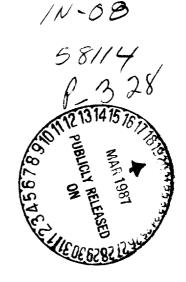
NASA CONTRACTOR REPORT 177339

(NASA-CR-177339-Vcl-3) DEVELOPMENT OF ADOCS CONTROLLERS AND CONTROL LAWS. VOLUME 3: SIMULATION RESULTS AND RECORDENIATIONS


N87-17709

Final Report, Jan. 1981 - Jun. 1984 (Boeing Vertel Co., Philadelphia, Fa.) 328 p

Unclas G3/08 43366

DEVELOPMENT OF ADOCS CONTROLLERS AND CONTROL LAWS

VOLUME 3 - SIMULATION RESULTS AND RECOMMENDATIONS

Kenneth H. Landis Steven I. Glusman

March 1987 release ___

CONTRACT NAS2- 10880 March 1985

United States Army Aviation Systems Command St. Louis, Missouri 63120

822			

DEVELOPMENT OF ADOCS CONTROLLERS AND CONTROL LAWS

VOLUME 3 - SIMULATION RESULTS AND RECOMMENDATIONS

Kenneth H. Landis Steven I. Glusman Boeing Vertol Company Philadelphia, PA 19142

Prepared for Aeromechanics Laboratory U.S. Army Research and Technology Laboratories (AVSCOM) under Contract NAS2-10880

Ames Research Center Moffett Field, California 94035 United States Army Aviation Systems Command St. Louis, Missouri 63120

1		

TABLE OF CONTENTS

			PAGE
	LIST OF ILLUSTRATIONS		vii
	LIST OF TABLES	•••••	хi
	ACRONYMS	•••••	xiii
	NOMENCLATURE	• • • • • • • • • • • • • • • • • • • •	xv
1.0	SUMMARY	• • • • • • • • • • • • • • • • • • • •	1
2.0		• • • • • • • • • • • • • • • • • • • •	3
3.0		• • • • • • • • • • • • • • • • • • • •	5
	3.2 Scapility and Contro	er Configuration	7
	3.2.1 Primary Flight 3.2.2 Automatic Flight	cteristics	12 15 15 22
4.0		• • • • • • • • • • • • • • • • • • • •	27
	First boeing vertor	r	27
.	4.1.2 NASA-Ames Ver 4.2 Aircraft Math Model 4.3 Evaluation Tasks 4.3.1 Low-Speed Tas 4.3.2 High-Speed Ta 4.3.3 Transition Ta 4.4 Pilot's Experience S 4.5 Data Collection and 4.6 Other Experimental C	ks	27 30 36 42 42 44 46 46 46 50
5.0	PHASE 1 SIMULATION RESULT	s	51
	3.1.1 Selection of	nt Control Response	51
	Characteristi 5.1.2 Evaluation of	cs Force/Deflection	51
	Characteristi 5.2 Evaluation of Contro	cs	57
	Matrix	••••••	63

Table of Contents (Continued)

			PAGE
		5.2.1 4-Axis Controller Evaluation	63
		5.2.2 Controller Configuration/Display Effects	65 71
6.0	PHASE	2 SIMULATION RESULTS	79
	6.1	Simulator Effects	83
	0.1	6.1.1 Effect of Simulator Visual Display/	83
		Motion System	
	<i>c</i> 2	Shaping	86 88
	6.2	6.2.1 Controller Orientation	91
		6.2.2 Alternate 4-Axis Controller Comparison	91
		6.2.3 Left-Hand Vertical Side-Stick Controller Evaluation	
		6.2.4 ADOCS Brassboard Controller	
		Evaluation	96 96
	6.3	6.2.5 Alternate Grip Comparison	100
	0.5	6.3.1 Low-Speed Tasks	100
		6.3.2 Slalom Tasks	111 119
		6.3.3 Approach-to-Hover Tasks	122
	6.4		
7.0	SUMM	ARY OF PILOT EVALUATION DATA	
	7.1	Summary of Pilot Ratings	125
		7.1.1 Task/Display Effects	. 120
		7.1.2 SCAS Effects	. 133
	7.2	Pilot Commentary	. 136
0 0		CLUSIONS	
6.0	CONC		
	8.1	Side-Stick Controller Design	143
	8.2	Controller Configuration SCAS Design	. 144
	8.3	IMC Display Effects	. 145
	8.4		
9.0	REC	DMMENDATIONS	_
	9.1	Controller Design	. 147 . 147
	9.2	gentual Fau Decign	. 14/
		9.2.1 PFCS Design	. 151
	0 0		. 155
	9.3	Dishrah sharem	

Table of Contents (Continued)

	PAGE
REFERENCES	158
APPENDIX A - Control Law Diagrams	A-1
APPENDIX B - Trim Data And Stability and Control Derivatives	B-1
APPENDIX C - Pilot Rating Data	C-1

LIST OF ILLUSTRATIONS

FIGURE		PAGE
3-1	Three Dimensional Flight Control System Description	6
3-2	Phase 1 Candidate Controller Configurations .	8
3-3	Phase 2 Candidate Controller Configurations .	9
3-4	ADOCS Flight Control System Concept	13
3-5	Generic SCAS Configurations Command Response/Stabilization Matrix	14
3-6	Generic Lateral SCAS	16
3-7	ADOCS PFCS Design	17
3-8	ADOCS Longitudinal AFCS - ACC/AFCS Phase 2B .	19
3-9	ADOCS Lateral AFCS - ACC/AFCS Phase 2B	20
3-10	ADOCS Directional AFCS - ACC/AFCS Phase 2B	21
3-11	ADOCS Vertical AFCS - ACC/AFCS Phase 2B	23
3-12	Head Tracker Equipment Installation	25
4-1	Boeing Vertol Small Motion Flight Simu- lation Facility with Multi-Window Display	28
4-2	Approach to Airport Scene - Boeing Vertol Simulator	31
4-3	IHADSS Hover Mode Symbology	32
4-4	Visually Coupled System for Attack Helicopters	33
4-5	ACC/AFCS Terrain Board	34
4-6	NASA-Ames Vertical Motion Simulator	35
4-7	CGI Display - NOE Course	37
4-8	CGI Display - Airfield Runway for Slalom Task	38
4-9	UH-60 Simulation Math Model Correlation with	39

List of Illustrations (Continued)

FIGURE		PAGE
4-10	UH-60A Simulation Math Model Correlation	41
4-11	Low-Speed Evaluation Tasks	43
4-12	High Speed and Transition Tasks	45
4-13	Sample Controller/SCAS Configuration Matrices - NOE Task	49
5-1	Phase 1 Simulation Flow Diagram	52
5-2	Control Response Selection Process	54
5-3	Selection of Roll Rate Command Sensitivity	55
5 -4	Force Control Response Shaping	58
5-5	ACC/AFCS Candidate SSC Controller Force/Deflection Characteristics	59
5-6	Phase 1 4-Axis Side-Stick Controllers	60
5-7	Effect of Side-Stick Controller Deflection/Force Gradient On Pilot Ratings	61
5-8	Controller Comparison - Stiff Stick vs. Small Deflection	64
5-9	Pilot Ratings - NOE Task	66
5-10	Pilot Ratings - Bob-up Task	67
5-11	Pilot Ratings - Acceleration/ Deceleration Task	. 69
5-12	Pilot Ratings - 30-Knot Slalom Task	. 70
5-13	Time History of Bob-Up - RA/LV	. 73
5-14	Time History of Bob-Up - AT/LV	. 74
5-15	Bob-Up Task Performance	. 75
5-16	Effect of Yaw SCAS Variations on Pilot Ratings	. 77

List of Illustrations (Continued)

FIGURE		PAGE
5-17	Effect of Vertical SCAS Variations On Pilot Ratings	78
6-1	Variations in IHADSS Symbology	81
6-2	Phase 2 4-Axis Side-Stick Controllers	82
6-3	LSI Brassboard Controller with Experimental Grip	84
6-4	Simulation Facility Comparison	85
6-5	Longitudinal and Lateral Attitude Command System Response Shaping Functions	87
6-6	Directional and Vertical Rate Command System Response Shaping Functions	89
6-7	Effect of Vertical Shaping Changes	90
6-8	Side-Stick Controller Orientations	92
6-9	SSC Installation Comparison	93
6-10	4-Axis Controller Comparison	94
6-11	Left-Hand Vertical Controller Comparison	97
6-12	4-Axis Controller Comparison	98
6-13	Grip Comparison	99
6-14	Summary of Pilot Data For Low Speed Tasks	101
6-15	Time History of NOE Task - IMC - RA/AT System	102
6-16	Time History of NOE Task - IMC - AT/LV System	103
6-17	Pilot Ratings for Precision Hover Task - IMC	105
6-18	Pilot Ratings for Bob-Up Task - IMC	106
6-19	Effect of Directional SCAS Variations On Pilot Ratings	107
6-20	Effect of Vertical SCAS Variations On Pilot Ratings	108

List of Illustrations (Continued)

FIGURE		PAGE
6-21	Pilot Ratings for NOE Task - IMC	110
6-22	Effect of Turbulence on Bob-Up Performance	112
6-23	Pilot Ratings for Slalom Task - IMC	114
6-24	Time History of 30-Knot Slalom Task-IMC-AT/LV System	115
6-25	Time History of 30-Knot Slalom Task-IMC-RA/AT System	116
6-26	Pilot Ratings for High-Speed Slalom Task - VMC	117
6-27	Effect of Automatic Turn Coordination On Pilot Ratings	218
6-28	Pilot Ratings for Approach to Hover Tasks	121
6-29	Comparison of IMC and VMC Pilot Ratings - NOE Task	123
7-1	Summary of Task Effect On Pilot Ratings - Phase 1	126
7-2	Summary of Task Effect On Pilot Ratings - Phase 2	127
7-3	Effect of Task On Pilot Ratings	128
7-4	Summary of Primary SCAS/Controller Effects - Phase 1	130
7-5	Summary of Primary SCAS/Controller Effects - Phase 2	131
7-6	Summary of Primary SCAS Configuration on Pilot Ratings	132

LIST OF TABLES

TABLE		PAGE
3-1	4-Axis Controller Configurations Force Deflection Characteristics	11
4-1	Boeing Vertol Simulator Motion Limits	29
4-2	Summary of Evaluation Test Pilots Experience	42
5-1	Selected Control Response Characteristics	56
7-1	Controller Configuration Rankings - Phase 1	134
7-2	Controller Configuration Rankings - Phase 2	135
7-3	Pilot Comments On Controllers	137
7-4	Pilot Comments On Controller Configurations	138
7-5	Pilot Comments On Primary SCAS Configurations	139
7-6	Pilot Comments On Secondary SCAS Configurations	140
7-7	Pilot Comments - Other Factors	141
9-1	Recommend 4-Axis Controller Force/ Displacement Characteristics	148
9-2	Recommended Alternate Controller Force/ Displacement Characteristics	149
9-3	Basic SCAS Modes	152
9-4	Selectable SCAS Modes	153

ACRONYMS

AAH Advanced Attack Helicopter

AC/RA Acceleration Command/Rate Stabilization

ACC/AFCS Advanced Cockpit Controls/Advanced Flight

Control System

ADOCS Advanced Digital/Optical Control System

AFCS Automatic Flight Control System

AFFDL Air Force Flight Dynamics Laboratory

AGL Above Ground Level

ASH Advanced Scout Helicopter

AT/AT Attitude Command/Attitude Stabilization

AT/LV Attitude Command/Velocity Stabilization

CHR Cooper-Harper Rating

CMD/STAB Command/Stabilization

EASY5 Engineering Analysis System Rev. 5

FBW Fly-by-Wire

HLH Heavy Lift Helicopter

HMD Helmet Mounted Display

HMS Helmet Mounted Sight

IHADSS Integrated Helmet and Display Sighting System

IMC Instrument Meterological Conditions

LCC Load-Controlling Crewman

LV/LV Velocity Command/Velocity Stabilization

LV/PH Velocity Command/Position Hold

NAE National Aeronautical Establishment

NOE Nap-of-the-Earth

PFCS Primary Flight Control System

PIO Pilot Induced Oscillations

Acronyms (Continued)

PNVS Pilot Night Vision System

PSD Power Spectral Density

RAE Royal Aircraft Establishment

RA/AT Rate Command/Attitude Stabilization

SCAS Stability and Control Augmentation System

SD Small Deflection

SS Stiff Stick

SSC Side-Stick Controller

TAGS Tactical Aircraft Guidance System

VMC Visual Meterological Conditions

VMS Vertical Motion Simulator

NOMENCLATURE

C(s)	Command Model Transfer Function
D(s)	Desired Response Transfer Function
DELB	Pilot Longitudinal Cyclic Input (in)
DELC	Pilot Collective Input (in)
DELR	Pilot Pedal Input (in)
DELS	Pilot Lateral Cyclic Input (in)
g	Acceleration of Gravity (ft/sec2)
H(s)	Stabilization Loops Transfer Function
h	Radar Altitude (ft)
h	Vertical Velocity (ft/sec)
h h	Vertical Acceleration (ft/sec2)
IHT	Incidence of Horizontal Tail (deg)
κ_{θ}	Pitch Attitude Feedback Gain (in/rad)
$\kappa_{f \phi}$	Roll Attitude Feedback Gain (in/rad)
K_{ψ}	Heading Feedback Gain (in/rad)
K _q	Pitch Rate Feedback Gain (in/rad/sec)
K _p	Roll Rate Feedback Gain (in/rad/sec)
K _r	Yaw Rate Feedback Gain (in/rad/sec)
K _{SS}	Steady State Response Sensitivity
L/IXX	Normalized Rolling Moment (ft.lb/slug.ft2)
M/IYY	Normalized Pitching Moment (ft.lb/slug.ft2)
^M r	Stability Derivative, Pitching Moment Due to Yaw Rate
$^{\mathtt{M}}_{\delta}{}_{\mathtt{B}}$	Control Sensitivity - Pitching Moment due to Longitudinal Cyclic Input
N/IZZ	Normalized Yawing Moment (ft.lb/slug.ft2)

NOMENCLATURE (continued)

	NOMENCLATURE (Continued)
N ₆ R	Control Sensitivity - Yawing Moment Due to Pedal Input (ft.lb/in)
N _r	Stability Derivative - Yawing Moment Due to Yaw Rate (ft.lb/(rad/sec))
p	Aircraft Body-axis Roll Rate (rad/sec)
P(s)	Plant Transfer Function
q	Aircraft Body-axis Roll Rate (rad/sec)
r	Aircraft Body-axis Yaw Rate (rad/sec)
r _c	Commanded Yaw Rate (rad/sec)
RL	Rate Limiter
u	Aircraft Body-axis Longitudinal Velocity (ft/sec)
v	Aircarft Body-axis Lateral Velocity (ft/sec)
w	Aircraft Body-axis Vertical Velocity (ft/sec)
X/M	Normalized Longitudinal (lb/slug)
Y/M	Normalized Lateral (lb/slug)
Z/M	Normalized Vertical Force (lb/slug)
ф	Aircraft Roll Attitude (rad)
^ф с	Commanded Roll Attitude (rad)
ψ	Heading (rad)
Ф	Yaw Rate - Earth Axis (rad/sec)
 Ψ	Yaw Acceleration - Earth Axis (rad/sec2)

1.0 SUMMARY

As part of the U.S. Army's Advanced Digital/Optical Control System (ADOCS) Program, a series of piloted simulations was conducted during the ACC/AFCS study to develop the integrated side-stick controller characteristics and flight control laws to be implemented on the ADOCS demonstrator helicopter. Effects on handling qualities of side-stick controller characteristics and the level of stability and control augmentation were evaluated for several low-altitude maneuvering and precision hover flight tasks. Tasks were performed under both simulated visual meteorological conditions (VMC) and instrument meteorological conditions (IMC). Visual cues for VMC flight were provided to the pilot using the simulator multi-window, wide-angle, cockpit visual display system. For IMC flight, the only source of visual information was a visually coupled, helmet-mounted display of flight control symbols superimposed upon terrain board imagery.

