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1.0 SUMMARY

As part of the U.S. Army's Advanced Digital/Optical Control
System (ADOCS) Program, a series of piloted simulations was
conducted during the ACC/AFCS study to develop the integrated
side-stick controller characteristics and flight control laws
to be implemented on the ADOCS demonstrator helicopter.

Effects on handling qualities of side-stick controller charac-
teristics and the level of stability and control augmentation
were evaluated for several low-altitude maneuvering and preci-
sion hover flight tasks. Tasks were performed under both
simulated visual meteorological conditions (VMC) and instrument
meteorological conditions (IMC). Visual cues for VMC flight
were provided to the pilot using the simulator multi-window,
wide-angle, cockpit visual display system. For IMC flight, the
only source of visual information was a visually coupled,
helmet-mounted display of flight control symbols superimposed
upon terrain board imagery.

The Advanced Cockpit Controls/Advanced Flight Control System
(ACC/AFCS) element of the ADOCS Program was conducted in two
separate phases consisting of preliminary control law analysis
and development designated as Phase 1, followed by a detailed
control law development phase designated as Phase 2.

Data provided through the literature review and preliminary
analysis phase of study (reported in Volume 2) established
specific controller/control law configurations and characteris-
tics to be evaluated through piloted simulation. Five major
piloted simulation phases were completed between June 1981 and
May 1983. Three simulation periods were conducted as part of
Phase 1 at the Boeing Vertol Simulation Facility, followed by
two simulation periods conducted as part of Phase 2 at the
NASA-Ames Vertical Motion Simulator (VMS) facility. The most
significant results from these five piloted simulations are
summarized below.

Side~Stick Controller

1. Pilot ratings and comments showed that handling qualities
improved substantially with the introduction of small
deflection in all control axes of the side-stick
controller.

2. The (3+1) Collective and (2+1+1) separated controller
configuration achieved similar overall pilot ratings which
were generally improved compared to the integrated four-
axis controller configuration. A separated collective
controller was found to eliminate unintentional collective
to pitch/roll coupling common to the (4+0) and (3+1) Pedal
configurations. Separated controller configurations were
felt to reduce pilot workload especially for multiaxis



tasks by eliminating requirements to hold forces in the
vertical or directional axes while modulating pitch and
roll control.

A small deflection, left-hand collective controller was
preferred over a stiff controller for vertical control.
The addition of deflection to the left-hand controller
improved pilot ratings and task performance when accurate
control of aircraft height was required.

SCAS/Display System Interactions

1.

IMC ratings were degraded compared to VMC ratings approxi-
mately 1.6 points on the Cooper-Harper rating scale for
the most difficult task. Average ratings did not vary
significantly as a function of VMC task; however, task
variation had a larger effect on pilot ratings under IMC
with the IHADSS. The largest degradation in IMC pilot
ratings occurred for the NOE Task.

Best ratings were achieved for the forward flight/transi-
tion tasks with a hybrid SCAS system in pitch and roll--
pitch attitude command/airspeed hold (AT/AS) and roll rate
command/attitude stabilization (RA/AT) in forward flight;
and attitude command/ground speed stabilization (AT/LV) in
pitch and roll for low speed flight. Control law logic to
automatically switch between forward flight and low speed
stability and control augmentation characteristics was
successfully implemented and tested. The method developed
to switch control laws felt natural to the pilot and no
undesirable effects on handling qualities were evident
during transition maneuvers. With this hybrid system,
Level 1 ratings were achieved with all controller configu-
rations under VMC and marginal Level 2 ratings obtained
under IMC. Level 1 ratings were achieved under IMC only
for the Precision Hover and Bob-up Tasks with the two
velocity command investigated.

Automatic turn coordination for forward flight maneuvering
tasks improved pilot ratings by approximately 2.0 rating
points for all controller configurations and significantly
reduced pilot workload.



2.0 INTRODUCTION

In addition to the literature search and preliminary analysis
conducted as part of the Advanced Cockpit Controls/Advanced
Flight Control System (ACC/AFCS) program, five piloted simula-
tions were conducted to evaluate the system concepts previously
developed. Volume 2 documented the results of the literature
search and analysis and presented concluding remarks which were
used in the simulation test plan development.

Results of the five piloted simulations are presented in this
volume. The objective of these studies was to identify combi-
nations of cockpit controller configuration, flight control
laws, and display system requirements to achieve satisfactory
handling qualities for the attack helicopter mission defined
for the ADOCS demonstrator aircraft.

Data presented in this volume are organized by simulation
phase. Phase 1 simulations concentrated on controller develop-
ment, response sensitivity selection, and data collection for
low-speed tasks representative of the attack helicopter mis-
sion. All three Phase 1 simulations were conducted at the
Boeing Vertol Flight Simulator; both Phase 2 simulations were
conducted at the NASA-Ames Vertical Motion Simulator (VMS). 1In
addition to collecting additional low-speed data, Phase 2
studies included the investigation of high-speed and transition
flight regimes also associated with the attack helicopter
mission.

A total of seven simulation test pilots participated in these
five simulations providing over 2000 data points defining the
interrelationship between cockpit controller configuration,
SCAS, and display system. Data are presented in this volume in
a manner which emphasizes overall trends in the SCAS, control-
ler, and display system designs.

These data were utilized to make recommendations for the
implementation of ADOCS on a demonstrator UH-60A aircraft. The
final section of this report presents these recommendations.






3.0 EXPERIMENT DESIGN

Pilot workload and level of performance achieved during a
specific attack helicopter mission task are influenced by
combined elements of the helicopter control/display system
design. The primary elements considered during this simulation
program were:

(1) Side-stick Controller (SSC) Configuration - Stiff or

displacement type, and level of integration ranging from a
fully-integrated 4-axis side-stick controller to a (2+1+1)
arrangement; i.e., a 2-axis side-stick for pitch and roll

control with separated directional pedals and a left-hand

collective controller.

(2) Stability and Control Augmentation System (SCAS) Charac-
teristics - Several generic types of feedback stabilization and
feed-forward command shaping in each of the four control axes
(pitch, roll, yaw, and vertical).

(3) Visual Display - Either day VMC with the simulator four-
window, wide angle field-of-view visual system, or night IMC
using a simulated FLIR image and superimposed YAH-64 Pilot
Night Vision System (PNVS) (Reference 1) symbology presented on
a helmet-mounted display.

General Approach

The systematic approach to the investigation of these elements
is illustrated in Figure 3-1. The overall investigation was
directed toward defining those combinations of SSC, SCAS, and
display that produce Level 1, 2, and 3 handling qualities
ratings (Reference 2).

In applying this general approach to the specific problem, the
blocks defined in Figure 3-1 were broken down further into more
detailed configuration matrices. For example, each side-stick
controller configuration block contains variations in force/
displacement relationships as well as ergonomic characteris-
tics. Generic control laws can be mechanized in several
different ways with significantly different results. Display
symbology involves a myriad of variations in parameters,
format, scaling, and logic.

Degraded modes can also be visualized in Figure 3-1. Since the
selected controller configuration will be part of the primary
flight control system, all allowable degraded modes will lie in
the control-law/display-law plane. For example, certain
failures such as FLIR loss will affect the display axis only,
while loss of a ground velocity signal may affect the system
control law and display symbology.

By considering the overall system design as a series of matrix
levels of increasing detail, the interactive effect on handling

5
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qualities of each variation in an element of the system is kept
in perspective. A discussion of important issues to be consid-
ered within each primary system element follows, including
specific details about the controller/SCAS/display characteris-~
tics evaluated.

3.1 SIDE-STICK CONTROLLER CONFIGURATION

The experiment was designed to provide a comprehensive evalua-
tion of multi-axis side-stick control for an attack helicopter
mission including variations in: (1) the number of axes
controlled through the side-stick device, and (2) the force-
deflection characteristics of the controller.

Level of integration (Number of Axes)

Four variations in controller configuration representing
different levels of controller integration were investigated:

(1) g4+02: All control axes (pitch, roll, yaw, and
vertical) on the side-stick controller,

(2) (3+1) Collective: 3-axis side-stick for pitch, roll
and yaw control, and a separate left-hand collective
controller for vertical control,

(3) (3+1) Pedal: 3-axis side-stick for pitch, roll and
vertical control, and pedals for directional control,
and

(4) (2+1+1): 2-axis side-stick for pitch and roll
control, with a separate collective controller for
vertical control, and pedals for directional control.

The above notations for controller integration level are used
throughout the report to identify the various controller
configurations.

The four controller configurations evaluated during Phase 1 are
illustrated in Figure 3-2 with the left-hand controller imple-
mented using a conventional collective lever as a force con-
troller. During Phase 2 a side-stick controller replaced the
collective lever as the left-hand vertical controller as shown
in Figure 3-3. The (3+1) Pedal configuration was not included
in Phase 2 simulations because of the negative pilot comments
and poor pilot ratings received during Phase 1 simulations with
this configuration.

Force/Deflection Characteristics

A definition of acceptable/unacceptable ranges of force/deflec-
tion gradient for each controller configuration option ((4+0),
(3+1), or (2+1+1)) was necessary. The determination of force/
deflection characteristics was performed during the course of

7
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this simulation study using seven 4-axis side-stick controllers
described in Table 3-1. Force/deflection characteristics for
each controller are presented including operating force range,
maximum deflection, and force/deflection gradient.

All 4-axis controllers are a base-pivot type for pitch and roll
motion. Fore-aft force produces a longitudinal control input
and right-left force a lateral control input. Yaw control is
obtained by twisting about the grip centerline, and vertical
control through application of pure up and down forces.

The selection of pitch and roll force/deflection gradients was
guided by a review of published data (Volume 2). Gradients
were chosen to cover a wide range from a "stiff" force gradient
with very small deflection to a "soft" force gradient with
large deflection (t12 degrees). Five 4-axis controller designs
were evaluated during Phase 1 using a stiff-stick force con-
troller, two small-deflection controller configurations, and a
medium- and large-deflection configuration both obtained using
the HLH prototype variable-force controller.

Yaw and vertical controller compliance for both small-deflec-
tion configurations were relatively "stiff" compared to the
pitch and roll axes. 1In contrast, the medium-and large-deflec-
tion configurations were evaluated with lighter yaw and verti-
cal force/deflection gradients for harmony with pitch and roll.

Based on Phase 1 results, a modified 4-axis controller having
small-deflection in all axes was fabricated for Phase 2 test-
ing. An ADOCS demonstration brassboard controller having very
similar characteristics was also available for evaluation
during Phase 2.

Evaluation of the (3+1) Collective, (3+1) Pedal, and (2+1+1)
controller configurations was performed during Phase 1 using a
conventional collective lever and directional pedal controls.
The simulator variable force-feel collective lever was imple-
mented as a "stiff" force controller with small deflection. A
force pedal control system was configured using a mechanical
spring capsule attached directly to the pedals. The direc-
tional pedal configuration selected had a force/deflection
gradient of 40 1lbs/inch with a force breakout of 6.0 lbs.

The implementation of a left-hand side-stick controller for
vertical control was tested during Phase 2 using the small-
deflection controller (MSI-SD2) and stiff-stick (MSI-SS).
Collective control inputs were applied through the longitudinal
control axis of the side-stick controller. Small-deflection
force pedals for Phase 2 evaluation were implemented using the
NASA-Ames simulator variable force-feel system. The same
force/deflection gradient and breakout force used during Phase
1 was implemented.

10



[-€ 3lqel

Qdv09sSvag - 151
$8- (S3XV 1Y)
0°S G6+ (971 6072 L 9SL° 9L 97 |sE 8'slL 82l 661 X - NOILD37430 1TWWS (£}
£05-1SW
58~ L2- (S3xv 1)
9°¢ S6+ 28°L g8l | ool sz 9°9 9°9 |9 v+ 2t 2l X - NOILD31430 1WWs (9)
Z0S-1SW
(7104 QNY HJLId)
00l £92Sv°L 281 ] 09 SL0 £8 €8 |09 ot 02 o0z X X - NOIL231430 1IWWS (S)
SS-ISH
- — o Ov - - &0 s0 |og oy 0z 0z X X ADILS-4411S (p)
105-ISH
(1704 ONY HIL1d)
0°Sl  00vsSz22 soe| ot 1'o g5 ¢s log o o0z o0z X = NOILJ31430 TIWWS (£)
3dAL0L0Yd HIH
£°2  0°5£50°L £9°L}O0SE 60 02 02U = — - — X - NOILD3T43C WN1Q3W (2)
3dAL0L0¥d HIH
£0 05190 60 |0St s0 o2l ozl |— - - = X - NOIL237430 393v7 (1)
O30T NT [ 930 [ oaa | . S31
/s8-N1) ssyfysan fysan | 930 | NU § 930 930 Joy | S8 | SN SET [, epug 1 35¥Hd SNOLLYAIS 1IN0
mya | LE3A] 1] N0 MvA L3A} 11| onod | Kva[ La3a] tv1] onod ITI041ND SIXV-b
h b4 A X h Z A X " 7 A X
N T T3] JONVG QVaNTT SASYHd NOILYINWIS
NOT1337430/32404 (%) NOILD3143G WOWIXVW 39404 9N LY3340

SOILSIH3LOVHVYHD NOILD3143a/30H04
SNOILVHNDIANOD HITTOHLNOD SIXV-V

11



3.2 STABILITY AND CONTROL AUGMENTATION SYSTEM (SCAS)
CHARACTERISTICS

The segments of the attack helicopter mission considered to be
critical from a handling gqualities point-of-view are those
spent in nap-of-the-earth (NOE) flight; those inherently high
workload tasks include low-speed point-to-point maneuvering
using dash, quick stop, and sideward flight techniques, masked
hover in ground effect and unmasked hover out of ground effect
including target search, acquisition, and weapon delivery.
These simulations were designed to provide a definition of
flight control laws and SCAS mode switching logic reqguirements
for the various mission segments. In addition, the effects on
both handling qualities and flight safety of degraded SCAS
modes were to be determined. The effect of the side-stick
controller configuration under degraded SCAS mode conditions is
important, since high levels of vehicle stability may mask
undesirable characteristics of some controller options. SCAS
redundancy requirements also need to be weighed in final
selection of a controller configuration. For example, a (3+1)
axis controller configuration requiring only rate stabiliza
tion may be more cost effective than a 4-axis side-stick
controller requiring attitude stabilization to achieve Level 2
handling qualities.

Figure 3-4 presents a block diagram of the flight control
system design developed for the ADOCS Demonstrator Program.

The primary flight control system (PFCS) was designed to yield
satisfactory unaugmented flight by providing feed-forward
command augmentation and shaping. The advanced flight control
system (AFCS) included both stabilization feedback loops and a
feed-forward control-response model. Stabilization feedback
loops were designed solely for maximum gust and upset rejec-
tion; no compromise for control response was necessary. Use of
a control-response model allowed the shaping of the short- and
long-term response to the pilot's control inputs independent of
the stabilization level.

Various control system concepts were formulated to accomplish
the attack helicopter low speed/hover maneuvers. The generic
SCAS configurations chosen for evaluation are identified in
Figure 3-5 in the form of a command response/stabilization
matrix. A simple identification code (Figure 3-5) was estab-
lished. For example, a system with angular rate command and
attitude stabilization in pitch and roll was identified with
the letter code RA/AT. A complete explanation of the nomencla-
ture used to identify the AFCS configurations follows:

o Pitch and Roll

LV/PH - Velocity command, Position hold.
LV/LV - Velocity command, Velocity stabilization.

12
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AT/LV - Attitude command, Velocity stabilization.
AT/AS - Attitude command, Airspeed stabilization.
AT/AT - Attitude command, Attitude stabilization.
RA/LV - Rate command, Velocity stabilization.
RA/AT - Rate command, Attitude stabilization.
RA/RA - Rate command, Rate stabilization.

AC/RA - Acceleration command, Rate stabilization.

0 Yaw
¢/¢H - Yaw rate command, Heading hold.

Y/ - Yaw acceleration command, Yaw rate stabilization.

o Vertical
fx/hH - Vertical velocity command, Altitude hold.

h/h - Vertical acceleration command, Vertical
velocity stabilization.

The method of SCAS implementation used for the simulation is
illustrated in Figure 3-6 for the lateral axis. All control
axes were implemented in a similar manner. A complete set of
control law diagrams defining the AFCS math model programmed
for the simulation is presented in Appendix A. The stabiliza-
tion gains shown on the diagram were selected prior to the
piloted evaluation phase as described in Volume 2 - Literature
Review and Preliminary Analysis. A six degree-of-freedom
small-perturbation model of the helicopter was used to develop
the command response model for each axis. The analytical study
established control response model gains for cancellation of
undesirable roots of the vehicle characteristic equation.
Control response model feed-forward parameters were defined for
each of the response types identified in Figure 3-5.

3.2.1 Primary Flight Control System (PFCS)

As indicated in Figure 3-7, a pilot force-command signal is
provided to each PFCS axis. The signal is shaped, adjusted in
gain, passed through a derivative rate-limiter, and fed to the
AFCS command model and to the primary UH-60A flight-control
system through a feed-forward shaping network. Limiting of the
AFCS output is also a function of the PFCS, but it was not
incorporated for this experiment. The specification of force-
command signal quantization, nonlinear command shaping, deri-
vative rate-limiter parameters, and forward path lead-lag
shaping characteristics are described in detail in Section 4.1
of Volume 2.

3.2.2 Automatic Flight Control System (AFCS)

The AFCS model implemented for the ACC/AFCS simulation was
developed in two stages. The original Phase 1 implementation

15
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was designed primarily for hover and low speed flight. Modifi-
cations were made for Phase 2 to include additional feedback
and feed-forward paths required for forward flight control
laws. sSpecifically, airspeed and lateral acceleration stabili-
zation signals and cross-axis control paths were added for
decoupling and automatic turn coordination.

In the longitudinal AFCS (Figure 3-8), linear velocity stabil-
ization was provided by a longitudinal ground speed signal for
airspeeds below 40 knots and by a longitudinal airspeed signal
for airspeeds above 45 knots. Switching between the two
signals was transient-free.

The lateral AFCS was implemented for this experiment as indi-
cated in Figure 3-9. In order to switch between a roll atti-
tude command/lateral velocity stabilization system (AT/LV) at
low speed and a roll rate command/attitude hold system (RA/AT)
for higher speed maneuvering flight, a selectable hybrid lateral
AFCS was provided. The indicated gain changes were ramped over
a five-second time period and were initiated by the following
control mode logic. The switch to the rate command system was
accomplished when airspeed exceeded 45 knots if roll rate was
less than 1.0 deg/sec. If the pilot was holding a bank angle
force command at this time, the aircraft would respond to sat-
isfy the commanded roll rate. 1In order to minimize switching
transients when decelerating in a turn, logic delayed switching
to an attitude command system below 40 knots until bank angle
was less than 3.0 degrees and roll rate was less than 1.0
deg/sec.

