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SUMMARY

Three basic types of symmetry (and their combinations) exhibited by tire
response are identified. A simple and efficient computational strategy is pre-
sented for reducing both the size of the model and the cost of the analysis of
tires in the presence of symmetry-breaking conditions (e.g., unsymmetry of the tire
material, geometry, and/or loading). The strategy is based on approximation of the
unsymmetric response of the tire with a £inear combination 0§ symmetrnic and anti-
symmetrnic global approximation vectons (or modes).

The three main elements of the computational strategy are as follows: (1) use
of three-field mixed finite-element models having independent shape functions for
stress resultants, strain components, and generalized displacements, with the stress
resultants and the strain components allowed to be discontinuous at interelement
boundaries; (2) use of operator splitting (additive decomposition of some of the
matrices and vectors in the finite-element model) to delineate the symmetric and
antisymmetric contributions to the response; and (3) successive use of the finite-
element method and the classic Rayleigh-Ritz technique to substantially reduce the
number of degrees of freedom. The finite-element method is first used to generate
a few global approximation vectors (or modes). Then the amplitudes of these modes
are computed with the Rayleigh-Ritz technique.

The proposed computational strategy is applied to three gquasi-symmetric prob-
lems of tires, namely, (1) linear analysis of anisotropic tires through use of
semianalyvtic finite elements, (2) nonlinear analysis of anisotropic tires through
use of two-dimensional shell finite elements, and (3) nonlinear analysis of ortho-
tropic tires subjected to unsymmetric loading. In the first two applications, the
anisotropy (nonorthotropy) of the tire is the source of the symmetry breaking; in
the third application, the quasi-symmetry is due to the unsymmetry of the loading.
The effectiveness of the proposed computational strategy is also demonstrated with
numerical examples, and its potential for handling practical tire problems is
outlined.

1 INTRODUCTION

One of the most challenging applications of computational structural mechanics
is the numerical simulation of the response of aircraft tires during taxi, take-off,
and landing operations. In addition to the harsh environment tires are subjected to,
their composite structure is composed of rubber and textile constituents which ex-
hibit anisotropic, nonhomogeneous material properties. (See fig. 1.) Tires are
subjected to inflation pressure and to a variety of unsymmetric mechanical and
thermal loads which can result in large structural rotations and deformations as
well as in variations in the characteristics of the tire constituents. Also, the
laminated carcass of aircraft tires is thick enough to allow significant transverse-
shear deformations. Moreover, the detailed stress and temperature distributions in
tires may require the use of three-dimensional finite elements to model certain
regions of the tire. To date only a few analytical tools have been available to
assist the tire designer. A review of the commonly used models for predicting tire
response is given in references 1 to 3.

The aforementioned difficulties can make the cost of the numerical simulation
of the tire response prohibitive. Hence, there is a need to develop modeling
strategies and analysis methods to reduce this expense. In recent years nonlinear
analyses of static and dynamic problems have become the focus of extensive research



efforts. This endeavor has prompted the development of versatile and powerful finite-
element discretization methods as well as the development of improved numerical
methods and software systems for nonlinear static and dynamic analyses of structures
and solids. Novel techniques which have emerged from these efforts include three-
field mixed finite-element models (refs. 4 and 5), semianalytic finite-element

models for shells of revolution (refs. 6 and 7), techniques for exploiting the
special symmetries exhibited by anisotropic plates and shells in their finite-
element analyses (refs. 8 and 9), single- and multiple-parameter reduction techniques
(refs. 10 to 13), and operator splitting techniques (refs. 14 to 16). Current tire
modeling studies at NASA Langley Research Center are aimed at developing an accurate
and cost-effective computational strategy for predicting tire response. This is
accomplished through combining the aforementioned analysis techniques with a modeling
strateqgy for exploiting the symmetries exhibited by the tire response. In situations
for which the symmetry is broken because of unsymmetry of the tire material, geometry,
or loading (quasi-symmetric problems), the proposed strategy allows the reduction of
the size of the analysis model to that of the corresponding symmetric tire problem.

The objectives of the present paper are the following: (1) to review the dif-
ferent types of symmetry exhibited by the tire response; (2) to present a simple and
efficient computational strategy for the analysis of tires in the presence of
symmetry-breaking conditions; and (3) to discuss the potential ¢f the proposed
computational strategy and its application to practical tire problems. To sharpen
the focus of the study, discussion is limited to tires with elliptic cross sections
and linear material response. The tire is modeled through use of the moderate-
rotation, geometrically nonlinear Sanders-Budiansky shell theory with the effects
of transverse-shear deformation and laminated anisotropic material response included
(refs. 17 and 18). The sign convention for the external loading, generalized dis-
placements, and stress resultants is given in figure 2.

2 SYMMETRIES EXHIBITED BY TIRE RESPONSE

The fundamental definitions of symmetry, symmetry elements, and symmetry
operations are reviewed in reference 19. When applied to tires, the "axiom of
symmetry" introduced in references 19 and 20 becomes the following: given a tire
exhibiting certain types of symmetry and a system of loads which exhibits the same
types of symmetry as those of the tire, the response obtained is expected to exhibit
the same types of symmetry as those inherent in the tire and the loading system.
Herein the symmetry of the tire refers to the symmetry of (1) tire geometry, (2)
lamination and material parameters (e.g., cord orientation and stacking of layers),
and (3) boundary conditions at the rim.

The symmetry of tires is described by giving the set of all operations which
preserve the distance between pairs of points of the tire and which take the tire
into an equivalent configuration (i.e., into a configuration which is indistinguish-
able from the original configuration but not necessarily identical to that
configuration). Any such operation is called a symmetry transformation. The set
of all symmetry transformations forms the symmetry group of the tire (ref. 20).

The three basic types of symmetry frequently exhibited by the tire response
are (1) axial symmetry, (2) rotational symmetry, and (3) reflection symmetry. The
characteristics of these symmetries are examined subsequently.



2.1 Axial Symmetry

A tire is said to exhibit axial symmetry about its axis of revolution (y-axis
in fig. 3) if it can be brought into an equivalent configuration by any rotation
about that axis. Axial symmetry is exhibited by tires whose geometry, material
properties, and boundary conditions are independent of the circumferential coordinate
8 (i.e., the tire is axisymmetric). If the loading is also axisymmetric, then the
response is expected to be axisymmetric. (This excludes the case of unsymmetric
buckling of a tire subjected to axisymmetric loading.) For isotropic and ortho-
tropic tires subjected to axisymmetric loading, the two sets of generalized displace-

ments, strain components, and stress resultants (u, w, ¢s; €

s97 Ngpr 2€g3i and Nggr Mger Qg)
are generally uncoupled. In contradistinction, for anisotropic tires (also sub-
jected to axisymmetric loading) the two sets are coupled. (See fig. 4.) 1In the

presence of axial symmetry only one meridian of the tire needs to be analyzed.
(See fig. 4.)
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2.2 Rotational Symmetry

A tire exhibits rotational symmetry about an axis normal to the axis of revolu-
tion (e.g., x-axis or z-axis in Fig. 3) if a 180° rotation around this axis brings
the tire into an equivalent configuration. Such rotations are referred to as
dihedral rotations, in contradistinction to the axial rotation discussed in
section 2.1. If the external loading exhibits rotational symmetry about the same
axis as the tire, then the response will also exhibit the same symmetry. For con-
venience, the reference (middle) surface of the tire is parametrized by the two
coordinates & and 6. (See fig. 3.) The coordinate £ represents a normalized
arc length distance measured from the crown of the tire, and the coordinate 8 is
the circumferential angle measured from the intersection of the negative z-axis with
the reference surface. The rotational symmetry of the external loading and the
response about an axis normal to the tire through the origin (£ = 6 = 0, the z-axis
in fig. 3) are expressed by the following relations:

External loading:
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{» ! $ (1)
ms —ms

L O G



Generalized displacements:
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where p , Py and p represent the intensities of the loading in the s-, 6-~, and
X -direc%ions to the reference surface and m and me are the intensities of the
applied moments. s

The symmetry relations for the strain components are the same as those for the
corresponding stress resultants. These relations show that for a symmetric loading
(defined by egs. (1)), the generalized displacements u, v, ¢ _, and ¢e, the
transverse-shear stress resultants 0O, and Q,, and the transverse-shear strain
components Zes3 and 2863 vanish at the axis of rotation (§ = 8 = 0).

Rotational symmetry can be exhibited by isotropic, orthotropic, and anisotropic
tires. It is sometimes referred to in the literature as {nversion Symmethy because
of its effect on the (£,9) space. The intersections of the axis of rotational
symmetry with the tire middle surface correspond to the cenfers of symmetry in the
(£,9) space.

