	ດ	'n	8	8	ŋ	m	-	-	4	4	σ									
	2	3	5		- 2	Я	-	8	ġ.	8	-		<u>ю</u> .	~	~	,	~	~	~	~	~	~	~	~	2									
	S																																	
	G	4	-		- (α	æ	ო	2	ო	თ	æ	~	Ø	ស	œ	-	æ	ە	ო	~	æ	ω	~	ო									
	Ş	~	5		• •	5	6	6	ы. В	ø.	ø.	Ξ.	s.	4	4.	م	<u>و</u> .	÷	2.	7.	ف	ۍ د	<u>،</u>	و.	ά.									
					ĩ	ī	ĩ	ī	ĩ		-																							
•		~			+ 1	T	-+	~	-	~	-	_	~	2		œ	~	<u>ن</u>	æ	æ	~													
-		2			.,				÷.	3		م	3	2		 		 		~														
3		ï	Ì		ĩ	ī	ĩ	ĩ	~	T	ĩ	ĩ			-	•	•	~	~	• •	• •	<u> </u>												
			. ~		~ .	~					~		•	~	~	~	~	_	~	_		_	~											
2		7						4	2	-	2	2	2		2	2	2	2	3	Ξ	2	-	2											
50		ī	1	10	2.	I	7	7	Q	ī	ĩ	Q	()		ω	18	1.6	01	Ξ	01	"	0,	91											
																			•				_											
ø		1	. G	•	•	9	9	<u> </u>	പ	ຕ	ና.	<u> </u>	٩.	°°.	°.	്	ို	7	9	9	~	æ.	ົ	4										
40		9	2	2 2	2	-	20	20	Ø	Ø	Ø	2	ო	~	œ	1.0	1.0	თ	1.0	ω	ω	~	ڡ	ω										
-																																		
ø		~	10		n Ì	2	4	~	<i>с</i> .	-	ົ	ົ	-	ഹ	ŝ	4.	ഹ	4.	ر .	<u>۲</u>	ŝ	ø.	8	4										
ø		8	ğ	2 8	9 Q	Ņ	ġ	ø	ġ	ġ	Ø	2	m	~	~	σ	ω	œ	œ	ശ	ø	و	9	σ										
-		'	'			'		•	•	•																								
Ø		2	រ វេ	, -	- (æ	-	თ	თ	ო	2	ഹ	ف	-	ە	~	2	æ	8	2	ω	ო	Ø	ω	4									
ø.		<u>ø</u> .	. –		2	9	ø.	ø.	ø.		~	~	.	م	٠.	ف	ف	<u>ں</u>	ۍ	ف	م	ف	~	ω.	~									
2		1	4		1	I																			-									
8		8	5	2 u	n •	4	-	4	œ	ო	ო	-	و	ە	2	ø	ഹ	ß	4	ف	Ø	ო	4	و	-									
8		<u></u> .	, . –			5		5	<u>ø</u> .	<u>.</u>	6.	<u>6</u>		4	3	 	т. т	4.	4.	т	4.	4.	m	4.	0									
Ξ			` 1		I	ĩ	ŧ	ľ	ĩ	T,																								
~		~		• •	. .			~	•	-	~	~	.0	~	œ	8	~	æ	ശ	m	2	~	6	<u>ں</u>	ച									
2		3				-		2	Ľ	-	2	3	ž	2	2	3	2	Ξ	Ξ	2	2	2	3	3	2									
ğ				1	ĩ	-24	Ŧ	æ	ĩ	-	4						1					1		-										
_						_	_		-					_			_			_				~										
<i>.</i>		5		4 r •		3	9		e.	្លឹ	2	ц.	5	ີ			5	3	-			2		÷	7									
96		4	10	5 -	-•1 !	N	Ŷ	9	№ 1	8	8	-	-	-	~	~	2	ო	ო	m	Ċ	2	-	-	T									
ø		9	2-	• •	יי	.	ø	2	ø.	ŝ	9	ŝ	9.	٦.	ŝ			ر	5	9	9	9	ŝ	٦.	9									
88		-	9	5 5	9	52	-	Ø	-	Ø	ო	ო	ო	4	4	4	4	و	2	2	~	ഹ	9	~	σ									
-						•																												
6		e	0	0 0	ית	N	'n	4	-	-	-	σ	Ģ	'n	ഹ	2	ŝ	4	ø	~	ഹ	ŝ	ø.	ø	e.									
8		ć	5 <	1	2	ø	ø	ø		-	N	N	m	m	ო	ú	ف	~	8	8	ø	თ	თ	0	Ξ									
						'	1		,															-	-									
8		~	10	, ,	N	9	-	2	Ø	ო	Ø	8	2	2	ە	ო		~	2	~	ഹ		4	2	ო									
8		-	• •	; s	2	ġ.	8.	8.	б.	8.	Ξ.	~	~	-		m	4	و	۰	σ.	1.	ف	ц,	۰ ف	ю.									
ف							1	T	1																									
8		c		* (m 1	0	ഹ	8	8	8	പ	8	6	2	-	ഹ	m	2	ഗ	و	თ	ო	8	4										
2		ď	•		-	2	~	۵.	3	~	8.	2	, m	-	-	~	4	~	ъ.	6	ف	م	4.	ۍ										
5		-				~	ĩ	ĩ	-		ĩ						2																	
~			× ،	م	m	~		~	~	~		~	10	æ	m	2	۱ ო	œ	ø	ហ	4	с	~	~										
Υ.Ε		4	: 0			-	3		5	2		3	~	1	3.2				1			~		4										
4.6		5	4 -	-	1	1	7	1	1	2	-	-		3	32																			
	Ø	5	5 0	<u>,</u>	9	ø	ŋ	Ø	Ø	8	ß	8	8	0	Ø	Ø	0	0	0	10	0	Q,	10	Ø	10	10	Ø	10	NØ,	20	10	8	2 2	20
	ы М	u u	2	0 (8	1.0	12	16	28	25	31	4.0	50	63	8.0	00	25	6.0	00	50	5	0.0	0.0	3.8	0.0	0.0	50	00	0.0	00	5,0	0.0	20	0.0
	ũ	•														-	•	-	2		ო	4	പ	9	œ	1.0	12	16	20	25	31	40	30	5 0 0 0 0 0

	క్లి	THRUSI	8 	VG CUKK Speed E 31 RPM	A -Ø.1	RANGE T SL	ACOUSTIC 24.88.8 F	× ⊥	CATION ANECH C	C41			
٥	8.2	8.1	7.8	5,6	3.2	4.3	2.9	5.8	7.3	5.8	5.6	4.1	DBA
4 (6.4 0	5.7	یں مەر	4. 6.	2.5 2.5	8.0 .0	2.8	ۍ و و	2.9	6 · 2	7.3	4.5	PNLT
4	6.4	6.7	ی ع	5.0	3.0	3.8	2.8	5.9	7.9	6.5	6.4	4.5	PNL
0	1.6	а. З.	3.6	4.1	2.3	3.6	2.2	4.7	5.7	4.2	4.3	2.6	OASPL
													63 <i>000</i> 8 <i>0000</i>

6222

TEST CASE FOR TREATED EJECTOR TE&1 VS TEIØ

IDENTIFICATION

X1Ø1Ø5	XØØ1Ø5
83F-400-1010	83F-400-0010
(1)	(2)
INPUT	

XØ11Ø1 TOF TE1-TIØ OUTPUT

ANGLES MEASURED FROM INLET, DEGREES

	PVL	-0.6	-1.3	-1.6	-1.6	-1.4	+ u 			-1.4	-0.9	- 01 -	, G	20	4 C	9. E	6. С	۲. در			ъ. х	5.1	4.6	4	• •	4 U	ם ה ס ס	11.6) , ,														
	s.D.	3.3	1.2	Ø.9	0.7	. u . b	20	2 X	ю. Я	Ø.8	Ø.8	o V	 		+ · - ·	1.1	1.3	9 -	, c		1.8	1.8	1.7			C	, c																
	AVG	1.4	-0.5	-1.5		,			-1.5	-1.0	-0.8	9.1		Q •	4.	2.8	6 . С	и ц		0 0 0 0	6.0	5.4	ເ ເ	V V	•			n															
160.0		-1.2	-1.5	-2.0	- 1 -	. U		۰. ۱	-1.9	-1.8	-0.9	20	, c , c	2.1	4.	4.2	4.7	и и	, r , u	<u> </u>	4.9	5.0	с С) - V	•••											-1.1	1.0	2.0	2.8	-			
150.0		-Ø.8	-1.3	+1.3			• • - •		-1.2	-1.6	-1.0	α. 10 -	2 C	9 (9 (9 . N	4.2	4.7	4			6.1	6.0	7 5	οα - υ		b.4										-0.8	2.1	2.1	3.4		JRR	F	• L B
140.0		-1.5	-1.8	-1.7	- 1 - 0	2 U	. r 	\. -	-1.3	-1.7	-1.0	а - а -	2-		N N	4.1	4.8	u u	יים יים יים	י ה ה	5.8 2	5.4	-	Ч		40	α, υ α									Ø.1	2.9	1.8	3.4	•	AVG CC	THRUS	r.1E 31
130.0		-1.5	-1.7	ר ר ו	C C 	~ C 	າ 	2.2-	-3.3	-2.2	-1.7		200	2.0	2.8	3.0	4.7		4 -	4.0	4.5	4.1	-	5 - 5 	4 ·	4.	ч. ч.									Ø.1	2.1	2.1	2.8)	ĸ		₽ - Wd
120.0		-1.8	-2.0	-1-	- C 	- 2	ו א ו א ו א	-0.5	-1.1	-1.0	2) - 2 8	- r 2 -	1.1	2.7	ю. 8. 8	4.1		4.	4.0	4.7	4.3		+ c	י). קו		л. 2	1 j. j								1.8	3.0	3.0	с. С		VG COR	SPEED	E 31 R
10.0	2	3.7	0.3	2 -			ν. 	-10.3	-1.2	-1.3	1 		2 - 2	1.8-	0.4	1.7	8) U	n 1 7	с. 5	ო ო	6.0					20 U 20 U	ч ./								1.1	2.0	- 1 - 1		•	A	υ	-Ø.1
ממ ע	2	8.0	9 1 1 1	ם נ י י	- C	י פי ו	с. 9	-1.2	-1.8	Ø.3			א פי מי	8 .3	1.0	2.8			4	5.1	5.0	с С			ر با 1	4.0	ч. ч.	R. L								2.5	100			•		C RANG	FT SL
90.0	2	2.7				-	-2.0	-1.8	-2.8	-1.0		, i 1 1	7.0	-0.1	Ø.1	Ø. 7		• •	ית ית	5.6	4.0	ים היי		•••	4	1.0	1.2	4.1								1	• •	10	9 1 1 1	2.0		COUSTI	2400.0
20	2.20				0. 2.		0.1	-1.1	-Ø.8	- 0, 8	2	- · ?	2.0	1.6	1.5	- 	• U • •	; ; ;	8./	8.S	6.9	Ч	- r - - L	~`. 	4.19	5.3	6.0	6.8								~	י י	. u) 0			4	сн
7 a a	2.2	4 2	ια 1		າ ຊີ	-10.6	-Ø.9	-0.1	-1.7	- 0 4	20	1 1 1 1 1 1	Ø.5	ø.8	1.7	σ	• c	י ח י ח	7.3	10.3	α		•	ہ م ا	7.8	6.2	8.8	9.1								ц Ц	2 4		• •	0		CATION	ANECH
2 2 2	a. 20	с 7	20	1.0		-1.1	-1.1	-1.0	- 0	- 0 -	2	. 1	0.7	1.7	1.6			4 · 4	7.3	9.8	1 1	- C - r	•••	6.1	5.6	4.8	6.9	7.1									4 U		1 -	b.4		0	C41
2	a. ac	с У	•••		-10.1	-1.1	-1.2	-1.6	- 1 -		8.	-1.5	ø.5	1.4	3.1	• c		4.0	7.5	8.7	. Γ	- C - C	0.1	6.8	5.1 .1	4.7	6.6										C L	0 L 0 L		р.1			
2	4.0.10	•	-	ם. ו ו	-2.3	-1.5	-1.5	-01.8	1 2 1 1	2.	9.	- 10.5	1.0	3.1	4.6	, c , c	י י י	5.b	5.5 2	7.6		0 0	9.1	5.8	4.3	3.6	5.5									c c	2 2 2 2	8.0 0	41	ъ. С			
		300	20	9	8.0	1.00	125	160	200	2270		315	4.00	500	630		0,0,0	1.000	1250	2 1500	7	2 2 1989	25000	31500	4 0 0 0	5000	6300	8000	10000	1 2 5 0 0 1 6 0 0 0	20000	25000	31500 40000	50000	80000		DASPL			DBA			

TEST CASE FOR TREATED EJECTOR TEØ1 VS TEIØ

IDENTIFICATION

X2
83F-ZER-2003
(1)
INPUT

X20035 X30035	XØ2Ø31
83F-ZER-2003 83F-ZER-3003	CBS TE2-TE3
(1)	
INPUT	OUTPUT

ANGLES MEASURED FROM INLET, DEGREES

	PVL	5	8	9.4	8.7	8.7	8.7	10.7	0.3	0.5	0.4	9.9	1,0	0.3	Ø.5	0.7	1.1	1.5	1.7	1.1	Ø.3	1.6	2.7	3.6													
	s.D.	9.6	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8.7 -	Ø.5 -	Ø.8 -	8.6	. 9.6	Ø.5 -	ø.6 -	8.7 -	- 6.8	Ø.8 -	8.7 -	1.0	1.1	1.2	1.4	1.3	1.3	1.6 -	1.7 -	1.4 -	1.9													
	AVG	-0.4	- 0 - 3	- 0, - 2	-0.6	-Ø.5	-0.6	-0.7	-06.3	-01.5	-10.8	-1.8	-16.7	-06.3	Ø.1	0.4	0.7	1.0	1.1	0.5	-0.8	-2.3	-3.2	-3.8													
160.0		0.2	- 0. 3	- 10, - 5	0.0	- 0.7	0.0	-0.7	-0.2	Ø.3	-0.2	- 10. 7	-0.8	-0.8	-01.6	Ø.1	ø . 3	-06.1	1.4	-0.6	-1.1										-0.1	- Ø -		-10.4			
150.0		-0.0	-10.10	-0.0	-0.2	-0.2	-0.7	-1.2	-1.0	-1.7	-1.7	-2.7	-1.8	-1.8	-2.3	-2.6	-2.5	-2.6	-1.6	-2.6	-4.4	-5.7									-0.3	-1.4	-1.4	-1.8	ũ	źн	LB
140.0	•	-1.5	- 0. 8	-1.8	-1.5	-2.5	-1.7	-1.5	-1.2	-1.5	-10.7	-1.5	-1.8	-06.8	-1.1	-01.2	-0.8	-0.4	-1.7	-01.2	-2.3	-4.2	-4.8								-1.4	- - - + -	-1.5	1.1.		THRUS	.1E 31
130.0		0.2	Ø.5	0.5	- 0.7	Ø.3	0.0	Ø.5	Ø.3	Ø.3	ø.3	Ø.3	Ø.2	-00.00	-Ø.1	Ø.3	1.4	1.7	1.2	1.4	U.9	-0.5	-1.8								Ø.2	0.4	9. Þ	Ø.3	۵	4	PM - 29
120.0		Ø.2	-0.8	0.5	ø .3	-0.7	-1.2	-1.0	0.0	-8.2	ø.5	ø.3	0.2	-06.3	0.4	Ø.3	1.0	1.3	2.1	1.2	0.1	-1.7	-2.1	-4.1							-ø.1	0.4	Ю.4 	Ø .3	200 DV	SPEED	E 31 R
110.0		-06.5	Ø.2	-0.3	-1.0	-01.2	-01.7	-00.5	0.0	-0.5	-0.5	-1.2	-1.3	-06.3	1.4	1.1	1.5	2.3	2.4	1.8	0.2	-1.1	-2.2	-2.7							0.1	8.9	60 0.1	1.9	Δ	с ш	-8.1
100.0		-1.5	- 0.5	- 0 - 3	-1.0	-1.0	-0.7	-1.2	- 16.7	-1.8	-1.0	-1.7	-1.5	-06.5	Ø.7	6.0	1.0	Ø.8	1.4	0.4	-1.5	-1.8	-3.4	-4.4							-03.4	Ø.1	Ø.1 ~	Ø .2		C RANGI	FT SL
8 .86		-0.3	- 0. 0	- 0. 0	-00.5	Ø.5	Ø.3	-06.5	-06.2	-0.5	-1.2	-06.7	Ø.2	ø.5	1.2	1.6	1.8	2.4	2.1	1.6	0.8	-0.5	-2.1	-2.7							0.4	1.1		1.1		COUSTI	2400.0
80.0		Ø.2	- 8.3	-1.8	- 18.7	-00.5	-0.5	Ø. Ø	0.0	-06.2	-06.2	-1.5	-06.3	-06.5	0.4	1.1	1.3	1.8	1.9	1.6	0.0	-1.0	-2.1	-1.7							0.0	0.8	8.8	Ø.6		A	CH
70.0		-0,5	-1.3	-1.2	-1.1	-0.6	-01.8	-1.1	-0.2	-01.8	-1.6	-1.8	-1.7	- 16.3	0.0	-0.4	Ø.3	0.7	0.3	-0.5	-2.3	-4.7	-5.7	-7.1							-0.7	- 0.3	- 0 -	-0.4		CATION	ANECH
60.0		- Ø. 8	0.2	-0.0	-1.0	Ø.3	0.0	Ø.3	0.0	-0.5	-1.2	-0.5	Ø.2	ø.5	0.4	1.6	1.7	1.8	1.8	1.7	6.0	-1.7	-3.8								Ø ,2	6.9	6.9	Ø.8		<u> </u>	C41
50.0		- 91.8	- 0 -	-1.3	0.0	-1.0	-1.0	-06.7	-1.0	-01.5	-1.7	-0.7	-0.0	1.0	Ø.2	Ø.3	1.0	1.8	1.8	0.7	-0.6	-2.2	-4.1								-0.4	Ø.5	ø.5	Ø.3			
40.0		-1.0	-1.0	- 0, 8	-0.2	-00.2	-0.7	-1.0	-06.2	Ø.Ø	-0.7	0.0	-01.5	-0.5	0.2	0.6	1.0	1.9	1.2	0.2	-0.9	-2.2									-06.3	Ø.6	-0.7	Ø.2			
	FREQ	20	63	80	1.0.0	125	16.0	200	250	315	4.00	500	63.0	8,0,0	1000	. 1250	1600	5000	2500	315.0	4000	5000	6300	8000 10000	125,00	16000 20000	25000	4 0 0 0 0	50000 63000	annana	OASPL	PNL	PNLT	DBA			

TEST CASE FOR TREATED EJECTOR TE#2 VS TE2#

16214ES/FSDR35/DELTA

Ø2/27/86 7.895 PAGE 3

DELTA, SPL(1) - SPL(2)

IDENTIFICATION

X 20055 X 30055	XØ2Ø31
83F-ZER-2005 83F-ZER-3005	ITS TE2-TE3
(1)	
TUPUT	OUTPUT

ANGLES MEASURED FROM INLET, DEGREES

1M4	-10.1	-0.0	7.0-	- 10 - 10 - 10 - 10	ø.1	Ø.2	-0.1	-0.1	- Ø. 5	- 0.2	- 0 - 2 - 0	2.0	ю. Э	8.8	1.0	1.2	0.4	-0.7	-1.9	-2.8	4 - 0 0	4.7-													
	Ø.5	Ø.6	<i>д</i> • ч	0. P	ø.6	Ø.7	Ø.4	Ø.8	Ø.5	6.7	ю. 5 х	6.4	ы. 1 2	N . /	0.7	1.0	Ø.7	Ø.8	1.0	1.2	1.8														
AVG	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	- 0.3	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ы 1 1 1 1 1 1 1 1	- 2	-0.0	-Ø.1	-0.5	- 0.6	- 04.3	-06.2	Ø.1	ы. Э	ы. Э	1.0	ø.9	0.4	-0.8	-2.2	-3.2	8°. 1. 1.														
60.0	- Ø. Ø - Ø. 5	-0.0		10.1	0.0	ø.3	-Ø.2	- 0.7	- 0.5	- 0.5	. 9 - 10	- 10 - 3	6.8-	- 19 - Z	- 0.1	-06.8	0.7	-00.4											- 6 -	- 2 - 2 - 1	- Ø -	-0.3			
150.01	-Ø.Ø Ø.5	0.7	ק קי ני	ה קינ יינ	, 9 	1.8	Ø. 3	Ø.5	Ø.3	0.7	Ø.7	0.4	[.]	8.9	Ø.4	Q.9	Ø.9	-0.7	-2.5										or م	<i>2</i> د ۲	0.5 .5	Ø.6		ж. Ж.	, LB
140.0	- 10 - 10 - 10 - 10	-0.8	- 0 - 0 - 0	איר 1 1	9 9 9	ø.5	-06.2	Ø.8	-0.7	-1.0	ю. Э	9.4	10.12	- 19 - 3	ø.6	-0.4	-0.5	-2.1	-3.4	-4.0									с 0	5 2	-1.0	-0.0		AVG CO	. IE 31
130.0	- Ø. Ø Ø. 5	- 8.5	, 10 10 10	9 0 	0 . 5 . 5	Ø.Ø	Ø.3	- Ø. 5	-0.2	Ø.5	- 0 - 2	-10.1	<u></u> .1	6.9	1.2	ø.5	0.4	-06.3	-1.2	-2.6									a a	- 0. 0	- 0, 6	0.0		2	PM - 10
120.0	- Ø. Ø - Ø. 5	-01.01	- 10. 7	9.1- - 0-	10, 2	0.0	-Ø.2	0.5	-01.2	Ø.5	- 0.5	-0.1	Ø.1	1.8	Ø.5	1.6	Ø.5	-0.9	-2.2	-2.8	-3.6								с 1	20	2	ø.1		VG COR	STEEU E 31 R
110.0	- Ø. Ø Ø. 2	- 06.3	1 8 1	2.20	- 19	-0.2	0.0	-Ø.5	-0.2	-0.5	-1.8	0.7	Ø.8	Ø.5	Ø.8	1.6	1.1	-0.0	-1.4	-2.2	-2.5								- 0	2 G	2 G	ø.3		ک ت	г - Ø. 1
100.0	- Ø. 5 - Ø	-0.0	- 10 -	- 10	-1.0	-0.7	-03.7	-1.2	-1.2	-1.5	-1.0	Ø.2	0.6	1.0	Ø.8	1.6	0.4	-1.2	-1.5	-2.4	-3.7								N DI	2 G	2	ũ. g			FT SL
Ø. Ø6	- 10 - 10 - 10	- 0.3	ы. Э	9.0 9.9	10.1	-0.2	Ø.3	-1.0	-03.7	-06.03	ø.2	- Ø.3	1.4	1.0	1.6	1.4	0.4	-01.5	-1.5	-2.3	-3.2								2	2 G 2 G	200	ő.6		1131100	2400.0
80.0	- 0 - 0	-1.0	ø.ø	2 2 2 1 2 1	2 2	Ø.5	Ø.5	0.0	-1.0	-0.0	-0.0	8.2	1.1	1.8	1.6	1.1	Ø.6	-0.5	-1.5	-2.4	-1.2								с 8	5 G	20	0.7		<	CH F
7.03.05	- Ø. 1 - 1 - 1	-1.1	- Ø -	- 20	2-1-	- 0.8	-0.5	-1.2	-1.4	-0.9	-Ø.6	-0.4	-0.4	Ø.9	Ø.4	-0.9	-1.3	-2.5	-4.8	-6.2	-6.3								5	20		-0.4	!		
60.0	- 10. 10	Ø.7	- 0, -2	8 9 9 9	י ה מ פ ו	-0.2	-0.7	0.0	-0.5	-0.0	0.2	Ø.9	1.3	2.2	1.8	1.8	1.0	Ø.4	-2.0	-3.3	-5.9								2	2 - 7 -	2 G	₹.9 •	r r ł	-	C41
50.0	1 1 1 1 1 1 1 1	-1.3	-0.2	а - С - С	- 20-1	-1.0	- 0.2	-2.0	-0.7	-1.0	Ø.2	Ø.2	Ø.6	1.2	2.3	1.6	1.2	-0.6	-2.2	-4.3									ž	4 F 2 2 1	Q	. с. Ю	2		
40.0	-1.8 -0	- 0. 5	- 0 2	- 10 -	8.1 1 1 1 1	- 0, 5	Ø.3	- 0.7	-0.7	-Ø.5	-0.3	-0.1	ø.9	1.0	1.4	1.4	0.2	-0.7	-1.7	-3.0									2	2 2 1	а с 4 п	8.2 8	5		
	שמי שנה שנה שנה	8.0	100	125	1 D.0	250	315	4.0.0	500	630	8,0,0	1.00.0	(,, 125 <i>0</i>	26.00	00024	2500	315.0	4000	5000	6300	8000	10000	125,00,0	7 0 0 0 0	250.00	3 1 0 0 0 0 0	50000	80000		UASPL		DBA	2		

