LE

NASA Technical Paper 2597

May 1986

Design of 9.271-Pressure-Ratio Five-Stage Core Compressor and Overall Performance for First Three Stages

Ronald J. Steinke

NASA Technical Paper 2597

1986

Design of 9.271-Pressure-Ratio Five-Stage Core Compressor and Overall Performance for First Three Stages

Ronald J. Steinke

Lewis Research Center Cleveland, Ohio

Scientific and Technical Information Branch

Summary

This paper reports Lewis-conducted basic research for advanced compressor systems. The primary objectives were (1) to experimentally assess stages in a multistage environment and (2) to establish the current level of technology attainable in axial stage groups with high tip speed, high stage loading, and low aspect ratio.

An aerodynamic design is presented for a five-stage core compressor with a 9.271 pressure ratio and 29.710 kg/sec flow rate. The inlet tip speed for the first stage rotor is 430.291 m/sec, and the inlet specific flow is 193.173 kg/m² sec. For the first three stages of this five-stage core compressor, an additional aeromechanical design was completed. This inlet three-stage group was fabricated and evaluated experimentally. The inlet stage group is representative of that of an advanced high-speed, high-pressure-ratio core compressor. At design speed and IGV-stator setting angles a three-dimensional Euler code successfully predicted the experimentally measured flow that was 9.1 percent higher than design. At all speeds measured adiabatic efficiency improved for an optimal IGVstator reset schedule that was determined by an optimization code.

Introduction

An experimental program was undertaken by the Lewis Research Center on fans and compressors for advanced airbreathing engines to assess and improve the technology needed for high pressure ratio, good efficiency, and adequate stall margin in as few stages as possible. The core compressor in an advanced turbofan engine is a prime component of the engine and has a large effect on engine performance and efficiency. The high turbine inlet temperatures of advanced engines lead to optimum thermodynamic cycles that require high overall pressure ratios of about 40:1. The core compressor component must efficiently produce about 80 percent of this pressure rise.

Several core compressors have been designed for the evaluation of changes in tip speed, reaction, etc. The core compressors consist of base cores and rebladed cores. The rebladed cores were obtained from existing base-core hardware along with new blades.

For high-speed, high-pressure-ratio core compressors of good efficiency and range, the inlet stage groups must effi-

ciently produce the desired pressure ratio and flow distribution for the succeeding stages. This requires good stage matching of the inlet group stages.

This report presents (1) the overall aerodynamic design for a core compressor designated 74A and (2) the blade-element aerodynamic and mechanical design details and experimental overall performance for the core's inlet stage group which consist of the inlet guide vanes (IGV) and the first three stages. Core compressor 74A has five stages and is designed for a 9.271:1 pressure ratio and 29.710-kg/sec flow. At the rotor 1 inlet tip speed was 430.291 m/sec, annular flow was 193.173 kg/sec m², and hub to tip radius ratio was 0.488. The inlet stage group had a design pressure ratio of 4.474 and design efficiency of 0.799.

The core 74A inlet stage group was tested in the Lewis multistage compressor test facility. The compressor's IGV and stator blade setting angles were variable and reoriented to achieve maximum overall adiabatic efficiency, using a vane reset optimization computer code. Experimental results, for both design and optimum IGV-stator settings, are presented over the stable operating range at rotative speeds from 60 to 100 percent of design.

Pertinent symbols and equations are in appendix A and B. The abbreviations used in the computer generated design tables are defined in appendix C.

Aerodynamic Design

The computer code of reference 1 was used for both the compressor aerodynamic design and the blading coordinate specifications. The aerodynamic solution provides velocity diagrams on selected streamlines of revolution at the blade row edges. Steady axisymmetric flow is assumed, and the aerodynamic solution is for the two-dimensional flow field in the meridional plane. The computer code obtains solutions to the equations of motion which neglect blade forces and are only valid for calculating stations outside blade rows. The streamline curvatures are computed from spline curve fits through calculated streamline locations for each station.

Blading is defined from stacked, blade elements associated with each streamline. For each blade element the inlet and outlet angles are obtained from empirical incidence and deviation-angle adjustments to the relative flow angles of the computed velocity diagrams. The blade elements are defined and stacked within the aerodynamic solution interation so that the velocity diagrams can be computed at the blade edges.

The input to the design code consist of flow-path geometry, overall total pressure ratio, mass flow, rotative speed, distribution of energy per stage, blade geometry, and axial location of blade rows in the flowpath. The output includes (1) overall design point summary for the compressor and each blade row, (2) blade-element parameters for each blade row, and (3) coordinates for plane sections through the blades that are convenient for manufacturing purposes.

The aerodynamic design details are discussed in this section under various subheadings to allow the reader to readily locate the discussion about a particular design parameter.

Flowpath

The selected flowpath geometry was based on the following considerations: (1) blade loading level, (2) overall and local meridional velocity diffusion, and (3) compressor mass flow.

The flow path with blades for compressor 74A is shown in figure 1. The flow path's mean radius increases with increased axial distance. This increase tends to reduce the drop in meancorrected rotor-wheel speed for downstream stages, which reduces downstream blade loading. Flowpath hub radius increased smoothly between compressor inlet and outlet. Tip radius sharply decreased across the rotors. This caused tip flowpath curvature, as viewed from the rotational axis, to be

Tip axial	Tip	Hub axial	Hub
coordinates,	radius,	coordinates,	radius,
cm	cm	CM	cm
-12,733	25.654	-12,733	9,728
-5, 113	25.654	-5.113	10,986
1. 237	25.654	033	12.497
1.999	25.603	2.507	13.411
2.507	25, 552	5.047	14, 224
3.777	25, 324	7.587	14,986
5.047	25.070	10, 127	15,687
5, 936	24, 943	12.667	16, 337
8,476	24.790	14.572	16,789
14, 445	24.765	17.112	17.297
15, 207	24.676	19,779	17,793
15.778	24. 575	23.078	18, 337
16.477	24,460	25. 237	18,644
17.493	24, 301	27.920	18,999
19,779	24, 194	29.952	19.253
23.081	24, 194	32, 131	19.520
24, 732	24,130	34,036	19.736
25, 113	24.067	35, 745	19.926
25, 603	24.003	38,067	20,155
26. 637	23, 813	40.777	20.371
27.272	23.736	41, 877	20.422
30, 574	23, 660	43, 147	20,472
31.387	23.660		
32.352	23,660		
32.987	23.622	1	
33.409	23, 559		
34,003	23, 457		
34, 511	23.419		
35, 908	23.393		
37.254	23.381		
39.218	23, 287		1
39.464	23, 261	[
39,718	23, 223		
39.896	23, 198	1	
40.607	23.175		
43 147	23.101		ŀ

Figure 1.-Flowpath for compressor 74A.

concave at each rotor inlet and convex at each rotor outlet. For each rotor tip region the resulting axial distribution of tip flow-path curvature reduced tip region velocity diffusion and, hence, rotor blade loading.

For the three-stage configuration of compressor 74A, the flowpath was altered downstream of stator 3 (fig. 2). The annulus downstream of stator 3 was modified to maintain similar design flow conditions at the stator 3 outlet. Design staticpressure distributions at the stator 3 outlet are shown in figure 3 for both the three- and five-stage configurations. These static pressures match within experimental data measurement accuracy. **Blade spacing.**—Axial spacing in research compressors is often a compromise between (1) the large blade row spacing needed for reliable interstage survey instrumentation and (2) close coupled blade rows of typical flight engine compressors. Since the emphasis was on good efficiency and range, close-coupled blade rows were selected to avoid the losses associated with large blade row spacing.

For a constant aerodynamic chord, axial spacing is higher in the tip region than the hub region, because rotor setting angle increases with radius. Thus, for a given axial length, either rotor or stator tip chord can be increased to reduce tip blade loading. For stators 1 and 2 tip chord was increased

coordinates, cm rac c -12, 733 25, -5, 113 25, 1, 237 25, 1, 999 25, 2, 507 25, 25, 777 25, 777<	lius, m 654 654 654 603 552 324 070	coordin cm -12, 73 -5, 11 -, 03 2, 50 5, 04 7, 58	ates, 33 13 33)7 47	radius, cm 9,728 10,986 12,497 13,411
cm c -12. 733 25. -5. 113 25. 1. 237 25. 1. 999 25. 2. 507 25. 2. 777 25.	m 654 654 603 552 324 070	-12, 73 -5, 11 -, 03 2, 50 5, 04 7, 58	33 13 33)7 47	cm 9,728 10,986 12,497 13,411
-12, 733 25, -5, 113 25, 1, 237 25, 1, 999 25, 2, 507 25, 2, 777 25	654 654 603 552 324 070	-12, 73 -5, 11 -, 03 2, 50 5, 04 7, 58	33 13 33 07 47	9,728 10,986 12,497 13,411
-5. 113 25. 1. 237 25. 1. 999 25. 2. 507 25. 2. 777 25.	654 654 603 552 324 070	-5, 11 -, 03 2, 50 5, 04 7, 58	13 33 07 47	10, 986 12, 497 13, 411
1. 237 25. 1. 999 25. 2. 507 25. 2. 777 25.	654 603 552 324 070	03 2.50 5.04 7.58	33 07 47	12.497 13.411
1.999 25. 2.507 25. 2.777 25.	603 552 324 070	2.50 5.04 7.58	07 47	13.411
2.507 25.	552 324 070	5.04 7.58	47	1/ 22/
2 777 25	324 070	7.58		14. 27.4
5.111 25.	070		37	14,986
5.047 25.		10, 12	27	15,687
5.936 24.	943	12,60	67	16.337
8.476 24.	790	14.5	72	16,789
14.445 24.	765	17.11	12	17.297
15.207 24.	676	19.77	79	17,793
15.778 24.	575	23.07	78	18, 337
16.477 24.	460	25.23	37	18,644
17.493 24.	301	27.92	20	18, 999
19.779 24.	194	29.95	52	19, 253
23,081 24.	194	32, 13	31	19.322
24.732 24.	130	34.03	36	19, 441
25.113 24.	067	35.74	16	19,482
25.603 24.	003	38,06	57	19, 507
26.637 23.	813	40.77	17	19, 507
27.272 23.	736	41.87	77	19, 507
30.574 23.	660	43.14	17	19.512
31.387 23.	660			
32.352 23.	660			
32.987 23.	658			
33.409 23.	658			
34.003 23.	658			
34,511 23.	658		1	
35,908 23.	658			
37.254 23.	658			
39.218 23.	658			
39.464 23.	658		1	
39.718 23.	658		1	
39.896 23.	658			
40.607 23.	658			
43.147 23.	658			

Figure 2.-Flowpath for inlet stage group of compressor 74A.

Figure 3.-Design static pressures at stator 3 trailing edge.

because stator tip loading is much higher than rotor tip loading and because the stator tip must operate over a wide range of incidence angles and loading when the rotor operates off design.

Blade aspect ratio.—In the selection of blade aspect ratio, the following were considered: (1) part span dampers, (2) solidity (enough to allow high blade loading levels), (3) rotor-stator chord requirements per stage, and (4) axial compressor length.

The selected aspect ratio, solidity, and number of blades are listed in table I for each blade row. The blade aspect ratios were low enough to eliminate the need for rotor part-span dampers. The selected low-aspect-ratio, moderate solidity blading allowed high loading or pressure rise per stage. Therefore, fewer blades and stages were required to achieve the overall pressure ratio.

For a stage where the rotor and stator loading are about equal, the rotor tended to require more flow guidance or blade chord to achieve efficient blade loading. For each stage the rotor aspect ratio was lower than the corresponding stator aspect ratio. The inequality of rotor and stator aspect ratios for each stage was expected to give better performance than a similar stage having equal rotor and stator aspect ratios.

Flow blockage.—To properly match the stages flow blockage is applied to the annular flow throughout the flow field. The flow blockage is associated with end-wall boundary layers, blade thickness, blade wakes, and secondary flow. The blockage factor for compressor 74A, expressed as a fraction of local annular area, was equally applied to the flow-path hub and tip. Total blockage (see fig. 4) increases from 0.04 at the rotor 1 inlet to 0.14 at the stator 5 outlet.

Velocity Diagrams

4

Reaction.—The individual stage reaction level is set by the rotor inlet design absolute flow angle. Positive inlet absolute flow angle (preswirl) causes the stage reaction level to decrease. Stage preswirl unloads selected rotor blade elements

Figure 4.-Total blockage factors applied to flowpath.

or reduces the inlet relative Mach number at selected rotor elements. When preswirl is used, the stator loading and stator inlet absolute Mach number usually increase.

No preswirl was used for compressor 74A. The reaction (the ratio of rotor to stage static pressure) was high (greater than 0.85) for all stages.

Axial energy distribution.—In a multistage compressor, consideration is given to both the axial and radial energy distribution. Good energy distribution is important to the efficiency of a wide range of compressor operations.

During operation along a constant speed line, a multistage compressor tends to pivot about its middle stages with the inlet and outlet stages forced into off-design operation. Generally, a stage designed for low blade loading or energy addition has a wider range of efficient operation than a stage designed for a high energy addition. Therefore, the axial energy addition for compressor 74A is highest for the stage 3 and lowest for stages 1 (inlet) and 5 (outlet). Figure 5 shows the selected stage energy addition.

Radial energy distributions.—For each stage the radial energy distribution is determined from its rotor energy input. The radial energy distribution is typically selected to alleviate high blade-element loading on a some particular blade row for some portion of the blade span. If the whole blade row span is under high loading, an adjustment to the compressor axial energy distribution may be needed to reduce the loading.

For compressor 74A the blade exit radial energy distribution was set by the specification of radially constant total pressure distributions at the rotor exits. The total pressure ratio of a rotor blade element, therefore, must compensate for pressure losses from the preceeding stator blade element. Thus,

Figure 5.-Axial energy addition fraction per stage.

both rotor and stator radial loss gradients contribute to radial gradients in rotor energy addition. Generally, the higher endwall blade losses result in higher energy addition in the rotor hub and tip regions.

Loss Model

The loss model is based on correlations from relevant experimental data for single stages with blading which is similar to the blading of compressor 74A. The two correlations, profile loss and shock loss, are based on the data from references 2 to 11. Loss correlations were applied to all blading of 74A except the inlet guide vanes (IGV). For the IGV's, a radially constant 2 percent drop in total pressure is used.

Profile losses.—Profile losses were based on a correlation that relates the total-pressure profile loss parameter to diffusion factor and percent of blade span (ref. 12). With the data of references 2 to 11 used as input, separate profile loss correlations were obtained for rotors and stators (see figs. 6 and 7). The loss correlations indicated the following trends: (1) profile losses increase with increasing blade loading diffusion factor and (2) generally, for a constant diffusion factor value, profile losses are highest in the blade hub and tip regions.