The Advanced Cockpit Controls/Advanced Flight Control System (ACC/AFCS) element of the ADOCS Program was conducted in two separate phases consisting of preliminary control law analysis and development designated as Phase 1, followed by a detailed control law development phase designated as Phase 2.

Data provided through the literature review and preliminary analysis phase of study (reported in Volume 2) established specific controller/control law configurations and characteristics to be evaluated through piloted simulation. Five major piloted simulation phases were completed between June 1981 and May 1983. Three simulation periods were conducted as part of Phase 1 at the Boeing Vertol Simulation Facility, followed by two simulation periods conducted as part of Phase 2 at the NASA-Ames Vertical Motion Simulator (VMS) facility. The most significant results from these five piloted simulations are summarized below.

Side-Stick Controller

- 1. Pilot ratings and comments showed that handling qualities improved substantially with the introduction of small deflection in all control axes of the side-stick controller.
- 2. The (3+1) Collective and (2+1+1) separated controller configuration achieved similar overall pilot ratings which were generally improved compared to the integrated four-axis controller configuration. A separated collective controller was found to eliminate unintentional collective to pitch/roll coupling common to the (4+0) and (3+1) Pedal configurations. Separated controller configurations were felt to reduce pilot workload especially for multiaxis

- tasks by eliminating requirements to hold forces in the vertical or directional axes while modulating pitch and roll control.
- 3. A small deflection, left-hand collective controller was preferred over a stiff controller for vertical control. The addition of deflection to the left-hand controller improved pilot ratings and task performance when accurate control of aircraft height was required.

SCAS/Display System Interactions

- 1. IMC ratings were degraded compared to VMC ratings approximately 1.6 points on the Cooper-Harper rating scale for the most difficult task. Average ratings did not vary significantly as a function of VMC task; however, task variation had a larger effect on pilot ratings under IMC with the IHADSS. The largest degradation in IMC pilot ratings occurred for the NOE Task.
- Best ratings were achieved for the forward flight/transi-2. tion tasks with a hybrid SCAS system in pitch and roll-pitch attitude command/airspeed hold (AT/AS) and roll rate command/attitude stabilization (RA/AT) in forward flight; and attitude command/ground speed stabilization (AT/L $\tilde{\text{V}}$) in pitch and roll for low speed flight. Control law logic to automatically switch between forward flight and low speed stability and control augmentation characteristics was successfully implemented and tested. The method developed to switch control laws felt natural to the pilot and no undesirable effects on handling qualities were evident during transition maneuvers. With this hybrid system, Level 1 ratings were achieved with all controller configurations under VMC and marginal Level 2 ratings obtained under IMC. Level 1 ratings were achieved under IMC only for the Precision Hover and Bob-up Tasks with the two velocity command investigated.
- 3. Automatic turn coordination for forward flight maneuvering tasks improved pilot ratings by approximately 2.0 rating points for all controller configurations and significantly reduced pilot workload.

2.0 INTRODUCTION

In addition to the literature search and preliminary analysis conducted as part of the Advanced Cockpit Controls/Advanced Flight Control System (ACC/AFCS) program, five piloted simulations were conducted to evaluate the system concepts previously developed. Volume 2 documented the results of the literature search and analysis and presented concluding remarks which were used in the simulation test plan development.

Results of the five piloted simulations are presented in this volume. The objective of these studies was to identify combinations of cockpit controller configuration, flight control laws, and display system requirements to achieve satisfactory handling qualities for the attack helicopter mission defined for the ADOCS demonstrator aircraft.

Data presented in this volume are organized by simulation phase. Phase 1 simulations concentrated on controller development, response sensitivity selection, and data collection for low-speed tasks representative of the attack helicopter mission. All three Phase 1 simulations were conducted at the Boeing Vertol Flight Simulator; both Phase 2 simulations were conducted at the NASA-Ames Vertical Motion Simulator (VMS). In addition to collecting additional low-speed data, Phase 2 studies included the investigation of high-speed and transition flight regimes also associated with the attack helicopter mission.

A total of seven simulation test pilots participated in these five simulations providing over 2000 data points defining the interrelationship between cockpit controller configuration, SCAS, and display system. Data are presented in this volume in a manner which emphasizes overall trends in the SCAS, controller, and display system designs.

These data were utilized to make recommendations for the implementation of ADOCS on a demonstrator UH-60A aircraft. The final section of this report presents these recommendations.

3.0 EXPERIMENT DESIGN

Pilot workload and level of performance achieved during a specific attack helicopter mission task are influenced by combined elements of the helicopter control/display system design. The primary elements considered during this simulation program were:

- (1) <u>Side-stick Controller (SSC) Configuration</u> Stiff or displacement type, and level of integration ranging from a fully-integrated 4-axis side-stick controller to a (2+1+1) arrangement; i.e., a 2-axis side-stick for pitch and roll control with separated directional pedals and a left-hand collective controller.
- (2) Stability and Control Augmentation System (SCAS) Characteristics Several generic types of feedback stabilization and feed-forward command shaping in each of the four control axes (pitch, roll, yaw, and vertical).
- (3) Visual Display Either day VMC with the simulator four-window, wide angle field-of-view visual system, or night IMC using a simulated FLIR image and superimposed YAH-64 Pilot Night Vision System (PNVS) (Reference 1) symbology presented on a helmet-mounted display.

General Approach

The systematic approach to the investigation of these elements is illustrated in Figure 3-1. The overall investigation was directed toward defining those combinations of SSC, SCAS, and display that produce Level 1, 2, and 3 handling qualities ratings (Reference 2).

In applying this general approach to the specific problem, the blocks defined in Figure 3-1 were broken down further into more detailed configuration matrices. For example, each side-stick controller configuration block contains variations in force/displacement relationships as well as ergonomic characteristics. Generic control laws can be mechanized in several different ways with significantly different results. Display symbology involves a myriad of variations in parameters, format, scaling, and logic.

Degraded modes can also be visualized in Figure 3-1. Since the selected controller configuration will be part of the primary flight control system, all allowable degraded modes will lie in the control-law/display-law plane. For example, certain failures such as FLIR loss will affect the display axis only, while loss of a ground velocity signal may affect the system control law and display symbology.

By considering the overall system design as a series of matrix levels of increasing detail, the interactive effect on handling

THREE DIMENSIONAL FLIGHT CONTROL SYSTEM DESCRIPTION

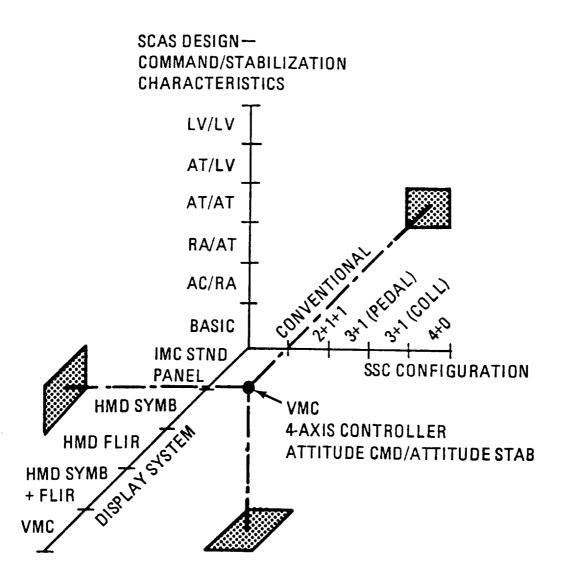


Figure 3-1

qualities of each variation in an element of the system is kept in perspective. A discussion of important issues to be considered within each primary system element follows, including specific details about the controller/SCAS/display characteristics evaluated.

3.1 SIDE-STICK CONTROLLER CONFIGURATION

The experiment was designed to provide a comprehensive evaluation of multi-axis side-stick control for an attack helicopter mission including variations in: (1) the number of axes controlled through the side-stick device, and (2) the force-deflection characteristics of the controller.

Level of integration (Number of Axes)

Four variations in controller configuration representing different levels of controller integration were investigated:

- (1) (4+0): All control axes (pitch, roll, yaw, and vertical) on the side-stick controller,
- (2) (3+1) Collective: 3-axis side-stick for pitch, roll and yaw control, and a separate left-hand collective controller for vertical control,
- (3) (3+1) Pedal: 3-axis side-stick for pitch, roll and vertical control, and pedals for directional control, and
- (4) (2+1+1): 2-axis side-stick for pitch and roll control, with a separate collective controller for vertical control, and pedals for directional control.

The above notations for controller integration level are used throughout the report to identify the various controller configurations.

The four controller configurations evaluated during Phase 1 are illustrated in Figure 3-2 with the left-hand controller implemented using a conventional collective lever as a force controller. During Phase 2 a side-stick controller replaced the collective lever as the left-hand vertical controller as shown in Figure 3-3. The (3+1) Pedal configuration was not included in Phase 2 simulations because of the negative pilot comments and poor pilot ratings received during Phase 1 simulations with this configuration.

Force/Deflection Characteristics

A definition of acceptable/unacceptable ranges of force/deflection gradient for each controller configuration option ((4+0), (3+1), or (2+1+1)) was necessary. The determination of force/deflection characteristics was performed during the course of

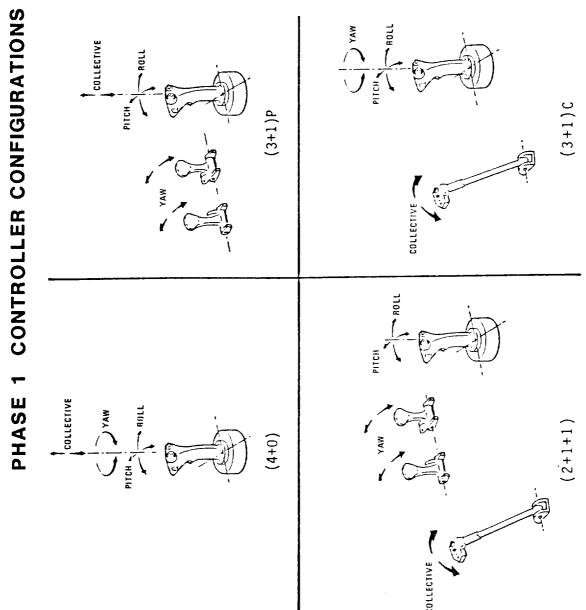


Figure 3-2

PHASE 2 CONTROLLER CONFIGURATIONS

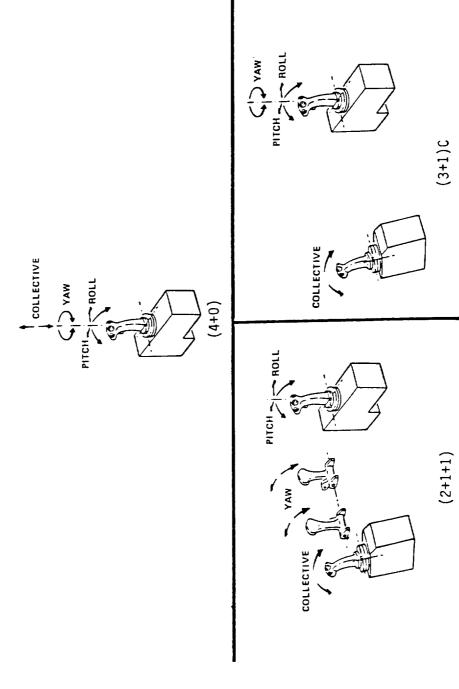


Figure 3-3

this simulation study using seven 4-axis side-stick controllers described in Table 3-1. Force/deflection characteristics for each controller are presented including operating force range, maximum deflection, and force/deflection gradient.

All 4-axis controllers are a base-pivot type for pitch and roll motion. Fore-aft force produces a longitudinal control input and right-left force a lateral control input. Yaw control is obtained by twisting about the grip centerline, and vertical control through application of pure up and down forces.

The selection of pitch and roll force/deflection gradients was guided by a review of published data (Volume 2). Gradients were chosen to cover a wide range from a "stiff" force gradient with very small deflection to a "soft" force gradient with large deflection (±12 degrees). Five 4-axis controller designs were evaluated during Phase 1 using a stiff-stick force controller, two small-deflection controller configurations, and a medium- and large-deflection configuration both obtained using the HLH prototype variable-force controller.

Yaw and vertical controller compliance for both small-deflection configurations were relatively "stiff" compared to the pitch and roll axes. In contrast, the medium-and large-deflection configurations were evaluated with lighter yaw and vertical force/deflection gradients for harmony with pitch and roll.

Based on Phase 1 results, a modified 4-axis controller having small-deflection in all axes was fabricated for Phase 2 testing. An ADOCS demonstration brassboard controller having very similar characteristics was also available for evaluation during Phase 2.

Evaluation of the (3+1) Collective, (3+1) Pedal, and (2+1+1) controller configurations was performed during Phase 1 using a conventional collective lever and directional pedal controls. The simulator variable force-feel collective lever was implemented as a "stiff" force controller with small deflection. A force pedal control system was configured using a mechanical spring capsule attached directly to the pedals. The directional pedal configuration selected had a force/deflection gradient of 40 lbs/inch with a force breakout of 6.0 lbs.

The implementation of a left-hand side-stick controller for vertical control was tested during Phase 2 using the small-deflection controller (MSI-SD2) and stiff-stick (MSI-SS). Collective control inputs were applied through the longitudinal control axis of the side-stick controller. Small-deflection force pedals for Phase 2 evaluation were implemented using the NASA-Ames simulator variable force-feel system. The same force/deflection gradient and breakout force used during Phase 1 was implemented.