TEST CASE FOR TREATED EJECTOR TEØ2 VS TE20

IDENTIFICATION

	X 20095 X 30095	XØ2Ø31
	83F-ZER-2009 83F-ZER-3009	TOS TE2-TE3
I	5 <u></u> 3	
	INPUT	OUTPUT

TOS TE2-TE3

ANGLES MEASURED FROM INLET, DEGREES

1710	8.1 8.7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- 9 - - -	, <i>o o</i> 		Ø.4	8 9 9 9	9.9 9.0	<i>8</i> .8	9 9 9 7	2 2	ø.1	- 0.5	2 C 	9.4 C								
с 0	ເ ຍ ເ ເ ເ ເ ເ ເ ເ ເ ເ ເ ເ ເ ເ ເ ເ ເ ເ ເ	999 772	9 Ø Ø	<i>8</i> 9 9 9 9 9	Ø.8	8 8 8 8	ø.6	Ø.7	9.0 9.0	, <i>a</i>	9.9 9.9	1.0	۲. ۱۰	1.1 1.4 E 19								
277	8 8 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	າ ແນ ເຊິ່	8 9 9 1 9	8.8	Ø.4	۵.7 ۵.7	0.0 .0	6.9 -	- α - Β	9 0 0 0	. 5 . 5	-0.2		-2.6 -1.4.1								
160.0	1 8 8 9 1 8 1 8 9 9 1 9 1 9 9 9 1 9 9 9 9 9 9 9 9 9 9 9	<i>6 6 6</i> 0 0 0	<i>9 2 2</i>	9.0	1.0	Ø.7	. 9 . 9	1.4	о 	, c	2.4	Ø.9						ح	2 2	0.7	Ø. 8	
150.0	ເມຍ ເອີຍ ເອີຍ ເອີຍ ເອີຍ ເອີຍ ເອີຍ ເອີຍ ເອີ	1 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9 9 9 9 9	- 0. 2	0.0	1.0	1.9	1.9 .1	υ- υ-	- 5	, Ø	с.	1.1					ر م	8 9 1 0	9.2	0.4	R T L B
140.0	1.3 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	200 200 1		9 9	- 0.5	9 9 10 10	0. S	Ø.8	9 0 9 0	, c	Ø.5	- 0.3		R . 7 -				- 8	1.2	2 C	Ø .3	AVG COL THRUS
130.0	- 10 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	2 2	9 9 9	1.3	1.Ø	6.0	Ø.8			ø.6	ğ. 2	1.01-	-1.6				u Ø	2 G 2 G	, 9 , 9	1.0	P M -
120.0	າ ເຊິ່ງ ເມີຍ ເມີຍ ເມີຍ ເມີຍ ເມີຍ ເມີຍ ເມີຍ ເມີຍ	ນ ເນ ຕ ອ້ອງອີ	, ø 9 . 0 .	1.3 Ø	1.0	8 9 7 7	-0.1	Ø.3	- 20 -	20	- 0. 0	-0.6	8.7.	15.				e e	у 9 4 Ц	9 9 9	Ø.5	VG CORI SPEED E 31 RI
110.0	- Ø. 3 1. Ø 2. 7	2 0 0 9 0 0 1 1	9 9 9 9 9 9 9	1.0 8.9	Ø.8	9 9 9	. ø 10.	8.0	9 C 9 C	2 7	Ø.3	-10.5	י. יי	1 - 1 - 1 - 1				r v	2 Z	9. S	Ø.5	Е - Ø. 1
1.00.0	-1.8 8.7 8.5	າ 2000 2000		1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Ø. Ø	-10.01 -10.01	0.4	- 0.1	20	9 9 1 (1	-0.1	-1.5 3.5	9.7 7.7	- 1 - 1 - 2 - 1 - 1				- a	- C 2 C 1 C	10.1	-0.1	C RANGI FT SL
Ø.80	ອ ອີອີອີອີ ອີອີອີອີອີອີອີອີອີອີອີອີອີອີ	0 0 0 0 0 0 0 0	 	900 900	- 0. 5	Ø.7	Ø.4.	1.4	a	• •	ø.1	Ø.Ø	200 	-1.8 -1.4				u B	0.0 0.7	0 0	0.8	COUSTI 2400.0
80.0	8.7 8.7 9.7	- 1. - 1. - 1. - 1.	5 CO S	<i>.</i>	- 0	- 0. 3 - 10. 3	0.4 4.0	1.4	8.9 1	- 0 - 8	Ø.4	Ø.9	ם. יי יי	- 0. 2				5	9 0 0 9 0	2 · 2	0.8	сн Сн
7.8.8	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	, , , , , , , , , , , , , , , , , ,	- 8 - 8 - 8 - 8 - 8 - 8	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	- 0.5	- 0. 4 a	- 1. 0-	-Ø.6	1.0.1	+ - 2 - 1 1	-1.6	-2.3	4.4	c.4. 4.6				5	- 10 - 10 - 10	2 2 2 2 2 2 2 3	- 0.3	CATION
60.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9 9 	 0 - 0	90 90 90		1.7	1.4		 	9 U	1.2	6.9	20 - 10 -	-1.1				ې -		• •	1.4	L 00 C 4 1
50.0	- 1 . 0 - 1 . 0 - 0	, 	- 10	, 90 1 1 1 1 1 1 1 1 1 1		1.7	1.2	1.1	9.1 1		1.0	Ø.1		-1.6				7 2	 		1.3	
40.0	ມ ຊີ້ ເມີດ ເມີດ ເມີດ ເມີດ ເມີດ ເມີດ ເມີດ ເມີດ	- 8. 2 1 . 3 - 1	<i>9</i> 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		. N . N	2.8 8	a - 1	9.1.	 		Ø.2	-0.2	- 10 -	ດ. <i>ທ</i> -				-	c 		1.5	
	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	100 125 125	200 200 200	315 315	500	63 <i>8</i> 988	000 1000	C 1250	8891 7	20000	3150	4000	5,0,0,0	6300 8000 10000	16000 20000 20000	25000 31500	50000 50000 63000	0,00000	UASFL	PNI T	DBA	

TEST CASE FOR TREATED EJECTOR TEØ2 VS TE20

16214ES/FSDR35/DELTA

ო PAGE 7.895 02/27/86

DELTA, SPL(1) - SPL(2)

IDENTIFICATION

X 2*0*045 X 30045 (1) 83F-400-2004 (2) 83F-400-3004 INPUT

XØ2Ø31 CBF TE2-TE3 OUTPUT

ANGLES MEASURED FROM INLET, DEGREES

		8.8	- 9 - 9	9	8	-	1.01	- 0. 1	Ø.]	-0.1	10.1	9.1	- 0. 1	ø.6	ч. Г	2.1	2.4	2.7	1	10	212). R	-1.2	2-	-2-2	-2.1															
	s.D.	ות קי	2. Z	8. D	ю. 9	6.9	Ø.8	ø.6	Ø.9	0.7	0.7	1.1	1.0	1.2	1.1	Ø.9	Ø.9	0.9 0	-	- r 	0	Z . 3	2.3	1.6	2.1																
	AVG	ν. 2.	- 10.3	- 19 - 3	- 0.3	- Ø.8	- Ø.4	-0.2	-01.2	-06.3	-0.6	-01.6	-06.3	0.2	1.0	1.9	2.2	2.7	2			ы. Э	-1.2	-2.7	-2.5																
160.0	د ح	ואס יי	1.0 2	0.7	1.7	0.4	-0.1	0.7	1.3	Ø.Ø	Ø.1	ø.8	Ø.6	1.3	1.4	1.4	2.0	3.7	α.		1.0	-1.3											۲ ک	- (2)	ы. 20 20	8.8	1.0				
150.0	ר כ	7.9	с. 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	- 0.3	-0.0	-1.5	-1.2	-0.4	ø.3	Ø.3	-0.2	ø.2	Ø.7	1.2	Ø.5	Ø.9	1.0	2.9	α 1 α		5. 19. 19.	-1.9	-3.4										20 20	a	ы.	ю. 9	0.7	00	¥ ¥ F	LB	1
140.0	د د	2.0	- 0 - 0	- Ø. 3	-03.0	-1.6	-1.1	Ø.4	ø.3	-0.4	-1.0	-0.3	-07.1	6.Ø	0.2	Ø.1	1.7	1.0	1 0			9.0 1	-5.0	-4.8									(19	7 • <i>R</i>	4.9	0.4	Ø.2		ол эүү Тнр IIS	.1E 31	
130.0	נ פ	ы. С.	- 0 -	-1.0	-0.1	-2.5	-0.4	-0.2	Ø.]	-0.6	0.0	-0.1	-0.5	Ø.3	Ø.3	1.2	2.3	3.2	ננ - -		1.0	-1.8	-3.6	-4.4									ر م	11.1	В С	Ø.5	Ø.5		Ľ	РМ. – 197	:
120.0	ر ع	7.9	- 0.3	-00.5	-0.8	-2.2	0.0	-0.2	Ø.8	Ø.4	-01.5	Ø.5	Ø.4	1.1	1.4	1.6	2.7	с С		· · ·	8. N	-1.9	-3.3	-2.3	-0.3								u v	0 - 0		1.2	1.2				
110.0		-1.4	- 0.8	- Ø. 3	-0.7	-Ø.6	-1.5	Ø.2	-06.3	1.1	Ø.5	Ø.9	1.1	2.0	3.2	3.6	3.6		9 0	20	4.0	ч. К	<i>ы</i> .3	-0.3	Ø.2								0 -	• I - I	2.7	2.7	2.8	č	₹ ⊔	- 0.1	•
100.0	2	9.9-	- 0.3	-Ø.5	-06.8	-0.5	-1.2	-06.7	-03.9	-0.7	-1.8	-1.2	-10.2	Ø.2	1.6	1.5	1.3			•••	4.	ø .2	-1.7	-3.0	н. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.								• 8	1. 1.	0.7	0.7	Ø.9		C D D NC	ET SL	
90.06	e a	-10.3	-0.8	Ø.2	-00.5	ø.3	ø.3	-0.7	-0.5	- Ø. 7	-1.8	-1.3	- Ø. 3	Ø.5	1.7	2.1	3.0	6) -	4	ית - ר	1.6	-1.3	-2.1	-3.1								ю -	1.10	1.6	1.6	1.6			2400.0	1.555
80.0	4	Ø.8	Ø.7	-Ø.2	Ø.5	-0.7	Ø.6	Ø.5	Ø.5	0.3	-0.5	-1.0	-0.5	Ø.5	2.0	2.4	2.1	10	, c	, u	1./	1.8	-0.3	-2.2	-2.1								-	1.1	1.9	1.9	1.7		<	с НО	5
70.0	•	-1.4	Ø.Ø	-0.5	-1.2	-0.2	Ø.2	-0.2	-1.2	-0.6	-0.6	-1.5	-1.7	-1.8	0.2	1.8	0.7	. u 	, c	2.2	1.6	Ø.4	-0.7	-4.4	-5.9								۔ ب	1.0	Ø.4	ø.3	Ø.6		NOLTON	ANFCH	
60.0	1	-0.1	- Ø. 7	Ø.3	Ø.3	-0.4	1.0	Ø.5	Ø.3	0.0	-0.2	-0.2	-0.0	-03.0	1.4	3.1	1 1 1 1 1 1) 7	+ c	γ. Ω	4.3	а. 5	2.8	-00.5	-3.4									с. 1	2.5	2.4	2.3		-		- +)
50.0	;	-0.9	-0.7	-0.5	-0.5	-0.2	-Ø.6	-0.7	-1.0	-1.0	-1.2	-2.5	-2.3	-1.3	-0.1	2.7	N C		- (- (х. х	с. С	2.5	1.2	-1.2									(1	8.2	1.3	1.3	1.1				
40.0		-1.5	-1.4	-1.2	-2.0	-1.1	-1.6	-1.5	-1.7	-1.7	.1.5	-2.0	-1.8	-1.8	-1-0			10 10		3.2	2.5	1.5	0.4	-4.0									ł	-0.4	Ø.9	2.1	ø.6				
	FREQ	50	63	8,0	1.00	125	16.0	2.00	25.0	315	4.00	500	63.0	800	1 0 0 0	2 1250	7	6	2222	2500	3150	4 0 0 0	5000	6300	8000	10000	12500	16000	25000	31500	4 10 10 10 10 5 10 10 10 10	63000 80000		OASPL	PNL	PNLT	DBA				

TEST CASE FOR TREATED EJECTOR TE#2 VS TE20

LOCATION C41 ANECH CH

С

IDENTIFICATION

X 2 <i>0</i> 065 X 30065	
83F - 4 <i>00</i> - 2006 83F - 400 - 3006	
(1)	
INPUT	

OUTPUT ITF TE2-TE3 XØ2Ø31

ANGLES MEASURED FROM INLET, DEGREES

D. PVL	.8 .0.1 .8 -0.3	.8 -0.5 -0.6	.8 -1.0	.7 -0.4	.1 -0.3	.6 -0.8	. 8 - 1 . 8	8.1- 0. 8.1- 0	- 8. - 8.	.7 -0.1	.0 1.1	.8 1.6	.9 2.1	.9 1.5	.1 0.7	.1 -0.6	.2 -2.7	.4 -3.7	ດດ. ເຕຕ 1 1				
AVG S.I	-0.5	-Ø.6 Ø -Ø.8 Ø	0 6 0 -	- 10. 4 - 10. 3 - 10. 3	-0.6 1	0 6.0-	-1.1 0	-1.6 -1.6	-0.2	-0.2 0	1.1 1	1.7 Ø	2.00 0	1.8 0	1.1	-10.9 2	-2.7 1	-3.6 1	α α α α α α α α α α α α α α α α α α α				
160.0	1.2 Ø.7	Ø.Ø Ø.4	- 0.4	n n 9 0 1	0.8	1 1 1 1	- 19 -	יים 1 - 1	17. 19. 1	6.0-	Ø.5	1.4	1.7	3.7	2.4	-1.9				Ø.1 Ø.1	-10.4		
150.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- Ø. 5	-2.0	2 2 1	-0.1	-1.1	-1. 8.u	9 4 	-1.2	-0.7	0.1	ø.3	1.1	1.7	1.2	-3.4	-4.1			- Ø.4 - Ø.3 - 1.6	-10.7	ORR ST I⁺LB	
140.0	-1.5 -1.5	-1.0 -1.8	-1.6	-1.4 -Ø.2	-1.0	-1.3	-2-0	1	- 10 - 10 - 10	-1.2	-0.3	1.2	Ø.1	2.2	1.0	-4.3	-4.1	-5.1			ו אס. ש	AVG CC THRUS 7.1E 31	
130.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-1.0	10 10 1	ы. 9.9	0.7	Ø.5	9.0	0.0 9 1	0.0	Ø.3	1.5	2.4	2.4	3.4	2.8	-1.7	-3.2	-3.3	1 • •	Ø.9 4.9 4.9	ю. Ю	RR D RPM -J	
120.0	- 0. 0 - 0. 0	- 00.5 - 1.5	-1.0	- 10 - 10 - 10	Ø.2		- 10 - 10 - 10	0.0 9 1		-0.6	Ø.9	1.4	2.3	1.6	- 0	-2.6	-4.3	-4.1		- 00 - 00 - 01 - 01 - 01 - 01 - 01 - 01	- 10.1	AVG COI SPEEI 1E 31 1	
110.0	- 10.5 - 10.5	-00.00-	-1.1	- 10.3	- 0.9	- 0.6	- 10 - 7	0	- 1 - 0	0.8	1.4	1.2	1.6	1.9	2.1	-0.0	-1.9	-4.0	- - -	Ø.1 Ø.5	<i>ч.</i> р	се г - ø.	
1.00.0	-10.8 -1.0	- 0.3	-1.7	-1.3	-2.4	-1.0	-2.1	1.7.	2 C C C C C C C C C C C C C C C C C C C	-0.4	-0.8	1.0	1.1	1.0	-0.2	-2.3	-2.7	-4.1		- Ø. 8 - Ø. 1 - Ø. 1	-10.4	IC RAN Ø FT S	Ø
g. Ø6	-Ø.Ø -1.5	- Ø. 5 - 1 - Ø	- 0. 2	-1.8	-1.0	-1.0	-2.8			0.4	1.8	1.2	2.3	1.1	- 0.2	-1.0	-2.9	-3.7	- 6 - 	8 8 1 3 8 1 3 8 8 8 8 8 8 8 8 8 8 8 8 8	1.0	ACOUST 2400.	VC TC3
80.0	Ø.6 Ø.2	- 10. 10	0.0	Ø.1	Ø.5	-0.2	- 0 - 0 - 0	1 C 1 C 1 C	- 2 - 2 - 2	ø. 7	2.4	2.6	2.6	2.4	1.6	-06.3	-2.1	-1.8		Ø - 1 	1.5	CH Z	TCWO
70.0	-0.4 -0.1	- 0 -	-9.5	- 0, 2	-1.3	-1.0				- 0. 5	1.1	1.4	1.8	1.2	0.4	Ø.3	-2.6	-5.0	រ		Ø.b	OCATIO ANECH	001010
60.0	- Ø. 8 - Ø. 5	ן פ פ	-0.2	Ø.1 Ø.1	0.0	-01.2	-1.2	י ה יי יי	7.0-	Ø. 2	2.1	3.0	3.2	 	2.0	2.4	-0.2	-0.4	1 2 1	0.1 0.1 7.1	1.7	C41	
50.0	- Ø. 8 - Ø. 4	- 1 3 - 1 3	6 .3	- 1 - 1 - 9	-1.2	-1.2	-1.0	ים 1. קיי		9.2	2.4	2.6	. C . C		1.0	2.2	-1.7	-3.6	5 • •	0.4 1.6 0.8	1.3		
4 <i>B</i> . <i>B</i>	-1.7 -2.2	-2.8	-2.8	1.1.2	-2.2	-1.7	-1.5	-2.2	- - - -		1.0	2.6	2.8	9 9 1	- 0. 4	0.9	ю.	-4.3	י י ל	- Ø. 7 Ø. 7 1. 8	Ø.5		
60 60		8.0 1 a a	125	160 200	25Ø	315	400	5.0.0	0 2 0 0 0 0 0	1000	1250	1600	2000	2500	3150	4000	5000	6300	80000 11250000 1250000 1500000 1500000 150000 500000 5000000	0ASPL PNL PNLT	DBA		-

TEST CASE FOR TREATED EJECTOR TE#2 VS TE20

C17

16214ES/FSDR35/DELTA

ო PAGE 7.895 Ø2/27/86

DELTA, SPL(1) - SPL(2)

IDENTIFICATION

X 2Ø1Ø5 X 3Ø1Ø5 (1) 83F-400-2010
(2) 83F-400-3010 INPUT

XØ2Ø31 TOF TE2-TE3 OUTPUT

ANGLES MEASURED FROM INLET, DEGREES

90.0 100.0 110.0 120.0 130.0 140.0 150.0 160.0 Ø B.M. 8 7.8 Z 6.01 Ø

	PVL 2	-03.7	- 8.9	-1.2	-0.8	-1.0	-0.1	Ø.3	Ø.1	-1.0	- 0 - 1	ю. Э	ю. Э	- 1 2 2	1.1	8.8	с. 2	-0.1	Ø.3	-0.2	-1.3	- 2 6	101	. a	ы 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.0														
	s.p.	8.7	Ø.8	Ø.8	Ø.8	Ø.8	Ø.6	Ø.7	ø.6	1.0	8.8 .8	6.9	8. 9	ы. 7 2	ы. Э	1.1 1	1.9	1.2	Ø.9	1.2	1.4	- 1	 	, v , , ,	1F 19	-														
	AVG	06.2	0.0	- Ø.4	-0.4	-Ø.3	Ø.3	Ø.3	-0.0	- 0.6	- 0. 3	-0.0	-10.10	1.9	1.1	9 5 6	1.9	- 0.4	Ø.2	-00.5	-1.5	- 2.6	0 00 1 01 1	ש ה ו	- 7 - C -	•														
160.0	1	-1.0	-1.3	-1.0	-0.7	-0.6	-01.2	1.0	Ø.2	-3.4	1.1	1.8	8. 5 7	8.9 9	1.3 2	Ø.6	1.4	-0.8	-ø.1	-1.3	-1.8												ר ג	- u 9 1	9 9 1	7 . 1 . 1	5 4			
150.0	:	-0%.5	-1.0	-1.5	-1.2	-1.5	-Ø.2	Ø.8	Ø.2	-1.1	Ø.2	Ø.8	- 10 - 5	Ø.4	8	Ø.2	ю. Э	-1.6	Ø.1	-1.0	-2.0	ה ה											2			0 - N	N . I	R R	Ē	LB
140.0		-1.5	-1.5	-1.7	-1.7	-1.8	-0.9	-0.9	-1.1	-1.4		- 0. 6	- 10.4	- 10.3	1.9	- 10 - 1	Ø.6	-2.9	-Ø.8	-2.9	-4.1	L V-		2.											200	9 9 9 9	C • A -	AVG CO	THRUS	1.1E 31
130.0	:	ø.5	Ø.2	-06.7	1.0	- Ø. 7	Ø.6	1.1	Ø.7	-0.8	Ø.6	1.2	В	6. Q	1.3	2.1	2.2	-1.8	Ø.5	-0.8	-2.4	, 1 1 1	ע היי ו) 0) 0 	1.0								L R	9.0 0.0	0 - 0 R 0	ю И	u . 1	0	<u> </u>	PM - 20
1203.03		-04.3	Ø.5	ø.ø	-1.0	-0.9	Ø.1	Ø.6	0.4	-1.0	Ø.6	Ø.6	Ø.3	Ø.4	Ø.5	- 0.4	Ø.6	-06.4	- Ø. 7	-1.3	1.00-1	יי היי ו	ם ה ייי ייי)) 	0.1								1	1. 20	2 r 9 7	- c 9 0	7.0	VG COR	SPEED	E 31 R
110.0		- Ø. Ø	1.0	ø.5	-0%.5	Ø.3	0.1	0.4	Ø.5	0.7	-Ø.8	0.0	0.7	0.0	1.1	g. 5	ø.5	0.7	-0.6	0.4	- 0. 7	.α 	0 0 1 0 1	ם ה ס ה	••••								i a	20 20 20	ອ ເ ອີ ເ	9.9 7	ю.4	Φ	с ш	-0.1
100.0		-04.5	0.2	-10.10	0.0	-06.2	ø.3	-01.6	-Ø.5	Ø.Ø	-1.3	-0.3	-06.9	-1.3	-Ø.8	-0.6	-0.3	-0.3	-0.8	-1.6	-2.6) - (*			t • •								1	9 r 9 r 9 r	- 1 9 0 1	20	1.01-		C RANG	FT SL
90.06		Ø.7	0.7	-03.03	Ø.5	1.0	ø.5	Ø.3	Ø.3	-0.2	-06.5	-0.7	-03.03	Ø.2	Ø.9	1.6	-10.10	ø.3	0.4	Ø.1	-0.5	, c , c , c	1 1 1 1			*							1	9 . 9	X	ы 2 4	с. Я		COUSTI	2400.0
80.0		ø.3	Ø.2	-0.5	-0.2	Ø.3	Ø.3	0.8	0.5	Ø.3	Ø.3	-8.4	-0.2	Ø.9	1.2	2.3	Ø.4	Ø.5	0.9	0.1	- 0 -	, c , c , c	1 1 1 1 1 1	 						* **			1	2. v 2	8. 4.	2 C 4 C	ю. У		•	CH
70.0		Ø.2	0.4	-1.5	-1.1	-0.1	Ø.3	-0.3	-0.9	-06.5	-0.3	-0.8	-1.1	-1.0	1.1	1.1	-0.0	-1.6	-0.6	-0.5			- 1		- 4 - 0								1	6	9.1. 1.	ים 	- 19		CATION	ANECH
60.0		ø.5	Ø.2	Ø.5	0.7	0.0	1.8	Ø.9	Ø.5	0.1	- Ø. 7	-03.7	- Ø.4	Ø.Ø	2.3	2.1	Ø.8	-0.5	1.4	1.0	Ø. A	2 2	200	1 1 1 1 1	- 2 . 3									Ø.8	9.9 7	- 10 - 10 - 10	6.9		-	C41
50.0		-0.8	0.1	. Ø. Э	- 0. 0	Ø. Ø	6.0	-0.3	0.0	-0.2	-0.7	-0.9	0.4	Ø.2	3.Ø	1.2	Ø.6	Ø.9	1.7	1.3	2.2	20	 9 ()	9.7 7.7	07 - 7 -									Ø.7	1.9	ю. 1	1.1			
40.0		-0.0	0.6	ø.5	10.3	ğ. 3	. 9 . 9	-0.1	-1.0	-0.4	-1.0	-06.4	Ø.8	Ø.2	1.2	0.5	1.4	1.3	1.0	5	2 2 1 1	20	9 1 1	9.7-										0.4	0.7	- Ø. 3	Ø.8			
	FREQ	5.0	63	8.0	100	125	160	2.0.0	250	315	4 0 0	500	63.0	8,0,0	1000	, 125 <i>0</i>	1 16.00	2000	2500	2150		2222	2000	6300	80008	10000	1 2 5 10 10	20000	25000	31500 40000	50000	63 <i>000</i> 80000		OASPL	PNL	PNLT	DBA			
																3	78	5																						

TEST CASE FOR TREATED EJECTOR TE#2 VS TE28

IDENTIFICATION

X20035 X40035	
83F-ZER-2003 83F-ZER-4003	
(1) (2)	
INPUT	

OUTPUT CBS TE2-TE4 XØ2Ø41

ANGLES MEASURED FROM INLET, DEGREES

90.0 100.0 110.0 120.0 130.0 140.0 150.0 160.0 0 80. 0 7.01 8 6.0 Ø 50. Ø 40.

い の の の の の の の の の の の の の		
▲ダダダダダダダダダダダダ→ダダ > · · · · · · · · · · · · · · · · · · ·		
	<i>8688</i> 2333	
2 こししかのなななないので、「、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、	Т. - 2 - 2 - 2 - 2 - 2 - 2 - 1 - 2 - 2 - 1 - 1 - 2 - 1 - 2 - 1 - 1 - 2 - 1 - 2 - 1 - 2 - 1 - 2 - 1 - 2 - 1 - 2 - 2 - 1 - 2 - 2 - 1 - 2 - 2 - 1 - 2 - 2 - 2 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	6
・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	- 8.8 - 1.8 - 8.8 - 8.9 AVG CO	LE GI
	× × × × × × × × × × × × × × × × × × ×	й М М Л
	-Ø.1 -Ø.1 -Ø.1 -Ø.2 -Ø.2 SPEED	E GL K
	. Р 2	-10.1
	1.8 2.1 2.1 2.1 2.1 2.1	F I OL
	Ø.6 1.6 1.7 0.0571	2400.00
ー タダダダーーーダダダダダクころろろうなダダ そうちちちがなろこころすめないのです。	-0.02 40004	E
・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	Ø.6 1.3 1.5 1.5 CATION	ANECH
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ر ب ۲ ۲ ۵ ۲ ۵	C41 .
・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	। ଅନ୍ଦ୍ ଅନ୍ତର ଅନ୍ତ	
・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	8-1 1.5 1.1 1.1	
F P P P P P P P P P P P P P	8ØØØØ OASPL PNLT DBA	

TEST CASE FOR TREATED EJECTOR TEØ2 VS TEØ4

16214ES/FSDR35/DELTA

PAGE 3 9.634 02/24/86

DELTA, SPL(1) - SPL(2)