An illustration of rotational symmetry for a two-layered tire subjected to
uniform inflation pressure and a localized loading is given in figure 5(a), in

which normalized contour plots for the two displacements v and w are shown.
As can be seen from figure 5(a), only one-half of the tire needs to be analyzed.

2.3 Reflection Symmetry

A tire exhibits reflection (or mirror) symmetry with respect to a.plane (e.g.,



x~z plane in fig. 3) if it can be brought into an equivalent configuration by mirror
reflection in that plane. For reflection symmetry with respect to the plane £ = 0
(fig. 3), the symmetry relations for the tire loading and response are given by the
following:

External loading:

(p ) (=p )
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m

m
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Generalized displacements:
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The symmetry relations for the strain components are the same as those for the
corresponding stress resultants. Reflection symmetry can occur in isotropic and
orthotropic tires but not in anisotropic tires.

2.4 Symmetry Combinations

Combinations of the foregoing three basic types of symmetry are possible in
tire response. These combinations reduce the size of the analysis model and the
associated computational cost beyond what is possible with only one symmetry




transformation. The symmetry combinations can be of the same type or of different
types. The following three examples of symmetry combinations are discussed herein.

2.4.1 Reflection symmetry combined with dihedral rotational symmetry.- This
results in reflection symmetry with respect to two planes, as shown in figure 5(b)
for a two-layered orthotropic tire subjected to uniform inflation pressure and
localized loading. The size of the analysis model is only one quadrant of the tire.

2.4.2 Periodic (or translational) symmetry.- Periodic symmetry is rotational
symmetry around both the x~ and the z-axis (see fig. 3) and is exhibited by the
response of orthotropic and anisotropic tires, for which the tire geometry, material,
boundary conditions, and loading have rotational symmetry around both axes. An
example of periodic symmetry for two-layered orthotropic tires subjected to uniform
inflation pressure and "symmetric" localized loading is given in figure 5(c). The
size of the analysis model is only one octant of the tire.

2.4.3 BAxial symmetry combined with rotational and/or reflection symmetry.- If
" both the tire and the loading possess rotational and/or reflection symmetry in addi-
tion to axial symmetry, then the size of the analysis model reduces to half the
meridian. The symmetry conditions in these cases are listed in table 1.

2.5 Linear Response of Tires Subjected to Unsymmetric Loading

The aforementioned symmetry concepts can be used in predicting the linear re-
sponse of tires subjected to unsymmetric loading. This is accomplished through the
decomposition of the loading into various symmetric and antisymmetric components.
The tire response is then obtained through summation of the responses to each of the
symmetric and antisymmetric loading components. These responses have a priQii
known symmetries (and/or antisymmetries), and therefore only a small portion of the
tire needs to be analyzed in each case, with a consequent large reduction in the
computational effort.

Note that a wiique correspondence exists between the symmetric and antisymmetric
components of the Loading and the cornesponding response components. This is based
on the principle of superposition, which is generally valid only for linear problems.

3 SYMMETRY-BREAKING (QUASI-SYMMETRY) CONDITIONS

Symmetry-breaking, or quasi-symmetry, conditions are used in the present study
for situations in which the tire response cannct be exactly computed as a ginite sum
04 symmetriic and antisymmetric modes. The major sources of symmetry breaking are
unsymmetry of the tire material, geometry, boundary conditions, and loading. 1In
the mechanics literature the term "asymmetry" is often used to denote unsymmetry.
Material anisotropy is a source of reflection unsymmetry. The unsymmetry in geometry
can be caused by the presence of unsymmetric imperfections in the tire. The contact
of the tire with the pavement can be considered as unsymmetric boundary conditions.
Unsymmetric loading is a source of symmetry breaking when the nonlinear tire response
is considered. 1In a practical situation, a combination of the different types of
unsymmetry may exist.

If the unsymmetry of the tire material, geometry, or loading is small, the

unsymmetric tire response can be obtained as a small perturbation from the corre-
sponding symmetric response. As an example of this, for "slightly anisotropic" tires
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the response can be obtained as a small perturbation from the orthotropic response
{see refs. 21 and 22), thereby reducing the size of the analysis model of the aniso-
tropic tire to that of the corresponding orthotropic tire. On the other hand, when
the unsymmetry is large (e.g., for strongly anisotropic tires), the classic pertur-
bation technique does not work. 1In section 4, a computational strategy is presented
for reducing the size of the analysis model for quasi-symmetric problems of tires to
that of the corresponding symmetric problems.

4 PROPOSED COMPUTATIONAL STRATEGY FOR QUASI-SYMMETRIC PROBLEMS

In this section a computational strategy is presented for the efficient analysis
of tires in the presence of symmetry-breaking {(quasi-symmetric) conditions. The
proposed strategy is based on approximating the unsymmetric nesponse of the tire
with a Linean combination of symmetric and antisymmetrnic global approximation vectorns
(or modes). The three main elements of the computational strategy are as follows:

(1) use of three-field mixed models having independent shape functions for stress
resultants, strain components, and generalized displacements, with the stress re-
sultants and strain components allowed to be discontinuous at interelement boundaries;
(2) use of operator splitting (additive decomposition of some of the matrices and
vectors used in the finite-element model) to delineate the symmetric and antisymmetric
contributions to the response; and (3) successive use of the finite-element method
and the classic Rayleigh-Ritz technique to substantially reduce the number of degrees
of freedom. The finite-element method is first used to generate d few global approxi-
mation vectors (or modes). Then the amplitudes of these modes are computed with

the Rayleigh-Ritz technique.

Main elements 2 and 3 are essential for the success of the computational strategy,
and main element 1 significantly enhances the efficiency and effectiveness of the
strategy. In sections 5 to 7 the details of application of the proposed strategy
to the following three quasi~symmetric problems are discussed: linear analysis of
anisotropic tires (subjected to arbitrary loading) through use of semianalytic
finite elements; nonlinear analysis of anisotropic tires through use of two-
dimensional shell finite elements; and nonlinear analysis of orthotropic tires
subjected to unsymmetric loading. In the first two applications the anisotropy
{(nonorthotropy) of the tire is the source of symmetry breaking; in the third appli-
cation, the symmetry breaking is due to the unsymmetry of the loading. Numerical
results are presented in section 8.

The three applications presented in sections 5 to 7 are intended to demonstrate
the use of the proposed computational strategy in analyzing practical tire problems.
Tires with a small number of plies (e.g., two) generally exhibit a high degree of
anisotropy. As the number of plies in the tire increases, the effect of the aniso-
tropic (nonorthotropic) stiffness coefficients on the tire response decreases, and
for 10 or more plies the tire can be treated as orthotropic.

For tires with uniform circumferential properties subjected to pressure load-
ing, the response can be accurately predicted with the linear theory. If the
loading is nonuniform in the circumferential direction, then an efficient analysis
technique can be obtained from a Fourier series representation of the different tire
quantities in the circumferential direction and a one-dimensional finite-element
discretization in the meridional direction. However, for anisotropic tires this
analysis technique can become expensive. The application of the aforementioned
computational strategy significantly reduces the cost of analyzing highly anisotropic
tires, as described in section 5.



When the tires are subjected to a combination of pressure loading and localized
loading (e.g., in the contact region), then the use of two-dimensional shell finite
elements is appropriate. However, this technique can also become quite expensive
for anisotropic tires or for unsymmetric localized loading. The use of the computa-
tional strategy to reduce the cost of the analysis in these cases is discussed in
sections 6 and 7.

The computational strategy is based on a form of the moderate-rotation Sanders-
Budiansky shell theory with the effects of transverse-shear deformation and laminated,
anisotropic material response included. (See refs. 17 and 18 and appendix A.) A
total Lagrangian formulation is used and the fundamental unknowns consist of the
five generalized displacements, the eight stress resultants, and the corresponding
eight strain components of the middle surface. (See fig. 2 for sign convention.)

5 LINEAR ANALYSIS OF ANISOTROPIC TIRES THROUGH USE
OF SEMIANALYTIC FINITE ELEMENTS

For tires with uniform circumferential properties, an approach generally used
for predicting the linear response is based on the representation of the shell vari-
ables and the external loadings with Fourier series in the circumferential coordinate
8 combined with the use of finite elements in the meridional direction. (See
ref. 23.) The following expressions are used for the external loadings:

(o (5,8)) (2 ) 5N
Pg Sy Ps.n ps,n
i -i
P (s:9) o ~Po,n x Po,n
p(s,8) > = E , Nt - cos nf + E Nt < 51 > sin n® (7)
- n n
n=0 i . n=1 -
m (s,9) m m
S s,n S,n
i =i
(Mg (5:8) "o ,n L Mo,n ./

The generalized displacements X, stress resultants H, and strain components E
are approximated with expressions of the form

X(s,08) = E , lei cos nb + E : Nl§; sin né (8)
n=0 n=1
(e o] [+ o]

H(s,8) = § NLﬂi cos nH + N‘g* sin ne (9)
=0 n=1 n

E(s,8) = E ﬁLEﬁ cos nb + N&_L sin n# (10)
n=0 n=1 n

i . . . . . .
where N are the shape functions used in approximating the generalized displace-
ments in the meridional direction; N* are the shape functions used in approximating
the stress resultants and the strain components; Xl and §; refer to the gener-
n .

