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1.0 SUMMARY

The Advanced Cockpit Controls/Advanced Flight Control System
(ACC/AFCS) study was conducted by the Boeing Vertol Company as
part of the Army's Advanced Digital/Optical Control System
(ADOCS) program. Specifically, the ACC/AFCS investigation was
aimed at developing the flight control laws for the ADOCS dem-
onstrator aircraft that will provide satisfactory handling
qualities for an attack helicopter mission. The three major
elements of design considered during the ACC/AFCS study are
summarized as follows:

0 Pilot's Integrated Side-Stick Controller (SSC)--Number of
axes controlled; force/displacement characteristics; er-
gonomic design.

O Stability and Control Augmentation System (SCAS)--Digital
flight control laws for the various mission phases; SCAS
mode switching logic.

0 Pilot's Displays--For night/adverse weather conditions,
the dynamics of the superimposed symbology presented to
the pilot in a format similar to the Advanced Attack Heli-
copter (AAH) Pilot Night Vision System (PNVS) for each
mission phase as a function of SCAS characteristics; dis-
play mode switching logic.

Two phases were part of the ACC/AFCS study; Phase 1 included a
literature review, preliminary control law analysis, and pilot-
ed simulations to evaluate side-stick controller designs and
control law requirements for low-speed and low-altitude nap-of-
earth flight under IMC. Full-envelope control laws were devel-
oped during Phase 2 and piloted simulation was continued to
evaluate implementation of high-speed/transition control laws
and modified side-stick controller designs developed from the
Phase 1 simulation. Nonpiloted simulations and analysis were
also conducted during both Phase 1 and Phase 2 in parallel with
the piloted simulations to evaluate effects of control law im-
plementation using fixed point computation algorithms. The
ADOCS demonstrator aircraft will process control laws using a
fixed-point digital flight control computer.

Findings from the literature review and the analysis and syn-
thesis of the desired control laws are reported in Volume 2
provided herein. Results of the five piloted simulations con-
ducted at the Boeing Vertol and NASA-Ames simulation facilities
are presented in Volume 3. Conclusions drawn from an analysis
of pilot rating data and commentary were used to formulate rec-
ommendations for the ADOCS demonstrator flight control system
design. The ACC/AFCS simulation data also provide an extensive
data base to aid the development of advanced flight control
system designs for future V/STOL aircraft.



Summary of Literature Review and Preliminary Control/Display
Law Analysis

Side-stick controllers (SSC) have been evaluated during various
research programs and proven to be superior to a conventional
center stick for certain tasks. The successful implementation
of a SSC depends greatly on the controller force/deflection
characteristics, controller orientation, control response sen-
sitivities, and grip design. Studies conducted by the Air
Force Flight Dynamics Laboratory (AFFDL) provided guidelines
for SSC design including recommended values for force/deflec-
tion characteristics and criteria for controller orientation.
Based on findings of the literature review, candidate 4-axis
controllers with different force deflection characteristics
were selected for evaluation. A wide range of force/deflection
gradients were chosen to bracket AFFDL recommended values.

Various integrated controller configurations (e.g., four con-
trol axes on a single SSC, or two axes on the SSC with separat-
ed conventional pedals and collective) have been investigated
by other studies. Test results indicate that a helicopter can
be flown through a wide range of Visual and Instrument Meter-
ological Condition (VMC and IMS respectively) tasks using a
d-axis or 3-axis SSC without requiring exceptional pilot skill
or concentration. Pilots can easily adapt to most multifunction
isometric controller configurations. Adjustment to yaw control
on the right-hand SSC in a 4-axis configuration can be easily
accomplished by the pilot.

Four variations in controller configuration representing dif-
ferent levels of control integration were chosen for investi-
gation during the ACC/AFCS study.

(1) g4+0%: All control axes (pitch, roll, yaw, and ver-
tical) on the right-hand side-stick controller.

(2) (3+1) Collective: 3-axis side-stick for pitch, roll,
and directional control, and a separate left-hand
collective controller .

(3) (3+1) Pedal: 3-axis side-stick for pitch, roll, and
vertical control, and pedals for directional control.

(4) (2+1+1): 2-axis right-hand side-stick for pitch and
ro control, with separated collective controller
for vertical control and pedals for directional con-
trol.

Control law analysis and synthesis resulted in a generic SCAS
design concept for the ADOCS incorporating main features such
as: (1) full-time feedback stabilization loops to improve gust
rejection characteristics, (2) feed-forward command shaping
using a model following technique to provide desired response
characteristics, and (3) automatic force trimming functions and

2



logic implemented as part of the software to eliminate mechani-
cal force trimming hardware.

Stabilization loop gains are defined for each axis using a de-
coupled aircraft model incorporating actuator dynamics and a
fourth-order rotor model. <Classical techniques are employed to
determine stabilization gains which would result in dominant
roots exhibiting a damping ratio between .65 and .75. Time
history responses of the aircraft model to a gust input are
presented and a comparison of gust rejection characteristics in
terms of power spectral density is made for the unaugmented
UH-60A, the production UH-60A SCAS design, and the modified
SCAS developed for the ADOCS. Improved gust rejection charac-
teristics with the new SCAS design is demonstrated.

Feed-forward command model gains are mechanized in a manner
such that engagement/disengagement of stabilization loops is
not required. A model-following design concept results in a
set of feed-forward gains which produces desired response char-
acteristics regardless of the level of stabilization. Numerous
levels of command and stabilization are defined for investiga-
tion by piloted simulation, each having a unique set of feed-
forward gains. Preliminary system response sensitivities and
nonlinear control response shaping are specified for initial
SCAS implementation and evaluation. Methods for automatically
switching control laws between forward flight and low speed are
developed, as well as requirements for selectable modes to pro-
vide precision hover hold capability. Required levels of com-
mand/stabilization to achieve different levels of handling
qualities are determined during simulation studies (Volume 3).

Since the attack helicopter mission dictates operation in lim-
ited visibility conditions as well as in clear daytime condi-
tions, the effect of a visual display system for IMC was an
important issue to be examined during the ACC/AFCS study. The
Integrated Helmet and Display Sight System (IHADSS) system was
chosen as the baseline system to simulate IMC flight. Some
modifications to the standard AH-64 symbology format and sensi-
tivities were made based on results of other simulation studies
(Reference 1) and a review of display law characteristics im-
plemented on the PNVS surrogate trainer at the U.S. Army Test
Proving Ground, Yuma, Arizona. Pilot participants in the simu-
lation study, who also flew the surrogate trainer, judged the
IHADSS presentation in the simulation to be very representative
of the real world.






2.0 INTRODUCTION

The Advanced Cockpit Controls/Advanced Flight Control System
(ACC/AFCS) design study was performed by The Boeing Vertol Com-
pany for The Aeromechanics Laboratory, U.S. Army Research and
Technology Laboratories (AVRADCOM) under NASA Ames Research
Center Contract NAS2-10880. Boeing Vertol was awarded the
ACC/AFCS contract in December 1980 as part of the Army's Ad-
vanced Digital/Optical Control System (ADOCS) program managed
by the Applied Technology Laboratory, Fort Eustis, Va. under
Contract DAAKS51-82-C-0002. The ADOCS Program is aimed at de-
veloping a battlefield-compatible advanced flight control sys-
tem which can substantially increase aircraft mission effec-
tiveness in part through decreased pilot workload and improved
handling qualities. The objectives of the program are: (1)
the development of the technology required for a digital opti-
cal flight control system, (2) the integration of the new tech-
nology with advanced flight control concepts into a demon-
strator aircraft, and (3) the demonstration of the advantages
of the system in the areas of: mission effectiveness, handling
qualities, flight safety, cost, weight/volume, survivability/
vulnerability, and reliability/maintainability. The program is
divided into two phases: The first involves the development of
component technology for a digital optical flight control sys-
tem while the second is devoted to the development of the ADOCS
demonstrator system. The first flight of the demonstrator air-
craft, a UH-60A Black Hawk, is scheduled for the fall of 1984.

An objective of the ACC/AFCS study was to provide design data
to support the development of the flight control system to be
implemented and evaluated on the ADOCS demonstrator aircraft.
Conceptual design and piloted simulation studies were performed
to define the cockpit controller configuration(s), flight con-
trol laws, and display requirements to achieve satisfactory
handling qualities for an attack helicopter mission. Achieve-
ment of Level 1 handling qualities for both day and night/
adverse weather conditions was a system design goal. Five ma-
jor piloted simulation phases were completed between June 1981
and May 1983. Three simulation periods were conducted at the
Boeing Vertol Simulation Facility followed by two simulation
periods performed at the NASA-Ames Vertical Motion Simulator
(VMS) Facility. Pilot ratings were obtained and interactive
effects of controller configuration and AFCS characteristics,
and the impact of the pilot's night vision aids on the helicop-
ter handling qualities were assessed. Results and data from
the simulation study (Volume 3) were available for use during
the initial flight control system design phase of the ADOCS
demonstrator program.

Figure 2-1 is a schedule which shows major activities of the
ACC/AFCS study. Phase 1 consisted of a literature review, pre-
liminary analysis and design, and three piloted simulations.
The primary purpose of Phase 1 was to develop a systematic ap-
proach to the synthesis of the desired flight control laws for
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certain critical low-speed, low-altitude portions of the

attack helicopter mission for tasks under both visual and in-
strument meteorological conditions (VMC and IMC, respectively).
Variations of the force deflection characteristics and the num-
ber of axes controlled through an integrated side-stick con-
troller (SSC) were investigated. Phase 2 included the syn-
thesis of candidate flight control/display laws for the entire
mission including high-speed, transition, and low-speed tasks
under both IMC and VMC. An evaluation of automatic control law
switching and various selectable mode features was conducted
during two simulation phases using the NASA-Ames Vertical
Motion Simulator (VMS) Facility.

The literature review examined the state-of-the-art of advanced
flight control concepts and was conducted using the services of
the NASA Industrial Application Center at the University of
Pittsburgh. Findings from the literature review, along with
results of the analysis and design activity performed to estab-
lish specific SSC configurations and control law characteris-
tics for evaluation are documented herein. Organization of
Volume 2 is according to three major areas of study:

(1) Side-Stick Controller Design Characteristics - Numer-
ous SSC flight research studies are reviewed, provid-
ing design data and a multitude of recommendations.
This information is analyzed and four candidate 4-
axis controller configurations are selected for eval-
uation during the initial Phase 1 simulation.

(2) Control Law Design - Stabilization requirements are
defined for the ADOCS demonstrator helicopter (UH-60A
Black Hawk) using classical control theory analysis.
Desired control response characteristics systems are
selected based on a review of documented analytical
studies. Preliminary response sensitivities are se-
lected based on results obtained from various experi-
mental flight test and simulation programs.

(3) Visual Display Systems - Variations to the basic
IHADSS symbology are defined. The literature review
suggested potential improvements to the display
symbology format, and guided the selection of the
control laws and dynamics for specific symbology
parameters.






3.0 SIDE-STICK CONTROLLER DEVELOPMENT

This section reviews the history of side-stick controller (ssC)
development in the aircraft industry with emphasis on research
programs directed toward the use of a SSC for rotary-wing air-
craft. Data from published literature were utilized to form a
data-base to: (1) aid in the selection of side-stick controller
characteristics for evaluation by piloted simulation, and (2)
guide the development of design requirements for the ADOCS
side-stick controller. Major design considerations identified
during the literature review are discussed and findings are
organized according to the following topics:

0 Controller Configuration - number of control axes inte-
grated on a SSC.

0 Controller Orientation - geometric location of the SSC
with respect to pilot armrest and seat.

o Grip Design/Switch Requirements
0 Force/Deflection Characteristics
o Aircraft Response/Controller Force Sensitivities

3.1 FEASIBILITY STUDIES

The use of side-stick controllers in place of the conventional
center-stick as the primary control input device in high per-
formance aircraft is not a recent innovation. As part of a
NACA sponsored program in 1957 (Reference 2), Sjoberg equipped
a Navy F9F Grumman Panther with a SSC to investigate the con-
trol implications of using a SSC as the primary controller.
None of the 14 pilots that participated in Sjoberg's experiment
reported any difficulty in flying or controlling the aircraft
with a SSC. The pilots were able to execute precision flying
tasks without any degradation in performance. Pilot effort was
actually felt to be reduced when flying with a SSC because of
the lighter control forces required and the increased pilot
comfort provided by the SSC armrest.

In 1970, a F-104 was flown with a SSC during a study conducted
by the Air Force Aerospace Research Pilot School (now the USAF
Test Pilot School). The 60 pilots who participated in this
experiment (Reference 3), preferred the SSC to a conventional
center-stick controller. In the 870 hours of flight time accu-
mulated, no failures of the SSC occurred. The SSC was felt to
provide superior trajectory control with a drastic reduction in
pilot workload.

A direct comparison of pilot performance using a conventional
center stick and a SSC was performed in a study for the Aero-
nautical Systems Division at Wright-Patterson Air Force Base

(Reference 4). This study concluded that a SSC, especially a
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dual SSC configuration, was feasible for use in high speed,
high altitude maneuvering tasks. Performance for landings and
precision maneuvers was found to be improved with the SSC, but
in gross maneuvering at a low altitude a degradation in perfor-
mance was felt to occur with the SSC.

Research involving the use of side-stick controllers in Army
helicopters began in 1968 with the Tactical Aircraft Guidance
System (TAGS) Program (References 5 and 6). The system was
implemented in a CH-47B aircraft and initially included an in-
tegrated 4-axis displacement controller; but because of command
coupling problems between the longitudinal and vertical axes, a
3-axis controller (Figure 3-1) was eventually implemented with
vertical control effected through a standard collective lever.
Even after the vertical axis control was removed from the TAGS
side-stick controller, pilot comments were critical of the lon-
gitudinal control implementation. Longitudinal control in the
TAGS aircraft was effected by sliding the controller longitu-
dinally a distance proportional to the desired velocity change.
Total travel for full forward speed was 4.5 inches. Pilots
found it very difficult to modulate longitudinal control inputs
when required to make high frequency reversals and other sudden
inputs in the other control axes. The force-feel system imple-
mented resulted in a force proportional to the rate of change
of controller position. Because of the damping characteristics
implemented in the TAGS controller, it felt massive and heavy.
Pilot comments rate the lateral and directional control imple-
mentation above average. Roll control was mechanized with the
more common and classical base-pivot and yaw control was ob-
tained through grip twist.