A cross-axis command path to the directional AFCS was also pro-
vided (Figure 3-10); the commanded bank angle was used to
calculate a yaw rate command as a function of airspeed to
provide for automatic turn coordination. As indicated in Figure
3-10, the selectable Turn Coordination Mode in the directional
AFCS was achieved by a combination of integral-plus-proportional
lateral acceleration feedback, roll rate feedback, and the yaw
rate command feed-forward path. If selected, turn coordination
was activated automatically when airspeed exceeded 50 knots and
a roll rate was commanded by a lateral force input. While Turn
Coordination was operating, the Heading Hold function was dis-
engaged. Turn Coordination remained On, and Heading Hold Off,
until the aircraft was commanded to a bank angle of less than
3.0 degrees and both roll rate and yaw rate were less than 1.0
deg/sec. Heading Hold stabilization was provided full-time,

if selected, and Turn Coordination disengaged for airspeeds
below 50 knots. However, during a decelerating turn maneuver
from forward flight, the Heading Hold Mode would not engage
until the above requirements on roll rate, yaw rate, and roll
attitude were satisfied.

18
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The vertical AFCS (Figure 3-11) was modified to include gain
scheduling as a function of airspeed for the altitude and
altitude rate feedback paths to achieve tight altitude hold for
Precision Hover Tasks and lower stabilization gains during high
speed flight. Command model gains were also altered appropri-
ately to provide the desired vertical response to control
inputs at all airspeeds.

The attack helicopter mission dictates precise hover control to
maintain horizontal position while executing Precision Hover
and Bob-up Tasks. Accordingly, feed-forward and feedback paths
were incorporated in the longitudinal and lateral AFCS control
laws to provide a pilot-selectable Hover-Hold Mode. Figures
3-8 and 3-9 show the longitudinal and lateral AFCS as imple-
mented for this experiment. Blending between the Hover-Hold
Mode and other control modes is accomplished by transient-free
changes in the structure and gains used in the feed-forward
portion of the longitudinal and lateral AFCS control laws. The
Hover-Hold Mode provides a velocity-command system with high
gain velocity stabilization with or without position feedback.
Longitudinal and lateral position reference signals used in the
position feedback are derived from groundspeed signals. The
Hover-Hold Mode can only be selected if both longitudinal and
lateral groundspeeds are less than 5 ft/sec and if the pilot
has selected either the hover or bob-up mode of the IHADSS
display symbols. Once selected, the Hover-Hold Mode remains
active if longitudinal groundspeed does not exceed 25 ft/sec.
With the Position-Hold enabled, Hover-Hold logic synchronizes
position error to establish a new longitudinal or lateral
ground reference position when a nonzero velocity is commanded
by the pilot in that axis. Automatic position-relock occurs in
each axis when ground speed in that axis is less than 2 ft/sec.

For forward flight, the same hybrid system for the longitudinal
and lateral AFCS was available as that reported in Reference 3.
This hybrid system was implemented to provide automatic blend-
ing of control laws as follows:

1) Longitudinal: pitch attitude command/groundspeed
stabilization for low speed and pitch attitude command/airspeed
stabilization at high speed.

2) Lateral: Roll attitude command/groundspeed stabili-~
zation for low speed and roll rate command/roll attitude
stabilization at high speed.

3.3 VISUAL DISPLAY AND VISUAL AIDS

Since the ADOCS mission is to be flown at night or in adverse
weather conditions or both, as well as in VMC, it is necessary
to consider not only the effects of the controller and SCAS
characteristics, but also the effect on handling qualities of
the pilot's night-vision aids. For this experiment, flight
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under IMC was simulated using the Honeywell Integrated Helmet
and Display Sight System (IHADSS). Computer generated symbols,
similar to those used in the AH-64 Apache Pilot Night-Vision
System (PNVS), were superimposed on a 30° by 40° monochromatic
image of the terrain board and presented to the pilot on the
helmet-mounted display (HMD). This imagery, slaved to the
pilot's head movements in azimuth and elevation and driven by
aircraft motion parameters, provided the only visual cues
available to the evaluation pilot. The pilot's line of sight
is tracked with a helmet-mounted sight (HMS) that provides
closed-loop command signals to point the terrain-board camera
which simulates the turret-mounted night-vision sensor. Since
the HMD is coupled to the pilot's head motions, he is able to
scan a wide field-of-regard without being constrained to a
head-down or look-forward position. Figure 3-12 shows the HMD
and one of the sight-sensing units, used to track the head
motions, behind the pilot.

The pilot-selectable display modes, which are used to meet the
operational requirements for various attack helicopter mission
tasks, are:

1) Cruise: high-speed level flight en route to the
forward edge of the battle area

2) Transition: low-speed NOE maneuvers, such as dash,
quick stop, and sideward flight

3) Hover: stable hover with minimum drift

4) Bob-up: unmask, target acquisition, and remask
maneuvers over a selected ground position

A unique feature of this experiment was the capability to
easily evaluate the effect of VMC and IMC on pilot ratings and
task performance. IHADSS was installed at both simulation
facilities for IMC simulation. VMC displays were simulated
during Phase 1 using the Boeing four-window, wide angle field-
of-view television display system, and at NASA-Ames using a
four-window, computer generated image display system.
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4.0 CONDUCT OF EXPERIMENT

4.1 FACILITY DESCRIPTION

Five piloted simulation experiments were conducted as part of
the ACC/AFCS study. Three simulations were completed during
Phase 1 at the Boeing Vertol Flight Simulator Facility, and two
were conducted during Phase 2 at the NASA Ames Vertical Motion
Simulator (VMS). The following sections describe these two
simulator facilities.

4.1.1 Boeing Vertol Flight Simulator Facility

Major elements of the Boeing Vertol Simulation Facility shown
in Figure 4-1 include:

o0 Single-seat cockpit cab mounted on a six-degree-of-
freedom limited-motion base.

o Conventional helicopter flight and performance
instruments, and a SCAS mode select panel.

o Conventional helicopter collective and directional
pedals implemented as small-displacement force
controllers, and various 4-axis side-stick control-
lers. An adjustable mounting bracket attached to the
armrest allowed orientation of each 4-axis side-stick
controller for comfort and to minimize inter-axis
control inputs. A forward tilt of six degrees and a
counter-clockwise rotation of five degrees relative
to the armrest was selected.

o Xerox Sigma 9 digital computer to drive the entire
simulation. The Sigma 9 was programmed with a UH-60
full-flight envelope math model and easily variable
SCAS configurations for this study.

o Four-camera wide-angle television/terrain model
visual display system for the simulation of terrain
flight under either: wvisual or instrument flight
conditions.

A complete description of the Boeing Vertol Simulator motion
system, including maximum accelerations and displacements, is
included in Table 4-1.

VMC Display

The Boeing Vertol Simulator has a four-window cockpit wvisual
display covering a field-of-view of 125° x 75°. The outside-
world scene viewed by a fisheye objective lens (located at the
bottom of the optical probe) is first demarcated into four
separate channels of video information, each with a 38° x 29°
field of view. 1Individual video signals are then passed to
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their respective TV monitors in the cockpit, which the pilot
looks at through Fresnel collimating lens "windows". Collima-
tion of the monochromatic 525-line black-and-wvhite TV images
ensures realism in the out-of-the-window picture because the
virtual image produced by each Fresnel window appears to be
infinitely distant from the pilot's eye. Roll and yaw articu-
lation of the out-of-the-window visual scene is unlimited, but
pitch is restricted to 18° nose up and 37° nose down. Figure
4-2 1s a photograph which shows a typical scene presented to
the simulator pilot on final approach to an airport. The field
of view provided to the pilot in the Boeing Vertol Simulator is
also indicated on Figure 4-2.

IMC Display

A simulated FLIR image with superimposed symbology (Figure 4-3)
was presented to the pilot for IMC flight by the Honeywell
Integrated Helmet and Display Sight System (IHADSS) including
head tracker. Components of the IHADSS system are illustrated
in Figure 4-4.

The FLIR sensor signal was generated using the center-window
video channel to provide a 30° x 40° outside world field-of-
view display. The FLIR image, as provided by the camera probe,
is slaved to the pilot's head movement by the helmet-mounted
sight system. Thus the image seen by the pilot depends both on
the aircraft Euler angles and the pilot's head location. A
Gaertner Symbology Generator was utilized to overlay computer
generated symbols on the video picture. This symbology was
superimposed on the video channel electronically, thereby
providing excellent resolution of the symbology.

Terrain Board

The terrain board developed for the first phase of the simula-
tion is shown in Figure 4-5. The model board is a 200:1 scale
model which includes a runway with evenly space obstacles for a
slalom task, a tree-lined river-bed canyon for NOE maneuvers,
and various locations for bob-up and lateral jink (sideward)
maneuvering. The tasks used for the piloted evaluations are
explained in detail in the Section 4.3.

4.1.2 NASA-Ames Vertical Motion Simulator (VMS)

Ames Research Center's Vertical Motion Simulator (VMS) Facility
(Reference 4) has a six-degree-of-freedom moving-base with 60
feet of available vertical travel (Figure 4-6). The Ames cab
was configured to be similar to the Boeing cockpit. In addi-
tion to the IHADSS tracking hardware and the right-hand SSC
installation, the Ames cockpit was modified to accommodate a
left-hand SSC for vertical control. Both SSC mountings were
adjustable to provide a comfortable orientation which minimized
interaxis cross-coupling of control inputs. Optimized control-
ler orientations are presented in Section 6.2.1.
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VMC Display

For the VMC portion of the evaluation performed during Phase 2
at NASA Ames, the visual scene was simulated using a four-
window, color computer generated image (CGI) display system.
Two data-bases were available with the CGI. One display
contained an NOE course designed as a replica of the terrain
board at Boeing Vertol. Figure 4-7 illustrates the CGI NOE
course as seen through the center display window. Though the
display appears to lack detail, the pilots found the perceived
visual cues to be useful for NOE flight. In addition to the
NOE data-base, an airport runway scene (Figure 4-8) was also
available to perform Slalom and Approach-to-Hover Tasks.
Figure 4-8 also shows the field of view provided by the windows
in the Ames Cockpit.

IMC Display

During Phase 2B, when handling qualities were evaluated under
IMC, the visual scene was simulated using a 300:1 scale terrain
board and camera visual system. The same NOE course and
airport runway with obstacles were constructed on a model board
to perform identical tasks thereby allowing direct comparison
of Phase 1 and Phase 2 data. The video signal from the camera
probe visual system which simulated the forward-looking infra-
red (FLIR) sensor signal was mixed optically with the computer-
generated symbols and presented to the pilot on the HMD.

4.2 AIRCRAFT MATH MODEL

During both phases of the ACC/AFCS study, simulation of the
baseline flight vehicle (the UH-60A) was provided by a generic
single main rotor helicopter math model. Both simulations
included six-degree-of-freedom rigid body dynamics as well as
main and tail rotor RPM degrees of freedom configured to
represent the Black Hawk helicopter. Also included in both
simulations were a canted tail rotor, control mixing, a movable
programmed stabilator, and UH-60A fuselage aerodynamics. The
NASA Ames model which is described in detail in References 5
and 6 contained three degree-of-freedom tip-path plane dynamics
which were not included in the Boeing Vertol model.

Implementation of the UH-60A models was performed using data
from References 7, 8 and 9. The Boeing Vertol model was first
correlated with respect to flight test data from Reference 9.
Figure 4-9 illustrates the good correlation obtained between
UH-60A flight test data and simulation results for a specific
set of trim conditions. A test pilot who flew both the produc-
tion UH-60A and the Boeing simulator found no major handling
qualities discrepancies and noted many similarities including
inherent coupling characteristics.

Validation of both basic helicopter simulation models at Boeing
Vertol and NASA-Ames was accomplished by a comparison of model
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trim data and small-perturbation, six-degree-of-freedom (6-DOF)
stability and control derivatives. A complete listing of trim
sheets and 6-DOF small perturbation stability derivatives
generated by the Boeing Vertol simulation are contained in
Appendix B. Cockpit control positions and helicopter attitude
trim states for the simulations are compared in Figure 4-10.

In addition to the comparison of static trim conditions,
dynamic responses from both simulations were compared and good
correlation was obtained.

Control Law Implementation

Control law modelling during Phase 1 was completed using a
Boeing Vertol proprietary program called "VECEX". This program
emulates dynamic system elements, such as lags, integrators,
summers, in a manner similar to that used when programming an
analog computer. Gains, time constants, and even control laws
can be easily altered without requiring the program to be
recompiled each time a change is made. VECEX uses a modular
approach to control law modelling where a set of predefined
mathematical algorithms, each defining standard control law
elements are repeatedly called from the main routine. The use
of this modular concept, where nodes are defined, provides a
one to one correspondence between VECEX and the system func-
tional block diagrams.

Design concepts for the ADOCS Demonstrator include a digital
flight control system based on the H-5301 microprocessor.
Coding similar to that of VECEX is used to minimize transition
problems. A major difference between the VECEX used in Phase 1
simulations and the H-5301 coding is the method of arithmetic
calculation; VECEX being floating point and the H-5301 being
fixed point. To study the effect of fixed point arithmetic on
the ADOCS control laws, a revised VECEX was developed featuring
fixed point computation as well as variable computational time
cycles. This new VECEX program used algorithms which duplicat-
ed the ones used by Honeywell in coding the 5301.

Simulations were conducted at Boeing Vertol using the fixed
point VECEX program to determine scaling and time-frame re-
guirements for the ADOCS control laws. Resolution problems
which occurred because of scaling implementation were corrected
prior to final control law definitions made to Honeywell.
Sections of the control laws, or modules, were identified as to
their time-frame constraints. For example, the PFCS is run at
40 Hz where many of the AFCS modules are run at 25 Hz.

Control laws for Phase 2 simulations at NASA-Ames were imple-
mented using FORTRAN subroutines. Though this method did not
allow the amount of flexibility that VECEX did, it proved to be
reliable and time expedient.
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4.3 EVALUATION TASKS

Evaluation of total system (pilot, controllers, SCAS, displays)
performance was accomplished using a variety of standardized
tasks performed under both VMC and IMC. These tasks, are
divided up into three main categories: 1) low-speed tasks, 2)
high-speed tasks, and 3) transition tasks. During the perfor-
mance of these tasks, no secondary duties (i.e. armament,
communication, or navigation system management) were required
of the pilot. The following paragraphs describe each task.

4.3.1 Low-Speed Tasks

Figure 4-11 illustrates the low-speed tasks used for evaluation
of handling qualities during Phase 1 and Phase 2 simulation
periods. The Acceleration/Deceleration Task was performed only
for Phase 1, and the Precision Hover Task was added for Phase 2
simulations. Effects of larger motion cues and a simulated
gust environment made this task important for defining control
response shaping for precision hover. The following discussion
defines each low-speed task in detail.

30-Knot Slalom

This low-speed lateral avoidance maneuver requires the pilot to
fly around 50 ft. high obstacles placed 400 feet apart on the
runway centerline. From a hover at 30 feet AGL, the pilot
accelerates the helicopter to an airspeed of 30 knots. The
pilot appropriately controls bank angle and heading to coordi-
nate turns around the obstacles while maintaining a constant
airspeed of 30 knots and an altitude of 30 feet throughout the
maneuver.

Acceleration/Deceleration (Phase 1 only)

A forward translation of the helicopter that is performed while
holding a lateral ground track parallel to the runway. From an
initial hover position offset from the runway, the pilot
accelerates the helicopter to a forward speed of 50 knots,
followed by a deceleration maneuver to arrive at a desired
hover position near the last runway obstacle. The pilot
attempts to hold lateral ground track and altitude, as well as
complete the task in minimum time.

Nap-of-the-Earth (NOE)

The NOE is a multi-axis control task requiring the pilot to fly
through three legs of a narrow canyon (125 feet wide and 50
feet high), having two sharp turns (70° left and 80° right) and
two obstacles (50 feet high), to reach a termination hover
area. During the first leg of the course, an acceleration to
50 knots is performed before crossing a road, followed by a
deceleration to 25 knots while maintaining a lateral ground

42



I1-¥ a4nbyy

L 4
v TV L0F 1Y
(3341 .
LR 1« ’ INOHLTA) 13 80T ¥3IA0H 01 GNIISI0
[ 139¥V1 JWINDIV GNY il
1¥ MIAOH . 1H913H VSR T

1Y 06 1V_YIAOH
dft-808

ﬂM«i «

% @ //f.
b 4,

d4315301S
0

SIN 06=A

{ ’
4
’
O\ 24
. .
4

A1)y

(SIWL HLIM) L4 0O1-09
{53341 ON) 14 0§ EHIIIH NOANYD
13 SZU HIOTA NOANYD _
358002 uo..

Y,
WV By .00 -qqc

Vo,
TO¥ ,OF 1V WIAOH ___Sxoe ‘i 01 13330

ot 1w (] \\ 0O é:zﬂ_\ 0 //
r.m: ?T ‘I® Q-

hﬁﬁww: T 3 R ey -

T9V ,0€ 1V HIAOH

14 00¥ NOTIVHV4IS 370v1SE0
14 001 HIGIM AvmNny

SHSVL NOILYNIVAI d33dS-MO1

43



track and an altitude of 30 feet. After executing a coordi-
nated left turn to enter the second leg, the pilot must control
altitude to fly over an obstacle and remask to 30 feet in as
short a time as possible while attempting to maintain an
airspeed of 25 knots. Following a sharp right turn, the pilot
flies over a second obstacle, controls altitude back to 30
feet, and decelerates to a hover point in the termination area.

Bob-Up

The Bob-up is a multi-axis task consisting of a vertical unmask
maneuver from 25 feet to 100 feet, a heading turn to acquire a
target, and a vertical remask to the original hover height.

The pilot attempts to hold a fixed horizontal ground position
throughout the vertical unmask/remask and heading turn maneu-
vers.

Precision Hover (Phase 2 only)

This precision maneuvering task requires the pilot to descend
from a 30 foot altitude to a 5 foot hover height while simulta-
neously translating longitudinally about 15 feet to position
the helicopter close to a rock located in the center of the
Bob-up area. A Precision Hover under VMC was maintained by
positioning the rock in the lower right-hand window. Under IMC
the rock located in the center of the Bob-up area was aligned
with a marker on the canyon wall.

4.3.2 High-Speed Tasks

In addition to the low speed tasks, high-speed Slalom Tasks
were defined for the Phase 2 simulation as illustrated in
Figure 4-12. The 140-Knot Slalom Task could not be evaluated
under IMC during Phase 2B since the maximum velocity of the
camera probe was limited.

90-Knot Slalom

The slalom is a high-speed lateral avoidance task which re-
quires the pilot to maneuver around 50 foot high obstacles
placed 1000 feet apart on the runway centerline while maintain-
ing a constant 90 knot airspeed, a 30 foot AGL altitude, and a
specific lateral ground-track determined by runway width.
Typical roll rates of 20 degrees/second and roll attitudes of
35 degrees were required to execute this maneuvering task.

140-Knot Slalom

This task was performed similar to the 90-Knot Slalom Task
except that the pilot flies between every other obstacle (2000
foot separation) to accommodate the higher speed. Higher bank
angles (45 degrees) and roll rates (25 degrees/sec) were
required to perform the Slalom Task at 140 knots.
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4.3.3 Transition Tasks

Approach-to-Hover Tasks (Figure 4-12) were included to evaluate
multi-axis maneuvering during transition from forward to low
speed flight. This task enabled evaluation of control law
switching and ability to precisely arrive at a desired hover
location.

Straight-in approach to hover

This task started with the helicopter in level flight at 100
knots and at 275 ft AGL. The pilot was required to descend and
decelerate on a 4° glide slope over a horizontal distance of
4000 ft to a 25 ft hover point in front of a 50 ft obstacle.