Shock losses.—The shock loss is attributed to a strong shock wave which eminates from the suction surface of the adjacent blade. Shock losses were obtained from a simple correlation which relates relative total pressure shock loss parameter to

Figure 6.-Rotor profile losses. (See eqs. (B13) and (B21).)

Figure 7.-Stator profile losses. (See eqs. (B13) and (B21).)

blade element relative inlet Mach number. With the data of references 2 to 11 as input, a single shock loss correlation was established for rotors and stators (fig. 8). This shock loss correlation predicts a shock loss parameter increase with increased blade inlet relative Mach number.

Blade Design

The basic goal of a blade design is to establish a blade shape that efficiently produces the required velocity diagrams at the blade inlet and outlet. The parameters which specify bladeelement shape are (1) the incidence and deviation angles and (2) the blade camber and thickness distributions along the blade-element chord.

A circular arc blade shape is established in the compressor design computer code (ref. 1). The blade elements are defined

Figure 8.-Shock loss correlation.

on conical surfaces which pass through the blade streamline locations (fig. 9). Each blade element is composed of two segments. The blade centerline (mean camber line) and the two surfaces of each segment have a constant change of angle with path distance (fig. 10). A blade element is completely specified by the following: leading- and trailing-edge angles, K_{le} and K_{te} , and radii, R_{le} and R_{te} ; maximum thickness T_m ; location of maximum thickness C_m and transition point C_T ; and the turning rate ratio C_1/C_2 . When $C_1 \neq C_2$, the blade element shape is described as multiple circular arc (MCA). When $C_1 = C_2$ and the maximum thickness is at midchord, the blade shape is a double circular arc (DCA).

After the blade elements are defined, they are stacked about their centers of area along a prescribed stacking line. For manufacturing purposes fabrication coordinates are given on planes perpendicular to a radial line through the hub stacking point.

Incidence angle.—The incidence angles were selected to obtain minimum loss at design flow conditions. The incidence angles of similar blade rows (refs. 2 to 11) were examined for minimum loss values and applied to the current 74A design. For the three rotors of the inlet stage group, the design suction-surface incidence angles are all 0. For the stators the design suction-surface incidence angles were from -1.0° to -3.0° . Generally, lower suction-surface incidence angles are set at 0 relative to the blade mean camber line.

The selected rotor incidence angles were compared with those calculated by a method described in reference 13. This method, which is valid for free-stream Mach numbers above 1.0, requires that suction-surface incidence angle be set at a point that is one-half the distance to the first captured shock wave such that capture area ratio equals unity. This method was intended to control the shock wave pattern (fig. 11) and

Figure 9.--Conical coordinate system for blade-element layout.

minimize shock loss. The selected design rotor incidence angles were within 1.0° of the calculated incidence angles (ref. 13), and all produce capture area ratios above unity and

generally within 7 percent of unity. **Deviation angle.**—Rotor and stator design deviation angles are based on experimental deviation angles measured near the design operating conditions (refs. 2 to 11). For the IGV design deviation angles are 0. The selected design rotor and stator deviation angles are higher, especially at the tip and hub, than those obtained using Carter's rule. Figure 12 shows the rotor and stator deviation angle adjustment factors which were added to Carter's rule deviation angles to get the selected design deviation angles.

Blade shape.—Thin blades were selected for improved aerodynamic performance. Blade thicknesses are sufficient for acceptable manufacturing tolerance and structural integrity. All rotor and stator blades for compressor 74A are thickest at midchord and have small leading-edge wedge angles. Blades having low inlet relative Mach numbers (all stators and rotor 3), were of double circular arc (DCA) shape. Blades having supersonic inlet relative Mach numbers (the midspan to tip regions of rotors 1 and 2) were of multiple circular arc (MCA)

Figure 11.—Extended wave pattern ahead of supersonic cascade with curved entrance region AB.

Figure 12.-Deviation adjustment factors added to Carter's rule.

shape. The MCA blade shape reduces suction surface turning and improves inlet shock wave pattern, resulting in less loss. The MCA blade shapes are specified by rotor blade-element inlet to outlet mean camber line turning ratios of less than 1.0. Design turning rate ratio and choke margin are plotted in figures 13 and 14. For rotor 1, which has the highest tip region inlet relative Mach number, the tip region turning rate ratio was reduced in an attempt to minimize the shock losses.

Aerodynamic Design Tables

The aerodynamic design tables provide a complete detailed numerical documentation of the aerodynamic design. They are computer generated from the compressor design program output. Tables II and III list design overall stage parameters for all five stages of compressor 74A. Tables IV and V list radial distributions of blade aerodynamic and geometric parameters for the inlet stage group (first three stages) of compressor 74A. Appendix C gives the definitions and units used in the design tables.

Mechanical Design

Blade stress and vibration information is presented for the inlet stage group. The rotor blades were made of titanium (TI-GAL-4V), and the stator blades of maraging steel (18 NI 200).

Blade Stress

Goodman diagrams are in figure 15. Factors of safety (yield strength divided by calculated combined maximum stress at design speed) are in table VI. For all rotor blades the combined stress was minimized by stacking the blade elements at

Figure 13.-Rotor blade element turning rate ratio.

Figure 14.-Rotor blade element choke margin.

design speed to counterbalance the bending moments of steadystate aerodynamic forces and centrifugal force. Rotor 1 blades have the highest calculated maximum stress, which equals about half of the yield strength. The stator blades all have low maximum stresses of less than 10 percent of yield strength.

Blade Vibration

The Campbell diagrams of figure 16 show that the rotor blade resonance curves intersect the excitations per revolution lines at those rotational speeds which cause possible rotor blade vibration problems. For all the rotor blades the first bending resonance curve is above the two-excitations-perrevolution line. The first bending resonance curve intersects the four-excitations-per-revolution line at 50 percent speed for rotor 1 and at 90 percent speed for rotor 2. For rotor 3 first blending resonance is above four excitations per revolution.

Apparatus and Procedure

Compressor Test Facility

The multistage compressor test facility is described in detail in reference 14. A schematic diagram of the facility is shown in figure 17. Briefly, atmospheric air enters the test facility at an inlet located on the roof of the building and flows through the flow measuring orifice, through two inlet butterfly throttle valves, and into the plenum chamber upstream of the test compressor. The air then passes through the test compressor and into the collector and exits the collector either to the atmosphere or to an altitude exhaust system. Mass flow is controlled with a sleeve valve in the collector. For this series of tests, both inlet butterfly throttle valves were partially closed to maintain a constant compressor inlet pressure of 5.066 N/cm² and the air was exhausted through the altitude exhaust system.

Figure 15.—Goodman diagrams.

Figure 16.-Campbell diagrams for rotors.

Instrumentation

Two iron-constantan thermocouples were located in the compressor inlet plenum for sensing compressor inlet total temperature. Compressor inlet total pressure was assumed equal to plenum static pressure, which was measured by four manifolded wall static taps located $\sim 90^{\circ}$ apart in the plenum tank. The compressor outlet conditions were determined from measurements obtained from four rakes located $\sim 90^{\circ}$ apart 6.8 cm downstream of the third-stage stator row. Each rake had five total-pressure-total-temperature elements located at 10, 30, 50, 70, and 90 percent span from the outer casing. The thermocouple material for the rakes was Chromel-constantan.

Static pressures at each rake element location were interpreted from a linear variation between the inner and outer wall static-pressure measurements. The compressor mass flow was determined with a standardized ASME thin-plate orifice. An electronic speed counter, with a magnetic pickup, was used to measure rotative speed (rpm). The estimated errors of the data, based on inherent accuracies of the instrumentation and recording system, are as follows:

Mass flow, kg/sec	±0.3
Temperature, K	±0.6
Inlet total pressure, N/cm ²	±0.1
Outlet total pressure, N/cm ²	±0.41
Outlet static pressure, N/cm ²	±0.41
Rotative speed, rpm	± 30

Test Procedure

Data were recorded at 60, 70, 80, 85, 90, 95, and 100 percent of design speed. At each speed data were recorded over a range of flows from maximum flow to stall. The stall points were established by increasing the back pressure until stall occurred. Stall was indicated by a significant drop in outlet total pressure, an increase in audible noise level, and a large increase in rotor stress levels.

Data Reduction Procedure

The overall compressor performance is based on average conditions in the plenum tank and mass-averaged values of total pressure and total temperature at the compressor outlet. The rake temperatures were corrected for Mach number. All performance parameters were corrected to standard-day conditions based on plenum measurements.

Overall Performance Results

The overall performance of the inlet stage group of compressor 74A, for three IGV-stator setting angle schedules, are presented in figures 18 to 22.

Design IGV-Stator Setting Angles

The performance of the compressor at design IGV-stator settings is presented in figure 18. At design speed the compressor overflows and does not achieve its design efficiency. Significant deterioration occurred above 90 percent of design speed.

Figure 18.—Performance of first three stages of compressor 74A at design IGV-stator setting angles.

Figure 20.—Schematic of blade rows with positive direction of vane reset specified.

Figure 21.—Performance of first three stages of compressor 74A at optimized IGV-stator setting angles for maximum efficiency at design speed.

Because the large overflow (9.1 percent of design flow) at design speed was inconsistent with past experience in predicting choke margin for transonic rotors, a confirmation of the overflow was undertaken. The three-dimensional blade row analysis code developed by Denton (ref. 15) was applied to rotor 1. Previous experience with the Denton code on another transonic, low aspect ratio axial blade row had yielded excellent agreement between calculated and measured choke flow rate. Figure 19 shows measured and calculated rotor-exit tip static pressure versus flow. The calculation indicates that the first rotor did actually overflow by the amount indicated by the measurements.

Optimized IGV-Stator Setting Angles

A vane reset optimization computer program developed by Pratt & Whitney Aircraft under contract to the United States Air Force (ref. 16) was used to reset the vanes for optimum compressor adiabatic efficiency. The design speed peak adiabatic efficiency was obtained by resetting the IGV's $+15^{\circ}$

Figure 22.—Performance of first three stages of compressor 74A at optimized IGV-stator setting angles for maximum efficiency at each speed shown.

and each stator blade row $+10^{\circ}$ (fig. 20). Compressor performance for this reset schedule is presented in figure 21. At design speed the compressor operated at design flow and reduced total pressure ratio; and, adiabatic efficiency increased ~6 points to about 0.86. Between 85 and 100 percent of design speed, efficiency was improved, but below 85 percent of design speed, efficiency deteriorated rapidly.

The IGV-stator settings, optimized for maximum overall adiabatic efficiency, were next determined for each part speed. The reset schedules and the compressor performance are presented in figure 22 for each speed. Adiabatic efficiency exceeded 0.86 over entire performance map and peaked at ~ 0.90 at 70 percent design speed. Excellent stall margin was obtained at all speed lines.

Remarks

For the core inlet stage group (first three stages), the detailed blade-element design was dependent on shock and profile loss correlations and incidence and deviation angles based on single-stage data from similar blading. It is not known how a multistage environment affects a single-stage data application. Comparisons of blade-edge test data with the design parameters may reveal the suitability of single-stage data to multistage designs.

For multistage designs, especially those with highly loaded stages, a good design (which enables the compressor to perform as designed) is essential to good performance. Off-design operation of a stage forces the next stage into off-design operation. Highly loaded stage performance deteriorates rapidly at off-design operation. Stage matching techniques such as the use of stator reset can be used to improve the performance of a poorly designed compressor, but stage matching is not a substitute for good compressor design. In fact, a very good design would eliminate the need for stage matching.

This report suggests a building block approach to the design of advanced compressors whereby individual stage groups are designed and evaluated. The best matched inlet, middle, and exit stage groups would be selected for the complete compressor. This approach reduces design time and cost and permits the substitution of stage groups. For example the inlet stage group could be considered for both an axial flow and centrifugal flow configuration. However, the success of this approach requires that the individual stage groups match well in the environment of the complete compressor. To the extent that the matching of stage groups is similar to the matching of stages to form a stage group, a good design of each stage group appears essential to minimize matching problems. The difficulty of designing a good stage group from single-stage data, may be a preview to the difficulty of designing a complete compressor with good performance from stage groups.

Summary of Results

This report presented the design of the advanced axial flow core compressor 74A. The first three stages were fabricated and experimentally evaluated. Overall performance tests were conducted. The principal test results are

1. At design IGV-stator setting angles and speed, design pressure ratio was obtained at a flow higher than design flow and an adiabatic efficiency 2 percentage points less than design.

2. For IGV-stator setting angles optimized for maximum adiabatic efficiency, a peak adiabatic efficiency of 0.86 was obtained at design speed near design flow. At part speeds peak adiabatic efficiencies were 0.87 to 0.89 with reset IGV and stator blades.