IDENTIFICATION

X 20055 X 40055
83F-ZER-2005 83F-ZER-4005
(1)
INPUT

XØ2Ø41 ITS TE2-TE4 OUTPUT

ANGLES MEASURED FROM INLET, DEGREES

	PWL	Ø.9	. J	1.2	-		2 2 2 2	Ø.2	Ø.5	ø.5	Ø.1	- 01 01	2 G 2 C	2 2	9.9 9	0.1	0.7	1.0	1.4	• •	\	л. П	1.2	- 0.4				0 9 9	ς. Γ															
	s.D.	Ø.8	Ø.9	1.0	1	2 -		Ø.8	0.7	0.9	0.7	e B	, 9 , 9 , 0	9 C	ч. Э	Ø.8	<u></u> б.9	1.4	1 9		n (1.5	1.2			, n	1./																
	AVG	Ø.3	Ø.6	0.5	Ø, A	20	2.2	0.1	Ø.3	0.4	0.1	- 10	, 9 , 9 , 1 , 1	22	8.9 1	Ø.5	Ø.9	1.4	1 7				Ø.9	-0.6		9	1 2 2 2	с. <i>9</i> (-																
160.0	1	ø .2	1.0	1.5		, , ,		Ø.8	1.5	Ø.8	1.0	0	9 0 1 0	2 C	ם י גע	Ø.5	-Ø.1	-0.1	- 01 -	5 5 5 5	ຊ. ຊ.	- 19	1.2	-07.4	2												د د		1.2	1.2	Ø.7			
150.0	1	2.0	3.0	2.7	и і с	10	2.2	1.3	Ø.5	2.5	1.2	0 1	. o		.	Ø.5	1.1	2.1	ى -		1.6	1.4	1.4	- 0, 5		•											((·· ·	1.6	1.6	1.2	ARR T		1
140.0		1.0	1.0	1.0		- c	я Я	1.0	Ø.5	Ø.8	- 0, 5		, - 1 - 1 - 1		-1.2	-0.0	-0.5	-1.5	-	+ (- -	-1.2	-1.7	-2.2	-3.9	× • • •	5 T	- 4 - 10										r č	2.1	-0.1	-0.1	-Ø.5	AVG CO		, , , , ,
130.0		-03.03	Ø.5	5 1 1	9 G 9 G	9 9 9 1	с. <i>И</i> –	-0.2	1.3	0.0	9	, 9 1 1 1 1	20	ດ ຊີ	ю. 3	-0.1	-0.0	Ø. 2	U U	5 S	ด. ด.	-1.8	-1.5	- 2 - 2	1 U 1 C 1	, c	13.6										2 2	N. N	-0.3	- 06.3	-0.1	R	M D M D	
120.0		- 10 - 10	0.7	м С	20	0 I 2 2	-10	-1.0	0.0	-0.2	10,1			ນ. ຊີ	<u>ы</u> .1	-0.8	Ø.3	ເ . ທີ່		+ 0 2 2	2	0.7	0.4	-14			4 · 7 -	-1.4									2	7.01-	-0.0	-0.5	-0.1	AVG COF		- - - -
110.0		1.0	0.7	0	2 2	ດ ເຊິ່	<i>a</i> . <i>a</i>	Ø.5	Ø.3	Ø, 3	10.1	20	2	4 · 2	-10.1	-06.3	1.6	1.6	0		<u>г</u> .ч	2.2	2.4	с С			1. N	1.5									1 2	с. <i>И</i> .	1.0	1.0	Ø.9		י שי	
100.0		-0.5	0.7	0	 	1 1 1 1 1	<i>b</i> . <i>b</i>	0.0	0.0	1.0	2	, 9 , 9 , 9 , 1 , 1	າ ຊັ	ן איי איי	Ø.1	1.0	1.1	3			4.2	3.0	2.1	5	9 6 9 6	20	ы. У.	1.1									1	<i>ы</i> . У	1.6	1.6	1.6			10
90.06		ø.2	Ø. 2	10,10	, , , ,	ດ : ຊີ	- 13 - 1	0.0	- Ø. 7	0.0	, 9 , 9 , 9	20	2 2 2 1	ם. א וא	-0.4	0.0	Ø.3	-	. U	5 G 4 I	2.10	2.3	ø.3	, c , - ,	- c		1 7	-2.6									1	5.0	Ø.9	Ø.9	1.0			Z 4 20 20 . Z
80.0		1.2	0.7	. ц 2 2		1.6	1.0	1.3	1.0	1 0		10	2.2	-0.1	Ø.6	2.0	2.3		• •		5.2	3.8 .8	3.1		20	1.2	-10.4	1.3										1.6	2.7	2.7	2.5	•	۹ 	5
70.0		Ø.1	0.4	20	+ (2 >	ы. Ч	Ø.8	- Ø. 4	0, 2	2	2 G	9 5 0 L	ດ ເ ຊິ	- Ø - 5	-00.00	1.2	2.0	- 10	- (- - (2.2	2.5	1.1	Й.8	, v	っし 	9.7 1	-2.6	-1.6										Ø.7	1.0	1.0	1.4		CATION	ANECH
60.0		0.7	20	20	2	-10.3	Ø.Ø	Ø.3	, S		2 - 2 -	2 L - 2 - 1	ด. ดี-	- Ø - 1	-06.2	1.2	и. -			4.2	3.7	2.7		• C	ν. 	8.97-	-1.9	-1.6										Ø.6	2.0	1.4	1.7			541
50.0		-01.8	, α γ α	2 - C) 	-01-5	-1.2	-1.2	10	10 1- 1	- C	5.01- 5.0	20	-1.1	-1.4	-0.0	α	2 -		١. ٢	3,2	2.7	4	2 C	וא ישיי	G . Z -	-3.4											-0.5	1.0	1.0	Ø.5			
40.0		- 0, 8	ور م	2	с. Я	0.2	-06.5	ر م	2 2 2 2 2 2 2		1 2 1 1 1	ו איי איי	-10.10	-Ø.1	-0.1	Ø. 8) -		41	ч. 5	4.3	3.4		- L - 2	ດ. ເ	-1.5	-1.3											Ø.2	2	6 	1.4			
	FREQ	50		5 C	210	1,00	125	15.0	200	2010		5 I D	400	5000	630	BAR	1 000			16.00	2000	2500	2 1 F Q	20.15	4.0.0.0	5000	6300	8000	10000	12500	16000	20000	25000	31500	4 0 0 0 0 0 5 0 0 0 0 0	63 <i>000</i> 94440	~~~~	OASPL	INd	D NI T	DBA			

TEST CASE FOR TREATED EJECTOR TEØ2 VS TEØ4

LOCATION C41 ANECH CH

IDENTIFICATION

X 2 <i>0</i> 095 X 40095	
83F-ZER-2009 83F-ZER-4009	
(1) (2)	
INPUT	

TOS TE2-TE4 XØ2Ø41 OUTPUT

ANGLES MEASURED FROM INLET, DEGREES

1
2
1
č
u
-
2
č
•
-
2
č
c
-
c
ç
c
-
2
Ĩ
۲
-
•
2
Ĩ
6
ç
-
7
4
7
õ
~
č
ç
C
5
ç
r
2
1

	PVL	0.7	-		2.1	+ • •	1.4	1.4	1.7	1.7	1		- 7 - 7		1.1	1.5	1.8	2.0	1.9	۲. د) (-		20	0 9	-1.7	-2.0	-06.2	4.4														
	s.D.	Ø.6	2	20		200	א. יע	8.7	0.7	ø.5	9		20	0 • 9 •	1.4	1.8	1.9	1.9	1.8	1.5) (r -) 	- (۰. ۲.	1.6	1.8	1.4															
	AVG	Ø.5	9	2 2	• •		91	1.5	1.4	1.5	5				1.6 1	2.2	2.5	2.7	2.4	1.8) (* -		20	7.9.	-1.2	-1.1	Ø.1															
160.0		1.0	0	9 2 1 C	о 1 1 1 1	- -	۲. ۲ د . ۱	1.8	1.8	1.5	1.7		20		9.9 9.9	-10.2	-Ø.1	-0.1	0.1	Ø.8	- 0 - 0 - 1	9 	2.7	ю. I												1.1	1.3	1.3	1.3			
150.0		1.0	یں ا	2.2			2.2	1.3	1.5	2.0	1.5					2.3	2.8	1.9	3.8	1.2	0	 	- 1	ດ. ຊ	1.4											1.3	1.5	1.5.	1.6	¥. ₩	LB	
140.0		0.2	1 7	. ~		2 C	1. 1	2.3	2.0	1.8	1.7		19 10	9.	ν. -	1./	0.8	1.3	0.1	Ø.3	- 0 -		5 - 1 r	۰. ۱	-1.1	-2.3										1.6	1.5	2.5	1.3	AVG CO THRUS	.1E 31	
130.0		Ø.5		9.7	2	20	8 	Ø.5	1.8	1.5	1.0	2.0	- C - C - C		а. 9	1.2	1.0	0.4	1.2	Ø.2	10		2 -	י - ייי	- 2 - 9	-2.9	ы. В.									Ø.9	0.7	0.1	0.9	~	PM - Ø	
120.0		0.2	с С	2.1	2	20	 	Ø.3	1.5	1.3	2.0	2	2 - 1 -	* • •	 	N . /	Ø.8	1.0	0.4	0.2	10) - 2 - 1	- 1	· · · ·	-3.0	-2.4	-0.2									1.1	6.0	Ø.4	1.0	 VG COR	E 31 R	
110.0		1.7	ري 		2	а. 1		2.0	1.5	1.0	2.2			+ C - C	יא	1.0	2.1	2.3	0.7	1.4	-			- I 2	- 19 - 1	-0.9	1.2									1.5	1.2	1.2	1.4	× س	-Ø.1	
1.00.0		-0.0	د د			- U - 70	8	2.3	1.8	2.3	1.7	Ч	9 G 9 G	 	9.9 9.0	ю. 8	1.1	1.6	2.5	2.2	10	ιe α	20	ו אי שו	- 19 -	- Ø. 7	-0.4									1.3	1.6	1.6	1.4	C RANG	FT SL	
90.06		0.7	0.2	, 2 1 1 1 1	- 0 - 0 - 0		р. 9	1.5	ø.5	Ø.8	Ø.2	9 9 1 R		2 C	4.0	8.8	1.1	2.4	а . 3	1.7			2 • 1 0	2.	-3.7	-3.7	-2.9									1.0	1.2	1.2	1.5	COUSTI	24000.00	
80.0		1.2	- -			a. - (2.2	2.5	2.5	1.8	1.7					2.5	4.1	5.1	4.0	3.4	0	, c , c		ы. Э.	-10.1	-1.5	1.3									2.5	2.6	2.6	3.2	A	H	
70.0		0.0	d N		0.0	2 L - (c 7	1.1	1.1	1.3	8	. σ	2 2 -		1.1	с. С	4.5	4.1	2.1	Ø.6	2	0 0 0	2.0	י ו י י	-2.7	-2.2	-Ø.1									1.8	1.1	Ø.6	2.2	CATION	ANECH 4	
60.0		0.2	10	2.0		- (- (C · 7	2.0	1.3	1.3		1 U • -		((2.8	4.7	5.5	5.0	3.6	3.0	с С	, o	- -	9.1 1	-Ø.3	. Ø. 6	1.6									2.6	2.9	2.9	3.7	ΓO	C41	
50.0		-0.5	ה קיי ו	2 2 1 2 1	2 G 2 F	- (2.5	Ø.8	-Ø.2	1.5	<u>я</u>	2 E		1.6	4.1	5.2	4.5	4.0	4.6	3.7	. r . r		•••		-0.5	Ø.8										2.1		2.7	3.6			
40.0		- 01 - 01	1 1 1 1 1	, , , , , , , , , , , , , , , , , , ,		⊇ເ •	c. 7	1.0	1.5	2.3	0		· ·	y.	4.9	5.0	4.9	5.6	5.3	4.8	2	- 0	, 1 1 1	1.0	1.0	2.5										2.6		3.6	4.2			
	FREQ	20		ο α	1 0.0		125	160	200	250	215	2010	224	<i>8</i> 965	63.0	800	1000	S 1250	1600	2000	2500			4.0.0.0	5000	6300	8000	10000	12500	16000	20000	25000 31500	40000	53000	80000	Idstu		PNLT	DBA			

TEST CASE FOR TREATED EJECTOR TE#2 VS TE#4

IDENTIFICATION

INPUT (1) 83F-488-2884 X28845 (2) 83F-488-4884 X48845

OUTPUT CBF TE2-TE4 XØ2Ø41

ANGLES MEASURED FROM INLET, DEGREES

	FRFO	20			1.6.6	125	160	200	250	315	400	5,010	630	800	1000	1250	1698	2000	2500	3150	4000	5000	6300	2000		1 2 5 9 9 9	16000	20000	25000	01010115	50000	63888	ANNAN	OASPL	PNL	PNLT	UBA
40.0	2	Ø.7	10,1		-0.9	-0.6	- 0	- Ø. 8	-1.6	-1.7	-1.2	-1.4	-2.0	с. 1-	-Ø.1	2.4	3.8	2.6	 	2.4	-1.1	-1.8	-2.0	2										0.0			л. л
50.0	2	Ø.4	- 0. 2	9. P	Ø.1	Ø. 1	-0.1	ø.1	-1.8	-1.1	-0.9	-2.4	-1.7	-1.0	0.7	а. в	3.2	2.7	ч. •	3.7	Ø.4	-Ø.1	1.6	1										Ø.6		ە ب 	а. Т
60.0	2	1.0	1 . 1	I	1.5	Ø.3	1.1	Ø.6	Ø.5	-0.2	-0.1	-06.7	ø.3	-0.0	1.9	4.3	4.6	3.7	4.1	4.1	3.4	2.6	2.3	~	1									1.9	с. В 1	י ה סיפ	D.J
70.0	2	1.1	1.2	6.9	1.0	g. 9	1.5	ø.1	Ø.9	1.0	. Ø. 8	- Ø.6	0.1	- Ø. 3	2.1	3.9	3.6	3.6	3.7	з.5	ני ט	1.0	1.2	1 . 1	•									6.1	9.0 N	0 U V C	D. 7
80.0		3.1	2.1	2.0	1.7	1.7	1.8	2.1	1.6	1.5	Ø.5	Ø.9	1.1	ю. Э.Э	4.5	5.1	4.0	6.1	5.7	4.7	4.4	4.4	3.8	6.1										с. 1	4 9 2 2	3 C 7 7	4.2
90.06		Ø.1	-0.2	0.1	-0.7	-0.3	1.0	-Ø.6	-0.0	-0.8	-03-	- 0	1.01	1.5	2.6	2.8	3.6	3.0	3.4	2.2	2.Ũ	Ø.7	0 .9	2.5	1									1.4	30	, v 1 v	1.1
100.0		3.7	1.5	8.7	0.7	ø.8	g.g	Ø.6	Ø.4	Ø.9	Ø.1	- 0.3	Ø.9	2.6	3.6	а. 9	4.0	3.1	3.6	3.7	2.7	4.4	4.9	5.7	l									01 01 01	 	, u , u	1.1
110.0		2.0	Ø.6	Ø.5	Ø.5	Ø.4	1.2	ø.8	-0.1	1.0	0.4	1.2	1.9	2.5	2.9	а. 9	3.0	3.2	4.0	а. 9	4.4	а. в.	ני ני	7.9										~~~	י ה יי	1 C	1.1
120.0		0.7	0.2	-0.4	-0.4	-0.4	Ø.1	-0.5	-0.1	0.7	-0.2	ы. 1	1.7	2.4	1.8	1.8	2.2	2.9	1.6	2.3	4.1	4.0	5.7	8.6										6. 6	9 U -1 -		
130.0		1.6	Ø.4	Ø.1	Ø.6	-0.4	8.7	Ø.5	1.1	8.1	Ø.4	ы. В. Б	1.0	1.3	1.5	2.0	1.5	1.9	1.7	2.6	9.0 .0	3.6	4.9											ы. 9	יי 	• •	
140.0		1.0	1.8	1.1	Ø.3	1.1	-Ø.6	0.7	0.7	9 .9	ы. 9.9		1.7	1.0	0.4	Ø.1	1.3	1.4	0.0	1.6	2.8 .8	2.7	3.4											р. 7 2	9. F	2 . J	•••
150.3		2.0	1.3	1.1	1.3	1.4	-1.1	Ø.5	1.2		1.3		2.1	2.1	2.1	1.4	-0.1	3.8	2.2	4.2	4.9	4.6														2 LC) • •
160.0		1.2	1.6	-Ø.2	-0.8	Ø.3	Ø.5	Ð.4	1.2	1.Ø	6.9	ы. 19 19	9.2	2.2	1.6	1.8	1.1	2.3	1.3	2.8	4.7													6.7	20	2	*
	AVG	1.4	Ø.8	Ø.5	Ø.4	Ø.5	Ø.5	Ø.3	Ø.4	Ø.4	1. 1.	- 19.1	9.9 9.9	н. Г.	2.8	6.0	2.7	а. в	2.9	3.2	8.8 .0	5.5 1.2		4.9													
	s.D.	1.8	Ø.9	Ø.8	6.0	Ø.8	6.9	Ø.7	6.9		9.7	1.1	4.		1.3	1.4	1.4	1.1	1.5	9.9	1.7	2.1	2.4	2.9													
	۲۲		1.1	Ø.4	8.0	0	6	8	9.9	6	5	20	9. 9.		N	() ()	с. С	() ()		с. С	200	2	2	<u>،</u>	00												

AVG CORR THRUST -Ø.1E 31 LB AVG CORR SPEED -Ø.1E 31 RPM ACOUSTIC RANGE 2400.0 FT SL TEST CASE FOR TREATED EJECTOR TE#2 VS TE#4 LOCATION C41 ANECH CH

IDENTIFICATION

X 2 Ø Ø 65 X 4 Ø Ø 65 (1) 83F-400-2006 (2) 83F-400-4006 INPUT

ITF TE2-TE4 XØ2Ø41 OUTPUT

ANGLES MEASURED FROM INLET, DEGREES

	PU1		5 5 	<i></i>		2	9.1 1 1	201	- 10 - 10	-0.7	- 0. 7	-0.8	-0.6	-0.4	-0.4	0.7	1.0	1 4	- u		0	N N	2	3.4	5.3														
			 		2. - 2	2 2 2	א א אינ	. e	Ø.8	Ø.8	6.0	Ø.6	0.8	Ø.9	1.5	1.3	1.7	2,9	2	- د ت د	~	10	2.7	5															
	AVG	- 0. 0	5 6	2 9 1	201			- 0 -	- 0. 7	-0.8	- 0.7	-1.0	-06.7	-0.5	-01.8	Ø.5	Ø.6	Ø.6				1.0	1.8	3.4															
160.0		+ +		9. T	2 U	20.0		- 0 -	Ø. 2	-1.2	1.0	-0.6	Ø.2	-0.1	-1.5	-0.5	-1.4	-3.1	5	6	3.8) 											0.4	-0.1	-0.1	-0(-2			
150.0		000	, 1 1 2	ы 7 г 7 г	2 - 2 -			1.0	Ø.6	-0.2	Ø.3	- Ø.6	0.1	0.1	-1.8	Ø.1	-1.3	-2.1			5.0	4.5	•										Ø.8	-0.2	-0.2	-0.3	0	Ĭ	• LB
140.0		י פ ז		9 6 9 7	2.2	2 1		-0.2	-0.1	-0.2	-0.5	-1.4	-0.4	-0.2	-1.2	-0.7	-1.3	-4.2	1.2	1.8	2.4	3.1	4.4										-0.5	10.8	-1.8	0.8		THRUS	.1E 31
130.0		с <i>1</i> 0	9 9 9 9	9.5 9.1	2		1 - 1 0	-0.2	0.1	-0.6	0.1	- 0.4	Ø.2	-0.0	-1.0	0.1	-0.9	-2.5	2.5	3.6	4.1	3.2											-0.3	-0.3	Ø.3	-Ø.3	0	<u> </u>	PM - Ø
120.0		- 0, 3	, , , , , ,	9 C		4 = 	- 0, -	- T -	-1.1	-1.1	-1.0	-0.9	-01.6	-0.9	-01.8	-06.7	-0.8	-1.5	1.6	6.0	1.4	1.8	3.6	6.2									-0.9	-0.7	-0.7	-0.8	VG COR	SPEED	E 31 R
110.0		о С	2 G 2 G	ם פ פ	יי פיי	- 20 -	2.9	-0.7	-1.5	-0.7	-0.7	-06.4	-07.9	-0.1	Ø.9	1.3	1.5	1.4	0.4	о. С	2.4	2.8	3.6	5.4									Ø.2	Ø.9	Ø.9	Ø.7	٩	с ш	06.1
100.0		0.7	- 0. 0	2.0		2.2	1 4	-0.2	- 0.4	Ø.3	-1.1	-0.0	-0.2	1.1	1.0	1.3	3.6	2.6	1.6	2.6	1.1	1.8	о. 6	4.5									Ø.9	1.7	1.7	1.5		C RANG	FT SL
0.06		0.7		, , ,	а 		-1.6	-2.2	-1.5	-1.5	-1.5	-1.5	-1.7	-1.0	-0(.3	1.5	1.2	0.4	1.4	-0.9	-1.4	-2.0	-1.8	1.0									-Ø.3	-0.1	-0.1	Ø.2		COUSTI	2400.0
80.0		0.0	d d	9 9 9 9	5 С 5 С 5 С		0.0	0.0	-0.2	Ø.3	-06.2	-1.0	0.0	0.7	1.7	3.0	2.8	3.4	3.2	2.9	Ø.6	1.3	2.7	5.0									1.3	2.1	2.1	2.0		A	CH
70.0		-1-1		- 0 -	2 2 2 1 -	- 1 - 1 - 1	8.		-0.8	-0.7	-01.8	-1.6	-1.4	-1.0	-00.8	1.6	1.4	2.5	1.6	0.7	0.2	-1.2	-0.6	0.1									Ø.1	Ø.8	Ø.8	0.7		CATION	ANECH
60.0		-1.8		2 - 0 2 - 0 1 - 1	1 2 - 2	- 10-	-1.	-0.9	-1.2	-1.2	-1.5	-2.0	-06.7	-1.0	-1.5	Ø.7	1.7	3.9	1.7	1.7	Ø.6	Ø.5	1.5	1.2									-0.0	6.0	1.0	0.7		ΓO	C41
50.0		- Ø . A	л 1 1	2 2 2 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		- 0	-0.5	-0.7	-0.7	-0.7	-0.1	-0.7	-0.7	-1.8	Ø.7	1.2	4.0	1.4	1.9	-01.6	-0.7	- 0.3										0.0-	6.0	-03.2	Ø.5			
40.0		-1.9	· ~ · · · · · · · · · · · · · · · · · ·	0 t 1 1	1 2 0 1 0	, 1 1 1		-1.9	-2.2	-2.7	-2.2	-2.0	-2.5	-2.7	-4.0	-1.8	-06.3	2.5	-0.0	-1.1	-2.1	-2.7	-2.5										-1.9	-1.0	-1.1	-1.4			
	FREQ	50	9 G 9 G	200	1 0 0	105	16.0	2.0.0	25.0	315	400	500	63.0	8,0,0	1000	1250	1600	2000	2500	3150	4000	5000	6300	8000	10000	12500	16000	20000	21500	4 <i>0000</i> 50000	63 <i>888</i> 63 <i>888</i> 63888	<i>auuu</i> o	OASPL	PNL	PNLT	DBA			
			<	Ø			Ż	(3	83	3											-			-						

TEST CASE FOR TREATED EJECTOR TE#2 VS TE#4

IDENTIFICATION

X2Ø1Ø5 X4Ø1Ø5 (1) 83F-400-2010 (2) 83F-400-4010 INPUT

XØ2Ø41 **TOF TE2-TE4** OUTPUT

ANGLES MEASURED FROM INLET, DEGREES

	PVL	Ø. 7	1	2 C	2	Ø.8	0.4	0.7	d d	2 2	Ю.4	ø.5	Й.6	2	2	Ø.8	1.0		- 0	2.3	2.2	с 2	2 2	2.0	-0.2	α 0-	20		9 . 4	4.3	7.3															
	s.D.	1.0	2	2	1.0	0.7	ø.6	0.4	2		<i>b</i> .4	0.7	0.7		ю. Г	Ø.9	<u>م</u>	2 -	+ L 	1.5	1.6	с С		1.6	1.5	2	- C 	1.0	2.8	2.5																
	AVG	Ø. F	ά	2.2	9.4	Ø.5	0.4	Ø.8	2	8 9 4 0	2.0	ø. 3	ğ	2 C	ר. מי	0.7		• •	1.1	2.6	2.2	1 0	(((2.01-	-0.3	- 0 -		1 1 1 1 1 1	Ø.5	ө. С																
160.0		- 01 -	1 2 1 1 1		N. N	Ø.8	Ø.5	Ø.9	, 6 , 6		Ø.6	1.2	9		- T	1.7	- 8	 	 	1.9	1.1	0	0 0 1 1 1	-10.8	-1.2	1. 10-												ר ש	20	א יי	2	י. רי				
150.0		- -			1.8	1.3	Ø.5	Ø. 1	• c		Ø.3	о.5	9		1.4	1.0	- ~	- L 	1.1	Ø.8	-0.1		0 . 7	-2.0	- 0		2 ? • • •	1.9										-	1 U - 2	0. A	ы. 6	0.7		RR	-4	• L B
140.0			, c 1 2	2	1.5	Ø.8	1.0	0 A	20	4.5	Ø. Ø	0.7	101	- C	8.3	1.0	α	, , ,	7.1	1.3	Ø.9	, c	7.51	-1.6	-1,8				2.4									o č	20	ט. מי	1.5	Ø.6		AVG CO	THRUS	.1E 31
30.0		ט ~	5 C	1.10	Ø.3	Ø.8	Ø. 2		2 C • C	ы. Ч	Ø.8	Ø.4	,α α	0 (2 -	1.3	1.2	2	2.	l.b	2.2	Ø.8) (4. 7	-1.8	- 2 . 1	• (• •	0 ι - ≀	с. <i>й</i>	2.9	7.4								0 8		4	-0.1	1.0		~		PM - 18
20.0		а С	2 0 2 0	с. <i>В</i>	ø.5	-0.2	-0.3	ο α	2	ы. 4	ø.5	<u></u> д	, c ,		<i>ч.</i> 9	1.0	0	~ ~ ~	1.0	Ø.4	- 0. 2	, , ,	8.7-	-2.0	-1.2		ו אי עי ש	Ø.1	2.0	7.2								и 8	ດ. ຊ	-10.1	-0.8	Ø.3		VG COR	SPEED	E 31 R
10.01		-	• •	1.10	Ø.5	Ø.8	<u>а</u> 8	• • • •	- X	<i>b</i> .8	0.4	د. ۲		n (9	1.2	Ø.8		••	2.1	1.3	ر. ا) -	1.1	-0.9	a a	2 C	8. 2	Ø.8	1.9	4.9								-	•••	1.0	Ø.5	1.2		A	ш	-0.1
1 0.0	2	- -	- r - 1 -	1.3	1.1	1.6	ά	2		ю.4	Ø.9	a a	2 C	1 1 2 1	-Ø.9	-0.2	2	8 · 4	-10.1	1.8	с С) L	1.5	-0.7	101	+ (- -	י ד י ד י ד	-10.10	2.0	3.7								נ ז	0 2	Ø.6	Ø.6	Ø.8			C RANG	r ft SL
90.0	2	0 2	9 S	ю. 3	-0.4	- 0.4	- 0. 4	5 C	2.	-1.1	- Ø. 4		- 2 - 7	- 9 -	-0.7	- 06.3) -	1.0.1	Ø.8	2.7	2	1 S 5 C	2.0	0.1	1	•	-1.4	-1.7	-1.0	1.2	1 • •							2	4	-0.0	- Ø. Ø	0.7			COUSTI	2400.0
20.0	2.22	2	0 1 Q 2	Ø.6	ø.6	0	0) - • •	 	1.1	Ø.3	ð	2 0 2 0	ы. В	0.4	6		7.1	а. С	- ا ت		* (• •	1.8	1.3	ы		9.91-	0.4	2.0	د د								•		1.6	1.6	2.6			4	СН
701 01	2.2	ר ז	1.01-	Ø.2	-0.1	2	, e 2 0		0 · ·	-06.00	- 0.1	0.0	2.2	-16.1	-06.3	10,1	2 1	ч. 8-	2.3	4 J		† •	1.4	+ Ø . 5	2 - -		-1.1	-2.8	-2.3	5	2							•	1.1	Ø.4	-Ø.2	1.6			CATION	ANECH
201	a . a o	2	1.91	1.1	Ø.3) (*		c c	8.9	1.2	Ø.1	20	ם 1 1	- Ø. 5	-0.2	- 2 -	2	с. <i>В</i>	ო ო ო	VV	• •	4.4	1.7	1	- 2	ы. У	ø.1	0.0	- 0. 8	, ς ο	r • 1								1.9	1.7	1.1	2.6			L L	C41
2 2 2	a • ac	•	-1.4	ø. 3	- 0. 4	201	 2 2	2 Q	<i>ы</i> .4	Ø.1	- 01 4	2 C	7. 1 1	Ø.8	Ø. 3	, e	2.1	1.9	4.7		1 L • •	3.1	2.6	0	2 C	ן.ץ	-1.4	-1.0	1 1	• • •	1.7								2.0	2.0	1.2	3.0				
2 21	a. a+		8.4	ø.6	-0.4	יי פ פ ו	2	ы. 1	с. <i>0</i>	-0.1	20	2 C	7.81-	0.0	ۍ ۲	• c	C ·7	2.9	3.6			4 	3,8	, a		2.8	-1.2	- 2 . 1											2.0	2.6	с С	3.2	 i			
			5.0	63	202	1 2 2		G 7 1	160	200	2000	201	315	4.0.0	E O O		6 <i>3 1</i> 0	8,0,0	1 000		38		+ 2000	2222		3150	4000	5 a a a	2222	22220 (250000	31500	40000	58888	6 3 10 10 10 8 10 10 10		OASPL	PNL	LING	DBA				

TEST CASE FOR TREATED EJECTOR TE#2 VS TE#4

LOCATION C41 ANECH CH

IDENTIFICATION

X7ØØ35 XØØØ35	
83F-ZER-7003 83F-ZER-0003	
(1)	
NPUT	

CBS TE7-T18 X87181 OUTPUT

ANGLES MEASURED FROM INLET, DEGREES

-
ų
-
G
2
ú
-
-
G
6
-
_
-
G
6
ĉ
Ì.
~
G
6
ŝ
2
~
Q
ø
-
_
-
~
Q
8
õ
2
-
Q
ъ
ā
•
Q
č
õ
đ
č
Ē
•
ē
č
ũ
¢
č
ñ