Turning approach to hover

This task also emphasized forward flight to low-speed transi-
tion, and required the pilot to perform a left or right de-
scending, decelerating turn from 100 knots and 200 ft AGL and
arrive at a 25 ft hover in front of a 50 ft obstacle on the
runway centerline.

4.4 PILOTS' EXPERIENCE SUMMARY

Seven simulation test pilots participated in the ACC/AFCS
study. Their backgrounds include related simulation or flight
test experience with side-stick controllers and/or exposure to
IMC visual display systems. Table 4-2 presents the names of
all the test pilots, their affiliation and experience, and in
addition, summarizes their participation in flight hours for
each simulation phase. Subsequent to Phase 1A activities, two
evaluation pilots were given 3 hours of IHADSS flight training
on the PNVS Surrogate Trainer at the U.S. Army Yuma Proving
Ground to assess realism of the simulation and improve their
proficiency with IHADSS. In addition, Pilot A who was the main
pilot for these experiments was given familiarization flights
in an UH-60A.

4.5 DATA COLLECTION AND ANALYSIS

Both pilot evaluation data and quantitative system performance
data were collected. The pilot evaluation data consist of
Cooper-Harper handling qualities ratings and tape-recorded
pilot commentary. At the end of each evaluation run the pilot
assigned a single numerical Cooper-Harper rating to the partic-
ular controller/SCAS/task combination under investigation. In
addition, the pilot was asked to provide commentary to help
identify those aspects of the system that most heavily influ-~
enced the rating. The quantitative system performance data
consist of magnetic tape recordings of flight parameters
relative to a reference hover position or desired flight path.
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Experimental results presented in Section 5.0 (Phase 1) and
Section 6.0 (Phase 2) are based on an analysis of pilot ratings
and comments. The results are summarized using averaged pilot
ratings to define general trends and explain pilot qualitative
comments. Time histories are also provided for specific runs
to illustrate pilot/system performance.

Data Organization

In order to systematically investigate the large number of
possible task/controller/SCAS combinations and to assist
analysis of the results, all pilot rating data were organized
into primary/secondary SCAS configuration matrices. The
primary configuration matrix consists of combinations of
controller configurations, ie (4+0), (3+1) Pedal, (3+1) Collec-
tive, and (2+1+1), and pitch/roll SCAS configurations with a
fixed directional and vertical SCAS configuration -- yaw rate
command/heading hold and vertical rate command/attitude hold,
respectively. An effort was made to evaluate all elements of
the primary matrix for all tasks under both VMC and IMC. In
addition, two velocity command systems (one with velocity
stabilization and the other with position hold) were also
included in the primary matrix for the Bob-up Task. For each
element of the primary matrix, a secondary configuration matrix
was evaluated including variations of the yaw and vertical SCAS
configuration for a fixed combination of controller configura-
tion and pitch/roll SCAS configuration. Appendix C contains
all pilot rating data for both Phase 1 and Phase 2 organized
into primary/secondary matrices.

Figure 4-13 presents a typical matrix of data gathered for the
NOE task and performed under IMC with the IHADSS. Each matrix
element contains an average rating for each pilot who evaluated
the particular configuration combination, as well as the number
of test data points included in the average rating. A mean of
the individual average ratings in each block is also calculat-
ed. Various levels of the handling gualities rating scale are
shaded on the matrix to emphasize where the major change from
acceptable to unacceptable occurs. It can be seen that Level 1
flying qualities were not achieved for the NOE Task under IMC
for any controller configuration. The interaction of SCAS/
controller configurations can be determined from the matrix.

An attitude command system achieved Level 2 ratings regardless
of the stabilization type for all controller configurations
with the exception of the 4-axis stiff-stick. A RA/AT system
exhibited marginal Level 2 flying qualities for the (2+1+1) and
(3+1) Collective configurations.

Secondary SCAS matrices are also shown on Figure 4-13. An

improvement from Level 3 to Level 2 ratings occurred when a yaw
acceleration command was implemented for directional control 1in
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place of yaw rate command for the (4+0) MSI-SD2 and RA/AT
combination. In contrast, the (3+1) Pedal and AT/AT combina-
tion degraded to a Level 3 rating when vertical acceleration
command was used in place of vertical rate command.

4.6 OTHER EXPERIMENTAL CONSIDERATIONS

In order to maximize the number of pilot evaluations in a
typical simulation session, the controllers used on the pilot's
right- and left-hand side and the task performed by the pilot
remained fixed for the entire session. Changes to the control-
ler configuration were made during a session only after inves-
tigating a full spectrum of AFCS characteristics for that
particular configuration. In general, (4+0) configurations
were evaluated first, (3+1) second, and (2+1+1) last. Before
each evaluation run, the pilots were told the command response-
type for each axis. They were not informed of the stabiliza-
tion level in each axis or whether the automatic turn coordi-
nation feature was on or off. For the low speed tasks the
pilots were given time to feel out the system before each data
run, and for the high speed and transition tasks they were
allowed to take a practice run, if desired.

wind Shear and Turbulence Model

The Precision Hover and Bob-up Tasks were evaluated under a
specified level of wind and turbulence to evaluate the effects
on system and pilot performance. The Precision Hover Task was
performed both with and without a 20 knot headwind, and the
Bob-up Task was evaluated both with and without a wind shear of
6 knots at 20 ft increasing to 50 knots at 200 ft. The verti=-
cal turbulence intensity simulated for both tasks was 10% of
the mean wind speed measured at 20 ft AGL, and the horizontal
turbulence intensity was 20% of the mean wind speed measured
at 20 ft above ground level (AGL), and the horizontal turbu-
lence intensity was 20% of the mean wind speed measured at

20 ft AGL. This low-altitude turbulence model is described in
detail in Reference 10.
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5.0 PHASE 1 SIMULATION RESULTS

Three piloted simulations (Phases 1A, 1B, and 1C), were con-
ducted at Boeing Vertol to evaluate the control law and display
concepts and alternate controller configurations developed from
the Phase 1 literature review and analysis as reported in
Volume 2 and Reference 11). Phase 1 simulations concentrated
entirely on the low-speed portion of the scout/attack helicop-
ter mission and utilized a total of 204 piloted flight hours.
Experiments to examine high-speed and transition flight were
conducted during Phase 2 (References 3 and 12) and results are
reported in Section 6.0.

A simulation experiment flow diagram for Phase 1 which illus-
trates controller/SCAS evaluation and development activities is
given in Figure 5-1. Initial Phase 1A activity was spent
validating the UH-60A simulation, defining tasks, and familiar-
izing evaluation pilots with the Boeing Vertol simulator and
the THADSS. The majority of remaining Phase 1A simulation time
was dedicated toward side-stick controller development, ie.,
(1) the selection of proper command response sensitivities in
all axes, and (2) the evaluation of four candidate side-stick
controller configurations having different force/deflection
characteristics. Based on results of Phase 1A, a modified
4-axis small-deflection controller (MSI-SD2) was designed and
manufactured for subsequent Phase 1 simulation (Phases 1B and
1C). Using the modified 4-axis side-stick controller, Phases
1B and 1C investigated the interactive effects of various
controller configurations and command/stabilization systems on
handling qualities. As described in Section 4.5, the investi-
gation was performed considering variations of pitch and roll
command/stabilization characteristics in a primary SCAS/con-
troller configuration matrix and vertical and directional SCAS
configuration variations as part of a secondary matrix.

5.1 CONTROLLER DEVELOPMENT

In addition to IHADSS familiarization, Phase 1A activity
accomplished controller development for follow-on simulation
periods. Acceptable control response sensitivities were

defined for the generic CMD/STAB systems, and four candidate
4-axis side-stick controller configurations based on the Phase 1
literature review and analysis (Volume 2) were evaluated.
Results are discussed below according to two major topics: (1)
selection of control response characteristics, and (2) evalua-
tion of controller force/deflection characteristics.

5.1.1 Selection of Control Response Characteristics

Before different controller configurations (i.e. (4+0), (3+1),
or (2+1+1)) were evaluated, a set of control response charac-
teristics for the four control axes and the generic system
types described previously in Section 3.2 were defined through
a series of mini-experiments. Response time constants and
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PHASE 1 SIMULATION FLOW DIAGRAM

PHASE 1A

SIMULATION/MATH MODEL CHECKOUT
TASK DEFINITION
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CONFIGURATION| (4 e oo .
LV/PH MATRIX SECONDARY v
LViLv (asomsi-spz | SEAS
AT/LV CONFIGURATION
AT/AT (3+13C MATRIX VERT AXIS
RA/LV CMD/STAB.
RA/AT (3+1)P TS
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DEFINE CONTROLLER AND
CMD/STAB SYSTEM INTERACTION
FOR VMC AND IMC

Figure 5-1
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sensitivities were varied within the command model and effects
on controllability evaluated. A set of best response values
was selected, initially for the stiff controller, and the same
set of values was then evaluated using the three alternate
4-axis deflection controllers. Additional variations were made
about the nominal response values to define the effects on
pilot ratings and task performance.

This control response selection process is depicted by Figure
5-2. Roll attitude sensitivities were evaluated for the 30-
Knot Slalom maneuver with the various 4-axis controllers. Pilot
comments indicated a range where the roll control sensitivity
was too high producing a tendency to overcontrol. In contrast,
low roll attitude sensitivities less than 4.0 degrees/lb. re-
sulted in heavy control forces and sluggish response character-
istics. The best pilot ratings were obtained when all con-
trollers had a roll attitude sensitivity of approximately 6.0
degrees/lb. Figure 5-2 also shows that pilot ratings of the
large-deflection controller were generally degraded compared
with the other configurations, and demonstrated a rapid degra-
dation as control response sensitivities were reduced and/or
control forces became heavy. The same tendency to degrade
quickly was evident with the stiff-stick. The small-deflec-
tion controller was much more tolerant to changes in sensi-
tivity as indicated by the relatively shallow slope in the

high sensitivity range. Best ratings were achieved with the
small-deflection and medium-deflection controllers in the range
from 5.5 to 7.5 degrees/lb.

The same procedure was followed to select pitch/roll rate and
longitudinal/lateral velocity response characteristics.

A nominal roll rate command sensitivity was determined as
i1llustrated by Figure 5-3. Pilot rating data for the NOE Task
are presented versus roll rate sensitivity. A similar trend of
data is seen relative to pilot rating data presented for
variations of attitude command sensitivity (Figure 5-3). Roll
rate sensitivities above 4.5 deg/sec/lb tended to be overly
sensitive causing the pilot to PIO. Sensitivities below 2.5
deg/sec/lb caused pilot ratings to rapidly degrade due to
undesirable high control forces. A roll rate sensitivity of
3.5 deg/sec/lb was chosen since it provided best ratings. The
data shown on Figure 5-3 also indicate the various pitch
sensitivities used in this evaluation. As indicated, the
variation in pitch sensitivities is small compared to the
variation in the roll sensitivities being investigated. There-
fore pitch axis variations were not considered significant.

Table 5-1 summarizes the final selected response characteris-
tics for all generic command system types. Except for the
acceleration command response, characteristics are approximated
by an equivalent first-order system response. The pitch and

53



TASK:
10
o 9
z
[
<,:8
c
c 7
w
o
£r6
<
5F5
(e o
w 4
a
O
03
(]
- 2
°
E1
0)

CONTROL RESPONSE SELECTION PROCESS

30 KNOT SLALOM SCAS CONFIGURATION: AT/LV

VMC
DATA FROM ALL PILOTS

® (4+0)MSI-SS
® (4+0) MSI-SD1
€ (4+0) HI-MD
* (4+0)HI-LD
[ * (4+0)
4+0) MSI-SS
7’
{(4+0) HI-LD_ /‘
\\\\ - /,/
— v \\\ ,/
‘ —==(4+0) MSI-SD1
— ® ; _-- - (4+0)
E ——‘
| SLUGGISH RESPONSE (5 vur i 8 OVER CONTROL IN ROLL
HEAVY ROLL
FORCES I ROLL AXIS TOO SENSITIVE

Al

2

o 1 2 3 4 5 6 7 8 9

] ] ] | i1 ] i ] 1 1 1

10 11 12

ROLL ATTITUDE SENSITIVITY (DEG/LB)

Figure 5-2
54



€-G dunbLy4

(81/03s/93Q)
ALIAILISNIS 31VH 1104

14 €

| I

W31SAS ANO 31vH
ONA
3SHNOOD 30N

ALIAILISNAS ANVAWOD 31VH 170H 40 NOILD33S

g 1011d
v 107Id

o o o

L 2 ] ®

N43d  N43a@  AJILS
INVT  TIVWS  44I1S

v0°'1 O

ONILVYH H3dHVH-H3d00D 1L07Id

55



1-G 919¢el

ISNOJS3H HYINIT

ISNOJSIH HYININY

050 0z ey 97 HIAI
JAIL231707
A NMOD -
dn ¢
06— 9 [ AvIILYIA
090 GG 187 06+ ¥D11S 3018
- - 090 vl (2] 90 $1v03d
IYNOILD3HI0
VN
- - %0 v gt [AA WI11S301S
ot 031 - A 09 §2°0 5°¢ [N} ool NJ11S5-3018 Ivy3Invi
o€ 0¢l - - A Sy ¥0 07 0 L0 AJ118-301IS TYNIQNLIONGT
(o3s) | (235/33) Amuwmxw ﬁwuwm\amE (oas) | (Bap) | (23s) | (23s/63p) Amuwm\mmE Amumm\me ¥I1I08LINDD SIXY
ALy MIALE R ALIALL 3| SNES 2L [MLTATLISNIS) ) ray11sNS [ALTATLISNAS
1SN3S ISN3S “TSN3S
I1VY1S WILIND VIS IYILINT
AQY31S . AOY31S
(A7) ALID0T3A (0v) 1300V {1v)3anliliv (Vi) 3LvH {Jv) 1333V

(OL1) AINVLISNOD INWIL ANV (SNIS) ANNOd/3SNOdS3d

SOILSIHILOVHVYHO ISNOdS3IH TOHLNOD @310313S

56



roll acceleration response system was designed to provide a
short-term rate response, with a long-term acceleration re-
sponse to automatically eliminate steady control forces re-
quired for helicopter trim. This trim function was accom-
plished with a low-gain integral feed-forward path. Higher
integral feed-forward gains were used in the yaw and vertical
axes to obtain purer acceleration command responses as indi-
cated in Table 5-1 by the ratio of steady-state to initial
response.

To provide acceptable response characteristics for small
precision control tasks and large maneuvers, as well as to
minimize the effect of inadvertent inter-axis control inputs,
non-linear control response shaping (Figure 5-4) was used.

Each force command signal was passed through a shaping function
that allowed variation of deadzone, initial sensitivity gradi-
ent, breakpoint, and high sensitivity gradient. Pitch, roll,
and yaw control response shaping was symmetrical, whereas the
vertical control shaping was asymmetric with a smaller breakout
and higher response sensitivity in the down direction. Shaping
functions employed during Phase 1 simulations are presented in
Figure 5-4. These shaping functions were modified, however,
during Phase 2 simulations at the NASA-Ames VMS Facility.
Changes as described in Section 6.1 were required due to the
improved motion cues provided by the large motion VMS.

5.1.2 Evaluation of Force/Deflection Characteristics

Four SSC configurations having unique force/deflection charac-
teristics were evaluated during Phase 1. These four configura-
tions were chosen to cover a wide range of pitch and roll
force/deflection values (Figure 5-5) to bracket the AFFDL
recommended region of References 13, 14, 15 and 16. Three
4-axis side-stick controllers (Figure 5-6) were used to provide
the various force/deflection characteristics: (1) a stiff
stick design (MSI-S$S) manufactured by Measurement Systems,
Inc., Norwalk, Conn., (2) the HLH prototype controller which
provided a medium- and large-deflection configuration, and (3)
a small-deflection controller (MSI-SD1) built specifically for
the ACC/AFCS study.

Data which summarize the effect of side-stick controller
force/deflection characteristics on pilot Cooper-Harper Rating
(Reference 17) are presented in Figure 5-7. These data points
represent three VMC tasks and two SCAS command systems; only
the best rating achieved for each configuration is shown. The
small-deflection and medium-deflection controllers achieved the
best overall ratings.

Commentary from three pilots who compared the stiff-stick and
small-deflection controllers was very consistent. All agreed
that task performance improved substantially with the introduc-
tion of deflection. Typical comments were as follows:
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Stiff Controller:

o '"Defining best control sensitivities was more difficult
and more critical with a stiff controller than deflection
controller."

o '"Inter-axis force harmony/sensitivities appeared to be
more critical, especially during larger amplitude maneu-
vering."

o "Tendency to over-control, particularly during high
frequency manipulative control tasks."

o "Tendency to release forces abruptly and create inadver-

tent sharp acceleration response."

Small-deflection Controller:

o "This controller has a softer feel of actuation than the
stiff controller, and control inputs seem to be smoother
in application."

o '"Very noticeable improvement over stiff-stick using the
same sensitivities. Ability to shape control commands
during large amplitude maneuvers and control reversals was
a major improvement."

o "This controller gave an immediate and very obvious
improvement in handling qualities. Subjectively, I felt
much more 'in the loop'. While tendencies to cross couple
remained (compared to stiff controller), they were far
depressed below the primary control task and were insig-
nificant. Control inputs seemed much more natural and,
although the response seemed to be more sensitive, this
effect was quite tolerable."

Acceptance of the medium-deflection controller was mixed. One
pilot gave the controller degraded ratings because height
control was difficult due to a high force breakout in the
vertical axis. A second pilot gave the same controller im-
proved ratings compared to the small-deflection controller
because he felt more in control during large maneuvers.

Two pilots evaluated the large-deflection controller and gave
degraded ratings compared to the small-deflection controller.
Comments indicated a more sluggish pitch control response and
less precise control of attitude for high-frequency inputs.

Based on these results, a second 4-axis small-deflection
controller design, MSI-SD2, having a 50% higher deflection/
force gradient, was selected for evaluation of the primary and
secondary controller/SCAS configuration matrices. Table 3-1 in
Section 3.1 compares the force/deflection characteristics for
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the four initial candidate controllers and the characteristics
for the modified small-deflection controller denoted as
MSI-SD2.

5.2 EVALUATION OF CONTROLLER/SCAS CONFIGURATION MATRIX

Phases 1B and 1C used the command response sensitivities,
non-linear response shaping functions, and small-deflection
4-axis controller (MSI-SD2) developed from the Phase 1A simula-
tion. The purpose of Phase 1B and 1C was to evaluate the large
matrix of controller configuration and generic SCAS combina-
tions for a variety of attack helicopter tasks. Variation of
the sub-level design characteristics of each matrix element was
not performed during this phase of testing. For example,
controller force/deflection characteristics, response/force
sensitivities, etc. were held constant throughout Phase 1B and
1C. Average pilot rating data contained in the primary and
secondary SCAS/controller matrices are presented in the follow-
ing discussion of results. Data are plotted in a manner to
clearly illustrate the interactive effects of task, controller,
and SCAS configurations. These effects are more easily seen by
this method rather than presentation of the actual matrices
included in Appendix C.

5.2.1 4-Axis Controller Evaluation

The modified 4-axis controller (MSI-SD2) was fabricated from
the MSI-SD1 unit with a change made only to the internal spring
mechanism of the device. Therefore, a direct back-to-back
comparison of the two MSI small-deflection controller designs
could not be obtained after the modification. 1In addition,
since a large number of 4-axis controller configurations were
evaluated during Phase 1A, limited test time for each control-
ler resulted in a smaller number of data points than desired
for the 4-axis stiff-stick. It was decided that further
evaluation of the 4-axis stiff-stick controller relative to the
modified small-deflection controller (MSI-SD2) during initial
Phase 1B simulation was necessary. A summary of this compari-
son is shown in Figure 5-8.