. . .. . . A
alized nodal displacement coefficients associated with the Fourier harmonic n; Hn
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A
and H, refer to the stress-resultant parameters associated with the harmonic n;

L =4 . . , .
and En and En refer to the strain parameters associated with the harmonic n.

The barred tire quantities are associated with the sine series. Based on the pres-

ent study, the degree of polynomial shape functions NL is one lower than that

i . .

of N . Moreover, the continuity of the stress resultants and the strain components
is not imposed at the interelement boundaries and, therefore, both the strain param-
eters and the stress-resultant parameters can be eliminated at the element level.

In equations (7) to (10), the range of the superscript i is 1 to m, the
number of displacement nodes in the element; the range of superscript 4 is 1 to
4, the number of parameters used in approximating each of the stress resultants or
the strain components. A repeated superscript denotes summation over its entire
range.

5.1 Governing Finite-Element Equations

The governing finite-element equations are obtained through application of the
three-field Hu-Washizu mixed variational principle. For tires with uniform circum-
ferential properties, the finite-element equations uncouple in harmonics, that is,
each load harmonic excites only the response in the same harmonic. For the harmonic
n, the governing equations for individual elements can be cast in the following form:

X R 0 E 0

Rt 0 S H - 0 =0 (11)
t
S 0 0 X N 0 N

where {X}n, {E}n, and {H}n are respectively the vectors of nodal displacement

coefficients, the strain parameters, and the stress-resultant parameters associated
with n; [K]n, [R]n, and [S]n are "generalized" stiffness matrices; {Q}n is

the vector of normal external loadings; subscript n refers to the nth Fourier
harmonic; and superscript t denotes transposition.

If the strain parameters are eliminated from equations (11) on the element
level, one obtains the governing equations of the two-field Hellinger-Reissner
mixed models. The governing equations for the individual elements of these models
take the form

H
t = =0 (12)
n n n

where [F] 4is the linear flexibility matrix of the element given by
t -1
[r] = [rR]I"[x] "[r]

The equivalence between the three-field Hu-Washizu mixed models, the two-field
Hellinger-Reissner mixed models, and the reduced-selective integration displace-
ment models is discussed in references 4 and 24.



5.2 Operator Splitting

To simplify the analysis of anisotropic tires, the vectors {E}n, {H}n,
{x}y, and {Q}y 4in equations (11) are each partitioned into two subvectors:
{E}n, {E}n; {H}n, {H}n; {X}n, {X}n; and {Q}n’ {Q}n. The first and second sub-
vectors of each pair are associated with the symmetric and antisymmetric fundamental
unknowns (or external loadings), respectively. The two sets of symmetric and anti-
symmetric shell variables are listed in table 2. 1In table 2, the shell variables
without a bar are the coefficients of the cosine series, and the barred tire vari-
ables are the coefficients of the sine series. (See egs. (8), (9), and (10).)

The matrix [K]n in equations (11) is now partitioned into two block-diagonal
submatrices [K]n and [K]n, associated with {E}n and {E}n' respectively, and
a coupling submatrix [E]n. The coupling submatrix contains all the nonorthotropic
material stiffnesses of the tire and, therefore, vanishes for orthotropic (and

“isotropic) tires.

The matrices [R]n and [S]n are similarly partitioned into the submatrices
[R]n' [R]n and [SJn, [S]n associated with {E}n, {H}n, {X}n and {E}n, {H}n,

{X}n. No coupling submatrices other than [R]n exist between the two sets.

The governing finite-element equations for each individual element are parti-
tioned into two sets of coupled equations and are embedded into a single-parameter
family of equations of the form

K 0] (E K o 0] E 0

Rt 0o § H + Al O 0 0 H - 0 =0 (13)
t

o $ d \xJ Lo o o] \xXJ_ e

and

K R ol (E %t o o) (£ 0

Rt o s H + 2o o o H -{o =0 (14)
t

0 S§° o] \X A L0 0 o \XJ_ Q n

In equations (13) and (14), A is a tracing parameter which identifies all the non-
orthotropic (anisotropic) contributions contained in the matrix [K]n. For A =0,
equations (13) and (14) are uncoupled; that is, the response to symmetric loading

is uncoupled from the response to antisymmetric loading.

The explicit forms of the arrays appearing in equations (13) and (14) are given
in appendiﬁ B. For n > 0, [K]n = [K]n, [R]n = [R]n’ [5]n = [S]n, and
[x]1, = [x].

5.3 Application of Reduction Method

A reduction method is now applied to uncouple governing equations (13) and (14)
and to reduce the total number of degrees of freedom of the initial discretization.

10



The method is based on generating a few global approximation vectors or modes at

A =0 with the finite model. The vectors of nodal displacement coefficients,
stress-resultant parameters, and strain parameters are then expressed as linear
combinations of these global approximation vectors in the following transformation:

E FE
H = FH {w}n (15)
X n PX n
and
E PE
= [Ty {w}n (16)
n 1-'X n

where the matrices [T]n are transformation matrices and {w}n is a vector of
undetermined coefficients (amplitudes of global approximation vectors) which are
functions of .

An effective choice for the global approximation vectors (the columns of the
matrices [F]n) consists of the solution corresponding to A = 0 and its various-

order derivatives with respect to A (evaluated at X = 0), that is,

B 2 n-1
£ M LE) ]
[r.] iz {3—-—} ... { } (17)
£-°n n 3IA'n 3>\2 n BA&_I n|

™ 2 =10 ]
{1} {g% {—3——2{-} I n—?} (18)
" n 7 an 0 Jn |

[ 2% 32x 31y (19)
n {x}n {EY n 2 et H-1
B 33%n 3" Un |

with similar expressions for [PE]n’ [TH]n’ and [Fx]n in terms of {E}, {H},

~
-
b=
[V
1l

—
-3
b
i
i

and {X}. The total number of global approximation vectors is X.

The equations used in generating the global approximation vectors are obtained
by successive differentiation of the finite-element eguations of the discretized
shell (egs. (13) and (14)) and are listed in appendix C. The global approximation
vectors are generated at A = 0, thereby uncoupling equations (13) and (14).

For symmetric loadings the vectors {E}, {H}, {X}, and all their even-
order derivatives with respect to A are zero. Also, the odd-order derivatives
of {E}, {H}, and {¥X} with respect to A vanish. For antisymmetric loadings,
the situation is reversed with respect to the derivatives of {E}, {H}, and {X}
and of {E}, {H}, and {X]}.
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The classic Rayleigh-Ritz technique is used to replace the governing finite-
element equations of the shell with the following reduced system of equations in
the unknown parameters (components of the vector {w}n):

[[R1, + kD ] 1, = 1), (20)

where

[k]

il

2. ([ J*[KI0rg] + [rp1°(RILr,]

Elements

+ (e ) KI0rg) + [rgItRICr, D + [r ISRIOrGD + [r,15(570ry]

+ [r JIRI®rgd + [ 1°0s3r, ] + [ 1*0s1%[r,] + [r,I°[S1°[r,]) (21)
R1- Y (Irg PRI + [rgdSRISCr.D) (22)
Elements
and
@ =2 ([rgI"@ + [r,]%Q)) (23)
Elements

In equations (21) to (23) the subscript n has been dropped for convenience.

Note that the chosen global approximation vectors (egs. (17) to (19)) are the
same as those used in the Taylor series expansion of the response in terms of A.
These vectors provide a direct measure of the sensitivity of the different response
quantities to nonorthotropic (anisotropic) material stiffness coefficients of the
tire. A comparison between the predictions of the foregoing technique and the
Taylor series expansion is given in section 8.

5.4 Case of Axisymmetric Loading

If the Fourier harmonic n is set equal to zero in equations (7) to (10), the
governing equations for the axisymmetric loading case are obtained. All the barred
loading components and shell variables vanish, and the subvectors {E}, {E}, {H},
{H}, {x}, {X}, {Q}, and {Q} are now associated with the fundamental unknowns
(and external loadings), as shown in table 3.