The use of multi-axis controllers was considered, but rejected
for the Heavy Lift Helicopter (HLH) primary flight control sys-
tem. The selection of conventional controls for the HLH pi-
lot's station is explained in Reference 7. Conventional
controls were felt at that time, to be more suitable for dual
primary pilot controls requiring a complex force-feel system
and ballistic tolerance. However, McManus of Boeing Vertol
explains that during the HLH preliminary design, a SSC was felt
to be appropriate for a multi-axis, single pilot task in an
aircraft having a simplified force-feel system and high-order
control laws, where reversion to unaugmented control is not
required. A 4-axis medium-displacement controller was imple-
mented at the load-controlling crewman's (LCC) station in the
HLH. This controller (Figure 3-2) was used solely for preci-
sion cargo handling tasks with a highly augmented aircraft. In
this application, Level 1 Cooper-Harper pilot ratings were
achieved using the SSC (Reference 7).

More recently at Boeing Vertol, a ground based simulation of an
Advanced Scout Helicopter (ASH) incorporated a SSC (Reference
8). A Lear Siegler A-7/F16 2-axis SSC was used in simulation
studies along with separated collective and directional pedal
force controllers. For harmony between control axes, all

10
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controllers were stiff with essentially no deflection. Accept-
able control laws for an ASH mission were developed and the
feasibility of a side-stick force controller was demonstrated
during this study.

In a three-degree-of-freedom moving-base simulation at the Roy-
al Aircraft Establishment (RAE) Bedford, U.K. (Reference 9) of
an unaugmented Lynx helicopter, a 2-axis displacement side-stick
was compared to the conventional cyclic controller for eleven
different flight tasks; when a suitable control sensitivity was
selected, the side-stick compared favorably with the conven-
tional controller and, in fact, was preferred for certain

tasks.

A feasibility study of a 4-axis isometric side-stick controller
was conducted by the National Aeronautical Establishment of
Canada (Reference 10). A wide range of flight tasks were eval-
uated in a Bell 205A-1 using various side-stick controller con-
figurations. With appropriate gains, shaping, and prefiltering
applied to the pilots' force input in each controlled axis,
pilot ratings comparable to those obtained with conventional
controllers were achieved by a 4-axis side-stick configuration.

In applications to production helicopters, only the Bell AH-1
series Cobra has been equipped with a SSC. 1In the Cobra, a
2-axis SSC is installed, but only at the copilot/gunner's sta-
tion. The ADOCS program, through side-stick controller and
control law design and evaluation, will develop the technology
which will enable a multi-axis SSC to be included as the primary
pilot controller in a production helicopter design.

3.2 CONTROLLER CONFIGURATION

Application of fly-by-wire and fly-by-light technology to the
design of advanced helicopter control systems could result in a
potentially significant change to standard cockpit design prac-
tice. One of the most significant changes is that alternate
configurations which provide increased comfort, convenience,
efficiency, and viewing area to the pilot can be considered.

Fixed-wing aircraft equipped with a SSC normally control only
pitch and roll through the SSC and use conventional pedals for
directional control and a separate throttle lever for engine
thrust/power management. Helicopter research programs have
explored the option of adding directional and/or vertical con-
trol to a right-hand side-stick controller. The various con-
troller configurations evaluated range from a fully integrated
4~-axis configuration to more conventional (2+1+1) configura-
tions using a 2-axis SSC for pitch and roll control, pedals for
directional control, and a separated left-hand collective con-
troller. Pedals have been either conventional large-displace-
ment type or force pedals with little or no displacement.
Left-hand vertical control in the (2+1+1) configuration has
been effected through a standard large-displacement collective

13



lever or a modified collective lever (or side-arm controller)
with small displacement for better harmony with the other con-
troller axes. In all cases studied, integration of yaw control
on a right-hand multi-axis SSC has been successfully achieved
through a twist (torque) about the grip vertical axis. Verti-
cal control has been most commonly implemented on the right-
hand SSC as a pure up/down displacement or force application
along the grip's vertical axis.

A brief review of helicopter research programs which evaluated
various multi-axis SSC configurations follows. As previously
mentioned, the TAGS aircraft (Reference 5) initially included a
fully integrated 4-axis SSC but because of coupling problems
between the longitudinal and vertical axes, switched to a (3+1)
Collective controller configuration, (i.e. pitch, roll, and yaw
on the right-hand controller and a standard left-hand collec-
tive lever for vertical control). The longitudinal/vertical
coupling problem associated with the TAGS controller was, at
least in part, due to the rotational inertia of the controller.
Under moderate longitudinal or lateral accelerations, the force
required for a vertical input was exceedingly high with the
4-axis controller configuration.

The Model 347/HLH aircraft demonstrator successfully employed a
4-axis displacement controller at the load-controlling crew-
man's station (Reference 7). A unique finger/ball controller
design (Figure 3-2) had medium control travel in each axis:
(t2.75 inches in pitch, 1.5 inches in roll, 11.05 inches 1in
vertical, and 127 degrees directional twist for yaw). The ful-
ly integrated SSC was used only in and around the hover flight
regime with a hlghly stabilized aircraft. Level 1 Cooper-
Harper pilot ratings were achieved for precision maneuvering
and position hold tasks.

Since 1969, the National Aeronautical Establishment (NAE) of
Canada has conducted flight research pertaining to helicopter
control with a side-arm controller (Reference 10). This work
has been conducted in the NAE Airborne Simulator, a specially
modified Bell 205A-1 hellcopter equipped with a full-authority
fly-by-wire system and dual isometric side-stick controllers.
Various controller orientations were investigated, as shown 1n
Figure 3-3, ranging from a more conventional arrangement
(right- hand side~-stick, left-hand collective, and pedals) to a
fully integrated 4-axis SSC. The dual SsSC 1mplementat10n used
by NAE enabled direct comparisons of a left-hand versus a
right-hand 4-axis controller orientation. Non-linear control
shaplng was employed as well as a force-trimming system utiliz-
ing a four-way beep trim switch.

Some conclusions from the NAE flight research study (Reference 10)
are summarized as follows:

o A helicopter can be flown through a wide range of VMC and
IMC flight tasks using a 4-axis SSC or a 3-axis SSC

14
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(pitch, roll, and collective with separate pedals) without
requiring exceptional pilot skill or concentration.

o Pilots can easily adapt to most multifunction isometric
controller configurations. Adjustment to yaw control on
the right-hand side-stick in a 4-axis configuration was
easily made and certain pilots felt that there was added
comfort with feet-on-the-floor. Some pilots favored the
(3+1) Pedal configuration due to concern that the fully
integrated controller might be more vulnerable to cross-
coupled inputs in emergency situations and during high-
workload operations. However, the 3-axis SSC with
separated collective control achieved through a grip
twisting motion (Figure 3-3) was not readily accepted and
was found to be confusing.

0 The 4-axis right-hand $SC was preferred over the left-hand
4-axis location but many of the pilots could adapt to
either.

o The (2+1+1) configuration, with essentially conventional
assignments of the left and right hand control functions,
was evaluated briefly by several pilots and could be flown
with ease and presented no problems.

Based on results obtained from the previously discussed pro-
grams, four configurations were selected as primary candidate
configurations to be evaluated during the ACC/AFCS simulation
studies. Figure 3-4 illustrates the configurations selected
for evaluation during Phase 1. The most conventional (2+1+1)
configuration, represents the most subtle way of transitioning
from conventional controls to a multi-axis SSC configuration.
Both the (3+1) Pedals and (3+1) Collective configurations inte-
grate only one additional control axis on the right hand SSC.
The 4-axis configuration integrates all four control axes on a
single right-hand SSC. Evaluation of the (3+1) Collective,
(3+1) Pedal, and (2+1+1) controller configurations was per-
formed during Phase 1 using a conventional collective lever and
directional pedal controls. The simulator variable force-feel
collective lever was implemented as a "stiff" force controller
with small deflection. A pedal force control system was con-
figured using a mechanical spring capsule attached directly to
the pedals. The directional pedal configuration selected had a
force/deflection gradient of 40 lbs/inch with a force breakout
of 6.0 1lbs.

Phase 1 simulation results showed an advantage to having a sep-
arate controller for vertical control (Reference 11). The (3+1)
Collective and (2+1+1) configurations achieved the best overall
pilot ratings for all IMC/VMC tasks. A separate collective
controller eliminated unintentional collective to pitch/roll
coupling common to the 4-axis and (3+1) Pedal configurations.
Based on Phase 1 simulation results, Phase 2 simulation studies
and controller design development was directed toward improve-
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ment of vertical axis control. The (3+1) Collective and (2+1+1)
configurations were implemented using a left-hand side-stick
controller instead of a conventional collective lever (Figure
3-5). Orientation of the armrest and mounting of the left-hand
controller was accomplished such that vertical control inputs
were made through the longitudinal control axis (pitch rotation)
of the SSC. A picture of the installation of the right-hand
and left-hand side-stick controllers in the NASA-Ames simulator
is shown in Figure 3-6. Improvement of the 4-axis controller
design was also emphasized during Phase 2 by modification of
the grip design, controller orientation, and force/deflection
characteristics.

3.3 ORIENTATION

Throughout all SSC evaluation studies conducted to date, the
increased comfort provided by the SSC armrest has been noted as
a major benefit. Orientation of the controller must not only
be comfortable, but optimized to prevent or reduce inherent
anthropometric cross-axis coupling. Proper controller orienta-
tion can also reduce pilot workload and improve precision
control.

Pilots who flew a Navy F9F in Sjoberg's experiment (Reference

2) felt that pilot effort was actually reduced when flying with
a SSC. One of the two main reasons for this was considered to
be the increased comfort provided by the SSC armrest. Sjoberg's
conclusions state that proper SSC orientation should allow pi-
lots to use finger and wrist motions as they were preferred
over arm motions for control inputs.

Conclusions from an F-104 SSC study (Reference 3) included data
on SSC orientation requirements as well. The orientation of
the controller was found to be an important human factors con-
sideration. The controller was rolled inboard 12 degrees and
pitched nose-down 17 degrees in order to maximize pilot comfort
and useful wrist deflection. The armrest was located 4 to 6
inches from the pilots side and parallel to the longitudinal
axis of the aircraft. This position was comfortable for all
pilots leaving seat height as the only required adjustment.

Simulations in support of the ASH study (Reference 8) utilized
a 2-axis stiff SSC for pitch and roll control. Results from
this study showed the importance of position and orientation of
the SSC to reduce unintended cross-axis coupling of control
inputs.

Pilot's comments reported during the TAGS study (Reference 6)
included unfavorable feelings toward the geometry of the arm-
rest in the TAGS aircraft.

A summary of recommended design criteria for 2-axis side-stick

controllers is presented in an Air Force Flight Dynamics Labo-
ratory (AFFDL) technical report (Reference 12}). The recommen-
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dations made by Black and Moorehouse in this document are dir-
ectly applicable to the ADOCS program. Recommended require-
ments for controller orientation and installation are summar-
ized as follows:

o The SSC neutral position should be oriented 10-17 degrees
forward of vertical and 8-12 degrees inboard of vertical
to minimize pilots wrist displacements.

0 A pilot adjustable armrest is ABSOLUTELY necessary and its
design can easily influence other parameters.

An adjustable armrest and mounting bracket to allow easy varia-
tion of side-stick controller orientation were installed for
the ACC/AFCS simulation studies. Controller orientations were
optimized for the right-hand SSC (Phase 1 and Phase 2) and the
left-hand controller (Phase 2 only) based on subject pilots!
comments. Figure 3-7 illustrates the orientation utilized in
the final simulation phase (Phase 2B) and the orientation rec-
ommended for the ADOCS demonstrator vehicle. This orientation
was found acceptable by the five subject test pilots who par-
ticipated in the Phase 2B simulation, as well as numerous other
pilots who participated in a post-simulation demonstration.

3.4 CONTROLLER/GRIP DESIGN

During the Phase 1 literature review, Boeing Vertol contracted
Honeywell, Inc. to review potential controller designs and
present recommendations concerning side-stick controllers and
associated grips. Honeywell's background in SSC design is ex-
tensive, including related work on the SSC employed for the
Apollo and Space Shuttle vehicles. The findings of the Honey-
well study are summarized as follows in Sections 3.4.1 and
3.4.2. Information from other sources pertaining to SSC but-
tons and switches are presented in section 3.4.3.

3.4.1 Hand-Controller Pivot Sets

A number of 2- and 3-axis hand controllers have been investi-
gated for fighters, spacecraft and helicopters. These control-
lers have used a number of pivot sets as shown in Figure 3-8.
The roll control axis has been parallel to the forearm and be-
neath the hand in almost every stick tested. The most intui-
tively correct pitch control axis (with this roll axis) is
horizontal, perpendicular to and intersecting the roll axis.
This is the axis set for the classic cockpit center-stick, for
a number of "pencil sticks", and for the F-16 side-stick. It
is an excellent pivot set in a displacement stick but has one
disadvantage; the pitch control motion requires that the fore-
arm move on its rest, which is awkward if control must be main-
tained in a high g-field or in heavy vibration (as in a heli-
copter). For this reason, other pitch control pivots which
allow operation without arm movement have been investigated.

It should be noted, however, that leaving the classic pitch/
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roll pivot set for more innovative controllers may involve risk.
For example, most pilots of interest have had thousands of
flight hours with a large-displacement center stick which can
be '"pushed" around in pitch and roll. Most innovative pitch
pivots do not move for a push (except for the TAGS controller)
and a stressed pilot may revert to a "push" mode - a hazardous
possibility in some conditions.

Two innovative pitch pivots which have been intensively flight
tested are the wrist pivot (X-15 and JF101A test bed) and the
palm pivot (Apollo rotational stick and Shuttle '"space" and
"atmospheric" sticks). A palm pivot was found to give better
control harmony between pitch and roll than the wrist pivot,
allowing better simultaneous 2-axis control than the wrist
pivot.

The yaw axis of control in a hand controller has been imple-
mented 1n several ways; the most prevalent has been the grip
twist about the vertical axis of the hand grip itself, and an
alternative method has been a thumb lever. Although the thumb
lever avoids the cross-coupling problem obvious in the grip
twist, problems of hand fit and fatigue make it a poor con-
troller.