	PVL	-8.1	-8.2	-0.3	-0.4	0.0	- 0.4	-0.4	-0.7	-0.6	-0.7	-1.8	-1.5	-2.8	-2.7	-2.9	-3.5	-3.7	-2.9	1.5	-1-1	1.0	3.6	6.0	8.3													
	s.D.	Ø.8	g.9	Ø.5	8.7	8.7	0.6	Ø.8	Ø.6	Ø.9	Ø.8	Ø.9	1.4	1.5	1.8	1.8	1.7	1.8	1.8	1.8	5		6.1	2.4	I													
	AVG	-0.5	-Ø.8	- 18.7	- 10.7	-0.2	-Ø.5	-0.4	-0.8	-0.6	-06.7	-1.0	-1.3	-1.8	-2.3	-2.4	-2.9	-2.7	-2.1	- 10.8	- 0, 5		4.0	6.4														
160.0		Ø.Ø	Ø.3	-06.2	0.0	-0.2	Ø.3	0.5	-03.01	0.7	ø.2	-Ø.1	Ø.9	Ø.6	0.5	0.4	-1.0	Ø.2	8.5	0.4	-8.6))										Ø.1	8.2	Ø.2	Ø.3			
150.0		Ø.3	-Ø.5	Ø.Ø	0.0	Ø.5	Ø.3	Ø.3	-13.13	Ø.2	ø. 2	-Ø.1	Ø.1	Ø.3	-03.03	-Ø.2	-0.3	-0.8	- 0	2.4	-01.6	9	1									0.0	Ø.1	0.1	Ø.1		ž⊦	LB
140.0		-0.2	Ø.3	Ø.Ø	Ø.5	Ø.8	0.0	0.0	-06.3	-06.3	-07.5	-06.8	-0.6	-0.5	-0.8	-1.0	-1.1	-0.9	0.4	1.4	1.1			1 - 1								8.8	-0.1	-1.2	-0.5	00 011		.15 31
130.0		-0.7	-06.2	-0.5	-0.5	0.0	-01.5	-0.5	-0.8	-01.8	-0.5	-Ø.6	- 06.7	-1.5	-1.6	-2.0	-1.9	-1.5	-1.4	Ø.3	- 0. 8	, 	4 - 1 4	•								-0.6	-0.7	-0.7	-1.8		×	PM - 18
120.0		- 0.7	- 0.7	-1.0	-1.5	0.0	-01.5	-0.7	-01.8	-Ø.8	-0.8	-1.1	-1.4	-1.2	-1.8	-2.2	-2.4	-2.2	-1.6	- Ø -	6.1-	2	2	4.4								-1.0	-1.5	-2.1	-1.5			E 31 R
110.0		-2.0	-2.0	-2.0	-2.2	-1.7	-1.7	-1.7	-1.5	-1.5	-1.3	-1.3	-2.9	-3.4	-4.1	-3.9	-4.6	-4.9	-3.8 -	-1.6	1	ט ני - ו ו		3.1	•							-2.6	-3.3	-3.3	-3.5		ج u	г - ø. 1
0.00		Ø.3	-0.5	-1.0	-1.2	-0.2	-0.5	0.0	-0.8	-0.8	-0.5	-1.1	-2.1	-2.7	-3.3	-3.2	-4.3	-4.1	-3.0	-1.9	19.3	ο • •	4.2	8.9) • •							-1.6	-2.4	-2.4	-2.9			FT SL
0.06		-2.2	ю. С	-1.0	-0.7	-0.2	- 0. 5	-0.2	-0.5	-0.8	-0.5	-1.3	-1.4	-2.2	-3.0	-3.4	-3.8	-4.3	- 3° - 2	-2.6			, 0 , 0	2 ' Y								-1.8	-2.7	-2.7	-2.8		L T SILO	24.00.0
80.0		Ø.6	-0.5	-0.6	- 0. 2	6.0	0.1	0.1	-0.8	Ø.5	-0.1	-01.2	-0.3	-1.1	-2.0	-1.9	с. С. П.	-2.3	-1.9	5.01	2 	• σ		. o	•							-Ø.6	-1.2	-1.2	-1.5		Č	CH CH
70.0		-8.5	-1.2	- 0, -	-1.2	- 0, -	- 0. 5	- 0.5	-1.0	-0.5	-1.0	-1.3	-1.6	-2.2	-3.1	-3.4	-3.1	-3.6	-3.0	6.1		, c , c		2								-1.4	-2.2	-2.2	-2.4			
60.0		- 0.2	10,1	-1.0	- 0, 5	- 0.7	-1.2	-2.0	-2.0	-2.5	-2.8	-3.6	-4.6	-5.2	9 1	-6.7	- 9 - 9	6.5-		- A - A		1 0 9 6 1	5 C 2 C	1								-2.6	4.4	-0°6'	-5.0		-	C41 C41
50.0		-0.5	-1.0	10.1	- 0 -	- 0 - 5	- 0. 2	0.0	-0.8	-1.0	- 0.8	-1.3	-1.4	-2.2		- 2.7	-2.6	- 2 - 4) 	• -	- C - C										-1.0	-1.6	-1.6	-1.9			
4.0.0		-1.0	- 0 -	-1.9	- 0 - 7	- 0, -	- 1 - 9	-1.0	-1.0	- 0.3	- 0.3	- 0 -	-0.9	-1.7		-1.4	- C - C - I) (C (C (C	1	. u . u	20		· · ·									6.0-	- 0, 8	Ø.2	-1.1			
	FREQ	5.0	2 00	200	1 0 0	125	160	200	250	315	4.00	5,00	63.0	8 8 9	1000	1250	1500	2000	2500	2 1 7 2 2 1 7 2 2 1	2010			00000	10000	12500	1 6 10 10 10 2 01 01 01 01	25000	000007	500000 630000	80000	OASPL	IN d	PNLT	DBA			

TEST CASE FOR TREATED EJECTOR TEØ7 VS TE18

IDENTIFICATION

X7ØØ55 XØØØ55 (1) 83F-ZER-7005 (2) 83F-ZER-0005 INPUT

XØ71Ø1 ITS TE7-TIØ OUTPUT

ANGLES MEASURED FROM INLET, DEGREES

	M	- 8 -	- 10 -	- 00 -	- 8 -	8-	- 03 -	.0-	ີ. ຊ	50 1	Q I	;.				י אי ויא ו	m	- 2-	-2.	: 	0 1		4	0 0	80											
	s.D.	0.7	8.7	Ø.5	0.4	Ø.6	0.7	Ø.6	8.9	1.0				-	 	 	1.3	1.4	1.5	1.6	1.5	1.4	1.8	1.6												
	AVG	-0.9	-01.8	-0.8	-0.7	- Ø. 8	- Ø.9	-0.9	-1.2		-1.5	-1	- 1 - 8 - 1 - 8 - 0	2.2	9 . 		т. т. т.	 	-2.4	-1.0	- 0 - 5	2.8	4.4	6.8												
160.0		- 0.7	-0.7	ø.3	-Ø.5	- 18.7	-06.5	-0.2	-0.8	-1.0	- Ø. 5	1.2.	9. 		9 .2-	-2.4	-2.8	-2-3	-1.7	-06.1	-1.5													1 0 2 2 2 0	- 2, -	-1.1
150.0		-0.2	-0.2	-0.2	-0.2	0.0	0.0	-0.2	-0.5	- Ø. 3	-0.8	-1. •	- 10 - 10		2 1 1 1 1	-3.7	-4.0	-2.6	-2.0	0.4	-3.1	Ø.2												6 9 1	0.0	
140.0		-0.7	-0.7	-1.0	-0.5	-0.7	-0%.5	-0.5	-1.8	-0.8	-1.3	-1.0			-2.1	-2.7	-2.3	-2.7	-1.3	-0.1	-0%.6	1.4	2.9											-0.8	0 1 1 1	-1.5
130.0		-0.7	-01.5	-0.7	-0.7	-0.2	-01.5	-1.5	-1.0	-0.5	- 0.8		6.97-	- 10 - 5	-1.6	-2.3	-2.4	-1.5	-0.7	0.4	-0.0	1.3	4.7											8 8 1 8 1	0 - 9 - 9 -	
120.0		-1.0	-00.5	-0.5	-01.2	-Ø.2	-1.0	-00.2	-01.8	-0.5	- 0.5	- 0.8	-1.4	-1.2	-1.3	-1.7	-2.4	-1.9	-0.8	-0%.6	-06.3	1.5	3.5	5.7										-0.8		-1.2
110.0		-1.5	-1.0	-1.7	-1.0	-0.7	-1.5	-1.2	-1.3	-1.8	-1.5	-1.8	-2.1		-2.8	-3.2	-3.1	-2.6	-2.5	-0.6	-1.8	ø.3	1.7	4.4										- I - 0 - 1 - 0		-2.0
100.0		ø.3	- 8.2	- 0. 7	- 0. 5	- Ø. 2	Ø.Ø	-01.5	-01.5	-0.0	-0.3	- 0.3	-1.1	•]. 	-2.5	-3.4	-3.3	-3.1	-3.8	-0.9	Ø.5	з. б	5.0	8.1										-1.1	α 	-2.1
90.0G		-2.7	-2.7	-1.0	-1.2	-1.8	-0.7	-0.7	-1.8	-1.0	-1.0	-2.3	-1.4	-2.4	-2.5	-3.7	-4.5	-4.6	-4.0	-2.1	-0.2	2.2	4.2	7.0										-2.0	2 0 1 1 1 1	1 1 1 1 1
80.0		-1.0	-1.2	-1.2	- 0	-0.2	-1.2	-1.2	-1.0	-1.3	-1.3	-1.6	-1.9	-2.4	-3.3	-3.7	-4.0	-3.9	-3.0	-1.9	0.0	2.7	5.5	7.1										-1.7	2-2-	-2.7
78.0		-0,5	-1.6	-1.0	0.0	-1.2	- 0	-1.0	-1.3	-1.0	-Ø.8	-1.3	-1.9	-2.5	-3.1	4.8-	-3.8	-3.4	-2.5	-1.4	Ø.8	3.1	6.2	8.7										-1.4		4.7
60.0	2	- 01. 2	- 2 - 2 - 2	י - י - י	-1.5	- 2. 8	-2.5	-2.2	-4.0	-4.8	-4.5	-5.1	-5.4	-5.7	-6.3	-7.2	-6.6	-6.7	-6.1	-5.6	 	0.0	2.8											-3.4	-2.1	1 1 1 4 1 1
50.0	2	د 1	10.1	10.1	-1.0	2 	י - -	- 8 - 7	- 1 - 5	-1.3	-1.3	+1.8	-1.6	-2.2	-2.3	-2.7	-2.6	-2.2		- 0	1.1	4.3	7.6											-1.4	-1.7	
40.0		- 1 	- 1 - 0 - 1	- 0 -		ן ייי זיי		-] . 0	-1.0	-1.0	-1.0	-1.3	-1.1	-1.4	-1.5	-2.4	-2-3	-2.3	ی ا ا	0	1.5	3.6	: • •											-1.2	- 2 - 2 - 1	7. 1 1
	C L L L			200	1 0.0	125	150	200	250	315	4.00	500	630	8,0,0	1,000	35 J 25 Ø	30 1688	2000	2500	3150	4000	5000	6300	8000	10000	12500	16000	20000	2000	0 0 0 1 5 0 0 0 0 0	50000	63000	aaaaa	OASPL	PNL Dire	

AVG CORR THRUST -Ø.1E 31'LB AVG CORR SPEED -Ø.1E 31 RPM ACOUSTIC RANGE 2400.0 FT SL -1.1 -1.8 -1.8 88 88 88 8 3 7 7 7 7 1 1 1 1 1 -2.2 LOCATION C41 ANECH CH 4-1-1-4 -1.4 -1.7 -2.0 OASPL PNL DBA DBA

TEST CASE FOR TREATED EJECTOR TE&7 VS TELØ

IDENTIFICATION

X 7 Ø Ø 95 X Ø Ø Ø 95
83F-ZER-70/09 83F-ZER-00/09
(1) (2)
INPUT

XØ71Ø1 TOS TE7-T1.0 OUTPUT

ANGLES MEASURED FROM INLET, DEGREES

5 ł z 2

Ø 12Ø.Ø 13Ø.Ø 14Ø.Ø 15Ø.	; ; ; ; ; ; ; ;	2 - 10.2 - 10.2 - 10.7 - 10.	<u>6 - 10.5 10.10 - 10.7 - 10.</u>	5 -10.2 10.10 -10.7 -10.	/ Β.Ξ. Β.Ξ Ε.Β Ε.Β Ε Ε Ε Ε Ε.	5 -10.2 10.10 10.3 -10. 7 0.0 -0 - 0 0 -0	ר היה היה היה היה יא העיב העיב היה היי	5 -Ø.Ø -Ø.3 -Ø.Ø -Ø.	Ø -Ø.3 -Ø.3 Ø.5 -1.	8 Ø.2 -Ø.3 -Ø.5 -Ø.	8 -10.3 -10.6 -10.6 -10.	4 -0.4 -0.4 0.1 -0.	4 -1.8 -1.8 -8.7 -8.	$1 - 1 \cdot 6 - 1 \cdot 1 - 8 \cdot 3 - 1 \cdot 1$	4 -1.5 -1.5 -1.2 -8.	3 -1.6 -1.9 -1.3 -1.	<u>1</u> -1.4 -1.8 -1.2 -1.	5	1 Ø.6 Ø.8 1.6 Ø.	5 1.1 Ø.9 Ø.4 2.	0 2.8 2.5 3.1 3.	1 4.8 4.9 5.3	Ø 7.6 7.7					; ; ; ; ;	1 - 10.3 - 10.2 - 10.4 - 10. 3 - 10.4 - 10.4 - 10.2 - 10.	7 - <u>1</u> . <u>Ø</u> - <u>Ø</u> . <u>4</u> <u>Ø</u> . <u>8</u> <u>Ø</u> .	6 -10.8 -10.1 -10.4 -10.	AVG CORR AVG CORR SPEED THRUST	JE 31 00M - 0 10 31 10
90.0 100.0 110.	•	-1.2 1.8 -1.	-2.2 0.0 -1.	. 19 - 5. 19 - 17 - 17 - 17 - 17 - 17 - 17 - 17 -	-10.5 -10.5 -10. 2.1 2.1 -10.	-18.5 -18.5 -18. -1 7 -18.7 -18.	- U 1 0 0 0 - 1 0 0	-1.6 -6.3 $-6.$	-1.3 -1.0 -1.	-0.5 -0.5 -0.	-18.8 -18.1 -18.	-1.6 -0.9 -1.	-1.7 - 0.9 - 1.	-1.8 -1.3 -2.	-2.7 -1.9 -2.	-3.0 -2.3 -2.	-2.8 -1.9 -2.	-2.0 -1.5 -1.	-1.1 -10.4 $0.$	0.7 1.2 -0.	3.6 3.2 1.	5.1 6.2 4.	7.9 8.8 5.						-1.3 -10.6 $-1.$	-0.9 -0.9 -0.	-1.9 -1.2 -1.	UNSTIC RANGE	
7.06.06 8.06.0	4 2 2	-0.2 -0.5	8.8 8.8 2.5 2.5	2.01 2.01	G.M- 2.M-	-1.10 -1.10		-1.0 -0.5	-0.3 -0.5	-0.5 -0.8	-Ø.6 -Ø.6		-1.2 -1.7		-2.2 -2.2	8.2- 1.2-	12.1 -2.4	-1.8 -Z.W	-0.4 -0.9	Ø.8 Ø.5	3.5 3.2	6.9 5.7	9.8 8.3					; ; ;	-1.1 -1.3	-1.1 -1.3	-1.3 -1.6		
50.0 60.0	1 1 1 1	-0.7 -0.2	-0.2 0.5	-1.10 - 10.2	-10./ -1.10	-2.10 -1.2		-1.5 -0.3	-0.8 -0.3	-0.3 -0.0	-1.1 -0.3	-1.9 -0.9	-2.5 -1.2	-2.8 -1.1	-2.5 -1.5	- 7. 4	-2.4 -1.7	-1.8 -10.8	-10.4 - 10.1	1.8 1.8	4.0 5.2	7.2 7.7	10.6						-1.2 -1.6	-1.6 -0.7	-1./ -0.9	ē	
4.0.0	FREQ	5.8 -8.5	63 -Ø.7	2.02 - 0.8	1.01 - 0.2	125 - 10.7	2000 20.0 2000 - 100	250 -0.3	315 -0.3	4.6.6 -1.6	5.000 -1.1	63.0 -1.4	8,00,0 -1.7	1,00,0 -1.3	1250 -2.4	G. Z - 0/0/91	2000 -1.3	C.1- 000CZ	315.08 - 20.4	4,0,0,0 1.2	5000 3.8	6300 6.0	8888 18888 19588	16000	25000	31588 40888 - 2222	00000 63000 20000		DASPL -Ø.6 PNL -Ø.8	PNLT -0.8	DBA -1.1		

TEST CASE FOR TREATED EJECTOR TEØ7 VS TEIØ

IDENTIFICATION

X 7 ØØ 45 X ØØ Ø 45	XØ71Ø1
83F - 4 <i>88</i> - 7884 83F - 4 <i>88</i> - 8884	CBF TE7-T1Ø
(<u>5</u>)	
INPUT	OUTPUT

CBF TE7-T10 OUTPUT

ANGLES MEASURED FROM INLET, DEGREES

Ø 160. 01140 01150 1201 2 110 0 120 2 22. 2 2 z

	Ļ		-	ø	Ņ	~	-	6	m.	2		<u>ى</u>	æ	2	ە .	٦.	4	8	с.	9	4	4	ŧ (*	, s	şσ	•								
č	2		9	Ø	Ø	8	8	8		Ø	Ø	90	8	7	7	N	2	2	$\stackrel{N}{\overset{I}{\overset{I}}}$	-	0-	6	2	• •	10	1								
¢	5	~	9	4.	ີ. ເບ	9.	8	<u>.</u>	ີ		ີ. ບ	<u>ີ</u>	<u>.</u>	.8	-	ŝ	9	9	9	ى ب	-	α.												
C	<i>_</i>		-	Q	Q	Ø	Ø	Q	Ø	Q	Ø	Ø	Q	Ø		-	-		-	-	. –	0	50	50	2									
	_			~	~			~		~				_	~	~			~		·			• •	~									
	2	2		g. 2	2.2	5	7.	8. P		9.5	2	ч. Б	æ.			2	2																	
	•		4	ĩ	4	ĩ	ĩ	ĩ	ĩ	-		ĩ	ĩ	ĩ	T	1	ï	ï	1	1	ī		•											
Ø		8	ო	ഗ	œ	4	2	ო	-	~	Ø	-	G	ഹ	œ	2	-	-	8	e co) m)												
5		8	ø.	8.	ø.	8.	8.	ю.	:	б.	5		8.	8.	<u>ø</u> .	ю.	8	8	9	Ъ.		2												
16				1				1	1			1	I	I	1		1	1	1	ľ														
8		2	2	2	2	4	m	-	-	e	ഹ	8	ഗ	ø	~	0	2		i in	1	5	ı u	o											
50.		ġ.	ø	ø.	ø	÷	÷	ø	ġ.	ġ.	ø.	ø.	ø.	ø	Ø	Ø	6	6	6	6	- 1	. 6	ع											
		1	•	1	•	•			'	'	•	1	'	'		'																		
9		9	ø	8	ഹ	8	8	-	2	-	ო.	е	4	с	8	-	00		2	, c		, r	<u>`</u>	0										
4.0		8	Ø	Ø	Ø	Ø	Ø	Ø	0	10-	Ø	0-	0	jo I	9 -	10	9	2 y 1	29) Q	?	• •	- -	-										
-						·			•	•		Ċ	•	·																				
Ø.		. 0	ო.	۳.	۳.	ŝ	۳.	4.	5	4.	۳.	5	4	5	5	4	. –	. ^	1-	• •	· -	• 6	ູ່	9										
3.0		8	0	8	Ø	7	Ø	9 -	8	Ø	ø	8-	0 -	9	10	100	20	<u>م</u> ز	50	5 2	5 -	• •	C	V										
-																																		
8		~	<u>с</u>		9	2	പ	9	~	5	~	°.	8	5) -) -	•		10	י כ י	$\left[\right]$	4	4									
2.0		50	Ø	9	Q	1	Q	Ø	00	Q	9	0	0	9	1	1	10	2	10	5 6	2 -	••	(N	(T)									
-			-		_										_								<u>.</u>		_									
<u>e</u> .		5	g	с С		5			2		2	5																						
1.8		3	7	1	1	1	1	1	1	1	9	1	1	1	5	ï	1	ì	í i				ĩ	<u>ц</u> ,	4									
7		~	~	-	~				~								۰		. .				mt	_										
g. E		3.	~		2				8		3	2											500	5	М									
1.01			•••			ī	1	ī				1	1	1	ï	Ì	1		i i	Ĩ	Ē	ĩ	-	•										
8		2	e	1	. ~	ı د	2	រ	س		ហ) LC	5	ξα	, ,	o a	۱a	0 0	n a	.	5 Q	Q •	1	o	4									
8		9.	g,						8			5	. –		• •				••••	;.	4.	-	ю. 1	6	-									
თ		1		1	I	1		1	1	1		I	I	I	1				; ;	1	•	•												
8		ଷ	~	2	2 6	2	20	i m	2	រា	<u>م</u> د) (, () -	• 0	1 1	- r	~ c	•	t (ם מ	v	ف	ດ	n									
<u>ø</u> .		g.	6	2	2 25	ģ	2	2	2		2 2	2 G	2 6	50	10							-	6		~									
æ			1			,	'					1							•		•	1												
8		2	α	<u>-</u>	•	10	ju	- c	• •	18	5 0	30	1 0	o u	7 0	- (u e	91		••	יי	٩	2	2	80.									
8.		9	5	, S	2 6	2 6	2 8	2 6	28	s s	÷	9	2 2	2	້	ų c	., .,	4 (- n 1	4	m I	7	10	Ø	-									
•••			•		•	•			•							•	•	•	•															
8		4		, n	n u	, c		ŧα			i n	, r	. 8	s s	96	s,	م	<u>،</u>	ņ	N	<u>،</u>	e.	2	4.	۲.									
6.0		6	ع د ا	2 2	5 2	2 C	2 G	2 2	5 6	2 S 1	2 2	5 6	2 C	2 8 I	a c I	1 C 1	N (ו מי ו	2	2	2	9	Ø	-	-									
_																							_	_										
9		ູ ເຕັ		• •	4 6	? -	÷.	4	- 6	э ц	<u>р</u> п		5,0		•		<u>،</u> م					<u>۳</u>	5											
50		25	5 6	28	20	5 6	ק ו	28	2-	- 6	9 6 1	2 5	א ו	י פ	ן ו	1	1	N	n (n I	ĩ	ĩ	Q	-										
-		-			• •		. .	• •				• •	. .	<u> </u>		~	_			~	.0	~'	N	~										
9	2	-																ч. ~	~	4	~	2		_										
40		1		* (4 C	2 S	4 C 1	2 Q	1	2 C	i i	1	1	1	1	i.	1	i,	ï	ī	ï	ī												
																													_					
	C L	3 G 1 U	20	ז מ	200	ק קו	0 X	200	9 0 9 1	9 U 0 -	0 2 - 2	200	200	38	00	00	5.0	00	ØØ	00	5.0	ØØ	88	0 D	00	0.0	00	0.0	0.0		9.9	0.0	0.0	0.0
	0	Ľ				-		c	viē	10	າ ເ	4 1	ה ו	ہ م	αj į	1.0	i 1	16.	28	25	31	4.0	5.0	6.5	88	0.0	2 2 2	6.0	00	50	5	00	3.0	00
																3	88	B								-	1		C4 (N 1	(7) 4	4 10	e co	ω

- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	R R Г Г В
- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	AVG CO THRUS
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Ø - Wo
8 8 8 8 - 8 - 1 - 8 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	VVG CORF SPEED LE 31 RF
40.00	-0.1
-1.7 -2.2 -2.2 -2.6	C RANGE FT SL
-1.8 -2.1 -2.1	NCOUSTI 2488.8
6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Т. Н
-1.7 -2.6 -2.7	CATION ANECH
9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	C41
OASPL PNL PNLT DBA	

TEST CASE FOR TREATED EJECTOR TEB7 VS TE18

IDENTIFICATION

X78865	X <i>ØØØ</i> 65
83F-4 <i>00</i> -7 <i>0</i> 06	83F - 4 <i>00</i> - 0006
(1)	(2)
INPUT	

XØ71Ø1 ITF TE7-T1.00 OUTPUT

ANGLES MEASURED FROM INLET, DEGREES

98.8 188.8 118.8 128.8 138.8 148.8 158.8 168.8 80.08 70.0

	S.D.	-	8		Ø.2	0.4	0.4	0.4	Ø.4	0.4	0.4	Ø.6	1.1	Ø.5	Ø.6	0.7	0.8	1.1	1.2	Ø. 8	c - 1	0	20	20	2														
	AVG	2	2 . J	- 0 -	-0.2	-0.3	-0.3	-16.3	-0.1	-01.2	0.0	-0.5	-0.9	-1.8	-1.2	-1.5	-1.8	-1.6	-1.1	- 0.8	6		- c 2 c		*														
160.0		- 61 - 2	9 2 1 C		- 10 - 5	-8.2	-10.4	-0.6	Ø .2	-0.1	0.4	-1.5	Ø.6	-1.4	-0.6	- 8 - 8	-1.8	-8.6	-0.2	-0.8	0.7											- 61 -	- 6	- 19	-00.5				
150.0		- 0. 2	. e 	Ø.8	-8.2	-01.2	0.4	-8.2	Ø.3	-01.1	0.1	-1.2	ø.5	-1.5	-1.0	- 16.4	-Ø.6	0.1	1.1	- 0 - 1	2.01	2 U 1 -										er 1	- 0 -	1.6	-0.4		RR	, 	- L B
140.0		- 01 -	- 0 -	0.0	-0.2	0.0	Ø.1	-06.2	Ø.3	0.1	Ø.2	-0.9	0.1	-1.8	Ø.Ø	-03.9	-1.2	-8.2	0.1	6.3	6											- 6			- 0.4	!	AVG COI	THRUS	.IE 31.
130.0		- 0. 2	0. N	0.5 0.5	- 0. 2	-0.5	-0.7	- Ø.4	-1.0	-0.4	-01.3	-1.3	-01.3	-1.2	-0.9	-1.6	-1.5	-0.9	-0.6	-0.2	9	2		0.7								5		- 10 - 10 - 10	6.0-) ,	2	•	PM - 19
120.0		- 0. 2	а. Э	0.0	-0.0	0.3	Ø.3	0.1	Ø.5	0.1	-06.1	Ø.1	-0.6	0.8	-06.8	-06.9	-1.5	6.0-	0.5	Ø.8	5		1 c		7 • •							2		0.1 0	- 0 -) • •	VG COR	SPEED	E 31 R
110.0		- 01 -	- 0, 5	-1.0	5.01	-1.0	-0.5	- 01.7	-ø.6	-0.3	-03.7	Ø.1	-1.8	-1.6	-1.6	-2.6	-1.8	-1.9	-2,0	- 0 -	5	- 2 - 2	5 - 1 0	- c	D•7							~ 			-1.7	•	A	ч ц	- 18 - 1
1.00.0		5 7 7		- 0. 5	0.0	-0.3	-0.3	- 0.3	- Ø. 1	ø.3	Ø.5	Ø.1	-0.9	-1.4	-0.9	-1.8	-1.8	-1.8	-1.7	- Ø. 9	Ø.A	. α 2	, c	, c , c	••••							α 101-	 1 €	-1.8	-1.3)		C RANG	FT SL
90.06		- 01 -	1 2 2 1 2 1 2	-1.0	- 0. 5	-0.7	-0.2	-0.7	0.0	-0.8	Ø.5	-1.0	-0.8	-1.6	-2.4	-2.7	-3.7	-3.8	-2.4	-1.7	- 0. 2	2 2 2 2	- د م	- c	•							-1 -	α.		-2.3) 		COUSTI	2400.0
80.0		- 0 -	- 9 -	- 2 - 2 - 2	-0.2	-0.3	-0.5	0.8	-06.2	-03.0	Ø.2	-0.3	-0%.1	-1.1	-1.6	-1.9	-2.7	-2.1	-2.1	-1.2	ר ע ו	2 - 2	- c		••••							- 1 0	2 C 1 - 1	 	-1.5)		▼ :	CH
70.8		- Ø . B		0. 0	Ø. Ø	-0.2	-0.6	-0.8	0.0	0.0	Ø.5	Ø.2	-1.7	-10.8	-1.6	-1.4	-1.9	-2.4	-2.6	-1.9	6 9 1	20	2 C	10	0.1							- 1	2 U 1 1		 	•		CATION	ANECH
60.0	! • •	0	201	20	0.0	0.0	-06.4	-06.3	-0.2	Ø.3	-0.0	-0.3	-2.3	-0.1	-1.1	-1.9	-1.2	-1.9	-2.1	-1.4	- 0 -			- (••••							0 10	, c , - , -			•		L C	C41
50.0	2	- 0, 1		10.1	0.0	0.0	-0.2	-0.0	0.0	-0.5	-0.0	-06.06	-2.3	-Ø.6	-1.6	-1.4	-2.2	-1.9	-1.1	6.		• 6	a - c									0 10	, c , c	1.1.1	- 1 - F	•			
40.0		- 01	, N 2 1	2	- 0.5	- 0. 7	-06.9	-0.8	-0.5	-0.7	-01.8	-1.0	-2.8	-0.6	-1.3	-1.6	-1.9	-2.2	-1.3	6.9.1	 	2.2	2.2	ю. у									- U 	ט מ 	ט נ 	•			
	FREG		2 C 2 C	200	100	125	16.0	200	250	315	400	500	63.0	8,0,0	1000	125.00	16000	2000	2500	315.0 215.0	AGG			0,0,2,0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	12500	16000	20000 25000	315,00	50000 50000	63.000 80000					2			