Table 3-1

4-AXIS CONTROLLER CONFIGURATIONS FORCE/DEFLECTION CHARACTERISTICS

	SIMULATION PHASES	PHASES	9 5	OPERATING FOI LINEAR RANGE	OPERATING FORCE LINEAR RANGE (±)		MAXIP	IUM DE	MAXIMUM DEFLECTION	(+) N		FORCE/DE	FORCE/DEFLECTION	7
4-AXIS CONTROLLER			×	>	7	•	×	٨	7	<u> </u>	×	1	ı	
CONFIGURATIONS	PHASE 1	PHASE 2	LONG LONG	Ψ	Т		ONG.	- t	VERT	YAW	LONG		Ť	3
	1 7500		LBS	LBS	LBS	LBS	DEG	DEG	N	DEG	LBS/ DEG	LBS/ LBS/ DEGIN	85/ IN-LBS	.BS/
(1) LARGE DEFLECTION - HLH PROTOTYPE	×		<u> </u>	i	ŧ	1	12.0	12.0	0.5	15.0	6.0	0.6 15.0	.0 0.7	۲.
(2) MEDIUM DEFLECTION - HLH PROTOTYPE	×			ı	ı	ı	12.0	12.0	0.5	15.0	1.67	1.05 35.0	.0 2.7	7
(3) SMALL DEFLECTION - (PITCH AND ROLL) MSI-SD1	×		20	20	40	09	5.3	5.3	0.1	4.0	3.05	2.25 400	0.51 0	0
(4) STIFF-STICK MSI-SS	×	×	20	20	40	09	0.5	0.5	ı	1	40	40	ı	
(5) SMALL DEFLECTION - (PITCH AND ROLL) MSI-SD2	×	×	50	20	40	09	8.3	8.3	0.15	6.0	1.82	1.45 267	10.0	0
(6) SMALL DEFLECTION - (ALL AXES) MSI-SD3		×	12	12	+24 -21	36	9.9	9.9	.25	10.0	1.82	1.82 +95	3.6	9
(7) SMALL DEFLECTION - (ALL AXES) LSI - BRASSBOARD		×	15.9	15.9 12.8	15.8	35	7.6	7.6	.156	7	2.09	1.67 +95	5.0	
						ᅱ								

3.2 STABILITY AND CONTROL AUGMENTATION SYSTEM (SCAS) CHARACTERISTICS

The segments of the attack helicopter mission considered to be critical from a handling qualities point-of-view are those spent in nap-of-the-earth (NOE) flight; those inherently high workload tasks include low-speed point-to-point maneuvering using dash, quick stop, and sideward flight techniques, masked hover in ground effect and unmasked hover out of ground effect including target search, acquisition, and weapon delivery. These simulations were designed to provide a definition of flight control laws and SCAS mode switching logic requirements for the various mission segments. In addition, the effects on both handling qualities and flight safety of degraded SCAS modes were to be determined. The effect of the side-stick controller configuration under degraded SCAS mode conditions is important, since high levels of vehicle stability may mask undesirable characteristics of some controller options. redundancy requirements also need to be weighed in final selection of a controller configuration. For example, a (3+1) axis controller configuration requiring only rate stabiliza tion may be more cost effective than a 4-axis side-stick controller requiring attitude stabilization to achieve Level 2 handling qualities.

Figure 3-4 presents a block diagram of the flight control system design developed for the ADOCS Demonstrator Program. The primary flight control system (PFCS) was designed to yield satisfactory unaugmented flight by providing feed-forward command augmentation and shaping. The advanced flight control system (AFCS) included both stabilization feedback loops and a feed-forward control-response model. Stabilization feedback loops were designed solely for maximum gust and upset rejection; no compromise for control response was necessary. Use of a control-response model allowed the shaping of the short- and long-term response to the pilot's control inputs independent of the stabilization level.

Various control system concepts were formulated to accomplish the attack helicopter low speed/hover maneuvers. The generic SCAS configurations chosen for evaluation are identified in Figure 3-5 in the form of a command response/stabilization matrix. A simple identification code (Figure 3-5) was established. For example, a system with angular rate command and attitude stabilization in pitch and roll was identified with the letter code RA/AT. A complete explanation of the nomenclature used to identify the AFCS configurations follows:

o Pitch and Roll

LV/PH - Velocity command, Position hold. LV/LV - Velocity command, Velocity stabilization.

ADOCS FLIGHT CONTROL SYSTEM CONCEPT

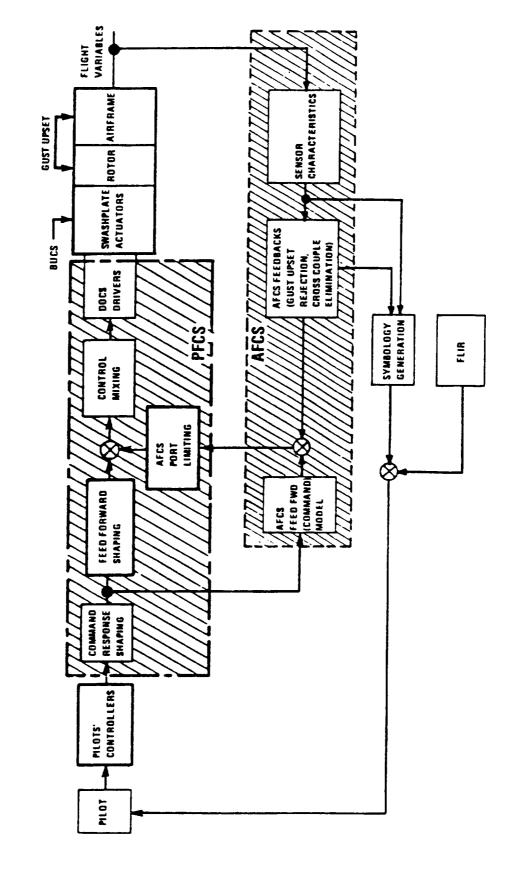


Figure 3-4

GENERIC SCAS CONFIGURATIONS

COMMAND RESPONSE/STABILIZATION MATRIX

VERTICAL

IDENTIFICATION CODE

PITCH/ ROLL

RA AC

AT

		ANGULAR ACCELERATION	ANGULAR RATE ANGULAR ATTITUDE	LINEAR ACCELERATION	LINEAR VELOCITY LINEAR POSITION	EXAMPLE: RA/AT	ANGULAR RATE COMMAND/
	VERTICAL	۸ له		NA		•	•
		ור					
EL	LIONA	AT	•	•		NA	
N LEVI	DIREC	ВA	•	•		Z	
STABILIZATION LEVEL	ERAL	LP					•
STAB	VAL/LAT	۲۸		•	•		•
	LONGITUDINAL/LATERAL DIRECTIONAL	AT		•	•		
	0.1	RA	•	•			
			AC	RA	AT	LA	۲۸
RESPONSE COMMAND MODEL						ว ย	

LE: RA/AT AR RATE COMMAND/ATTITUDE STABILIZATION $\hat{\psi}/\psi_{
m H}$ YAW RATE COMMAND/HEADING HOLD 4 3 4 POSITION

Figure 3-5

AT/LV - Attitude command, Velocity stabilization.

AT/AS - Attitude command, Airspeed stabilization.

AT/AT - Attitude command, Attitude stabilization.

RA/LV - Rate command, Velocity stabilization. RA/AT - Rate command, Attitude stabilization.

RA/RA - Rate command, Rate stabilization.

AC/RA - Acceleration command, Rate stabilization.

Yaw

 ψ/ψ_{H} - Yaw rate command, Heading hold.

 $\psi/\dot{\psi}$ - Yaw acceleration command, Yaw rate stabilization.

o Vertical

h/hH - Vertical velocity command, Altitude hold.

h/h - Vertical acceleration command, Vertical velocity stabilization.

The method of SCAS implementation used for the simulation is illustrated in Figure 3-6 for the lateral axis. All control axes were implemented in a similar manner. A complete set of control law diagrams defining the AFCS math model programmed for the simulation is presented in Appendix A. The stabilization gains shown on the diagram were selected prior to the piloted evaluation phase as described in Volume 2 - Literature Review and Preliminary Analysis. A six degree-of-freedom small-perturbation model of the helicopter was used to develop the command response model for each axis. The analytical study established control response model gains for cancellation of undesirable roots of the vehicle characteristic equation. Control response model feed-forward parameters were defined for each of the response types identified in Figure 3-5.

3.2.1 Primary Flight Control System (PFCS)

As indicated in Figure 3-7, a pilot force-command signal is provided to each PFCS axis. The signal is shaped, adjusted in gain, passed through a derivative rate-limiter, and fed to the AFCS command model and to the primary UH-60A flight-control system through a feed-forward shaping network. Limiting of the AFCS output is also a function of the PFCS, but it was not incorporated for this experiment. The specification of forcecommand signal quantization, nonlinear command shaping, derivative rate-limiter parameters, and forward path lead-lag shaping characteristics are described in detail in Section 4.1 of Volume 2.

3.2.2 Automatic Flight Control System (AFCS)

The AFCS model implemented for the ACC/AFCS simulation was developed in two stages. The original Phase 1 implementation

GENERIC LATERAL SCAS

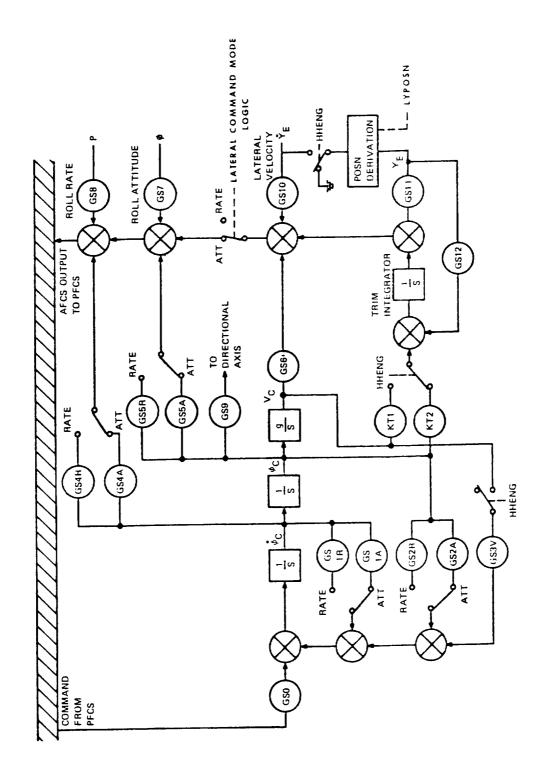
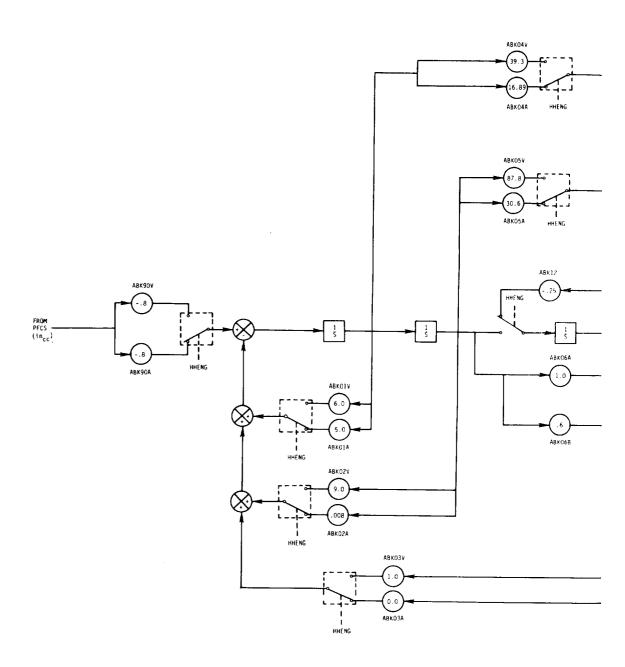
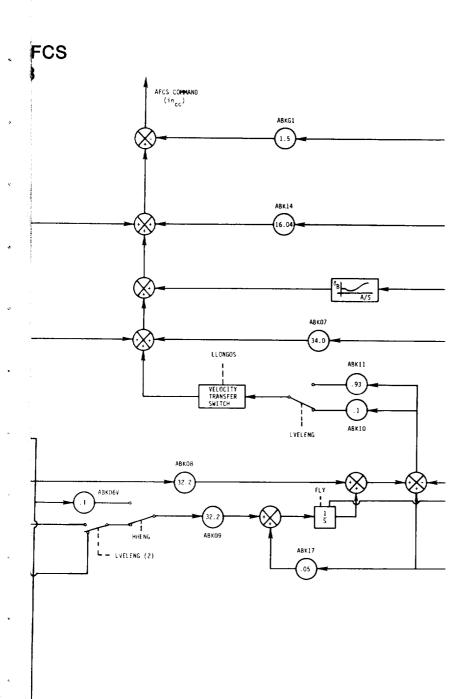


Figure 3-6

FEEDBACK COMMAND TO MIXING FEEDBACK FUNCTION AFCS LIMITING AFCS OUTPUT PFCS SHAPING (AFCS ON/OFF) CONTROL REFERENCE POSITION COMMAND MODEL **ADOCS PFCS DESIGN** Figure 3-7 TO AFCS COMMAND MODEL DERIVATIVE RATE LIMITER **AFCS** RESPONSE SENSITIVITY GAIN **PFCS** NONLINEAR COMMAND SHAPING DIGITAL FORCE COMMAND SIGNAL CONTROLLER -FORCE


17

was designed primarily for hover and low speed flight. Modifications were made for Phase 2 to include additional feedback and feed-forward paths required for forward flight control laws. Specifically, airspeed and lateral acceleration stabilization signals and cross-axis control paths were added for decoupling and automatic turn coordination.


In the longitudinal AFCS (Figure 3-8), linear velocity stabilization was provided by a longitudinal ground speed signal for airspeeds below 40 knots and by a longitudinal airspeed signal for airspeeds above 45 knots. Switching between the two signals was transient-free.

The lateral AFCS was implemented for this experiment as indicated in Figure 3-9. In order to switch between a roll attitude command/lateral velocity stabilization system (AT/LV) at low speed and a roll rate command/attitude hold system (RA/AT) for higher speed maneuvering flight, a selectable hybrid lateral AFCS was provided. The indicated gain changes were ramped over a five-second time period and were initiated by the following control mode logic. The switch to the rate command system was accomplished when airspeed exceeded 45 knots if roll rate was less than 1.0 deg/sec. If the pilot was holding a bank angle force command at this time, the aircraft would respond to satisfy the commanded roll rate. In order to minimize switching transients when decelerating in a turn, logic delayed switching to an attitude command system below 40 knots until bank angle was less than 3.0 degrees and roll rate was less than 1.0 deg/sec.

A cross-axis command path to the directional AFCS was also provided (Figure 3-10); the commanded bank angle was used to calculate a yaw rate command as a function of airspeed to provide for automatic turn coordination. As indicated in Figure 3-10, the selectable Turn Coordination Mode in the directional AFCS was achieved by a combination of integral-plus-proportional lateral acceleration feedback, roll rate feedback, and the yaw rate command feed-forward path. If selected, turn coordination was activated automatically when airspeed exceeded 50 knots and a roll rate was commanded by a lateral force input. While Turn Coordination was operating, the Heading Hold function was dis-Turn Coordination remained On, and Heading Hold Off, until the aircraft was commanded to a bank angle of less than 3.0 degrees and both roll rate and yaw rate were less than 1.0 deg/sec. Heading Hold stabilization was provided full-time, if selected, and Turn Coordination disengaged for airspeeds below 50 knots. However, during a decelerating turn maneuver from forward flight, the Heading Hold Mode would not engage until the above requirements on roll rate, yaw rate, and roll attitude were satisfied.