For the ACC/AFCS simulation studies, all candidate controllers
chosen for evaluation have a "classical" base-pivot design,
i.e., the pitch and roll pivot point located beneath the hand
with the axes of rotation oriented approximately parallel to
the aircraft body axes. Controllers with this type of pivot
set are readily available either as a prototype controller from
another experimental development program or by purchase of an
off-the-shelf design. A palm pivot, as used on the Apollo and
Shuttle spacecraft, is an attractive alternative but could not
be procured in a timely manner for simulation testing during
the ACC/AFCS study. Yaw control on the side-stick controllers
evaluated was obtained by twisting about the grip centerline;
vertical control, using the right-hand controller, is effected
through the application of pure up and down forces.

Evaluation of vertical control when implemented on a left-hand
side-stick controller, instead of a conventiocnal collective
lever, was also performed. The left-hand side-stick was ori-
ented so that vertical control inputs were accomplished through
the rotational pitch axis of the SsScC.

3.4.2 Grip Design

Grip designs for use on Side-Stick Controllers range from con-
ventional hand grips as used on production helicopter center-
stick controllers to innovative designs as used on the HLH
(Figure 3-2). Honeywell summarized a wide range of possible
grip designs and noted the requirements for an acceptable grip
design. The Honeywell study concluded that the grip of a
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multi-axis controller having "classical" pivot points described
must:

o Be so shaped that the hand, upon grasping it, is clearly
positioned with respect to motions that allow the operator
to:

- twist the grip about the vertical (2-2Z) axis (yaw)
- rotate the grip about the lateral (Y-Y) axis (pitch)
displace the grip about an axis (X-X) below it (roll)

0 Be so shaped that the position of the hand with respect to
the grip is constant, permitting the operator to immedi-
ately determine if the grip has been moved with respect to
any of the control axes.

To achieve these goals the grip must:

o Have finger depressions along its front surface to posi-
tion the hand with respect to the grip's top and bottom.

0 Position the thumb and index finger approximately parallel
to each other, permlttlng immediate tactile and visual
awareness of the grip's pos1t10n within the hand with re-
spect to rotation about its longitudinal axes. Hav1ng
properly positioned the thumb and index finger, grasping
the grip with the remaining fingers should not result in a
rotation of the grlp, either about its palm pivot or about
its longitudinal axis.

Durlng the course of the ACC/AFCS simulation study, various
grip designs (Flgure 3-9) were evaluated including (1) a HLH
prototype hand grip, (2) a standard off-the-shelf grip design
manufactured by Measurement System, Inc., Norwalk, Conn. (MSI),
(3) the Canadian NAE type grip, and (4) an exper1menta1 grip
design fabricated by Boeing Vertol. Simulation results de-
tailed in Volume 3 indicate pilot preference for the Canadian
type of grip design. This grip provided pilots with better
vertical control surfaces than the standard MSI design or HLH
prototype hand grip. The Boeing experimental grip was not
found to be acceptable.

3.4.3 Buttons/Switches

Numerous buttons/switches are presently located on the standard
pilot and copilot controller grips. These switches/buttons
activate a variety of equipment functions, such as:

Radio Operation
Weapons Discharge
Cargo-hook release
Search-light operation
Engine RPM trim

00000
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¢ Force-trim release
0 Vernier beep trim commands
0 IHADSS mode selection

Previous research studies provide design criteria for locating
switches and buttons on a SSC. Experiments conducted by the
Air Force Aerospace Research Pilot School (Reference 3) found
that the switches on the SSC must have deflection to provide
feedback to the pilot and inform him of activation. The Air
Force experiments concluded that the switch deflection/activa-
tion force must be less than 50 percent of the control breakout
force. Switches should be positioned no more than 1 inch above
the pilot's forefinger because of human factor considerations.

Morgan's conclusions from his study of side-stick controller
force-trimming systems (Reference 10), reiterate the findings
of Reference 3. Stiff four-way beep trim switches resulted in
inadvertent inputs through the SSC. Flight test results on the
NAE airborne simulator show that an effective force trimming
system for a helicopter equipped with a SSC is essential. Of
the systems evaluated, the best results were obtained with an
automatic or self-trimming system. An inherent self-trimming
system implemented through control law design eliminates the
requirement for force-trim/release switches on the SSC.

For ACC/AFCS simulation studies, it was decided to activate a
limited number of functions from the SSC. Buttons/switches to
control only three of the functions listed previously--IHADSS
mode selection, vernier beep trim, and force trim--were in-
cluded on the side-stick controllers purchased from MSI (Figure
3-10). All switches were low force spring-loaded on-off switches
with breakout forces < 1.0 1b. The IHADSS mode select switch
for IMC evaluation was always located on the left-hand control-
ler for all controller configurations, even when a 4-axis SSC
was operated by the right-hand. Capability for vernier beep
trim commands with AFCS ON was provided from four-way trim
switches located on the top of the left-hand controller for
collective and yaw, and on the right-hand controller for pitch
and roll. Vernier beep trim was provided as a secondary con-
trol law function, and was used to make fine adjustments to
heading, altitude, and longitudinal/lateral velocity. Beep
trim was not required by the pilots for performance of evalua-
tion tasks defined for the ACC/AFCS simulation study.

The force trim/release button was utilized to relieve steady
trim forces for AFCS OFF operation during initial investigation
of unaugmented characteristics. Upon activation of the force-
trim button, the required trim to reduce steady-state trim
forces to zero was injected into the control system at a slow
controllable rate. An alternate design concept was later de-
veloped to automatically trim forces with AFCS OFF, thereby
eliminating the requirement for a trim release button on the
ADOCS demonstrator aircraft. Automatic trimming of steady-
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state forces with AFCS ON is inherent in the control law design
concept chosen for the AFCS.

3.5 FORCE/DEFLECTION CHARACTERISTICS

Much flight research and simulation testing has been conducted
to investigate the effect of SSC force/deflection characteris-
tics on handling qualities. Side-stick controller force/deflec-
tion characteristics implemented on various aircraft range from
the very stiff stick design of the F-16 to a medium-deflection
relatively "soft" controller as used on the HLH demonstrator
vehicle. This section summarizes findings of the literature
review and results of a few side-stick development programs.
Force/deflection characteristics chosen for the base-1line con-
troller(s) used in the ACC/AFCS simulation are presented and
compared to recommended characteristics determined from the
literature review.

In the study conducted by the Air Force Aerospace Research Pi-
lot School (Reference 3), three force/deflection characteris-
tics were tested in both the pitch and roll axes (Figure 3-11)
resulting in nine possible combinations. Maximum controller
deflection was kept constant at 20 degrees for all force/deflec-
tion configurations tested. The favored gradients in this study
were found to be the "hard" gradient in pitch (1.75 deg/1b) and
the "medium" gradient in roll (10 deg/1b).

Further studies to investigate SSC force/deflection character-
istics were performed using a NT-33A aircraft equipped with a
variable force/deflection side-stick controller (References 13
to 15). A wide range of force/deflection characteristics was
evaluated and their effect on pilot handling qualities ratings
identified. Pilot ratings were used to define 1so-opinion con-
tour boundaries outlining adequate, marginal, and poor regions
of force/deflection and response/force gradients. A preferred
region of force versus deflection gradient was identified
(Figure 3-12) and certain general conclusions were drawn from
the test results:

(1) In the region of very small motion (fixed stick),
tracking performance was very sensitive to changes in
force/response gradient. The range of stick force/
response gradients that result in adequate perfor-
mance is very restricted. There appears to be a nar-
row area in the medium to heavy force/response
gradient range where performance in air-to-air maneu-
vers was adequate. Lighter or heavier forces with
small motion will result in objectionable or unac-
ceptable handling qualities.

(2) As motion increased, the region expands to a point

where the results were fairly insensitive to changes
in force/response gradients. Moderate stick motion
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coupled with light to moderate stick force gradients
results in the best tracking performance.

(3) As stick motion was increased further, comments about
excessive stick motion, encountering the stops, and
overshoots arose. With more than 20° deflection,
excessive wrist bending caused pilot control to
deteriorate.

(4) A comparison of results for both gross maneuvering
and precision tracking tasks indicated no noticeable
disparity in the results obtained from the two types
of maneuvers. The boundaries of Figure 3-12 apply to
all air-to-air maneuvers investigated.

In the summary of SSC design criteria presented in an AFFDL
technical report (Reference 12), the following recommendations
were included:

¢ Minimum full longitudinal deflection should be greater
than 2 deg from neutral to full aft.

o Longitudinal and lateral deflection values should be con-
sistent for a harmonious feel.

o Lateral deflection/force gradient should be 1 to 1.6 times
the longitudinal deflection/force gradient.

o Longitudinal control should have a deflection/force gradi-
ent between 0.5 and 0.8 deg/1lb.

o Hard stops that are easily discernible to the pilot should
be used.

As noted by the above recommendation from Reference 12, the
relationship between the longitudinal and lateral force/ de-
flection characteristics was found by Air Force testing to be
an important design criteria. Figure 3-13 defines the AFFDL
preferred region of longitudinal/lateral force-deflection gra-
dient which provided good control harmony. Various controller
configurations that were acceptable based on flight test evalu-
ation are identified. The candidate controller designs, as
described below, were selected for ACC/AFCS simulation evalua-
tion and are also presented in Figure 3-13 for comparison.

Side-stick configurations used for a number of aircraft/heli-
copter flight research and development programs are summarized
in Table 3-1. Controller configurations included 2-axis (pitch
and roll), 3-axis (pitch, roll, and yaw), and 4-axis designs.
The majority of the controllers had a base pivot design for
pitch and roll with exception of the Shuttle and Apollo air-
craft which mechanized a unique palm pivot for pitch control
application. The TAGS controller also deviated from the con-
ventional base-pivot for pitch control to a design requiring
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longitudinal translation (displacement) of the controller to
command pitch. All controllers used grip twist about the ver-
tical axis for yaw control. Two of the three 4-axis controller
configurations evaluated on helicopter programs (HLH Demon-
strator and the NAE Bell 205A-1 Airborne Simulator) mechanized
vertical control by pure up/down force application along the
grip vertical axis. The TAGS 4-axis controller design used a
rotational displacement of the controller for vertical control
inputs. This configuration was not successfully implemented
because of the high inertia of the control mechanism about the
vertical rotational control axis. As described previously in
Section 3.1, excessive longitudinal/vertical coupling resulted
during flight test evaluation of the TAGS 4-axis controller.
The vertical axis was locked out and the controller configura-
tion was modified to a (3+1) Collective configuration using a
standard collective lever.

A comparison of the force/deflection characteristics listed in
Table 3-1 shows a wide range of values from very stiff stick
designs -- NAE Bell 205 Airborne Simulator and F-16 -- to ex-
tremely "soft" designs -- F-105D (Air Force Research Program)
and Model 347 (HLH Demonstrator Program). Figure 3-14 compares
the longitudinal and lateral force/deflection characteristics
for the side-stick controllers included in Table 3-1. A recom-
mended region developed for the longitudinal and lateral con-
trol axes through AFFDL testing of an NT-33A aircraft (Refer-
ences 12, 13, 14 and 15) is shown.

Comparison of controller force/deflection characteristics
showed a large variation in the extremes of acceptable configu-
rations. Therefore, it was necessary to consider a wide range
of controller force/deflection characteristics during ACC/AFCS
simulation testing. Four candidate controllers were selected
to bracket the AFFDL recommended area. Figure 3-15 defines the
four specific force/deflection configurations evaluated during
Phase 1A simulation of Boeing Vertol. Two 4-axis controllers
manufactured by MSI were purchased. The stiff-stick designated
MSI-SS is an off-the-shelf unit identical to the controller
used by NAE for testing on the Bell 205 Airborne Simulator. A
second small-deflection controller was fabricated to design
characteristics chosen specifically for the ACC/AFCS study.

The small-deflection controller design designated as MSI-SD1
incorporated t 5.3 degrees of motion in pitch and roll, and
provided force/deflection gradients between the AFFDL recom-
mended values and the stiff-stick design. A variable force/
deflection controller used for HLH simulation studies was also
utilized to obtain a medium- and large-deflection configura-
tion. Yaw and vertical controller compliance for both MSI con-
troller configurations were relatively "stiff" compared to the
pitch and roll axes. In contrast, the medium and large-deflec-
tion configurations were evaluated with lighter yaw and verti-
cal force/deflection gradients for harmony with pitch and roll.

35



J—
o
1

CONTROLLER DEFLECTIOM (DEGREES)

CONTROLLER DEFLECTION (DEGREES)

TYPICAL

HLH (REF. 17)
0.14 LB/DEG

SSC FORCE/DEFLECTION CHARACTERISTICS

LONGITUDINAL AXIS

F-104D (REF. 3)
0.57 LB/DEG

NT-33A (REF. 14)
1.4 LB/DEG

NAE BELL 205

STMULATOR __l

F-16 (REF. 36) 40 LB/DEG

14.4 LB/OEG (AFT)

(REF. 10)
1

TAGS (REF. 15)
0.054 LB/DEG

F-1040 (REF. 3)
0.1 LB/DEG

HLH (REF. 17)
0.11 LB/DEG

w

1

4 5 6 7 8
APPLIED FORCE (POUNDS)

O+
o

LATERAL AXIS

NT-334 {REF. 14)
1.4 LB/OEG

SPACE SHUTTLE
0.47 LB/DEG

NAE BELL 205
STMULATOR
(REF. 10)
40 LB/DEG

F-16 (REF. 36)
14.4 LB/DEG {AFT)

i 2 3 4 5 6 7 8 9 10
APPLIED FORCE (POUNDS)
Figure 3-14

36



CONTROLLER DEFLECTION (DEGREES)

CONTROLLER DEFLECTION (DEGREES)

[en]
1

ACC/AFCS CANDIDATE SSC CONTROLLERS
FORCE/DEFLECTION CHARACTERISTICS

LONGITUDINAL AXIS

HLH LARGE DEFLECTION HLH MEDIUM DEFLECTION
0.9 LB/DEG 1.67 LB/DEG

MSI SMALL DEFLECTION (MSI-SD2)
1.82 LB/DEG

JOEG

2.0\8

MSI SMALL DEFLECTION (MSI-SD1)

3.05 LB/DEG MSI STIFF STICK
40 LB/DEG
; ; : T — T T : $ : ~
] 2 3 4 5 6 7 8 9 10

APPLIED FORCE (POUNDS)

LATERAL AXIS

HLH LARGE DEFLECTION
0.6 LB/DEG

HLH MEDIUM DEFLECTION
1.05 LB/DEG

MSI SMALL DEFLECTION
(MS1-35D2)
1.45 LB/DEG

2.25 LB/DEG
MSI STIFF STICK
40 LB/DEG __1
=, ; . ; j ; = = — —
1 2 3 4 5 6 7 8 9 10
APPLIED FORCE (POUNDS)

Figure 3-15
37



Task performance with the 4-axis stiff-stick and three 4-axis
deflection controllers described in Figure 3-15 was rated for
both rate and attitude command systems in pitch and roll (Fig-
ure 3-16). The small-deflection, MSI-SD1, and medium-deflection
controllers achieved the best average pilot ratings. Commen-
tary from the pilots who compared the stiff-stick and small-
deflection controllers was very consistent. All agreed that
task performance improved substantially with the introduction
of deflection. Acceptance of the medium-deflection controller
was mixed. One pilot gave this controller degraded ratings
because height control was difficult due to a high force break-
out in the vertical axis. A second pilot gave the medium-
deflection controller improved ratings compared to the small-
deflection controller because he felt more in control during
large maneuvers. The large-deflection controller received
degraded ratings compared to the controllers with smaller de-
flection. Comments indicated a more sluggish pitch control
response and less precise control of attitude for high freg-
uency inputs. Based on these initial Phase 1A simulation re-
sults, the small-deflection controller was modified by MSI to
have a higher deflection/force gradient in each axis. The gra-
dient values selected approached those of the medium-deflection
controller and fell within the AFFDL recommended region. This
controller design specified as MSI-SD2 was used for further
evaluation of controller/SCAS configurations during Phase 1
simulations (Phases 1B and 1C).