All pilot rating data were averaged for the three low speed
maneuvering tasks - the NOE, 30-Knot Slalom, and Acceleration/
Deceleration. Average pilot ratings indicate that there was a
small advantage with the small-deflection controller for the
higher levels of command/stabilization, ie. an AT/AT and AT/LV
system. However, pilot ratings were mixed and more widely
separated for the lower levels of command/stabilization,
resulting in no clear advantage for either controller. Having
experience with the side-stick configuration from Phase 1A
simulation, as well as a familiar set of force response charac-
teristics for the sequence of comparison test runs may have
caused the separation of data to be smaller than expected.
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Based on pilot comments, preference for the small-deflection
controller rather than the stiff-stick was unanimous. They
frequently cited the tendency to over-control and cross-couple
control inputs with the stiff-stick. An advantage of the
small-deflection controller was felt to be an ability to shape
pitch and roll control commands which could not be done with
the stiff-stick. Even though pilot ratings gave no large
advantage to the small-deflection controller, the pilot com-
ments indicated that going from the stiff-stick to the small-
deflection design provided a noticeable improvement in handling
qualities. The primary pilot complaint about the MSI-SD2
design was the lack of force harmony between all axes, ie. the
pitch and roll axes had noticeable deflection and a relatively
"soft" force/deflection gradient compared to the "stiff" yaw
and collective axes. Based on these results, the small-deflec-
tion controller (MSI-SD2) was used for the remainder of testing
to compare effects of various controller configurations.

5.2.2 Controller Configuration/Display Effects

A comparison of pilot ratings obtained for various controller
configurations for the NOE Task are presented in Figure 5-9.
This task was felt to be the most difficult and demanding task
of the four low-speed maneuvering tasks evaluated during

Phase 1. Primary factors causing higher workload and degraded
flight path performance for the NOE Task under IMC were: (1)
inability to precisely control height, (2) tendency to couple
side-stick vertical control inputs into pitch and/or roll, (3)
difficult coordination of lateral-directional control in turns,
and (4) tendency to over control roll in high workload situa-
tions.

The most serious deficiency reported was poor height and
vertical speed resolution due to the restricted field-of-view,
lack of peripheral cues, and/or lack of surface texture/picture
detail. Weak motion cues as well as a lack of rotor/drive
system noise may have contributed to a tendency for overcontrol
of the vertical axis. The pilot had to rely almost totally on
display information for vertical speed with no acceleration
lead cues.

The (4+0) controller configuration received poorer ratings for
the NOE course where collective control inputs were required to
clear the obstacles. Inadvertent inputs to pitch and roll
increased the workload required to maintain airspeed and flight
path control. Overcontrol in roll was occasionally experienced
when corrective action was required to compensate for an
inadvertent control input.

Pilot ratings for the Bob-up Task are presented in Figure 5-10.
The IMC Bob-up Task was essentially an instrument reference
task with necessary information such as velocity vector, X-Y
position, acceleration cue, and altitude provided by the
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display symbology. Marginal Level 2 ratings were obtained with
an AT/LV system. Level 1 ratings were achievable with a
velocity command system having either velocity or position
stabilization.

In contrast to the ratings assigned for the other tasks under
VMC, ratings for the Bob-up Task were more degraded. VMC
performance was degraded compared to IMC because of the direct
feedback given to the pilot by the IHADSS display symbology
while performing the IMC task. In fact, VMC performance as
measured by X-Y position deviation during the Bob-up Task was
significantly degraded over the IMC task.

Because of inadvertent cross-coupled inputs, the 4-axis side-
stick controller received degraded pilot ratings for the Bob-up
Task. Separation of the controllers, particularly vertical,
improved pilot ratings significantly. The best ratings were
achieved using a (3+1) Collective configuration combined with a
velocity stabilized system.

The IMC Acceleration/Deceleration Task primarily a single-axis
longitudinal maneuver with Altitude Hold and Heading Hold
selected, was the easiest of the four IMC tasks. As shown in
Figure 5-11, Level 2 ratings of approximately 4.0 were obtained
with all controllers except for the (3+1) Pedal configuration.
Workload and task performance were influenced primarily by the
following factors: (1) tendency to couple pitch control into
side-stick vertical control, (2) vertical control coupling into
lateral-directional requiring pilot compensation, (3) pilot
disorientation during a nose-up maneuver: confusing head motion
with aircraft attitude changes, and (4) poor resolution of
longitudinal/lateral positioning during deceleration to hover.
Precise control of aircraft position during the deceleration to
hover was difficult due to poor resolution of longitudinal
speeds and rate of closure, thought to be caused by the limited
field-of-view and limited peripheral cues. Small lateral
speeds were difficult to discern from small yaw rates especial-
ly at low speeds.

Performance of the Slalom Task under IMC with Altitude and
Heading Hold selected was primarily a two-axis lateral-direc-
tional control task. Pilot ratings (Figure 5-12) were degraded
by approximately one point compared to the Acceleration/Decel-
eration Task. Task performance was judged principally on the
ability to execute coordinated turns and achieve a desired
curvilinear path around obstacles at constant speed. Primary
factors which increased workload and degraded pilot ratings
were: (1) tendency to couple side-stick yaw control inputs
into roll and/or pitch, (2) difficult turn coordination due to
lack of peripheral cues with the IMC visual display, and (3)
tendency to become disoriented with IHADSS when head movements
were made to locate desired flight path projection. It was
difficult to distinguish the effects head response from air-
craft response.
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For the Acceleration/Deceleration and Slalom Tasks, the (3+1)
Pedal configuration received more degraded pilot ratings than
all other configurations. If large errors were allowed to
build up, precise corrective control inputs with the pedals
were difficult to achieve, and overcontrol of yaw often result-
ed. Precision yaw control on the side-stick provided improved
lateral-directional control for IMC.

5.2.3 SCAS Effects

Primary SCAS - Longitudinal/Lateral

For the most difficult IMC tasks (NOE and Slalom), the acceler-
ation command/rate stabilization system (AC/RA) exhibited Level
3 handling qualities (Figures 5-9 and 5-12). With the addition
of attitude stabilization, the RA/AT system received marginal
Level 2 ratings for IMC with high workload required to achieve
adequate performance. It was extremely difficult to maintain
precise flight control parameters (airspeed, lateral ground
track, sideslip, etc.). Continuous pulse-type control inputs
were required for best performance. When velocity stabiliza-
tion was combined with a rate command system (RA/LV), for all
low-speed maneuvering tasks there was a significant degradation
in pilot ratings, particularly noticed for the NOE Task (Figure
5-9). Pilot worklcad and compensation to achieve lateral-
directional coordination were noticeably higher, possibly
indicating an inherent conceptual design problem with this
combination (i.e., having the stabilization type more than one
integration away from the command type).

A large improvement in IMC ratings for all tasks was obtained
with an attitude command system. With the same level of
attitude stabilization, an attitude command system (AT/AT)
improved pilot ratings an average of one rating point when
compared to the rate command system (RA/AT). A similar im-
provement occurred in the VMC ratings. Pilot comments indicat-
ed that the attitude command system exhibited a noticeably
stronger feel of "apparent" stability. The pilots felt more
continuous in the control loop with a strong force/attitude
(force/linear acceleration) relation. By having more precise
control of attitude, maintenance of airspeed and ground track
and execution of coordinated turns were performed with lower
workload. There was also less tendency to overcontrol with an
attitude command system particularly for large maneuvers and/or
control reversals.

When combined with an attitude command system, velocity stabi-
lization improved pilot ratings for maneuvering tasks by about
half a rating point for both IMC and VMC. The ease of main-
taining airspeed and effecting turn coordination during the
Slalom and NOE Tasks, and the ease of varying airspeed and
maintaining lateral ground track during the Acceleration/
Deceleration and NOE Tasks was the major benefit noticed with
the attitude command/velocity stabilization system.
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The influence of SCAS configuration on pilot ratings for the
Bob-up Task 1s shown in Figure 5-10. The attitude command
system yielded pilot ratings in the low Level 2 region (CHPR 2
4.5). Use of a velocity command/velocity stabilization system
reduced pilot workload, improved task performance, and achieved
Level 1 pilot ratings for the Bob-up Task with all controllers
except the 4-axis small-deflection configuration.

Velocity command response characteristics were reported to be
more jerky than the attitude response system, however, small
position changes could be made easily. The addition of posi-
tion stabilization, evaluated only with 4-axis controllers,
made the Bob-up Task a series of single-axis control maneuvers.
Level 1 ratings and excellent position hold were achieved.

As previously stated, attitude command systems were preferred
over rate command systems for all low speed tasks. Time his-
tories of two data runs with different CMD/STAB systems are
presented in Figures 5-13 and 5-14 for the Bob-up Task. Both
data runs were performed under VMC using the MSI-SD2 SSC in the
4-axis configuration. Pilot ratings were 3.5 for the AT/LV
system and 6 for the RA/LV system. Improved control of posi-
tion, altitude, and heading was achieved with the AT/LV system.
Pilot control inputs with this system were less active and
smaller in magnitude than with the RA/LV system.

Figure 5-15 presents an example of Bob-up Task performance
achieved as a function of SCAS configuration. Deviations in
longitudinal and lateral position from the initial/desired
hover location are used to calculate a mean radius, i.e. a
circle containing one-half the total number of data points.
Data are presented for Pilot A and five controller configura-
tions as a function of pitch/roll SCAS configuration. Compared
to the rate command system, a large improvement in performance
and pilot rating can be seen for an attitude command system.
Best performance was achieved with a velocity command system
(mean radius < 12 feet) for all controller configurations
evaluated by pilot A. Data for the 4-axis controllers show
degraded performance and pilot ratings, particularly for the
attitude command system.

Secondary SCAS/Controller - Directional/Vertical

Directional and vertical SCAS configurations were varied for
the RA/AT, AT/AT, and AT/LV systems of the primary SCAS matrix.
All controller configurations were evaluated. In general, the
yaw rate command/heading hold system provided the best pilot
ratings with the pitch/roll attitude command systems for all
controller configurations and tasks. Turn coordination and
lateral ground track could be controlled easily, particularly
for VMC. A yaw acceleration command system made it more
difficult to execute precise heading changes or to establish a
zero yaw rate at a desired heading. Low speed turn coordina-
tion and lateral ground track were also degraded due to this
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inability to modulate or vary yaw rate precisely, particularly
with the pedals.

An important interactive directional SCAS/controller effect is
shown in Figure 5-16 where yaw control on the 4-axis side-stick
is compared to yaw control with the (2+1+1) configuration for
the Slalom Task. Yaw acceleration command for the 4-axis or
the (2+1+1) configuration degraded pilot ratings with all
pitch/roll SCAS configurations when compared to the yaw rate
command system. When yaw acceleration command was implemented
on the side-stick, either a (3+1) Collective or (4+0) configu-
ration, pilot ratings were degraded with the pitch/roll atti-
tude command system, but improved with the rate command system.
For the low speed coordinated turn maneuver, yaw acceleration
command improved control capability by eliminating the require-
ment for steady forces to control yaw rate. It is difficult
for the pilot to modulate forces in one or two axes (pitch/roll
rate control) while holding a steady force in another axis (yaw
rate command for turn coordination). The yaw acceleration
command system provided improved control harmony for lateral-
directional maneuvering when implemented with the pitch and
roll rate command systems.

Also shown on Figure 5-16, the yaw acceleration command/yaw
rate stabilization system generally received better pilot
ratings than the yaw acceleration command/heading hold system.
As previously noted for the primary SCAS RA/LV system, a
degradation of task performance was observed if the stabiliza-
tion level was more than one integration away from the command

type.

The vertical rate command/altitude hold system achieved the
best pilot ratings for all pitch/roll SCAS systems and control-
ler configurations. Vertical rate command provided good
control of vertical speed and precise control of altitude,
particularly for VMC. Acceleration command in the vertical
control axis degraded control accuracy and necessitated pulse
control inputs to achieve the best flight path performance.

Figure 5-17 compares vertical control on the side-stick ((4+0)
configuration) and conventional collective lever ((3+1) Collec-
tive or (2+1+1)). Vertical acceleration command on the collec-
tive lever degraded the IMC handling qualities to Level 3. As
with yaw control on the side-stick, vertical acceleration
command on the side-stick offers the benefit of eliminating the
need to hold steady vertical control forces to achieve a steady
vertical rate. However, based upon the results, the benefit of
altitude hold and vertical rate command apparently offset the
requirement to hold vertical control forces. These particular
results may be biased by the lack of strong vertical motion and
rotor/drive system noise cues in the simulator.

76



91-G 24nbi4

NOILVHNDIANOD SVOS 170H/HD Lid

A/ LY lv/1iv ilv/vy vy/0ov A/ LY lv/Ly
L 1 } J L |

iv/vd
}

vH/0Vv
J

AdOLIV4SILYS
L I3A3T

318Y1d300v
¢ 13A37

378v1d3J0¥NN
€ T3A3T

casS-ISN(0+¥) MO1L83QAIS NO
TJOHLINOD MV A

T
> 5
NN
R
eqn

NO Q70H 3anlIiy
ONWI - WNOTVS

(1+1+2) S7vaA3d NO
TOHLNOD MV A

ot

SONILVYH 107id NO SNOILVIHVA SVYOS MVA 40 1D03443

ONILVYH HIdUHVYH-H3I400D 107id

77



2as-iISW(o+t¥) O1L834lS NO

L1-G @unbi{

NOILVHNDIANOD SVOS TT0H/HOLId

A/1v 1v/1v lv/vH vd/0Vv A/Lv iv/sLiv
| 1 | _J L 1

lv/vy
1

vVH/OVv
J

AYOLIVASILYS
1 13A37

—
[ —

3178V1d3IIIVNR
€ 13A3T

TOHLINOD VvOILHIA

x
= =T =4
~ NN
=~ =
od4n

NG GT0H 9NIQV3H
DNl - 38HNOD 3ON

SONILVY LOTId NO SNOILVIHVA SVOS TVOILH3A 40 1LDO3443

- —y
— —a

318v1d320V
2 13A31

O(1+€) HAIA3T 3AILD3ITT0D NO
TOHLINOD TVOILHIA

oL

ONIlVYYH H3dHVYH-H3dJ00D 1071d

78



6.0 PHASE 2 SIMULATION RESULTS

The primary objectives of the simulation experiments at the
NASA-Ames facility were: (1) to investigate forward flight
control laws, including blending of control modes between
low-speed and forward flight, (2) to continue the evaluation of
side-stick controller configurations, including a new 4-axis
controller with limited deflection in all axes and a left-hand
side-stick for vertical control, and (3) to assess the effects
of a more valid representation of aircraft motion.

Two phases of piloted simulation activity were performed during
Phase 2. Phase 2A utilized 65 pilot flight hours and evaluated
handling qualities under VMC using the four-window CGI display.
Low-speed, transition, and forward flight tasks representing
elements of the entire scout/attack-helicopter mission were
emphasized during Phase 2A. Phase 2B evaluated the same
mission tasks under IMC with the IHADSS. A total of 55 pilot
flight hours (46 IMC hours and 9 VMC hours) were utilized
during Phase 2B.

AFCS Modifications for Phase 2 Simulation

The AFCS model implemented for Phase 1 simulations at Boeing
Vertol was modified for Phase 2 to include additional feedback
and feed-forward paths required for forward flight control
laws. Airspeed and lateral acceleration stabilization signals
and cross-axis control paths required for decoupling and
automatic turn coordination were added to the original Phase 1
AFCS, which had been designed primarily for hover and low speed
flight.

Transient-free switching between complementary airspeed stabi-
lization and ground speed stabilization was provided in the
longitudinal AFCS. In order to switch between a roll attitude
command/lateral velocity stabilization system (AT/LV) at low
speed and a roll rate command/altitude hold system (RA/AT) for
high speed maneuvering flight, a selectable hybrid lateral AFCS
configuration was provided (AT/LV-RA/AT). A cross-axis command
path from the lateral to directional AFCS was implemented for
automatic turn coordination where a commanded bank angle signal
was used to calculate a turn-rate command as a function of
airspeed. The vertical AFCS was also modified to include gain
scheduling as a function of airspeed for the altitude and
altitude rate feedback paths. High gains were provided to
achieve tight altitude hold for precision hover tasks and lower
stabilization gains were used during high speed flight. Hybrid
altitude and altitude rate feedback signals were also mecha-
nized in the vertical axis using a vertical acceleration
sensor.
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IHADSS Modifications

Several modifications were made to the IHADSS symbology used in
the Phase 1 IMC simulation study. These changes, incorporated
during preliminary Phase 2 IHADSS checkout testing, were based
on pilot commentary received during the Phase 1 simulation
program at Boeing Vertol.

Figure 6-1 compares the formats used during Phase 1 and Phase
2B. As shown in this example, the changes include:

1) Additional pitch-attitude symbols to provide a more
compelling and accurate display of pitch and roll
attitude.

2) The movement of the heading symbols to the lower
center of the display to eliminate the eye muscle
strain caused by its usual location well above the
display center; the heading scale was also truncated
to declutter the display.

3) The replacement of the diamond-shaped aircraft nose
symbol which, during Phase 1, was found confusing and
awkward by test pilots. The cockpit reference
display, which provided information concerning
aircraft orientation relative to head azimuth and
elevation, was designed to alleviate the disorien-
tation problems of the diamond-shaped symbol by
NASA-Ames engineers. As shown in Figure 6-1, the
cockpit reference display consists of evenly spaced,
converging lines all directed toward the nose of the
aircraft.

The above changes, though not gquantitatively evaluated, were
felt by all subject pilots to improve the IHADSS symbology
effectiveness.

Controller Development During Phase 2

Handling qualities problems with the stiff 4-axis controller
were demonstrated during the Phase 1 simulation experiments.

In addition, slightly improved handling qualities for specific
tasks resulted from adding limited deflection to the longitu-
dinal and lateral axes of the side-stick (MSI-SD2). Based on
Phase 1 simulation results, Phase 2 experiments were directed
toward investigating the possible benefit of improved vertical
and directional axis control through a 4-axis controller with
small-deflection in all axes (MSI-SD3). This new 4-axis
controller, is shown in Figure 6-2 along with the stiff-stick
and small-deflection controller (MSI-SD2). A new grip, similar
to the grip used in the Reference 18 program, was also included
with the new controller (MSI-SD3) to minimize the vertical-to-
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longitudinal-and~-lateral control coupling inherent with the
original grip used for Phase 1 simulations.

In addition, continued simulation studies and design efforts
during Phase 2 were aimed at improvement of the (3+1) Collec-
tive controller configuration using a left-hand side-stick
vertical controller instead of a conventional collective lever
implemented as a stiff-lever. The stiff-stick and small-deflec-
tion configurations (MSI-SS and MSI-SD2) were available for use
as a single-axis left-hand vertical controller. Left-hand
control of collective in the (3+1) Collective configuration was
implemented through the longitudinal control axis of either
controller.

Finally, a brassboard 4-axis controller (Figure 6-3) similar to
the actual design to be flight tested on the ADOCS demonstrator
aircraft was evaluated during Phase 2B simulation activity.