Substitute of the Contract

 $\pmb{\delta}_{\scriptscriptstyle B} \ \text{ vs a/s}$

A/S (kts)	δ ₈ (in)	SLOPE
-40	. 3124	0
40	. 3124	0134
51	. 165	0
60	. 165	. 003
65	.18	. 027
80	. 588	. 0207
94	. 88	.0117
100	. 95	. 00625
108	1.0	. 0058
120	1.07	.00165
140	1.103	0

O VS A/S

A/S (kts)	e (rad)
-40	. 094
40	. 094
58	.046
80	.044
100	.028
140	048

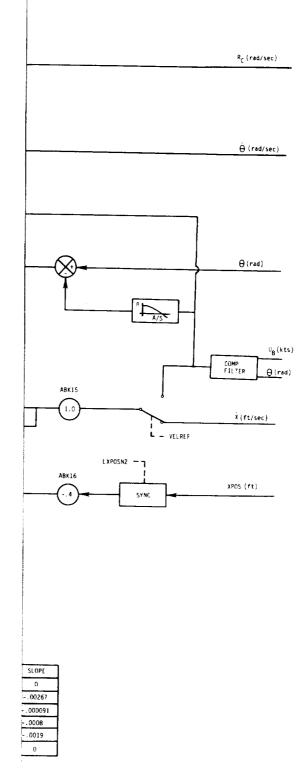
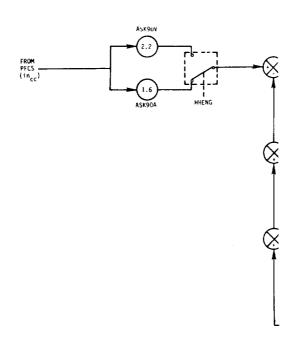
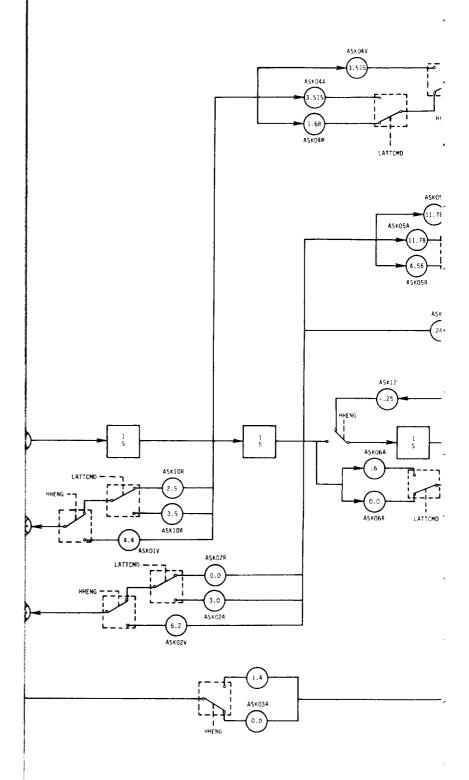



Figure 3-8

ı		


FOLDCUT FRAME

OF POOR QUALITY

ADOCS LATERAL AFCS ACC/AFCS PHASE 2B

ECLOQUI FRAME 2

i			

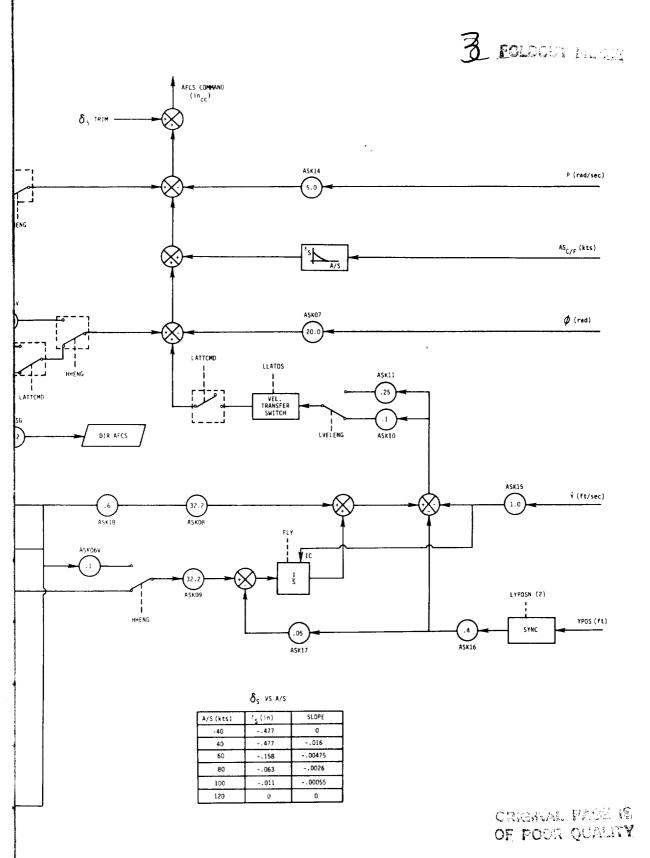
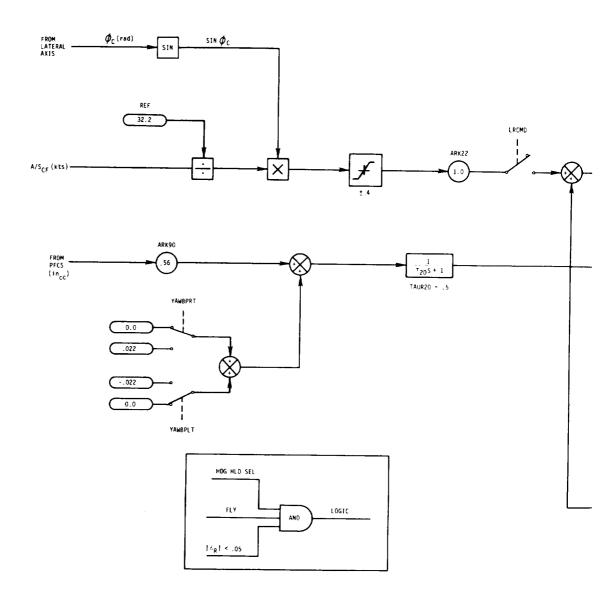
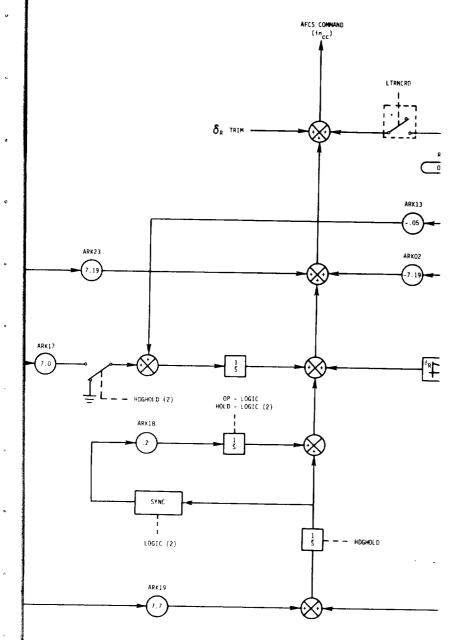



Figure 3-9

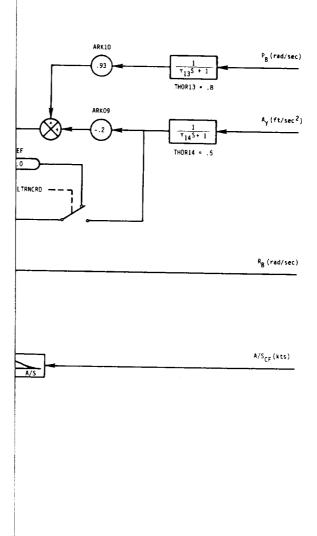

į		

CRIGHTAL FROM S OF POOR QUALITY

8- VC 1/

CS DIRECTIONAL AFCS CC/AFCS PHASE 2B

 $\delta_{\text{R}} \text{ vs a/s}$


A/S (kts)	óg(in)	SL OPE
-40	055	0
40	055	0025
56	095	0
62	095	.004
67	075	.0078
80	.026	. 00345
100	. 095	.00185
120	132	0

EOLDOUT FRAME

7

1		

3 minument

OF FOUR HOLDS

Figure 3-10

ı		

The vertical AFCS (Figure 3-11) was modified to include gain scheduling as a function of airspeed for the altitude and altitude rate feedback paths to achieve tight altitude hold for Precision Hover Tasks and lower stabilization gains during high speed flight. Command model gains were also altered appropriately to provide the desired vertical response to control inputs at all airspeeds.

The attack helicopter mission dictates precise hover control to maintain horizontal position while executing Precision Hover and Bob-up Tasks. Accordingly, feed-forward and feedback paths were incorporated in the longitudinal and lateral AFCS control laws to provide a pilot-selectable Hover-Hold Mode. Figures 3-8 and 3-9 show the longitudinal and lateral AFCS as implemented for this experiment. Blending between the Hover-Hold Mode and other control modes is accomplished by transient-free changes in the structure and gains used in the feed-forward portion of the longitudinal and lateral AFCS control laws. Hover-Hold Mode provides a velocity-command system with high gain velocity stabilization with or without position feedback. Longitudinal and lateral position reference signals used in the position feedback are derived from groundspeed signals. Hover-Hold Mode can only be selected if both longitudinal and lateral groundspeeds are less than 5 ft/sec and if the pilot has selected either the hover or bob-up mode of the IHADSS display symbols. Once selected, the Hover-Hold Mode remains active if longitudinal groundspeed does not exceed 25 ft/sec. With the Position-Hold enabled, Hover-Hold logic synchronizes position error to establish a new longitudinal or lateral ground reference position when a nonzero velocity is commanded by the pilot in that axis. Automatic position-relock occurs in each axis when ground speed in that axis is less than 2 ft/sec.

For forward flight, the same hybrid system for the longitudinal and lateral AFCS was available as that reported in Reference 3. This hybrid system was implemented to provide automatic blending of control laws as follows:

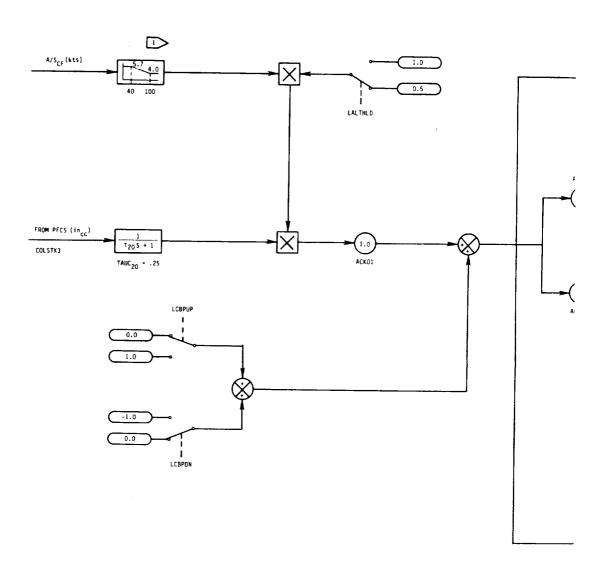
- 1) Longitudinal: pitch attitude command/groundspeed stabilization for low speed and pitch attitude command/airspeed stabilization at high speed.
- 2) Lateral: Roll attitude command/groundspeed stabilization for low speed and roll rate command/roll attitude stabilization at high speed.

3.3 VISUAL DISPLAY AND VISUAL AIDS

Since the ADOCS mission is to be flown at night or in adverse weather conditions or both, as well as in VMC, it is necessary to consider not only the effects of the controller and SCAS characteristics, but also the effect on handling qualities of the pilot's night-vision aids. For this experiment, flight

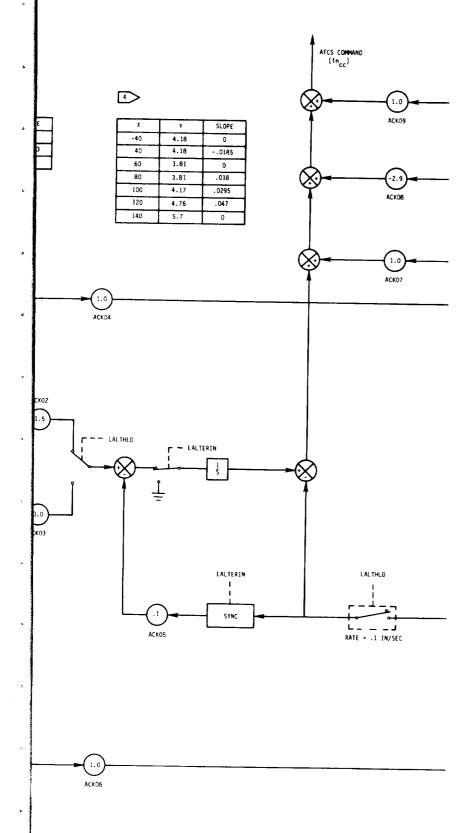
ı		

ORIGINAL PAGE IS

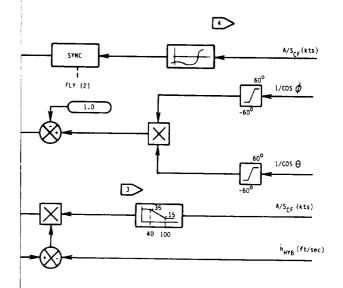

X	Y	SLOPE
-40	5.7	0
40	5.7	0283
100	4.0	0

2

	V	SLOPE
-40	.35	0
40	. 35	0047
100	. 07	0


3

X	Y	SLOP
-40	. 35	0
40	. 35	003
100	. 15	0


ADOCS ACC/A

	. ,	,*,* * . <i>y</i>		
ı				

VERTICAL AFCS FCS PHASE 2B

EOLDOUT FRAME 2

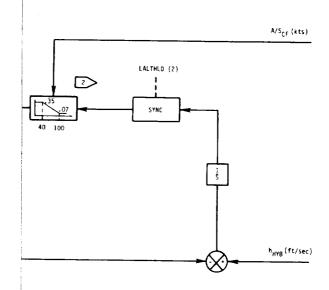


Figure 3-11 3 FOLDED AT PMANAL


1		

under IMC was simulated using the Honeywell Integrated Helmet and Display Sight System (IHADSS). Computer generated symbols, similar to those used in the AH-64 Apache Pilot Night-Vision System (PNVS), were superimposed on a 30° by 40° monochromatic image of the terrain board and presented to the pilot on the helmet-mounted display (HMD). This imagery, slaved to the pilot's head movements in azimuth and elevation and driven by aircraft motion parameters, provided the only visual cues available to the evaluation pilot. The pilot's line of sight is tracked with a helmet-mounted sight (HMS) that provides closed-loop command signals to point the terrain-board camera which simulates the turret-mounted night-vision sensor. the HMD is coupled to the pilot's head motions, he is able to scan a wide field-of-regard without being constrained to a head-down or look-forward position. Figure 3-12 shows the HMD and one of the sight-sensing units, used to track the head motions, behind the pilot.