TEST CASE FOR TREATED EJECTOR TEØ7 VS TEIØ

IDENTIFICATION

X 7 Ø 1 Ø 5 X Ø Ø 1 Ø 5 (1) 83F-400-7010 (2) 83F-400-0010 INPUT

TOF TE7-TIØ XØ71Ø1 OUTPUT

ANGLES MEASURED FROM INLET, DEGREES

	PVL	- 0	- 0.2	- 01.2	- Ø. 2	-0.1	ю. Ю-	- 0. 4	- 01 -	-00.6	- 0. 4	- 0	5.0-	-1.8		-1.6	-1.6	-1.6	-1.2	- 03 -	0.3	~	4	7.2	. α												
	s.D.	1.1	ø.5	0.4	Ø.4	Ø.3	Ø.5	Ø.3	Ø.5	0.4	0.4	Ø.5	Ø.4	Ø.5	1.0	0.7	Ø.6	0.7	1.2	1.1	0.7	1.4	1.6	1.3)												
	AVG	-00.00	-0.2	-01.5	- Ø.3	-06.06	-03.2	- Ø. 3	-06.3	-0%.5	-06.2	-0.2	-0.6	-06.9	-1.8	-1.6	-1.7	-1.7	-1.3	- Ø. 6	Ø.1	2.4	4.6	6.9))												
160.0		-8.5	-0.2	0.0	-01.2	-0.4	-04.5	-06.2	Ø.3	-1.2	0.4	-06.3	-0.4	-0.6	-06.9	- 03.7	-1.1	-0.9	-0.2	Ø.3	-0.6													-06.3	10.4	- 10 - 1	ດ. ທີ-
150.0		-0.5	-01.2	0.0	Ø.Ø	0.0	-Ø.3	-0.4	-Ø.2	-06.7	-06.2	-1.8	- 0.6	-01.7	-1.3	-1.1	-1.2	-1.2	Ø.3	1.4	0.7	4.5												-Ø.2	- Ø -	1 1 1 1 1 1	-19.1
140.0		-0.5	0.0	-0.5	-0.5	-0.5	-06.3	-06.7	-1.1	-07.9	-06.3	-0.6	-0.6	-8.7	-1.3	-1.5	-2.2	-1.1	-Ø.2	1.0	Ø.8	4.2	7.4											-01.5	- 0.5	- 0. 5	-10.Y
130.0		0.0	0.0	-0.2	-0.2	Ø.2	-0.1	- 03.4	-0.4	-0.6	-Ø.6	-0.6	-1.2	-1.8	-2.1	-1.9	-1.3	-1.5	-0.3	-0.2	0.4	с. С	7.1											-0.5	-0.7	0.0	-1.2
120.0		-01.7	-0.2	0.0	-0.5	0.1	-0.6	-06.2	-06.7	-0.6	-0.4	-0.6	-1.5	-1.1	-03.9	-00.6	-1.2	-0.1	Ø.7	-0.8	- 0.3	3.0	یں ا	8.4	•									-Ø.6	- 0. 2	- 10 2	-10.1
110.0		-01.5	-0.2	-0.7	-1.0	-01.2	-00.2	-03.6	-1.2	-0.5	-0.8	-0.7	-1.1	-0.8	-0.9	-2.1	-0.9	-1.6	-1.9	0.4	-0.4	Ø. 3	0	4.6	•									-0.9	-1.2	-1.2	-1.2
100.0		3.5	1.0	-0.7	-0.2	0.0	Ø.3	- 0. 0	Ø.3	ø.3	-06.3	0.0	-0.6	-0.1	-1.2	-0.9	-1.5	-1.9	-1.1	- 0.3	1.1	2.5	4.8	7.8	•									-01.5	- 0.6	9.9 - 00 -	ч. В
0 .06		-1.0	-1.8	-1.2	-0.5	Ø.Ø	-1.2	-0%.5	-0.3	-0.8	- Ø. Ø	- 0.3	- Ø.4	-1.7	-1.3	-2.9	-2.3	-2.3	-2.5	- 10 - 10	1.2	2.9	0.1	7.5	•									-1.2	-1.1	- 0, 5	-1.6
80.0		-0%,6	6.0-	-0.2	-0%.5	-06.3	-0.0	-0.2	-0.3	-0.5	-0.5	-0.1	-0%.6	-1.7	-2.0	-2.2	-2.8	-2.6	-2.3	- 1 - 4	Ø. 5	2.2	4	2.6										-1.1	-1.5	-2.0	-1.8
78.8		-06.2	Ø.3	-0%.5	-01.2	-0.0	Ø.2	-01.5	0.0	-0.5	- Ø.5	0.2	-0.6	-0.9	-1.8	-1.6	-1.9	-2.3	6.2-	с. . с	- 0.6	1.9	2	2 O										-0.9	-1.6	-1.6	-1.5
60.0		Ø.3	- 0.3	-06.2	Ø.8	-03.03	0.9	0.2	Ø.5	Ø.2	0.2	1.0	-0.1	-0.4	-2.4	-1.1	-1.5	6.11	6	1	- 0. 1	2		2 00										-0.4	-1.0	-1.0	-1.0
50.0		Ø.3	- 0. 4	-0.7	0.0	0.4	-0.4	-0.6	0.0	-0.3	-0.0	0.2	Ø.2	-0.9	-3.7	-1.8	- 2.5	4.2-	0		- 0. 4	,	0	•										-06.8	-1.4	-0.6	-1.6
40.0		Ø. 3	- 0. 8	-1.0	- 0.2	0.4	Ø.1	0.4	-Ø.2	-0.0	0.7	Ø.2	-0.8	-Ø.4	-3.7	-1.8	-1.4	е С Т			- 0. 4))										-0.5	-1.0	-1.1	-1.3
	FREQ	5.0	63	8.0	1 8 8	125	160	2.0.0	250	315	400	5.6.0	63.0	8,0,0	1000	1250	1588	0	2500	2 1 5 G	AGGG	2224		0,000	22222	125000	16000	200000	25000	31500	4 <i>1</i> 511111111111111111111111111111111111	63000	80000	OASPL	PNL	PNLT	DBA

TEST CASE FOR TREATED EJECTOR TEØ7 VS TEIØ

AVG CORR AVG CORR SPEED THRUST -Ø.IE 31 RPM -Ø.IE 31.4LB

ACOUSTIC RANGE 2400.0 FT SL

LOCATION C41 ANECH CH

IDENTIFICATION

X80035 X00035	
83F-ZER-8003 83F-ZER-00003	
(1)	
INPUT	

OUTPUT CBS TE8-T1Ø XØ81Ø1

ANGLES MEASURED FROM INLET, DEGREES

	ž	5	9.	<u>۔</u>	<u>،</u>	1.0	с. Т	r. 3	.5	 	5.5	7.7	~	8.	9.0	3.0	2.1	0.0	6	8.1		9.9	0	4	5														
		1	ĩ	ĩ	ĩ	1	ĩ	ĩ	Ĩ	ĩ	ĩ	ĩ	7	7	1	ï	1	1	1	ĩ	1	1	1																
	s.p.	ю. В	Ø.8	Ø.5	0.5	Ø.5	Ø.6	Ø.6	Ø.4	0.4	Ø.5	0.6	1.0	1.4	1.6	1.8	2.0	2.1	2.0	1.9	1.9	1.7		1.0															
	AVG	- 19.6	-06.8	-01.6	-0.6	-01.3	-0.4	-01.3	-0.5	-06.3	-01.5	-0.8	-1.1	-1.5	-2.1	-2.4	-3.2	-3.6	6.01	-3.8	-3.2	-2.2	ם ו ייש ייש	Ø. 6															
6.0.0	1	-1.0-	01.7	- 0.7	-1.0	-06.2	-06.2	0.0	-0.5	-06.3	01.8	-01.8	-0.4	-1.2	-0.0	-0.4	-2.0	-01.6	-1.3	-1.9	-0.6											-03.7	-06.8	-0.8	-0.6				
50.01		-1.2	-1.2	-0.7	-0.7	-Ø.2	-0.5	-0.2	-0.5	-0.5	-0.3	-0.3	-0.1	0.8	Ø.2	0.3	-0.5	-1.1	-2.0	-0.4	-1.1	0.2	2									-0.9	-10.6	-0.6	-10.2		RR	<u>ہ</u>	۰LB
40.01	l i	-10.7	0.0	-06.5	8.8	Ø.3	Ø.3	0.3	-0.0	-0.3	-0.8	-0.8	-0.9	0.0	-1.1	-1.0	-1.1	-1.9		-1.9	-0.8	0.0	2 2	•								-0.2	1.0	- 0. 4	-0.6	1	AVG CO	THRUS	.le 31
130.0	1	-00.5	Ø.5	Ø.3	0.0	Ø.8	0.0	0.0	-0.3	-0.0	-0.0	Ø.2	0.1	0.0	- Ø.4	-0.3	-0.9	-1.3	-2.2	-2.7	-2.4		•••	•								Ø. 1	- 0. 3	2 - A	- 0. 2	2	~		ы 1 М
12.0.0	:	- 10.7	-1.8	-1.0	-0.7	0.0	-01.2	-0.5	-0.5	-0.0	-16.3	-01.6	- Ø.4	-06.7	-1.3	-2.2	-2.6	с Г	- 3 - 1	6.61	- C - C -	- 2 . 4		 	•							- 01.7	ب ا		-1.2	1	VG COR	SPEED	E 31 K
110.0	I	-1.5	-1.7	-1.7	-1.5	-1.2	-1.7	-1.5	-1.3	-01.8	-06.8	-1.3	-2.6	-4.0	-4.3	-3.9	-5.3	- P . 4	. 5. 8	-5.2	-4.6) -) -	0 0	2							-2 - 5	- 4 - 2	1.0	- 3 - 6 - 8 -	•	۷	ч ш	~ 1.1
1.0.0.0		-01.2	-00.5	-1.2	-1.0	-01.5	-Ø.5	-06.5	-1.3	-0.8	-00.5	-01.8	-1.6	-2.7	8. 0 1	-4.4	ں 1 - 2		ی د ا	-5.4		- 0 - 0 - 1	1 - 1 1 - 1 1 - 0	10.1	5							- 7.0	10,1		- 3 - 2			C RANG	FT SL
90.00		-1.2	-2.5	-0.7	-1.0	-1.0	-1.2	-0.7	-Ø.5	-06.3	- Ø. 5	-1.1	-2.1	-2.9		-4.2	- 12 - - 12 -	P	-6.3	6. 6. 1	- ۱ ۲	1	- C - C - C		2							- 2 - 2	1 1 1 0	1		•		COUSTI	2400.0
80.0		Ø.3	-0.7	-Ø.2	-06.2	0.0	-01.2	-0.2	- 0. 8	-0.0	-0.3	-0.6	1.1.1	-1-	-2.3	с. С	- 7 -8	14.5	- 4 - 5	- A . A	- 4 -	- 0 - 0 - 1	1 C	2.2	2							- 	1 1 1 0			1		•	сн
70.0		0.0	-0.7	-0.5	- 0	- 8.2	0.0	0.0	- 0.3	0.2	- 0. 0	-1.1	-1.4	-1.7	-2.6	-3.2	1 C C C C C C C C C C C C C C C C C C C	- N -	16) 0 (*) () ()	ο α ο -		2.0	1							- 1 0	2 4		, c , c , c			CATION	ANECH
60.0		0.0	-03.7	-0.5	- 0 . 2	-0.2	- 0, -	-0.5	-0.8	-1.0	-1.8	-2.1	-2.6		-4.6	ט ייי ו			1 1 1		1 L L	- 0 - U										- 1 -	- 0	- - - -	ם י י י	••••		LO LO	C41
50.0		0.0	-06.2	0.0	- 0. 2	0.0	6.3	Ø.8	Ø. 2	- 0, -	10.3	- 6.3	- 0, 9	 		- 1 - 2		- 11 - 1 - 1	- (- (9 1 2 1 2	 		1.3								м 10	5 - 1 1	ים 	- - - - -	· · · ·			
40.0	2	-0.5	- 0 - 1	- 0, 5	- 9 - 19 - 10	-0.7	5.01	- 0. 7	- 0 - 3	- 6.3	- - - -			- 0 -			2 	1 1 2 1 1 1 1 1	- C - C - C) -) (1 U		o.1-									5	200	9.9 	2.10				
	FREQ	5.0	63	8.0	1 0.0	125	15.0	200	י ד א ד מ	3 C C 2 C C 2 C C	AGG	500	222	200	1 0 0 0	1250	1 6 9 8	2000				4 10 10 10 1 1 1 1 1 1 1	0,0,0,0	6300	6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	12500	16000	200000 วรุชุตศ	31500	4 0 0 0 0 5 0 0 0 0	63000 80000					UBA			

TEST CASE FOR TREATED EJECTOR TEØB VS TE18
PAGE 3 16.559 02/24/86

DELTA, SPL(1) - SPL(2)

IDENTIFICATION

X80055 X00055 INPUT (1) 83F-ZER-8005 (2) 83F-ZER-0005

XØ81Ø1 ITS TE8-TIØ OUTPUT

ANGLES MEASURED FROM INLET, DEGREES

	PWL	6.9	6. 8	6. 8	- 0. 7	-0.7	-0.8	- Ø. 9		20	0 0 9 0	8.9 9.9	-1.2	-1.2	۔ - ا		• F		4 7	ۍ. م. د.	-4.3					9.0 9.0	2 1 2	•••															
	s.D.	ø.6 -	8.8	Д. б	0.4	0.4	, 5 д.5	0.4		2	4 · 2	4.9	8.5	ø.5	Ø.7			Q		1.3	1.6		* -	• (ю. У																
	AVG	-Ø.8	-Ø.8	-03.7	-0.7	-0.8	-0.9	-0.8	200	20	0 1 1 1	8.9-	-1.2	-1.2	9. 		• c	8.2-	-3.2	8°8 13	-4.0			ם ייים ו		/ . R	1.2																
160.0		-0.7	-0.5	-0.7	-0.5	-0.7	-0.5	- 0. 7	, 0 1 1	- - -	ν. 	-1.3	-2.1	-1.4	۰ ۱ ۲) - 1 c	1.2.	9.2-	-2.8	-3,5) -) (-1.4												-0.7	-1.0	-1.0	11	•			
150.0		-1.8	-1.2	-1.5	-1.2	$-\beta.7$	-1.0	- 1 -		0 L Q C	C . 17 -	-1.8	-Ø.8	-0.9	-1.7	. ~ 	- C	1.2-	-2.0	-2.9	- 2 . 3) ((ο. 	-19.2											-1.2	- 1 - 4	-1.4		1 -	RR	F	, LB
140.0		-1.0	-1.0	-1.0	-06.5	-1.2	- 01.7	- 0 -		20	р. 9. 1	-1.0	-1.3	-1.1	- 01 -	. u 	, c	2.1	-2.6	-2.2	- ~ 1	• F • •	~ č - · ·	a.	1.1	2.5										-1.0	2 	- 0		•	AVG CO	THRUS	.1E 31
130.0		-0.7	Ø.Ø	0.0	-Ø.2	Ø.3	- 0.2	- 0 -	2	0 L 9 C	с. Я-	-0.3	-0.8	-0.7	с 1 1		• (- I - 3	-2.2	-2.0	- 1 -			יע ייקיי	- 0.3	1.9										- 0 -	- 0. 7	- 0 -	- 2 - - 2 -	2	α	: _	РМ – 19
120.0		-1.0	-1.0	-00.5	-0.2	-0.7	-1-2	11.0	20 - 2	9 9 0 1	ດ.ນ-	-0.8	-0.8	-1.1	-1-	- L - L - L	- 1	-1./	-2.4	-3.0	ь С		1 1 1	N . N	- 0.9 -	2.4	с. С									р 9	2 	- 1 - 0	V - 1 -	•	VG COR	SPEED	E 31 R
110.0		-1.5	-1.5	-2.0	-1.5	-1.2	- 2 . 0	, u , - , -			-1.5	-1.3	-2.1	-1.9	- 2 -	1 C		-3.4	-4.1	-4.4	- - - -	- c	ית יית ו	- C.	1.6	б. Э	2.9									c c -	10,10	1 2 1	9 7 1	2.0	Δ	ш	-Ø.1
100.0		-0.2	-ø.5	-0%.5	0.0	- 0.7	- 20	20	9 9 9 1	ດ ຊິ ເ	-10.3	-10.10	-0.6	-0.9	- 1 -		2.	4.8-	-3.8	-4.1	8 7 -	C	~ · · · ·	-Z-8	-1.2	Ø.3	2.8									רי ה		101	. U	2.1		C RANG	FT SL
90.06		-2.0	-2.7	- 0.7	-1.0	- 0. 7	ם 1	2 2 1	20	ם. מי ו	-1.0	-0.5	-1.8	-1.9	1	10		-3.7	-4.5	، و ۱	ο α 1		1 4 0 7	-3.6	-2.2	-0.7	1.2									- 2	1 1 1 1		• • • • •) • • •		COUSTI	2400.0
80.0		-0.7	-0.7	-1.2	-0.7	- 0 -	 	1 C	- X - X	1 1 1	-1.0	-1.0	-1.6	-1.6	· · ·	10	0 · · ·	6.	-4.5	-5.1	с ц	1 C	-4./	-3.8	-1.9	ø.3	2.1									α 1			5 t 5 c 1 1	2.0-		4	CH
70.0		Ø.Ø	-Ø.5	-06.2	- 0, 5	- 0. 7	- 0 -	2 2		с. Я́-	-0.8	-0.3	-Ø.6	6.9-	2 -	- C - C - C	2.1	-2.7	-3.1	- 4 2	 		- 4 - Z	-2.8	-1.3	1.5	3.4									с 1	1 1 2 1 1	ח נ י י	0 0 1 1	a. 2-		CATION	ANECH
60.0	2	0.0	-06.2	-0.2	-0.7	- 1 - 0	, 6 , 6	20	7. 1. 1.	-1.8	-0.8	-1.0	-1.3	6	•	· · ·	8.2-	-4.5	-5.4	ט ע ו) -) -		-7.4	-6.5	-4.1	-3.1										(-		+ + • •	+ 0 0 0	-2.7		С 	C41
50.0	2	-0.5	Ø.3	-Ø.2	- 0. 7	Ч. С.	2 2 2	2 - 2	1.01-	-0.8	-0.3	-0.3	- Ø -	2 2 1 2 1		- I - Z	-1.8	-1.7	-2.1	9 0 		۲. ۱۹	13.4	-2.2	0.4	2.1										2	р.		4 (2 4	ν. 1.			
40.0	2	-04.5	- 0. 7	- Ø. 5	10.1	. u 			ы. Г.	-1.0	-01.8	-0%.8	۳ 		- 0	7.1.	- I - U	-2.6	13.0		0 L 0 C	1 1 1 1	-3.6	-2.8	-1.3											•			-1.4	-1.5			
	FRFO	201	63	8.0	1 0 0	105			A A A	250	315	4 8 8	E a a			A M M	1.0.0.0	1250	1600	2222	00007 0	2 5 M W	315.0	4,00,00	5000	6300	8,0,0,0	10000	125,00	16000	20000 250000	31500	40000	50000	80000		OASPL			DBA			
																			3	9	2																						

_ _ _

TEST CASE FOR TREATED EJECTOR TEØ8 VS TEIØ

IDENTIFICATION

X80095	X88095	
83F-ZER-8009	83F-ZER-0009	
3	(2)	
NPUT		

OUTPUT TOS TE8-T1Ø XØ81Ø1

ANGLES MEASURED FROM INLET, DEGREES

0		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
с v	, , , , , , , , , , , , , , , , , , ,	<i>2000000000000000000000000000000000000</i>		
277	8007000 800000			
160.0	8679022 8679022 8679022			
150.0	50000000000000000000000000000000000000		R R R R R R R R R R R R R R R R R R R	L LB
140.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		-1.8 -1.8 -1.8 -1.1 AVG CO	THRUS
130.0			×	PM - 10
120.0	11 11 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		-10.5 -10.7 -1.2 -10.9 VG COR	SPEED E 31 R
110.0	הוווווו הווווווווו		A 1.2.8 1.2.8 1.1.6	E -Ø.1
1.00.0	₹ ₹ ₹ 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	- 8. 7 - 1. 7 - 1. 7 - 1. 5 - 1. 5	C RANG FT SL
Ø.Ø	8755871 188787 198787 198787 19877 197777 19777 19777 19777 19777 19777 19777 19777 197777 19777 19777 19777 19777 19777 197777 197777 19777 197777 19777 19777 19777 19777 197777 19777 19777 19777 197777 197777 197777 197777 197777 197777 197777 197777 197777 197777 197777 197777 197777 197777 1977777 197777 197777 197777 197777 197777 1977777 197777 197777 197777 197777 1977777 197777 197777 19777777 1977777 1977777777		8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	COUSTI 2400.0
80.0	87778 87788 87788 87788 87788 87788 87788 87788 877			▼ CH CH
7.8.8	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		- 0.6 - 1.7 - 1.6 - 1.2	CATION
60.0	8 8 8 8 9 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8		-1.8 -2.8 -2.8	C41
50.0	, , , , , , , , , , , , , , , , , , ,	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	
40.0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	86588888888888888888888888888888888888	OASPL PNL PNLT DBA	

CRAMMAN FOR SOCIO

TEST CASE FOR TREATED EJECTOR TEØ8 VS TE18

Ø3/13/86 7.793 PAGE 3

DELTA, SPL(1) - SPL(2)

IDENTIFICATION

INPUT (1) 83F-400-8004 X80045 (2) 83F-400-0004 X00045

OUTPUT CBF TE8-T1Ø XØ81Ø1

ANGLES MEASURED FROM INLET, DEGREES

「 「 「 」 」 」 」 」 」 」 」 」 」 」 」 」		
N 		
▲ダダダダダダダダダ↓↓ヽヽヽヽヽ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓		
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4.225 9.9399 9.9399 9.93999 9.9399 9.9399 9 9 9.9399 9 9 9	RR LB
	8.3 1.8 1.2 1.2	AVG CC THRUS 7.1E B1
ー	- 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	R PM - 8
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-1.2 -1.7 -2.1	VG COR SPEED E 31 R
1	1 1 1 1 0 4 4 4 0 0 0 0 0	Е. В. 1
1	1 1 1 1 1 1 1 1 1 1 1 1	C RANG
の 「・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1 0 4 0 4 0 8 4 4	1000571 2488.8
8 ー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2000 70000 10000	H
7 「 」 」 」 」 」 」 」 」 」 」 」 」 」 」 」 」 」 」	3 3 3 	ICATION ANECH
G 「 」 」 」 」 」 」 」 」 」 」 」 」 」 」 」 」 」 」	* 55 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	LO C41
1		
4		
Т Т П П П П П П П П П П П П П	OASPL PNL PNLT DBBA	

TEST CASE FOR TREATED EJECTOR TEØ8 VS TE10

С

IDENTIFICATION

83F 83F	5]	83F-400-8006 X80065 83F-400-0006 X00065	
------------	----	--	--

XØ81Ø1 ITF TE8-T1Ø OUTPUT

ANGLES MEASURED FROM INLET, DEGREES

	ľ
č	ŝ
.7	
ų	C
-	
	-
ç	4
	i.
	ľ
ē	s
u	1
_	
-	
c	1
	ŝ
	ľ
č	2
17	1
-	1
_	
~	
G	2
	1
	1
×	3
2	2
C	1
_	
-	
~	
Q	ŝ
	ļ
	1
×	D
Z	
¢	J
	ŝ
•	1
Č.	3
	1
	٠
2	•
9	Ŋ
-	-
-	
-	
×	
~	1
	•
>	
G	2
6	2
0	2
1 0 0	
9.0	
1 0 0	
X 100	
a 1 0 0	
a 10.6	
X 01 10.0	
<u>a</u> a 100	
סטר ש שמ	
סמ מ זטפ	
00 0 00 00	
00 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
00 0 0 100	
א סמ מ זטפ	
or oara 100	N 10 10 100
X 03 X 10 0	
ע מ סמ מ זטפ	
מ מ ס מ מ 100	
20 0 00 0 00 0 100	
200 X 201 X 100	
20 X 2 2 X 2 1 0 0	
סמ מ סמ מ זספ	
. סמימ סמימ זטיס	
<u>a</u> bara oa a 100	
α ρα α οα α 1 00	
מ ממ מ סמ מ 10 0	
א מ ממ מ סמ מ זמני	
<u>מ</u> מ ממ מ סמ מ 100	
70 01 201 01 01 01 01 01 000	
70 0 20 0 0 00 0 0	
70 0 20 0 20 0 20 0 20 0 20 0	
70 01 000 01 01 01 01 01 000	
70 0 00 0 00 0 00 0	
א זמ מ סמ מ סמ מ זטנ	
מ כמ מממ מ כמ מ 100	
ע <u>זמ</u> א מע א סע א זטיט	
א מ סמ מ סמ מ סמ מ זטט	
מ מ יב במ מ ממ מ ממ מ ומני	
כמ מ זמ ממ מ ממ מ זמנ	
נע ע זע מע מע ס ע ע ז <u>ס</u> י	
רפי א ארא אין אין אין אין אין אין אין אין אין אי	
ער אין	
. Lord a Jord a Dord a Jord	
א נמ מ זמ ממ ממ מ ממ מיז מי	
<u>מ</u> רמ מי זמ ממ מי סמ מי ז <u>ס</u> פ	
ର ମହାର ଏହି ଅନ୍ୟ ହୋଇ ସୁମୁହନ	
Υ α Γα α 1α α 3α α 0α α 1 00	
<u>3</u> 3 23 3 33 33 33 33 33 33 33 33 33 33 33	
<u>,</u> , , , , , , , , , , , , , , , , , ,	
נע ע נע ע זע ע מע מ עע עוספ	
נע ע נע ע זע ע אע ע סע ע זע <i>י</i>	
רא א רא א איז איז איז איז איז איז איז איז איז	
צמ מ צמ מ זמ מני אמ מ סמ מ נו איז	
א במימ במימ זמימ ממימ נמימי מיני במימ	
<u>מ</u> דמ מ רמ מ זמ מ ממ מ ממ מ זמי	
<u>מ</u> דמ מ דמ מ זמ מ מט מע מ מ	
1 α μα α μα α τα α τα α τα α το α το α το	
<u>מ</u> מ דמ מ דמ מ יומים מ ממ מ ממ מיומים	
40 0 E0 0 E0 0 10 0 10 0 00 0 00 0 100	