Complete force/deflection characteristics for the five 4-axis
controller configurations utilized during Phase 1 are presented
in Table 3-2. Two additional small-deflection controllers used
during Phase 2 at NASA-Ames are also shown and described below.
Operating force range, maximum deflection, and force/deflection
gradient are given for the four control axes of each controller
design.

The Phase 1 simulations at Boeing Vertol showed that improved
handling qualities for specific tasks resulted from adding lim-
ited deflection to the longitudinal and lateral axes of the
side-stick. However, pilot comments indicated that poor con-
trol force harmony resulted from the combination of two stiff
control axes and two deflection control axes on the same con-
troller. High frequency force modulation for yaw and collec-
tive control was difficult and performance of the precision
hover task, although better than the stiff controller, was mar-
ginally acceptable. Therefore, a third MSI controller --
MSI-SD3 -- was developed for Phase 2 simulation evaluation.
This controller with small-deflection in all axes was unani-
mously preferred over a 4-axis stiff-stick design, or the
MSI-SD2 design having limited deflection in the pitch and roll
axes. All pilots felt that deflection in all control axes im-
proved the pilot's ability to modulate single-axis forces, pro-
duced less tendency for overcontrol and input coupling, and
enhanced control precision for high-gain tasks such as the Pre-
cision Hover (Reference 16).
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Based on the ACC/AFCS simulation results, design characteris-
tics very similar to those of the MSI-SD3 controller were spec-
ified for the ADOCS demonstrator aircraft. The demonstrator
controller will be manufactured by Lear Siegler, Inc. (LSI),
Santa Monica, California. A brassboard controller very similar
in design to the demonstrator unit was available for the final
simulation period at NASA-Ames (Phase 2B). The Lear Siegler
brassboard controller was also equipped with a grip similar to
the one used on the MSI-SD3 controller and the controller eval-
uated during NAE flight testing (Reference 10). This grip was
designed to improve the pilot's ability to apply single-axis
vertical and directional inputs and to minimize inter-axis cou-
pling of these inputs. Comparable ratings were obtained with
the LSI Brassboard and MSI-SD3 controllers, therefore, the LSI
unit was used for the majority of Phase 2B simulation testing
(Reference 17).

3.6 RESPONSE/FORCE SENSITIVITY CHARACTERISTICS

Information obtained from the literature review emphasized the
many variables affecting the development of an optimum set of
controller response/force characteristics. Variables to be
considered include:

Aircraft type

Controller design characteristics (force/deflection gradi-
ents, control axes integrated on controller, etc.)

Command system type

Pilot personal preferences

Evaluation tasks

Stability augmentation level

O O

0000

The importance of force/response sensitivity was noted in many
of the studies reviewed. Pilots who participated in Sjoberg's
experiment (Reference 2) cited the light forces required in
maneuvering as a major factor providing reduced workload with
the SSC. In other fixed-wing SSC studies, such as those con-
ducted using an F-104 (Reference 3), varying controller sensi-
tivity without also modifying force/deflection characteristics
resulted in situations where full deflection of the control
surfaces was not possible. This circumstance illustrates the
importance of considering the interaction of all the SSC param-
eters while defining design parametric evaluations. This same
study found that higher sensitivities resulted in Pilot Induced
Oscillations (PIO).

The summary of SSC design criteria contained in an AFFDL tech-
nical report (Reference 12), addressed the specification of
force/response sensitivities and shaping characteristics for a
two-axis SSC. Based on Air Force testing with a fixed-wing
aircraft, two design guidelines for control response charac-
teristics were given as follows:
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(1) Non~linear force/response gradients are preferred
with the final slope being no more than twice the
initial slope.

(2) Symmetric force/response shaping is recommended for
longitudinal and lateral control. However, some data
support a requirement for higher response sensitivity
gain for right roll control than for left roll con-
trol commands.

The range of lateral force/response gradient and shaping char-
acteristics evaluated by the Air Force (References 12 and 14)

1s shown in Figure 3-17. A preferred region of "medium" sensi-
tivity is identified for the vehicle tested. Non-linear re-
sponse shaping was also found to be important when implementing

a side-stick for helicopter control. As documented in References
8 and 10, human arm/wrist motion limits must be considered. The
lateral response shaping derived for an Advanced Scout Helicopter
(ASH) from a simulation study at Boeing (Reference 8) is shown
for comparison in Figure 3-17. Similar response shaping and
sensitivity gains resulted for both vehicles with a benefit of
asymmetric shaping identified for the ASH. A requirement for

a higher response sensitivity gain for right roll control than
for left roll control commands was suggested by the ASH data.
However, this result may be due to the fact that the side-stick
controller installed for the ASH simulation study was fixed

with its rotational pitch and roll axes aligned with the air-
craft body axes.

Variation of the controller orientation for anthropometric con-
siderations was not performed during this study and a require-
ment for asymmetric shaping could have been influenced by the
controller installation.

Conclusions from the NAE flight testing of a 4~axis side-stick
controller identified a requirement for asymmetric response/
force characteristics for the vertical axis when collective
control was effected through the right-hand SsC. Shaping was
employed which produced a 3:2 ratio of down to up aircraft re-
sponse sensitivity for the same magnitude of force input.

An abundance of information exists in literature concerning the
selection of satisfactory, or "optimum", control response char-
acteristics for VTOL aircraft. Most of the information is de-
veloped for conventional displacement-type controllers, that
1s, a center-stick with relatively large motion compared to a
side-stick controller with very small motion. Conventional
displacement helicopter controllers with force-trim capability
typically have 5.0 inches of total motion at the grip for pitch
and roll control. Control force/deflection gradients about the
trim position are relatively low for the conventional controls,
and are tailored for both small precisicn hover tasks and larg-
er forward flight maneuvers.
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Typical examples of data specifying desired control response
characteristics are presented in References 18 and 19. The
effect of controller sensitivity in hovering flight was exam-
ined in Reference 18 using the NASA Ames six-degree-of-freedom
simulator with 1:1 motion gains. A parametric study was per-
formed to optimize longitudinal and lateral control sensitivity
values using pilot Cooper-Harper ratings as the primary crite-
ria. Results from Reference 18 were also presented in Refer-
ence 19 in a more concise manner. Figure 3-18 was obtained
from Reference 19 and shows preferred ranges of sensitivity for
three command system types including an acceleration, rate, and
attitude system. Optimum values of damping and frequency
(stiffness) are also specified for a generalized aircraft model
representation. Optimum design values for a translational rate
(velocity) command system were developed in the study of Refer-
ence 20. Results from Reference 20 which were also presented
in Reference 19 are summarized in Figure 3-19.

It should be noted that the preferred ranges of sensitivity
defined for each command system type in Reference 19 are given
for a conventional displacement controller in terms of centime-
ters (cm) of controller deflection. Little published data were
available for desired response/force characteristics for a hel-
icopter employing a side-stick force controller. Therefore, a
preliminary test phase during Phase 1 simulation at Boeing
Vertol was directed strictly to the selection of a desired set
of response/force characteristics for a side-stick controller.
This initial phase of simulation was necessary to investigate
the large number of combinations of controller configurations
and generic command response types under consideration for the
ADOCS demonstrator aircraft. Further discussion of the testing
procedure used to define the desired response characteristics
for a limited-motion or "stiff" side-stick force controller
design is given in the Command Model Design (Section 4.2.2) of
the Control System Design section, of this report.
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OPTIMUM CONTROL SENSITIVITIES FOR ACCELERATION,
RATE, AND ATTITUDE COMMAND SYSTEMS
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4.0 CONTROL SYSTEM DESIGN

Previous control law development conducted by Boeing Vertol
during the TAGS (Reference 6) and HLH (References 21 and 22)
programs provided an important technology data base and valu-
able experience to guide design of control laws for an attack
helicopter employing an advanced flight control system. The
TAGS and HLH flight control systems were advanced designs em-
ploying digital flight control processors and side-arm force
controllers. Therefore, results from these programs are di-
rectly applicable for the ADOCS design. Trade studies per-
formed during both programs are reviewed below along with
associated simulation and flight test results.

The HLH Fly-By-Wire (FBW) flight control system (Figure 4-1)
was divided into two parts: (1) a Primary Flight Control Sys-
tem (PFCS), and (2) an Automatic Flight Control System (AFCS).
The PFCS consisted of flight critical control elements and con-
trol paths which formed an "electrical linkage" between the
cockpit controls and the rotor actuators. The AFCS provided
stability and control augmentation along with autopilot type
functions. The various control modes required for each segment
of the HLH mission were controlled through the AFCS.

Rationale given in Reference 22 for separating the PFCS and
AFCS includes:

o} Ultimate flight safety need only be insured through
the PFCS allowing the AFCS to be as complex as re-
quired.

o} AFCS optimization can be carried out independent of
the PFCS.

o The PFCS and AFCS can utilize different redundancy
management levels and techniques.

o} PFCS and AFCS digital computations can be completed
using different computation time frames.

Unlike the HLH design, the TAGS aircraft (Reference 6) main-
tained a direct mechanical link between the cockpit controllers
and the rotor controls. A digital PFCS sacrifices this direct
mechanical link design approach, but offers several advantages
particularly significant when implementing a side-stick as the
primary pilot controller. Important advantages of a digital
PFCS design are summarized as follows:

o Non-linear force/response characteristics required
for a SSC can be easily programmed in the digital
flight control processor

o Desired feed-forward command shaping for both AFCS ON
and AFCS OFF operation can be easily implemented.
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o Automatic force trimming functions and logic can be
incorporated as part of software, thereby eliminating
mechanical force trimming hardware.

o Improved reliability/survivability can be attained
through redundant paths.

o Mechanical anomalies such as backlash and slop) which
inhibit precise control can be eliminated.

o A full-authority AFCS with appropriate PFCS interface
limiting can be designed for safety.

Benefits provided by separation of AFCS and PFCS functions as
well as digital processing of control laws led to the conceptu-
al ADOCS design approach shown in Figure 4-2. Implementation
of the generic control systems evaluated during the ACC/AFCS
study and development of the ADOCS demonstrator flight control
system design were performed utilizing this design approach.
The use of this system formulation allows flexibility for de-
velopment of handling qualities requirements while still con-
sidering aspects of hardware design and redundancy management.
Major advantages of this system design approach for control law
development are:

o Satisfactory unagumented flight is attained by providing
feed~-forward command augmentation and shaping as an inte-
gral part of the primary flight control system (PFCS).
Control mixing and prefiltering are included in the PFCS
to reduce pilot workload to an acceptable level for un-
augmented flight.

o Stabilization feedback loops are optimized solely for max-
imum gust and upset rejection. This allows use of high,
full-time stabilization gains required for good attitude
or velocity hold during NOE maneuvering or tight position
hold for Precision Hover Tasks. Also, aircraft attitude
excursions are minimized for improved target acquisition
and weapon delivery.

o Use of a control response model provides forward loop com-
mands to tailor the short and long term responses to pilot
control inputs as required to achieve satisfactory pilot
ratings and performance. Any desired control response can
be obtained by appropriate feed-forward shaping regardless
of the level of stabilization.

A functional description of the PFCS and AFCS including details
of the analytical methods employed to define specific control
system parameters and characteristics is provided in the fol-
lowing paragraphs.

49



Q

i

r\\ i,

LT,

2~ d4nbL4

HI3

NOILIYHINID

yIa

AD07109WAS

SIUSIHILIVEVHY
HOSNIS

INOILYNINITG
214002 85042
‘NOILIIFIY
1384 1509
SNIVEQ3I34 SV

\N\N\\

LTS

LU

/

13900

ONVYWINODY /|

am4 0334

$J4v

—-

——

SITEVIHVA
TULIRE]

INVHIYIV] HOL0H

SHOLVYNLIY
JIVIHSYMS

LL

INILINI

1404
$34v

m¢u>.¢c
8200

INIXIN
T041iNOD

w\

/,

1}

13540 1509

*ll $Jng

\\\\\\\

INIdYHS
aHVYMHO4 0334

cl_;:.u
umaesmux
oz<icu

<

SH21T0HINDD
S104

1014

1d3IONOD WNILSAS TOHLNOD LHYDIT4 SO0AV

50



4.1 PFCS DESIGN

The PFCS design mechanization implemented for the ACC/AFCS
study is illustrated in the block diagram of Figure 4-3. With
the exception of AFCS port limiting, all the PFCS elements
shown were included in the control system model evaluated dur-
ing piloted simulation at Boeing (Phase 1) and NASA-Ames (Phase 2).
AFCS limiting was not incuded during control law evaluation to
eliminate any possible effects of authority or rate limits on
pilot ratings and/or performance. Significant features of the
PFCS design are described in the following discussion.

Force Transducer Quantization

Piloted simulation experiments were conducted at Boeing as part
of the ADOCS Demonstrator Program to quantify the effects of
controller force signal resolution and provide guidelines for
specification of quantization requirements for the digital/
optical controller force transducer. Pilot input force resolu-
tion was varied between an analog (non-quantized) signal and
1.0 1b digital increments. The pilot was requested to record
any handling quality changes in terms of Cooper-Harper ratings
during both IMC and VMC tasks (NOE, SLALOM and AFCS OFF). Typ-
ical results are shown for the lateral control axis in Figure
4-4 for the NOE Task with an attitude command/velocity stabili-
zation system.