Lewis Research Center National Aeronautics and Space Administration Cleveland, Ohio, February 1986

Appendix A

•		σ
A _{an}	annulus area at blade leading edge, m ²	θ
A_f	frontal area at blade leading edge, m ²	Ū
A/A*	critical area ratio	κ
С	blade surface segment change of angle with path distance, cm^{-1}	au
с	blade chord, cm	- ф
C_p	specific heat at constant pressure, m ² /(sec ² K)	Ψ
Ď	diffusion factor	- w
i	incidence angle, deg	<u>.</u>
K	local blade angle with respect to meridional direction, deg	$\overline{\omega}_s$
М	Mach number	Sul
Ν	rotative speed, rpm	Sui
Р	total pressure, N/cm ²	ad
р	static pressure, N/cm ²	au
R	radial coordinate on blade element layout cone, cm	d
r	radius, cm	id
5	path distance on blade element layout cone, cm	le
Τ	total temperature, K	m
t	blade element thickness, cm	mc
U	wheel speed, m/sec	mi
V	velocity, m/sec	р
W	mass flow, kg/sec	r
α	angle of streamline with respect to axial direc- tion, deg	ss t
β	air angle, angle between air velocity and axial direction, deg	te tot
β_c^1	relative meridional air angle based on blade ele- ment core angle, deg	tr 7
γ	ratio of specific heats	2. A
λε	blade chord angle, deg	1
δ	ratio of total pressure to standard pressure of 10.13 N/cm^2	2
δ°	deviation angle, angle between exit air direction and tangent to blade mean camber line at trailing edge, deg	Su
e	angular coordinate on blade element layout cone,	,
	rad	

η		efficiency
σ		solidity
θ		ratio of total temperature to standard temperature of 288.2 $\rm K$
κ		blade angle relative to local conic ray (fig. 9)
τ		temperature rise coefficient
Φ	•	flow coefficient
ϕ		camber angle, deg
Ψ	r	head rise coefficient
$\overline{\omega}$		total loss coefficient
$\bar{\omega}$	p	profile loss coefficient
ω	s	shock loss coefficient
S	ubscrip	ots:
a	d	adiabatic
с		blade element centerline on cone
d		design
ic	t	ideal
le	e	leading edge
n	1	meridional direction
n	nc	blade mean line
n	nin	minimum
р	•	polytropic
r		ratio
S	s	suction surface
t		tip
te	e	trailing edge
te	ot	total
ti	r	transition point
z		axial direction
θ)	tangential direction
1	l	inlet blade segment
2	2	outlet blade segment

Superscript:

relative to blade

Appendix B

(B1)

Equations

Equivalent mass flow-

 $\frac{w\sqrt{\theta}}{\delta}$

Equivalent speed-

 $\frac{N}{\sqrt{\theta}}$ (B2)

Mass flow per unit annulus area-

 $\frac{w\sqrt{\theta}}{\delta A_{an}} \tag{B3}$

Mass flow per unit frontal area-

$$\frac{\mathrm{w}\sqrt{\theta}}{\delta A_f} \tag{B4}$$

Flow coefficient-

$$\Phi = \frac{V_z}{(U_t)_{\rm le}} \tag{B5}$$

Head rise coefficient-

$$\Psi = C_p \frac{T_{\rm le}}{U_t^2} \left[\left(\frac{P_{\rm te}}{P_{\rm le}} \right)^{(\gamma-1)/\gamma} - 1 \right]$$

Temperature rise coefficient-

$$\tau = \frac{C_p}{U_t^2} (T_{\rm le} - T_{\rm te})$$

Adiabatic efficiency-

$$\eta_{\rm ad} = \frac{(P_{\rm te}/P_{\rm le})^{(\gamma-1)/\gamma} - 1}{(T_{\rm te} - T_{\rm le}) - 1} \tag{B8}$$

Polytropic efficiency-

$$\eta_p = \frac{\ln (P_{\rm te} - P_{\rm le})^{(\gamma - 1)/\gamma}}{\ln (T_{\rm te}/T_{\rm le})}$$
(B9)

Total loss coefficient-

$$\bar{\omega} = \frac{(P'_{id})_{te} - P'_{te}}{P'_{ie} - p_{le}}$$
(B10)

Profile loss coefficient-

 $\bar{\omega}_p = \bar{\omega} - \bar{\omega}_s \tag{B11}$

Total loss parameter-

 $\frac{\bar{\omega}\cos{(\beta'_m)_{te}}}{2\sigma}$ (B12)

Profile loss parameter—

$$\frac{\bar{\omega}_p \cos{(\beta_m)_{te}}}{2\sigma}$$
(B13)

Suction-surface incidence angle-

$$i_{\rm ss} = (\beta_c^{\prime})_{\rm le} - (\kappa_{\rm ss})_{\rm le} \tag{B14}$$

Mean incidence angle-

$$i_{\rm mc} = (\beta_c)_{\rm le} - (\kappa_{\rm mc})_{\rm le} \tag{B15}$$

Deviation angle-

$$\delta^{\circ} = (\beta_c')_{\text{te}} - (\kappa_{\text{mc}})_{\text{te}}$$
(B16)

Front suction-surface camber-

$$\Phi_{\rm f,ss} = (\kappa_{\rm ss})_{\rm le} - (\kappa_{\rm ss})_{\rm tr} \tag{B17}$$

Total camber--

(B6)

(B7)

$$\Phi_{\rm tot} = (\kappa_{\rm mc})_{\rm le} - (\kappa_{\rm mc})_{\rm le}$$
(B18)

Turning rate ratio-

 (C_1/C_2) (B19)

Minimum choke margin-

$$(A/A^* - 1.0)_{\min}$$
 (B20)

Diffusion factor-

$$D = 1 - \frac{V'_{\rm te}}{V'_{\rm le}} + \frac{(rV_{\theta})_{\rm te} - (rV_{\theta})_{\rm le}}{(r_{\rm te} + r_{\rm le})\sigma(V'_{\rm le})}$$
(B21)

Appendix C Definitions and Units Used in Aerodynamic Design Tables

ABS	absolute
AERO CHORD	aerodynamic chord, cm
BETAM	meridional air angle, deg
CHOKE MARGIN	ratio of flow area greater than critical area to critical area
CONE ANGLE	angle between axial direction and conical surface representing blade element, deg
DELTA INC	difference between mean camber blade angle and suction-surface blade angle at leading edge, deg
DEV	deviation angle (defined by eq. (B16)), deg
D-FACT	diffusion factor (defined by eq. (B21))
EFF	adiabatic efficiency (defined by eq. (B8))
IN	inlet (leading edge of blade)
INCIDENCE	incidence angle (suction surface defined by eq. (B14)) and mean by eq. (B15)), deg
KIC	angle between blade-element mean camber line on conical surface at leading edge and meridional plane, deg
KOC	angle between blade-element mean camber line on conical surface at trailing edge and meridional plane, deg
КТС	angle between blade-element mean camber line on conical surface at transi- tion point and meridional plane, deg
LOSS COEFF	loss coefficient (total defined by eq. (B10) and profile by eq. (B11))
LOSS PARAM	loss parameter (total defined by eq. (B12) and profile by eq. (B13))
MERID	meridional
MERID VEL R	meridional velocity ratio
OUT	outlet (trailing edge of blade)
PERCENT SPAN	percent of blade span from tip reference to rotor one outlet
PHISS	suction-surface camber ahead of assumed shock location, deg

PRESS	pressure, N/cm ²
PROF	profile
RADII	radius, cm
REL	relative to blade
RI	inlet radius (leading edge of blade), cm
RO	outlet radius (trailing edge of blade), cm
RP	radial position
RPM	equivalent rotative speed, rpm
SETTING ANGLE	angle between blade-element aerodynamic chord on conical surface and meridional plane, deg
SOLIDITY	ratio of aerodynamic chord to blade spacing
SPEED	speed, m/sec
SS	suction surface
STREAMLINE SLOPE	slope of streamline, deg
TANG	tangential
TEMP	temperature, K
TI	thickness of blade at leading edge, cm
ТМ	thickness of blade at maximum thick- ness, cm
ТО	thickness of blade at trailing edge, cm
TO TOT	thickness of blade at trailing edge, cm total
TO TOT TOTAL CAMBER	thickness of blade at trailing edge, cm total difference between inlet and outlet blade- element angles on mean camber lines, deg (KIC-KOC)
TO TOT TOTAL CAMBER TURNING RATIO	thickness of blade at trailing edge, cm total difference between inlet and outlet blade- element angles on mean camber lines, deg (KIC-KOC) ratio of mean camber line curvatures upstream and downstream of transition point
TO TOT TOTAL CAMBER TURNING RATIO VEL	thickness of blade at trailing edge, cm total difference between inlet and outlet blade- element angles on mean camber lines, deg (KIC-KOC) ratio of mean camber line curvatures upstream and downstream of transition point velocity, m/sec
TO TOT TOTAL CAMBER TURNING RATIO VEL WT FLOW	 thickness of blade at trailing edge, cm total difference between inlet and outlet blade-element angles on mean camber lines, deg (KIC-KOC) ratio of mean camber line curvatures upstream and downstream of transition point velocity, m/sec equivalent weight flow, kg/sec
TO TOT TOTAL CAMBER TURNING RATIO VEL WT FLOW ZI	 thickness of blade at trailing edge, cm total difference between inlet and outlet blade-element angles on mean camber lines, deg (KIC-KOC) ratio of mean camber line curvatures upstream and downstream of transition point velocity, m/sec equivalent weight flow, kg/sec axial distance to blade leading edge, cm
TO TOT TOTAL CAMBER TURNING RATIO VEL WT FLOW ZI ZMC	 thickness of blade at trailing edge, cm total difference between inlet and outlet blade-element angles on mean camber lines, deg (KIC-KOC) ratio of mean camber line curvatures upstream and downstream of transition point velocity, m/sec equivalent weight flow, kg/sec axial distance to blade leading edge, cm axial distance to blade maximum thickness point, cm
TO TOT TOTAL CAMBER TURNING RATIO VEL WT FLOW ZI ZMC	 thickness of blade at trailing edge, cm total difference between inlet and outlet blade-element angles on mean camber lines, deg (KIC-KOC) ratio of mean camber line curvatures upstream and downstream of transition point velocity, m/sec equivalent weight flow, kg/sec axial distance to blade leading edge, cm axial distance to blade maximum thickness point, cm axial distance to blade trailing edge, cm

- 1. Crouse, James E.; and Gorrell, William T.: Computer Program for Aerodynamic and Blading Design of Multistage Axial-Flow Compressors. NASA TP-1946, 1981.
- Hager, Roy D.; Janetzke, David C.; and Reid, Lonnie: Performance of a 1380-Foot-per-Second-Tip-Speed Axial-Flow Compressor Rotor with a Blade Tip Solidity of 1.3. NASA TM X-2448, 1972.
- Janetzke, David C.; Ball, Calvin L.; and Hager, Roy D.: Performance of a 1380-Foot-per-Second-Tip-Speed Axial-Flow Compressor Rotor with Blade Tip Solidity of 1.1. NASA TM X-2449, 1972.
- Ball, Calvin L; Janetzke, David C.; and Reid, Lonnie: Performance of a 1380-Foot-per-Second-Tip-Speed Axial-Flow Compressor Rotor with Blade Tip Solidity of 1.5. NASA TM X-2379, 1972.
- Reid, Lonnie; and Kovich, George: Overall and Blade Element Performance of a Transonic Compressor Stage with Multiple-Circular-Arc Blades at Tip Speed of 419 Meters per Second. NASA TM X-2731, 1973.
- Kovich, George; Moore, Royce D.; and Urasek, Donald C.: Performance of Transonic Fan Stage with Weight Flow per Unit Annulus Area of 198 Kilograms per Second per Square Meter (40.6 (lb/sec)/ft²). NASA TM X-2905, 1973.
- Moore, Royce D.; and Reid, Lonnie: Performance of a Single-Stage Axial-Flow Transonic Compressor Stage with a Blade Tip Solidity of 1.7. NASA TM X-2658, 1972.
- Urasek, Donald C.; Moore, Royce D.; and Osborn, Walter M.: Performance of a Single Stage Transonic Compressor with a Blade Tip Solidity of 1.3. NASA TM X-2645, 1972.
- 9. Moore, Royce D.; Urasek, Donald C.; and Kovich, George: Performance of Transonic Fan Stage with Weight Flow Per Unit Annulus Area of

178 Kilograms per Second per Square Meter (36.5/lb/sec)/(ft²)). NASA TM X-2904, 1973.

- Osborn, Walter M.; Urasek, Donald C.; and Moore, Royce D.: Performance of a Single-Stage Transonic Compressor with a Blade Tip Solidity of 1.5 and Comparison with 1.3 and 1.7-Solidity Stages. NASA TM X-2926, 1972.
- Urasek, Donald C.; Kovich, George; and Moore, Royce D.: Performance of Transonic Fan Stage with Weight Flow Per Unit Annulus Area of 208 Kilograms per Second per Square Meter (42.6 (lb/sec)/ft²). NASA TM X-2903, 1973.
- Lieblein, Seymour; Schwenk, Francis C.; and Broderick, Robert L.: Diffusion Factor for Estimating Losses and Limiting Blade Loadings in Axial-Flow-Compressor Blade Elements. NACA RM-E53 DO1, 1953.
- Messenger, H.E.; and Kennedy, E.E.: Two Stage Fan. 1: Aerodynamic and Mechanical Design. (PWA-4148, Pratt & Whitney Aircraft; NASA Contract NAS3-13494) NASA CR-120859, 1972.
- Cunnan, Walter S.; Stevens, William; and Urasek, Donald C.: Design and Performance of a 427-Meter-per-Second-Tip-Speed Two-Stage Fan Having a 2.40 Pressure Ratio. NASA TP-1314, 1978.
- Denton, J.D.: An Improved Time Marching Method for Turbomachinery Flow Calculations. J. Eng. Power, vol. 105, no. 3, July 1983, pp. 514-524.
- Garberoglio, J.E.; Song, J.O.; and Boudreaux, W.L.: Optimization of Compressor Vane and Bleed Settings—User's Manual. AFWAL-TR-82-2078, Air Force Wright Aeronautical Lab, 1981. (AD-A119379.)

TABLE I.—BLADE ROW PARAMETERS

Blade row	Aspect ratio	Tip solidity	Number of blades
IGV	2.22	1.00	26
Rotor 1	1.45	1.35	28
Stator 1	1.53	1.42	34
Rotor 2	1.17	1.25	32
Stator 2	1.43	1.28	46
Rotor 3	1.04	1.21	39
Stator 3	1.19	1.23	54
Rotor 4	1.01	1.14	49
Stator 4	1.15	1.13	64
Rotor 5	1.02	1.09	62
Stator 5	1.11	1.08	74

TABLE II.—DESIGN OVERALL PERFORMANCE PARAMETERS FOR CORE COMPRESSOR 74A

Parameters	First three stages	Compressor 74A
Total pressure ratio	4.474	9.271
Total temperature ratio	1.663	2.095
Adiabatic efficiency	0.799	0.797
Polytropic efficiency	0.836	0.848
Mass flow per unit annulus area	193.173	193.173
Mass flow	29.710	29.710
Equivalent rotative speed, rpm	16 042.3	16 042.3
Tip speed, m/sec	430.29	430.291

TABLE III.-DESIGN OVERALL STAGE PERFORMANCE PARAMETERS

Parameter	Inlet guide	Stage 1	Stage 2	Stage 3	Stage 4	Stage 5
	vane					
Rotor total pressure ratio	0.980	1.792	1.691	1.613	1.506	1.416
Stage total pressure ratio	0.980	1.743	1.654	1.581	1.483	1.399
Rotor total temperature ratio	1.000	1.209	1.181	1.159	1.133	1.110
Stage total temperature ratio	1.000	1.209	1.181	1.159	1.133	1.110
Rotor adiabatic efficiency	0	0.867	0.890	0.903	0.909	0.911
Stage adiabatic efficiency	0	0.823	0.849	0.863	0.873	0.877
Rotor polytropic efficiency	0	0.877	0.897	0.909	0.914	0.915
Stage polytropic efficiency	0	0.836	0.859	0.872	0.880	0.883
Rotor head rise coefficient	0	0.283	0.327	0.366	0.376	0.368
Stage head rise coefficient	0	0.269	0.312	0.350	0.361	0.355
Flow coefficient	0	0.464	0.477	0.484	0.500	0.512
	Compre	essor inlet equ	ivalent values			
Mass flow per unit frontal area	143.896	144.153	154.041	161.706	168.937	173.677
Mass flow per unit annulus area	172.954	189.310	276.435	385.163	528.411	691.489
Mass flow	29.710	29.710	29.710	29.710	29.710	29.710
Rotative speed, rpm	16 042.300	16 042.300	16 042.300	16 042.300	16 042.300	16 042.300
Tip speed	430.675	430.291	416.252	406.267	397.477	392.015
	Stag	e inlet equiva	lent values			
Mass flow per unit frontal area	143.896	147.095	99.144	68.381	48.640	35.876
Mass flow per unit annulus area	172.954	193.173	177.919	162.876	152.140	142.838
Mass flow	29.710	30.317	19.122	12.564	8.554	6.137
Rotative speed, rpm	16 042.300	16 042.300	14 590.673	13 427.144	12 469.871	11 716.563
Tip speed	430.675	430.291	378.586	340.039	308.963	286.310