	PVL	- 61.3	- 0. 2	0.7	-0.0	-0.3	-0.5	-0.4	-0.4	-0.4	-0.4	-0.6	-1.5	-2.0	-2.7	-3.6	-4.0	2 C 1 V	ים י ו ד	יי (יי ו		8.2-	-1.6	-10.1	~, (r.r													
	S.D.	C	1.9	6.0	0.5	Ø.5	Ø.6	ø.6	Ø.5	ø.6	Ø.6	0.6	1.0	0.9	1.3	1.3	1.4) - • -	• •	0 L		1.7	2.1	2.1														
	AVG	0.1	-0.0	Ø.1	-0%.1	-0.4	-0.6	-0.4	-0.3	-06.2	-0.3	-0.5	-1.5	-2.0	-2.7	-3.4	-3.7	-4.0	2 . T -	ט (י י	n c	0 I 7 I	· · · ·	-10.1	1.5														
160.0		-0.7	-0.7	-00.1	-0.4	- Ø. 8	-1.4	-00.5	-1.0	-04.5	-0.5	-1.1	-1.2	-1.3	-1.7	-1.9	-2.7	1 2 1) 	- 6 - 7	n • 9 -											- 0.7	-1.2	-1.2	-1.2			
150.0		-0.2	0.0	1.7	1.0	Ø.5	0.7	ø.8	0.4	1.1	Ø.7	Ø.5	Ø.5	-0.3	-0.3	-0.6	-0.8	د - ا	4 .	- 0 -	- U - C - I		9.2-										Ø.5	- Ŭ. 1	-0.1	0.0		ž⊢	• LB
140.0		- 0. 7	-0.5	1.0	-0.0	-06.2	-0.1	-06.2	-06.3	0.2	-Ø.1	-0.5	-06.5	-1.3	-1.1	-2.0	-1.9	- 2.0	9.9 101	1 1 1	- L - L	± 8 8 8	9.9 9.0	7 · 1									-0.3	-0.9	-2.0	-1.0		THRUS	.1E 31
130.0		Ø.Ø	Ø.3	1.5	Ø.1	-06.2	-01.6	-Ø.2	-0%.5	-06.4	Ø.1	-0.7	-Ø.3	-0.8	-1.3	-2.4	-2.0	-2.5	-4.8	10			 	7.7									-0.3	-1.0	-1.0	-1.1	6	¥	PM - 28
120.0		-00.5	-0.2	0.4	-06.7	-06.3	-0.9	-06.2	Ø.Ø	-1.4	-1.1	-0.6	-1.7	-1.6	-2.3	-3.0	-3.7	-3.6	00. 00. 1	ר י י		20	ש ני יי יי	د.3	4.7								-1.3	-2.3	-2.3	-2.2		SPEED	E 31 R
110.0		-1.0	-1.5	-1.2	-01.5	-1.3	-1.4	-1.3	-1.2	-06.7	-1.4	-0%.6	-2,00	-2.3	-3.4	-4.1	-4.1	13.9	-4.7	- 7 O	2 0 1 0 1		2 C 	1.14-	1.4								-2.3	-3.2	-3.2	-3.1	<	х ш	-0.1
100.0		4.0	2.8	-0.2	Ø.2	-06.2	-0.4	-1.0	-0.4	ø.1	-Ø.1	Ø.2	-0.9	-2.7	-2.0	-3.5	-4.1	-4.2	-4.5	- 4 . 3	0 0 1 0 1			ם י קי ו	1.5								-1.7	-2.9	-2.9	-2.8		C RANG	FT SL
0 .06		Ø.Ø	-0.7	-1.0	-0.5	-1.0	-0.7	- Ø. 7	-0.8	-06.8	-06.3	-1.6	-2.1	-2.9	-4.1	-4.9	-5.8	-5.9	-6.3	- 4 . 7		זר י ס כ		41	1./								-2.9	-4.2	-4.2	-4.2		COUSTI	2400.0
80.0		ø.2	-0.3	-06.3	-0.5	-0.4	-Ø.6	Ø.Ø	-0.5	-0.3	-Ø.Ø	-0.9	-1.7	-2.8	-4.1	-4.5	-5.1	-4.9	-5.1	-5. Ø	20	• •	י א י ד י	4.4	с.2								-2.2	-3.5	-3.5	-3.7		۷	сH
78.8		0.0	Ø.2	Ø.2	Ø.2	Ø.Ø	-Ø.5	-0.4	-0.2	-03.07	-06.06	-06.3	-1.5	-2.8	-3.6	-3.5	-4.3	-5.0	-5.0	е. С –	 	, , ,	4 C • - V •	יי יי י	1.1								-1.7	-3.2	с. 1. 3.	-3.0		CATION	ANECH
60.0		0.0	-10.0	-0.1	-0.4	-0.5	-0.6	-0.2	-01.5	-Ø.3	-0.5	-04.3	-3.3	-2.6	6°8'	-5.1	-4.5	-6.4	-5.8	-6.2	שו ני ו	20	a 0 1	ו 4 י 4 י ע	- 2 . 3								-2.2	-3.9	-4.0	-3.8		LO L	C41
50.0		0.0	0.4	-0.2	Ø.6	ø.3	-0.1	-0.1	Ø.8	Ø.2	Ø.2	Ø.2	-1.9	-2.4	-3.5 -	-3.6	-4.3	-3.9	-2.5	- 2 9	10 10 10			ю. I									-1.3	-2.2	-2.2	-2.7			
40.0		0.0	-Ø.1	- Ø. 7	-0.3	- Ø. 7	-1.1	-1.1	-Ø.2	-0.3	-0.5	-Ø.5	-2.9	-2.9	-4.0	-4.6	-4.7	-5.3	-2.9	-26	1 0 1 0	- C 		. n									-1.9	-3.2	-2.1	-3.4			
	FREQ	5.0	63	8.0	1.60	125	16.00	200	250	315	400	500	63.0	800	ر 1 <i>000</i>	6 1250	216,00	2000	2500	3150	A G G G		00000	0 3 10 10	8.00.00 1 460.00	12500	16000	20000	21500	4 <i>0000</i> 50000	63000	<i>awww</i>	OASPL	PNL	PNLT	DBA			

TEST CASE FOR TREATED EJECTOR TEØ8 VS TEIØ

IDENTIFICATION

X8Ø1Ø5 XØØ1Ø5 XØ81Ø1 (1) 83F-400-8010 (2) 83F-400-0010 INPUT

TOF TE8-T10 OUTPUT

dir.

ANGLES MEASURED FROM INLET, DEGREES

17d		- 0	3	v	~	1.	-		21	8	0.0	5	2 0	20	9-19-	Ø	1	-	- 0	21		ĩ		N I	-	9	2	•	r ur																	
S.D.S		•••	₫ L -	l.5	1.5	1.4	1	- u		1.7	1.5				1.7	1.6	ц В		•••	I.4	1.2	1 7	- (- (2.2	2.0	2.0	1 C	, c	1																	
AVG) (0 C Q	γ.	8 .3	Ø.6	Ø.6		2 X	с. Я	Ø.6	<u></u> й, 5	, e 2 e	200	5.0	-0.0	-Ø.3	ע 	•	າ • •	-1.9	-2.5	10 10	5 C	R . 2 -	-1.2	- 0 -	• •	• •	3.0																	
160.0	r 2	- r - 2 - 2	1.01	-Ø.8	-00.5	-01.7		1 · ·	л. Г	0.4	3 20-	, c , c	9 5	- 19 - 1	-0.7	-0.8		5 1 - (9.1 1 1	-2.5	- 2 . 4	- Li - C		-10.3	Ø.2	1												ر د	9.8-	-10.1	-0.7	- 10 - 1				
50.0		4 · 6	4	4.9	5.3	4 8		4 r • • (2.4	6.0	۲ ۲) •) •	0 ·	4.5	5.1 2	4.5) .) (ς.γ	2.3	<u>д</u>	• • • •		3.1	2.1	1 ¢	.											י י	4./	4.6	4.6	4.4		RR	۔ ب	- LB
4.06.06 1	0 2		-0.5	-06.3	Ø.1	5	, c , c	2 2 2	N. N	-0.1	8	20	ດ. ຊ	-03.2	0.1	- 0. 7	. 0 . 0		-1.4	-2.5	α (1	, c	יע ויד	-0.5	a a		- L 	6.4										d R	2.0-	-0.2	-1.3	-00.6		AVG CO	THRUS	.1E 31
30.01	i	9.0	0.0	1.2	Ø. 1	0 0	20	7.01	-Ø.1	- 6. 0	2.2	0.2 2	10.4	Ø.2	-1.0	с 101	, r , -		-1./	-2.0	0	, 1 , 10	- 2.2	-0.7	-	- c - c	11	4 . /										(;	-0.2	-0.5	0.1	-Ø.9		~		PM - 20
206.001		- Ø. 5	-06.3	0.0	- 01.1	 		7.01-	-0.4	-0.4	2	4 . 20 -	с. Ø	-1.2	-1.3	ט י 		ו י י	-1.6	-2.5	1 1 1 1 1 1 1	, c	n . 2 -	-1.2	1.01	t 0 2 -	1.8	ות. יי	N. /										6.Ø-	-1.4	-1.5	-1.5		VG COR	SPEED	E 31 R
1.0.01		-1.1	-06.5	-0%.8	10	 		7.01-	-1.0	α 201	20	9.19 1	-Ø.5	-1.4	-1.5		- (- I .3	-2.7	- 7.7	- C - C - C		-4.1	-2.6) U - 1 -		р. р	1.4	3.2										-1.4	-2.4	-2.9	-2.1		4	ш	0.1
00.01		3.7	1.5	- 01.5	2	- c 		8.2	0.4	ά	2 C	л - Г	-0.7	-0.1	- 1 - 2		· · · · · ·	-1.5	-1.6	ь с-		າ າ ເ	-4.0	-3.2		0.	-19.6	1.1	3.5										-0.9	-2.1	-2.1	-1.8			C RANG	FT SL
1 <i>b</i> . <i>b</i> .		-0.9	-0.6	-01,8	9 9 9	2	8 	-0.3	-0.8		1.0	2.0	-0.1	0.2	- 0 -	у - 1 П		-1.3	-3.8	- 2 F		1.5-	8°. 1,30	- 3 - 2) - - -	י י י	Ø.3	1.3	3.7										-1.2	- 7 . 3	- 2 - 3	-2.0	I		COUSTI	2400.0
80.0		Ø.Ø	Ø.3	Ø, A	, o	י פי	-10.10	Ø.5	Ø. 7	2 2	2	1.0	-0.1	Ø.1	10.2	9 9 1 1	c. 9 -	-2.1	-1.7		1 C	-3.2	6. С.	- C		ית ית	-Ø.2	1.9	3.8										-0.7	- 2 0	1 2 2	-1.6	•		A	сн
78.8		0.7	Ø. 8	, e 2	20	11 12	Ø.7	1.5	а Г	, c , c , c	7.0	Ø.2	1.0	9			ю.1	-1.1	-1 - 1			-2.4	-3.2	-	す i	-2.7	-1.1	1.2	2.8										- 01.1	10		- 6 - 9 - 9 - 1	•		CATION	ANECH
60.0		Ø.6	- 0	2 - 2	1.2	<i>b</i> .4	Ø.2	1.0	2	8 9 1 0	2.0	0.7	1.0	Q Y	2 C	າ ເ 1	- 0 - 1	-3.7	V 6-		13.10	-4.2	ی ا ا) d) u	-5.4	-5.8	-5.1	-3.9	-1.6										- 01 8		1 1 1 1 1 1 1 1				0	C41
50.0		1.2		2 C	2.0	1.2	1.7	Й.8	2 2 2		1.2	1.0	0, 2	20		1.0	0.4	-2.5		- 2 - 2 - 2	-1.0	-1.7	- 2 B	, c	- 2 - /	-2.3	-0.8	1.3											م 1	• F • C	20	 	2			
4 Ø . Ø		- 01.1			5.9 2	-0.0	0.7	Ø	2.0	1.10	-0.0	Ø.2	2	20	a. 2 1	-10.6	-0.1	- 2 -	. 0 . 8	0 · 0	-1.2	-2.1	- - - -	+ + - + -	-2.1	-2.0	-1.4	Ø. 7	2										ч . С	+ C 2 2	ופ זיי זיי	a	••••			
	0101	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	30	5 C	A B	100	125	15.07		A A Z	2500	315	100	2 2 Z	0/0/C	63.0	8.00	1 0 0 0		8C71	1600	2000	20220	ara c 7	31500	4000	5 A A A	52 0 0 C	8 A A A	1 4449	12500	16000	20000	25000	31500 A MARK	50000	63 <i>888</i>	aaaaa		UASFL	727		UBA			

. *S*e

396

TEST CASE FOR TREATED EJECTOR TEØ8 VS TEIØ

(

IDENTIFICATION

(1) 83F-Z (2) 83F-Z

OUTPUT CBS TE2-TE5 XØ2Ø51

ANGLES MEASURED FROM INLET, DEGREES

Ø
5
3
Ø
8
15
-
е.
9
1
8
3
38
Ø
5
2
9
8
11
~
3
0.0
2
Ø
8
ຄ
ø
8
60
8
7.0
Ø
8
3
В.
8
ഹ
8
3
4.0

	PVL - V	•••	1.6	<i>ы</i> .8	Ø.3	- 0 -	- 0	2 G 1 1	20		0 L 2 C	1 2 2 2 2 2	-10.8	-06.7	0.0	Ø.9		, a			1.7	Ø.8	-Ø.1	-0.6	1 0 -	, α 2 σ	9.0 .0 .0															
	s.D.	•	4.	1.0	9.9	Ø. 8	0	, v ,	, 2 , 2 , 1	, e , e		9 9 9	1.1	Ø.9	1.3	1.8	V		9 G 1 C	20	2.8	2.5	2.4	2.2	 		•															
	۵ ۵	5 5 - L	9 0 9 0	ю. 3	Ø.Ø	-0.0	- 0 -	1 2 2 2 2	- 0	, L 2 2 1	- r - 8	- C - Z -	1.10	-0.6	Ø.2	Ø.9					ы. 4. 1	2.01-	-1.1	-1.4	- 0. 8	2	2															
a • a • 1	5 2	- r - r	~ •	1./	2.2	1.2	Ø.5	0. 0		שנו 	2 F 1 B 1 B		ດ ເ ເ	-10.8	-06.3	-0.1	-01.8			• •		ч.	-3.8												2.1	0.0	0.0	-0.3	Ĩ			
2.201	6		י ר י ר	7.7	1.5	1.5	Ø.8	-2.8	5.9-	- ° °	ו יי פו	1 C 2 U	ם יים יים ו	-2.8	-2.3	-2.8	-3.8	-4.2	2 1 1	2	ו ם יע	-5.6	-6.1	-6.6											1.6	-1.4	-1.4	-2.4		R		8
2.211	<u>д</u> , 7		- C Q Q	2.5	ø.2	-1.3	-0.5	- 0	- 0. 7	- 2 - 2		- c - c 1 c	5 . 	- 2 - 3	-1.8	-1.8	-1.4	- 1 - 6	1		4 • • •	1 4	-4.9	-5.0	-5.3										-0.4	-1.4	-1.4	-1.7		AVG COR	THRUST	.1E 31
2.274	- Ø. 5		a c - 2	2	-0.5	-04.3	-0.7	Ø. 3	0.0	0	10.1	ي م ا		8.8	- Ø.5	-0.8	-1.6	-1.0	9) (7 1 1	ρ. - Γ.	-1.6	-1.5	-1.0										-Ø.2	-0.7	-0.7	-0.7		۲ ۲	2	- Ka
2.5	0.2	- 8 - 8	יי קר ו	9 i 9	-10.0	-1.0	-1.2	-0.2	-1.0	- 0	, <i>2</i>	, a , a		20 1 1	-10.8	Ø.2	-Ø.1	0.1	- 01 - 01	20		7.01-	-1.2	-1.3	-1.1	-0.3									-0.4	-0.2	-06.2	-0.3		/G CORF	SPEED	- 31 KF
2.24	Ø.6	a	0 U 9 0	2 · 0	-10.4	Ø.1	0.1	-Ø.1	0.4	Ø. A	9		2 X	7 9 1	Ø.8	2.3	2.8	3.2	с. С		- t - t	2.1	1.5	Ø.9	1.2	2.9									1.0	2.1	2.1	2.Ø		A	2	-10.11
2	-1.0	5	9 9 1 0	5 1 5	-10.10	-0.3	-0.2	-0.5	Ø.Ø	Ø. 3	- 0	ו פפ ות	20	2.0	1.2	1.9	3.2	4.1	3.0		1 G		1.1	0.1	1.1	1.9									6.0	1.7	1.7	2.0			RANGE	F - 2L
2	-1.0	0	1 0 1 0 1 0		- 10.8	-0.8	Ø.3	-1.0	-0.2	-1.2	- 0. 7	ט פי ו	2 2	ם. קי ו	2.1	1.9	2.7	2.8	2.2		- 2	4.		-2.1	-2.1	-0.9									0.4	1.1	1.1	1.4				4.0.0.10
	-0.0	2	2 G 1 G	2	-1.8	-03.03	Ø.3	-0.5	-0.7	- 0.5	- 0, -	, 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	20	й. 1.	1.1	1.7	2.4	2.3	2.7		0.1	- ×	N.4	-0.1	-00.4	1.6									0.4	1.4	1.4	1.5			¥د ۲	T
2	-Ø.5	2		, . , .	-16.1	Ø.4	-0.6	-0.1	Ø.5	- 0. 1	-0.6	, 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1		- 10 - 1	4	2.5	₹. 8	2.9	2.6			- v	- 19 - 19	-1.0	-1.0	Ø.5									Ø.6	1.2	1.2	1.7			ATION	NECH
	- 06.3	2	, 9 9 9 9	5 S 5 I	- 10	-0.0	ø.3	-0.2	-0.2	- 0. 7	-1.0	- 2.	20	9.9 9.0	8.7	1.9	2.9	2.8	3.0	a -	• • • •		1.8	-03.1	-0.1										Ø.5	1.6	1.6	1.6				C41 A
	-1.8	- 1 8	2 a	- C	-10.3	-0.8	-1.7	-1.2	-10.7	-1.0	-1.5		, c	9.9 9.9	1.0	2.4	2.4	3.1	3.2	10	9 C 9 C	0 0 - 2	2 2 2	-0.1	0.7										- 0.3	1.4	1.4	1.2				
	-Ø.5	α -	ש שי שי	2 0	-10.3	Ø.5	-0.7	0.0	-0.2	- 0. 2	- 0. 2	9 1 2 1	2 0	יי פי פי	1.0	1.7	2.7	2.9	3.5	σ -	- 7 - 7		8 • •	-10.3											Ø.2	1.6	1.6	1.2				
0000	200	63	20	22.	1.010	125	16.00	2.00	250	315	4 0 0	500		0200	RNN	1000	125.00	1600	2000	2500	00010	2010	4000	5000	6300	8000	10000	12500	16000	2500000 2500000	315,00	4 <i>0000</i> 50000	63000 80000	2	OASPL	PNL	PNLT	DBA				

TEST CASE FOR TREATED EJECTOR TE#2 VS TE#5

-

_

Ø3/Ø7/86 9.986 PAGE 3

DELTA, SPL(1) - SPL(2)

IDENTIFICATION

 INPUT
 (1)
 83F-ZER-2005
 X20055

 (2)
 83F-ZER-5005
 X50055

 0UTPUT
 ITS TE2-TE5
 X02051

ANGLES MEASURED FROM INLET, DEGREES

:	PVL PVL	1.6	2.2	1.6	1.1	Ø.4	0%.1	0.0	0.0	- 0.4	-06.3	-0.6	- 10.5	-0.3	Ø.3	0.4	0.5	Ø.3	- 0, 5		+ c c	5 . C	9 1 2 2 - 2		R	5.9															
4	s.D.	1.1	1.4	1.3	1.3	1.1	8.8	B .7	6.8	Ø.6	Ø.8	Ø.5	0.5	8.7	Ø.8	1.0	6.9	0.9	5.1				רי - י	4.	7.1																
	AVG	8.4	8.7	Ø.5	Ø.3	Ø.Ø	-06.3	06.1	-06.2	-0.4	-0.5	-06.7	-00.5	0.0	Ø.3	Ø.3	Ø .2	-0.2	-1.6		4 - - (1.2.	- 2.9	9.9 - 3.10	2.2-																
160.0		1.5	2.2	3.0	3.0	1.7	Ø.8	1.8	Ø.5	-01.2	-06.7	-04.5	-18.19	B .2	-18.6	-1.8	-0.1	-01.2	- 0, 6		5 5 4 1	1.9											е -	• •) (- -	- R	7.01				
15.0.0	1	2.7	4.0	3.2	2.7	2.7	1.0	0.5	1.8	0.5	8.5	Ø.2	0.7	ø.2	-0.1	0.7	Ø.1	-01.8	2	20	5 . X	- 19 - 10 - 10	1.1.										с Г				ю. Р	0	∠ ∠ +	a	د د
140.8		1.2	1.2	1.0	1.5	Ø.5	1.8	0.5	0.3	-0.2	0.8	-0.8	-0.8	Ø.2	0.7	-Ø.1	-0.9	- 0.5	0 0 0 0 1		7.1.	4.1.		-2.5									a a	2	4 7 9 0	4.5	N.N		00 9A4	15 21	10 11.
13.0.0		-0.0	1.2	-0.3	- Ø. 3	-0.8	-0%.5	-0.2	-06.2	-1.2	-1.0	-1.3	-01.8	-1.8	-1.1	-0.9	- 8 - 7	- 0, 8	1 2 2 2 2	15	. N	-1.8	-2.0	-2.0									- X		0.0 0.0	9.9 1	-19.9	6	×	M U	2 51
120.0		Ø.5	Ø.5	- 0. 0	- Ø. 8	-01.5	-1.2	-06.2	-06.5	-1.0	-1.8	-1.3	-1.0	-1.3	-0.6	-1.1	0.1	2	<i>б д</i> . п		ю. Т	-1.5	-1.8	-2.1	-1.1								2	2	ן פ ה ט	ດ. ຊຸ	-0.8				2 10 1
110.0		1.3	1.1	Ø.6	-0.2	-0.2	-0.1	0.1	- 0.4	0.4	0.4	Ø.6	-0.4	-0.2	1.5	1.0	0.7		• •	- 1	1.9	-06.3	-1.1	-1.1	Ø.6								2	5 S	י י אי	2.0	0.7		≮ ں	- 8 1	1.0-
0.00.00		-0.3	Ø.5	0.7	Ø. 2	-0.3	-0.5	-0.2	Ø.5	Ø.5	0.0	-0.5	- 0. 0	Ø.5	Ø.9	1.9	2.3		. 0	2 2	- Ø. Þ	-2.1	-1.2	-0.9	-0.4								u T		8 9 9	ю. Р	1.0				7 - 0L
9.0.01		-Ø.5	5.0-	- 8.5	- 0.5	-0.8	- 0. 5	-1.0	- 0.7	-1.0	- 0. 5	-1.0	-1.0	-06.5	- 0.3	0.9		ы. - ы.	2.1		-2.8	-3.8	-4.1	-4.9	-4.4								U R	ດ ໄ ຊີ່	1. 1. 1.	9 .1-	- Ø. 3		T T O T O O	1 1 0 0 1 1 0 0 1 1 0 0 0 1 1 0 0 0 0 0	2400.00
80.0		-0.0	2	- 6	- 0	10,1	- 0.2	- 0, 7	- 0. 7	- 0. 2	- 0 -	-1.0	-0%.5	0.2	6.7		2	у 9	ית פי		-1.8	-2.9	-3.7	-3.4	-2.1								د د	ו 1 מי	9.9 9.0	-10.9	-Ø.1			¥	H
70.0		Ø.2	2	0.4	2	<u>а</u> . и	-1.2	- 0	- 0 - 1	- 2 -	- 1 - 0	-0.9	6.0-	0.7		0.4	1 2 2 1		I → (4	1.5-	-3.8	-4.1	-5.2	-5.0	-4.8								2	ด. ด.	6. - 	6.1-	-0.9				ANECH
60.0		Ø.2	, 9	, 2 , 1 , 1	ה ני יי יי	- 0. 0	- 0	- 0 -	- 8 - 1	- 2 - 2		- 0 - 5	-0.5		20		, c , c	20	0 0 0 1	c •2-	-2.4	-1.7	-3.8	-3.8	-3.6								0 1	5.01-	-1.0	-1.0	-0.2		-	2: ; C	C41.
50.0		-1.3		2 U	ט ר - כ ו	2		ט נ י י		- 12 - 10 - 1	, c , c , c	- 1 - 2 - 1 - 2	1 1 1 1 1 1	, c , c , c	2.2	20	- 1 - 2 - 1		8.9 9.0	-2.2	-3.4	-3.7	-4.6	-4.3									•	-1.1	-1.2	-1.2	-Ø.8				
40.0		- Ø -	9 	2.0	2 U 2 U	ן פפ יינ	1 2 2 0 0	9 9 1 6	- 2 - 2 - 1	2	20	2 G 1 G		, 1 1 1 1 1	, c			1 Q 2	1.01-	1.4	-2.8	-3.8	-4.1										:	-06.3	-0.7	-0.8	-06.2				
	FREQ	20		000	1 0.0	1 2 5	100	200	2010	215	210	100	222	200	1 0 0 0	1 2 5 0	3001		2000	2500	3150	4 0 0 0	5000	6300	8000	10000	12500	1 6 8 8 8 2 8 8 8 8	25000	31500 16000	50000	63.000 800000		OASPL	PNL	PNLT	DBA				

TEST CASE FOR TREATED EJECTOR TE#2 VS TE#5

IDENTIFICATION

X 2,00,05 X 5,00,05
83F-ZER-2009 83F-ZER-5009
(1)
INPUT

XØ2Ø51 TOS TE2-TE5 OUTPUT

ANGLES MEASURED FROM INLET, DEGREES

- 60
_
ف
-
~
Q
•
6
ាក
_
ø
-
. 64
4
-
~
S.
•
6
m.
<u> </u>
0
*
1
2
>
8
. •
Ø
-
0
-
~
3
Q
x
S.
. •
Ø
5
0
- X
ø
88
88
88
98
Ø 8.0
.8 8.9
0.0 8.0
7.0.0 8.0
7.0.0 8.0
7.0.0 8.0
7.0.0 8.0
0 70.0 80
.07 7.0.0 8.0
7.0 7.0.0 80
0.0 70.0 80
60.0 70.0 80
60.0 70.0 80
60.0 70.0 80
7 60.0 70.0 80
8 60.0 70.0 80
. <i>B</i> 60.0 70.0 80
Ø.Ø 6Ø.Ø 7Ø.Ø 89
5 <i>0</i> .06 60.06 70.07 80
50.0 60.0 70.0 80
50.0 60.0 70.0 80
1 5.0.0 6.0.0 7.0.0 8.0
Ø 5Ø.Ø 6Ø.Ø 7Ø.Ø 80
.B 5B.B 6B.B 7B.B 8B
8.8 5.8.8 6.8.8 7.8.8 8.9
1 <i>0.0</i> 5 <i>0.0</i> 60.0 70.0 80