The pilot-selectable display modes, which are used to meet the operational requirements for various attack helicopter mission tasks, are:

- 1) <u>Cruise</u>: high-speed level flight en route to the forward edge of the battle area
- 2) <u>Transition</u>: low-speed NOE maneuvers, such as dash, quick stop, and sideward flight
- 3) Hover: stable hover with minimum drift
- 4) <u>Bob-up</u>: unmask, target acquisition, and remask maneuvers over a selected ground position

A unique feature of this experiment was the capability to easily evaluate the effect of VMC and IMC on pilot ratings and task performance. IHADSS was installed at both simulation facilities for IMC simulation. VMC displays were simulated during Phase 1 using the Boeing four-window, wide angle field-of-view television display system, and at NASA-Ames using a four-window, computer generated image display system.

4.0 CONDUCT OF EXPERIMENT

4.1 FACILITY DESCRIPTION

Five piloted simulation experiments were conducted as part of the ACC/AFCS study. Three simulations were completed during Phase 1 at the Boeing Vertol Flight Simulator Facility, and two were conducted during Phase 2 at the NASA Ames Vertical Motion Simulator (VMS). The following sections describe these two simulator facilities.

4.1.1 Boeing Vertol Flight Simulator Facility

Major elements of the Boeing Vertol Simulation Facility shown in Figure 4-1 include:

- o Single-seat cockpit cab mounted on a six-degree-of-freedom limited-motion base.
- o Conventional helicopter flight and performance instruments, and a SCAS mode select panel.
- o Conventional helicopter collective and directional pedals implemented as small-displacement force controllers, and various 4-axis side-stick controllers. An adjustable mounting bracket attached to the armrest allowed orientation of each 4-axis side-stick controller for comfort and to minimize inter-axis control inputs. A forward tilt of six degrees and a counter-clockwise rotation of five degrees relative to the armrest was selected.
- O Xerox Sigma 9 digital computer to drive the entire simulation. The Sigma 9 was programmed with a UH-60 full-flight envelope math model and easily variable SCAS configurations for this study.
- o Four-camera wide-angle television/terrain model visual display system for the simulation of terrain flight under either: visual or instrument flight conditions.

A complete description of the Boeing Vertol Simulator motion system, including maximum accelerations and displacements, is included in Table 4-1.

VMC Display

The Boeing Vertol Simulator has a four-window cockpit visual display covering a field-of-view of 125° x 75°. The outside-world scene viewed by a fisheye objective lens (located at the bottom of the optical probe) is first demarcated into four separate channels of video information, each with a 38° x 29° field of view. Individual video signals are then passed to

SMALL MOTION FLIGHT SIMULATION FACILITY WITH MULTI-WINDOW VISUAL DISPLAY **BOEING VERTOL**

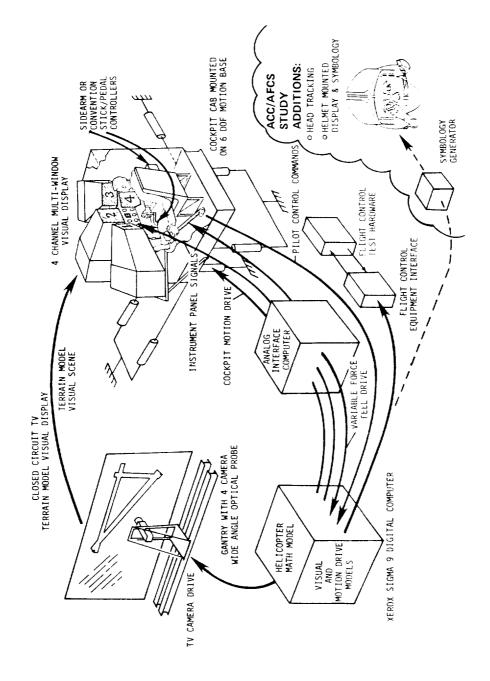


Figure 4-1

Table 4-1

BOEING VERTOL SIMULATOR MOTION LIMITS

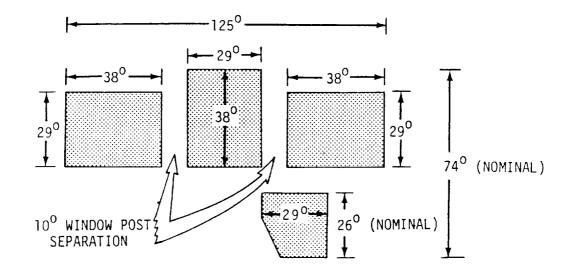
AXIS		TRAVEL LIMITS	RATE LIMITS WITH ZERO ACCELERATION	ACCELERATION LIMITS FOR ZERO RATES
HEAVE 2	N	±2.5 IN	±26 IN/SEC	±1.5g
LUNGE	×	±2.5 IN	±41 IN/SEC	±0.62g
SWERVE	>	±2.5 IN	±26 IN/SEC	±0.52g
PITCH	Φ	±13 DEG	±1.2 RAD/SEC	±7.0 RAD/SEC ²
ROLL	-0-	±9.5 DEG	±1.7 RAD/SEC	±7.0 RAD/SEC ²
YAW	>	±9.5 DEG	±2.7 RAD/SEC	±11.7 RAD/SEC ²

their respective TV monitors in the cockpit, which the pilot looks at through Fresnel collimating lens "windows". Collimation of the monochromatic 525-line black-and-white TV images ensures realism in the out-of-the-window picture because the virtual image produced by each Fresnel window appears to be infinitely distant from the pilot's eye. Roll and yaw articulation of the out-of-the-window visual scene is unlimited, but pitch is restricted to 18° nose up and 37° nose down. Figure 4-2 is a photograph which shows a typical scene presented to the simulator pilot on final approach to an airport. The field of view provided to the pilot in the Boeing Vertol Simulator is also indicated on Figure 4-2.

IMC Display

A simulated FLIR image with superimposed symbology (Figure 4-3) was presented to the pilot for IMC flight by the Honeywell Integrated Helmet and Display Sight System (IHADSS) including head tracker. Components of the IHADSS system are illustrated in Figure 4-4.

The FLIR sensor signal was generated using the center-window video channel to provide a 30° x 40° outside world field-of-view display. The FLIR image, as provided by the camera probe, is slaved to the pilot's head movement by the helmet-mounted sight system. Thus the image seen by the pilot depends both on the aircraft Euler angles and the pilot's head location. A Gaertner Symbology Generator was utilized to overlay computer generated symbols on the video picture. This symbology was superimposed on the video channel electronically, thereby providing excellent resolution of the symbology.


Terrain Board

The terrain board developed for the first phase of the simulation is shown in Figure 4-5. The model board is a 200:1 scale model which includes a runway with evenly space obstacles for a slalom task, a tree-lined river-bed canyon for NOE maneuvers, and various locations for bob-up and lateral jink (sideward) maneuvering. The tasks used for the piloted evaluations are explained in detail in the Section 4.3.

4.1.2 NASA-Ames Vertical Motion Simulator (VMS)

Ames Research Center's Vertical Motion Simulator (VMS) Facility (Reference 4) has a six-degree-of-freedom moving-base with 60 feet of available vertical travel (Figure 4-6). The Ames cab was configured to be similar to the Boeing cockpit. In addition to the IHADSS tracking hardware and the right-hand SSC installation, the Ames cockpit was modified to accommodate a left-hand SSC for vertical control. Both SSC mountings were adjustable to provide a comfortable orientation which minimized interaxis cross-coupling of control inputs. Optimized controller orientations are presented in Section 6.2.1.

APPROACH TO AIRPORT SCENE - B.V. SIMULATOR

COCKPIT WINDOW FIELD OF VIEW

FINAL APPROACH TO AIRPORT

Figure 4-2

ORIGINAL PACE IS OF POOR QUALITY

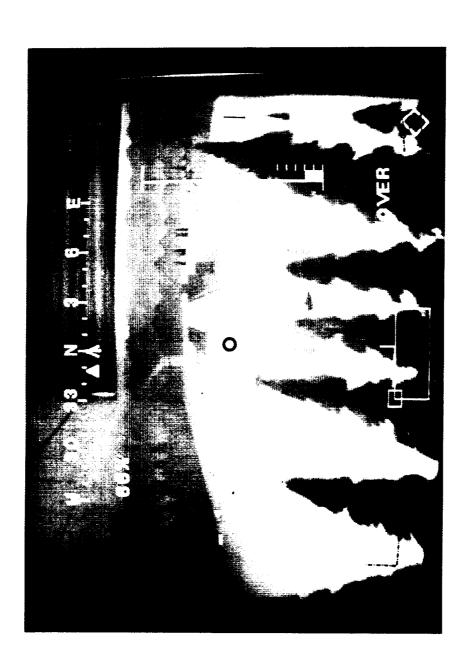


Figure 4-3

VISUALLY COUPLED SYSTEM FOR ATTACK HELICOPTERS

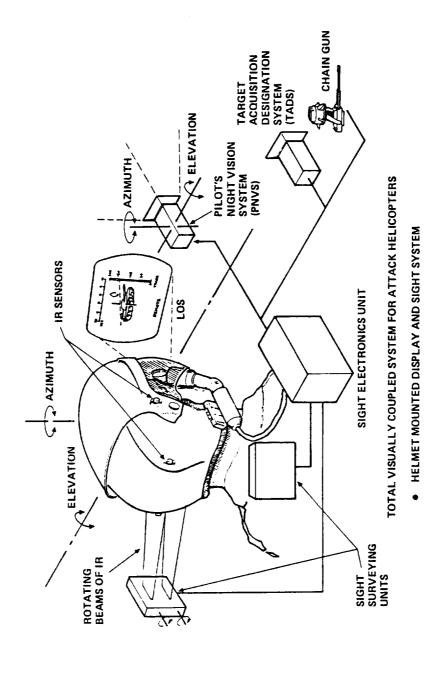


Figure 4-4

• TADS • CHAIN GUN

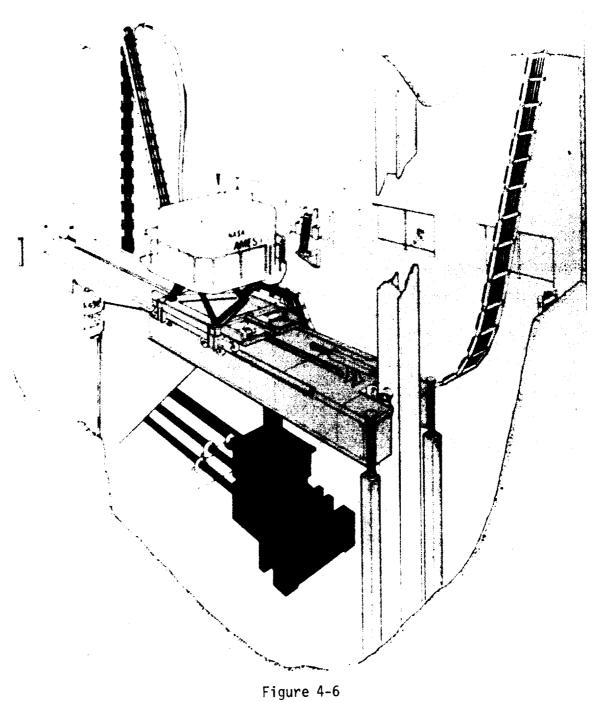

PNVS

Figure 4-5

NASA-AMES VERTICAL MOTION SIMULATOR

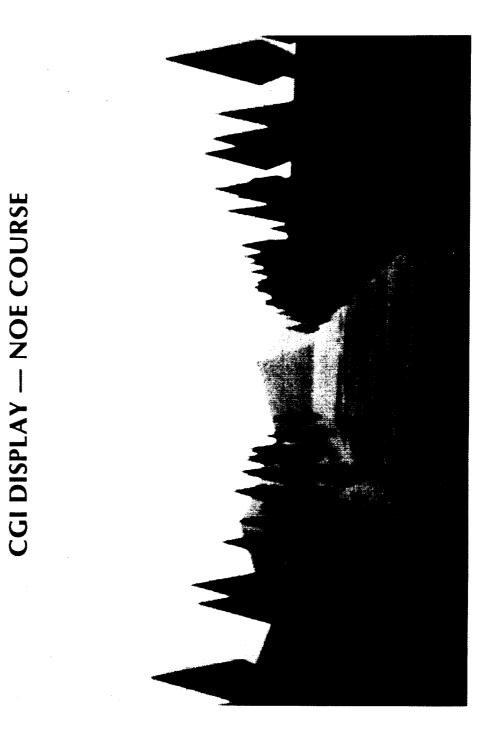
ORIGINAL PAGE IN OF FOOR QUALITY

VMC Display

For the VMC portion of the evaluation performed during Phase 2 at NASA Ames, the visual scene was simulated using a four-window, color computer generated image (CGI) display system. Two data-bases were available with the CGI. One display contained an NOE course designed as a replica of the terrain board at Boeing Vertol. Figure 4-7 illustrates the CGI NOE course as seen through the center display window. Though the display appears to lack detail, the pilots found the perceived visual cues to be useful for NOE flight. In addition to the NOE data-base, an airport runway scene (Figure 4-8) was also available to perform Slalom and Approach-to-Hover Tasks. Figure 4-8 also shows the field of view provided by the windows in the Ames Cockpit.

IMC Display

During Phase 2B, when handling qualities were evaluated under IMC, the visual scene was simulated using a 300:1 scale terrain board and camera visual system. The same NOE course and airport runway with obstacles were constructed on a model board to perform identical tasks thereby allowing direct comparison of Phase 1 and Phase 2 data. The video signal from the camera probe visual system which simulated the forward-looking infrared (FLIR) sensor signal was mixed optically with the computergenerated symbols and presented to the pilot on the HMD.


4.2 AIRCRAFT MATH MODEL

During both phases of the ACC/AFCS study, simulation of the baseline flight vehicle (the UH-60A) was provided by a generic single main rotor helicopter math model. Both simulations included six-degree-of-freedom rigid body dynamics as well as main and tail rotor RPM degrees of freedom configured to represent the Black Hawk helicopter. Also included in both simulations were a canted tail rotor, control mixing, a movable programmed stabilator, and UH-60A fuselage aerodynamics. The NASA Ames model which is described in detail in References 5 and 6 contained three degree-of-freedom tip-path plane dynamics which were not included in the Boeing Vertol model.

Implementation of the UH-60A models was performed using data from References 7, 8 and 9. The Boeing Vertol model was first correlated with respect to flight test data from Reference 9. Figure 4-9 illustrates the good correlation obtained between UH-60A flight test data and simulation results for a specific set of trim conditions. A test pilot who flew both the production UH-60A and the Boeing simulator found no major handling qualities discrepancies and noted many similarities including inherent coupling characteristics.