TABLE IV.-DESIGN-BLADE ELEMENT PARAMETERS

(a) Inlet guide wave

RP PP 1234567890111HU RP PP 1234	KAU IN 25.636 25.065 24.411 23.082 21.713 20.308 18.857 17.347 15.764 14.082 12.265 11.295 10.508 ABS IN 172.7 172.3 171.9 171.0 170.1	¹¹ 0UT 25.712 25.147 24.520 23.259 20.683 19.367 18.018 16.623 15.171 13.641 12.840 12.139 VEL 0UT 185.9 186.5 187.2 189.3 191.1	AB5 IN .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	VEL OUT 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	HERI 172.7 172.3 171.0 170.1	D VEL 0UT 00 00 00 00 00 00 00 00 00 00 00 00 00	UIT IN 288.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	AL IEMP RATIO 1.000	IUIAL IN 10.14	- FRESS RATIO .980 .980 .980 .980 .980 .980 .980 .980
5 6 7 8 9 10 11 HUB	169.0 167.5 165.6 162.9 159.4 154.8 152.1 149.9	192.2 192.5 191.8 189.9 186.6 181.3 177.6 174.5	169.0 167.5 165.6 162.9 159.4 154.8 152.1 149.9	192.2 192.5 191.8 189.9 186.6 181.3 177.6 174.5	169.0 167.5 165.6 162.9 159.4 154.8 152.1 149.9	192.2 192.5 191.8 189.9 186.6 181.3 177.6 174.5	.0 .0 .0 .0 .0 .0 .0	.0 .0 .0 .0 .0 .0 .0	.0 .0 .0 .0 .0 .0	.0 .0 .0 .0 .0 .0 .0 .0
RP T IP 234 567 89 10 11 HUB	ABS M IN .521 .518 .518 .513 .505 .498 .490 .479 .465 .456 .449	ACH NO OUT .563 .565 .568 .584 .580 .585 .585 .585 .585 .585 .548 .537 .527	REL M. IN .521 .518 .513 .505 .478 .478 .479 .465 .456 .456	ACH ND DUT .563 .565 .568 .580 .584 .585 .585 .585 .585 .585 .565 .548 .576 .565 .548 .537 .527	MERID M IN .521 .518 .516 .513 .509 .505 .498 .490 .479 .465 .456 .449	ACH NO OUT .563 .565 .568 .574 .580 .584 .585 .582 .576 .548 .527 .527	STREAML 1 IN .15 .50 .89 1.58 2.30 3.11 4.05 5.15 6.47 8.07 9.99 11.08 11.96	INE SLOPE OUT .49 .31 .23 .68 1.60 2.91 4.53 6.46 8.73 11.43 14.87 17.01 18.89	HERID VEL R 1.076 1.082 1.087 1.123 1.123 1.138 1.149 1.155 1.170 1.171 1.164	PEAK SS MACH NO .521 .520 .518 .513 .509 .505 .498 .490 .479 .465 .449
RP T IP 2 3 4 5 6 7 8 9 10 11 HUB	PERCENT SPAN 00 5.00 20.00 30.00 40.00 60.00 70.00 80.00 90.00 95.00 100.00	INC] MEAN .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	IDENCE SS -11.7 -11.7 -11.7 -11.7 -11.7 -11.6 -11.6 -11.6 -11.6 -11.5 -11.4 -11.3 -11.2 -11.1	DEV .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	D-FACT 076 082 107 123 138 149 158 149 158 170 171 167 164	EFF .000 .000 .000 .000 .000 .000 .000	LOSS TOT .118 .119 .121 .122 .123 .125 .128 .132 .138 .145 .150	COEFF PROF .118 .119 .120 .122 .123 .125 .128 .138 .132 .150 .150 .155	LOSS TOT .060 .057 .055 .052 .044 .044 .044 .042 .039 .035 .033	PARAM PROF .060 .057 .055 .052 .047 .044 .042 .039 .035 .033

(b) Rotor 1

RP 1 2 3 4 5 6 7 8 9 10 11 HUB	RADI IN 25.613 2 25.057 2 24.444 2 23.229 2 20.776 2 19.520 1 18.229 1 16.889 1 15.483 1 13.993 1 13.211 1 12.509 1	I 0UT 44.973 44.468 3.963 22.952 1.941 0.931 9.920 8.909 7.899 6.888 5.877 5.372 4.867	ABS IN .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	BETAM OUT 42.2 42.6 42.9 43.4 43.8 45.4 45.4 46.2 47.1 48.0 49.2 49.9 50.5	REL IN 67.1 65.9 64.7 62.7 60.9 59.3 57.7 56.1 54.5 52.7 50.7 49.5 48.4	BETAM OUT 55.7 55.2 52.0 49.3 45.9 37.0 31.2 24.4 16.6 12.2 7.6	TOTAI IN 288.2 288.2 288.2 288.2 288.2 288.2 288.2 288.2 288.2 288.2 288.2 288.2 288.2 288.2 288.2 288.2 288.2 288.2	L TEHP RATIO 1.232 1.228 1.228 1.212 1.208 1.205 1.205 1.205 1.200 1.197 1.195 1.195 1.194	TOTAL IN 9.93 9.93 9.93 9.93 9.93 9.93 9.93 9.9	PRESS RATIO 1.792 1.792 1.792 1.792 1.792 1.792 1.792 1.792 1.792 1.792 1.792 1.792 1.792 1.792
RP TIP 2 3 4 5 6 7 8 9 10 11 HUB	ABS IN 181.9 188.4 194.5 201.7 205.9 207.6 207.5 205.8 202.6 198.2 192.6 189.4 186.7	VEL 0UT 238.6 237.7 237.2 238.4 240.9 244.7 249.7 255.6 262.7 270.9 280.4 285.9 291.4	REL IN 467.2 451.2 454.4 439.3 423.2 406.1 388.1 368.9 348.7 327.0 303.9 291.7 281.1	VEL 0UT 313.6 305.3 297.1 286.2 250.5 235.1 221.2 209.1 199.0 191.3 188.5 187.0	HERII IN 181.9 188.4 194.5 201.7 205.9 207.6 207.6 207.5 205.8 202.6 198.2 192.6 189.4 186.7	VEL OUT 176.7 174.9 173.8 173.7 174.3 175.2 176.9 181.2 183.3 184.2 185.3	TANU IN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	G VEL OUT 160.4 160.9 161.5 163.7 166.9 171.7 177.9 184.6 192.4 201.4 212.2 218.6 224.9	HHEEL IN 430.3 420.9 410.6 390.2 369.7 349.0 327.9 3062.2 283.7 260.1 235.1 221.9 210.2	SPEED OUT 419.5 411.0 402.6 385.6 368.6 351.6 351.6 334.6 317.7 283.7 266.7 258.2 249.8
RP TIP 2 3 4 5 6 7 8 9 10 11 HUB	ABS MA IN .550 .571 .615 .628 .634 .628 .634 .628 .634 .628 .634 .628 .634 .585 .575 .566	ACH NO OUT .659 .657 .657 .662 .671 .684 .700 .720 .743 .769 .801 .818 .837	REL M. IN 1.414 1.399 1.381 1.339 1.292 1.240 1.185 1.126 1.063 .995 .923 .885 .852	ACH NO OUT .865 .844 .822 .742 .742 .700 .659 .623 .591 .565 .546 .540 .537	MERID N/ IN .550 .571 .615 .628 .634 .634 .634 .628 .634 .634 .628 .634 .628 .535 .566	ACH NO OUT -488 -483 -481 -481 -484 -484 -487 -491 -491 -506 -515 -523 -527 -532	STREAMLI IN -6.75 -5.61 -4.42 -2.32 22 1.91 4.10 6.44 9.00 11.91 15.43 17.58 19.50	NE SLOPE OUT -7.92 -6.24 -4.67 -2.07 .35 2.63 4.86 7.13 9.48 11.96 14.56 15.90 17.24	MERID VEL R .971 .929 .844 .839 .844 .839 .844 .833 .914 .952 .973 .993	PEAK SS MACH NO 1.677 1.663 1.622 1.624 1.613 1.595 1.571 1.550 1.530 1.414 1.347 1.289
RP TIP 2 3 4 5 6 7 8 9 10 11 HUB	PERCENT SPAN 5.00 10.00 20.00 40.00 50.00 60.00 70.00 80.00 90.00 95.00	INCI MEAN 3.1 3.4 4.9 4.9 5.8 6.3 6.3 6.3 6.3 6.3 6.3	IDENCE SS 2 1 0 0 0 0 0 0 0 0 .1	DEV 6.3 6.3 6.2 6.0 6.1 6.6 7.6 9.2 11.4 14.8 17.5	D-FACT .456 .464 .472 .486 .499 .514 .529 .546 .544 .531 .519 .504	EFF .781 .795 .808 .833 .854 .870 .883 .896 .908 .920 .928 .921 .934	LCSS TOT .190 .179 .168 .151 .126 .120 .114 .108 .104 .104 .107 .109	COEFF PROF .067 .058 .053 .045 .046 .052 .059 .066 .073 .093 .103 .108	LOSS TOT .040 .037 .035 .029 .027 .025 .024 .022 .022 .021 .021	PARAM PROF .014 .013 .012 .011 .010 .010 .011 .013 .014 .016 .019 .021

(c) Stator 1

RP 112 34 56 7 89 10 11 HUB	RAD IN 24.846 23.876 22.903 21.930 20.958 19.987 19.013 18.039 17.067 16.104 15.629 15.156	II 0UT 24.826 24.336 23.879 23.010 22.164 21.327 20.495 19.663 18.830 17.997 17.167 16.752 16.279	ABS IN 41.4 41.6 41.8 42.1 42.5 43.1 43.9 44.6 45.5 46.4 47.5 48.1 48.7	BETAN OUT .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	REL IN 41.4 41.6 42.5 43.1 43.9 44.6 45.5 46.4 47.5 48.1 48.7	BETAM OUT .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	TOT/ IN 355.1 352.8 350.9 349.3 347.4 346.5 345.7 345.0 344.3 344.2	AL TEMP RATIO 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	TOTAL IN 17.80 17.80 17.80 17.80 17.80 17.80 17.80 17.80 17.80 17.80 17.80 17.80 17.80 17.80	PRESS RATIO .949 .958 .978 .978 .978 .979 .978 .973 .973 .969 .959 .954
RP TIP 1 2 3 4 5 6 7 8 9 10 11 HUB	ABS IN 244.0 243.4 243.2 244.6 247.2 251.0 255.8 261.4 267.8 275.2 283.7 288.6 293.5	VEL OUT 167.1 176.2 183.7 193.2 196.7 197.5 197.5 197.5 195.3 195.3 192.9 185.0 186.3 183.4	REL IN 244.0 243.4 243.2 244.6 247.2 251.0 255.8 261.4 267.8 275.2 283.7 288.6 293.5	VEL 0UT 167.1 176.2 183.7 193.2 196.7 197.5 197.5 197.8 195.3 192.9 189.0 186.3 183.4	MERII IN 183.2 182.0 181.5 182.3 183.3 184.5 186.0 187.9 189.8 191.7 192.6 193.6	D VEL 0UT 167.1 176.2 183.7 193.2 196.7 197.5 197.5 197.5 196.3 192.9 189.0 186.3 183.4	TAI IN 161.2 161.6 162.1 164.0 166.9 171.5 177.3 183.6 190.9 199.3 209.2 215.0 220.6	NG VEL OUT .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	WHEEL IN .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	SPEED OUT .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0
RP TIP 2 3 4 5 6 7 8 9 10 11 HUB	ABS M. IN .675 .674 .675 .681 .704 .709 .719 .738 .759 .783 .811 .817 .827 .844	ACH NO UUT .451 .529 .540 .543 .543 .543 .539 .533 .522 .514 .506	REL M. IN .675 .674 .675 .681 .704 .719 .738 .759 .783 .811 .827 .844	ACH NO OUT .451 .500 .540 .543 .543 .543 .539 .533 .522 .514 .506	MERID M/ IN .507 .504 .503 .509 .514 .519 .525 .532 .540 .548 .552 .556	ACH ND OUT .451 .529 .540 .543 .543 .543 .543 .533 .533 .533 .522 .516	STREAML1 -3.01 -2.25 -1.48 .07 1.76 3.52 5.39 7.38 9.50 11.77 14.15 15.38 16.59	INE SLOPE OUT -5.19 -3.91 -2.80 -1.04 .66 2.37 4.12 5.94 7.85 9.86 11.97 13.06 14.30	MERID VEL R .912 .968 1.014 1.065 1.079 1.077 1.077 1.071 1.058 1.040 1.016 .986 .948	PEAK SS MACH NG 1.136 1.130 1.128 1.140 1.162 1.195 1.236 1.236 1.334 1.396 1.469 1.556
RP TIP 1 2 3 4 5 6 7 8 9 10 11 HUB	PERCENT SPAN 10.00 20.00 30.00 30.00 50.00 60.00 70.00 80.00 95.00 100.00	INCI MEAN 4.3 4.2 4.1 3.7 3.5 3.3 3.1 2.7 2.6 2.5	DENCE SS -3.0 -2.9 -2.8 -2.6 -2.3 -2.1 -1.9 -1.7 -1.4 -1.2 -1.0 9 7	DEV 13.9 12.1 10.9 10.2 10.1 10.5 10.9 11.5 12.4 13.4 14.0 14.7	D-FACT .548 .509 .478 .443 .436 .445 .445 .445 .502 .502 .530 .564 .584 .605	EFF .000 .000 .000 .000 .000 .000 .000	LOSS TOT .195 .160 .129 .081 .073 .075 .077 .080 .084 .092 .105 .114 .124	CDEFF PROF .195 .129 .081 .073 .075 .077 .080 .084 .090 .097 .101 .105	LOSS TOT .069 .045 .028 .026 .026 .026 .026 .027 .028 .027 .028 .030 .034 .036 .039	PARAM PROF .069 .045 .028 .026 .026 .027 .028 .027 .028 .029 .031 .033