The pilot could not perceive changes in performance when air-
craft peak rate response resolution was less than .54 deg/sec/
l1b (0.08 1b). A 1.08 deg/sec/lb (0.16 1lb) peak rate response
resolution was perceptible to the pilot but no significant
control degradation was observed. Attitude control was degraded
between 1.08 deg/sec/lb and 4.1 deg/sec/lb with the roll axis
being most noticeable and providing the earliest cue of handling
qualities degradation. At resolutions above 4.1 deg/sec/lb,
roll control became particularly difficult and degraded faster
than the other three control axes (pitch, yaw and vertical).

The effect of large resolution step size was manifested as a
large "freeplay" or an apparent deadzone. With larger force
resolution in all axes it was easier to make single axis con-
trol inputs (i.e., cross-coupling was inhibitied).

ACC/AFCS simulation studies conducted at NASA-Ames also showed
that 8-bit signal quantization did not have a noticeable effect
on pilot ratings or task performance when compared to smaller
values of force/response resolution. 8-bit force signal quan-
tization was selected for the 4-axis controller in the demon-
strator aircraft to provide acceptable response resolution in
each axis. Controller resolution in terms of force and equiva-
lent aircraft response for the demonstrator controller design
1s summarized in Table 4-1.
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TABLE 4-1
SUMMARY OF CONTROLLER RESOLUTION

Controller Maximum Force Aircraft Peak Rate
AX1s Operating Range Resolution Response Resolution
T8 bith
Quantization
Longitudinal 115.9 1lbs .12 1bs .42 deg/sec
Lateral £t12.8 1bs .10 1bs .6 deg/sec
Directional £35 in 1lbs .27 in 1lbs .6 deg/sec
Vertical t15.8 1lbs .12 1lbs .36 ft/sec

Non-Linear Command Response Sensitivity

To provide acceptable response characteristics for both small
precision control tasks and large maneuvers, non-linear command
shaping as discussed in Section 3.6 is required. Shaping is
provided in each axis by a dead-zone and a control sensitivity
function made up of a number of segments of increasing re-
sponse/force sensitivity. In all axes less sensitivity was
provided for lower values of control force. In the longitudi-
nal and lateral axes, the shaping function was symmetrical
about zero force input; the vertical and directional shaping
functions were asymmetric to compensate for the comparative
difficulty of exerting a downward versus an upward force and a
right versus a left twist, respectively, on a right-hand side-
stick controller. Control shaping implemented in the longitu-
dinal axis is presented in Figure 4-5 as an example. This
shaping function shows command in equivalent inches of conven-
tional control displacement as a function of controller force
input. Final response shaping functions for all control axes
are given in Volume 3 - Simulation Results and Recommendations.

Derivative Rate Limiter

Rapid release of large control forces, which are common when
using a force controller, often induce undesired high accelera-
tion jerks in aircraft response. A derivative rate limiter
(Figure 4-6) was implemented as part of the PFCS for Phase 2
simulation at NASA-Ames to limit the magnitude of initial ac-
celeration response which the pilot can experience while per-
forming rapid maneuvers and/or control reversals.

Experiments to develop the derivative rate limiter were con-
ducted during the preliminary design phase of the ADOCS pro-
gram. The derivative rate limiter characteristics were
selected for each of the control axes by adjusting the network
rate limit and time constant parameters to provide acceptable
response characteristics for large maneuvers. The effect of
the rate limit is to control the initial peak acceleration re-
sponse to a step control input. As shown in Figure 4-7, an
infinite rate limit passes a step input as a proportional path;
a rate limit of zero produces a pure lag response with a time
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PEAK ACCELERATION IN PITCH — DEG/SEC2
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constant controlled by the network parameter o. A large varia-
tion of response characteristics is possible by changing the
network rate limit (RL) and time constant («) parameter values.
A good control response balance is obtained when RL and & pa-
rameters are selected to limit peak accelerations for large
control inputs without affecting control precision for small
force inputs.

PFCS Shaping/Trim Functions

PFCS command signal shaping and trim functions are implemented
as shown in Figure 4-8. Forward path lead-lag shaping is pro-
vided full-time for AFCS ON or AFCS OFF operation. Time con-
stant values (t and 1,,.) are selected for AFCS OFF flight
conditions to c&gcel inﬁgrent helicopter roots while substi-
tuting more desirable response mode characteristics. With AFCS
ON the lead-lag shaping configuration supplements the AFCS com-
mand model, and yields a total command output to the helicopter
that more closely matches the desired or actual response char-
acteristics. Two benefits derived from implementation of lead-
lag shaping in the PFCS are: (1) a balanced design that re-
sults in smaller transient AFCS output signals during dynamic
maneuvers with AFCS ON, and (2) improved AFCS OFF response
characteristics through the effect of control "quickening".

Based on redundancy management issues related to the ADOCS de-
sign, such as cross-channel equalization, powerup, power inter-
rupt, and failure modes; it was decided to eliminate forward
path open-loop integrators from the PFCS design. Open-loop
integrators are still included within the AFCS command model

for automatic force trimming with AFCS ON. In the PFCS how-
ever, high-gain, long-time constant lags are incorporated in
place of open-loop integrators to provide comparable unaugmented
handling qualities.

As shown in Figure 4-8, the high-gain, long-time constant lag
path is activated during AFCS OFF flight by trim path engage-
ment logic. A pilot trim switch is also included in the design
to allow the pilot to trim forces to zero. Trim force require-
ments are slowly injected into the system through the long-time
constant lag as shown. The pilot trim switch was only used
during initial ACC/AFCS simulation studies investigating AFCS
OFF flight, but was further evaluated as part of the ADOCS
demonstrator program.
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AFCS Port Limiting

The PFCS is designed to be active full-time with AFCS port lim-
iting (Figure 4-9) providing a safeguard against AFCS hardover
failures. All AFCS output signals pass through frequency-selec-
tion and limiting networks in the PFCS. The AFCS signals are
split between a long-term trim and a high-frequency dynamic
compensation path as shown in Figure 4-9. The trim path in-
cludes a high-authority limit and rate-limit for low-frequency
trim signals such as directional or vertical control trim vari-
ations with airspeed. High-frequency stabilization signals
pass through both authority limits with the lower limit domi-
nating. A cross signal path from the rate limiter continually
recenters the low-authority dynamic path. The interface net-
work will ramp to zero after AFCS disengagement.

A sudden step transient into the system caused by an AFCS hard-
over is attenuated by the interface rate limit and low-authority
limit. An example of the AFCS port limiter output response to

a step input is also shown in Figure 4-9. Since hardover fail-
ures are introduced into the system in a contrcolled manner,
adequate time is given to the pilot to take appropriate action.

As mentioned earlier, port limiting was not included in the
ACC/AFCS simulation study to eliminate any possible effects of
AFCS limiting on pilot ratings and system performance. Selec-
tion of limiting values was a task to be accomplished as part
of the ADOCS demonstrator design effort, and no time was spent
on this element of the PFCS design during the ACC/AFCS study.

4.2 AFCS DESIGN

The AFCS design permits investigation of a wide range of con-
trol laws with the complete flexibility required of an experi-
mental system. AFCS configurations were analyzed using class-
ical techniques with a pure time delay to account for digital
computational effects. Based on the results of previous exper-
imental studies (References 1, 18, and 26), various control
system concepts were formulated to accomplish attack helicopter
low speed/hover maneuvers. Prime Command/Stabilization (CMD/
STAB) system candidates were designed for investigation during
the ACC/AFCS study. Simulation data collected for the various
CMD/STAB systems provide a substantiation for control system
recommendations made for the ADOCS demonstrator aircraft. In
addition, a data-base providing degraded-mode capabilities will
be established and made available for future use.

The generic SCAS configurations chosen for evaluation are iden-
tified in Figure 4-10 in the form of a command response/stabiliz-
ation (CMD/STABR) matrix. A simple system identification code
(Figure 4-10) was established and is used extensively through-
out all volumes of this report. The CMD/STAB notation first
identifies the command response type and the STAB notation
identifies the level of stability augmentation incorporated in
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the control laws. Command response type refers to the steady-
state response of the aircraft due to a step control input.
For example, a system with angular rate command and attitude
stabilization in pitch and roll was identified with the letter
code RA/AT; a system having an attitude command response with
velocity stabilization in pitch and roll was designated as an
AT/LV system. Time history responses to a longitudinal control
input are given in Figures 4-11, 4-12 and 4-13 for a rate, at-
titude, and velocity command system, respectively. Basic dif-
ferences in the type of response provided each system can be
easily seen. For instance, a rate command system exhibits a
steady-state rate response proportional to applied force, and
will return to zero rate when the control input is released
thereby acquiring a new attitude trim condition. However, the
attitude command system exhibits an attitude response propor-
tional to input magnitude and returns to the original trim at-
titude condition when the control input is removed.

It should also be noted that the angular rate command system
was designed to have identical control response characteristics
for both the attitude and velocity stabilized systems, i.e.
RA/AT and RA/LV. Similarly, the control response characteris-
tics of the attitude command systems (AT/AT and AT/LV) were the
same regardless of the level of stabilazation.

Initially all CMD/STAB systems identified by a shaded circle in
Figure 4-10 were mechanized for evaluation, however some were
found unacceptable during Phase 1 simulation and eliminated
from evaluation during Phase 2 (See Volume 3 - Simulation Re-
sults and Recommendations, and Reference 11).

The design methodology used to synthesize the AFCS in its ge-
neric form is presented in the following sections. The discus-
sion is divided according to the two main parts of the AFCS
implementations:

(1) Stabilization Feedback Loops
(2) Feed-Forward Command Augmentation
4.2.1 stabilization Loop Design

Because a variety of control laws are required to accomplish
mission tasks defined for an attack helicopter, such as Nap-of-
Earth flight, Precision Hover, and Bob-up) a full complement of
stabilization levels was synthesized for simulation evaluation.
Stabilization systems ranged in complexity from a simple,
single-feedback, rate-damped system to a multi-feedback, com-
plex position-hold system. A preliminary analysis effort de-
scribed below was performed to define nominal gain values for
each of the stabilization systems. Final data and results of
the simulation are presented in Volume 3 to show the effect of
stabilization level on handling qualities as measured by pilot
Cooper-Harper ratings (Reference 23).
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Stabilization loop requirements were determined through classi-
cal design methods such as root-locus, Bode plot and Nichols
chart analyses. A response damping requirement to achieve good
gust rejection characteristics was used as a design criteria
to determine initial stabilization gain requirements. Based on
experience gained from previous flight control programs (i.e.
TAGS, HLH, and LAMPS), feedback gains were established to pro-
vide a nominal closed-loop damping ratio of 0.7, with 0.5 as a
minimum acceptable value.

Figure 4-14 presents a block diagram of the aircraft model used
in the preliminary determination of feedback gains for the var-
ious stabilization systems. This model is an uncoupled approx-
imation which includes transfer functions for the ADOCS actua-
tor, hydraulic upper-boost actuator, UH-60 rotor dynamics, and
a computational cycle time delay. The fourth-order rotor model
used represents flapping dynamics but does not account for in-
plane (lead-lag) mode effects: a detailed derivation of the
rotor model can be found in Reference 24.

The UH-60A model used for this analysis has an open-loop fre-
queéncy response as presented in Figures 4-15 and 4-16 (magni-
tude and phase respectively). The frequency response shown
represents aircraft pitch rate response (q) for a commanded
input 6B. The following observations are made from these
figures®

(1) For the open-loop (unaugmented) condition, a phase
shift of more than 40 degrees exists at frequencies
above 1 Hz (6.28 rad/sec). This significant phase
shift may result in pilot induced oscillations (PIO)
for high frequency control inputs and reversals.

(2) A computation time frame ranging from 50-70 millisec-
onds is inherent in the Boeing Vertol digital simula-
tion of the UH-60A Blackhawk. The effects of rotor
dynamics associated with blade flapping modes are
also absent from the simulation. As shown in Figure
4-16, the phase shift attributed to rotor dynamics in
the control frequency region is nearly equal to a 50
msec computational time delay. As shown in Figure
4-15, the rotor dynamics contribution to the response
magnitude in the control frequency region is negligi-
ble. Therefore, the absence of the rotor dynamics in
the ACC/AFCS simulation model is somewhat compensated
for by the delay attributed to the computational time
frame.

Open-loop eigenvalues for the longitudinal axis of the UH-60A
are shown in Figure 4-~17 with the origin of each root in the
complex-plane identified. Feedback gains were determined pri-
marily using Nichols Chart analysis techniques; however, re-
sults of the analysis are more clearly illustrated using root-
locus plots as presented in the following discussion.

67



p1-p @4nbiy

A
o NN

68

Al C
U
v
() v
i, 5
vd <
235 6207 = L

(852 + 56762 + ,5)(0L92 + SVTEZ + ,8) L+SEL0° 0008 + SLU2vL + 5 L

S - R H s mm — ¢ ¢ bt t— hm‘w

M O 1 A T 5 S Y S Y (U + s5.90°0) (0°21¥9E9") ! 0008
810V
0LV OV AY1IO
— 1 s 4 sS.11 3 5 — 15008 —
1 ZE [ I A NV 40104 ¥adn 200V WL

SIXY TVNIGN1IONO

SISATVNVY ALITIGVLS HO4 @3SN 13A0W 1dVHOHIV V09-HN



ooot

GT- @4nbL4
(23S/0v4) AININOI44

001 0l
d0LVYNLIY
SJ0av
V101
/ \
40104 —Y
mo?/
15009
d3ddn -
(%9 /b)
("W ALIND NO Q3SYd)
- 3ANLITdNY -

T3AON LdVHOHIV A3IdITdNIS YO9-HN
ISNOdS3H ADN3IND3H4 dOOT N3dO

0s-

0v-

0g-

(4o
40.1Iv

NOILYJII4INOYW

0e-

ot-

69



91~y 84nbLy
(33S/0¥d) AIN3ND3HA
001 0T 1

00§ -

( W10l

0oy -

00t -

N

00¢ -

IL

4010y
(235 s20°) b
A¥130 -

/T

001 -

d0LYNLIV l\

15008 43ddn (%9/b)
JOLYNLIY (*W ALIND NO @3Sve)
$300¢ - 379NV 3SVHd -

T3AO0ONW 14VvdOHIV d3I1d1TdNWIS VO9-HN
ISNOdS3H ADN3IND3U4 4001 N3O

(93@ 319NV 3SVHd

70



LT~ 34nbL4

Ad04
aI9Id

SIXY
AJYNIOVIWI

09

08

001

SIXY Tv3y
0 0¢- Of- 09- 08- 001-
| T T = ]
Ja0w 40LYNLIY
d0L0Y 15009 ¥3ddn

0 = d0LVYNLOY
50 M 5200y

J3S/QYY/NI 0§ = ox O
3704 4007 N3d0 X

NIVD 31VvY HOlId
SNSH3A
SNJO01T 100YU-SIXV TVNIANLIDNO

/1



As previously stated, each feedback stabilization system was
designed to exhibit a damping ratio of at least 0.7 in response
to an external gust upset. Gains for each particular configu-
ration were selected by closing one additional outer-loop feed-
back at a time; inner-loop stabilization gains were kept con-
stant for each higher level of stabilization added. The rate
feedback loop was closed first, then attitude, velocity and
finally the position loop.