The corresponding matrices in equations (13) and (14) have different dimensions.
For A = 0, the uncoupling of equations (13) and (14) signifies the uncoupling of
the response of orthotropic (and isotropic) shells to normal and meridional loading
from the response to circumferential loading. (See sections 2.1 and 2.4.)

6 NONLINEAR ANALYSIS OF ANISOTROPIC TIRES THROUGH USE
OF TWO-DIMENSIONAL SHELI. FINITE ELEMENTS
As a second application of the aforementioned computational strategy, consider

the geometrically nonlinear analysis of anisotropic tires by use of three-field
mixed two-dimensional shell finite elements. The material stiffness matrix of the
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shell is decomposed into the sum of an orthotropic and a nonorthotropic (anisotropic)
part, and the governing nonlinear finite-element equations for individual elements
are embedded into a two-parameter family of equations of the form

0] o] \ E 0

0
0

K R O
Rt 0 S + A

0 St 0]

H + {6 - qg{o
X Mm=,x) 0

I
o

(24)

o o XRXI

0
0

where {x}, {E}, and {H} are the vectors of nodal displacements, strain param-
eters, and stress-resultant parameters; {&(X)} and {M(H,X)} are vectors of
nonlinear contributions; {Q} is the vector of normalized external loading
coefficients; q is a loading parameter; and A is a tracing parameter which
identifies all the nonorthotropic (anisotropic)_contributions to the element
equations. The explicit forms of the arrays [K], [K], [R], [S], {6(x) 1},
{Mm(H,x)}, and {Q} are given in appendix D.

With X and g chosen as the control parameters, a two-parameter reduction
method is applied to reduce both the size of the analysis model and the total
number of degrees of freedom used in the initial discretization. This reduction
is accomplished by use of the following transformation:

E FE

H = Ty {v} (25)
X Iy

where {y} is a vector of amplitudes of global approximation vectors which are
functions of both A and g, and the [P] terms are transformation matrices
whose columns are the global approximation vectors consisting of the solution at
A =qg=0 and its various-order derivatives with respect to A and g, that is,

[r_]

2
A-lE 5D G Gy -] (26)

A 3q oA

2

oH 9H 3 H
[{n} {Ea' {57} {Bq BA} o] (27)

[r ]

H

2

X 90X, .  3°X
[{x} {sa} ey’ {aq 57} . (28)

(r, 1]

X

The equations used in generating the global approximation vectors are obtained
by successive differentiation with respect to g and A of the finite-element
equations of the discretized tire (egs. (24)) and are listed in appendix E. For
convenience, the initial set of global approximation vectors is generated at
A =g = 0. This reduces the computational effort in evaluating the global approxi-
mation vectors because of the following: for gq = 0, {E}, {4}, and {X} wvanish,
as do all the nonlinear terms on the left-hand sides of equations {El); and fer
A = 0, each of the global approximation vectors exhibits known types of symmetries
(or antisymmetries) similar to those exhibited by the response of orthotropic tires,
and therefore the size of the model used in generating these vectors is the same as
that used for orthotropic tires.
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The classic Rayleigh-Ritz technique is used to replace equations (24) with
the following system of nonlinear equations in the unknown parameters {y}:

[[K] + AlRI) (v} + R} - qld} = o (29)
where

[k]

2. ([r IRICr,] + [rJCRILr,]

Elements
t t t t t
+ (1, J°(RI°0r, ] + [ 1%[s0r,] + [, 1%[sT%(r, D) (30)
[k] = [r J°IK1Lr, ] (31)
Elements
{my)} = Z ([rH]t{G(w)}+[I‘X]t{m(w)}) (32)
Elements
and
W= >, [rJ% (33)
Elements

The nonlinear vectors {&G(Y)} and {M(y)} are obtained from the vectors {G(X)}
and {M(H,X)} through replacement of {H} and {X} with their expressions in
terms of {y} (egs. (25)).

7 NONLINEAR ANALYSIS OF ORTHOTROPIC TIRES
SUBJECTED TO UNSYMMETRIC LOADING

As a final application of the computational strategy, consider the geometri-
cally nonlinear analysis of orthotropic tires subjected to the localized loading
shown in figure 5(b). The loading is unsymmetric with respect to reflection in
the x-y plane, but it is symmetric with respect to reflections in the x-z and y-z
planes. (See fig. 3.) The tire is modeled by use of three-field mixed two-
dimensional shell elements. The loading vector is decomposed into symmetric and
antisymmetric loadings (with respect to reflections in the x-y plane), and the
governing nonlinear finite-element equations for individual elements are embedded
in a two-parameter family of equations of the form

K R 0 E 0 0 0
Rt 0 S H + G (X) - q; 0 - q,( 0 =0 (34)
t
0 S 0 X
M(H,X) Ql, Q5

where gq;, and g, are normalized loading parameters and {Ql} and {Qz} are the
vectors of normalized symmetric and antisymmetric loadings.
With g, and g chosen as the control parameters, a two-parameter reduction

method is applied to reduce both the size of the analysis model and the total
number of degrees of freedom used in the initial discretization. This reduction
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is accomplished with the procedure outlined in section 6. Note that the evaluation
of the global approximation vectors at 9y =4, = 0 allows the reduction of the
size of the analysis model to just one octant of the tire (instead of the one
quadrant required for the original unsymmetric loading). Each of the global ap-
proximation vectors exhibits known symmetry (or antisymmetry) along the centerlines.

The following observations can be made with regard to the proposed computational
procedure:

1. Although the individual global approximation vectors exhibit symmetry (or
antisymmetry) along their centerlines, their linear combination, which approximates
the response to the general unsymmetric loading, is generally unsymmetric.

2. The reduced equations can be formed by use of only one octant of the tire.
However, the solution of these equations approximates the unsymmetric response over
one quadrant of the tire and consequently over the entire tire.

3. In case the given loading is antisymmetric (i.e., q; = 0), the procedure
can be simplified, since only one parameter ¢ is needed. Obviously, for symmetric
loadings the response is symmetric.

4. Updated sets of global approximation vectors may be formed with the compu-
tational strategy, but it is essential that the tire configuration used in generating
these vectors be symmetric (e.qg., q, = 0).

8 NUMERICAL EXAMPLES

To evaluate the effectiveness of the proposed computational strategy, a number
of gquasi-symmetric tire problems have been analyzed. For each problem, the solutions
obtained with the proposed strategy are compared with the direct analysis of the
tire. The results of three typical problems are discussed herein. The three
problems are linear response of an anisotropic tire subjected to normal pressure
loading, linear response of an anisotropic tire subjected to uniform inflation pres-
sure and localized loading, and geometrically nonlinear response of an orthotropic
tire subjected to uniform inflation pressure and unsymmetric localized loading. The
three problems correspond to the computational procedures presented in sections 5
to 7.

In the first problem, the tire is discretized with semianalytic finite elements
(Fourier series expansions in the circumferential direction and finite elements in
the meridional direction). 1In the last two problems, two-dimensional shell finite
elements are used for the discretization. The tires are assumed to be rigidly
clamped at the rim (at £ = *1), to have elliptic cross sections, and to be made
of cord-rubber composite material. The geometric and material properties are given
in figure 6. Small research-oriented programs were used to obtain all the numeri-
cal results presented herein.

8.1 Linear Response of an Anisotropic Tire Subjected
to Normal Pressure Loading

The first problem considered is that of the linear response of an anisotropic
tire subjected to normal pressure loading which is uniform in the meridional

direction. Two loading cases are considered. The first is an axisymmetric loading
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(inflation pressure) with n = 0, and the second is a nonaxisymmetric loading with
n = 2. Since both the tire and the loading have axial symmetry as well as dihedral
rotational symmetry, only half the meridian is analyzed. The symmetry conditions
at £E=0 are u=¢ =0 and v=w-= ¢g = O. Eight one-dimensional finite
elements are used to obtain converged solution. Quadratic interpolation functions
are used for approximating each of the stress resultants and strain components, and
cubic interpolation functions are used for approximating each of the generalized
displacements. The nonzero degrees of freedom consist of 118 generalized displace-
ment coefficients, 192 stress parameters, and 192 strain parameters. Typical
results are presented in fiqures 7 and 8 for n = 0 and in figure 9 for n = 2.

The proposed strategy is applied to this problem and the global approximation
vectors are generated at A = 0 and used to generate the solutions at A = 1.
The distribution of the first three nonzero global approximation vectors along
the meridian for n = 0 1is shown in figure 7. Note that the odd-order derivatives
of {E}, {X}, and {H} and the even-order derivatives of {E}, {X}, and {H}
with respect to A are zero.