(d) Rotor 2

RP 11P 234 567 89 10 11 HUB	RADI IN 24.778 23.867 23.867 23.025 22.201 20.581 20.581 20.581 219.773 18.966 19.773 18.966 11.16.487 1 16.487 1	1 0UT 23.868 23.504 22.800 22.110 21.433 20.765 20.765 20.765 8.835 8.230 7.937 7.556	ABS IN .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	BETAM OUT 46.3 45.2 44.4 43.4 43.6 44.3 45.7 46.5 47.4 48.7 49.5 50.5	REL IN 66.8 65.6 64.4 62.6 61.4 60.4 59.4 59.4 59.4 59.5 57.7 56.9 56.3 55.8	BETAM OUT 53.3 52.5 51.8 50.2 48.3 46.1 43.8 37.6 34.1 30.1 27.8 24.7	TOTA IN 355.2 352.8 350.9 349.3 348.2 347.4 346.5 345.7 345.0 344.5 344.3 344.1	L TEMP RATIO 1.203 1.196 1.190 1.182 1.179 1.178 1.177 1.177 1.177 1.177 1.178 1.180 1.182	TOTAL IN 16.88 17.05 17.19 17.41 17.42 17.40 17.36 17.32 17.25 17.14 17.06 17.06 17.09	PRESS RATIO 1.735 1.718 1.682 1.682 1.683 1.686 1.681 1.698 1.709 1.716 1.725
RP TIP 2 3 4 5 6 7 8 9 10 11 HUB	ABS 1N 178.2 185.6 191.8 200.5 203.7 204.3 204.2 203.7 204.3 204.2 201.5 198.7 194.4 191.5 188.3	VEL 0UT 247.4 246.3 245.7 245.6 247.0 249.5 252.6 3260.3 260.4 264.9 270.1 273.2 277.2	REL IN 452.8 448.5 435.7 425.0 413.4 401.5 389.4 377.0 364.1 350.4 343.2 334.9	VEL 0UT 286.3 285.1 283.8 278.7 269.1 257.6 246.6 236.2 226.3 216.6 206.3 200.7 194.2	MERII 178.2 185.6 191.8 200.5 203.7 204.3 204.2 203.2 203.2 198.7 194.4 191.5 188.3	D VEL OUT 171.1 173.6 175.5 178.4 178.9 178.5 178.6 178.9 179.3 179.3 179.3 178.4 177.5 176.4	TAN IN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	G VEL OUT 178.7 174.8 171.9 168.8 170.4 174.3 178.7 183.5 188.8 195.0 202.8 207.6 213.8	HHEEL IN 416.3 408.3 400.9 386.8 373.0 359.3 345.8 332.2 318.6 305.1 291.6 284.8 277.6	SPEED 0UT 408.2 401.0 394.9 383.0 371.4 360.1 348.8 337.8 327.0 316.4 306.3 301.3 294.9
RP TIP 2 3 4 5 6 7 8 9 10 11 HUB	ABS M/ IN .483 .505 .524 .550 .561 .564 .564 .564 .564 .567 .557 .550 .538 .529 .520	ACH NO OUT .620 .621 .625 .631 .640 .649 .640 .649 .660 .673 .686 .701 .710 .721	REL H IN 1.227 1.220 1.213 1.196 1.170 1.140 1.109 1.077 1.043 1.008 .969 .949 .925	ACH NO OUT .717 .718 .717 .709 .688 .660 .634 .634 .634 .634 .635 .585 .561 .536 .522 .505	MERID M. IN .483 .505 .524 .550 .564 .564 .564 .564 .562 .527 .520 .529 .520	ACH ND DUT .429 .437 .444 .457 .458 .459 .463 .463 .463 .463 .465	STREAML I N -7.67 -4.66 -2.38 1.56 3.44 5.34 7.28 9.31 11.44 12.57 13.86	NE SLOPE OUT -5.58 -4.46 -3.53 -1.81 19 1.40 2.96 4.48 5.96 7.40 8.72 9.30 10.06	MERID VEL R .960 .935 .915 .870 .878 .874 .875 .880 .892 .902 .918 .927 .936	PEAK SS MACH NO 1.692 1.675 1.662 1.630 1.625 1.620 1.625 1.620 1.625 1.638 1.621 1.610 1.596
RP TIP 1 2 3 4 5 6 7 8 9 10 11 HUB	PERCENT SPAN .00 5.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00 95.00 100.00	INCI HEAN 3.9 4.0 5.0 6.5 7.8 7.9 7.9 7.9 7.9 7.9 2	DENCE SS 0 0 0 0 .0 .0 .1 .1 .1 .2 .2	DEV 6.8 6.5 6.3 6.0 5.9 6.1 6.5 7.3 8.4 10.0 13.1 15.3 17.9	D-FACT .526 .517 .518 .506 .513 .526 .528 .549 .560 .571 .584 .584 .584 .592 .603	EFF .835 .851 .861 .875 .887 .906 .906 .912 .918 .924 .924	LOSS TOT .153 .126 .111 .103 .098 .096 .094 .092 .093 .095 .098	COEFF PROF .057 .039 .032 .030 .033 .036 .038 .040 .040 .049 .056 .064	LOSS TOT .033 .030 .027 .025 .025 .024 .024 .024 .023 .023 .024 .024	PARAM PROF .014 .019 .009 .008 .007 .008 .009 .009 .010 .010 .012 .014 .016

(e) Stator 2

RP TIP 1 2 3 4 5 6 7 8 9 10 11 HUB	RP TIP 1 234 56 7 89 10 11 HUB	RP TIP 2 3 4 5 6 7 8 9 10 11 HUB	RP 1 1 2 3 4 5 6 7 8 9 10 11 HUB
PERCENT SPAN .00 5.00 10.00 20.00 40.00 50.00 60.00 70.00 90.00 90.00	ABS M. IN .636 .639 .642 .652 .659 .667 .686 .686 .697 .708 .714 .721	ABS IN 253.4 253.3 253.2 253.3 254.5 256.4 258.8 261.6 264.9 268.4 272.3 274.4 277.3	RAD IN 24.206 23.798 23.451 22.778 22.121 21.472 20.831 20.196 19.573 18.962 18.367 18.076 17.706
INC: HEAN 5.0 4.8 4.6 4.0 3.4 3.1 2.5 2.5 2.3	ACH NO OUT .433 .449 .480 .486 .488 .490 .488 .490 .488 .491 .490 .488 .484 .484	VEL DUT 176.2 181.3 185.2 191.4 193.0 193.5 194.0 193.9 193.4 192.5 191.3 190.8 189.9	II OUT 24.193 23.785 23.459 22.837 22.236 21.648 21.074 20.512 19.964 19.430 18.917 18.671 18.308
IDENCE SS -3.0 -2.9 -2.5 -2.5 -2.4 -2.2 -2.1 -2.1 -2.0 -2.0 -1 9	REL M IN .636 .639 .642 .652 .659 .667 .686 .697 .708 .714 .721	REL IN 253.4 253.3 253.2 253.3 254.5 256.4 258.8 261.6 264.9 268.4 277.3 274.4 277.3	ABS IN 45.1 43.8 42.9 41.8 42.0 42.7 43.5 44.3 45.2 46.2 46.2 47.7 48.7 49.9
DEV 15.0 12.6 11.2 9.8 9.8 9.9 10.2 10.7 11.4 12.6 13.3	ACH NO OUT .433 .449 .461 .480 .486 .488 .490 .491 .490 .488 .485 .485 .481	VEL 0UT 176.2 181.3 185.2 191.4 193.5 194.0 193.9 193.4 192.5 191.3 190.8 189.9	BETAM OUT .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0
D-FACT .583 .553 .531 .497 .493 .493 .493 .513 .524 .524 .524 .539 .547	MERID M IN .450 .461 .471 .482 .485 .484 .484 .484 .484 .484 .482 .477 .471 .465	MERI IN 179.0 182.8 185.6 188.7 189.1 188.3 187.7 187.3 186.8 185.8 185.8 185.8 185.8 185.8	REL IN 45.1 43.8 42.9 41.8 42.0 42.7 43.5 44.3 45.2 46.2 46.2 47.7 48.7 49.9
EFF .000 .000 .000 .000 .000 .000 .000	ACH NO OUT .433 .449 .461 .480 .488 .490 .488 .490 .488 .490 .488 .485 .485 .481	D VEL OUT 176.2 181.3 185.2 191.4 193.5 194.0 193.9 193.9 193.9 192.5 191.3 190.8 189.9	BETAM OUT .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0
LOSS TOT .180 .143 .114 .070 .072 .074 .077 .082 .089 .098 .105 .113	STREAMLL IN -2.37 -1.70 -1.14 05 1.10 2.29 3.52 4.80 6.10 7.41 8.68 9.28 10.04	TAI IN 179.4 175.3 172.3 169.0 170.3 174.0 178.2 182.7 187.8 193.7 201.3 206.0 212.0	TOT/ IN 427.4 423.2 420.0 414.9 412.0 410.3 409.1 407.1 407.1 406.8 406.1 406.3 406.6
COEFF PROF .143 .144 .070 .072 .074 .077 .082 .089 .098 .105 .113	INE SLOPE DUT 1.33 .68 .33 .46 1.06 1.95 3.00 4.14 5.33 6.52 7.68 8.24 9.07	NG VEL OUT .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	AL TEMP RATIO 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
LOSS TOT .071 .056 .044 .027 .026 .027 .027 .027 .027 .028 .030 .033 .034 .037	MERID VEL R .984 .992 .914 1.014 1.021 1.028 1.036 1.036 1.043 1.063	WHEEL IN .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	TOTAL IN 29.28 29.28 29.28 29.28 29.28 29.28 29.28 29.28 29.28 29.28 29.28 29.28 29.28 29.28 29.28
PARAM PROF 071 056 044 027 026 027 027 027 027 028 030 033 034	PEAK SS MACH NO 1.170 1.141 1.103 1.110 1.153 1.153 1.207 1.242 1.286 1.314 1.352	SPEED OUT .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	PRESS RATID -957 -966 -972 -983 -983 -983 -982 -981 -980 -978 -975 -975 -975 -970 -967

22

(f) Rotor 3

RP T IP 234 567 89 10 111 HUB	RADI IN 24.183 2 23.441 2 22.826 2 22.240 2 21.671 2 21.116 2 20.573 2 20.042 2 19.525 1 19.024 1 18.780 1 18.420 1	I OUT 3.769 3.410 3.147 2.640 2.146 1.666 1.194 0.735 0.290 9.861 9.261 8.951	ABS IN -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0	BETAM OUT 46.8 45.9 45.2 44.5 45.2 44.5 45.2 45.8 45.2 45.8 45.4 46.9 47.6 48.9 49.6	REL IN 68.4 66.4 63.0 61.8 61.0 60.3 59.6 59.1 58.6 58.3 58.1 58.0	BETAM OUT 49.6 49.3 49.3 48.2 46.9 45.4 43.7 41.8 39.7 37.6 35.1 33.8 31.6	TOTA IN 427.5 423.2 420.0 414.9 412.0 410.3 409.1 407.9 406.8 406.1 406.0 406.3 406.6	L TEMP RATIO 1.174 1.168 1.164 1.159 1.158 1.158 1.158 1.158 1.158 1.158 1.158 1.158 1.158 1.158 1.161	TOTAL IN 28.03 28.28 28.48 28.78 28.77 28.75 28.75 28.64 28.64 28.57 28.47 28.40 28.31	PRESS RATIO 1.648 1.633 1.622 1.605 1.605 1.605 1.608 1.610 1.613 1.617 1.623 1.626 1.631
RP TIP 2 3 4 5 6 7 8 9 10 11 HUB	ABS IN 160.8 174.5 184.2 195.7 200.1 201.8 202.6 201.8 200.3 197.7 196.0 193.7	VEL 260.6 257.4 255.4 253.6 254.1 255.6 257.6 257.9 262.5 269.9 262.5 269.0 271.1 274.4	REL IN 436.9 435.8 434.8 430.5 423.8 416.3 408.6 400.6 392.6 384.3 375.8 371.4 365.1	VEL 0UT 275.2 275.0 274.7 272.9 265.3 256.4 248.2 240.5 233.1 226.0 218.6 214.6 208.8	MERII IN 160.8 174.5 184.2 195.7 200.1 201.8 202.7 202.6 201.8 200.3 197.7 196.0 193.7	VEL OUT 178.6 179.2 179.9 181.2 180.1 179.3 179.3 179.3 179.1 178.7 178.4 177.8	TAN IN -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0	G VEL OUT 189.9 184.7 181.3 176.8 178.2 181.4 184.7 188.1 191.8 195.9 201.0 204.1 209.0	HHEEL IN 406.3 399.4 393.8 383.6 364.1 354.7 345.6 364.7 328.0 319.6 315.5 309.4	SPEED OUT 399.3 388.9 380.3 372.0 364.0 356.1 348.3 340.9 333.7 326.8 323.6 318.4
RP TIP 2 3 4 5 6 7 8 9 10 11 HUB	ABS HA IN .395 .432 .459 .492 .505 .511 .514 .515 .513 .509 .503 .498 .492	CH NO OUT - 602 - 599 - 597 - 598 - 602 - 613 - 620 - 628 - 628 - 636 - 645 - 658	REL M 1N 1.073 1.079 1.082 1.082 1.070 1.053 1.036 1.017 .978 .978 .978 .944 .926	ACH NO OUT .636 .640 .642 .644 .629 .609 .591 .574 .558 .541 .524 .515 .500	MERID H IN .395 .432 .459 .505 .511 .514 .513 .509 .503 .498 .492	ACH NO OUT .412 .417 .421 .429 .429 .428 .427 .428 .429 .429 .428 .428 .428 .426	STREAML ¹ -3.78 -3.23 -2.74 -1.67 -48 .79 2.10 3.42 4.72 5.99 7.19 7.75 8.58	NE SLOPE OUT -7.37 -5.74 -4.62 -2.82 -1.27 .14 1.45 2.66 3.79 4.83 5.73 6.11 6.73	MERID VEL R 1.110 1.027 .977 .906 .892 .886 .895 .888 .895 .904 .910 .918	PEAK SS MACH NO 1.801 1.747 1.710 1.665 1.648 1.643 1.644 1.652 1.664 1.656 1.656 1.663 1.670
RP TIP 1 2 3 4 5 6 7 8 9 10 11 HUB	PERCENT SPAN .00 5.00 20.00 30.00 40.00 60.00 70.00 80.00 90.00 95.00 100.00	INCI MEAN 3.59 4.9 5.4 6.5 7.4 6.5 7.8 8.4 8.7	DENCE SS 2 1 0 0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	DEV 6.6 6.3 6.1 6.1 6.3 6.7 7.3 8.2 9.6 12.3 14.3 17.2	D-FACT .550 .542 .536 .528 .536 .549 .549 .560 .569 .588 .599 .606 .616	EFF .869 .685 .891 .900 .906 .906 .911 .914 .917 .920 .923 .923 .922	LOSS TOT .128 .109 .101 .086 .087 .086 .086 .085 .084 .085 .087 .087	COEFF PROF .028 .023 .023 .023 .024 .028 .029 .030 .029 .030 .036 .039 .039 .039	LOSS TOT .029 .027 .024 .023 .023 .023 .023 .023 .023 .023 .023	PARAM PRDF .008 .006 .006 .006 .008 .008 .008 .008

TABLE IV.-Concluded.