Figures 4-17 and 4-18 illustrate the effect of varying the rate
feedback gain from 0.0 to 50 in/rad/sec. As expected, the ac-
tuator mode roots do not move significantly but the low-frequency,
rotor mode root migrates toward the imaginary axis. A pitch-
rate feedback gain of 16.0 in/rad/sec was selected to provide

the desired damping ratio. A simulated time history of the
aircraft response to a gust upset in the longitudinal axis is
shown in Figure 4-19. With the selected gain of 16.0 in/rad/

sec, the model exhibits a well-damped response characteristic.

With the rate gain defined, a root-locus plot was generated by
varying pitch attitude gain from 0.0 to 50.0 in/rad (Figure
4-20). As this figure indicates, gains up to 35.0 in/rad lower
the mode response frequency with little change in damping ra-
tio. An attitude feedback gain of 34 in/rad was selected.

With both the rate and attitude feedbacks active, a smaller
pitch attitude perturbation results when a gust disturbance is
simulated. (Figure 4-21).

Root-locus analysis of a velocity stabilized configuration is
shown in Figure 4-22. A velocity feedback gain of -1.0 in/ft/
sec represents a compromise between the damping ratio of the
two low-frequency control response modes. Both control mode
roots show a damping ratio between 0.65 and 0.75. Figure 4-23
presents the simulated longitudinal response of the aircraft to
a gust upset with the rate, attitude and velocity feedback
loops active. The return to original trim velocity after the
disturbance input takes about 2 seconds.

Feedback stabilization gains for the remaining control axes
were defined in the same manner as outlined for the pitch axis.
Resulting gains from this analysis are presented in Table 4-2.

Figure 4-24 compares the gust response characteristics of the
stability augmentation system defined for this study to two
other cases -- (1) the basic helicopter without stability aug-
mentation, and (2) the production UH-60A SCAS configuration.
The stabilization system developed for the ACC/AFCS study pro-
vides a significant improvement in gust rejection characteris-
tics as measured by power spectral density.

Gains selected for the ACC/AFCS stabilization loops are com-
pared to corresponding gains which were successfully flown in
the HLH/Model 347 and TAGS aircraft in Figures 4-25 and 4-26.
Longitudinal gains used for the ACC/AFCS simulations match very
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SIMULATED RESPONSE TO GUST UPSET
PITCH RATE FEEDBACK ONLY
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SIMULATED RESPONSE TO GUST UPSET
PITCH ATTITUDE AND RATE FEEDBACK
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SIMULATED RESPONSE TO GUST UPSET
PITCH RATE, ATTITUDE, AND VELOCITY FEEDBACK
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closely with those selected for the TAGS design as shown in
Figure 4-25. Lateral gains, however, when compared to HLH and
TAGS system are substantially higher. As a result of subse-
quent analysis, roll gains were lowered for implementation on
the ADOCS demonstrator after the ACC/AFCS simulations had been
completed. The directional axis gains (Figure 4-26) used for
the ACC/AFCS study are slightly higher than those of the other
programs but did not result in negative effects. As shown in
Figure 4-26, vertical axis loop gains appear between those used
for HLH and TAGS thus no inflight problems arising in this axis
were predicted.

4.2.2 Command Model Design

A stability augmented helicopter does not necessarily possess
desirable response characteristics to control inputs. Appro-
priate design of feed-forward command shaping loops or modifi-
cation of feed-back control laws is necessary to achieve the
control response characteristic desired for a chosen stabili-
zation level and/or pilot control task. The benefits associat-
ed with higher levels of command or stabilization have been
documented in Reference 25 by Aiken and Lebacqz, the HLH final
report, (Reference 22), as well as numerous other studies.
Aiken and Lebacqgz found that, for a given task, a tradeoff ex-
ists between the level of control complexity and display so-
phistication. Figure 4-27 from Reference 25 illustrates the
benefits of increased levels of stability and control augmenta-
tion on pilot handling quality ratings. Hoh and Ashkenas (Ref-
erence 27) found that rate and attitude command systems may be
adequate for partial IMC conditions, but a translational rate
command system is required for low speed flight and hover in
zero visibility. Capability was required during the ACC/AFCS
simulation to explore a wide range of generic command systems
in an efficient manner. The method selected to accomplish this
task is described in the following discussion.

Control of the command response characteristics can be achieved
through a variety of methods including two well known tech-
niques commonly referred to as model following and response-
feedback modification. The HLH (Reference 22) mechanization of
control laws used the latter method whereby appropriate feed-
back loops are synchronized during periods when the pilot is
in—the—control-loop. Control response time constants are con-
trolled by this method through feed-forward dynamic shaping.
Model-following, which was preferred in Reference 19 over the
alternative method, was also applied in the design of the con-
trol laws for TAGS (Reference 6). The model-following tech-
nigque allows full-time engagement of stabilization loops,
thereby reducing gust sensitivity during maneuvers and elimi-
nating feedback loop switching transients associated with
engagement/disengagement of stability augmentation signals.
This advantage resulted in improved pilot Cooper-Harper Ratings
(CHR) of half a point as reported in References 19 and 27. In
addition, command model signals can directly provide inter-axis

83
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control requirements for compensation of inherent aircraft
cross-axis coupling or automatic turn coordination. Direct
control compensation from the command model reduces or elimi-
nates the demand on feedback stabilization signals to accom-
plish these functions. Because of the above benefits, as
demonstrated by results of the TAGS flight demonstration pro-
gram, control laws for the ACC/AFCS study and ADOCS demonstra-
tor aircraft were implemented using the model-following design
technique.

4.2.2.1 Model Following Concept

The model following technique has an advantage over alternate
control response methods since command model output predicts
actual aircraft responses, thereby closely negating stabiliza-
tion signals from the feedback loops. This results in a mini-
mal feedback control usage during dynamic control maneuvers.
Control law mechanization using the model-follower concepts is
illustrated in Figure 4-28. The basic principle of the design
concept is evident from the transfer matrix R(s)/B(s) which can
be expressed as I, the identity matrix. More specifically, the
combination of P 1(s) and H(s) formed in the command model ide-
ally cancel out the augmented aircraft dynamics. Producing the
unity transfer matrix allows the control law designer to obtain
any desired response type through manipulation of the transfer
matrix, D(s), in the forward control path. Attack helicopter
control laws will be required to change as a function of flight
regime and/or pilot task. Therefore, desired control responses
characteristics can be easily altered by varying the transfer
matrix, D(s).

In theory, a full complement of equations of motion would be
required within the command model to accurately predict air-
craft responses. Practically, the time to calculate these ful-
ly coupled responses in the flight control computer would be
prohibitively high for real time operation. This problem is
resolved due to the fact that the high-gain stabilization loops
dominate over the inherent aircraft response characteristics
and provide nearly decoupled responses in each axis. The com-
mand model can then be based on a first-, second-, or third-
order response model as required, making calculations simpler
and much more time efficient. Simulations have shown that re-
sponses produced by the simplified command model are adequate.
Figure 4-29 compares the simulated aircraft response using a
six degree-of-freedom model with the output of a command model
based on a first-order approximation.

4.2.2.2 Command Response Characteristics
Response characteristics selected for each candidate command
system were initially defined based on data collected during

the literature review, as well as experience gained by Boeing
Vertol during the TAGS, HLH, and ASH programs (Reference 6, 22
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and 8 respectively). Available data were examined primarily
for recommended response time-constants and sensitivities.

The 1mportance of defining an appropriate response time con-
stant is illustrated for a translational rate (i.e. velocity)
command system in Figure 4-30 from Reference 26. Pilot ratings
are presented as a function of response time constant (1_,) of a
first order equivalent velocity response system. Other Qata
from the TAGS, HLH and ASH studies are also shown for compari-
son. Best pilot ratings were achieved for the longitudinal
velocity command system with a response time constant between 2
and 5 seconds. The HLH program achieved Level 1 pilot ratings
without an external sling load with a time constant of 6 sec-
onds for the velocity command system; however, the TAGS design,
which also incorporated a 6 second time constant received Level
2 pilot ratings. These results, however, are highly dependent
on the task performed.

Pilot rating data as a function of control response sensitivity
are presented for a rate command system in Figure 4-31 and an
attitude command system in Figure 4-32. A similar trend is
evident from the data, i.e. variation in sensitivities resulted
in a desired range of sensitivity as indicated by a "bucket" in
pilot ratings. Minimum or best pilot ratings were achieved
with a roll rate response sensitivity of approximately 10.0
deg/sec/inch and a roll attitude response sensitivity of about
5.7 deg/inch.

Much of the available data as described above was generated for
various type tasks utilizing conventional center-stick control-
lers, or side-arm controller configuration with relatively large-
dlsplacement (i.e. HLH and TAGS). Obviously, care has to be
taken in relating recommended response sensitivities for a large-
displacement center-stick or side-arm controller to requ1re—
ments for a small-deflection force controller. A major factor
which compllcates the direct transfer of desired response char-
acteristics is the need for non-linear force/response shaping
with a side-stick force controller. It was decided to describe
response sensitivity characteristics for the side-stick con-
troller in terms of the initial sensitivity about the zero

force reference position, i.e. the first linear shape of the
response shaping function.

A summary of the information gathered from the literature re-
view is presented in Table 4-3. Desired response characteris-
tics (sensitivity and time constant) are given for various
command system types including acceleration, rate, attitude,
and linear velocity command systems. All sources of data are
indicated by a document reference number. Where controller
force/deflection information was available, response sensitiv-
ities are presented in terms of steady-state aircraft response
per unit pound of force input rather than units of controller
displacement (inches). The following is a discussion of the
data presented in Table 4-3.
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Longitudinal/Lateral

Reference 26 contains recommended response time constants and
steady-state sensitivity requirements for low-speed and hover
flight under reduced visibility conditions. Requirements are
specified for a linear velocity command system and a roll rate
and attitude command system in the lateral axis. Figure 4-30,
from Reference 26, shows that the longitudinal/lateral velocity
response time constant should range from 2.0 to 5.0 seconds to
achieve Level 1 pilot ratings. ASH simulation studies (Refer-
ence 8) also defined a velocity response time constant well
within the desired range (i.e. 3.0 seconds) with the Hover Hold
Mode engaged. Response time constants for a velocity command
system implemented on the HLH and TAGS program were at the high
end of the range. i.e. 6.0 seconds. Low speed maneuvering tasks
evaluated during the simulator study of Reference 1 resulted in
a recommended time constant at the low end of the range, i.e.
2.0 seconds.

Recommended steady-state response sensitivities for a linear
velocity command system ranged from 3.0 to 30.0 ft/sec/lb for
the pitch axis and from 3.0 to 40.0 ft/sec/lb for the roll ax-
is. The requirement for Precision Hover Tasks and low-speed
maneuvering resulted in non-linear response shaping for the HLH
load controlling crewman controller (Reference 28). Therefore,
Table 4-3 specifies a minimum and maximum response sensitivity
to define the HLH non-linear shaping function. Hovering tasks
evaluated in the simulation studies reported in Reference 19
defined relatively low response sensitivities of 3.0 ft/sec/lb
for both longitudinal and lateral, as did the ASH studies of
Reference 8 which defined a desired range of 5.0 to 10.0 ft/
sec/1lb for the Hover Hold Mode.

A simulation investigation of the effect of various control
system types on attack helicopter handling qualities was con-
ducted at NASA-Ames (Reference 26). Low-speed tasks including
approach to hover and acceleration/deceleration maneuvers were
performed using a conventional center-stick controller. A hov-
er and low-speed velocity command system was implemented using
response sensitivities of 30.0 ft/sec/lb for longitudinal and
40.0 ft/sec/1b for lateral.

Specific response time constant values for an attitude command
system were not found in the literature review. Requirements
for system response characteristics are generally specified in
terms of system damping and natural frequency. A response sen-
sitivity of 4.0 deg/lb for a pitch and roll attitude command
system was recommended in Reference 19. A comparable value of
5.0 deg/lb was defined for the inital sensitivity slope of the
ASH lateral response/force shaping function (Reference 8).
Reference provided an additional source of information on de-
sired roll attitude response sensitivity, although the data
were presented in terms of controller displacement. A sensi-
tivity range of 4.5 to 11.5 deg/inch was recommended. Assuming
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a typical force gradient of 1.0 lb/inch, this range of attitude
sensitivity from Reference is consistent with the data from
References 8 and 19.

Recommended response characteristics for a rate command system
are contained in Reference 19 and 29. Response time constants
ranging from 0.25 to 0.4 seconds were desired. A nominal pitch
and roll rate response sensitivity of 8.0 deg/sec/lb was speci-
fied in Reference 19. ASH studies (Reference 8) used a rate
response sensitivity of 5 deg/sec/lb with a stiff side-stick
controller, whereas a range of response sensitivity from 5.0 to
11.0 deg/sec/inch was recommmended in Reference 1. All the
data reviewed for a pitch/roll rate response command system was
consistent and indicated a nomlnal sensitivity value of 8.0
deg/sec/lb with a minimum-maximum range from 5.0 to 11.0 deg/
sec/1b.

Directional

A yaw rate command/heading hold system was included in the con-
trol system evaluated by Aiken and Merrill in Reference 1. A
variety of low speed/hover task under IMC were evaluated using
a yaw rate command system having a time constant of 0.5 seconds
and a steady-state response sensitivity of 19.5 deg/sec per
inch of pedal deflection.

The HLH employed directional control effected through a side-
stick controller at the load controlling crewman's station for
precision maneuvers. A non-linear shaping function used in
this program varied from 3.0 to 12.0 (deg/sec/in-1b).