The brassboard controller, manufactured by Lear Siegler, Inc.,
was designed to have force/deflection characteristics very
close to the MSI-SD3 controller manufactured by Measurement
Systems, Inc. (Table 3-1). An alternate grip design developed
by Boeing Vertol is also shown mounted on the brassboard
controller. This grip was not used during the Phase 2 simula-
tions.

6.1 SIMULATOR EFFECTS

Comparison of Phase 2 pilot rating data with Phase 1 results
was desired to understand the effects, if any, of the NASA-Ames
VMS, which provides a higher fidelity motion cue environment.
An assessment of the effects of large motion on pilot kines-
thetic coupling with various side-stick controller configura-
tions was particularly desired during Phase 2 simulation. As a
result of the effects of large motion, it was necessary to
modify control response shaping characteristics to achieve
satisfactory pilot ratings for all tasks, particularly the
Precision Hover Task.

6.1.1 Effect of Simulator Visual Display/Motion System

Initial Phase 2 data were obtained for the small-deflection
controller (MSI-SD2) using Phase 1 response shaping functions.
A comparison of these data with Phase 1 data is shown in Figure
6-4. Pilot ratings are similar for the multi-axis NOE maneu-
vering task when comparing two SCAS configurations -- a rate
command/attitude stabilization (RA/AT) and an attitude command/
velocity stabilization (AT/LV) system. Phase 2 ratings were
degraded approximately 0.5 points with the attitude command
system and pilot comments indicated a tendency for over-control.
Improved pilot ratings and task performance compared to the
Phase 1 data were achieved with the rate command system.

83



LS| BRASSBOARD CONTROLLER

WITH EXPERIMENTAL GRIP

84

Figure 6-3



¥-9 d4nbL 4

NOILVHNDIINOD SVYOS TTOH/HOLId

AN/ LY 1V/LY 1v/vy ALY LV/LY  1V/VH
L 1 | L ) 0
9t
AYOLIVASILYS ¢
L 13A37 4 ¢
- ¥
~ 8 378Y1d30V s
z 13A31 4
4 2
-~ 8
378Y14320YNN 6
€ 13A37
dn-g908g 30N - 0ol

VivQ SIWV-YSYN =
Yiva 70L43A ONIF08 @

NO Q7T0H 9NIQVIH
NO Q70H 3anLILTv

DNIdYHSE | 38VYHd HLIM 2AS-ISK (0+¥) DWA - v1ivad 11V
Vlva 2 3SYHd SA Vv1vd I 3SVHdJ

NOSIHVAdWOD ALITIOVd NOILVINWIS

ONILVH Y43dHVH-H3Id00D 101Id

85



Pilot comments indicated that the NASA Ames CGI display provid-
ed improved visual cues compared to the Boeing Vertol televi-
sion display image, especially for maneuvers in the vertical
axis. Relative to Phase 1, the NOE Task during Phase 2A seemed
qualitatively easier to fly at the same airspeed, and control
of height was improved. This effect was particularly notice-
able when the task was performed with a rate command (RA/AT)
system. The pilots felt that the CGI terrain representation
lacked granularity variation with altitude, but the strong
motion and peripheral visual cues provided a very effective
simulation of the NOE Task.

Advantages of the CGI visual display system and effects of
stronger vertical motion cues were more evident during the
Precision Hover and Bob-up Task. Pilot comments indicated that
the excellent color, clarity, and depth-of-field of the CGI
display afforded strong spatial position cues which improved
their capability to perform the Precison Hover and Bob-up
Tasks. A comparison of average pilot ratings for the Bob-up
Task (Figure 6-4) reveals the same trend as data for the NOE
Task, i.e. improved performance for the rate command (RA/AT)
system and slightly degraded ratings for the attitude command
(AT/LV) system. Pilot comments during initial Phase 2A simula-
tion also indicated that their ratings were degraded due to
excessive response sensitivity for small force inputs, particu-
larly for the Precision Hover Task. This effect was attributed
to the increased motion cues provided to the pilot by the VMS
simulator.

6.1.2 Modification of Control Response Shaping

The larger motion and improved visual fidelity of the NASA Ames
Vertical Motion Simulator necessitated adjustment to the PFCS
command shaping characteristics developed during Phase 1 at
Boeing Vertol. In order to provide acceptable response charac-
teristics, both for small high-frequency precision control
tasks and low-frequency larger amplitude maneuvers, it was
necessary to increase the number of breakpoints in the control
response shaping functions, thereby providing a more gradual
change of sensitivity gradient.

As an example, pitch and roll attitude command response shaping
developed during Phases 1, 2A, and 2B is compared in Figure
6-5. Modifications to the low control force region resulted
primarily from pilot comments obtained during performance of
the Precision Hover Task. Very small and precise control
inputs were required for this task. A higher initial sensitiv-
ity gradient as used during Phase 1 resulted 1in degraded pilot
ratings due to a tendency for over-control in the larger motion
simulator at NASA-Ames. An increase in response sensitivity
for larger control inputs was desirable to reduce control
forces required for large maneuvers, i.e. Slalom and Approach-
to-Hover.
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Rate response shaping for the vertical and directional axes
implemented on the 4-axis controller is shown on Figure 6-6.
Because of stronger vertical motion cues provided by the
NASA-Ames VMS, vertical response sensitivities were greatly
reduced for Phase 2 relative to Phase 1 response shaping.
Again, this modified shaping was required primarily for the
Precision Hover Task.

A complete set of response shaping functions used to obtain
pilot rating data during each simulation phase is provided in
Appendix A. Response functions are defined for all control
axes and the generic types of command systems investigated.

The effect of the revised vertical axis shaping in terms of
pilot ratings is shown in Figure 6-7 for the NOE, Precision
Hover and Bob-up Tasks. Pilot ratings obtained for the new
small-deflection controller (MSI-SD3) with Phase 1 response
shaping are compared to ratings achieved after revised shaping
functions were implemented. The improvement in the multi-axis
NOE and the Bob-up Tasks was about one pilot rating point. An
improvement of 1.5 to 2.0 rating points was achieved for the
Precision Hover Task. This result occurred because the Preci-
sion Hover task required lower force and high frequency con-
troller inputs in the region most affected by the shaping
modifications. For all low speed tasks under VMC, the modified
shaping improved pilot ratings and provided Level 1 handling
qualities for an attitude command system with velocity stabil-
ization.

6.2 CONTROLLER EVALUATIONS

Phase 2 simulation experiments continued the investigation of
the effect of controller force/deflection characteristics and
the level of integration of controlled axes on a single con-
troller. The new 4-axis controller design (MSI-SD3) having
small-deflection in all axes was fabricated specifically for
Phase 2A. This controller was compared to MSI-SD2 which
achieved best pilot ratings during Phase 1. In addition, the
4-axis stiff controller (MSI-SS) was available for use as a
right-hand controller or a single-axis left-hand controller for
vertical. Left-hand side-stick control of the vertical axis
was evaluated in the (3+1) Collective configuration through the
longitudinal control axis of either MSI-SS or MSI-SD2.

The various controller configurations are identified by numeri-
cal subscripts to indicate both the right-hand and left-hand
(where applicable) controllers being evaluated. For example,
(4+0) MSI-SD3 indicates that the MSI-SD3 controller was evalu-
ated as a right-hand 4-axis device while (3+1) Collective
MSI-SD3, MSI-SD2 1is the identifier for a configuration consist-
ing of the MSI-SD3 Controller on the right as a 3-axis device
and the MSI-SD2 Controller on the left solely for collective
control.
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6.2.1 Controller Orientation

Controller orientation for both the right-hand and left-hand
side-stick controller was adjusted to a position acceptable for
all test pilot participants. Orientations were chosen to
minimize interaxis control inputs as well as to provide a
comfortable arm position to reduce fatigue. Figure 6-8 illus-
trates the orientations used during Phase 2A and Phase 2B. A
picture of the controller installation for both simulation
phases is given in Figure 6-9. As shown, left-hand side-stick
controller orientation for both simulation phases was very
similar. Since the left-hand controller was only for single-
axis vertical control, interaxis coupling was not a problem and
comfort was the only factor affecting orientation of the
left-hand side-stick. Selecting a suitable right-hand control-
ler orientation was more difficult. The Phase 2A right-hand
controller orientation shown was chosen for the MSI-SD3 con-
troller. During Phase 2B, the ADOCS Brassboard (LSI) control-
ler replaced the MSI-SD3 as the prime right-hand $SC. Small
differences in forward tilt and inboard twist were required for
each controller as seen in Figure 6-9. The right-side armrest
position was altered to accommodate the larger physical size of
the LSI controller unit. Pilot ratings presented in Section
6.2.4 compare the MSI-SD3 and LSI Brassboard controllers with
each having the orientation as shown; no difference in pilot
ratings was noted. All pilots agreed that the orientation
selected for each of the controllers was satisfactory.

6.2.2 Alternate 4-Axis Controller Comparison

The new small-deflection controller (MSI-SD3) was introduced to
the simulation study during Phase 2A and tested relative to the
MSI-SD2 and MSI-SS configurations used during Phase 1. Each
controller was evaluated in the (4+0) configuration for three
low speed tasks--NOE, Precision Hover, and Bob-up. Figure 6-10
presents a comparison of pilot ratings for the three 4-axis
controllers shown in Figure 6-2.

For all low-speed tasks the MSI-SS and MSI-SD2 controller
received pilot ratings that were degraded approximately one
rating point compared to the MSI-SD3 configuration. The
MSI-SD3 controller was the only 4-axis configuration to receive
Level 1 ratings of approximately 3.0 to 3.5 with the higher
levels of pitch and roll command and stabilization. With the
same AFCS configurations, i.e. AT/AT and AT/LV, the MSI-SS and
MSI-SD2 controller achieved Level 2 pilot ratings of approxi-
mately 4.0. In general, higher AFCS stabilization levels for
all controllers significantly reduced the effects of inadver-
tent control inputs or aircraft upsets, and less stabilized
AFCS configurations increased pilot workload.

As observed during Phase 1, it was more difficult with the
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stiff-stick to modulate forces, particularly for high-frequency
control tasks such as the Precision Hover. The stiff control-
ler provided poor tactile feedback to the pilot and gave the
feeling of not being 'tight' in the control loop, especially
during large amplitude maneuvers. The stiff-stick also exhib-
ited more of a tendency toward pilot-induced oscillation (PIO).

The MSI-SD3 Controller (deflection in all axes) was unanimously
preferred by all pilots over both the MSI-SD2 Controller and
the stiff-stick design (MSI-SS). All pilots felt that deflec-
tion in each control axis provided better definition of indi-
vidual axis commands, reduced the tendency for inadvertent
coupling of control inputs, and allowed precision control tasks
to be performed more accurately.

Based on pilot comments the MSI-SD2 Controller (deflection in
pitch and roll) was considered an improvement for pitch and
roll control when compared to the stiff controller design.
However, overall pilot ratings were slightly more degraded than
the stiff-stick controller. Pilot comments again indicated
that poor control force harmony resulted from the combination
of two stiff control axes and two deflection control axes on
the same controller. This controller (MSI-SD2) had undesirable
force modulation characteristics in yaw and collective. High
frequency control was difficult in these axes and performance
during the Precision Hover Task, although better than the stiff
controller (MSI-SS), was marginally acceptable. Both MSI-SS
and MSI-SD2 provided Level 2 handling qualities for all tasks
and AFCS configurations.

One important anthropometric characteristic was common to all
4-axis controllers evaluated; the pitch and yaw orientation of
the controller and grip with respect to the armrest was criti-
cal to minimize pilot fatigue and reduce cross-axis coupling.

Three minor problems were observed with the MSI-SD3 Controller
design during the course of Phase 2 testing:

(1) Maximum yaw axis control travel and forces were
excessive for comfortable hand-wrist motion.

(2) Forward tilt of the grip with respect to controller
mount introduced inadvertent roll/yaw coupling.

(3) Small mechanical free-play (manifested as a force
deadband) degraded precise longitudinal axis control
for small control inputs.

6.2.3 Left-Hand Vertical Side-Stick Controller Evaluation

A comparison of the stiff-stick (MSI-SS) and small-deflection
controller (MSI-SD2) mounted on the left as a vertical control-
ler in a (3+1) Collective configuration was performed. Right-
hand control of pitch, roll, and yaw was accomplished using the
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MSI-SD3 Controller. For the data presented, both the direc-
tional and vertical axes were implemented as rate command
systems with Heading Hold in the yaw axis and Altitude Hold in
the vertical axis.

Results of the evaluation are presented in Figure 6-11. The
left-hand deflection controller improved pilot ratings by an
average of one-half point compared to the stiff controller.
Level 1 ratings were achieved with an attitude command system
(AT/AT or AT/LV) in pitch and roll for all low speed tasks.
Pilot performance was particularly improved during the Bob-up
Task where accurate control of aircraft height was required.
Pilots found that collective control forces and small height
changes were easier to modulate if small deflection was provid-
ed in the left-hand vertical controller. BRased on these
results, the small-deflection controller (MSI-SD2) was selected
as the primary left-hand vertical controller for subsequent
evaluation of the (3+1) Collective and (2+1+1) controller
configurations during Phase 2.

6.2.4 ADOCS Brassboard Controller Evaluation

An initial investigation was performed during Phase 2B to
evaluate the ADOCS brassboard controller manufactured by
Lear-Siegler, Inc. in comparison to the MSI-SD3 small-deflec-
tion controller utilized for Phase 2A simulation study. The
brassboard controller was designed to have force/deflection
characteristics similar to the MSI-SD3 controller (Table 3-1).

Various VMC tasks were flown to compare both controllers using
the same grip (Canadian NAE version as described in Volume 2).
Figure 6-12 presents pilot ratings for the NOE Task with both
controllers in a 4-axis configuration. As shown, little
difference in pilot ratings resulted between the two controller
configurations. Pilot comments indicated that the brassboard
controller "felt" slightly better. Therefore, it was used for
the remainder of Phase 2B simulation.

6.2.5 Alternate Grip Comparison

Pilot comments from Phase 1 and Phase 2A simulations led Boeing
Vertol to develop an alternate grip design (Figure 6-13). The
objective of the new grip design was to provide better defined
grip control surfaces, especially for application of direc-
tional and vertical forces. This alternate grip design was
available at the start of Phase 2B simulation for comparison to
the Canadian NAE-type grip used during Phase 2A.

Both grips were evaluated back-to-back when mounted on the
ADOCS brassboard controller. For both the NOE and Precision
Hover Tasks performed under VMC, the Canadian NAE grip was
preferred. The experimental grip was found to be unacceptable
by all evaluation pilots. Though it did provide better defined
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PILOT COOPER-HARPER RATING

4-AXIS CONTROLLER COMPARISON

10

NOE TASK - VMC

ALTITUDE HOLD ON
HEADING HOLD ON

@® MSI-SD3 (PHASE 2A DATA)
A | SI-BRASSBOARD (PHASE 2B DATA)

f T | L
AC/RA RA/AT AT/AT AT/LV

PITCH/ROLL SCAS CONFIGURATION

Figure 6-12
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control surfaces, the pilots found that it was uncomfortable,
awkward, and created a tendency to tightly grip the controller.

6.3 CONTROLLER/SCAS CONFIGURATION EFFECTS

All tasks were evaluated with three selected controller config-
urations (i.e. (4+0), (3+1) Collective, and (2+1+1)) to assess
the effects of side-stick controller integration level on
handling qualities. Overall Phase 1 pilot ratings for the
(3+1) Pedal configuration were not as good as the (3+1) Collec-
tive and (2+1+1) controller configurations. Therefore, the
(3+1) Pedal configuration was not included during Phase 2 in
order to concentrate on improvement of vertical control through
a separated vertical controller. ’

6.3.1 Low-Speed Tasks

A summary of results obtained for variations of pitch and roll
SCAS and controller configurations is shown in Figure 6-14 for
three low speed VMC tasks--NOE, Precision Hover, and Bob-up.
Data in Figure 6-14 were obtained for VMC with yaw rate com-
mand/heading stabilization and vertical velocity command/alti-
tude stabilization in the directional and vertical axis,
respectively.

For the VMC low-speed tasks, the effect of pitch and roll SCAS
configuration is very consistent for all controller configura-
tions and tasks. As shown on Figure 6-14, an attitude command
system with either attitude stabilization (AT/AT) or with
groundspeed stabilization (AT/LV) was required to achieve Level
1 ratings for these tasks under VMC. The rate command/attitude
stabilization system (RA/AT) resulted in Level 2 ratings for
all controller configurations and tasks. The acceleration
command/rate stabilization system (AC/RA) however, consistently
provided borderline Level 2/Level 3 ratings.

Pitch and Roll SCAS Configqurations

Time histories for the NOE Task (Figures 6-15 and 6-16) show
the degradation in task performance with a rate command/atti-
tude stabilization (RA/AT) system compared to an attitude
command/velocity stabilization system (AT/LV). Large varia-
tions of bank angle occur throughout the task with the rate
command system, resulting in larger sideslip excursions than
exhibited with the attitude command system. Tighter control of
bank angle and side-slip was achieved with the AT/LV system as
evident by the improved pilot ratings.