Validation of both basic helicopter simulation models at Boeing Vertol and NASA-Ames was accomplished by a comparison of model

37

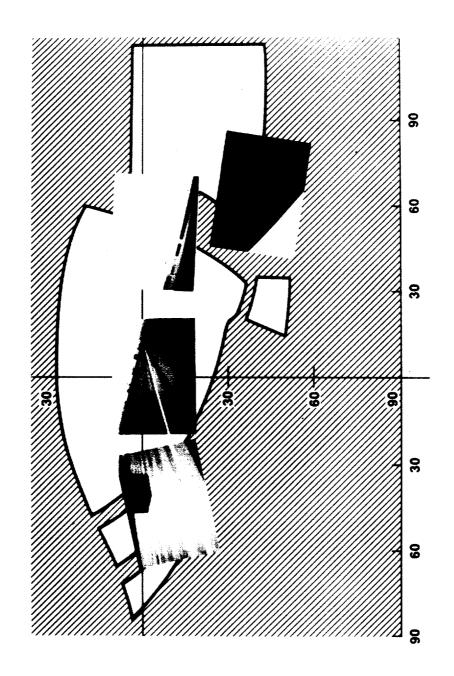


Figure 4-8

UH-60A SIMULATION MATH MODEL CORRELATION WITH FLIGHT TEST DATA

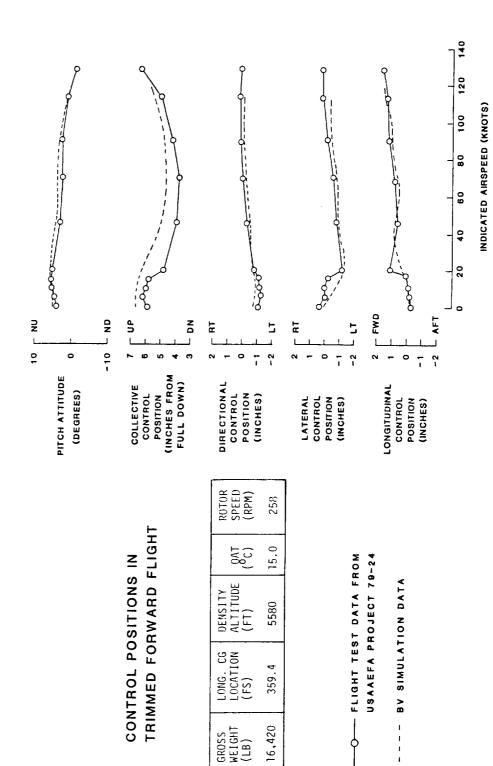


Figure 4-9

trim data and small-perturbation, six-degree-of-freedom (6-DOF) stability and control derivatives. A complete listing of trim sheets and 6-DOF small perturbation stability derivatives generated by the Boeing Vertol simulation are contained in Appendix B. Cockpit control positions and helicopter attitude trim states for the simulations are compared in Figure 4-10. In addition to the comparison of static trim conditions, dynamic responses from both simulations were compared and good correlation was obtained.

Control Law Implementation

Control law modelling during Phase 1 was completed using a Boeing Vertol proprietary program called "VECEX". This program emulates dynamic system elements, such as lags, integrators, summers, in a manner similar to that used when programming an analog computer. Gains, time constants, and even control laws can be easily altered without requiring the program to be recompiled each time a change is made. VECEX uses a modular approach to control law modelling where a set of predefined mathematical algorithms, each defining standard control law elements are repeatedly called from the main routine. The use of this modular concept, where nodes are defined, provides a one to one correspondence between VECEX and the system functional block diagrams.

Design concepts for the ADOCS Demonstrator include a digital flight control system based on the H-5301 microprocessor. Coding similar to that of VECEX is used to minimize transition problems. A major difference between the VECEX used in Phase 1 simulations and the H-5301 coding is the method of arithmetic calculation; VECEX being floating point and the H-5301 being fixed point. To study the effect of fixed point arithmetic on the ADOCS control laws, a revised VECEX was developed featuring fixed point computation as well as variable computational time cycles. This new VECEX program used algorithms which duplicated the ones used by Honeywell in coding the 5301.

Simulations were conducted at Boeing Vertol using the fixed point VECEX program to determine scaling and time-frame requirements for the ADOCS control laws. Resolution problems which occurred because of scaling implementation were corrected prior to final control law definitions made to Honeywell. Sections of the control laws, or modules, were identified as to their time-frame constraints. For example, the PFCS is run at 40 Hz where many of the AFCS modules are run at 25 Hz.

Control laws for Phase 2 simulations at NASA-Ames were implemented using FORTRAN subroutines. Though this method did not allow the amount of flexibility that VECEX did, it proved to be reliable and time expedient.

UH-60A SIMULATION MATH MODEL CORRELATION

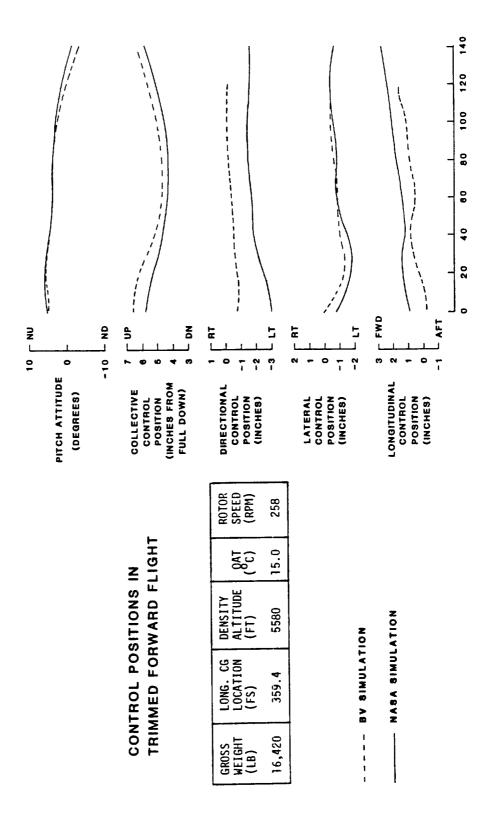


Figure 4-10

4.3 EVALUATION TASKS

Evaluation of total system (pilot, controllers, SCAS, displays) performance was accomplished using a variety of standardized tasks performed under both VMC and IMC. These tasks, are divided up into three main categories: 1) low-speed tasks, 2) high-speed tasks, and 3) transition tasks. During the performance of these tasks, no secondary duties (i.e. armament, communication, or navigation system management) were required of the pilot. The following paragraphs describe each task.

4.3.1 Low-Speed Tasks

Figure 4-11 illustrates the low-speed tasks used for evaluation of handling qualities during Phase 1 and Phase 2 simulation periods. The Acceleration/Deceleration Task was performed only for Phase 1, and the Precision Hover Task was added for Phase 2 simulations. Effects of larger motion cues and a simulated gust environment made this task important for defining control response shaping for precision hover. The following discussion defines each low-speed task in detail.

30-Knot Slalom

This low-speed lateral avoidance maneuver requires the pilot to fly around 50 ft. high obstacles placed 400 feet apart on the runway centerline. From a hover at 30 feet AGL, the pilot accelerates the helicopter to an airspeed of 30 knots. The pilot appropriately controls bank angle and heading to coordinate turns around the obstacles while maintaining a constant airspeed of 30 knots and an altitude of 30 feet throughout the maneuver.

Acceleration/Deceleration (Phase 1 only)

A forward translation of the helicopter that is performed while holding a lateral ground track parallel to the runway. From an initial hover position offset from the runway, the pilot accelerates the helicopter to a forward speed of 50 knots, followed by a deceleration maneuver to arrive at a desired hover position near the last runway obstacle. The pilot attempts to hold lateral ground track and altitude, as well as complete the task in minimum time.

Nap-of-the-Earth (NOE)

The NOE is a multi-axis control task requiring the pilot to fly through three legs of a narrow canyon (125 feet wide and 50 feet high), having two sharp turns (70° left and 80° right) and two obstacles (50 feet high), to reach a termination hover area. During the first leg of the course, an acceleration to 50 knots is performed before crossing a road, followed by a deceleration to 25 knots while maintaining a lateral ground

LOW-SPEED EVALUATION TASKS

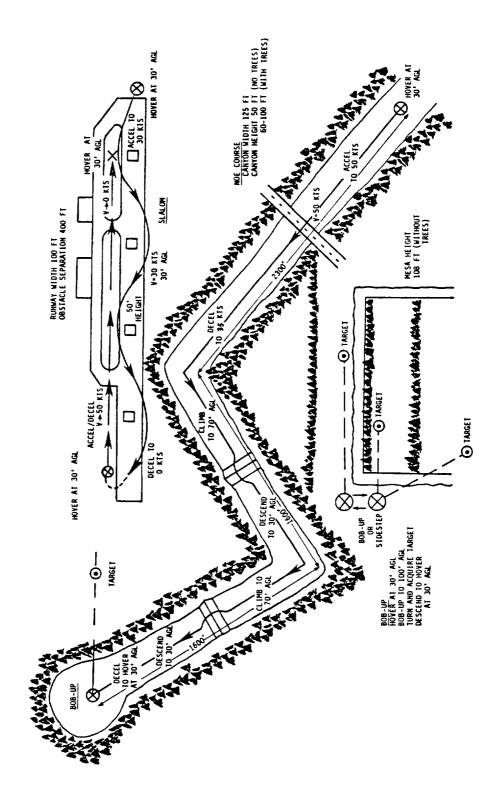


Figure 4-11

track and an altitude of 30 feet. After executing a coordinated left turn to enter the second leg, the pilot must control altitude to fly over an obstacle and remask to 30 feet in as short a time as possible while attempting to maintain an airspeed of 25 knots. Following a sharp right turn, the pilot flies over a second obstacle, controls altitude back to 30 feet, and decelerates to a hover point in the termination area.

Bob-Up

The Bob-up is a multi-axis task consisting of a vertical unmask maneuver from 25 feet to 100 feet, a heading turn to acquire a target, and a vertical remask to the original hover height. The pilot attempts to hold a fixed horizontal ground position throughout the vertical unmask/remask and heading turn maneuvers.

Precision Hover (Phase 2 only)

This precision maneuvering task requires the pilot to descend from a 30 foot altitude to a 5 foot hover height while simultaneously translating longitudinally about 15 feet to position the helicopter close to a rock located in the center of the Bob-up area. A Precision Hover under VMC was maintained by positioning the rock in the lower right-hand window. Under IMC the rock located in the center of the Bob-up area was aligned with a marker on the canyon wall.

4.3.2 High-Speed Tasks

In addition to the low speed tasks, high-speed Slalom Tasks were defined for the Phase 2 simulation as illustrated in Figure 4-12. The 140-Knot Slalom Task could not be evaluated under IMC during Phase 2B since the maximum velocity of the camera probe was limited.

90-Knot Slalom

The slalom is a high-speed lateral avoidance task which requires the pilot to maneuver around 50 foot high obstacles placed 1000 feet apart on the runway centerline while maintaining a constant 90 knot airspeed, a 30 foot AGL altitude, and a specific lateral ground-track determined by runway width. Typical roll rates of 20 degrees/second and roll attitudes of 35 degrees were required to execute this maneuvering task.

140-Knot Slalom

This task was performed similar to the 90-Knot Slalom Task except that the pilot flies between every other obstacle (2000 foot separation) to accommodate the higher speed. Higher bank angles (45 degrees) and roll rates (25 degrees/sec) were required to perform the Slalom Task at 140 knots.

HIGH SPEED AND TRANSITION TASKS

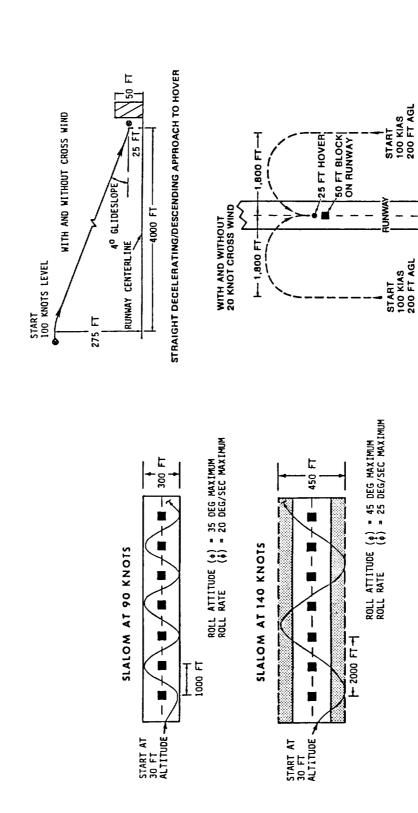


Figure 4-12

TURNING/DECELERATING/DESCENDING APPROACH TO HOVER

4.3.3 Transition Tasks

Approach-to-Hover Tasks (Figure 4-12) were included to evaluate multi-axis maneuvering during transition from forward to low speed flight. This task enabled evaluation of control law switching and ability to precisely arrive at a desired hover location.

Straight-in approach to hover

This task started with the helicopter in level flight at 100 knots and at 275 ft AGL. The pilot was required to descend and decelerate on a 4° glide slope over a horizontal distance of 4000 ft to a 25 ft hover point in front of a 50 ft obstacle.

Turning approach to hover

This task also emphasized forward flight to low-speed transition, and required the pilot to perform a left or right descending, decelerating turn from 100 knots and 200 ft AGL and arrive at a 25 ft hover in front of a 50 ft obstacle on the runway centerline.

4.4 PILOTS' EXPERIENCE SUMMARY

Seven simulation test pilots participated in the ACC/AFCS study. Their backgrounds include related simulation or flight test experience with side-stick controllers and/or exposure to IMC visual display systems. Table 4-2 presents the names of all the test pilots, their affiliation and experience, and in addition, summarizes their participation in flight hours for each simulation phase. Subsequent to Phase 1A activities, two evaluation pilots were given 3 hours of IHADSS flight training on the PNVS Surrogate Trainer at the U.S. Army Yuma Proving Ground to assess realism of the simulation and improve their proficiency with IHADSS. In addition, Pilot A who was the main pilot for these experiments was given familiarization flights in an UH-60A.

4.5 DATA COLLECTION AND ANALYSIS

Both pilot evaluation data and quantitative system performance data were collected. The pilot evaluation data consist of Cooper-Harper handling qualities ratings and tape-recorded pilot commentary. At the end of each evaluation run the pilot assigned a single numerical Cooper-Harper rating to the particular controller/SCAS/task combination under investigation. In addition, the pilot was asked to provide commentary to help identify those aspects of the system that most heavily influenced the rating. The quantitative system performance data consist of magnetic tape recordings of flight parameters relative to a reference hover position or desired flight path.