The even-order derivatives of u., w., N , and M are shown in
0] 0 6,0 6,0

figure 7(a), and the odd-order derivatives of v and M are

o’ ¢e,o' Nse,0 s6,0

shown in figure 7(b). The magnitudes of the first-order and higher order de-
rivatives of the different response quantities are an indication of the sensitivity
of these response quantities to the anisotropic material coefficients.

The tire responses corresponding to A =1 and A = 0 are shown in figure 8
for n =0 and in figure 9 for n = 2, along with the predictions of the proposed
strategy based on the use of four and six (or six and eight) global approximation
vectors. The symmetric response quantities (with redpect to 6 = 0) are shown in
figures 8(a), 9(a), and 9(c), and the antisymmetric response quantities are shown
in figures 8(b), 9(b), and 9(d). Note that for n = 0, all the antisymmetric re-
sponse gquantities corresponding to A = 0 wvanish.

As shown in figures 8 and 9, for both n =0 and n = 2 the response of
the two-layered tire is sensitive to the nonorthotropic stiffness coefficients
identified by A. As the number of layers increases, the response becomes less
sensitive to A.

An indication of the accuracy of the solutions obtained with the proposed
strategy is given in figure 8 for n = 0 and in figure 9 for n = 2. The gen-
eralized displacements and stress resultants predicted with the proposed strategy
through use of six vectors are highly accurate except for Ns6,2' for which

eight vectors are needed. (See fig. 9(b).) The solutions obtained with eight

vectors are almost indistinguishable from the direct finite-element solution.

The numerical values of the amplitudes of the global approximation vectors
in the proposed strategy are given in table 4. The corresponding amplitudes of
the same vectors in the Taylor series expansion are also given in table 4.

8.2 Linear Response of an Anisotropic Tire Subjected to Uniform
Inflation Pressure and Localized Loading

The second problem considered is that of the linear response of the aniso-
tropic tire shown in figure 6 when subjected to uniform inflation pressure and
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localized loading (simulating the contact pressure). Typical numerical results
are shown in figures 5(a), 10, and 11.

In figure 5(a) normalized contour plots are shown for the two displacement
components v and w produced by the given loading. 1In figure 10, normalized
contour plots are shown for the generalized displacements and their first four
derivatives with respect to )\ evaluated at A = 0, Figure 11 shows the accuracy
and convergence of the normal displacement at the center w and of the total
strain energy U. obtained with the proposed computational gtrategy.

As expected, the normal displacement w, the stress resultants Ns' Ne,

N M M and M and t strai
s’ s he in components ss, ee, 2856’ K , Ke, and

s6’ 8’ 8’ s

2Kse exhibit rotational (inversion) symmetry. The in-plane displacements wu and
v, the rotation components ¢s and ¢e, the transverse-shear stress resultants Qs
and Qe, and the transverse-shear strains 2€s3 and 2693 exhibit rotational
(inversion) antisymmetry. These symmetry properties are used in conjunction with
the procedure outlined in references 7 and 8 to reduce the analysis model to half
the tire. (See fig. 5(a).) A uniform grid of two-dimensional elements is used.
Biquadratic shape functions are used to approximate each of the generalized
displacements, and bilinear shape functions are used to approximate each of the
stress resultants and the strain components (a total of 717 nonzero displacement
degrees of freedom, 1280 stress-resultant parameters, and 1280 strain parameters).
The Gauss~Legendre quadrature formula with four gquadrature points in the element
domain is used for the evaluation of the elemental arrays. The highly anisotropic
response of the tire is given in figure 5(a), in which normalized contour plots are
shown for the v and w displacements.

The proposed strategy is applied to the analysis of the tire. Global approxi-
mation vectors are generated at X = 0 and are used to generate the solution
corresponding to A = 1. The global approximation vectors exhibit reflection
symmetry (or antisymmetry) with respect to & = 0 and © = w. These symmetry
relations are shown in figure 10. They clearly demonstrate the fact that the global
approximation vectors can each be obtained by analyzing only one guadrant of the
tire.

An indication of the accuracy and convergence of the solutions obtained with
the proposed strategy and with the Taylor series expansion is given in figqure 11.
The standard of comparison is taken to be the direct linear finite-element solution
of the anisotropic tire with the technique described in references 8 and 9. As
can be seen from figure 11, the solutions obtained with the proposed strategy are
considerably more accurate than those obtained with the corresponding Taylor series
expansions (based on the same global approximation vectors). As an example of this,
the errors in the total strain energy obtained with the Taylor series with four and
seven global approximation vectors are 16.3 percent and 5.25 percent. The corre-
sponding errors in the strain energy obtained with the proposed strategy are only
0.15 percent and 0.001 percent.

8.3 Geometrically Nonlinear Response of an Orthotropic Tire Subjected
to Uniform Inflation Pressure and Unsymmetric Localized Loading

The last problem considered is that of the geometrically nonlinear response
of a tire subjected to uniform inflation pressure and localized loading which is
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unsymmetric with respect to reflection in the x-y plane. (See fig. 3.) The maxi-
mum intensity of the localized loading is 8.662 x 10° pa (125 psi). The material
properties are given in figure 6, and to simplify the analysis, the anisotropic
bending-extensional coupling coefficients of the tire are neglected (i.e., the
tire is treated as orthotropic).

The unsymmetric localized loading is decomposed into symmetric and antisymmet-
ric components, as shown in figure 12. The path parameters are selected to be the
two loading parameters g and g associated with the symmetric and antisymmetric
loading components. Only one guadrant of the tire is modeled with a uniform grid
of two-dimensional elements (a total of 371 nonzero displacement degrees of freedom,
640 stress-resultant parameters, and 640 strain parameters). Ten global approxi-
mation vectors are generated at zero values of qy and g (but at a uniform
inflation pressure p of 6.895 x 10° Pa (100 psi)). The global approximation
vectors include the aXisymmetric nonlinear response ({E}, {H}, and {x}) evaluated

at p, = 6.895 x 10° Pa and q =49, = 0 and all its derivatives up to the fifth

derivatives with respect to g and q.,. These global approximation vectors and
the reduced equations are generated through use of only one gquadrant of the tire
and the appropriate reflection symmetry and antisymmetry conditions. Normalized
contour plots for the generalized displacements are given in figure 12. The re-
flection symmetry (or antisymmetry) for the solution at g, = q, = 0 and its first,
second, and third derivatives with respect to £ = 0 and 6 = T/2 is presented

in figure 12. Since the major cost of the analysis is generating the global
approximation vectors and the coefficients of the reduced equations, the proposed
computational strategy enhances the efficiency of the reduction technique.

An indication of the accuracy and the convergence of the solutions obtained
with the proposed strategy is given in table 5. The standard of comparison is
taken to be the direct nonlinear finite-element solution of the orthotropic tire.
As shown in table 5, the solutions obtained with the proposed strategy are highly
accurate. The errors in the normal displacement w. and in the total strain
energy U obtained by use of six global approximation vectors (solution at
9, =9, = 0 and all its first and second derivatives with respect to ql and q2)

are only 0.83 percent and 0.06 percent. These errors reduce further when more
approximation vectors are used. (See table 5.)

9 POTENTIAL OF PROPOSED COMPUTATIONAL STRATEGY

The proposed strategy generates the solution of a complex tire problem (with
anisotropic materials, unsymmetric imperfections, and unsymmetric loading) using
small or farge perturbations from the response of a simpler system (e.g., an
orthotropic tire with no imperfections). The strategy has high potential for
handling practical tire problems. In particular, the following observations and
extensions of the strategy can be made.

1. The tire response, in both the proposed strategy and the Taylor series
expansion of the response in terms of ), is expressed as a linear combination of
the same global approximation vectors. However, the coefficients of the linear
combination in the Taylor series expansion are fixed and are equal to 1, 2,

2 r-1

A/2, .., X 7/(r - 1)!. By contrast, the coefficients in the proposed strategy
are left as free parameters and are determined with the Rayleigh-Ritz technique.
Numerical experiments have shown that the use of free parameters leads to accurate
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solutions not only within the radius of convergence of the Taylor series but also
well beyond it.

2. The proposed strategy can be used to analyze tires with unsymmetric
imperfections. The unsymmetric imperfections are decomposed into symmetric and
antisymmetric components. The terms in the governing finite-element equations (24)
associated with the antisymmetric imperfections are grouped together and multiplied
by the tracing parameter A. The global approximation vectors are generated at
A = 0. The size of the analysis model used in generating these vectors is the
same as that for a tire with symmetric imperfections.