Higher levels of stability and control augmentation were
evaluated for the Precision Hover and Bob-up Tasks in addition
to the same SCAS systems evaluated for the low-speed maneuver-
ing tasks: the NOE and 30-Knot Slalom Tasks. Two velocity-
command systems were included in the matrix of test configu-
rations: one having outer-loop groundspeed stabilization

100



ALY
L

¥1-9 a4nbL4

NOILVHNOIINOD SYOS T10H/HO LI

AV/LlY Lv/vHd VH/OV A71lv iv/1ly 1Vv/vH vH/OV
1 | - L 1 L ]

A¥0LIVASILYS
R
— % 1 I3A37

378Y1d300V
¢ 13A3IT

319YLd3JI¥NN
€ T3IA3T

dn-90d H3IAOH NOISIO3Hd

20S-ISH ‘£AS-ISH(1+142) @
205 ISW “€0S"ISHy (1,0} v
£0S-ISK(0+F) @

NO GI0H 9INIQY3IH
NO 070H 3001117V

OWA - VL1VQ TV

S)SVL d33dS MO 404 viva 1071d 40

AV/4V LY /LV LV /VH VH/OV

L 1

1

i

3JON

AHVINANS

L1

ol

ONILYYH H3dHVYH-H3d4d000 101Id

101



TIME HISTORY OF NOE TASK - IMC
RA/AT SYSTEM

CMD/STAB SYSTEM = RA/AT, 4/, h/h,
CONTROLLER CONFIGURATION - (4+0)LSI

10 100 i —
80 A
LONGI L ° #w\ W 1 60 \ |
NGITUDINA , i, X \ ‘
CONTROL 0 PO LV T S VAN R T £t / NN
(INPL)JT W2 Wf Y] Y w WU (ftrsec) 4q ] | V\W\J/\
1b -5 20 t—f—+ — :
{ 0 L | ! ; \. r\\
-10 40 80 120 160
0 40 80 120 160 0
6 TIME (sec) 1 TIME (sec)
4 20
LATERAL 2 PSP (R N 10 Qﬂ
CONTROL o latlib AR B | J,M A Boha (dgg) 0 Ay !\,/\\f h A Rm A=
INPUT TV J . T VY
(1b) -2 ¥t -10 \J
-4 -20
- -30
§ 0 40 80 120 160 0 49 80 120 160
TIME (sec) TIME {sec)
10 o J
5 Lt -500
DIRECTIONAL Xﬂw . v
CONTROL 0 Ml M In Al ml N T 6 _1000 v
INPUT 'R T (f1) el
(1b) 5 ‘ -1500
105 40 80 120 160 ~2000 0 1000 2000 3000 4000
TIME (sec) XCG (ft)
6 60
4 ﬁ 40
2 20 At
Egh#gg[IVE | L SIDESLIP A AT Wl A
o N s A ARARIR L0 TR 1/t A I AVA YA
-2 f -
(1b) ¥ y
-4 1 -40 } jﬁ
€ 40 80 120 160 “60 5 40 80 120 160
TIME (sec) TIME (sec)
80
20 A [\
10 I 0 i i
. 60
: l oo ERERIAN
(ft/sec) 0 —= \J’ i{'{”‘y (ft) " i I
[
- - \‘\
10 30 Ol I :
-20 20
0 40 80 120 160 0 0 80 120 160
TIME (sec) TIME {sec)

Figure 6-15
102



5
LONGITUDINAL

CONTROL 0

INPUT

(1b) -5
-10

6
4
LATERAL 2
0

CONTROL
INPUT
(1b) -2
-4
-6
10
DIRECTIONAL
CONTROL 0
INPUT
(Tb) -5
-10
6
4
COLLECTIVE 2
CONTROL 0
INPUT »
(b) °
-4
-6
20
10
H
(ft/sec) 0
-10
-20

TIME HISTORY OF NOE TASK - IMC

AT/LV SYSTEM

CMD/STAB SYSTEM - AT/LV, /4, h/h,
CONTROLLER CONFIGURATION - (4+0)LSI

NN
ST A = A T
40 80 120 160
TIME {sec)
W UA' Y N Wt
0 40 80 120 160
TIME (sec)
i
A Af‘ ‘ A n A
N RA
| ’
40 0 120 160
TIME (sec)
. [ l
K W "
i
40 80 120 160
TIME (sec)
\/“‘\J g
40 80 120 160
TIME (sec)

100
80

X 60
(ft/SEC) 40

20
0

30
20
10
(deg) O
-10
-20
-30

-500

Y

6

(e) -1000
-1500

-2000

60
40

SIDESLIP 20

(deg)
-20

-40
-60

80
70

(ft) 50
40
30
20

Figure 6-16

\LJ~¥,,/’\\\
L/ L
V] 40 0 120 160
TIME (sec)
S 1
il
INAR
SV A I3 Wiasi
|
0 40 80 120 160
TIME (sec)
Z
0 1000 2000 3000 4000
XCG(ft)
n_ A FaN
7 \w W4
/
0 40 80 120 160
TIME {sec)
W
\ I
R
= IV
AW, 2
0 40 80 120 160
TIME (sec)



(LV/LV) and the other incorporating a position-hold feature
(LV/PH).

Pilot ratings for the IMC Precision Hover Task under wind and
turbulence conditions (Figure 6-17) were improved with a
velocity-command system (LV/LV) compared with an attitude-
command system (AT/LV). Satisfactory ratings were obtained
with all controller configurations evaluated, with the velo-
city-command/position-hold (LV/PH) system which received the
best ratings, approximately 2.5 on the Cooper-Harper scale. 1In
the calm air condition, all SCAS configurations obtained Level
1 ratings.

As shown in Figure 6-18, the highest level of command/stabiliz-
ation (i.e. LV/PH) was required to achieve Level 1 pilot
ratings for the IMC Bob-up Task with wind shear and turbulence.
Without the Position Hold Mode engaged, Level 2 ratings were
achieved for this task. In calm air however, Level 1 ratings
were obtained for all controller configurations and SCAS
systems evaluated.

Yaw and Vertical SCAS Confiqurations

A comparison of SCAS configuration changes in the yaw and
vertical axes is presented on Figures 6-19 and 6-20. The
effects of switching from yaw rate to yaw acceleration command
(Heading Hold Off) or vertical velocity to vertical accelera-
tion command (Altitude Hold Off), was defined for all control-
ler configurations; however, only the (4+0) MSI-SD3 and (3+1)
Collective MSI-SD3, MSI-SD2 configurations data are presented.

A yaw rate command/Heading Hold system was preferred by all
pilots for all evaluation tasks. Level 1 ratings were achieved
for this directional control system with pitch and roll atti-
tude command configurations, i.e. AT/AT and AT/LV. With a yaw
rate command system, the pilots could modulate yaw rate pre-
cisely and make deadbeat heading changes with low workload.

Yaw acceleration command made it very difficult for the pilots
to achieve a desired yaw rate, and multiple control inputs were
required to control the helicopter to a desired heading. Yaw
acceleration control, especially during yaw reversals, lacked
precision and gave a feeling of increased yaw inertia.

The effect of yaw acceleration command on pilot ratings varied
with the task. Figure 6-19 shows that the greater the require-
ment for directional control during the task, the larger the
degradation of pilot ratings. The Precision Hover Task, with a
minimum requirement for compensation in yaw, showed little
difference in ratings. For the NOE Task, where yaw inputs were
required to coordinate the turns, an average degradation of one
pilot rating point resulted. The Bob-up Task required the
pilot to modulate yaw control forces accurately to arrive at a
specific target heading. Pilot ratings with a yaw acceleration
command system for this task degraded by as much as two rating
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points compared to the yaw rate command system. Level 1 pilot
ratings with yaw acceleration command were only achieved for
the Precision Hover Task with a pitch and roll attitude command
system. The Bob-up and NOE Tasks, which required larger
directional control maneuvers, exhibited Level 2 pilot ratings.

Figure 6-20 shows that the vertical velocity command/Altitude
Hold system achieved the best pilot ratings in conjunction with
all pitch and roll SCAS systems in the (4+0) MSI-SD3 and (3+1)
Collective controller configuration. Pilot comments indicated
that it was difficult to modulate vertical velocity precisely
with the acceleration command system. Consequently, vertical
control was imprecise and required multiple reversals to attain
a desired altitude. The vertical velocity command/Altitude
Hold system made precise modulation of vertical velocity and
altitude easier, thereby considerably reducing pilot workload.

Vertical acceleration control on the side-stick offered the
benefit of eliminating the need to hold vertical forces to
achieve a steady vertical velocity (while modulating forces in
other axes at the same time). However, the benefits of Alti-
tude Hold and vertical velocity command apparently offset the
disadvantage of holding vertical control forces.

A comparison of data for the (4+0) MSI-SD3 and (3+1) Collective
MSI-SD3, MSI-SD2 controller configurations in Figure 6-20
indicates that for the lower level pitch and roll SCAS configu-
rations, separating vertical control from the right-hand
side-stick controller was beneficial with Altitude Hold Off,
e.g. about one rating point improvement for the RA/AT system.

Controller Configuration Effects

The effects of separate vertical and yaw controllers--(3+1)
Collective and (2+1+1) configurations--were evaluated for all
the low-speed tasks. Figure 6-14 shows that pilot ratings for
the (4+0) MSI-SD3, the (3+1) Collective, and the (2+1+1) con-
troller configurations were essentially equal for the NOE Task
under VMC. Level 1 ratings were achieved for higher SCAS
stabilization levels. For the Precision Hover and Bob-up
Tasks, separation of controllers had a more significant effect
on pilot ratings. An improvement in pilot ratings was achieved
with the (2+1+1) controller configuration which received
ratings of 2.0 to 2.5 for the Precision Hover Task. At reduced
SCAS stabilization levels, this trend was not as evident.

Controller configuration did not have a significant effect on
pilot ratings for the NOE Task under IMC. Collective control
inputs were required only for single-axis vertical maneuvering
over the berms. Providing vertical control from a separate
left-hand controller did not have a noticeable effect on pilot
rating for this task. Figure 6-21 shows that the 4-axis
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controller achieved pilot ratings comparable to the (3+1)
Collective and (2+1+1) configurations for the NOE Task.

Little preference for a particular controller configuration was
noticed for the IMC Precision Hover Task as well (Figure 6-17).
This task required high-frequency pilot control using primarily
single-axis inputs. Cross-axis control coupling was not a
major problem for the Precision Hover Task. The Bob-up howev-
er, showed a distinct preference for separate controllers under
IMC with or without wind shear and turbulence (Flgure 6-18).

As the Bob-up required multi-axis inputs, cross-axis coupling
with a 4-axis controller became more noticable as the stability
level decreased.

Effect of Wind Shear and Turbulence

Most pilot rating data collected during Phase 2B for the Bob-up
and Precision Hover Tasks were obtained under conditions of
wind shear and moderate turbulence; initial baseline data were
gathered in calm air for comparison. The effect of wind shear
and turbulence on pilot ratings is also shown on Figures 6-17
and 6-18 for both the Bob-up and Precision Hover Tasks. Pilot
ratings were degraded approximately 1.5 points under turbulence
and wind shear conditions.

The effect of turbulence on Bob-up Task performance is present-
ed in Figure 6-22. Deviations in longitudinal and lateral
position from the desired hover location are used to calculate
a mean radius, the radius of a circle containing one-half the
total number of data points. For a lower level of stability
and control augmentation, mean radius is significantly greater
with turbulence compared with calm-air conditions. Even though
the pilots' ratings for the IMC Bob-up Task were degraded,

their performance under IMC was better than VMC performance.
This outcome is due to the lack of strong visual position cues
in the simulation under VMC, particularly at the higher alti-
tudes reached during the Bob -up maneuver. Also, the additional
guidance provided to the pilot by the IHADSS display symbols is
an advantage for maintaining a Precision Hover under IMC.

6.3.2 Slalom Tasks

The 30-, 90-, and 140-Knot Slalom Tasks were all designed as
lateral avoidance maneuvers to test lateral/directional controll-
ability. The 30-Knot Slalom required manual turn coordination
while both the high-speed Slalom Tasks evaluated the automatic
turn coordination feature designed in the ADOCS AFCS.

Pitch and Roll SCAS Configurations

For the 30-Knot Slalom Task under IMC, the AT/LV system re-
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ceived the best pilot ratings (Figure 6-23). This system was
preferred over the RA/AT or the AT/AT system because of im-
proved groundspeed hold during maneuvering. The SCAS had less
of an effect on pilot ratings for the 90-Knot Slalom Task under
IMC.

Time history data for the 30-Knot Slalom Task with AT/LV and
RA/AT systems are presented in Figures 6-24 and 6-25 respec-
tively. As discussed, groundspeed deviations for the rate
command/attitude stabilization system (RA/AT) are greater than
the ground-speed deviations which occurred with an attitude
command/velocity stabilization (AT/LV) system. With the AT/LV
system, improved ground track and smaller variations in side-
slip were maintained. Both time history cases presented for
the Slalom Task were obtained with the same pilot and the
(2+1+1) controller configuration under IMC.

For the 90- and 140-Knot Slalom Tasks, variations in pitch and
roll command and stabilization levels showed that a hybrid SCAS
configuration--AT/AS in pitch and RA/AT in roll--was much
preferred over the other SCAS configurations evaluated (Figure
6-26). The requirement to hold heavy forces in a turn with a
pitch and roll attitude command system (AT/AT) caused a signif-
icant degradation in pilot ratings of about 2.5 points. This
SCAS configuration exhibited a severe degradation of flight
path accuracy and airspeed hold, as well as a tendency toward
PIO.

Automatic Turn Coordination

The effect of Automatic Turn Coordination on pilot ratings for
the 90-Knot Slalom Task under VMC is shown in Figure 6-27.
Data are presented as a function of controller configuration
for the best pitch and roll SCAS configuration--attitude
command/airspeed stabilization (AT/AS) in pitch and roll rate
command/attitude stabilization (RA/AT) in roll. For all
controller configurations, the automatic turn coordination
system improved pilot ratings by approximately 2.0 rating
points, and significantly reduced pilot workload by making the
slalom maneuver a single axis stick-steering control task.
Level 1 ratings were achieved with all controller configura-
tions with the turn coordination system engaged. The lack of
automatic turn coordination significantly degraded flight path
performance, especially at lower AFCS command and stabilization
levels.

The turn coordination system designed for this simulation used
lateral acceleration feedback above 50 knots to balance the
aircraft automatically in turns. The system implementation
appeared to have a detrimental effect on the pilots' ability to
trim the aircraft with non-zero lateral acceleration. Since
lateral control introduced a turn rate command into the yaw
aXis, 1t was difficult to establish steady yaw and lateral
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control positions required to establish an unbalanced flight
condition.

Controller Configuration Effects

For both the 30- and 90-Knot IMC Slalom Tasks, the pilots
preferred separated controllers [i.e., (3+1]) Collective and
(2+1+1)], as shown in Figure 6-23. The pilot's ability to
maintain a constant airspeed and altitude was a primary measure
of performance for these tasks. Pilot comments indicate that
more cross-coupling occurred with the 4-axis controller and
resulted in significant airspeed and altitude deviations.
Overall, for both Slalom Tasks, the (2+1+1) configuration
received the best pilot ratings. Pilots' comments suggest that
there was more tendency to couple roll inputs into yaw with the
(4+0) and (3+1) Collective configurations. The (2+1+1) config-
uration eliminated roll/yaw interaxis control coupling for this
task.

The results of the 90-Knot and 140-Knot VMC Slalom Tasks are
presented in Figure 6-26 for three primary controller configu-
rations. At 90 knots with Turn Coordination selected, the
effects of controller separation were minimal. All controller
configurations received comparable pilot ratings. The 90-Knot
Slalom Task was primarily a single-axis lateral stick-steering
task supplemented by pitch axis modulation to control airspeed.
Automatic Turn Coordination and Altitude Hold reduced the need
for compensation in the yaw and vertical axes. Therefore, any
advantages of separated controllers for the Slalom Task at

90 knots were diminished.

This situation did not exist at 140 knots for the Slalom Task
with Automatic Turn Coordination On. The (4+0) MSI-SD3 con-
troller exhibited degraded ratings compared to the separated
controller configurations. Only Level 2 ratings were obtained
with the (4+0) MSI-SD3 configuration even with the best pitch
and roll SCAS configuration. Level 1 ratings were achieved for
the (2+1+1) configuration with either a pitch and roll rate
command system (RA/AT) or the preferred combination system
(AT/AS in pitch and RA/AT in roll). The (2+1+1) configuration
seemed slightly more tolerant to the higher commanded roll
rates and attitudes associated with the Slalom Task at 140
knots.

6.3.3 Approach-to-Hover Tasks

These experiments evaluated the benefit of blending SCAS modes
in the transition region (40 to 60 knots). The transition
evaluation tasks were designed to study mode switching charac-
teristics in both a straight and a turning deceleration and
descent to hover with and without a crosswind. Generally, the
effects of crosswind during the Approach-to-Hover Tasks were
negligible.
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Pitch/Roll SCAS Configurations

Overall, both the attitude command/attitude stabilization
(AT/AT) and the hybrid SCAS (AT/AS-AT/LV, RA/AT-AT/LV) were
favored over the rate command/attitude-stabilization (RA/AT)
system for the Approach-to-Hover Tasks (Figure 6-28), with
satisfactory ratings achieved for the straight and right-
Turning Approach-to-Hover under both VMC and IMC.

The hybrid command/stabilization system (AT/AS-AT/LV, RA/AT-
AT/LV) was felt to be the best system for these tasks as it
eliminated the requirement to hold forces in turns as the
attitude system required, while also allowing precise attitude
control when attempting to achieve a hover which the rate
command system lacked.

Controller Configuration Effects

Controller configuration had a significant effect on pilot
ratings for the Approach-to-Hover Tasks, as presented in Figure
6-28. Separated controllers - (3+1) Collective and (2+1+41)
configurations - improved VMC and IMC pilot ratings by 1.0 and
1.5 pilot rating points compared with the 4-axis controller
configuration. Pilots had more difficulty with the 4-axis
controller during the transition tasks because of the require-
ment to hold forces in the vertical axis while modulating pitch
and roll control. Transfer of vertical control from the
right-hand 4-axis controller to a single-axis left-hand side-
stick eliminated this control problem and improved pilot
ratings appreciably.

Precise modulation of airspeed while holding a steady vertical
force during the descent portion of the Straight Approach-to-
Hover Task with a vertical velocity command system (h/h, ) was
difficult with the (4+40) configuration and resulted in Level 2
pilot ratings. Pilot ratings under IMC for this task were
marginal Level 2 with the (4+0) configuration and significantly
degraded compared to VMC ratings of approximately 4.0. Flight
path control was markedly improved and pilot workload reduced
by separating the collective axis from the right hand control-
ler, providing better axis identification and resulting in
Level 1 pilot ratings of 2.0 under VMC. Level 1 ratings were
also achieved under IMC with the hybrid pitch/roll SCAS config-
uration.

The vertical acceleration command system (h/h) eliminated the
requirement to hold steady vertical forces in a descent.
However, this advantage was offset by the resultant character-
istics of closed-loop vertical control. There was a consistent
tendency to overcontrol which produced poor controllability and
large flight path errors. Steady cross-winds had negligible
effect on pilot performance and workload, regardless of the
SCAS configuration.
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The multi-axis Turning Approach-to-Hover Task also produced
degraded pilot ratings in the (4+0) configuration. Again the
separation of the vertical axis with the (3+1) Collective
configuration significantly reduced pilot workload by improving
axis identification. During a turning descent under VMC the
roll attitude command system (AT/AT) required the pilot to hold
lateral control forces, as well as a vertical force, while
modulating yaw and pitch control inputs. Pilot ratings for the
pitch and roll rate command system (RA/AT) were slightly
improved for VMC compared to the AT/AT system because the need
to hold steady lateral forces was eliminated.

Anthropometric characteristics of the human wrist make it
easier to turn the wrist (or twist the grip) to the left rather
than the right. As a result, it was more difficult to modulate
or hold right yaw control forces when coordinating a turn to
the right. Experiments showed that 6.0 degrees of inboard
rotation of the controller with respect to the armrest provided
a more comfortable neutral position for yaw control. With this
adjustment to controller orientation, pilot performance im-
proved for right turns without degrading performance in left
turns.

6.4 IMC/VMC COMPARISON

Flight under IMC with the IHADSS had a significant effect on
pilot ratings for the low-speed NOE maneuvering task. Figure
6-29 compares VMC data from Phase 2A and IMC data obtained
during the Phase 2B simulation for the same NOE Task. Combina-
tions of three controller configurations and three SCAS types
are compared. Average IMC pilot ratings were degraded approxi-
mately 1.5 points relative to the VMC ratings for all ASCS and
controller combinations evaluated. Satisfactory handling
qualities were achieved under VMC with an attitude command
system, whereas handling qualities degraded to only acceptable
with the same AFCS configuration for the IMC task.

The NOE Task flown under IMC was found to be the most difficult
and demanding task for the evaluation pilots to perform. The
IHADSS display provides a limited instantaneous field-of-view
image and gives minimal rate-of-closure cues to the pilot,
thereby making this task extremely difficult to perform with
low levels of stability and control augmentation.

The ability to maintain horizontal ground position was used by
the pilots as a measure of performance for the Bob-up Task.
Under IMC this information was explicitly displayed to the
pilot by the bob-up mode symbols of the IHADSS display. The
benefit obtained from the extra "feedback" to the pilot provid-
ed by the IHADSS symbology is shown by the results presented on
Figure 6-22. Performance of the Bob-up Task, as indicated by
deviation of hover position, improved significantly under IMC
with IHADSS. Not only did the position symbol aid the pilot in
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holding position, but the velocity vector served to direct him
back to his initial position.