Table 4-2

SUMMARY OF EVALUATION TEST PILOTS' EXPERIENCE

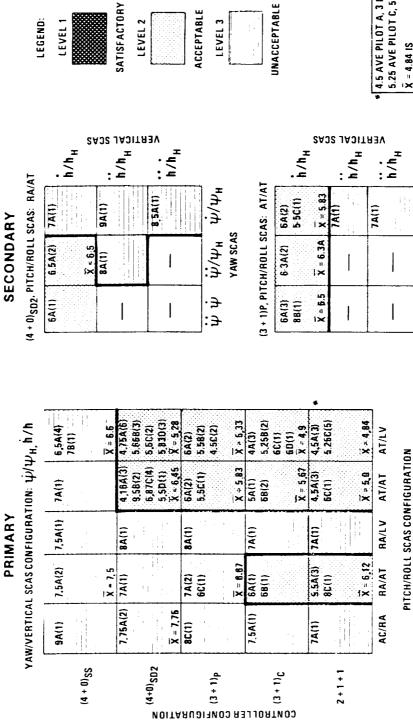
		FLIGH	FLIGHT TIME	RELATED E	RELATED EXPERIENCE	AC	C/AFCS	SIMULAT	ACC/AFCS SIMULATION HOURS	JRS
PILOT NAME	AFFILIATION	CHOORS	J. 1	SIDE-STICK	VISUAL		PHASE 1	_	PHASE	SE 2
		HELICOPTER FIXED WING	TOTAL	CONTROLLER DEVELOPMENT	DISPLAYS FOR IMC	1A	18	10	ZA.	28
A. L. Freisner	Boeing Vertol	3600(H) 2800(F)	6400	×	*×	45:45	32:25	31:00	32:40	3:35
S. Kereliuk	NAE-Canada	950(H) 6450(F)	7400	×	1	ı	ı	ı	13:30	I
R. Merrill	U. S. Army	2500(H) 700(F)	3200	×	×	7:10	ı	ı	1	ı
M. Morgan	NAE-Canada	450(H) 5600(F)	6050	×	ı	14:30	10:10	9:00	I	3:35
P. Morris	U. S. Army	1065(H) 2520(F)	3585	×	×	ı	13:50	ı	5:20	10:50
G. Tucker	NASA-Ames	2745(H) 1200(F)	3945	×	*×	14:05	11:45	15:00	14:05	11:55
J. Tulloch	Boeing Vertol	5000(H) 1000(F)	0009	×	ſ	I	1	1	ı	25:00

*IHADDS TRAINING ON PNVS SURROGATE TRAINER INCLUDED

Experimental results presented in Section 5.0 (Phase 1) and Section 6.0 (Phase 2) are based on an analysis of pilot ratings and comments. The results are summarized using averaged pilot ratings to define general trends and explain pilot qualitative comments. Time histories are also provided for specific runs to illustrate pilot/system performance.

Data Organization

In order to systematically investigate the large number of possible task/controller/SCAS combinations and to assist analysis of the results, all pilot rating data were organized into primary/secondary SCAS configuration matrices. primary configuration matrix consists of combinations of controller configurations, ie (4+0), (3+1) Pedal, (3+1) Collective, and (2+1+1), and pitch/roll SCAS configurations with a fixed directional and vertical SCAS configuration -- yaw rate command/heading hold and vertical rate command/attitude hold, respectively. An effort was made to evaluate all elements of the primary matrix for all tasks under both VMC and IMC. addition, two velocity command systems (one with velocity stabilization and the other with position hold) were also included in the primary matrix for the Bob-up Task. For each element of the primary matrix, a secondary configuration matrix was evaluated including variations of the yaw and vertical SCAS configuration for a fixed combination of controller configuration and pitch/roll SCAS configuration. Appendix C contains all pilot rating data for both Phase 1 and Phase 2 organized into primary/secondary matrices.


Figure 4-13 presents a typical matrix of data gathered for the NOE task and performed under IMC with the IHADSS. Each matrix element contains an average rating for each pilot who evaluated the particular configuration combination, as well as the number of test data points included in the average rating. A mean of the individual average ratings in each block is also calculated. Various levels of the handling qualities rating scale are shaded on the matrix to emphasize where the major change from acceptable to unacceptable occurs. It can be seen that Level 1 flying qualities were not achieved for the NOE Task under IMC for any controller configuration. The interaction of SCAS/ controller configurations can be determined from the matrix. An attitude command system achieved Level 2 ratings regardless of the stabilization type for all controller configurations with the exception of the 4-axis stiff-stick. A RA/AT system exhibited marginal Level 2 flying qualities for the (2+1+1) and (3+1) Collective configurations.

Secondary SCAS matrices are also shown on Figure 4-13. An improvement from Level 3 to Level 2 ratings occurred when a yaw acceleration command was implemented for directional control in

Figure 4-13

SAMPLE CONTROLLER/SCAS CONFIGURATION MATRICIES-NOE TASK

(IMC)

— h/h_H
ψ/Ψ_H ψ/Ψ_H
vaw scas

 $\dot{\psi}/\dot{\psi}$

* 4.5 AVE PILOT A, 3 DATA POINTS 5.25 AVE PILOT C, 5 DATA POINTS \bar{X} = 4.84 IS MEAN OF ALL DATA (8 DATA POINTS)

place of yaw rate command for the (4+0) MSI-SD2 and RA/AT combination. In contrast, the (3+1) Pedal and AT/AT combination degraded to a Level 3 rating when vertical acceleration command was used in place of vertical rate command.

4.6 OTHER EXPERIMENTAL CONSIDERATIONS

In order to maximize the number of pilot evaluations in a typical simulation session, the controllers used on the pilot's right- and left-hand side and the task performed by the pilot remained fixed for the entire session. Changes to the controller configuration were made during a session only after investigating a full spectrum of AFCS characteristics for that particular configuration. In general, (4+0) configurations were evaluated first, (3+1) second, and (2+1+1) last. Before each evaluation run, the pilots were told the command responsetype for each axis. They were not informed of the stabilization level in each axis or whether the automatic turn coordination feature was on or off. For the low speed tasks the pilots were given time to feel out the system before each data run, and for the high speed and transition tasks they were allowed to take a practice run, if desired.

Wind Shear and Turbulence Model

The Precision Hover and Bob-up Tasks were evaluated under a specified level of wind and turbulence to evaluate the effects on system and pilot performance. The Precision Hover Task was performed both with and without a 20 knot headwind, and the Bob-up Task was evaluated both with and without a wind shear of 6 knots at 20 ft increasing to 50 knots at 200 ft. The vertical turbulence intensity simulated for both tasks was 10% of the mean wind speed measured at 20 ft AGL, and the horizontal turbulence intensity was 20% of the mean wind speed measured at 20 ft above ground level (AGL), and the horizontal turbulence intensity was 20% of the mean wind speed measured at 20 ft AGL. This low-altitude turbulence model is described in detail in Reference 10.

5.0 PHASE 1 SIMULATION RESULTS

Three piloted simulations (Phases 1A, 1B, and 1C), were conducted at Boeing Vertol to evaluate the control law and display concepts and alternate controller configurations developed from the Phase 1 literature review and analysis as reported in Volume 2 and Reference 11). Phase 1 simulations concentrated entirely on the low-speed portion of the scout/attack helicopter mission and utilized a total of 204 piloted flight hours. Experiments to examine high-speed and transition flight were conducted during Phase 2 (References 3 and 12) and results are reported in Section 6.0.

A simulation experiment flow diagram for Phase 1 which illustrates controller/SCAS evaluation and development activities is given in Figure 5-1. Initial Phase 1A activity was spent validating the UH-60A simulation, defining tasks, and familiarizing evaluation pilots with the Boeing Vertol simulator and The majority of remaining Phase 1A simulation time the IHADSS. was dedicated toward side-stick controller development, ie., (1) the selection of proper command response sensitivities in all axes, and (2) the evaluation of four candidate side-stick controller configurations having different force/deflection characteristics. Based on results of Phase 1A, a modified 4-axis small-deflection controller (MSI-SD2) was designed and manufactured for subsequent Phase 1 simulation (Phases 1B and 1C). Using the modified 4-axis side-stick controller, Phases 1B and 1C investigated the interactive effects of various controller configurations and command/stabilization systems on handling qualities. As described in Section 4.5, the investigation was performed considering variations of pitch and roll command/stabilization characteristics in a primary SCAS/controller configuration matrix and vertical and directional SCAS configuration variations as part of a secondary matrix.

5.1 CONTROLLER DEVELOPMENT

In addition to IHADSS familiarization, Phase 1A activity accomplished controller development for follow-on simulation periods. Acceptable control response sensitivities were defined for the generic CMD/STAB systems, and four candidate 4-axis side-stick controller configurations based on the Phase 1 literature review and analysis (Volume 2) were evaluated. Results are discussed below according to two major topics: (1) selection of control response characteristics, and (2) evaluation of controller force/deflection characteristics.

5.1.1 Selection of Control Response Characteristics

Before different controller configurations (i.e. (4+0), (3+1), or (2+1+1)) were evaluated, a set of control response characteristics for the four control axes and the generic system types described previously in Section 3.2 were defined through a series of mini-experiments. Response time constants and

PHASE 1 SIMULATION FLOW DIAGRAM

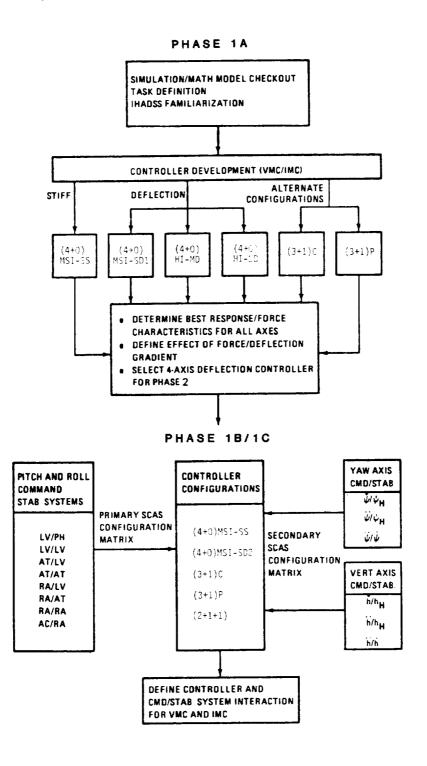


Figure 5-1

sensitivities were varied within the command model and effects on controllability evaluated. A set of best response values was selected, initially for the stiff controller, and the same set of values was then evaluated using the three alternate 4-axis deflection controllers. Additional variations were made about the nominal response values to define the effects on pilot ratings and task performance.

This control response selection process is depicted by Figure 5-2. Roll attitude sensitivities were evaluated for the 30-Knot Slalom maneuver with the various 4-axis controllers. Pilot comments indicated a range where the roll control sensitivity was too high producing a tendency to overcontrol. In contrast, low roll attitude sensitivities less than 4.0 degrees/lb. resulted in heavy control forces and sluggish response characteristics. The best pilot ratings were obtained when all controllers had a roll attitude sensitivity of approximately 6.0 degrees/lb. Figure 5-2 also shows that pilot ratings of the large-deflection controller were generally degraded compared with the other configurations, and demonstrated a rapid degradation as control response sensitivities were reduced and/or control forces became heavy. The same tendency to degrade quickly was evident with the stiff-stick. The small-deflection controller was much more tolerant to changes in sensitivity as indicated by the relatively shallow slope in the high sensitivity range. Best ratings were achieved with the small-deflection and medium-deflection controllers in the range from 5.5 to 7.5 degrees/lb.

The same procedure was followed to select pitch/roll rate and longitudinal/lateral velocity response characteristics. A nominal roll rate command sensitivity was determined as illustrated by Figure 5-3. Pilot rating data for the NOE Task are presented versus roll rate sensitivity. A similar trend of data is seen relative to pilot rating data presented for variations of attitude command sensitivity (Figure 5-3). rate sensitivities above 4.5 deg/sec/lb tended to be overly sensitive causing the pilot to PIO. Sensitivities below 2.5 deg/sec/lb caused pilot ratings to rapidly degrade due to undesirable high control forces. A roll rate sensitivity of 3.5 deg/sec/lb was chosen since it provided best ratings. data shown on Figure 5-3 also indicate the various pitch sensitivities used in this evaluation. As indicated, the variation in pitch sensitivities is small compared to the variation in the roll sensitivities being investigated. fore pitch axis variations were not considered significant.

Table 5-1 summarizes the final selected response characteristics for all generic command system types. Except for the acceleration command response, characteristics are approximated by an equivalent first-order system response. The pitch and

CONTROL RESPONSE SELECTION PROCESS

TASK: 30 KNOT SLALOM SCAS CONFIGURATION: AT/LV VMC

DATA FROM ALL PILOTS

- (4+0) MSI-SS(4+0) MSI-SD1(4+0) HI-MD
- **★** (4+0) HI-LD

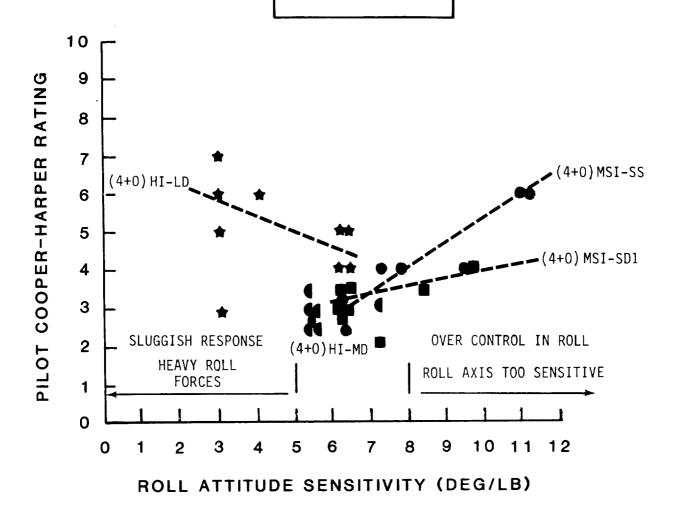


Figure 5-2

SELECTION OF ROLL RATE COMMAND SENSITIVITY

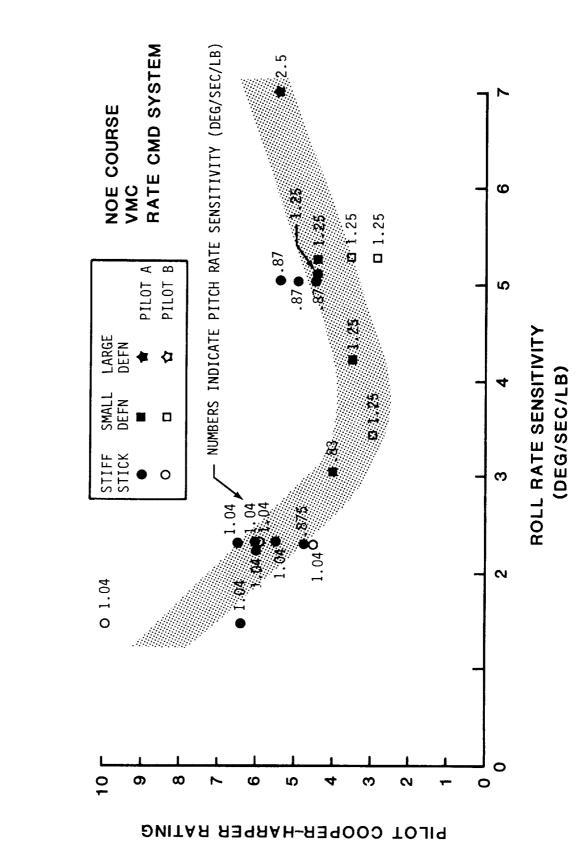


Figure 5-3

55

SELECTED CONTROL RESPONSE CHARACTERISTICS

RESPONSE/POUND (SENS) AND TIME CONSTANT (TC)

			ANGU	ANGULAR RESPONSE	سِ ا				LINEAR RESPONSE	ONSE	
		ACCE	ACCEL (AC)	RATE (RA)	(A)	ATTITUDE (AT)	DE (AT)	ACCEL (AC)	. (AC)	VELOCITY (LV)	(I_V)
51 X 4	20 20 20 20 20 20 20 20 20 20 20 20 20 2	INITIAL SENSITIVITY (deq/sec ²)	INITIAL STATE SENSITIVITY SENSITIVITY (deq/sec ²) (deg/sec ²)	SENSITIVITY (deg/sec)	TC (sec)	SENS (deg)	TC (sec)	INITIAL SENSI- TIVITY (deg/sec ²)	STEADY STATE SENSI- TIVITY (ft/sec ²)	SENSI- IIVITY (ft/sec)	TC (sec)
LONGITUDINAL		4.0	0.2	2.0	0.4	4.5	1.2	1	-	12.0	3.0
LATERAL		10.01	1.0	3.5	0.25	0.9	1.2	-	1	16.0	4.0
	SIDE-STICK	2.2	1.8	2.4	0.4	1	1		4 2		
DIRECTIONAL	PEDALS	9.6	0.44	1.4	09:0	1	1				
VERTICAL	SIDE STICK							+5.0	4.0	+6.5 -9.0	0.60
NMOO	COLLECTIVE			N A				11.6	1.3	12.0	0.50

Table 5-1

roll acceleration response system was designed to provide a short-term rate response, with a long-term acceleration response to automatically eliminate steady control forces required for helicopter trim. This trim function was accomplished with a low-gain integral feed-forward path. Higher integral feed-forward gains were used in the yaw and vertical axes to obtain purer acceleration command responses as indicated in Table 5-1 by the ratio of steady-state to initial response.