(g) Stator 3

RP T IP 1 234567 89 10 11 HUB	RP T IP 1 2 3 4 5 6 7 8 9 10 11 HUB	RP TIP 2345 6789 10 11 HUB	RP 1 12 3 4 5 6 7 8 9 10 11 HUB
PERCENT SPAN 10.00 20.00 30.00 50.00 60.00 70.00 80.00 90.00 95.00 100.00	ABS M. IN .614 .616 .617 .623 .626 .630 .635 .640 .646 .652 .654 .659	ABS IN 265.1 264.0 263.2 261.7 262.0 262.8 264.0 265.5 267.2 269.2 271.4 272.6 274.6	RAD IN 23.680 23.337 23.086 22.607 22.137 21.679 21.226 20.784 20.352 19.935 19.535 19.535 19.340 19.040
INCI HEAN 5.4 5.4 4.28 4.28 3.4 3.4 3.4 3.0 2.3 1.8	ACH NO OUT .414 .429 .439 .454 .458 .459 .459 .459 .459 .458 .458 .458 .458 .458 .452 .449	VEL DUT 182.3 190.5 195.2 195.9 195.8 195.8 195.8 195.8 195.5 194.8 193.9 192.7 192.1 191.1	II 0UT 23.660 23.323 23.086 22.323 22.210 21.773 21.388 20.993 20.611 20.246 19.898 19.732 19.441
IDENCE SS -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0	REL M IN .614 .616 .617 .623 .626 .630 .635 .640 .646 .652 .654 .659	REL IN 265.1 264.0 263.2 261.7 262.0 262.8 264.0 265.5 267.2 269.2 271.4 272.6 274.6	ABS 1N 45.9 44.6 43.7 42.6 43.6 43.6 43.6 44.3 45.0 45.0 45.5 47.5 48.2 49.2
DEV 15.7 13.1 11.6 10.7 10.3 10.2 10.3 10.6 11.0 11.8 12.8 12.8 13.5 14.6	ACH NO OUT .414 .429 .439 .454 .458 .459 .459 .459 .459 .459 .458 .458 .453 .452 .449	VEL DUT 182.3 190.5 195.2 195.9 195.8 195.8 195.8 195.5 194.8 193.9 192.7 192.1 191.1	BETAM OUT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
D-FACT .606 .574 .552 .518 .513 .513 .514 .517 .522 .528 .537 .543 .552	MERID M. IN .427 .439 .447 .456 .456 .453 .451 .449 .447 .445 .445 .440 .430	MER11 IN 184.3 188.0 190.4 190.3 187.0 187.8 186.7 185.3 183.2 181.6 179.4	REL IN 45.9 44.6 43.7 42.6 42.9 43.6 44.3 45.0 45.7 46.5 47.5 48.2 49.2
EFF .000 .000 .000 .000 .000 .000 .000	ACH NO OUT 414 429 439 458 459 459 459 459 458 456 453 452 452 449	D VEL OUT 182.3 197.2 195.2 195.8 195.8 195.8 195.5 194.8 193.9 192.7 192.1 191.1	BETAM OUT .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0
LOSS TOT .176 .134 .107 .069 .069 .071 .071 .081 .087 .096 .101 .109	STREAML I IN -2.34 -1.83 -1.44 57 .34 1.30 2.27 3.24 4.18 5.07 5.85 6.19 6.72	TAN IN 190.5 185.3 181.8 177.1 178.3 181.3 181.3 184.4 187.7 191.2 200.2 203.3 208.0	TOTA IN 502.1 494.3 489.0 480.8 477.0 475.1 473.6 472.2 471.0 470.3 470.5 471.1 472.0
COEFF PROF .176 .134 .107 .069 .069 .069 .071 .074 .077 .081 .087 .096 .101 .109	NE SLOPE OUT 1.52 .94 .66 .73 1.17 1.83 2.63 3.49 4.39 5.28 6.16 6.58 7.33	IG VEL DUT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	L TEMP RATIO 1.001 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
LOSS F TOT .072 .054 .027 .026 .027 .028 .027 .028 .029 .030 .032 .034 .036	MERID / VEL R .989 1.001 1.013 1.021 1.029 1.036 1.041 1.044 1.046 1.052 1.058 1.066	WHEEL IN .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	TOTAL IN 46.19 46.19 46.19 46.19 46.19 46.19 46.19 46.19 46.19 46.19 46.19 46.19
PARAM PROF 072 043 027 026 027 027 027 028 029 030 032 034 036	PEAK SS MACH NO 1.159 1.124 1.077 1.081 1.093 1.107 1.122 1.139 1.159 1.185 1.201 1.226	SPEED OUT .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	PRESS RATID .970 .976 .984 .983 .983 .983 .982 .980 .979 .976 .975 .972

TABLE V.-BLADE GEOMETRY

(a) Inlet guide vane

RP 11P 2 3 4 5 6 7 8 9 10 11	PERCENT RAD SPAN RI 0.25.636 5.25.065 10.24.411 20.23.082 30.21.713 40.20.308 50.18.857 60.17.347 70.15.764 80.14.082 90.12.265 95.11.295	II R0 25.712 25.747 24.520 23.259 21.979 20.683 19.367 18.018 16.623 15.171 13.641 12.840	BLAD KIC 00 00 00 00 00 00 00 00 00 00 00 00 00	E ANGLE KTC .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	S KOC .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	DELTA INC 11.70 11.69 11.68 11.66 11.64 11.60 11.55 11.49 11.40 11.26 11.16	CONE ANGLE .709 1.651 2.472 3.490 4.730 6.216 7.951 10.033 12.598 14.085
RP TIP 1 2 3 4 5 6 7 8 9 10 11 HUB	BLADE THICKN TI TM .123 .616 .123 .616 .123 .616 .123 .616 .123 .616 .123 .616 .123 .617 .124 .618 .124 .619 .124 .622 .125 .625 .126 .631 .127 .635 .128 .638	ESSES TO .062 .062 .062 .062 .062 .062 .062 .062	ZI -7.192 - -7.192 - -7.192 - -7.195 - -7.195 - -7.195 - -7.202 - -7.202 - -7.205 - -7.215 - -7.227 - -7.225 - -7.235 - -7.241 -	IIAL DIM ZHC 4.729 4.729 4.729 4.732 4.732 4.732 4.732 4.732 4.732 4.732 4.732 4.732 4.732 -4.740 -4.740 -4.740 -4.752 -4.752 -4.774 -4.778	ENSION ZTC 4.113 4.114 4.113 4.117 4.117 4.117 4.120 4.125 4.130 4.137 4.148 4.156 4.162	S Z0 -1.035 -1.035 -1.039 -1.039 -1.038 -1.041 -1.046 -1.052 -1.059 -1.070 -1.077 -1.084	
RP TIP 1 2 3 4 5 6 7 8 9 10 11 HUB	AERO SETTING CHORD ANGLE 6.15729 6.15729 6.16029 6.16029 6.16129 6.16929 6.16929 6.17829 6.19229 6.21529 6.25229 6.30929 6.36929	CAMBER CAMBER 00 00 00 00 00 00 00 00 00 00 00 00 00	SOLIDITY .992 1.015 1.041 1.100 1.167 1.245 1.338 1.449 1.588 1.769 2.015 2.177 2.328	TURNING RATID 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	PHISS .00 .00 .00 .00 .00 .00 .00 .00 .00	CHOKE MARGI .132 .130 .128 .119 .110 .102 .094 .088 .082 .077 .074 .075 .076	N

(b) Rotor 1

RP 1 2 3 4 5 6 7 8 9 10 11 HUB	PERCENT RADII SPAN RI 0. 25.613 24 5. 25.057 24 10. 24.444 23 20. 23.229 22 30. 22.008 21 40. 20.776 20 50. 19.520 19 60. 18.229 18 70. 16.889 17 80. 15.483 16 90. 13.993 15 95. 13.211 15 100. 12.509 14	R0 .973 .468 .963 .952 .941 .920 .899 .888 .877 .372 .867	BLAE KIC 64.13 62.69 61.22 58.73 56.48 54.37 52.33 50.33 48.33 48.33 44.33 43.33 42.43	DE ANGLE KTC 60.20 58.89 57.51 54.88 51.41 48.31 45.34 42.53 39.61 36.67 33.78 32.36 31.10	S KOC 49.27 48.63 47.85 47.85 43.25 39.85 35.29 29.34 22.00 12.99 1.70 -11.85	DELTA CONE INC ANGLE 2.97 -9.556 3.20 -8.420 3.44 -6.616 3.93 -3.550 4.41 800 4.88 1.729 5.34 4.186 5.77 6.869 6.13 9.324 6.35 12.175 6.33 15.336 6.19 17.060 6.06 18.117
RP TIP 1 2 3 4 5 6 7 8 9 10 11 HUB	BLADE THICKNES TI TM .027 .222 .028 .239 .030 .257 .036 .294 .040 .331 .044 .368 .048 .407 .053 .447 .059 .490 .064 .537 .070 .589 .074 .618 .078 .645	SES TD .027 .028 .036 .041 .045 .055 .060 .066 .071 .077	A) ZI 1.877 1.778 1.677 1.506 1.326 1.326 1.159 .994 .894 .642 .446 .229 .108 000	(IAL DIP 2HC 3.610 3.591 3.577 3.564 3.529 3.529 3.471 3.436 3.396 3.350	ENSION 2TC 4.170 4.097 4.016 3.841 3.625 3.383 3.116 2.480 2.119 1.504 1.311	Z0 5.679 5.755 5.829 5.974 6.137 6.293 6.454 6.622 6.793 6.959 7.099 7.151 7.204
RP TIP 2 3 4 5 6 7 8 9 10 11 HUB	AERO SETTING T CHORD ANGLE CA 7.584 59.56 1 7.595 58.16 1 7.590 56.71 7.580 53.94 7.577 50.73 7.578 47.48 7.585 43.95 7.600 39.98 7.628 35.34 7.678 29.94 7.602 31.97 7.823 19.75 7.885 16.05	0TAL SU HBER SU 4.07 3.361 3.23 4.52 7.059 6.334 4.55 5.34 4.52 5.34 4.52 5.34 4.28 4.28	DLIDITY 1.336 1.367 1.463 1.536 1.619 1.714 1.824 1.954 2.114 2.316 2.316 2.367	URNING RATID .190 .219 .250 .333 .585 .814 .952 .989 .996 1.002 1.002 1.000	PHISS 7.89 7.90 8.92 9.62 10.65 11.52 12.16 12.72 13.01 12.83 12.47 12.15	CHOKE MARGIN .075 .067 .064 .080 .086 .088 .085 .083 .083 .080 .079 .079