For the Approach-to-Hover Tasks (Figure 6-28), the noted
degradation in pilot ratings under IMC were a result of the
poor rate-of-closure cues and limited field-of-view supplied by
IHADSS. During the turning Approach-to-Hover Tasks in particu-
lar, the large head movements required of the task caused the

pilot to become disoriented and unable to tightly control his
flight path.
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7.0 SUMMARY OF PILOT EVALUATION DATA

In order to summarize task/SCAS/controller effects on pilot
workload and performance under both VMC and IMC, all pilot
rating data for each simulation phase were reorganized into
various matrices, including:

(1) a task/SCAS matrix with all controller configuration
ratings combined and averaged

(2) a controller/SCAS matrix with all task ratings
combined and averaged, or

(3) a task/display matrix with all SCAS and controller
configurations combined.

In addition to pilot rating data, pilot qualitative comments
were recorded for each data run. All commentary was analyzed
to understand the reason for each pilot rating and to identify
prominent factors which influence the pilot rating for each
configuration variable.

7.1 SUMMARY OF PILOT RATINGS

7.1.1 Task/Display Effects

Pilot rating data for all controller configurations were
averaged for each task/SCAS combination. Figures 7-1 and 7-2
present the results of this analysis for Phase 1 and Phase 2,
respectively. In addition to the effect of SCAS configuration,
there was a significant effect of task on pilot ratings for
IMC. The IMC display effects showed an additive degradation of
pilot workload/performance as task difficulty increased. In
comparison, VMC pilot ratings were predominantly affected by
SCAS configuration and, except for the Precision Hover and
Bob-up Tasks, where visual cues become weak, task had little
effect. When comparing IMC results to VMC results obtained
during Phase 1, the mean increase in pilot rating points for
each task was: NOE course 2.3, 30-Knot Slalom 2.0, Accelera-
tion/Deceleration 1.2, and Bob-up 1.3. The same comparison of
data for Phase 2 shows that the mean increase in pilot rating
points by task was: NOE course 1.9 - straight and Turning
Approach-to-Hover 1.7, Precision Hover 0.15, and Bob-up 1.45.

Figure 7-3 presents a comparison of VMC and IMC ratings for all
tasks evaluated during the Phase 2 simulation. The VMC data
are from Phase 2A testing and the IMC data were generated
during the Phase 2B simulation phase. Data shown are Cooper-
Harper ratings averaged over all controller configurations and
AFCS types evaluated for each task. As seen in Figure 7-3, the
average rating did not vary significantly as a function of VMC
task. However, task variation had a larger effect on pilot
rating for flight under IMC with the IHADSS. The largest
degradation in IMC pilot ratings occurred for the NOE Task.
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More pilot head motion was required for low speed maneuvering
tasks such as the NOE, 30-Knot Slalom, and Turning Approach-to
Hover Tasks. Pilot comments indicate that the rapid head
movement required to monitor aircraft position and ground track
caused disorientation and increased workload. For tasks in
which little or no head motion is required, such as the Preci-
sion Hover and Slalom at high speed (90 knots), IMC ratings
approached those for the same tasks conducted under VMC.

7.1.2 SCAS Effects

The effect of primary SCAS configuration on pilot ratings for
the 30-Knot Slalom, Acceleration/Deceleration, and NOE Tasks of
Phase 1 1s summarized in Figure 7-4. Pilot ratings from the
three tasks were combined into a single primary SCAS/controller
matrix, thereby tending to average out the effect of task. A
comparison of VMC with IMC is also shown. The average degrada-
tion of IMC ratings compared to VMC ratings for all SCAS
configurations is 1.8 on the Cooper-Harper rating scale. For
each SCAS configuration, the range of pilot ratings from the
best to worse controller configuration was an average of one
and one-half rating points for both IMC and VMC.

Figure 7-1 shows that an acceleration command/rate stabiliza-
tion system (AC/RA) exhibited Level 3 ratings for the IMC
tasks, and the addition of attitude stabilization with a rate
command response system (RA/AT) received marginal Level 2
ratings. With the same level of attitude stabilization, an
attitude command system (AT/AT) improved both IMC and VMC pilot
ratings by over one rating point. When velocity stabilization
was combined with an attitude command system, pilot ratings for
the maneuvering tasks improved an average of half a rating
point for IMC and VMC.

A similar analysis of Phase 2 pilot rating data for forward
flight maneuvering tasks =-- NOE, 90~ and 140-Knot Slalom and
Approach-to-Hover Tasks -- was performed. The comparison of
VMC with IMC results for Phase 2 is presented in Figure 7-5.
IMC ratings were degraded 1.5 rating points on the average for
all SCAS configurations. SCAS configuration effects are
identical to the results noted for Phase 1. That is, a rate
command/attitude stabilization system (RA/AT) received marginal
Level 2 ratings under IMC. Best ratings were achieved for the
forward flight/transition tasks with a hybrid SCAS system in
pitch and roll -- pitch attitude command/airspeed hold and roll
rate command/attitude stabilization in forward flight; and
attitude command/ground-speed stabilization in pitch and roll
for low speed flight.

A summary of primary SCAS effects from Phase 2 data is present-
ed in Figure 7-6. These data were generated by combining all
controller configurations and tasks in a single SCAS/display
matrix. Pilot rating data for each controller configuration
were weighted equally; that is, an average of all ratings for
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PILOT COOPER-HARPER RATING

SUMMARY OF PRIMARY SCAS
CONFIGURATION ON PILOT RATINGS

PHASE 2

ALTITUDE HOLD ON
HEADING HOLD ON

A VW
® IMC
I MEAN + 1 5
(ALL TASKS AND
CONTROLLERS COMBINED)
10
F MEAN o VMC = 0.4 ‘
o L MEAN 5 IMC = 1.0
8 | ) LEVEL 3
UNACCEPTABLE
7 /
3\
6
5 »  LEVEL 2
ACCEPTABLE
4 /
\
3
2 ) LEVEL 1
SATISFACTORY
! B /
I 1 I 1 1
RA/AT AT/AT AT/AS=ATILY Uy LV/PH (PITCH)
RA/AT AT/AT LV/LV LV/PH  (ROLL)
RAJAT-ATILV _ B
—
BOB-UP &
PRECISION HOVER
ONLY

PITCH/ROLL SCAS CONFIGURATION

Figure 7-6
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each controller configuration was first determined for each
element in the SCAS matrix before the final mean rating for all
controllers/task combinations was calculated.

As indicated in Figure 7-6, satisfactory pilot ratings were
achieved consistently only under IMC with the LV/PH system for
the Precision Hover and Bob-up Tasks. Although receiving, on
the average, only adequate ratings, the hybrid longitudinal and
lateral AFCS was preferred for the IMC maneuvering tasks over
all AFCS configurations investigated. The longitudinal and
lateral RA/AT system yielded both marginally adequate handling
qualities under IMC, when averaged over all tasks and control-
ler configurations, and the widest dispersion of pilot ratings.

7.1.3 Controller Effects

Based on average pilot ratings from Figures 5-9 through 5-12, a
ranking of controller configurations was determined for each
task as shown in Table 7-1. Each task was weighted equally to
obtain an overall IMC and VMC ranking for each controller
configuration.

The (3+1) Collective controller configuration provided the best
overall pilot ratings for all IMC tasks. A tendency to cross-
couple directional control into roll was observed during
coordinated lateral-directional turn maneuvers, particularly
during initial evaluations. However, this cross-coupling
tendency diminished quickly and pilot adjustment to yaw control
on the side-stick was easily made.

Pilot ratings for the (3+1) Pedal configuration were more
degraded than other controller configurations for lateral-
directional maneuvering tasks under IMC (Figure 7-4). However,
for the VMC tasks, the (3+1) Pedal ratings ranked in the middle
and received improved ratings when compared to the 4-axis
configuration.

The (2+1+1) controller configuration in general achieved good
pilot ratings for all three IMC low-speed maneuvering tasks.
For the IMC Bob-up Task (Figure 5-10), the (2+1+1) configura-
tion ranked better than the 4+0 but worse than the (3+1)
configurations. The (2+1+1) configuration achieved the best
ratings for all the VMC maneuvering tasks.

The separated controller configurations were favored overall
during Phase 2 as well as indicated by Table 7-2. Both the
(2+1+1) and (3+1) Collective configurations were found for all
tasks. Of the 4-axis controllers evaluated, the MSI-SD3 or the
LSI (both with deflection in all axes) were the clear favor-
ites. Pilot comments reiterate those presented from Phase 1.
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7.2 PILOT COMMENTARY

All pilot comments were analyzed to determine the primary
qualitative characteristics of each SCAS or controller configu-
ration that influenced overall pilot ratings. Advantages and
disadvantages of each SCAS or controller configuration element
are summarized in Tables 7-3 through 7-7.
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8.0 CONCLUSIONS

Piloted simulation investigations were conducted as part of the
Advanced Cockpit Controls/Advanced Flight Control System
(ACC/AFCS) element of the Army's ADOCS program. The effects of
variations in side-stick controller configuration and stability
and control augmentation characteristics on scout/attack
helicopter handling qualities were evaluated using flight
simulation facilities at Boeing Vertol and NASA-Ames. Low
speed, transition, and forward flight mission tasks were
performed under both day visual meteorological conditions (VMC)
and night-time instrument meteorological conditions (IMC) using
a visually coupled helmet-mounted display.

Conclusions from these investigations are summarized according
to major elements of the simulation study, including side-
stick controller design, controller configuration, SCAS design,
and IMC display effects.

8.1 SIDE-STICK CONTROLLER DESIGN

A 4-axis controller with small-deflection in all axes was
preferred over a 4-axis stiff-stick design, or a design having
small-deflection in only the pitch and roll axes. Small-
deflection in each axis of the controller provided better
control harmony which improved the pilot's ablllty to modulate
single-axis forces and enhanced control precision for hlgh gain
tasks such as the Precision Hover. In high workload situa-
tions, there was less tendency with a limited-deflection
controller to over-control and/or cross-couple control inputs.

Pilot ratings with a deflection controller are less sensitive
to variations in control response/force gradient. As a result,
it would be easier to design acceptable control response
characteristics for a wider range of pilot preferences if a
small-deflection device were implemented.

8.2 CONTROLLER CONFIGURATION

4-Axis Controller

With a high level of stability and control augmentation,
satisfactory handling qualities were achieved for the low-speed
tasks investigated using the preferred small-deflection 4-axis
controller. However, the 4-axis configuration exhibited
degraded pilot ratings compared to separated controller config-
urations for:

o Multi-axis control tasks, such as Precision Hover,
Decelerating Turning Approach-to-Hover, and the
High-Speed Slalom

o Reduced levels of stability and control augmentation
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Separated Controller Confiqurations

The separated vertical controller configurations -- (3+1)
Collective and (2+1+1) -- achieved similar overall pilot
ratings which were generally improved compared to the integrat-
ed 4-axis controller configurations for the lower levels of
stability and control augmentation investigated. Either
separated vertical controller configuration was preferred for
the high speed slalom maneuver and the descending decelerating
approach-to-hover task. Separation of the vertical controller
provided the following significant advantages for VMC or IMC
terrain flight:

0 Elimination of unintentional cross-axis coupling,
especially vertical-to-pitch/roll coupling.

o Reduction of pilot workload for multi-axis tasks due
to the separation of any required steady vertical or
directional control forces from continuously modulat-
ed pitch and roll forces.

Directional control on the side-stick -- (4+0) and (3+1)
Collective configurations -- provides more precise heading
control than the pedals. There is a tendency to inadvertently
couple yaw control to roll; however, all pilots easily compen-
sated, eliminating or minimizing this characteristic. The
(3+1) Pedal configuration significantly degraded pilot ratings
during Phase 1 IMC tasks because of yaw controllability. The
limited field-of-view helmet-mounted display had a strong
effect on lateral-directional control. Use of separated pedals
for VMC tasks was not a problem. With good peripheral visual
cues, directional control becomes a less demanding task.

8.3 SCAS DESIGN

The level of handling qualities attainable by various generic
SCAS configurations was defined as follows:

Pitch and Roll AFCS

For low speed maneuvering and Precision Hover Tasks under VMC,
an attitude command/velocity stabilization system provided
satisfactory handling qualities for all controller configura-
tions.

In forward flight satisfactory ratings under VMC were achieved
with a hybrid combination of control laws consisting of pitch
attitude command/airspeed stabilization in longitudinal and
roll rate command/attitude stabilization in lateral.

Satisfactory handling qualities were not achieved for any
combination of controller and AFCS investigated for the low-
speed IMC maneuvering tasks. Satisfactory ratings were ob-
tained under IMC for both the Bob-up and Precision Hover Tasks
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when performed in calm air with a longitudinal and lateral
velocity command/velocity stabilization system. With wind and
turbulence, the addition of a position hold feature was re-
quired to maintain satisfactory ratings for the Bob-up Task.

Yaw and Vertical AFCS

Heading and altitude stabilization were beneficial for all
tasks. Yaw rate and vertical velocity command systems were
preferred for all tasks and controller configurations. Howev-
er, with a pitch and roll rate command system, there exists a
preference for side-stick yaw acceleration and vertical accel-
eration command systems to eliminate the requirement to hold
steady forces during multi-axis maneuvers.

Control Law Mode Switching

To achieve the desirable low speed and forward flight handling
qualities without pilot selection, the control laws required
automatic phasing during transition as follows:

o Longitudinal - Pitch attitude command/groundspeed
stabilization for low speed and pitch attitude
command/airspeed stabilization at high speed.

o Lateral - Roll attitude command/groundspeed stabili-
zation for low speed and roll rate command/attitude
stabilization at high speed.

o Directional - Full-time heading hold for low speed
and turn coordination in forward flight.

The method developed to switch control laws felt natural to the
pilot. No undesirable effects on handling qualities were
evident during transition maneuvers.

Automatic Control Force Trimming

For stiff-stick or small-deflection controllers, elimination of
steady forces for steady-state helicopter trim must be automat-
ic through design of the primary control system and/or AFCS
control response laws. The build-up of long-term steady forces
1s unacceptable.

8.4 IMC DISPLAY EFFECTS

The reduction in quality of visual cues and occasional disori-
entation experienced when looking off the aircraft centerline
with the helmet-mounted display caused significant degradations
in handling qualities for certain IMC tasks relative to the
identical tasks conducted under VMC. This degradation was
especially severe for a low-speed NOE maneuvering task which
required a significant amount of pilot head motion to acquire
the required visual information. Significant improvements in
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position hold performance for hover occurred for the IMC tasks
compared with the VMC tasks because of the pilots' use of the

displayed superimposed symbols which included explicit inertial
velocity and position error
information.

146



9.0 RECOMMENDATIONS

The recommendations presented herein are based on the results
of the simulation studies as presented previously. As Boeing
Vertol was awarded both the ACC/AFCS element of the ADOCS
program contract and the ADOCS demonstrator program, the
recommendations presented in this section have already been
incorporated into the demonstrator control system design. The
specific output from this program is described in the following
sections:

(1) Recommendations for the side-stick controller config-
urations and/or design.

(2) Design data for control laws, display laws, and
sensor processing.

(3) Sensor information necessary for the AFCS and display
system.

9.1 CONTROLLER DESIGN

The definition of a multiaxis side-stick controller (SSC)
design for use in the ADOCS demonstrator aircraft was a primary
objective of the ACC/AFCS simulation study. Force/deflection
characteristics were defined and the effect of the number of
axes controlled by the SSC was investigated.

Recommended design characteristics for the various controllers
to be manufactured by Lear Siegler Inc. are based on the
ACC/BAFCS simulation results. Design characteristics for the
4-axis, right-hand SSC are given in Table 9-1 for each control
axis. Force/displacement characteristics for alternate con-
trollers, including a left-hand single-axis collective control-
ler and small-deflection force pedals, are defined in Table
9-2. The Lear Siegler manufactured ADOCS brassboard 4-axis
controller with the characteristics outlined in Table 9-1 was
evaluated during the final piloted simulation phase. The
results from this simulation demonstrated that an acceptable
hardware design was achieved.

In addition to the 4-axis configuration, the simulation studies
investigated the alternate controller configurations as previ-
ously defined. Because the separated controller configurations
(ie. the (3+1) Collective and the (2+1+1) configurations)
received improved pilot ratings for certain tasks, the demon-
strator aircraft should contain provisions to study these
configurations as well as the 4-axis configuration.

9.2 CONTROL LAW DESIGN

The control laws developed during the ACC/AFCS program were
designed to provide the handling qualities required to accom-
plish the attack/scout helicopter mission. The control laws
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were implemented in a manner that facilitates the evaluation of
various SCAS command/stabilization systems during flight
testing of the demonstrator aircraft. The recommended PFCS
design provides control shaping for both AFCS ON and OFF
operation and includes a force trim method that eliminates the
requirement for open loop integrators which are undesirable due
to redundancy management constraints; i.e. no open-loop inte-
grators are included in the PFCS path due to redundancy manage-
ment restrictions.

9.2.1 PFCS Design

Significant features of the recommended PFCS design are briefly
described as follows:

Force Transducer Quantization - 8-bit signal quantization is
required to provide acceptable response resolution in each
axis.

Nonlinear Command Response Sensitivity - To provide acceptable
response characteristics for both small precision control tasks
and large maneuvers, nonlinear command shaping as described in
Figures (A2, A4, A6, and A8) 1s required.

Derivative Rate Limiter (DRL) - A derivative rate limiter is
required 1n each axis to limit the magnitude of initial accel-
eration response during rapid maneuvers when using a force
controller. Characteristics of the limiter were individually
selected for each axis so as to reduce peak responses for large
control inputs without affecting control precision for small
force inputs. Appendix A (Figure A-9)presents the recommended
values for the DRL in each axis.

Command Signal Shaping - Forward path lead-lag shaping is
included in the PFCS full time for augmented flight conditions.
Lead-lag time constants are selected to properly match the
desired command model and basic helicopter response character-
istics in order to achieve a balanced or small AFCS output
during dynamic maneuvers. During AFCS OFF operation, a paral-
lel high-gain lag path with a long time constant is included to
automatically reduce steady-state control trim forces to an
acceptably low level.

The PFCS design also incorporates a pilot trim switch for AFCS
OFF flight. This enables the pilot to trim forces by activat-
ing a track-store device which stores the required trim force
and slowly injects the command into the PFCS allowing the pilot
to remove forces. Alternatively, another automatic method to
activate the trim function should be developed for the demon-
strator aircraft.

AFCS Port Limiting - All AFCS outputs pass through frequency-
selection and limiting networks in the PFCS. The AFCS signals
are split between a long-term trim and a high-frequency dynamic
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compensation path. Each control axis has its own freguency
selective/limiting network.

The long-term trim path includes a high-authority limit and
rate limit for low-frequency trim correction signals such as
directional or vertical control trim variations with airspeed.
High-frequency stabilization signals pass through both authori-
ty limits with the lower limit dominating. A cross signal path
from the rate limiter continually recenters the low-authority
dynamic path. The interface network will ramp to zero after
AFCS disengagement.