		- G -	2	- 0. 0	- 10, 3	- 0. 5	6.8-	-1.1	-0.7	-0.7	-0.8	-1.1	-0.6	-0.2	Ø.2	Ø.5	Ø.3	- 0	200	-1.0	▼ 1 -	- C	- 2 . 0	 	9.5	2													
	S.D.		20	<u>9</u> .6	0.8	1.0	0.6	0.7	0.7	Ø.5	Ø.6	Ø.9	1.2	1.4	1.4	1.1	0.8	Ø, R	0.7	6.0	<	1	1.7	. ~	E 19	•													
	AVG		- 2	-0.6	-0.9	-0.6	-1.1	-1.3	-0.9	- 10.7	-1.0	-0.9	-06.2	0.4	0.6	0.6	Ø.3	- 01 - 8	6.0-	-1.6	-1.4	-1.6	-1.7		-1.2.1														
160 G	2	<u>д</u> , 5	2 C 2 C 2 C	-0.0	0.2	0.2	-0.5	-0.5	-0.7	-0.2	-1.0	-1.0	-1.3	-1.5	-1.6	-1.8	-1.1	-2.0	-1.6		-2.3)										2	1.0-	-0.5	-00.5	-Ø.G			
150.0		0.2	<u> </u>	0.2	-0.5	-0.3	-0.7	-1.2	-0.2	-8.7	-0.5	-1.3	- Ø.5	Ø.2	0.2	Ø.2	0.8	-1.3	-1.1	0.2	- 1.1	0.6) } !									0 8	-10.2	-Ø.6	-0.6	-0.5	0	ź –	LB
140.0		-1.3	9.2	Ø.2	Ø.5	-1.3	-06.7	-1.5	-1.8	-1.2	- 03.7	-1.8	-01.8	-1.0	-1.1	-00.6	-1.2	-1.8	-1.2	-2.7	-3.7	-4.0	-5-3))								2	-10.6	-1.0	ø.ø	-1.1		THRUS	.1E 31
130.0		-1.3	- 6 -	-1.3	-1.5	-1.8	-1.7	0.2	0.0	-0.2	-1.8	- Ø. 3	-10.3	-06.3	0.4	0.1	0.0	-1.3	-1.5	-1.0	-1.6	-1.5	- 2 . 3	- 1 - 6(2							2	9.01-	-0.8	-1.3	-0.3	0	٤	PM0
128.0		-1.8	-1-	-1.0	-1.5	-1.3	-2.0	-1.0	-1.0	-8.2	-01.2	-1.0	- 18.8	18.8	-03.6	-01.1	-00.2	-1.8	-1.5	-1.4	-2.2	-2.6	-1.8	- 1 - 1) 							۲	-1.6	-0.8	-0.8	- 10.7		SPEED	E 31 R
110.0		-3.3	-1.3	-0.5	-1.4	-1.4	-1.8	-2.0	-2.0	-06.3	-0%.6	-0.4	-0.8	ø.1	1.2	1.2	Ø.9	-0.2	0.4	Ø.3	0.7	0.4	0.4	Ø.8	•							ن د	-10.8	-0.2	-10.2	<i>й</i> .2	4	د س	-01.1
100.0		-2.0	- Ø -	- Ø. 3	-0.8	-1.8	-0.7	-1.0	-0%.5	-0.5	-1.5	-1.3	10.8	-Ø.3	-06.3	0.4	Ø.8	-0.0	-0.4	-00.6	-1.4	-1.2	6.07-	-0.9								۲ خ	1.01-	-0.4	-Ø.4	-0.2		C RANG	FT SL
90.00		-1.3	-1.5	-1.8	-2.5	-1.5	-01.5	-1.7	-2.2	-2.0	-1.7	-2.3	-1.3	-1.0	-0.6	g.g	1.3	-0%.5	-1.1	-2.1	-2.1	-3.1	-3.4	-3.6	-1.2							•		6.0-	-1.4	-04.5		COUSTI	2400.0
80.0		-1.3	-1.3	-1.0	-1.5	-0.8	-01.5	-1.2	-1.7	-1.0	-1.7	-1.0	-1.3	ø.5	0.7	2.4	Ø.8	-0.5	-0.9	-0.3	-0.6	-1.4	-2.1	-00.6								נ ז	ר ו קינו ו	- 0, 5	-0.5	Ø.2		۷	сH
70.0		-1.6	-0.6	-0.2	- Ø.7	Ø.8	-03.7	- Ø. 7	-0.5	-Ø.5	-1.2	-0.5	-0.2	1.6	2.4	1.7	0.0	-1.3	-1.8	-1.3	-2.4	-2.5	-2.2	-1.5								2	- 10 - 1	-0.7	-1.2	Ø.3		CATION	ANECH
60.0		-1.9	-1.0	-0.8	-0%.5	Ø.2	-01.5	-1.7	-0.7	-0.7	-0.7	-1.0	0.7	3.0	2.9	1.6	Ø.6	-0.0	-1.0	0.1	Ø.Ø	-Ø.8	-0.6	- Ø. 1								د د	2.0	Ø.2	Ø.2	1.0		ΓO	C41
50.0		-2.3	-2-3	-1.8	-1.0	-10.10	-2.0	-3.0	-0.7	-1.2	-2.0	-1.0	1.0	2.2	1.7	Ø.6	Ø.3	-0.5	-0.2	-1.9	-1.5	-2.3	-0.8									נ ז	ດ. ທີ–	-06.3	0.4	0.4			
40.0		-1.3	-1.8	-1.0	-01.8	1.0	-1.2	-10.7	0.0	-0.2	-0.5	1.5	3.0	2.0	2.2	1.7	Ø.6	ø.5	-0.4	-1.1	-1.6	-1.1	Ø.4										Ŋ.4	0.4	Ø.3	1.2			
	FREQ	5.0	63	8.0	100	125	16.0	2.00.0	250	315	4.00	500	63.0	8.00	1000	125.00	16.00	2000	2500	315.0	4000	5000	6300	8000	10000	12500	16000	20000	31500	4 <i>0000</i> 50000	63 <i>000</i> 80000		OASPL	PNL	PNLT	DBA			

399

TEST CASE FOR TREATED EJECTOR TEØ2 VS TEØ5

IDENTIFICATION

X 2*0*045 X 50045 (1) 83F-400-2004 (2) 83F-400-5004 INPUT

XØ2Ø51 CBF TE2-TE5 OUTPUT

ANGLES MEASURED FROM INLET, DEGREES

1 C OT 5 5 2 241 2 2 د • ۲ 2

0110	 	10	- 2.0	2 G 2 C	9 - 2	\. - \.	- 10 - 4	- 19 - 1	0.4	0.4	Ø.5	2	20	2 -	• • •	- C			2.2	г. -	1.0	6	10.1	201	20																
с 0	• 0 • 0 • 0	5 		20	9 J	ہ م - ک	1.0	8.8	Ø.9	Ø.9	1.1	2	2 2 -			- c	8.7 7	c .2	2.4	2.3	1.8	0	2-		 																
500	9α Α Α	0. A	0 0 0	2 - 2 2	0 0 0	20 20 10 10	- 19 - 3	-0.2	0.4	0.4	9.0	0. N	2 C	1 C			N C	1.8	1.6	1.1	ø. 5	20	- 0. 4	0 1 1	о С	•															
160.0	л М	, α 5 α			5 5	9.0	Ø .3	ø.6	1.7	Ø.8	ο ο ο	, r	C	1 + - -	იი ბ	פי פי	N	-19.1	-07.8	-1.7	- 1 -	2.2												1.0	9		2 - 				
150.0	с С	0 10	9 U		2.2	ю. 1	- 0.8	Ø.8	2.0	1.1			2-	- 5 - 1	יי פי	ы. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	В З	-2.5	- Ø. 7	-0.7	2	2 - 2 -		2.1										1	- 0	10	2 C		R R	Ξ	L• LB
140.0	и 8	0 9 -		2 C	אי יי	-2.3	-0.9	-03.1	Ø.6	- 01 . 01	2.0		0 - 0 - 0 - 0	4 ·	4 . 1 . 4		-2.0	1.8	-2.7	- 2 - 9		1 1 1 1 1 1 1	9 L 1 C 1 C	2.2	N . 1									м 10 -	 	 	0 1 1	a. 1 -	AVG CC	THRUS	V.1E 31
130.0	с 8	2 0 2 0	n 0 9 -		-1.2	-4.5	-0.7	6.0/-	-0.7	3 10 1		20	2	1 4 4	- 19 - 19	-1.0	- 0. 4	-1.1	-1.8	- 1-	ט נ - ו		10		0.N-									- 1 0		 - -	- r - 7 - 7	1.01-	۵	÷.	Md -
120.0	۲ ۲	a. - 8	9 1 9 1		-19.1	-3.2	-Ø.2	-0.2	Ø.6	ά	2	2 C	- L Q •	י. ז	2.6	1.3	1.0	1.1	Ø.6	- 0 -	20	2	201	2	ית: פי	4								5	20	. U	с. Я	1.1		SPEED	E 31 R
110.0	L	יט ייס ייס		ם. פי	-10.1	Ø.5	-1.2	ø.5	0,6) 2	- c 			۲.5 د.1	3.1	2.6	3.6	3.8	2.6		• U • •			0. Q		3.5								- (- c			ч.2	•	ι μ	0.1
0.00	2		/ ` Q	1.1 1	Ø .2	ø.3	-0.6	0.4	0	2 0 0 0		2.2	ы. 4.	1.3	2.2	2.6	2.9	3.4	1 7	.α •••				01 01 01	/ R	г. 1								r •			۹.1 ۱.0	2.2		C RANG	FT SL
1 10.106	2	2.2	8.8 1 1 1	- 19 - 19 - 19	-1.0	- 0.4	Ø.2	-1.5	2	2 G	0.0 0.0	1.01	- 19 - 1	0.1	1.6	2.5	2.9	а. З	2		2.0		າ ຊ ເ	9 7 7	Z - Z -	-1.3								, -	י - י - י	+ · ·	1.4	2.8		CONST	240.0
80.0			1 .2	-03.2	0.2	Ø.5	Ø.2	9.6	2 Z	+ u 2 -		 	0.4	Ø.6	2.8	3.8	4.2	3.1		5 C	21	1./	1.10	1 0.4	- 1 - 1 - 1	1.7								0	20	7	2.7	3.0		•	CH :
70.0	:	ø.3	1.2	0.7	Ø.6	ø.6	1.4	- 0	9 9 1 0		 	1.3	Ø.7	0.0	-0.4	2.3	4.1	с. С	• • • •			1.8	1.1	-0.1	-1.0	-0.1										Z • 4	2.4	2.6		NOITON	ANECH
60.0		Ø.8	1.0	Ø.8	1.0	ø.3	0	0 0	9 9 9 0	9 5 1 1	1.9	Ø.1	ø.6	-06.2	-0.7	1.2	3.6	2		~ · ·	3.5	2.6	2.2	1.5	6 .9	1.0									1.7	2.7	2.7	2.5		-	C41
50.0		-0.0	- 0.9	-06.3	-0.3	- 0.2		2	0 0 0 0	0 9 1	E.Ø	ø.1	-0.7	-1.5	-1.0	0.2	A A	1 1 1 1 1	ז ר • • •	~ · ·	3.2	2.6	0.7	Ø.5	1.6										Ø.9	2.1	2.1	1.9			
40.0		-0.1	- 06.7	-1.3	- 1 - 1			•			-1.1	-0.9	Ø.1	-2.7	-2.0	- 0, 8	ο ο ο ο	1 C	, i , i	с. 	с. С	2.0	0.7	-0.5	-1.2										-19.10	1.5	1.5	1.1			
	FREQ	5.0	63	8.0	1 0/0	1 2 5			200	ØGZ.	315	400	500	63.0	RAA	1 0 0 0	1050			2000	2500	3150	4000	5000	6300	8000	10000	12500	16000	20000 25000	31500	4 10 10 10 10 10 10 10 10 10 10 10 10 10	63000 80000		OASPL	PNL	PNLT	DBA			

TEST CASE FOR TREATED EJECTOR TEØ2 VS TEØ5

|

C40

IDENTIFICATION

X2*ØØ*65 X5ØØ65 (1) 83F-400-2006 (2) 83F-400-5006 INPUT

XØ2Ø51 ITF TE2-TE5 OUTPUT

ANGLES MEASURED FROM INLET, DEGREES

98.8 188.8 118.8 128.8 138.8 148.8 158.8 168.8 80.0 70.0 60.0 50.0

	μV			1.1	Ø. Å	-0, 6	- 10-	2	2	- 0 - 1	- 0. 0	- 0 2	- 0 2	0.0	0.5	0 7	1.8	- ~	2	2 U		/ · @	<i>8</i> .5	0.4	2.0		4.0													
	S.0.	•	1.3	1.4	1.3	1.2	2	8.8	200	6.7	9	8.9	8	0.6	Ø. 9	1.5	1.6	2.1				۲. ۲	1.1	1.7	1.5	1.6														
	AVG	2	2.01	-10.10	- 0.1	- 0.6	- 8, 6	Ø. 2	- 0	-8.2	- 0, -	-0.2	- 0. 4	-10.0	0.4	0.4	1.6	1.7					1.10	Ø.5	2.1	3.1														
160.0		с с	7.7	2.2	1.8	ø.6	- 01 - 1	1.1	- 0, 3	0.8	- 0 -	1.7	-0.1	-0.1	-06.01	-1.1	- 8. 2	-01.7	ی م ا		+ • • •	4 v	2 · 6										-	9	0.5 0.5	-16.10				
150.0		с с	2.5	3.0	2.0	1.8	0.2	1.1	1.7	1.2	- 0' - 4	-0.2	- 8.3	-Ø.6	-06.2	-Ø.6	- 0	-1.4	1 1		, - , -	n (•	9 · 2	1.8										-10, 0	- 0. 0	-0.3	ç	ž⊦	- LB	
148.0		a a	2	1.0	0.7	-00.8	- 01 -	- 0. 4	- 0 - 1	- 0. 5	Ø. 1	-1.2	-1.7	-1.4	-1.0	-1.1	-0.6	- 0. 9			† 0			1.8	3.2								2	- 2 -	-1.7	-1.8		ער כט דאמווכ	.1E 31	
130.0		2		-0.3	-1.4	-2.3	- 2 . 1	Ø.6	- 0 - 1	-0.1	-0.6	-0.2	- 0.7	-0.2	-0.1	- 0.7	- 0. 1	-01.8	1 2 2 1				C • Z	2.4	3.7								2	- Ø - Ø	Ø.1	-0.4		×	PM8	
120.0		c x	2	- Ø. 5	-06.7	-1.7	- 0, 5	B . 2	- 0.8	-0.2	9.1	- 0. 1	0.4	-0.3	-0.1	-0.1	9 .5	Ø.4	- 0 -	5 C	- 1 -		۲. ۱	1.1	3.2	4.0							2	2	. 9 	Ø.2		SPEED	5 31 R	
110.0		c v	2	ø. 3	0.6	-1.3	-1,3	1.7	0.4	- 0	0.8	0.4	1.1	Ø.3	1.5	2.0	2.3	2.2	1			4 C	9 . 7	2.1	а. С	4.5								, u	1.6	1.7		≮ 	-0.1	
1.00.0		с »-	2 2 1	-0.3	Ø.5	-0.3	- 0. 7	- 0. 2	Ø. 8	0.2	1.2	0.0	0.5	1.0	1.5	2.2	2.6	4.1	3.1		3 C 1 S	20	יפ	2.1	4.0	4.8							r -		5.2	2.3		C DANCE	FT SL	
90.06		0 20 -	0 · 0	-1.8	06.8	-1.5	- 0. 8	- 0.5	-1.3	- 0. 5	- 0, -	- 0. 5	-0.8	-0.0	Ø.2	1.7	3.5	3.0	1.7			200	1 2 2 2 1 2 1	-10.6	- 0. 4	<i>и</i> .8							5	9 G 9 G	6.9	1.6		LUIGT	2400.0	
80.0		с ю -	2	-0.3	-0.5	-06.3	1.1	-0.2	- 0 - 0	-0.3	Ø. 2	- 0. 3	-0.3	0.7	1.4	3.2	3.7	4.0	2.7		1 - 5 c		-19.1	6.9	5.1 2	3.1							۲ -		1.7	2.4			CH CH	
70.0		L 2		-0.5	Ø.5	0.7	Ø.Ø	1.1	-0.8	0.2	0. 5 0	0.1	-0.9	Ø.3	0.7	1.2	3.6	6. С	4.0			9 5 4 (ы. С	6.81	ю. 9	1.7							•	+ 4	1.6	2.1		CATION	ANECH	
60.0		с ю -		-04.3	-0.0	-06.3	- Ø. 8	-0.2	-0.6	. 0. 1	- Ø. 8	-1.3	-1.0	-0.0	0.7	-0.5	2.2	3.5	2	. u 0 0	ן פפ חני		2.5	- Ø - 3	2.2	2.1							ר צ		1.2	1.5		-	C41	•
50.0		0 2	n - R	-1.3	-1.3	-1.3	-0.5	-0.2	- 0. 7	-1.0	-0.8	-0.8	-1.0	0.2	Ø.5	-0.0	2.5	2.7	а с) (-	- 7 - 7	 	0.01-	-1.6	1.2								ن ک	оч • -		1.5				
40.0		0 0	2	-1.8	-2.5	-1.5	1.8	-1.0			-2.0	-1.0	- 0.8	-0%.5	-00.5	-1.3	1.5	2.2	4	ם א פיני פיני	2 C	9 9 9	5.91-	- 3. 1 -	Ø.2								د ۲	ο α α	0.8 0.8	0.7				
	FREQ			63	8.0	100	125	160	200	250	315	4.0.0	500	630	8,0,0	1000	125.0	19191 4(25.00		01010	4.0.0.0	5000	6300	8,0,0,0 1,0,0,0,0	12500	16000	200000 250000	31500	4 0 0 0 0 5 0 0 0 0	6 3 10 10 10 8 10 10 10		DASPL	PNLT	DBA				

TEST CASE FOR TREATED EJECTOR TEØ2 VS TEØ5

Ø3/Ø7/86 9.986 PAGE 3

DELTA, SPL(1) - SPL(2)

IDENTIFICATION

INPUT (1) 83F-400-2010 X20105 (2) 83F-400-5010 X50105

OUTPUT TOF TE2-TE5 XØ2Ø51

ANGLES MEASURED FROM INLET, DEGREES

INd	رو 8.1	Ø.8	0.4	-0.9	-0.8	0.1	0.0	-0%.4	-01.5	2.0-	2 4	2 2	- C Q I	າ. ຊ.		1.6	1.2	- Ø.4	- 0.3	ц С І	2 0 2 0	20	₽	21		ۍ. ک														
ے د	1.9	1.0	1.2	1.3	Ø.9	Ø.8	1.3	6.9	0, 8	β	9 0 9 - 6	2 F	. o . o	א פ יי	אי אי	1.2	1.5	6.1	0.5		- X 	9 C	• • •	a . 7		LE 19														
2VA	9 M 2 Q 1	-01.2	-03.6	-1.0	-0.9	-0.2	-0.3	- Ø.6	10,10		2	2 8 2 8	20	n.	1.2	1.6	1.0	-1.1	- Ø. 3	1	2	4 - 2 0	9.9 4.0	1.01	~ · ·	. C . M														
160.0	1.0	1.3	1.5	Ø.5	0.7	1.7	1.6	1.3	0.7	. ~ . ~		- C 2 0	9 C	 	0 4	0.4	-0.0	-3.0	-01.01	- 0 -		1.4											•		1.0	0.7	Ø.6			
150.0	1.8	1.7	1.7	1.3	Ø.8	1.2	2.5	Ø. 8	- 0 -		9 9 9 1		- 9 1	ы. 4.	ю. 3	0.4	-1.5	-2.9	- Ø -	α α	200		1.4											ا	0.2	Ø.2	0.1		XX T	L LB
140.0	-0.2	Ø.5	-0.5	-2.2	-1.0	-0.6	0.0	-0,5	או פיק ו	2		- C - C - C	א א ט ע		1.01-	-0.4	-03.7	-4.0	- 1 0		- C 2 -	1 1 1	/ . <i>R</i>	1.2									4	ם. מ וו	-0(.9	0.1	-1.0	0000		9.1E 31
130.0	Ø.3	10.5	-1.7	-2.4	-1.8	0.1	0.4	- 9.2	1 C 1 C 1 C	20	- 2 - 2	- 2 2 2	ы. 9	י א י א	1.5	1.3	0.0	-2.8	2	ס ז א פי		4.	1.1	2.3	3.0								•	-10.4	-0.2	-Ø.2	Ø.3	4	ž,	(PM - 2
120.0	- 0. 7	-1.0	- 01.7	-2.8	-1.5	Ø. 1	- 0	0	20.01	20	20	0 2 2 1	ы. Э	1.0	0.4	-0.1	-06.8	+ 3 . 2	ια 191	2 C		ю. У У	9.9	0.4	1.9								;	-10.6	-Ø.8	-1.3	-0.4			E 31 R
1100.00	- 7 . 0	-1.0	-1.3	-1.3	-2.0	- 0, -	2	- 20-	28	- c 2 č	9. 9.	7.1	. I	1.7	2.4	2.2	2.3	Ø.9	20	5 (5 (Г. И	3.0	2.9	3.8								:	8.B	Ø.9	Ø.9	1.6	•	e,	- 20 - 1
100.0	- 0. 2	9. T	0.0	Ø. 5	-1.0	0.1	9	20		2	4 • •	Ч	8.7	1.5	Ø.9	2.3	2.3	Ø. 3) - 2 -		ю. 4. 2	- 10 - 1	1.6	1.7	2.2									0.7	0.4	0.4	1.1			LET SL
9. Ø. Ø	- 1 - ~		6.1-	6.1-	۰ I -	- 0 -	σ 		1 L • •	- C - I I		רי יי יי	- 18 - 1	0.0	1.5	2.0	1.0	۲ ۱	0.01	20	9.	-1.3	-1.6	-1.1	-Ø.5	Ø.5								-06.3	-0.9	-1.4	Ø.1		Lance	2400.6
80.0	2 8 1	20.00			0.0	5 G 5 G	ים פפ ו	ש ר ק ק		ים פים ו	/ · · · ·	4.1.	-0.7	1.3	1.8	3.2	1.0	1 0 1	20	5 G 2 G	9. N	0.5	-0.4	Ø.6	1.8									0.4	-0.0	-0.0	Ø.9		-	Ľ.
70.0	с ю.	9 1 9 1 9 1	1 2 2 2 2 2 1	, , , , , , , , , , , , , , , , , , ,	2 G 1 1		- c 		4 U	0.0	9.9 	-10.6	-0.5	-1.0	1.3	2.6	2.8) (2 2	4 ·	-1.1	-0.4	-1.6	-2.5	Ø.6									ø.5	0.1	-0.5	Ø.9			ANECH
60.0		+ 2 G	- 0 -	 		9 C	20	0 C 9 -		.1.	-1./	- 0. 7	-1.2	- 03.7	2.0	2,3	8	- (- (+ • 2 č	1.9	- 0.3	0.7	0.7	-1.5	1.6									0.6	Ø.5	- 0.2	1.2		-	C41
50.0		+ 0) - - -	t <	* ~	- + 	- u 	0 0 - 0 - 0	2.2	N . 	-1.0	-1.5	-0.9	-0.8	2.3	8	α		0. Q	1.8-	-0.0	-0.5	-0.0	-2.1	1.6									Ø.2	Ø. 2	-0.6	1.0			
40.0	ر م	0 C 0 C	20		9 0 	2 F - 2	1.01-		1.1	-1.5	-0.7	Ø.5	Ø.5	Ø.2	2.2	یں ا ا		+ c • •	יי יי יי	N . 1	-0.0	-0.3	-0.5	-2.6										Ø.5	0.7	0.7	1.2			
	FREQ	ອຸດ	0 0 0 0	2021	1 2 6		1 0 10 1	200	pr q Z	315	400	500	63.00	800	1 0 0 0	1250	10.00		0 0 0 7	25 <i>00</i>	31500	4000	5000	6300	8000	10000	12500	16000	20000	31500	4 <i>0000</i> 50000	63000	~~~~~	NASPI		PNI T	DBA			

TEST CASE FOR TREATED EJECTOR TEZZ VS TEZS

IDENTIFICATION

X20035 X90035	
83F-ZER-2003 83F-ZER-9003	
(1)	
NPUT	

OUTPUT CBS TE2-TE9 X#2#91

ANGLES MEASURED FROM INLET, DEGREES

S 	
▲ Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø	
1 2 2 2 2 2 2 2 2 2 2 2 2 2	- 2 2 2 2
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	А
	-8.4 -8.9 8.2 -1.1 AVG CO THRUS .1E 31
	PM - 8
	- Ø. 1 Ø. 4 Ø. 4 Ø. Ø SPEED E 31 R
	н н н н н н н н н н н н н н
	1.3 2.5 2.5 2.5 2.5 2.5 C RANG FT SL
。 。 。 。 。 。 。 。 。 。 。 。 。 。	Ø.8 1.8 1.8 1.8 1.9 1.9 2400.0 2400.0
80 ダ、ダダダダーダーダダダダーーころうろすすうろう50 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	CH 22.74
	Ø.8 1.6 1.7 ANECH
「」」」」」」」」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」 「」」 「」」 「」」 「」」 「」」 こ 「」」 「」」	6.5 1.7 1.4 C410
5 「「「」」」」」」」」 ダ ーダーダダーーーダーーダダーダーター ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	- ダダダ
4 ・・・・ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	- 8 8 8 8 8 . 5 8 . 5
Т 104 104 104 104 105 105 105 105 105 105 105 105	63888 888888 045PL 045PL PNL 7 08A 08A

403

TEST CASE FOR TREATED EJECTOR TE&2 VS TEØ9

Ø3/Ø7/86 1Ø.Ø8Ø PAGE 3

DELTA, SPL(1) - SPL(2)