Vertical

Vertical velocity command systems were implemented for two
studies using a conventional collective lever for vertical con-
trol. Therefore, sensitivity values are defined in aircraft
response per inch of collective lever motion. A response time
constant of 1.0 second was used for the simulation study re-
ported in Reference 1. The effect of variations in vertical
response time constant were evaluated in flight test and docu-
mented in Reference 30 where a time constant of 2.0 seconds was
recommended. A vertical response sensitivity of 16.0 ft/sec/
inch was used for the Reference 1 simulation, and a sensitivity
of 13.0 ft/sec/inch was recommended in Reference 30.

For precision hover and load-handling tasks of the HLH, sensi-
tivities of 1.11 to 8.5 ft/sec/lb were desired (Reference 28).
Vertical control was implemented on the right-hand 4-axis side-
stick controller and non-linear shaping of response sensitivity
was required.

Before the effect of controller configuration on handling qual-

ities could be evaluated by piloted simulation, it was neces-
sary to define a set of "best" control response characteristics
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for the four control axes and the generic system types identi-
fied previously (Figure 4-10). The ACC/AFCS simulation test
plan was prepared to include a sufficient amount of preliminary
testing to determine satisfactory response characteristics for
each of the controller configurations. During the initial
Phase 1A simulation activity at Boeing Vertol, a series of mini-
experiments was conducted. Results of these experiments are
presented in Table 4-4 (Reference 11). Values presented in
Table 4-4 are based on the initial slope of the non-linear
shaping function used in each axis. A comparison between the
results of the Phase 1A mini-experiments and the results of the
studies reviewed in Table 4-3 shows good correlation between
the two. Because of the non-linear shaping used in the Acc/
AFCS simulation, some sensitivities appear low but would agree
more closely with the values used in other studies if second or
third slope values were compared.

4.2.2.3 Command Model Analysis

The procedure followed in designing the command model for each
generic command/stabilization (CMD/STAB) system is described in
this section. As previously discussed, the command model char-
acteristics are influenced by three main factors including the
unaugmented response characteristics of the aircraft, stabili-
zation feedback loops employed, and desired control response
characteristics. An example of the derivation of command model
characteristics is presented for a yaw rate command/heading
hold (¢/¢H) system.

Yaw Rate Command/Heading Hold System

The desired response of a yaw rate command system is shown in
Figure 4-33 where a directional control step input produces a
constant yaw rate with a response time constant of 0.5 seconds.
When the control input is removed, yaw rate decays to zero and
the aircraft attains and holds a new heading. The desired yaw
rate response transfer function is expressed as a first-order
system in Equation 1.

r Kss
Digy = o = T s + 1 (1)
Where:
r _ Yaw rate due to directional control input
GR (rad/sec/in)
Kss = Steady-state response sensitivity (rad/sec/in)
1, = Desired time constant (sec)

A block diagram that defines the simplified model used to rep-
resent the directional control system is given in Figure 4-34.

95



v-¥ °lqel

ISNOJSIH HYINIT

ISNOJS3IH HYTININY

050 0 AT 91 TELEN!
JAHL1331100
N NMOG
dn -+
06— 8- [ AYIILH3IA
090 59+ 0y 06+ NOU1$ 3015
- - 090 v 0 90 S1vdad
N IYNOILI3HI0
- - vo v'e g1 A2 N211S301S
oy 091 - - Al 09 | s20 5¢ 0L 0ot NI115:201S TYHILYY
0t (%41 - - 7l 5y v0 0 0 oY 331153018 JYNIGNLIONDT
(oas) | (23s/14) Amuwm\ub ANummB: (0as) | (6ap) | (33s) (23s/63p) Amumm\umE Amumm\mmE H3I110HLNGD SIXV
31| ALIALLY © MIATLY €,y oL | SN3s 0L WLTATLISNS| | )[a111SN3S (ALTATLISNIS
~1SN3S wwawm -TSN3S 11V1S WILINI
sovas| MM _ AvLS
{AT) ALID0T3A {av) 1320V 11¥) 300 LILLY A EIRT {av) 1339V

(D1) LNVLISNOO 3WIL ANV (SN3S) ANNOd/3ISNOJS3H

SOILSIHILOVHVYHD ISNOdS3H TOHLNOD 43103138

96



DESIRED YAW RATE RESPONSE TO STEP INPUT
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Figure 4-33
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The command model, C(S), required to produce the desired re-
sponse, D(S), is a function of the stabilization loops, H(S),
employed. The unaugmented aircraft transfer function, P (s),
in a decoupled, simplified form can be expressed as:

P(s) = 5 (2)

The stabilization feedback loops can be expressed by the trans-
fer function, H(s):

H(s) = K_+ 5y (3)
S

A desired response, D(s) (Equation 1), can be calculated by
using the relationship:

P(s)

D(s) = C(s) 1 + P(s) H(s) » Or
~1
SRR S S S

This relationship shows that the command model C(s) contains
the desired response in the numerator and the aircraft inherent
augmented response characteristics in its denominator. There-
fore, the inherent response is "cancelled" and the desired re-
sponse becomes dominant.

Solving for C(s):
2

C(s) = Kes s+ (NGrKr - N.)s + NérK¢ (4)
N
6R s(rls + 1)

Where: NGR = 0.69 (rad/secz/in)

Nr = -0.28 (1/sec)

Kss = 0.56 (rad/sec/in)

Kr = 7.7 (in/rad/sec)

KLp = 7.19 (in/rad)

This command model transfer function can be realized in a num-
ber of ways. Because of design requirements for unaugmented
flight as described in Section 4.1, the mechanization shown in
Figure 4-35 was selected. This mechanization provides a PFCS
path with shaping that operates during both augmented and un-
augmented flight, AFCS ON and OFF, respectively. In general,
the command model gains used in the PFCS feed-forward path are
smaller than these in the AFCS, thereby causing the AFCS loops
to dominate the response characteristics throughout the entire
flight regime. This in turn eliminates the need for tuning the
command model for different flight conditions.
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The yaw command model was not implemented exactly as predicted
by the above analysis because of pilot comments received during
initial simulations. With AFCS OFF, the lead-lag path in the
PFCS tended to be "too quick," providing responses which were
considered too sharp. The sensitivity for unaugmented yaw con-
trol was also noted to be too low, requiring the pilot to apply
undesirably high torques to the side-stick controller. As a
result of the initial simulations, the PFCS path in the direc-
tional axis was modified, incorporating a lower time constant
in the numerator (0.82 sec vs. 3.5 sec) and a higher steady-
state gain (0.61 vs. 0.23). These two changed produced a lower
high frequency gain and a higher DC gain as desired. The AFCS
portion of the command model was not altered as augmented re-
sponses were judged adequate by test pilots.

Figure 4-36 compares the modeled response of the augmented di-
rectional axis to a step input of the analytically chosen com-
mand model, and the modified command model. As seen in Figure
4-36, both rate responses are very similar with the modified
PFCS exhibiting a slight initial overshoot in the response.
Pilot comments do not indicate that this overshoot is notice-
able, probably because sharp step inputs are rarely applied in
flight.

4.2.2.4 Generic AFCS Implementation

Generic AFCS configurations for each axis are presented in Fig-
ures 4-37 through 4-40. Similarities in mechanization between
the longitudinal and lateral AFCS design can be noted. Like-
wise, the structure of the Vertical and Directional AFCS con-
figurations are similiar. Each axis of the AFCS contains a
command model on the left implemented in a canonical form, and
the various levels of feedback stabilization loops shown on the
right half of the diagram. Together, these loops provide the
desired response and stabilization characteristics. Important
aspects of the AFCS design for each axis are discussed in the
following paragraphs.

Longitudinal

Longitudinal AFCS (Figure 4-37) inner stabilization feedback
loops include body axis pitch rate feedback for damping and a
correction term (r_ tan ¢) to remove the steady pitch rate com-
ponent in turning ?llght Outer loops include attitude and
velocity stabilization as well as a ground reference pos1t10n
feedback loop available as a selectable option for Precision
Hover Tasks when the Hover Hold mode was engaged.

A groundspeed stabilization signal was provided for long-term
velocity hold at low speeds less than 40 knots. For evaluation
of forward flight characteristics during Phase 2 at NASA-Ames,
an airmass reference velocity feedback signal was provided for
long-term airspeed hold. A "complementary airspeed" signal
using a combination of pitot static airspeed and pitch attitude
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(Equation (5)) was implemented to eliminate the effects of
high-frequency wind gust and shear upsets. A velocity mode
transfer switch was also incorporated for the Phase 2 simula-
tion to automatically switch transient-free between airspeed
and ground-speed signals.

complementary = (K;K;+K,Kas) Kss

- (5)
airspeed (s2+KyK3s+K K, ) u (s<+KyK3s8+K K3 ) o

where:

K;i,Kz,K3,K4 are gains selected for appropriate frequency
response of filter

u is measured pitot static airspeed (knots)
6 is measured pitch attitude (rad)

The UH-60 has a non-symmetric pitch moment coupling in turn
maneuvers. In forward flight the aircraft tends to pitch nose
down in a right turn (gain airspeed) and pitch nose up in a
left turn (lose airspeed). This characteristic is much strong-
er at low airspeeds (60 to 80 knots), and can be described as
pitch moment due to yaw rate (M_) coupling. A cross-axis con-
trol loop was incorporated to pfovide the necessary longitudi-
nal control input to cancel the effect of the M stability
derivative. Commanded turn rate (R ) from the 8irectional axis
command model is used instead of meSsured aircraft yaw rate for
stability reasons.

The longitudinal command model provides either a rate command
system or an attitude command system. Response sensitivities
for both the rate and attitude command systems were constant as
a function of airspeed. A Hover Hold Mode was provided to se-
lect a velocity command system with either high gain velocity
or position feedback. This mode is designed for use during the
Precision Hover or the Bob-up Task.

Lateral

The lateral AFCS (Figure 4-38) uses body-axis roll rate feed-
back to obtain roll damping. A roll attitude feedback is in-
cluded for full-time attitude stabilization at all airspeeds.
Lateral velocity stabilization was provided to improve gust
rejection as well as maneuvering characteristics at speeds less
than 40 knots. Outer-loop position feedback was implemented in
a manner similar to the longitudinal axis and was an option
available with the Hover Hold Mode engaged.

A roll rate command or roll attitude command system could be
selected in the lateral command model through appropriate gains.
For Phase 2 simulation of full-envelope control laws, switches
were incorporated in the lateral command model to provide auto-
matic switching of control laws during transition from low-
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speed to forward flight and vice versa. For example, the
lateral axis was implemented to provide an attitude command/
velocity stabilization system below 40 knots and an angular
rate command/attitude stabilization system for high speed
flight. Control law transfer was accomplished smoothly by use
of transient-free switches and appropriate design of the later-
al command mode logic as described in Volume 3-Simulation Re-
sults and Recommendations.

As in the longitudinal AFCS, the selectable Hover Hold Mode for
Precision Hover Tasks adjusted appropriate gains in the lateral
command model to provide a velocity command system. Capability
to evaluate high-gain ground speed or position feedback stabi-
lization with the same velocity command response characteristic
was provided for the Hover Hold Mode.

In order to provide coordinated turn capability for forward
flight evaluation during Phase 2 simulations, a cross-axis com-
mand path from the lateral to directional axis was included in
the design. Commanded bank angle was fed to the directional
axis to calculate a turn rate command as a function of air-
speed.

Directional

vaw rate feedback in the directional axis (Figure 4-39) pro-
vides yaw damping for directional stabilization. A trim func-
tion was programmed to automatically compensate for the basic
helicopter directional trim requirement as a function of air-
speed. Long-term Heading Hold stabilization was a selectable
mode function operated by Heading Hold Mode logic.

For the Phase 2 simulation which included evaluation of forward
flight handling qualities, automatic Turn Coordination was in-
corporated for airspeeds above 50 knots. Turn Coordination
control loops included lateral acceleration through a propor-
tional and integral path, and roll rate to improve initial turn
entry coordination.

The Turn Coordination and Heading Hold control logic imple-
mented for Phase 2 simulation operates automatically as a func-
tion of airspeed and aircraft flight condition. Turn Coordina-
tion is activated when airspeed exceeds 50 knots and a roll
rate or turn condition is commanded, i.e., when lateral con-
troller force command exceeds the force deadzone by 0.5 lbs.
With Turn Coordination operating, the Heading Hold function 1is
automatically disengaged while in turning flight. Turn Coordi-
nation remains On and Heading Hold Off until the aircraft is
commanded to a near level roll attitude flight condition.

synchronization of heading feedback and initialization of the
command model heading integrator signal are controlled by the
Heading Hold Mode logic. The directional command model forms a
yaw rate command (rc) using a lagged signal from the direc-
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tional PFCS, and a turn-rate command signal activated by turn
coordination logic. The turn rate signal is formed using roll
attitude command from the lateral axis, i.e., r, =g sin -

7
As air speed increases, the bank angle required to maintain a
constant turn rate increases. Thus, the directional AFCS com-
mands a heading rate such that a coordinated turn can be
achieved throughout the forward speed range with zero direc-
tional controller force input. The yaw rate command signal is

also fed to the longitudinal AFCS to compensate for the M.
stability derivative.

Vertical

Vertical axis (Figure 4-40) control laws were implemented to
provide vertical height stabilization and altitude hold based
on either a radar or barometric altitude reference. Vertical
damping is obtained from a hybrid vertical velocity feedback
signal that augments the inherent basic aircraft damping. The
hybrid altitude and vertical velocity signals were formed with
a complementary filter circuit using a vertical accelerometer
and either a radar or barometric altimeter.

Altitude Hold Mode logic controls an altitude feedback synchro-
nizer and command model integrator to initialize the system to
a desired reference. High stabilization gains are provided for
tight radar altitude hold for Precision Hover Tasks, and lower
gains for Barometric Altitude Hold during high speed
maneuvering.

A feedback control path which is a function of roll and pitch
attitude is included to compensate for thrust-vector orienta-
tion changes. This compensation path is prov1ded at all air-
speeds and significantly reduces deviations in altitude while
performing longitudinal and lateral maneuvers in hover and bank
angle turns in forward flight.

A vertical trim function is also provided to compensate for the
helicopter collective trim required as a function of airspeed.
This reduces altitude hold excursions during acceleration/
deceleration maneuvers.