3. The proposed strategy can be applied to contact problems of tires. The
contact conditions can be treated as displacement-dependent unsymmetric boundary
conditions. The unsymmetric response of the tire is approximated by a linear com-
bination of symmetric and antisymmetric global approximation vectors (or modes).
The governing nonlinear finite-element equations are restructured to delineate the
contributions to the symmetric and antisymmetric responses. A tracing parameter A\
is used to identify all the contributions to the antisymmetric response. The size
of the analysis model used in generating the global approximation vectors is identi-
cal to that of the corresponding structure with symmetric contact conditions. The
amplitudes of the global approximation vectors are obtained through solution of a
reduced set of nonlinear equations corresponding to A = 1.

4. The proposed strategy can be extended to tire problems with more than one
source for the symmetry breaking through attachment of a tracing parameter with the
terms in the governing finite-element equations associated with each source. How-
ever, as the number of independent tracing parameters increases, both the number of
global approximation vectors that need to be generated and the size of the reduced
system of equations increase at a faster rate. Therefore, for practical applications
to tire problems, an attempt should be made to minimize the number of independent
tracing parameters by treating some of the tracing parameters as functions of others.

5. In the application of the proposed strategy to tires subjected to unsym-
metric loading, it is essential that the tire configuration used in generating the
global approximation vectors be symmetric. This may limit the applicability of the
strategy to cases in which the magnitudes of the unsymmetric loading components
are not very large.

6. The proposed strategy can be applied to other mechanics problems. 1In
particular, it can be used to generate the response of a complex structural system
as a large perturbation from the response of a simpler system. It is also possible
to use a hierarchy of simpler systems to generate the response of the complex
structural system by choosing a number of tracing (or control) parameters and suc-
cessively applying a single-parameter reduction method with each of the parameters.

10 CONCLUSIONS

Three basic types of symmetry (and their combinations) exhibited by tire
response are identified. BAn efficient computational strategy is presented for
reducing both the size of the model and the cost of the analysis of tires in the
presence of symmetry-breaking conditions (e.g., unsymmetric material, geometry, or
loading). The strategy is based on approximating the unsymmetric response of the
tire by a linear combination of symmetric and antisymmetric global approximation
vectors (or modes).
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The three main elements of the computational strategy are the following: (1)
use of three-field mixed models having independent shape functions for stress re-
sultants, strain components, and generalized displacements, with the stress
resultants and the strain components allowed to be discontinuous at interelement
boundaries; (2) use of operator splitting (additive decomposition of some of the
matrices and vectors used in the finite-element model) to delineate the symmetric
and antisymmetric responses; and (3) successive use of the finite-element model
and the classic Rayleigh-Ritz technique to substantially reduce the number of de-
grees of freedom. The finite-element method is first used to generate a few global
approximation vectors (or modes). Then the amplitudes of these modes are computed
through use of the Rayleigh-Ritz technique.

The proposed computational strategy was applied to the following three gquasi-
symmetric problems of tires:

1. Linear analysis of anisotropic tires (subjected to arbitrary loading)
through use of semianalytic finite elements

2. Nonlinear analysis of anisotropic tires through use of two-dimensional
shell finite elements

3. Nonlinear analysis of orthotropic tires subjected to unsymmetric loading

In the first two applications, the anisotropy (nonorthotropy) of the tire is the
source of the symmetry breaking; in the third application, the quasi-symmetry is
due to the unsymmetry of the loading.

The effectiveness of the proposed computational strategy is demonstrated with
numerical examples, and its potential for handling practical tire problems is
discussed. The results of the study suggest the following conclusions relative
to the importance of the three main elements of the proposed computational strategy
and to the potential of the proposed computational strategy:

1. The use of the three-field mixed models enhances the effectiveness of the
proposed computational strategy and offers the following advantages over the
equivalent displacement models:

A. To reduce the model size of anisotropic tires, the decomposition of the
material stiffness matrix of the tire affects only the linear arrays [K]
and [K] of the tire. By contrast, if a displacement model is used, both
linear and nonlinear arrays are affected by the decomposition.

B. The generation of the global approximation vectors is easier and involves
fewer arithmetic operations than in the displacement formulation. This is
because the nonlinear terms of the mixed models are bilinear (or gquadratic)
in the nodal displacements and in the stress-resultant parameters and are

not cubic as in the displacement formulation.

C. Experience with reduction methods based on mixed models and displacement
formulations has demonstrated that, for a given number of global approximation
vectors, the accuracy of the solutions obtained with the reduction method and
mixed models is higher than that obtained with the corresponding reduction
method and displacement models. This is particularly true for stress re-
sultants and strain components.
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2. The use of path derivatives as global approximation vectors leads to accu-
rate solutions with a small number of vectors. Therefore, the time required to solve
the reduced equations is relatively small, and the total analysis time to a first
approximation equals the time required to evaluate the global approximation vectors
and to generate the reduced equations. The operator splitting technique allows the
reduction of the size of the analysis model of the tire and, therefore, the time
needed to generate the global approximation vectors is reduced.

3. The global approximation vectors provide a direct measure of the sensitivity
of the different response quantities to the tracing parameters used and their associ~
ated effects (e.g., anisotropic (nonorthotropic) material coefficients of the tire,
geometric imperfections, or unsymmetric contact conditions). The sensitivity of the
global response can also be assessed with these vectors.

4. The reduction method used in the proposed computational strategy exploits
the best elements of the finite-element method and of the Rayleigh-Ritz technique,
as follows:

A. The finite-element method is used as a general approach for generating
global approximation vectors. The size of the analysis model used in gener-
ating these vectors is the same as that of the corresponding orthotropic panel.

B. The Rayleigh-Ritz technique is used as an efficient procedure for minimizing
and distributing the error throughout the structure.

5. The reduction method extends the range of applicability of the Taylor
series expansion by relaxing the requirement of using small loading and tracing
parameters in the expansion.

NASA Langley Research Center
Hampton, VA 23665-5225
January 7, 1987

21



APPENDIX A -~ FUNDAMENTAL EQUATIONS OF SHELL THEORY
USED IN THE PRESENT STUDY

The fundamental equations of the Sanders-Budiansky type shell of revolution
used in the present study are summarized herein. The effects of laminated, aniso-
tropic material response and transverse-shear deformation are included.

Strain Displacement Relationships

The relationships between the strains and generalized displacements of the
middle surface are given by

- W o, 1l/uw 2, 1.2 }
€s B 3su * R + 2 (R asw) + 2 ¢ (al)
N S A
9 r
s 1 w 1 /v 1 2 1 .2
Ee—ru+r36V+R+3<R-?aSW)+2¢ (a2)
2 N2 T
o r
_1 ( _ _s_) 3 v _1
20 = Fu+ (3, - —=)v+ (R asw) (R = Bew) (a3)
i N2
Kg = as¢s (a4)
asr 1
Kg =7 % + 7 %% (a5)
I r
=1 _ _S_ 1 1
& o = < ae"’s + (as - )% + (R = >¢> (a6)
2 1
26 = -2 4+ 3w+ (A7)
s3 R S s
1
26, = -2 41 d.w + ¢ (A8)
83 ~ R r ‘e¥ 9

2

where Es and € are the extensional strains in the meridional and circumferential
directions, 2¢ 5 is the in-plane shearing strain, Ky and Kk, are the bending
strains in the meridional and circumferential directions, ZKSG is the twisting
strain, 2e_, and 2€y5 are the transverse-shear strains, 9, = 3/8s, 3y = 3/38,

and ¢ is the rotation around the normal to the shell, which is given by
o r
1 1 s
d’"z'{'?aeuJ' <as+T>V:I (29)
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The nonlinear terms which account for moderate rotations are underlined with dashes
in equations (al) to (A3).

Constitutive Relations

The shell is assumed to be made of a laminated, anisotropic, linearly elastic
material. Every point of the shell is assumed to possess a single plane of elastic
symmetry parallel to the middle surface. The relationships between the stress
resultants and the strain measures of the shell are given by

( Nsw 11 “12 @ E £ T2 @ L 1 s )
N 2 @ g f2 I @ i : : €
N, Cec E@ fee ; . . 2¢ g
< M_ > _ a, 4, -E ) ) < o)
Mg Symmetric d,, @ i . . Kg
Mse d66 i . . 2r<se
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where ¢, f, and d are shell stiffness coefficients. The nonorthotropic
(anisotropic) terms are circled and the dots refer to zero terms.
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APPENDIX B - FORMULAS FOR THE COEFFICIENTS IN THE FINITE-~ELEMENT
EQUATIONS FOR SEMIANALYTIC INDIVIDUAL ELEMENTS

The explicit forms of the elemental arrays [K]n, [K]n, [R]n' [R]n, [R]n,
[SJn, [S]n, {Q}n, and {Q}n, associated with the harmonic n are given in this
appendix. For convenience, each of these arrays is partitioned into blocks corre-
sponding to contributions from individual nodes, stress resultants, or strain
approximation functions. The expressions of the typical partitions (or blocks) are
given subsequently. Note that the order of the strain parameters in these partitions
is es, ee, 2€se, Ks, Kgr 2Kse, 2653, and 2563; the order of the stress-

resultant parameters 1is Ns' N N Ms' Me, Mse, Qs, and Qe; and the order

6’ s6’
of the generalized displacement coefficients is u, v, w, ¢S, and ¢e.