IDENTIFICATION

INPUT (1) 83F-ZER-2005 X20055 (2) 83F-ZER-9005 X90055

OUTPUT ITS TE2-TE9 XØ2Ø91

ANGLES MEASURED FROM INLET, DEGREES

	FREQ	1915	200	200	1 0.0	100		2020	2010	8 G 7	315	400	500	630	800	IRAR	125.00	1 1 1 1 1 1		0 0 0 0 0 7	2500	3150	4000	5000	6300	8000	1,00,00	125000	16000	20000	31500	4 <i>66666</i> 5 <i>8666</i>	63ØØØ 8998Ø	~~~~	OASPL	P N I	T IN d	DBA				
40.0	2	-1.0	-1-2		10.1	200	ם פי ו	0 0 1 0 1	20	0.2 2 1	9.9	- Ø - 3	-00.5	-06.3	Ø.2	Ø.5	ں ج	0.0		• • • •	2.2	1.3	Ø.6	1.6	2.4										0.0	1.6	1.6	0.9 0				
50.0	2	-1.2	- 0 - 2	ی ا	- 0, 5	- 0, 8	1 1 1	2 C 1 - 1	9	2 C - 2 - 2	י א קי ו	-2.8	-1.0	-1.3	-0.3	Ø.3	1,3	1.8		, c	2.2	Ø.8	0.7	Ø.7	1.6									I	-0.5	0.9	Ø.9	0.3				
60.0		Ø.8	Ø.5	1.0	9.0-	Ø.5	- 0. 0	- 0. 3	9 9 1 9	2.0	ດ ຊຸເ ເ		- 19 -	-06.8	1.0	1.5	2.0	3.1		о и о с		9.2 7	3.8	2.4	2.6									1	Ø.6	1.9	1.9	1.5			ָר וּ	C41
78.8		-06.1	-0.1	0.4	Ø.3	Ø. 3	- 0 -	- 0, 1	2	, c , c	9 9 0 1	0.9 1	2.8-	-13.7	ø.9	1.7	2.0	2.5	, C	2 •	* •	- L - X	ດ. ຊີ	0.4	1.7	3.2								L 2	C. 9	1.2	1.2	1.3			DCATION	ANECH (
80.0		1.0	1.0	0.0	0.7	1.2	1.0	1.2	5	2 2	20	20	9.9 9.9	1.0	1.5	1.8	2.3	3.1	4.4		- (- (, . , .	7.7	н. В.	3.2	5.2								•	ν. 1	2.6	2.6	2.2			-	E
9.0.0		-06.2	Ø.5	-0.7	-10.3	-06.3	Ø.5	-06.8	9.0-	201	9 9 9	2 1 2	0 9 9	- 10 - 12 2 - 12	-03.03-	Ø.3	1.8	2.6	2.4	4	1 G	0 2	» -	י ג אי ו	8 .2	1.2								ר ז	າ ເ	1.2	1.2	1.1				2400.0
1.00.0		0.0	Ø.5	Ø.8	0.5	Ø.2	-0.0	0.2	1.2	ה ו סי			- C 2 C	2.0	1.10	1.3	2.8	3.1	2.9	3.4		2 c 2 c			ים. יים	4./								ъ -	2.1	2.10	2.0	1.8				1
110.01		1.3	1.3	Ø.8	-Ø.Ø	Ø.5	0.7	0.2	-06.3	<u>е</u>		9 0 1 r	20	a . a . i	21		1.3	1.1	2.4	2,9	ם ייי ייי			0 L	4 r V (υ. α								г 2	2	4.1	1.4	1.1		ح ۱	- 2 1	T • 02
120.01	1	- 0 - 5	Ø.5	Ø.5	-0.3	-06.3	-1.0	ø.5	-0.5	-0.5	- 0. 0	ן פע נו	200	9 9 9 1	ני 1 1	У	c. 9/-	Ø.3	Ø.6	1.0	~	Ч	2 - 2 -		ە ر 1 ر	o. 7								с 1 0 -		и. 1.	N. 1	-0.1		VG COR	STEEU C 21 D	- 10 - 1
130.01	1	-19.2	1.0	- 0. 5	0.2	- Ø. 5	-0.3	Ø.2	Ø.2	-06.3	10.1	, c , c , c	, 6 , 6 , 6	5	1 2 2 2 2	а. х	9. 19 19	Ø.6	-0.1	-1.0	Ø. A	2	у с У п	יים פיס	1.0									- 01 -	- C - C - C	20.20	7.19-	-0.1	1	×	D M U	₹
40.01	L 2	ы. С.	1.3	1.0	1.0	8.7	1.5	ß.7	0.7	Ø.2	1.2	100	, .	5 C	9 1 9 2 1	/ · Ø -		4.	-1.1	-1.8	-1.7	. C . C . I) 	• •	c·1-									0		9 X	ы. У.У	-13.4	00 0111			· · L C ·
50.01	د د	8. 9.	1.8	1.3	1.10	1.0	Ø.2	-06.3	1.5	Ø.2	Ø.5	0.7	, 2 1 U	2 C	9 0 1 0	1 L 2 Z	8.	ы. С.	1.1-	-0.3	-0.2	100	- 0											1		0 U 2 C	0.3 2	Ю.4		ž⊦	- a	ŗ
60.0	2	2 2 2	1.0	1.8	1./	1.8	<u></u> В.5	1.0	1.0	1.2	Ø.2	1.0	1.0	2.1	2. Z	2.2	9.2 2	а. Э	Ø.3	-0.1	Ø.5	Ø.6	2											1.0	2 C		• • •	ы. С				
	AVG AVG	u u	ر م م	ы. Э.	ي م	ы. Х	1. I	Ø.1	Ø.3	Ø.1	-0.1	- 0 -	- 01 - 1		1 U 2 C	2.5	9 L		1.8	1.5	1.3	0.7	-		• α • α																	
	. n.	2 2 2 2	ם קים קים	2.0 2.0	ם י פים	а. С	8.8	<u>й. /</u>	8.7	Ø.6	0.7	Ø.6	Ø. 7	. u 2 0	0 0 0 0 0 0	2 - 2 -	J L 		г. а	1.8	1.5	1.5	1.4			•																
	L A A	0 C 2 -	າ ເ	0 0 0 0	2 C		2.2		9.4	Ø.1	Ø.1	-0.1	- 0.1		9 9 1 0	0 0 0 0	2 r	•••	α -	2.0	1.9	1.1	1.6	-	• • • •	5.4 •																

16214ES/FSUK35/UELIA

DELTA, SPL(1) - SPL(2)

IDENTIFICATION

X 2 <i>00</i> 95 X 90095	XØ2Ø91
83F-ZER-2009 83F-ZER-9009	TOS TE2-TE9
(1)	
INPUT	ουτρυτ

OUTPUT

ANGLES MEASURED FROM INLET, DEGREES

PVL	8.8	Ø.6	Ø.6	1.0	1.1	1.0	1.1	1.1	1.1	0	2 6	2 2	2	2	20	2	20	20	2 C	2		8.8 8.0	ы. У.	1.1	C · 7														
S.D.	Ø.5	Ø.8	B.7	8.7	1.0	1.0	B.7	Ø.5	0,6	е П	200	2 - 2				2 -		1.1	5 A	2 C	Я	1.1	1./	1.5															
AVG	0.2	0.4	Ø.7	Ø.9	1.5	1.3	1.1	1.2	~	9.10	2 2	2 -	• • •	• •			2 C	9 C 9 C	9 9 1 0	8 0 0	ы. У	0.4	1.1	1.4															
168.8	ø.5	Ø.Ø	Ø.5	1.7	1.5	1.7	1.7	1	2.1		9 G		9 9 1 9 1 9	9 0 9 0				 9 2	1.01	- · ·	Ø.4											1	1.2	1.2	1.2.				
150.0	-0.5	Ø.5	Ø.Ø	0.2	1.0	0.2	- 0. 0	2 2	0 1 1 1	2.0	9 9 1 1 1		a. a.	9 0 9	2 2 2	9 9 9	- i v	י פ ו	9.1. 1	<i>В</i> .8	Ŋ.4	1.3										с 2	2. N	. I 0	0.2		OKK	1' LB	
140.0	Ø.3	1.3	2.0	2.2		- C	10	ט נ	9 9 - 0		- L - 2	0 0 9 -	1.10	9 0 - 7	2 2 2	1.1 1	52 - C	0.4	0.4	2.1	1.2	1.6	1.0										 	2.5	1.2		AVG C	8.1E 3	
13.0.0	Ø.3	1.0	0.3	- 0, 0 - 0, 0	2	1 0 0 1	5 5		5.	a c - 2	22	- X - X	9.9 9	20	<i>ו</i> מי	7.19	B .3	- 0.4	-0.5	-0.4	-06.2	- 0. 5	-0.8	-0.1								L 2	9 9 9 9	9 G 9 C	0.4	i	¥.	KPM -1	
20.01	Ø.3	0	2	ດ ເຊິ່ງ ເຊິ່ງ		ן פפ וע		5 L	9 r 	1.1		פן ני ני	8.5 C	19 .2	E - 9	Ø.3	-03.2	-0.9	-0.6	- 0.4	-1.0	-1.1	- Ø.4	0.1								1	9.9 8	4 4 9 6	9.4			E 31 F	
10.01	1.3) (* -	ים 					Q r - 2	2	ן. ני	0.1	1.1	6 . 2	8.5 9		1.0	ø.3	0.1	1.2	1.3	1.2	6.0	1.7	3.3								1	1.0	ο α α	9 8 8		∢	г -Ø.1	
80.01	0 0	, - , - , -	, c	, r	- C	- u 	∩ ⊔ 		2	1./	0.7	ю. Э	0.7	0.7	Ø.8	1.3	2.1	1.4	1.4	Ø.5	- 0 - 1	9.8	1.7	1.7										1.1	1.1		0	ET SL	
9.0.0	r Ø	2 0 2 0	ייר פיפ		2	2	8 . - X	8. 0 0	2.9	0.5	Ø.2	-06.3	Ø.2	Ø.2	0.0	1.5	2.1	0.1	Ø.2	-1.2	- Ø. B	-1.7		- 0.8									Ø.5	9	ю. 6.0	1 - 2		COUST 10	S TEØ9
80.0	4	20	2.	η - -	9. 1. 1.	9 0	2.2	2 · 10	1.2	1.5	1.0	1.2	1.2	2.2	3.0	3.3	2.1	1.1	6.0	1.5	0	2 -		. e . e	I								1.8		1.5 1.0	2		► CH	TEØ2 V
7.0.0	2	2 C	20.2	19. 19	۰. ۱. ۲	N.N.	1.8	1.0	1.3	1.0	Ø.5	6.0	Ø.8	2.8	3.2	1.5	- 0. 8	-1.4	- 0 - 0	201	, - , - , -		- 2 - 2 - 1 C	- 1.2									1.0	- Ø . 1	9.6			CATION	ECTOR
60.0	2	9.9 9	ы. 	с С С	1.10	2.2	2.7	1.2	1.0	0.7	0.7	1.0	2.2	3.7	2.8	9.8	0	6.0	N N	, α . α	2 -		9 C		•								1.5	6.9		t •		C41 C41	TED EJ
50.0	1 2	וא מיוי מיוי	-10.7	- 0. 2	Ø.5	3.0	1.0	-06.3	1.7	Ø.5	0.7	Ø.5	3.2	2.7	2.0	8			• •	0 t - 6 - 1	3.5	9.0 - 0	ກ (ຊຸ (л. Г									1.4	1.3	1.9	- 1			R TREA
4.0.0	•	- 0 - 2	-1.2	Ø.3	Ø.2	3.0	1.7	1.0	2.2	ی 	0		A . D	2		י נ ז נ	1 c	, c , c	, c , + , +		9.0 0.0	י פ י פ	1.1	ы. Ю									2.0	2.2		G.7			CASE FO
	FREQ	50	63	8,0	1.00	125	160	200	250	2 2 2 2 2 2 2 2	1 2 2	200	200	2000	1 2 2 2				2000	8867	arc T S	4,0,0,0	5000	6300	00000	12500	16000	200000	31500	4 <i>0000</i> 50000	63000	<i>a a a a</i> a a	OASPL	PNL	PNLT	DBA			TEST

e PAGE 0.80. 1.0 03/07/86

DELTA, SPL(1) - SPL(2)

IDENTIFICATION

X2*00*45 X9*00*45 XØ2Ø91 83F - 400-2004 83F - 400-9004 TE2-TE9 CBF (1) OUTPUT NPUT

INLET, DEGREES ANGLES MEASURED FROM

1.33 ø 16.0 -. 8. 8. -. 150.0 AVG CORR THRUST 7.1E 31'LB NNNM و و و ... 140.0 0000 8-4.0.08. 130.0 AVG CORR SPEED .1E 31 RPM Ø.9 1.8 1.7 1.6 120.0 п. 0.00 110.0 8 NNNN ACOUSTIC RANGE 2400.0 FT SL 1.00.0 NNNN VS TEØ9 8 G G L ю. NNN 98 6.004 6.004 8 8.0 LOCATION C41 ANECH CH 0.000 4.000 4.000 Ø」」」」このターー」のののないすするするろろしこ。 80247940148140505040000400040000 8 7.8 3 4 3 2 4 3 4 3 6 4 8 6.0 ю. 000--NNN 5.0 8.3 1.5 1.3 9 0 OASPL PNL PNLT DBA

TEST CASE FOR TREATED EJECTOR TE02

ო PAGE 1.0.080 • 83/87/86

DELTA, SPL(1) - SPL(2)

IDENTIFICATION

X2*0*065 X90065 (1) 83F-400-2006 (2) 83F-400-9006 INPUT

XØ2Ø91 ITF TE2-TE9 OUTPUT

ANGLES MEASURED FROM INLET, DEGREES

	PVL	Ø.6	ø.3	ø .2	Ø.2	-06.1	0.2	0.0	8.8	-0.1	-0.3	-0.4	-0.1	0.2	Ø.1	1.4	σ -	-	- 0	7.7	2.5	1.6	Ø.9	2.4	4.5	6.6															
	s.p.	1.1	1.0	Ø.9	6.9	Ø.9	Ø.9	Ø.8	Ø.8	Ø.9	Ø.7	Ø.7	Ø.8	1.0	1.4	1.4	-		J I • •	с. <u>1</u>	1.3	2.0	3.8	2.3	1.6																
	AVG	Ø.2	Ø.1	Ø.2	ø.1	0.0	Ø.2	0.0	-06.2	-0.2	-10.4	-0.6	-Ø.2	Ø.Ø	-0.3	1.3		-	- ı - (c .7	2.9	2.6	1.6	2.8	4.5																
160.0	1	1.0	8 .2	0.7	0.7	0.1	Ø.5	-0.0	Ø.3	-0.5	-06.2	-06.5	-00.5	Ø.1	-1.2	<u>м</u> Э	2 2 2 2) - 2 - 1	t L - (ς.γ	о. С	4.9												Ø. A	2	9 9 1 0	1 5 7 1 0	2			
150.0	1	Ø.5	0.2	-0.8	-Ø.Ø	-1.4	-1.5	-Ø.1	-Ø.8	-1.7	-2.8	-1.5	-1.3	-1.5	-1.9	ر 1) 2 1		• •	N. 4	3.2	5.4	4.7											2 . N -		2 2 7 7 7 7	2 - - -		RR	F	LB
140.0	:	Ø.2	Ø.2	Ø.2	-0.0	-0.1	-0.5	Ø.1	- Ø. 1	Ø.5	- 18.7	- 06.7	- Ø.4	-0.0	-06.7	- 0, -	2	- 1 - 1 - 1	- - -	1.2	3.4	а. 8. 8	4.4	3.2										- 0	2	2	- C 2 G 1		AVG CO	THRUS	1.1E 31
130.0		1.7	1.2	Ø.7	1.0	ø.5	1.5	1.3	1.6	Ø.6	0.9	1.1	1.5	1.5	Ø.6	2.0			2.	4 · b	4.9	5.7	6.0	6.3										6.1		• •	1- 10		~		PM - 29
120.0	;	ø .2	- 04.3	-06.3	-06.3	-0.4	0.0	-0.6	-0.6	-06.3	-01.8	-0.9	-0.4	- 0.7	-0.6	Ø	20	2 2 2 1	20	х. ч	1.5	2.4	2.9	3.6	5.2	 								- 0.4	2	2 2 1 0	1 9 1 1 1 1	2	VG COR	SPEED	E 31 R
110.0	:	0.7	Ø.7	0.7	-0.5	Ø.5	1.1	0.0	-06.3	-0.2	-00.4	0.0	-06.5	Ø.2	Ø.3	с. -		2	•	1.1	3.7	3.1	3.1	4.4	5.6	 								Ø. A		9.6	- 2		A	ш	-81.1
100.0		1.5	ø.5	8.7	1.0	ø.5	0.0	Ø.5	0.1	0.7	-Ø.1	-0.1	Ø.6	1.3	1.6	1.7	. U . (*)		, c	2.7	а. З	1.7	2.7	5.0	5.7									A L				2.1		C RANG	FT SL
90.06	:	-0.5	-04.8	- Ø. 3	-1.3	-0.5	-06.3	-1.8	-04.5	-Ø.5	-1.8	-Ø.8	-06.8	-0.0	0.2	2.0	ο 		- (9.2	Ø.8	0.0	-0.6	-0.1	2.6	 								Ø. A	2 G	9 0 9 0	2 - 2 -	2.1		COUSTI	24000.00
80.0		1.3	1.6	1.5	1.0	1.9	Ø.8	1.0	0.7	1.0	Ø.5	-0.0	1.0	1.4	2.7	A. O	2		- (- (+ ·	4 .b	3.6 3	1.9	2.4	4.4	6.6	L 								~ ~	- 1 - 1		- 6 - - -	a		•	СH
70.0		-1.2	ø.3	Ø.9	Ø.9	1.0	1.6	-0.0	-06.1	Ø.3	0.4	-0.6	-0.2	0.2	-0.1	8) 1 (*			Z.1	2.2	1.7	-1.1	1.0	2.7									-	- - 10		•••			CATION	ANECH
60.0	;	-06.9	-00.4	Ø.2	Ø.3	-Ø.Ø	Ø.4	Ø.8	-0.0	-00.01	-0.0	-0.8	0.2	0.2	-00.5	С	, c	- r - - c	~ I	1./	3.6	2.6	1.2	3.1	() () ()) • •								-	4 6 • C		1.1 1.1	0.1		L0	C41
50.0		-0.8	-03.9	-0.1	-0.9	-0.3	-0.1	-06.3	-1.0	-04.5	-0.5	-1.3	-0.5	-0.8	-1.1		• •	1 c	1 1 1	Ø.6	2.6	Ø.6	-2.3	0, 3 0	•									6		7 • 7 7 • 7	- r - 8	1.0			
40.0		-1.5	-2.1	-2.2	-1.3	-1.5	-10.3	-0.9	-1.8	-2.0	-01.8	-1.5	-1.5	-1.5	-2,8	ι α Ι α	8 	2.	4 ·	- 10.6	0.4	- Ø.4	-4.0	-0,6	2									-1 a				0.0/-			
	FREQ	5.0	63	8.0	1.00.00	125	16.0	2,00,0	250	315	400	500	63.0	8.00	1000 4()7			2000	25000	3150	4000	5000	6300	BRAD	10000	12500	16000	20000	21500	40000	00000 030000	80000					UBA			

TEST CASE FOR TREATED EJECTOR TE#2 VS TE#9

C47

IDENTIFICATION

X2Ø1Ø5 X9Ø1Ø5 (1) 83F-400-2010 (2) 83F-400-9010 INPUT

XØ2Ø91 TOF TE2-TE9 OUTPUT

ANGLES MEASURED FROM INLET, DEGREES

0 100 0 110 0 120 0 130 0 140 0 150 0 160 0 0 5 20 2 2

			, v		9 Z	ē,	•		<u>ہ</u>	و	۲.	8.	ο σ	ה א י	2 C	?'	و.	٩	9.	Ţ	ru •	• •	o d	2		ۍ ۲																
(→ -	→ -		- 1.	2	23	<i>1</i> 2	2	Ø	8	0	2 9	، ۲		-1	-		∾.	-	•	- 2	Q •			1																
0	٩ ٩ ٩	7. 	- · ·		- ×	ית פי	-	ы. 5	Ø.5	ø.6	0.7	Ø.9	2 -	• ⊔ • •			3.0	د. 9	1.0	2	20	2 C	8.	4	1.6	3.4																
A • A D ·	c è	2 2 2 2	8. 8.1	8 2 2	υς Ο Γ	<i>.</i>	4	1.4	6.0	1.2	2.4	2.6	20 20	, c 7 n		7.7	2.2	1.8	-1.6	2	201		ю. G												Ø.8	1.5	1.5	г. <u>ч</u>				
- a.a.	c c	ν 	4.	4. 0.0	ם. יים	9.	4.	6.9	-0.5	Ø.3	1.2	с. -		2 L			1.2	1.1	-1.9	201	20	01 Q	л. Я	1.0											3.0	1.6	1.6	1.1	RR	°,	1	
1 + 20 - 20		1.2	N C	1.2	2.0		2.0	Ø.8	-0.1	Ø.9	Ø.2	с С) - -	+ C 		1.4	1.9	1.5	-2.4	- 0 -	5 - C	· · · · · ·	1.0	1.9	3.4										Ø.9	Ø.9	6.1	1.0	AVG CO	THRUS		
a.ac1	2 (9 .2		ю. В	1.0	7.9	1.1	1.3	1.2	Ø.6	1.0	8				2.1	2.8	1.8	-2.0	2 - - 6	2 - 1 (с. 9 С	1.9	2.5	3.2									1.2	1.2	1.2	1.6	ы	N d	2	
1 6 10 - 10	2	ю. 8.9	Ø.8	ю. 9	8.8	- 0. 5	1.2	-0.0	Ø.2	Ø.6	0.4	0	. c	9 0 0 0	ю. Я	1.0	0.4	0.1	-1.8		- (0. 	1.0-	1.0	2.8	4.1									Ø.4	Ø.1	Ø. 1	0.4	VG COR	SPEED F 31 R	-	
1.1.0.10	2	- 10 -	Ø.4	ø.6	2	ю. 9	-0.2	1.2	ø.6	1.6	1.3			· ·		2.6	2.4	2.9	2.4	5 0 1	2 (7.1	ы. Г	2.9	з . 9	5.4									1.6	1.9	1.9	2.1	4	- - -		
0.0001	•	4.	1.3	2.1	Z . I	1.3	6.9	1.2	1.4	0.7	2	, 2 , 2		- · ~	20.5	Ø.6	2.1	3.0	~	1 C	20	4.0	-10.10	1.8	2.9	4.6									1.2	1.5	1.5	1.5		C RANG		
30.02	1	0.4	Ø.6	- 0	6 .3	Ø.1	0.8	-00.4	-06.2	-0.5	- 0 -	, 9 9 1 1 1	0 0 1	ດ . ຊ	2.0	1.7	3.0	2.7	0	20	0. 2	- 10.4	- Ø. 5	-0.6	g.9	6.									Ø.8	Ø.6	Ø.6	1.3		COUSTI	a. aa+7	'S TEØ9
8.0.8	;	2.0	1.4	1.1	1.7	2.9	2.1	1.9	1.1	1.5			n 8 9	<i>a</i> .1	2.2	4.0	5.2	4.7		 	1.7 1.7	1.5	1.8	1.6	2.2	1.1	1 1 1								2.8	2.4	2.4	3.4		< 	5	ΤΕØ2 V
9.91	:	ø.3	-13.10	ø.9	1.3	1.4	2.0	0.7	Ø.6	0.7	ž	20	4.0	9.4	Ø.3	2.6	4.7	L V			ю. Р	0.1	-06.2	Ø.1	- 0. 4	2 N) • 4								2.0	1.4	0.7	2.5		CATION	ANECH	ECTOR
60.0		1.2	Ø.9	1.1	1.3	Ø.8	Ø.8	1.1	Ø.3	- 10 - 10 - 11	2 C 2 C 1	2 C 2 C	2. 2	Ø.3	0.7	4.C	4.8	Ч	5 C		1.5	1 0	ю. Э	2.5	2) • •								2,3	2.2	1.5	3.1		Lo Lo	C41	TED EJ
50.0		1.3	Ø.6	1.4	0.7	0.4	1.0	1.6	- 61 . 61	α α	20	0 0 9 •	1.0	2 .2	а.1	5.0	ц С	1 U • •) -	4	2.7	2.3	-Ø.6	0, 7	- u - i										ر م	1 m	3.1 	3.9				R TREA
40.0		Ø.9	Ø.6	Ø.3	0.0	Ø.9	1.2	0.0	2		, c	- 1 Q	1.7	2.3	3.4	3.5	10		4	4.0	3.6	3.4	-0.4	2 0	, 1 1	2.1										10	2.1	3.5				CASE FO
	FREQ	5.0	63	8,0	100	125	160	200	25.0	и 2 2 2 1 2 1 2	201	40.0	5.0.0	63.0	8,00,0	1 0 0 0	1250		<i>a a a c</i>	8882	25 <i>00</i>	3150	4000	5 a a a			10000	125.00	15000	2.00000 25.0000	21500	40000	5.0000 630000	8,00,00,0	10.000		PNLT	DBA				TEST C
																		4	٦۶	2																				E	E-:	3134

0000----NN10

1. Report No. NASA CR-4019	2. Government Accession	No. 3.	3. Recipient's Catalog No.							
4. Title and Subtitle		5.	5. Report Date							
Simulated Flight Acoustic	Investigation of	Treated	November 1986							
Ejector Effectiveness on A Suppressors for High Veloc	Advanced Mechanica city Jet Noise Red	uction 6	6. Performing Organization Code							
7. Author(s)		8	Performing Organizatio	n Report No.						
J.F. Brausch, R.E. Motsing	ger, and D.J. Hoer	st	R85AEB518	(E-3134)						
		10	Work Unit No.							
0. Performing Oppositely Name and Address	····		505-62-3A							
9. Performing Organization Name and Address		11.	11. Contract or Grant No.							
Aircraft Engine Business (Group		NAS3-23275							
Cincinnati, Ohio 45215-63	301	13.	Type of Report and Per	iod Covered						
12. Sponsoring Agency Name and Address			Contractor Report							
National Aeronautics and S	Space Administrati	on 14	14. Sponsoring Agency Code							
Lewis Research Center Cleveland, Ohio 44135										
15. Supplementary Notes										
16. Abstract										
Ten scale-model nozzles were tes teristics of a mechanically supp treated ejector system. The noz previous (NAS3-23038) contract, formance requirements of an Adva mission phases. Acoustic data o lated flight conditions. The te coannular nozzle with 20-chute o application to ejector and plug photograph and aerodynamic stati to yield diagnostic information of the nozzles. Salient results wall ejectors is significantly b application of treatment to plug and broadside acoustic angles an ejector system added 5.5 ΔEPNL s cycle, (d) all ejector systems y with non-ejector systems, (e) ax being both aerodynamically and a evaluated, was not critical to s ejector system was not effective ology to predict ejector/treatme plug surfaces and to improve the ratio. Checks of the improved m the upper end of the frequency r out of the gap between nozzle ex	ted in an anechoic fre ressed inverted-veloci zle system used was de defined to incorporate nced Supersonic Techno f 188 test points were sts investigated varia uter annular suppresso surfaces, and (d) trea c pressure and tempera regarding the flow file from analysis of the eneficial in reduction and ejector surfaces d in the cutback to in uppression to the bass ielded high forward qu ial location of the e coustically superior, uppression, and (g) tr in further reduction nt suppression was ref modal propagation mod odel with the measured ange, a discrepancy od it and ejector inlet,	ee-jet facility to ity-profile coannu- eveloped from aeros bology/Variable Cyc e obtained, 87 unde ables of (a) hardwa or, (b) ejector ax atment design. Las ature measurements eld and aerodynamic measured data inc n of both forward a is additionally en- termediate cycle i eline mechanically uadrant suppression jector is very sign (f) treatment desi reatment application of shock noise. A fined to handle treat del, including effect a flanking path.	evaluate the acou- lar nozzle with an dynamic flow line: mposed by the aero- le Engine system er static and 101 all ejector appli- ial positioning, ser velocimeter, s were acquired on c performance chan lude: (a) applicat ffective, primari range, (c) the op- -suppressed nozzl n, not previously nificant, further ign variation, wi- on to the plug sui atment on both the ects of flow on mu- ed very good corre- bught to stem from	ustic charac- n acoustically s evolved in a odynamic per- through all its under simu- cation to a (c) treatment shadowgraph select models racteristics ion of hard- noise, (b) ly at forward timum treated e at takeoff experienced aft location thin limits rface of a non- tations method- he shroud and ode cut-on- elation. At m noise leakage						
17. Key Words (Suggested by Author(s))	1	8. Distribution Statement	<u> </u>	· <u></u>						
Supersonic jet noise reduc	Supersonic jet noise reduction; Mechani- Unclassified - unlimited									
cally suppressed ejector r Shock cell noise; Variable Treated ejector; Treatment	nozzle noise; e cycle engine; t effectiveness	STAR Category	/1							
19. Security Classif. (of this report) Unclassified	20. Security Classif. (of this pa Unclass	_{ge)} ified	21. No. of pages 413	22. Price* A18						