The command model was implemented to provide a vertical rate
response due to controller force inputs with Altitude Hold On.
A command input from the PFCS was shaped by a lag filter to
glve an appropriate response time constant. Command model
gains are changed as a function of airspeed to give the desired
vertical rate response sensitivity for either Altitude Hold
system (radar or baro).

The generic gains specified on each of the AFCS diagrams (Fig-

ure 4-37 through 4-40) determine the stabilization and response
characteristics of each type of CMD/STAB system. Sets of gains
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used for each generic system evaluated during both simulation
phases are presented in Tables 4-5 to 4-8. Transfer functions
for each command response type have been calculated and are
also presented in Laplace Transform notation in Tables 4-9 to
4-11.

Transfer functions presented in this report were calculated
using EASY5 (Reference 31), a Boeing Company dynamic analysis
program. The model utilizied by EASY5 was a 6 DOF small per-
turbation model based on the hover stability derivatives pre-
sented in Table 4-12. Command model and stabilization char-
acteristics were incorporated in the transfer function analysis
for each CMD/STAB system. The transfer functions contained
herein are a simplified version of the transfer functions pro-
duced by EASY 5; that is, higher frequency terms and off axis,
non-dominant roots were not included.

Appendix A contains time histories for the various command/
stabilization systems studies during Phase 2 simulations. Time
histories shown were generated using EASY5, programmed with a
command model and stabilization loops corresponding to the im-
plementation at the NASA-Ames VMS. Non-linear shaping in the
command path was not included, only the gain associated with
the first slope of the shaping function was utilized.

Responses to a unit step input are shown. As discussed earlier
(RA/AT) 1n Section 3.2, a rate/attitude command/stabilization
system results in a constant rate being commanded and an attitude
hold function when the input is released. Responses are also
shown for attitude, velocity, and acceleration systems.
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See figure 4-37 for AFCS diagram.

Note

Table 4-5
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See figure 4-38 for AFCS diagram.

Note

Table 4-6
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5.0 VISUAL DISPLAY SYSTEMS FOR IMC

Since the ADOCS mission is to be flown in night/adverse weather
conditions as well as in VMC, it is necessary to consider not
only the effects of the controller and SCAS characteristics but
also the impact of the pilot's night vision aids on the air-
craft handling qualities. A review of pertinent literature
revealed numerous systems designed to allow flight operations
in an IMC environment. These systems ranged in sophistication
and ideology from a kinesthetic tactual display system (Refer-
ence 32) to a fully developed flight director system (Reference
33). Literature also emphasized that the design of display
dynamics, and in fact control law development, depends upon the
type of display used -- panel mounted, heads-up (HUD), or hel-
met mounted (HMD). After consideration of alternate approach-
es, one display system was felt to be uniquely suited for use
during the ACC/AFCS simulation program. The Integrated Helmet
and Display Sight System (IHADSS) developed for the Army YAH-64
Advanced Attack Helicopter (AAH) was selected.

For this simulation program, it was assumed that the pilot is
provided with the AH-64 Pilot Night Vision System (PNVS) and
associated avionics (Reference 34) which includes a helmet
mounted display system. The PNVS evolved directly from the
Advanced Attack Helicopter (AAH) mission requirements and is
specifically designed to allow a pilot to perform a mission
using terrain flying techniques at night or under any other
form of IMC.

The PNVS incorporates a forward-looking infared (FLIR) sensor
to provide a limited field-of-view monochromic image of the
outside world that is slaved to the pilot's helmet movement.
The FLIR field-of-view is 30 degrees by 40 degrees and can be
rotated 190 degrees in azimuth and +20 to -45 degrees of eleva-
tion. A symbology generator is employed to superimpose flight
control and fire control symbology upon the image.

The Honeywell IHADSS was selected for simulation of the IMC
mission. The IHADSS permits NOE, low level, and contour flight
under IMC. Since the Helmet Mounted Display (HMD) is coupled
to the pilot's head, he is able to scan a wide field-of-view
without being constrained to a head-down or look~-forward posi-
tion. The pilot's line of sight is tracked with a Helmet
Mounted Sight (HMS) that provides closed-loop command signals
to point the sensors.

Using IHADSS, the pilot is able to:
o Fly the aircraft at night by pointing a night vision sen-
sor with natural head movements only, using the HMS, and

then viewing the imagery with the HMD as though he were
scanning the terrain under daylight conditions;
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o Point weapons simply by looking at the target through his
HMD;

o Point the target acquisition designation system (TADS)
with his HMS, and

o View critical flight control, navigation, and fire control
information on the HMD, day or night, without shifting his
line-of-sight from the target to look down into the cock-
pit at control panel instruments.

Flight Control Symbology

The importance of superimposed flight control symbology to the
enhancement of handling qualities with a limited field of view
FLIR image of the outside world has been reported in Reference
35. Baseline display laws and information format used for this
investigation were defined based on the AH-64 Pilot Night Vi-
sion System (PNVS) described in Reference 34.

Figure 5-1 presents the display mode symbology divided into
three categories - central, peripheral, and weapon delivery/
fire control symbology. The characteristics of each symbol are
described and the symbols which appear for the four-mission
modes are identified. The selectable display modes, which are
used to meet the operational requirements for various AAH mis-
sion tasks, are:

CRUISE MODE (Figure 5-2). This mode is intended for high-speed
level flight and normal maneuvering enroute to the forward edge
of the battle area. Data presented include indicated airspeed,
heading, radar altitude, instantaneous rate of climb, engine
torque, line of sight, and an artificial horizon reference.
Gains and time constants are adjusted for forward flight con-
ditions.

TRANSITION MODE (Figure 5-3). This mode is recommended for low
speed NOE flight including dash, quick stop, and sideward flight
maneuvers. Velocity and acceleration symbols are presented in
addition to the aircraft-state data provided for the cruise
mode. Aircraft velocity is presented as a vector and accelera-
tion is indicated as the displacement of a ball relative to the

end of the velocity vector.

HOVER MODE (Figure 5-4). This mode is used to maintain a sta-
ble hover with minimum drift. Major differences between this
mode and the transition mode are the sensitivities of the ve-
locity vector and the acceleration cue. Because this mode 1is
intended for use at low speeds around hover, velocity and ac-
celeration gains are increased to provide higher sensitivity
and better resolution. In this mode, a position reference sym-
bol is also added but remains stationary at a center position
until activated by the Bob-Up mode.
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IHADSS SYMBOLOGY

QUALITY

MODES
CENTRAL SYMBOL INFORMATION CRUISE/TRANS | HOVER| BOB UP
1. Aircraft reference Fixed reference for horizon line velocity
vector, hover position, cychc director, X X X
and fire contro! symbois
2. Horizon line Pitch and ro!l attitude with respect to
aircraft reference (indicating nose up X X X
pitch and ieft roll)
3. Velocity vector Horizontal Doppler velocity components
(indicating forward and right drift X X x
velocities). Sensitivity vanes with mode
4. Haover position Designated hover position wh respect to
aircraft reterence symbol (indicating aircraft X X
torward and to right of desired hover position)
5. Cyciic director Cyclic stick command with respect to hover
{Acceleration Cue) position symbol (indicating left and aft cyeclic
stick required 10 return to designated hover X X
position}. Approximated by washed out
pitch/roll attitude
MODES
PERIPHERAL SYMBOL INFORMATION CRUISE/TRANS | HOVER| BOB UP
6. Atrcratt heading Moving tape indication of heading lindicat X X X
ing North)
7 Heading error Heading at time bob up mode selected X
(indicating 030)
B. Radar altuitude Height above ground level \n both anatog and X X X
digital form {indicating 50 f1)
9 Rate of Chimb Moving pointer with full scale deflection of X X X
» 1,000 ft/run (indicating O ft mun}
10. Lateral acceieration inclinometer indication of side force
11 Airspeed Digital readout in knots X
12 Torque Engine torque 1n percent X X
MODES
FIRE CONTROL SYMBOL INFORMATION CRUISE/TRANS | HOVER | BOB UP
13. Cued line of sight Overlays designated target positon on back- X
ground video when targe! is in display field
of viaw
14, Coarse target Designated target pos:tion with respect to
location display field of view 1inner rectangie) and X
sensor limits (outer rectangle)
- ©
15. Target bearing Designated target bearing {indicating 330 x
or 30" to left of current heading)
16. Target location dots | lllumination of two adjacent dots indicates
display quadrant in which designated X
target is located
17, Missile launch Limits with respect 1o aircraft reference for x

constrants

successful weapon lock -on to designated target

Figure 5-1
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BOB-UP MODE (Figure 5-5). The Bob-up Task includes unmask,
target acquisition, and remask maneuvers over a desired ground
position. Symbology for the Bob-up includes a position refer-
ence symbol to provide information as to deviation from the
initial hover location. The artificial horizon is removed in
this mode because cyclic cues are provided for by the accelera-
tion ball relative to the position indicator.

Display Dynamics

Various simulation studies (References 1, 22, and 35) have been
performed to define display requirements and associated display
dynamics for NOE flight. 1In a simulator investigation of a
night-time attack helicopter mission which included a head-up
display of the PNVS symbology (Reference 22), it was found that
the dynamics of the symbology used to aid the pilot in achiev-
ing a precision hover at night had a significant effect on the
handling qualities of the vehicle. As a result, because of the
wide variation in candidate SCAS concepts to be investigated,
it is necessary also to ensure compatibility of the symbol dy-
namics with the varying dynamic characteristics of the augment-
ed helicopter.

During preliminary Phase 1 simulations, variations to the base-
line AH-64 symbology were made based on Reference 22 as well as
a review of reported display system characteristics implemented
on the PNVS surrogate trainer flown at the U.S. Army Test Prov-
ing Ground, Yuma, Arizona. Changes were incorporated in the
programmed symbology primarily to improve low speed maneuvering
and hover hold task performance, as well as to reduce pilot
workload. These changes, evaluated during the preliminary Phase
1 IHADSS check-out, were as follows:

(1) Velocity vector sensitivity was decreased by a factor of
two for all modes - from 6 knots to 12 knots full scale in
the hover and bob-up modes, and from 60 knots to 120 knots
full scale in the transition and cruise modes.

(2) Hover position sensitivity was decreased for the bob-up
mode from a full scale deflection of 44 feet to 88 feet.

(3) A horizon line was included in the symbology format for
all modes. The AH-64 has the horizon line in the transi-
tion and cruise modes only.

(4) Lateral acceleration was used to drive the “ball" display
instead of sideslip angle to augment the simulation turn
coordination cues at low speed.

(5) The cyclic director, or longitudinal and lateral accelera-
tion cue, approximated by washed-out pitch and roll atti-
tudes, required different sensitivity and time constant
values as a function of the command response system type,
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i.e., rate, attitude, or velocity. Values were estab-
lished in the same manner discussed in Reference 1.

Table 5-1 summarizes the sensitivities and time constants se-

lected for the display symbology. The above changes to display
dynamics were implemented for all IMC simulations conducted
during Phase 1 and Phase 2.

Prior to the Phase 2B simulation at NASA Ames, the IHADSS
symbology was altered based on pilot comments received during
Phase 1 Simulations. A complete description of these changes
1s included in Section 6 of Volume 3.
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6.0 CONCLUDING REMARKS

The literature review and preliminary analysis of Phase 1 guid-
ed the design of all ACC/AFCS simulation experiments and test
plans as follows.

Side-stick controller characteristics were defined based on a
recommended region of force/deflection characteristics result-
ing from AFFDL testing. Three candidate 4-axis controllers,
one with variable force/deflection characteristics, were se-
lected to bracket the AFFDL recommended region. A simulation
test plan was written to conduct a comprehensive evaluation of
controller force/deflection characteristics during the first
simulation phase at Boeing Vertol.

Proper response/force sensitivities are critical to the suc-
cessful implementation of a side-stick controller. Studies
showed that the range of acceptable response sensitivity varies
as a function of force/deflection gradient. Because of the
criticality of choosing proper control response sensitivity
values for a SSC, initial Phase 1 simulation experiments were
designed to define acceptable response sensitivity values for
each 4-axis controller. These tests were necessary before the
various side-stick controller configurations described below
could be evaluated.

Integration of four axes of control onto a single, right-hand
SSC was demonstrated by both the HLH and Canadian NAE flight
research programs. Four candidate controller configurations
were chosen for evaluation in order to collect data on the in-
teraction of controller configuration, SCAS (control response
type and level of stabilization), and visual display system
(VMC versus IMC). The four configurations selected include:

(1) 4+0): All control axes (pitch, roll, yaw, and ver-
tical) on the right-hand side-stick controller,

(2) 3+1 (Collective): 3-axis side-stick for pitch, roll,
and yaw control, and a separate left-hand controller
for vertical control,

(3) 3+1 (Pedal): 3-axis side-stick for pitch, roll and
vertical control, and pedals for directional control,
and

(4) (2+1+1): 2-axis side-stick for pitch and roll con-
trol, with separate left-hand controller for vertical
control, and pedals for directional control.

The importance of SSC orientation with respect to the pilot
seat was emphasized in literature. Therefore, the installation
of all controllers included an adjustable mounting bracket al-
lowing for changes in forward tilt, lateral tilt, and twist
about the controller's vertical axis. An adjustable armrest
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was also provided to increase pilot comfort and minimize inter-
axis coupling.

Activation of switches located on a small-deflection or stiff
SSC can easily cause inadvertent control inputs. Low-force
switches having a breakout of less than half the force breakout
in any particular control axis were recommended. Switch loca-
tion on the SSC grip was found to be extremely important as
well; switches should be located within one inch of the pilot's
thumb with his hand normally placed on the grip.

The achievement of Level 1 handling qualities ratings depends
on the interaction of the three primary elements of the ACC/
AFCS study. For instance, the relationship between display
system and SCAS configuration has been reported in detail. To
achieve satisfactory handling qualities ratings, a tradeoff
exists between the required pilot visual aids for degraded vi-
sual conditions and/or level of command/stabilization augmenta-
tion. An objective of the ACC/AFCS study was to define the
combinations of display, SCAS, and controller configuration
which provide Level 1, 2 and 3 ratings. Various command/stabili-
zation systems were designed using a generic SCAS implementa-
tion which allowed control response characteristics to be
easily altered through command model gains. The simulation
test plan was formulated to evaluate a large matrix of SCAS/
controller configuration combinations for both VMC and IMC
tasks, with IMC simulated using IHADSS. Variations in the stan-
dard AH-64 symbology were included based on the results and
recommendations of previous studies. Simulation results are
presented in Volume 3 of this report.
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