9.2.2 AFCS Design

The stability and control law features recommended for the
ADOCS demonstrator design are summarized in Tables 9-3 and 9-4.
These design features for AFCS ON flight evolved from the
extensive ACC/AFCS simulation studies. Low-speed and forward
flight control laws are defined in Table 9-3 for the basic AFCS
configuration. Table 9-4 identifies the selectable modes that
provide the handling qualities to meet attack helicopter IMC or
VMC mission requirements for Precision Hover capability and for
tight flight path control during low-speed NOE maneuvers.

Basic AFCS

The basic longitudinal AFCS provides a pitch attitude command
system for longitudinal maneuvering at all airspeeds. A pitch
attitude command system permits precise control of longitudinal
acceleration and velocity trim with a low level of pilot
workload. Long-term airspeed retention is provided above 45
knots, and automatic transient-free switchover to a longitudi-
nal groundspeed stabilization system is accomplished below 40
knots.

The lateral axis includes a roll attitude command/lateral
velocity stabilization system for precise low-speed maneuver-
ing. Lateral control laws change to a roll rate command/roll
attitude hold system in forward flight. A rate command system
in forward flight eliminates the requirement to hold control
forces in banked turns. Transition between control laws is
accomplished smoothly and controlled automatically by logic.
Gain switching produces low-rate control trim changes and
aircraft responses that are undetectable to the pilot. Auto-
matic coordinated turns in forward flight are obtained using
only lateral side-stick controller inputs, i.e. a commanded yaw
rate is cross-fed from the lateral axis command model to the
directional axis command model.

With Heading Hold disengaged, the basic directional axis has
yaw rate stabilization with a yaw acceleration response to
command inputs. Balanced flight during forward flight turns,
as well as level trim conditions, is achieved automatically by
lateral acceleration feed-back to the directional control.
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The basic vertical AFCS (Altitude Hold Off) is implemented to
have a vertical acceleration response at all airspeeds for
commanded collective inputs. Hybrid vertical velocity stabili-
zation using filtered normal acceleration feedback is used to
augment the basic helicopter vertical damping.

Selectable Modes

The following pilot selectable modes are activated by buttons
from a Mode Select Panel.

HEADING HOLD - The baseline directional system is implemented
as a rate command/Heading Hold system which is automatically
selected when the AFCS is initially engaged. The Heading Hold
Mode operates full-time at low speeds. At alrspeeds greater
than 40 knots the Heading Hold Mode is controlled by logic that
automatically locks and unlocks Heading Hold stabilization as
required during maneuvering. The pilot can disengage Heading
Hold from the Mode Select Panel which converts to basic control

laws -- a yaw acceleration command system with yaw rate stabili-
zation.

ALTITUDE HOLD (BRarometric and Radar) - A selectable Altitude
Hold Mode is provided for both a radar or barometric altitude
reference system. Barometric Altitude Hold can be selected at
any altitude and airspeed. With Altitude Hold engaged, con-
stant vertical velocity (rate of climb/descent) is commanded by
the pilot. If Altitnude Hold is engaged while climbing or
descending, the vertical velocity will be maintained until the
vertical controller is returned to neutral. As the rate of
climb/descent returns to zero, the aircraft will lock on to the
current altitude.

Radar Altitude Hold is only selectable below 1000 feet AGL. If
height is increased above 1000 feet while commanding rate of
climb, the Radar Altitude Hold Mode will automatically disen-
gage. The Radar Altitude Hold system is implemented with
higher stabilization gains than the barometric system for
tighter altitude retention, particularly during precision hover
tasks.

VELOCITY STAB ~ NOE maneuvering at low speeds under IMC re-
quired control laws that enable the pilot to maintain tight
flight path and ground speed control for single-axis and
multi-axis maneuvers. The advantage of an attitude command
system with high-gain ground-speed velocity stabilization was
demonstrated during ACC/AFCS simulation studies. Maintenance
of desired ground track particularly with a limited field-of-
view was easier while performing low speed maneuvering, e.g.
lateral side-step, longitudinal acceleration/deceleration and
coordinated lateral/directional turning (slalom) maneuvers. A
high level of velocity stability also improves the rejection of
gust and wind disturbances during precision maneuvers around
hover.
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The Velocity Stabilization Mode is selectable from the Mode
Select Panel and engages high-gain groundspeed stabilization
feedback paths. Appropriate command model gains are also
changed to provide the same attitude response sensitivity
characteristics as implemented for the basic AFCS control laws.
The Velocity Stabilization Mode can be selected at ground
speeds less than 40 knots. The mode is automatically disen-
gaged if ground speed exceeds 40 knots, and must be reselected
if required.

HOVER HOLD - The attack helicopter mission dictates precise
hover control and maintenance of helicopter X-Y position while
executing the Bob-up task -- a vertical unmask/remask maneuver,
target search and acquisition, and weapons firing. A Hover
Hold Mode is provided as a selectable mode to achieve precision
performance requirements for the Bob-up task. The Hover Hold
Mode is selected by the pilot from the AFCS Mode Select Panel,
or can be automatically activated by Bob-up display mode logic,
implemented as part of the attack helicopter Pilot Night Vision
System (PNVS). Engagement of the Hover Hold Mode will automat-
ically engage the Heading Hold and Altitude Hold Modes if not
already engaged.

Based on ACC/AFCS simulation results, a longitudinal/lateral
velocity command system in combination with high-gain velocity
stabilization is implemented as the baseline hover hold system.
Position reference signals derived from velocity information
are also available in the longitudinal and lateral AFCS for
position stabilization feedback as part of the Hover Hold Mode.
A flight evaluation and comparison of a velocity and position
reference system for the hover hold task will be conducted
during the Demonstrator program.

Appendix A presents the control law diagrams, including corre-
sponding logic requirements, to implement these modes as
previously described.

9.3 Display System

The selectable display modes used to meet attack helicopter
operational requirements for various mission tasks are:

Cruise - high-speed level flight enroute to the forward
edge of the battle area;

Transition - low-speed NOE maneuvers such as dash, quick
stop, and side-ward flight;

Hover - stable hover with minimum drift; and

Bob-Up - unmask, target acquisition, and remask maneuvers
over a selected ground position.
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A three-position (center off) mode select switch is required to
sequence through the four modes in either the forward direction
(1.e. Bob-Up, Hover, Transition, Cruise) or reverse direction.
This switch should be accessible to the pilot's left-hand,
mounted on the left-hand side-stick controller or on the
control panel. If mounted on the controller, the switch's
breakout force should be minimal (i.e. less than 50% of the SSC
breakout force).

Logic to automatically enable/disable display modes should be
considered. For instance, the Bob-Up and Hover display modes
could be restricted to low speed flight less than 50 knots
while the Cruise mode operates only for high speed flight at
airspeeds greater than 50 knots.

The symbology dynamics used to aid the pilot under IMC with
IHADSS have a significant effect on aircraft handling quali-
ties. It is necessary to ensure compatibility of the symbol
dynamics for the various modes and varying dynamic characteris-
tics of the AFCS configuration.

The display mode logic should automatically change the sym-
bology format/sensitivities and AFCS control laws, primarily to
reduce pilot workload and to improve low speed maneuvering and
hover hold task performance. During ACC/AFCS simulation
studies, improved pilot ratings resulted from incorporating the
following display modifications. Comparisons to the symbology
dynamics and format of the baseline AAH display system are
given.

(1) Velocity vector sensitivity was decreased by a factor of
two for all modes, i.e. from 6 knots to 12 knots full
scale in the Hover and Bob-Up modes, and from 60 knots to
120 knots full scale in the Transition and Cruise modes.

(2) Hover position sensitivity was decreased for the Bob-Up
mode from a full scale deflection of 44 feet to 88 feet.
Consideration should be given to non-linear scaling of
hover position to keep it on scale for large excursions in
position.

(3) The cyclic director, or longitudinal and lateral accelera-
tion cue, approximated by washed-out pitch and roll
attitudes, requires different sensitivity and time con-
stant values as a function of the command response system
type provided by the AFCS. That is, the attitude command
system for low-speed NOE maneuvering in the transition and
hover mode requires different cyclic director dynamics
than a velocity command system for the bob-up task. The
Bob-Up display mode automatically engages the AFCS Hover
Hold mode providing a velocity command system.

156



(4)

(5)

A horizon line was included in the symbology format for

all modes. The AH-64 has a horizon line in the transition
and cruise modes only.

Lateral acceleration was used to drive the "ball" display

instead of side-slip angle to augment turn coordination
cues at low speed.
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APPENDIX A



Functional block diagrams, representative of the control laws
utilized during the final simulation phase, are included in
Appendix A.

Included are:

A-1 Longitudinal PFCS

Longitudinal Control Response Shaping
Lateral PFCS

Lateral Control Response Shaping
Directional PFCS

Directional Control Response Shaping
Vertical PFCS

Vertical Control Response Shaping
Derivative Rate Limiter

Control System Mixing

1
HOOONOU kWK

o

Longitudinal AFCS
Lateral AFCS
Directional AFCS
Vertical AFCS

3’?.’?3’ >3’1I>'>>>>:>3’
(WY
B W N

A-15 Airspeed Complementary Filter
A-16 Altitude Complementary Filter
A-17 Position Feedback Derivation

A-18 Altitude Hold Logic

A-19 Heading Hold/Turn Coordination Logic

A-20 Hover Hold Logic

A-21 Longitudinal/Lateral Mode Switching Logic

A-22 Longitudinal Rate Response Sensitivity
A-23 Longitudinal Attitude Response Sensitivity
A-24 Longitudinal Velocity Response Sensitivity

A-25 Lateral Rate Response Sensitivity
A-26 Lateral Attitude Response Sensitivity
A-27 Lateral Velocity Response Sensitivity

A-28 Directional Rate Response Sensitivity
A-29 Directional Acceleration Response Sensitivity

A-30 Vertical Rate Response Sensitivity
A-31 Vertical Acceleration Response Sensitivity
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LONGITUDINAL CONTROL RESPONSE SHAPING

10

SENSITIVE
GAIN A4.5
1

2

.
NEADBAND + 0.5 L?:———~\\\ ,z‘%jLﬁ?z
1

N A

0 1 2 3

LONGITUDINAL FORCE ~-LBS

A-2




4Sv¥113a

ONIXIN
T0U1NOD
01

1300 ONYHWOD

S34V Iv¥ilvl ol
TIV4dl 21907 3I9YON3I
HIVd ®INL
——————-"
D 1 .
(1=NO) S¥sS§] ' =
'
1P
9=115nV1 0lxsd H
|
1
145 u..
1133HR0 T J O
(440 S24v)
INIdYHS 9V
£135d
[REENL w130 YILINDT
AR vy
I < INIVATY G
r--
I
t
]
1
1 1081N0D
' INIWIIY 14510
' TYNO1LNIANDD
1
t
P =i8S0YL 19354 '
LAEELLY: ) :
135 . ]
T 6¢ )
1
1340/80 $D3V) '
INIJYHS 9¥ !
(9dd})
21801
39YIN3]
WEY301S
IN3W3IYIND3IY
Wity
ZWIYLH
tul WILINI

SJ4dd TvH3IlVT

v¥13a

§0ASd

4733HM0

NOILYZILNYND
118V I¥VA

04v¥130 v 110
l— 2 | e—
(581}
1ndN]

IN1dYHS
¥YINIT-NON

32804
437709 1NCD

A-3



LATERAL CONTROL RESPONSE SHAPING
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DIRECTIONAL CONTROL RESPONSE SHAPING
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VERTICAL CONTROL RESPONSE SHAPING
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APPENDIX B



Appendix B contains trim sheets and small-perturbation stabili-
ty and control derivatives which represent the UH-60A math
model used in the Boeing Vertol Simulator. Trim sheets and

derivatives are included for airspeeds between hover and 140
knots at 20 knot increments.
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APPENDIX C



Appendix C contains the following pilot rating data arranged in
primary and secondary matrices.

Cc-1 Phase 1B/1C Primary Matrix for Acceleration/Deceleration
Task-VMC

C-2 Phase 1B/1C Primary Matrix for Acceleration/Deceleration
Task - IMC

C-3 Phase 1B/1C Primary Matrix for NOE Task - VMC

C~-4 Phase 1B/1C Primary Matrix for NOE Task - IMC

C-5 Phase 1B/1C Primary Matrix for 30 Kt Slalom Task - VMC
C-6 Phase 1B/1C Primary Matrix for 30 Kt Slalom Task - IMC
C-7 Phase 1B/1C Primary Matrix for Bob-Up Task - VMC

C-8 Phase 1B/1C Primary Matrix for Bob-Up Task - IMC

C-9 Phase 1B/1C Secondary Matrices for 30-Kt Slalom Task
(2+1+1)

C-10 Phase 1B/1C Secondary Matrices for 30-Kt Slalom Task
(3+1) Pedal

C-11 Phase 1B/1C Secondary Matrices for 30-Kt Slalom Task -
(3+1) Collective

C-12 Phase 1B/1C Secondary Matrices for 30-Kt Slalom Task
(4+0) MSI-~SS

C-13 Phase 1B/1C Secondary Matrices For 30 Kt Slalom Task
(4+0) MSI-SD2

C-14 Phase 1B/1C Secondary Matrices for Bob-Up Task - (2+1+1)

C-15 Phase 1B/1C Secondary Matrices for Bob-Up Task -(3+1)
Pedal

C-16 Phase 1B/1C Secondary Matrices for Bob-Up Task -(3+1)
Collective

C-17 Phase 1B/1C Secondary Matrices for Bob-Up Task -(4+0)
MSI-SS

C-18 Phase 1B/1C Secondary Matrices for Bob-Up Task - (4+0)
MSI-SD2

C-19 Phase 1B/1C Secondary Matrices for NOE Task -(2+1+1)



Phase 1B/1C Secondary Matrices for NOE Task - (3+1) Pedal
Phase 1B/1C Secondary Matrices for NOE Task - (3+1)
Collective

Phase 1B/1C Secondary Matrices for NOE Task - (4+0) MSI-SS
Phase 1B/1C Secondary Matrices for NOE Task - (4+0) MSI-SD2
Phase 1B/1C Secondary Matrices for Accel/Decel Task

- (2+1+1)

Phase 1B/1C Secondary Matrices for Accel/Decel Task - (3+1)
Pedal

Phase 1B/1C Secondary Matrices for Accel/Decel Task - (3+1)
Collective

Phase 1B/1C Secondary Matrices for Accel/Decel Task - (4+0)
MSI-SS

Phase 1B/1C Secondary Matrices for Accel/Decel Task - (4+0)
MSI-SD2

Phase 2A Primary Matrix for Bob-Up Task (0ld Shaping) - VMC
Phase 2A Primary Matrix for Precision Hover Task (01ld
Shaping) - VMC

Phase 2A Primary Matrix for NOE Task (0ld Shaping) - VMC
Phase 2A Primary Matrix for NOE Task - VMC

Phase 2A Primary Matrix for NOE Task - VMC

Phase 2A Primary Matrix for Bob-Up Task - VMC

Phase 2A Primary Matrix for Bob-Up Task - VMC

Phase 2A Primary Matrix for Precision Hover Task - VMC
Phase 2A Primary Matrix for Precision Hover Task -~ VMC
Phase 2A Primary Matrix for 90-Kt Slalom Task TC On - VMC
Phase 2A Primary Matrix for 90-Kt Slalom Task TC Off - VMC
Phase 2A Primary Matrix for Decel in Turn, Left Turn -TC

On - VMC

Phase 2A Primary Matrix for Decel in Turn, Left Turn -TC
off - VMC

c-iii



Phase 2A Primary Matrix for

On - VMC

Phase
off -

2A Primary Matrix for

VMC

Phase 2A Primary Matrix for

Phase 2A Primary Matrix for

Phase for

- VMC

2A Primary Matrix

Phase 2A Secondary Matrices
MSI-SD2

Phase 2A Secondary Matrices
- (4-0) MSI-SD2

Decel in Turn, Right Turn - TC

Decel in Turn,

Decel/Approach Task - VMC

140-Kt Slalom Task TC On - VMC

140 Kt Slalom Task - TC Off

for Bob-Up Task - (4+0)

for Bob-up Task (0ld Shaping)

Phase 2A Secondary Matrices for Bob-up Task - (4+0)

MSI-SD3

Phase 2A Secondary Matrices
- (4+0) MSI-SD3

Phase 2A Secondary Matrices
C MSI-SD3, MSI-SD2

Phase 2A Secondary Matrices
C MSI-SD3, MSI-SS

Phase 2A Secondary Matrices

Phase 2A Secondary Matrices
(4+0) MSI-SD2

Phase 2A Secondary Matrices

Phase 2A Secondary Matrices
(4+0) MSI-SD3

Phase 2A Secondary Matrices
C MSI-SD3, MSI-SD2

Phase 2A Secondary Matrices
(4+0) MSI-SD3, MSI-SD2

Phase 2A Secondary Matrices
C MSI-SD3, MSI-SS

Phase 2A Secondary Matrices

Phase 2A Secondary Matrices
(4+0) MSI-SD2

C-iv

for
for Bob-Up Task =-(3+1)

for Bob-Up Task =~ (3+1)

for NOE Task -(4+0) MSI-SD2
for NOE Task (01d Shaping) -
for NOE Task =-(4+0) MSI-SD3
for NOE Task (01d Shaping) -
for NOE Task -(3+1)

for NOE Task (01d Shaping) -
for NOE Task ~(3+1)

for NOE Task - (2+1+1)

for Precision Hover Task -

Right Turn -TC

Bob-up Task (01d Shaping)



Phase 2A Secondary Matrices
Shaping) - (4+0) MSI-SD2

Phase 2A Secondary Matrices
(4+0) MSI-SD3

Phase 2A Secondary Matrices
Shaping) - (4+0) MSI-SD3

Phase 2A Secondary Matrices
(3+1) C SMI-SD3, MSI-SD2

Phase 2A Secondary Matrices
Shaping) - (3+1) C MSI-SD3,

Phase 2A Secondary Matrices
(3+1) C MSI-SD3, MSI-SS

Phase 2B Primary Matrix for
Comparison) - VMC

Phase 2B Primary Matrix for
-VMC

Phase 2B Primary Matrix for
- VMC
Phase

2B Primary Matrix for

Phase 2B Primary Matrix for

Phase 2B Primary Matrix for
Shear and Turbulence
Phase 2B Primary Matrix for

In Calm Air - IMC

Phase 2B Primary Matrix for

for Precision Hover (01d

for Precision Hover Task -
for Precision Hover Task (01ld
Hover Task -

for Precision

for Precision
MSI-SD2

Hover Task (0ld
for Precision Hover Task -
Precision Hover (Grip

NOE Task (Grip Comparison)

Bob-Up Task (Grip Comparison)

90 Kt Slalom Task TC On - VMC
Bob-Up Task In Calm Air - IMC

Bob-Up Task - IMC with wind

Precision Hover Task -

Precision Hover Task - IMC

with Wind Shear and Turbulence

Phase 2B Primary Matrix for

Phase 2B Primary Matrix for

Phase 2B Primary Matrix for

Phase 2B Primary Matrix for

Phase Matrix for

Task -

2B Primary
IMC

Phase 2B Primary Matrix for

Task - IMC

NOE Task - IMC
30-Kt Slalom Task - IMC
90-Kt Slalom Task - IMC

Straight Decel Task - IMC

Left Turning Decel to Hover

Right Turning Decel to Hover



PHASE 1B/1C PRIMARY MATRICIES
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