(c) Stator 1

PERCENT SPAN R1 0.24.8 5.24.2 10.23.6 20.22.5 30.21.5 40.20.5 50.19.5 60.19.5 60.19.6 70.18.0 80.17.6 90.16.1 95.15.5	RADII RO 346 24.826 362 24.336 376 23.879 903 23.010 930 22.164 958 21.327 987 20.495 013 19.663 039 18.830 067 17.997 104 17.167 529 16.752 156 16.279	BL/ KIC 37.03 37.31 37.38 38.04 38.59 39.40 40.38 41.37 42.42 43.59 44.94 45.70 46.46	ADE ANGLI KTC 21.26 21.78 22.20 22.60 22.88 23.22 23.59 23.59 24.33 24.73 25.20 25.47 25.74	ES KOC -13.86 -12.09 -10.85 -10.22 -10.06 -10.15 -10.43 -11.54 -12.38 -13.44 -14.66	DELTA INC 7.38 7.21 7.03 6.62 6.20 5.78 5.35 4.92 4.50 4.08 3.67 3.26	CONE ANGLE 182 239 0.057 1.029 2.353 3.833 5.489 7.282 9.216 11.257 13.380 14.445 14.787
BLADE TH	ICKNESSES	_Z1	XIAL DI	HENSION ZTC	S ZO	
.085 .4 .081 .4 .077 .4	527 .085 505 .081 484 .077	7.011 7.083 7.150	10.061 10.063 10.065	8.852 8.905 8.951	13.407 13.345 13.289	
.071 .4	442 .070 402 .064 364 .059	7.266 7.379	10.072	9.012 9.073	13.189	
.053	329 .052 295 .047	7.607	10.097	9.199	12.903	
.042	263 .042 233 .037 204 .033	7.834 7.948 8.062	10.113 10.123 10.131	9.307 9.358 9.404	12./14 12.622 12.528	
.030 .1	191 .030 177 .028	8.121 8.179	10.136	9.428 9.452	12.483	
AERO SETI	TING TOTAL		TURNING	DUTCC	CHOKE	
6.527 11 6.416 12	.59 50.89 .60 49.41	1.422	1.000	20.32	.190	•
6.308 13 6.101 13 5.899 14	.36 48.43 .92 48.26 .30 48.64	1.430 1.438 1.448	1.000 1.000 1.000	19.75 19.61 19.61	.191 .184 .179	
5.702 14 5.508 15 5.317 15	.70 49.55 .06 50.85 36 52 30	1.459	1.000	19.84	.176 .174	
5.132 15 4.952 15	.64 53.96 .86 55.97	1.506	1.000	20.95	.169	
4.776 16 4.690 16 4.582 16	.07 58.38 .20 59.71 .30 61.11	1.554 1.568 1.577	1.000 1.000 1.000	22.03 22.39 22.74	.170 .172 .174	
	PERCENT SPAN R 0. 24.6 5. 24.7 10. 23.6 20. 22.7 30. 21.9 40. 20.5 50. 19.6 70. 18.6 80. 17.6 90. 16.6 95. 15.6 100. 15.7 BLADE TH TI TI .085 .085 .081 .085 .058 .05	PERCENT RADII SPAN RI RO 0.24.846 24.826 5.24.362 10.23.876 23.879 20.22.903 23.010 30.21.930 22.164 40.20.958 21.327 50.19.987 20.495 60.19.013 19.663 70.18.039 18.830 80.17.067 17.997 90.16.104 17.167 95.15.629 16.752 100.15.156 16.279 BLADE THICKNESSES TI TM .085 .527 .085 .085 .641 .070 .065 .402 .064 .058 .329 .052 .047 .295 .047 .053 .329 .052 .047 .295 .047 .053 .204 .033 .030 .191 .030 .028 .177 .028 .033 .204 <td>PERCENT RADII BLA 0. 24.846 24.826 37.03 5. 24.362 24.336 37.31 10. 23.876 23.879 37.58 20. 22.903 23.010 38.04 30. 21.930 22.164 38.59 40. 20.958 21.327 39.40 50. 19.987 20.495 40.38 60. 19.013 19.663 41.37 70.18.039 18.830 42.42 80.17.067 17.997 43.59 90.16.104 17.167 44.94 95.15.629 16.752 45.70 100.15.156 16.279 46.46 BLADE THICKNESSES 7.011 .085 .527 .085 7.011 .085 .527 .085 7.011 .081 .505 .081 7.083 .077 .484 .077 7.150 .071 .442 .070 7.266 .065 .402 .064 7.379 <td>PERCENT RADI1 BLADE ANGLL SPAN RI RO KIC KTC 0.24.846 24.826 37.03 21.26 5.24.362 24.336 37.31 21.78 10.23.876 23.879 37.58 22.20 20.22.903 23.010 38.04 22.60 30.21.930 22.164 38.59 22.88 40.20.958 21.327 39.40 23.259 60.19.013 19.663 41.37 23.95 70.18.039 18.830 42.42 24.33 80.17.067 17.997 43.59 24.73 90.16.104 17.167 44.94 25.20 95.15.629 16.752 45.70 25.47 100.15.156 16.279 46.46 25.74 101 15.56 16.72 45.70 25.47 102.15 50.11 7.011 10.063 .077 484 077 7.150 10.065 .071 .442</td><td>PERCENT RADII BLADE ANGLES SPAN RI RO XIC KTC KOC 0.24.846 24.826 37.03 21.26 -13.86 5.24.362 24.336 37.31 21.78 -12.09 10.23.876 23.879 37.58 22.20 -10.85 20.22.903 23.010 38.04 22.60 -10.22 30.21.930 22.164 38.59 22.88 -10.06 40.20.958 21.327 39.40 23.22 -10.15 50.19.987 20.495 40.38 23.59 -10.47 60.17.067 7.977 43.59 24.73 -12.38 90.16.104 17.167 44.94 25.20 -13.44 95.15.629 16.752 45.70 25.47 -14.01 100.15.156 16.279 46.46 25.74 -14.66 801 .505 .081 7.083 10.063 8.905 .071 .442 .077 7.150 1</td><td>PERCENT RADII BLADE ANGLES DELTA SPAN RI RO KIC KTC KOC INC 0.24.846 24.826 37.03 21.26 -13.86 7.38 10.23.876 23.879 37.58 22.20 -10.85 7.03 20.22.903 23.010 38.04 22.60 -10.22 6.62 30.12.930 22.164 38.59 22.89 -10.47 5.35 60.19.031 19.633 41.37 23.92 -10.47 5.35 60.19.013 19.643 41.37 23.92 -10.47 5.35 60.17.067 17.997 43.59 24.73 -12.38 4.08 90.16.104 17.167 44.92 25.20 -13.44 3.67 95.15.629 16.752 45.70 25.47 -14.01 3.47 100.15.156 16.279 46.46 25.74 -14.66 3.26 071 442 070 7.266 10.072 9.012</td></td>	PERCENT RADII BLA 0. 24.846 24.826 37.03 5. 24.362 24.336 37.31 10. 23.876 23.879 37.58 20. 22.903 23.010 38.04 30. 21.930 22.164 38.59 40. 20.958 21.327 39.40 50. 19.987 20.495 40.38 60. 19.013 19.663 41.37 70.18.039 18.830 42.42 80.17.067 17.997 43.59 90.16.104 17.167 44.94 95.15.629 16.752 45.70 100.15.156 16.279 46.46 BLADE THICKNESSES 7.011 .085 .527 .085 7.011 .085 .527 .085 7.011 .081 .505 .081 7.083 .077 .484 .077 7.150 .071 .442 .070 7.266 .065 .402 .064 7.379 <td>PERCENT RADI1 BLADE ANGLL SPAN RI RO KIC KTC 0.24.846 24.826 37.03 21.26 5.24.362 24.336 37.31 21.78 10.23.876 23.879 37.58 22.20 20.22.903 23.010 38.04 22.60 30.21.930 22.164 38.59 22.88 40.20.958 21.327 39.40 23.259 60.19.013 19.663 41.37 23.95 70.18.039 18.830 42.42 24.33 80.17.067 17.997 43.59 24.73 90.16.104 17.167 44.94 25.20 95.15.629 16.752 45.70 25.47 100.15.156 16.279 46.46 25.74 101 15.56 16.72 45.70 25.47 102.15 50.11 7.011 10.063 .077 484 077 7.150 10.065 .071 .442</td> <td>PERCENT RADII BLADE ANGLES SPAN RI RO XIC KTC KOC 0.24.846 24.826 37.03 21.26 -13.86 5.24.362 24.336 37.31 21.78 -12.09 10.23.876 23.879 37.58 22.20 -10.85 20.22.903 23.010 38.04 22.60 -10.22 30.21.930 22.164 38.59 22.88 -10.06 40.20.958 21.327 39.40 23.22 -10.15 50.19.987 20.495 40.38 23.59 -10.47 60.17.067 7.977 43.59 24.73 -12.38 90.16.104 17.167 44.94 25.20 -13.44 95.15.629 16.752 45.70 25.47 -14.01 100.15.156 16.279 46.46 25.74 -14.66 801 .505 .081 7.083 10.063 8.905 .071 .442 .077 7.150 1</td> <td>PERCENT RADII BLADE ANGLES DELTA SPAN RI RO KIC KTC KOC INC 0.24.846 24.826 37.03 21.26 -13.86 7.38 10.23.876 23.879 37.58 22.20 -10.85 7.03 20.22.903 23.010 38.04 22.60 -10.22 6.62 30.12.930 22.164 38.59 22.89 -10.47 5.35 60.19.031 19.633 41.37 23.92 -10.47 5.35 60.19.013 19.643 41.37 23.92 -10.47 5.35 60.17.067 17.997 43.59 24.73 -12.38 4.08 90.16.104 17.167 44.92 25.20 -13.44 3.67 95.15.629 16.752 45.70 25.47 -14.01 3.47 100.15.156 16.279 46.46 25.74 -14.66 3.26 071 442 070 7.266 10.072 9.012</td>	PERCENT RADI1 BLADE ANGLL SPAN RI RO KIC KTC 0.24.846 24.826 37.03 21.26 5.24.362 24.336 37.31 21.78 10.23.876 23.879 37.58 22.20 20.22.903 23.010 38.04 22.60 30.21.930 22.164 38.59 22.88 40.20.958 21.327 39.40 23.259 60.19.013 19.663 41.37 23.95 70.18.039 18.830 42.42 24.33 80.17.067 17.997 43.59 24.73 90.16.104 17.167 44.94 25.20 95.15.629 16.752 45.70 25.47 100.15.156 16.279 46.46 25.74 101 15.56 16.72 45.70 25.47 102.15 50.11 7.011 10.063 .077 484 077 7.150 10.065 .071 .442	PERCENT RADII BLADE ANGLES SPAN RI RO XIC KTC KOC 0.24.846 24.826 37.03 21.26 -13.86 5.24.362 24.336 37.31 21.78 -12.09 10.23.876 23.879 37.58 22.20 -10.85 20.22.903 23.010 38.04 22.60 -10.22 30.21.930 22.164 38.59 22.88 -10.06 40.20.958 21.327 39.40 23.22 -10.15 50.19.987 20.495 40.38 23.59 -10.47 60.17.067 7.977 43.59 24.73 -12.38 90.16.104 17.167 44.94 25.20 -13.44 95.15.629 16.752 45.70 25.47 -14.01 100.15.156 16.279 46.46 25.74 -14.66 801 .505 .081 7.083 10.063 8.905 .071 .442 .077 7.150 1	PERCENT RADII BLADE ANGLES DELTA SPAN RI RO KIC KTC KOC INC 0.24.846 24.826 37.03 21.26 -13.86 7.38 10.23.876 23.879 37.58 22.20 -10.85 7.03 20.22.903 23.010 38.04 22.60 -10.22 6.62 30.12.930 22.164 38.59 22.89 -10.47 5.35 60.19.031 19.633 41.37 23.92 -10.47 5.35 60.19.013 19.643 41.37 23.92 -10.47 5.35 60.17.067 17.997 43.59 24.73 -12.38 4.08 90.16.104 17.167 44.92 25.20 -13.44 3.67 95.15.629 16.752 45.70 25.47 -14.01 3.47 100.15.156 16.279 46.46 25.74 -14.66 3.26 071 442 070 7.266 10.072 9.012

(d) Rotor 2

RP TIP 1 2 3 4 5 6 7 8 9 10 11 HUB	PERCENT RAI SPAN RI 0. 24.778 5. 24.307 10. 23.867 20. 23.025 30. 22.201 40. 21.390 50. 20.581 60. 19.773 70. 18.966 80. 18.161 90. 17.355 95. 16.950 100. 16.487	EXAMPLE 1 Contemporation 1 Contemporation 2 Contemporatio	BLA KIC 63.49 61.92 60.51 58.15 56.40 54.91 53.48 52.11 50.81 49.63 48.67 48.30 47.87	DE ANGLE KTC 54.90 53.79 52.77 50.89 49.13 47.30 45.47 43.53 41.51 39.37 36.98 35.61 34.05	S KOC 46.37 45.88 45.40 44.17 42.43 40.06 37.09 33.48 29.22 24.01 16.95 12.43 6.70	DELTA INC 3.35 3.64 4.46 4.97 5.47 5.96 6.88 7.30 7.64 7.78 7.94	CONE ANGLE -8.299 -7.345 -5.895 -3.478 -1.351 .610 2.505 4.367 6.218 8.087 9.992 10.961 11.527
RP TIP 12 34 56 7 89 10 11 HUB	BLADE THICKI TI TM .028 .201 .030 .219 .032 .236 .037 .268 .042 .300 .046 .331 .051 .362 .055 .393 .059 .425 .064 .457 .069 .490 .071 .506 .074 .525	NESSES TO .027 .030 .032 .038 .042 .047 .051 .056 .061 .065 .070 .072 .074	A Z1 14.275 14.201 14.136 14.029 13.941 13.859 13.778 13.611 13.520 13.414 13.349 13.275	XIAL DIP ZHC 15.749 1 15.745 1 15.743 1 15.741 1 15.737 1 15.737 1 15.727 1 15.721 1 15.698 1 15.698 1 15.665 1 15.665 1	IENSION ZTC 6.341 6.279 6.221 6.103 5.979 5.849 5.711 5.849 5.405 5.237 5.048 4.941 4.820	ZO 17.549 17.603 17.647 17.729 17.806 17.808 17.976 18.070 18.166 18.270 18.384 18.443 18.519	
RP TIP 1 2 3 4 5 6 7 8 9 10 11 HUB	AERO SETTIN CHORD ANGLE 5.962 56.43 5.968 55.08 5.964 53.87 5.958 51.71 5.955 49.70 5.955 47.61 5.956 45.36 5.962 42.85 5.970 40.08 5.983 36.91 6.013 30.55 6.025 27.52	G TOTAL CAMBER 17.12 16.04 15.11 13.98 13.97 14.85 16.39 18.63 21.58 25.62 31.72 35.87 41.18	SOLIDITY 1.237 1.262 1.282 1.324 1.369 1.416 1.468 1.523 1.582 1.647 1.718 1.756 1.803	TURNING RATIO .470 .537 .601 .724 .843 .935 .972 .989 .997 1.001 1.000 1.000	PHISS 13.37 13.08 12.85 12.64 12.90 13.42 13.93 14.51 15.14 15.87 16.89 17.56 18.32	CHOKE MARGIN .153 .139 .119 .117 .117 .117 .118 .119 .121 .126 .139 .150 .162	

(e) Stator 2

RP T I P 1 2 3 4 5 6 7 8	PERCENT RAI SPAN RI 0.24.206 5.23.798 10.23.451 20.22.778 30.22.121 40.21.472 50.20.196 70.19.573	DII R0 24.193 23.785 23.459 22.837 22.236 21.648 21.074 20.512	BLA KIC 40.01 38.86 38.04 37.26 37.73 38.75 39.83 40.91 42.08	DE ANGL KTC 20.69 21.01 21.22 21.36 21.78 22.32 22.83 23.36 23.86	ES KOC -14.97 -12.63 -11.16 -10.20 -9.83 -9.76 -9.89 -10.18 -10.66	DELTA INC 8.10 7.91 7.74 7.35 6.94 6.53 6.12 5.71 5.31	CONE ANGLE 177 177 .111 .841 1.671 2.590 3.624 4.769 5.971
9	80. 18.962	19.430	43.41	24.37	-11.41	4.92	7.236
10	90. 18.367	18.917	45.18	24.99	-12.55	4.53	8.597
11	95. 18.076	18.671	46.33	25.35	-13.29	4.34	9.342
HUB	100. 17.706	18.308	47.75	25.80	-14.33	4.09	9.535
RP TIP 234 567 8910 111 HUB	BLADE THICK TI TM .069 .384 .067 .371 .065 .359 .060 .336 .057 .315 .053 .294 .049 .274 .046 .255 .042 .236 .039 .218 .036 .201 .035 .194 .033 .183	NESSES TO .069 .067 .065 .056 .056 .052 .049 .046 .042 .039 .036 .035 .033	A ZI 18.985 19.003 19.036 19.068 19.068 19.069 19.133 19.164 19.194 19.225 19.225 19.259 19.277 19.300	XIAL DI ZHC 20.929 20.934 20.935 20.937 20.936 20.939 20.940 20.940 20.941 20.943 20.943 20.943 20.943	HENSION ZTC 20.321 20.308 20.298 20.280 20.282 20.312 20.335 20.363 20.363 20.363 20.377 20.392 20.403 20.416	IS Z0 23.094 23.075 23.059 23.032 23.010 22.987 22.949 22.949 22.913 22.899 22.893 22.884	
RP	AERO SETTIN	G TOTAL	SOLIDITY	TURNING	PHISS	CHOKE	
TIP	CHORD ANGLE	CAMBER	1.273	RATIO	24.86	MARGIN	
1	4.208 12.55	54.98	1.286	1.000	23.23	.280	
2	4.179 13.11	51.49	1.297	1.000	22.04	.244	
3	4.155 13.44	49.20	1.319	1.000	20.77	.226	
4	4.063 13.54	47.47.56	1.341	1.000	20.55	.219	
5	4.063 13.97	48.51	1.365	1.000	20.80	.218	
6	4.019 14.53	49.72	1.390	1.000	21.09	.217	
7	3.978 15.01	51.09	1.417	1.000	21.09	.215	
8	3.938 15.43	52.73	1.445	1.000	21.80	.214	
9	3.902 15.80	54.82	1.475	1.000	22.35	.215	
10	3.868 16.12	57.74	1.507	1.000	23.27	.223	
11	3.837 16.46	59.61	1.524	1.000	23.27	.232	
HUB	3.824 16.69	52.09	1.544	1.000	24.77	.242	