A typical 44 partition of the elemental array [K]n is given by

€11 ‘12 'E £0 f12 -1 - .
]
1 1
C22 . : f12 f22 . : . .
l !
2 A27 ': . . . : . .
[ w&| | TaTIaTTT FE— 2
4 d e ) . . cos n
i Symmetric d22 . E . .
|
| O R .
{ e
{
\ Cyg .
[_- . . 1 . . - [ -
| 1
! |
. M . . e 0. .
! |
| |
66 i : feo E .
+ "UTTTTTITTTTITTTITTTTTTT | sin®ne| r a0 as (81)
i
i
- . P . .
i
|
Symmetric d66 :_;__——;
| €44

The dots in equations (Bl) and succeeding equations refer to zero terms. The 4jf
partition of the elemental array [K]n is given by equations (Bl) after inter-

changing coszne and sinzne.
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the elemental array [i]n is given by

r d8 ds (B2)

The {f partition of the elemental array [R]n can be written as the sum
of two diagonal matrices as follows:

_f}L/Z'n K{‘ﬁj

0 o]

=

L

-

1 cos2ne +

L

-

r d6 ds (B3)

The 4§ partition of the array [R]n is given by equations (B3) after inter-

changing

The 4j partition of the elemental array [S]n is given by

cos“nb

and sin“nb.
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The ith partition of the array {Q}n is given by:

( .
pJ cos2 n61
s,n

p sin2 no

8,n
L opom .
j(; [ NN < pg cos2 né r d8 ds (B5)
o ,

2
m cos” nb
s,n

=3
\"b,n sin2 nb J

The ith partition of the array '{Q}n is given by equation (B5) after inter-

changing cos2 n8 and sin2 nb.

In equations (Bl) to (B5), & 1is the length of the element; N& and Nj are
the shape functions for both the strain components and the stress resultants; N
are the shape functions for the generalized displacements; ¢, £, and d are shell
stiffnesses; r 1is the normal distance from the tire axis to the reference sur-

face (see fig. 1); Rl and R2 are principal radii of curvature in the meridional

and circumferential directions; s and © are the meridional and circumferential
coordinates of the shell; and SS = 3/3s.
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APPENDIX C - EVALUATION OF GLOBAL APPROXIMATION VECTORS
BASED ON SEMIANALYTIC FINITE ELEMENTS

The global approximation vectors are chosen to be the solutions of equations
(7) and (8), {E}n, {H}n, {X}n, {E}n, {H}n, {X}n, and their various-order

path derivatives (derivatives of these solutions with respect to A) evaluated at
A =0. For X = 0, equations (7) and (8) are uncoupled. The path derivatives
are obtained by successive differentiation of the governing finite-element equa-
tions (7) and (8) with respect to X and solution of the resulting two sets of
uncoupled equations corresponding to X = 0. For the individual finite elements,
the recursion formulas for the path derivatives can be written in the following
compact form:

IEc A 3" E
R 0 § —m H =
o $% o 94 X 0
n n n
and
K R o E P
t "
R 0 S ~m H =
o st 2 L x 0
n n n
where m > 1 and the vectors {P}n and {P}n on the right-hand sides of equa-
tions (Cl) and (C2) are given by
- am—l
) = -m[x] —= {E} (c3)
A
and
-t 8m—l
{P} = -m [K] {E} (C4)
n n BAm_l n

Note that equations (Cl) and (C2) are uncoupled and that the coefficient matrices
on the left-hand sides of these equations, which must be factored for each Fourier
harmonic n, are the same for all the path derivatives.
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APPENDIX D - FORMULAS FOR THE COEFFICIENTS IN THE GOVERNING
NONLINEAR EQUATIONS FOR INDIVIDUAL TWO-DIMENSTIONAL
SHELL FINITE ELEMENTS

The explicit forms of the arrays [K], [RrR], [s], [K], {&x}, {m@w,x)},
and {Q} are given in this appendix. For convenience, each of these arrays is
partitioned into blocks corresponding to contributions from individual nodes,
strain, or stress-resultant approximation functions. The expressions of the
typical partitions (or blocks) are given in table D1. Note that the order of the

i i artiti i € K £
strain components 1in these p itions 1s o’ ee, 2856, Ks, Ke, 2 Y 2 53’

and 2gg3. The order of the stress resultants is Ng, Ng, Ngg, Mg, Mg, Mgq,

Qs'

and Qg. The order of the nodal displacement parameters is u, Vv, W, ¢g, and ¢g.

In table D1, ﬁL and NJ are the shape functions for both the stress re-

sultants and strain components; N7 are the shape functions for the generalized
displacements; r is the radial coordinate; m 1is the number of displacement

nodes in the element; [I] is the identity matrix; 4 is the number of param-
eters used in approximating each of the stress resultants and strain components;

S(e) is the element domain; BS = d/3s; and 3y = 3/36. The range of the indices
{ and § is 1 to 4, and the range of the indices i and_j is 1_to m. The
dots in the matrices refer to zero terms. The quantities € and e, are

defined in terms of the displacement components as follows:
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APPENDIX E - EVALUATION OF GLOBAL APPROXIMATION VECTORS
BASED ON TWO-DIMENSIONAL SHELL FINITE ELEMENTS

The global approximation vectors in equations (26) to (28) are obtained by suc-
cessive differentiation of the governing finite-element equations (24), with respect
to the two parameters gq and A, and solution of the resulting system of linear
simultaneous algebraic equations. For individual finite elements, the recursion
formulas for the global approximation vectors can be written in the following
compact form:

o —

K R 0 E p (mn)
1 m+n
0 S + axI 0 H Q(W") (E1)
m ., .n
oM J | 3g 9A
Symmetric I (m+n)
% X R
J

where the range of I is 1 to 88 (4 is the number of parameters used in approxi-
mating each of the stress resultants or strain components) and the range of I and
J is 1 to 5m (m is the number of displacement nodes). The total number of

(m + n) combinations is X - 1, where % 1is the number of approximation vectors.

m+n)1 {Q(mfn)} {R(m+n)}

The explicit forms of the first few values of {P( are

given in table El.

In table E1l, a dot (*) over a symbol refers to a derivative with respect to g
and a prime (”) over a symbol refers to a derivative with respect to A. Note that
the coefficient matrix on the left-hand side of equations (El), which must be
factored, is the same for each of the global approximation vectors. Hence, this
matrix is factored only once regardless of the number of global approximation vectors

generated. If the global approximation vectors are generated at A = 97 0, then

J {u#}, and

{E} = 0, {H} = 0, and {X} = 0. Also, all the derivatives 3 n{E}'
n A
jL~{X} vanish, and equations (El) are thus simplified. The gomputational effort

alt

in evaluating the global approximation vectors is thereby reduced.
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Table El.- First Explicit Forms of {P

(m+n) }

-{Q(mm)}, ana {g(™NM)}

m+n | m n {P(m+n) } {Q(mm) } {R(mm) }
1 1 0 0 0 {Q}
0 1 [K]{E} 0 0
{3201 } {azmI }
2 2 0 0 —_— XX 2{ ———— H.X
axJ axK J°K BHJ axK J
(K] {32@1 } {Bzml . }
1 1 KJ{E} —_— X_X ———(H.X_ + H. X))
axJ axK J°K BHJ axK Ik Ik
i {3201 } {azmI }
0 2 2[KJ{E} — X_X 2{ ——— H.X
axJ axK JK BHJ 8xK J%x
{ 32@1 } { 32mI e }
3 3 0 0 3 { ——— X_X 3{ ———(H X, + H X))
axJ axK JK BHJ axK Ik Ik
K { %6, { n.
2 1 KI{E} (X_X ————(H. X_ + 2H.X
axJ axK J K BHJ 3xK J7k Ik
+ 2XJXK)} + 2HJXK + H]XK)}
. { %6, . { n L L
1 2 | 2[KH{E} (X_X ——(H + 2H.X
axJ axK JK BHJ axK JXK Ik
+ 2XJXK)} + 2HJXK + HJXK)}
_— {3251 ,,,} {azmI }
0 3 3lK]{E} 3 X_X 3{ ———(H X + H X))
axJ axK JK aHJ axK Ik Ik
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bo,b1,b2
c..,d..,f.,.
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EL'ET