(f) Rotor 3

RP 1 2 3 4 5 6 7 8 9 10 11 HUB	PERCENT RAI SPAN R1 0.24.183 5.23.772 10.23.441 20.22.826 30.22.240 40.21.671 50.21.116 60.20.573 70.20.042 80.19.525 90.19.024 95.18.780 100.18.420	R0 23.769 23.410 23.147 22.640 22.146 21.194 20.735 20.290 19.861 19.454 19.261 18.951	BLA KIC 64.76 62.36 60.59 58.05 56.39 55.04 53.80 52.68 51.67 50.78 50.06 49.78 49.35	DE ANGL KTC 49.81 49.41 49.07 48.28 47.29 46.12 43.44 41.95 40.27 38.24 35.24	ES KOC 42.83 42.78 42.68 42.10 40.85 39.09 37.00 34.50 31.57 27.90 22.79 19.47 14.32	DELTA INC 3.65 4.04 4.34 4.91 5.44 5.96 6.45 6.93 7.82 8.20 8.20 8.62	CONE ANGLE -8.673 -7.356 -5.847 -3.579 -1.744 083 1.374 2.758 4.100 5.368 6.608 7.227 7.721
RP 1 2 3 4 5 6 7 8 9 10 11 HUB	BLADE THICKI TI TM .028 .176 .031 .194 .038 .208 .038 .235 .042 .261 .045 .286 .050 .310 .053 .334 .057 .357 .061 .380 .064 .403 .066 .414 .069 .430	NESSES TD .028 .031 .033 .038 .041 .046 .050 .057 .061 .065 .066 .069	ZI 24.234 24.170 24.124 24.057 24.008 23.964 23.919 23.877 23.833 23.784 23.724 23.687 23.634	XIAL DI ZHC 25.417 25.418 25.425 25.422 25.422 25.428 25.428 25.429 25.431 25.431 25.431 25.427 25.420 25.413 25.413 25.403	HENSIO 25.938 25.883 25.883 25.839 25.761 25.688 25.615 25.458 25.376 25.285 25.376 25.285 25.182 25.182 25.122 25.037	Z0 26.948 26.975 26.995 27.032 27.075 27.126 27.177 27.235 27.294 27.359 27.480 27.549	
RP 11P 234 567 8910 11 HUB	AERO SETTIN CHORD ANGLE 4.629 53.79 4.631 52.54 4.628 51.62 4.620 48.61 4.620 45.41 4.620 45.41 4.622 43.60 4.624 41.64 4.628 39.38 4.633 36.50 4.636 34.70 4.643 31.92	G TOTAL CAMBER 21.92 19.57 17.91 15.54 15.54 15.55 16.80 18.19 20.10 22.88 27.27 30.31 35.04	SOLIDITI 1.198 1.218 1.233 1.262 1.324 1.356 1.423 1.423 1.459 1.455 1.455 1.455 1.455 1.542	TURNING (RATIO 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	PHISS 20.10 18.38 17.17 15.82 15.84 15.84 16.84 16.84 17.61 18.78 20.74	CHOKE MARGIN .257 .210 .180 .158 .151 .149 .149 .149 .149 .151 .155 .163 .180 .192 .209	

TABLE V.-Concluded.

,

(g) Stator 3

RP T I P 1 2 3 4 5 6 7 8 9 10 11 HUB	PERCENT RADII SPAN RI RO 0.23.680 23.64 5.23.337 23.32 10.23.086 23.00 20.22.607 22.65 30.22.137 22.21 40.21.679 21.75 50.21.226 21.38 60.20.784 20.99 70.20.352 20.61 80.19.935 20.22 90.19.535 19.85 95.19.340 19.72 100.19.040 19.44	BLADE ANGU KIC KTC 0 40.15 20.05 3 88.99 20.54 6 38.26 20.82 9 37.54 21.02 0 38.26 21.56 3 39.40 22.17 8 40.48 22.71 3 41.55 23.25 1 42.65 23.73 6 43.83 24.19 8 45.25 24.66 2 46.11 24.91 1 47.40 25.29	ES DELTA CONE KOC INC ANGLE -15.73 8.81354 -13.11 8.59255 -11.65 8.42 .057 -10.67 8.04 .569 -10.28 7.63 1.271 -10.20 7.22 1.995 -10.30 6.81 2.844 -10.57 6.42 3.699 -11.03 6.03 4.573 -11.76 5.66 5.484 -12.83 5.29 6.414 -13.48 5.11 6.922 -14.58 4.83 7.098
RP T I P 1 2 3 4 5 6 7 8 9 10 11 HUB	BLADE THICKNESSES TI TM TO .069 .343 .00 .066 .332 .00 .065 .324 .00 .065 .324 .00 .059 .294 .00 .056 .279 .00 .056 .279 .00 .056 .279 .00 .056 .279 .00 .050 .251 .00 .047 .237 .00 .045 .224 .04 .043 .211 .00 .043 .211 .00 .039 .196 .01	AXIAL D1 ZI ZHC 9 28.166 29.726 6 28.169 29.726 5 28.170 29.726 8 28.171 29.728 8 28.178 29.727 6 28.187 29.725 3 28.196 29.724 0 28.205 29.724 7 28.214 29.725 5 28.221 29.725 2 28.229 29.724 1 28.234 29.723	IMENSIONS ZTC Z0 29.267 31.460 29.248 31.453 29.235 31.450 29.216 31.448 29.221 31.447 29.233 31.447 29.234 31.447 29.248 31.448 29.250 31.449 29.250 31.453 29.250 31.456 29.255 31.462 29.260 31.466
RP TIP 1 2 3 4 5 6 7 8 9 10 11 HUB	AERO SETTING TOTA CHORD ANGLE CAMBI 3.368 12.23 55.4 3.368 12.94 52.4 3.368 13.30 49.4 3.368 13.44 48.4 3.368 14.62 49.4 3.369 14.62 49.4 3.371 15.12 50.5 3.372 15.54 52.5 3.376 15.87 53.3 3.381 16.10 55.5 3.388 16.41 59.3 3.387 16.55 61.5	L TURNING R SOLIDITY RATIO 8 1.223 1.000 0 1.241 1.000 1 1.254 1.000 1 1.279 1.000 0 1.305 1.000 0 1.332 1.000 8 1.360 1.000 8 1.417 1.000 1 446 1.000 8 1.476 1.000 8 1.490 1.000 9 1.513 1.000	CHOKE PHISS MARGIN 26.25 .320 24.43 .296 23.26 .280 21.94 .262 21.87 .256 22.17 .257 22.46 .256 22.76 .255 23.11 .255 23.57 .256 24.29 .263 24.78 .269 25.51 .277

Blade row	Blade stress factor of safety	Bending flutter parameter	Torsion flutter parameter
Rotor 1	1.98	2.73	0.88
Rotor 2	2.80	2.32	.89
Rotor 3	3.74	2.01	.87
Stator 1	20.37	2.11	1.06
Stator 2	15.80	1.91	.92
Stator 3	14.15	1.46	.75

TABLE VI.—MECHANICAL DESIGN PARAMETERS

	2. Government Accession		3. Recipient's Catalog No.	
NASA TP-2597				
4. Title and Subtitle			5. Report Date	
Design of 9 271_Pressure_R	atio Five_Stage	Core	May 1986	
Compressor and Overall Per	st Three	6. Performing Organization Code		
Stages			505-62-21	
7. Author(s)			3. Performing Organization	Report No.
Ronald J. Steinke			E-2589	
		11). Work Unit No.	
	· · ·			
9. Performing Organization Name and Address			Contract or Grant No	
National Aeronautics and S	pace Administrat	tion	. contract of chant No.	
Lewis Research Center				
Cleveland, Ohio 44135			3. Type of Report and Peri	od Covered
12. Sponsoring Agency Name and Address			Technical Pap	er
National Aeronautics and S	pace Administrat	tion 1	I. Sponsoring Agency Cod	le
Washington, D.C. 20546	-			
			, <u> </u>	
16. Abstract				
16. Abstract Overall aerodynamic design flow core compressor (74A) For the inlet stage group information and experiment tip speed was 430.291 m/se ber of blades per row was moderate solidity. The hi Radial energy varied to gi blade element profile and were based on relevant exp circular arc. Analysis by mentally measured high flo optimization code gave an efficiency at all speeds.	information is having a 9.271 (first three sta al overall perfo c, and hub to t achieved by the gh reaction stag ve constant tota shock losses and perimental data. a three-dimens ow at design spec optimal IGV-stag	given for all pressure ratio ages), detailed ormance are giv ip radius ratio use of low-asp ges have about al pressure at d the incidence Blade shapes ional Euler cod ed and IGV-stat tor reset sched	five stages of and 29.710 kg/ blade element en. At rotor 1 was 0.488. A ect-ratio bladi equal energy ac the rotor exit. and deviation are mostly dout e verified the or setting anglule for higher	an axial (sec flow. design inlet low num- ing of dition. The angles ole experi- les. An measured
16. Abstract Overall aerodynamic design flow core compressor (74A) For the inlet stage group information and experiment tip speed was 430.291 m/se ber of blades per row was moderate solidity. The hi Radial energy varied to gi blade element profile and were based on relevant exp circular arc. Analysis by mentally measured high flo optimization code gave an efficiency at all speeds.	information is having a 9.271 (first three sta al overall perfo c, and hub to t achieved by the gh reaction stag ve constant tota shock losses and erimental data. a three-dimens ow at design spee optimal IGV-stat	given for all pressure ratio ages), detailed ormance are giv ip radius ratio use of low-asp ges have about al pressure at i the incidence Blade shapes ional Euler cod ed and IGV-stat tor reset sched	five stages of and 29.710 kg/ blade element en. At rotor 1 was 0.488. A ect-ratio bladi equal energy ac the rotor exit. and deviation are mostly dout e verified the or setting anglule for higher	an axial (sec flow. design inlet low num- ing of dition. The angles ole experi- les. An measured
 16. Abstract Overall aerodynamic design flow core compressor (74A) For the inlet stage group information and experiment tip speed was 430.291 m/se ber of blades per row was moderate solidity. The hi Radial energy varied to gi blade element profile and were based on relevant exp circular arc. Analysis by mentally measured high flo optimization code gave an efficiency at all speeds. 17. Key Words (Suggested by Author(s)) 	information is having a 9.271 (first three sta al overall perfo ec, and hub to t ⁴ achieved by the gh reaction stag ve constant tota shock losses and perimental data. a three-dimens ow at design spec optimal IGV-stat	given for all pressure ratio ages), detailed ormance are giv ip radius ratio use of low-asp ges have about al pressure at d the incidence Blade shapes ional Euler cod ed and IGV-stat tor reset sched	five stages of and 29.710 kg/ blade element en. At rotor 1 was 0.488. A ect-ratio bladi equal energy ac the rotor exit. and deviation are mostly dout e verified the or setting ang ule for higher	an axial (sec flow. design inlet low num- ng of Idition. The angles ble experi- les. An measured
 16. Abstract Overall aerodynamic design flow core compressor (74A) For the inlet stage group information and experiment tip speed was 430.291 m/se ber of blades per row was moderate solidity. The hi Radial energy varied to gi blade element profile and were based on relevant exp circular arc. Analysis by mentally measured high flo optimization code gave an efficiency at all speeds. 17. Key Words (Suggested by Author(s)) Compressor design Axial flow compressor Multistage compressor 	information is having a 9.271 (first three sta al overall perfo ec, and hub to t ⁴ achieved by the gh reaction stag ve constant tota shock losses and erimental data. a three-dimens ow at design spec optimal IGV-stat	given for all pressure ratio ages), detailed ormance are giv ip radius ratio use of low-asp ges have about al pressure at d the incidence Blade shapes ional Euler cod ed and IGV-stat tor reset sched 18. Distribution Statemen Unclassified STAR Categor	five stages of and 29.710 kg/ blade element en. At rotor 1 was 0.488. A ect-ratio bladi equal energy ac the rotor exit. and deviation are mostly dout e verified the or setting ang ule for higher	an axial (sec flow. design inlet low num- ng of Idition. The angles ble experi- les. An measured
 16. Abstract Overall aerodynamic design flow core compressor (74A) For the inlet stage group information and experiment tip speed was 430.291 m/se ber of blades per row was moderate solidity. The hi Radial energy varied to gi blade element profile and were based on relevant exp circular arc. Analysis by mentally measured high flo optimization code gave an efficiency at all speeds. 17. Key Words (Suggested by Author(s)) Compressor design Axial flow compressor Multistage compressor 19. Security Classif. (of this report) 	information is having a 9.271 (first three sta al overall perfo ec, and hub to t ⁴ achieved by the gh reaction stag ve constant tota shock losses and perimental data. a three-dimens ow at design spec optimal IGV-stat	given for all pressure ratio ages), detailed ormance are giv ip radius ratio use of low-asp ges have about al pressure at d the incidence Blade shapes ional Euler cod ed and IGV-stat tor reset sched 18. Distribution Statemen Unclassified STAR Categor	five stages of and 29.710 kg/ blade element en. At rotor 1 was 0.488. A ect-ratio bladi equal energy ac the rotor exit. and deviation are mostly dout e verified the or setting ang ule for higher t - unlimited y 07	an axial (sec flow. design inlet low num- ing of dition. The angles ole experi- les. An measured 22. Price*

_

^{*}For sale by the National Technical Information Service, Springfield, Virginia 22161