{E}
{E},{E}

Grp? Copep

{6(x)1,
{MiH,x)}

{u}

{H},{H}

h

[x],[k],[K],
[k],[%]1,[K]

[k1,[k]
MMM g
m

m .m
s''®

{m)}

NgrNgrNog

SYMBOLS
radial distance for toroidal shell (see fig. 6)

parameters defining the elliptic profile of the tire cross section
(see fig. 6)

shell stiffness coefficients (i,j = 1,2,6)
transverse-shear stiffness coefficients of the shell

elastic moduli of the individual layers in the direction of fibers
and normal to it

vector of strain parameters for a'shell element (see egs. (11)
and (24))

vectors of strain parameters for a one-dimensional shell element
(see egs. (13) and (14))

shear moduli in plane of fibers and normal to it

vectors of nonlinear terms for a two-dimensional shell element
(see egs. (24))

vector of stress-resultant parameters (see egs. (11) and (24))

vectors of stress-resultant parameters for a one-dimensional shell
element (see egs. (13) and (14))

total thickness of the shell

elemental matrices (see eqgs. (11), (13), (14), and (24))

linear stiffness matrices of the reduced system (see egs. (21),
(22), (30), and (31))

bending (and twisting) stress resultants (see fig. 2)

number of displacement nodes in the element

intensity of external moments in the meridional and circumferential
directions

vector of nonlinear terms in the reduced system (see egs. (32))
extensional stress resultants (see fig. 2)
shape functions used for ap

shape functions used for approximating the stress resultants and
strain components :

Fourier harmonic in the circumferential direction

proximating the generalized displacements



Po

Ps'pe'p
{Q},{Ql},
{0}

Qs'Qe

{Q}, {9}
q,q1,q2

{q}

l'RZ
(r],[R].[R]
r

n

[s]1,[8],[S]

{x}
{x1},{X}

XtY: 2

38

intensity of normal pressure loading ‘

intensity of external loading in the coordinate directions
(see fig. 2)

vectors of normalized external loadings for individual elements
(see egs. (24) and (34)) |

transverse-shear stress resultants (see fig. 2)

vectors of consistent external loadings and moment coefficients
for a one-dimensional shell element (see egs. (13) and (14))

loading parameters
loading vector of the reduced system (see egs. (23) and (29))

principal radii of curvature in the meridional and circumferential
directions

linear matrices of the shell element (see egs. (11), (13), (14),
and (24))

normal distance from the shell axis to the reference surface
number of global approximation vectors

linear strain-~displacement matrices of the shell element (see
eqs. (11), (13), (14), and (24))

meridional coordinate of the shell (see fig. 2)

number of parameters used in approximating each of the stress
resultants and strain components within the individual elements

total strain energy of the shell

displacement components of the middle surface of the shell in the
meridional, circumferential, and normal directions

normal displacement at the center
vector of nodal displacements

vectors of generalized nodal displacement coefficients for a one-
dimensional shell element

Cartesian coordinate system (see fig. 3)

coordinate normal to the shell middle surface



[r 1.0r 1.0, 1,
[re 1, [ 1, Iy ],
[r.]1.[r,1. [,

Es'ee’zese

2

284312%€g3

Ks’Ke’sze

A

LT

matrices of global approximation vectors defined in equations
(16), (17), (18), (19), (26), (27), and (28)

extensional strains of the middle surface of the shell
transverse-shear strains of the shell

circumferential (hoop) coordinate of the shell (see fig. 2)
bending strains of the shell

tracing parameter identifying all the anisotropic terms in the
governing finite-element equations (see egs. (13), (14), and (24))

major Poisson's ratio of the individual layers

dimensionless coordinate along the meridian (see fig. 3)

rotation around the normal to the shell middle surface

rotation components of the middle surface of the shell (see fig. 2)
vector of amplitudes of global approximation vectors

= 3/93s

= 3/98

Ranges of indices:

1,7
I,J
4,45
i,j

Superscript t
harmonic.

1 to 8%
1l to 5m
1l to 4
lto m

denotes transposition; subscript n refers to the nth Fourier
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Table 1.- Symmetry Conditions for Tires Exhibiting Rotational and/or
Reflection Symmetry in Addition to Axial Symmetry

[see fig. 3]

Additional symmetries

of tire and loading Tire type Symmetry conditions
Rotational symmetry about Orthotropic At & = 0:
an axis normal to the axis or : u=v=¢ =0¢. =0
of revolution (e.g., anisotropic s 6
z-axis) Qs = Qe =0
2€S3 = 2263 = 0
Reflection (or mirror) Orthotropic At & = O:
symmetry with respect
u=¢ =20
to x-z plane s
Neg = Mg =2 =0°
2¢ 6 = 2Kse = 2€s3 =0
Rotational symmetry Orthotropic At -1 < < 1:
about axis normal to = 6. =0
axis of revolution and v = %
reflection symmetry with N = M = Q ¢]
s6 s6 6
respect to x-z plane 2 = 2¢ = 2 -0
8 s “763
At £ = 0O:
3 =0
u ¢s
o, =0
2853 =0
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Table 2.- Symmetric and Antisymmetric Shell Variables

[Symmetric or antisymmetric with respect to 6 = 0]

Vector Symmetric variables Vector Antisymmetric variables
{E}n Es,nr Ee,n' —2€se,n' Ks,n' {E}n es,n' Ee,n' 2€se,nl KS,l’l,
Ke,n’ _ZKse,n' 28sB,n’ Ke,n’ 2Kse,n' 28s3,n’
~28g3, 2€93,n
-N N N N M
{H}n Ns,n’ Ne,n' sé,n’ Ms,n’ {H}n Ns,n' Ne,n’ sé,n’ s,n’
Me,n’ "so,n’ Qs,n' _Qe,n Me,n' Mse,n' Qs,n' Qe,n
{X}n u_, Vnr wnr ¢s,n' ‘:’e’n {X}n unr =V, W_, ¢s,nl ¢Q'n
{Q}n ps,n' Pelnr Pnl mS, ' me’n {Q}n Ps,nl "Pe’nl Pnl ms'nl —me’n
Table 3.- Symmetric and Antisymmetric Tire Quantities
[n = o]
Vector Symmetric variables Vector Antisymmetric variables
£ € 2
£}, s,0" 0,0’ “s,0” %o0,0’ {E}, 2€56,0" **s0,0’ %%03,0
2€53,0
{H} N {H}
0 s,0° 9,0’ Ms,0" M,0’ i, Nee,0" Ms0,07 9,0
Qs,O
{¥%] (X} v -
X} Yr Yo' 95,0 (X} “or ~%,0
@, Ps,0" Por Ms,0 a1, “Pg,0” "M ,0
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Table 5.- Accuracy and Converdence of Solutions Obtained With Proposed Strategy
for Orthotropic Tire Subjected to Uniform Inflation Pressure and
Unsymmetric Localized Loading

See fig. 12; for uniform inflation pressure only (ql =q, = 0),

wc "5 U
~— = — = 0.08935 and ——— = 0.3633
h h E h3
L
* *
Number of w_c 10><Y-12 U3
approximation vectors h h ELh
3 -0.6430 0.8820 0.3464
6 ~-.6499 .8907 .3572
10 -.6548 . 8896 . 3570
15 -.6569 .8842 . 3568
21 -.6554 .8917 . 3569
birect finite-element | _; 6553 | 0.8918 | 0.3569
solution

*See figure 3.
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Plane of
reflection
symmetry

Rotational symmetry
(180° about z-axis)
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Rotational symmetry
(180° about x-axis)

Figure 3.- Axes of rotational symmetry and plane-of-reflection
symmetry for tires.
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Anisotropic (coupled)
u u, v, w, ¢S’ ¢’e

Orthotropic (uncoupled)
¢ u’W9¢
3]

E]
v, b

Analysis model

Typical meridian

Figure 4.- Axial symmetry for orthotropic and anisotropic tires.
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(a) Even-order derivatives. (b) Odd-order derivatives.

Figure 7.~ Global approximation vectors used with semianalytic finite elements for
two-layered anisotropic tire subjected to normal loading. n = 0.
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(a) Symmetric quantities. (b) Antisymmetric quantities.

Figure 8.- Accuracy of solutions obtained with proposed strategy for two-layered
anisotropic tire subjected to normal loading and modeled by semianalytic
finite elements and n = 0.
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Figure 9.- Accuracy of solutions obtained with proposed strategy for two-layered

anisotropic tire subjected to normal loading and modeled by semianalytic

finite elements and n = 2.

P = py cos 26.
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Figure 9.- Concluded.
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Figure 1ll.- Convergence of maximum normal displacement w, and total
strain energy U obtained with proposed strategy and with Taylor
series expansion for two-layered anisotropic tire subjected to
localized loading.
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