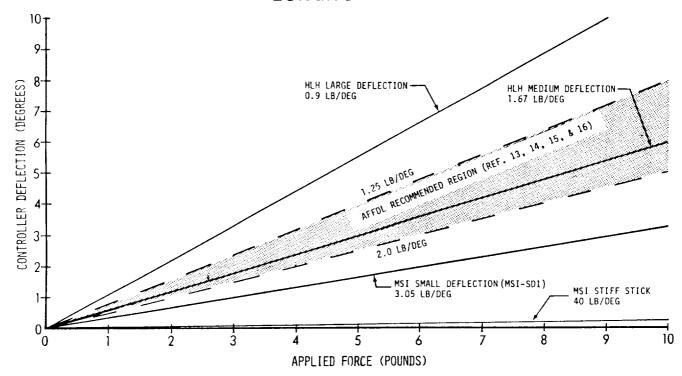
To provide acceptable response characteristics for small precision control tasks and large maneuvers, as well as to minimize the effect of inadvertent inter-axis control inputs, non-linear control response shaping (Figure 5-4) was used. Each force command signal was passed through a shaping function that allowed variation of deadzone, initial sensitivity gradient, breakpoint, and high sensitivity gradient. Pitch, roll, and yaw control response shaping was symmetrical, whereas the vertical control shaping was asymmetric with a smaller breakout and higher response sensitivity in the down direction. Shaping functions employed during Phase 1 simulations are presented in Figure 5-4. These shaping functions were modified, however, during Phase 2 simulations at the NASA-Ames VMS Facility. Changes as described in Section 6.1 were required due to the improved motion cues provided by the large motion VMS.

5.1.2 Evaluation of Force/Deflection Characteristics

Four SSC configurations having unique force/deflection characteristics were evaluated during Phase 1. These four configurations were chosen to cover a wide range of pitch and roll force/deflection values (Figure 5-5) to bracket the AFFDL recommended region of References 13, 14, 15 and 16. Three 4-axis side-stick controllers (Figure 5-6) were used to provide the various force/deflection characteristics: (1) a stiff stick design (MSI-SS) manufactured by Measurement Systems, Inc., Norwalk, Conn., (2) the HLH prototype controller which provided a medium- and large-deflection configuration, and (3) a small-deflection controller (MSI-SD1) built specifically for the ACC/AFCS study.

Data which summarize the effect of side-stick controller force/deflection characteristics on pilot Cooper-Harper Rating (Reference 17) are presented in Figure 5-7. These data points represent three VMC tasks and two SCAS command systems; only the best rating achieved for each configuration is shown. The small-deflection and medium-deflection controllers achieved the best overall ratings.

Commentary from three pilots who compared the stiff-stick and small-deflection controllers was very consistent. All agreed that task performance improved substantially with the introduction of deflection. Typical comments were as follows:


CONTROL FORCE (LB)
OR MOMENT (IN.-LB) - GRADIENT 2 AT C GRADIENT 1 **LBREAKPOINT** L DEADZONE SENSITIVITY GAIN FORCE CONTROL RESPONSE SHAPING

		RE	SPONSE SHAP	RESPONSE SHAPING PARAMETER	
CONTROLLER CONFIGURATION	CONTROL AXIS	DEADZONE	1ST GRADIENT	GRADIENT BREAKPOINT GRADIENT	2ND GRADIENT
	LONGITUDINAL ± 0.5 LB	± 0.5 LB	1.0	± 2.5 LB	1.5
3	LATERAL	÷ 0.25 LB	1.0	± 4.25 LB	2.0
4 A × A	DIRECTIONAL	± 0.4 INLB	1.0	± 2.4 INLB	2.0
	VERTICAL	+1.25	1.0	+4.25 LB -3.625 LB	1.5
COLLECTIVE LEVER	VERTICAL	± 1.0 LB	1.0	± 4.0 LB	2.0
PEDALS	DIRECTIONAL	± 6.0 LB	1.0	±12.0 LB	2.0

Figure 5-4

ACC/AFCS CANDIDATE SSC CONTROLLERS FORCE/DEFLECTION CHARACTERISTICS

LONGITUDINAL AXIS

LATERAL AXIS

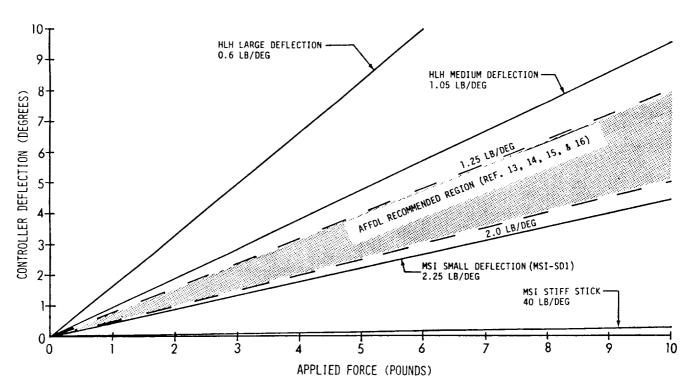
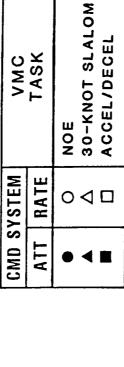


Figure 5-5

ORIGINAL PAGE TO OF POOR QUALITY

PHASE 1 4-AXIS SIDE-STICK CONTROLLERS

VARIABLE FORCE/ DISPLACEMENT CONTROLLER (HLH PROTOTYPE)


SMALL-DEFLECTION MSI-SD1

STIFF-STICK MSI-SS

Figure 5-6

EFFECT OF SIDE-STICK CONTROLLER DEFLECTION/FORCE GRADIENT

ON PILOT RATINGS

RATINGS TAKEN WITH BEST PITCH — ROLL RESPONSE SENSITIVITIES

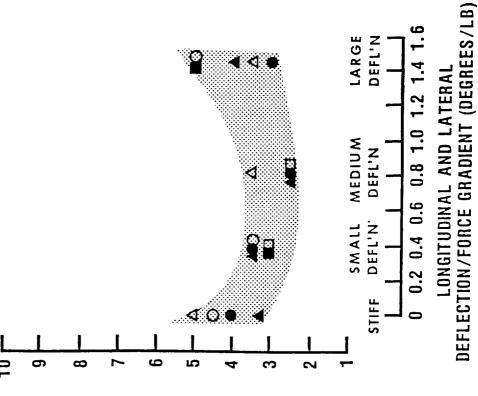


Figure 5-7

COOPER-HARPER

PIL.0T

RATING

Stiff Controller:

- o "Defining best control sensitivities was more difficult and more critical with a stiff controller than deflection controller."
- o "Inter-axis force harmony/sensitivities appeared to be more critical, especially during larger amplitude maneuvering."
- o "Tendency to over-control, particularly during high frequency manipulative control tasks."
- o "Tendency to release forces abruptly and create inadvertent sharp acceleration response."

Small-deflection Controller:

- o "This controller has a softer feel of actuation than the stiff controller, and control inputs seem to be smoother in application."
- o "Very noticeable improvement over stiff-stick using the same sensitivities. Ability to shape control commands during large amplitude maneuvers and control reversals was a major improvement."
- o "This controller gave an immediate and very obvious improvement in handling qualities. Subjectively, I felt much more 'in the loop'. While tendencies to cross couple remained (compared to stiff controller), they were far depressed below the primary control task and were insignificant. Control inputs seemed much more natural and, although the response seemed to be more sensitive, this effect was quite tolerable."

Acceptance of the medium-deflection controller was mixed. One pilot gave the controller degraded ratings because height control was difficult due to a high force breakout in the vertical axis. A second pilot gave the same controller improved ratings compared to the small-deflection controller because he felt more in control during large maneuvers.

Two pilots evaluated the large-deflection controller and gave degraded ratings compared to the small-deflection controller. Comments indicated a more sluggish pitch control response and less precise control of attitude for high-frequency inputs.

Based on these results, a second 4-axis small-deflection controller design, MSI-SD2, having a 50% higher deflection/ force gradient, was selected for evaluation of the primary and secondary controller/SCAS configuration matrices. Table 3-1 in Section 3.1 compares the force/deflection characteristics for

the four initial candidate controllers and the characteristics for the modified small-deflection controller denoted as MSI-SD2.

5.2 EVALUATION OF CONTROLLER/SCAS CONFIGURATION MATRIX

Phases 1B and 1C used the command response sensitivities, non-linear response shaping functions, and small-deflection 4-axis controller (MSI-SD2) developed from the Phase 1A simula-The purpose of Phase 1B and 1C was to evaluate the large matrix of controller configuration and generic SCAS combinations for a variety of attack helicopter tasks. Variation of the sub-level design characteristics of each matrix element was not performed during this phase of testing. For example, controller force/deflection characteristics, response/force sensitivities, etc. were held constant throughout Phase 1B and Average pilot rating data contained in the primary and secondary SCAS/controller matrices are presented in the following discussion of results. Data are plotted in a manner to clearly illustrate the interactive effects of task, controller, and SCAS configurations. These effects are more easily seen by this method rather than presentation of the actual matrices included in Appendix C.

5.2.1 4-Axis Controller Evaluation

The modified 4-axis controller (MSI-SD2) was fabricated from the MSI-SD1 unit with a change made only to the internal spring mechanism of the device. Therefore, a direct back-to-back comparison of the two MSI small-deflection controller designs could not be obtained after the modification. In addition, since a large number of 4-axis controller configurations were evaluated during Phase 1A, limited test time for each controller resulted in a smaller number of data points than desired for the 4-axis stiff-stick. It was decided that further evaluation of the 4-axis stiff-stick controller relative to the modified small-deflection controller (MSI-SD2) during initial Phase 1B simulation was necessary. A summary of this comparison is shown in Figure 5-8.

All pilot rating data were averaged for the three low speed maneuvering tasks - the NOE, 30-Knot Slalom, and Acceleration/Deceleration. Average pilot ratings indicate that there was a small advantage with the small-deflection controller for the higher levels of command/stabilization, ie. an AT/AT and AT/LV system. However, pilot ratings were mixed and more widely separated for the lower levels of command/stabilization, resulting in no clear advantage for either controller. Having experience with the side-stick configuration from Phase 1A simulation, as well as a familiar set of force response characteristics for the sequence of comparison test runs may have caused the separation of data to be smaller than expected.

CONTROLLER COMPARISON STIFF STICK VS SMALL DEFLECTION

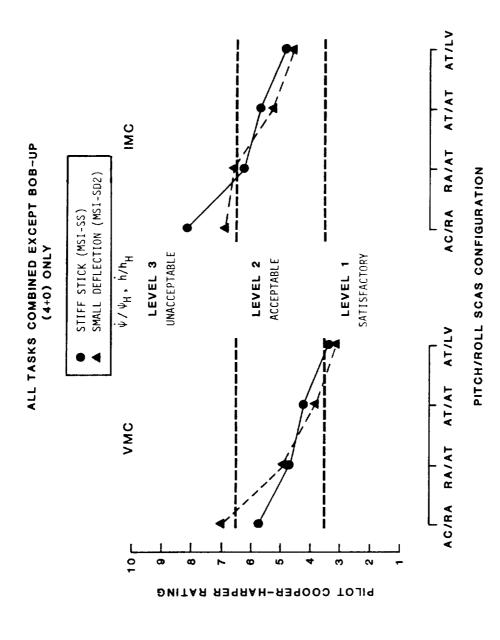


Figure 5-8

Based on pilot comments, preference for the small-deflection controller rather than the stiff-stick was unanimous. They frequently cited the tendency to over-control and cross-couple control inputs with the stiff-stick. An advantage of the small-deflection controller was felt to be an ability to shape pitch and roll control commands which could not be done with the stiff-stick. Even though pilot ratings gave no large advantage to the small-deflection controller, the pilot comments indicated that going from the stiff-stick to the smalldeflection design provided a noticeable improvement in handling qualities. The primary pilot complaint about the MSI-SD2 design was the lack of force harmony between all axes, ie. the pitch and roll axes had noticeable deflection and a relatively "soft" force/deflection gradient compared to the "stiff" yaw and collective axes. Based on these results, the small-deflection controller (MSI-SD2) was used for the remainder of testing to compare effects of various controller configurations.

5.2.2 Controller Configuration/Display Effects

A comparison of pilot ratings obtained for various controller configurations for the NOE Task are presented in Figure 5-9. This task was felt to be the most difficult and demanding task of the four low-speed maneuvering tasks evaluated during Phase 1. Primary factors causing higher workload and degraded flight path performance for the NOE Task under IMC were: (1) inability to precisely control height, (2) tendency to couple side-stick vertical control inputs into pitch and/or roll, (3) difficult coordination of lateral-directional control in turns, and (4) tendency to over control roll in high workload situations.

The most serious deficiency reported was poor height and vertical speed resolution due to the restricted field-of-view, lack of peripheral cues, and/or lack of surface texture/picture detail. Weak motion cues as well as a lack of rotor/drive system noise may have contributed to a tendency for overcontrol of the vertical axis. The pilot had to rely almost totally on display information for vertical speed with no acceleration lead cues.

The (4+0) controller configuration received poorer ratings for the NOE course where collective control inputs were required to clear the obstacles. Inadvertent inputs to pitch and roll increased the workload required to maintain airspeed and flight path control. Overcontrol in roll was occasionally experienced when corrective action was required to compensate for an inadvertent control input.

Pilot ratings for the Bob-up Task are presented in Figure 5-10. The IMC Bob-up Task was essentially an instrument reference task with necessary information such as velocity vector, X-Y position, acceleration cue, and altitude provided by the

PILOT RATINGS - NOE TASK

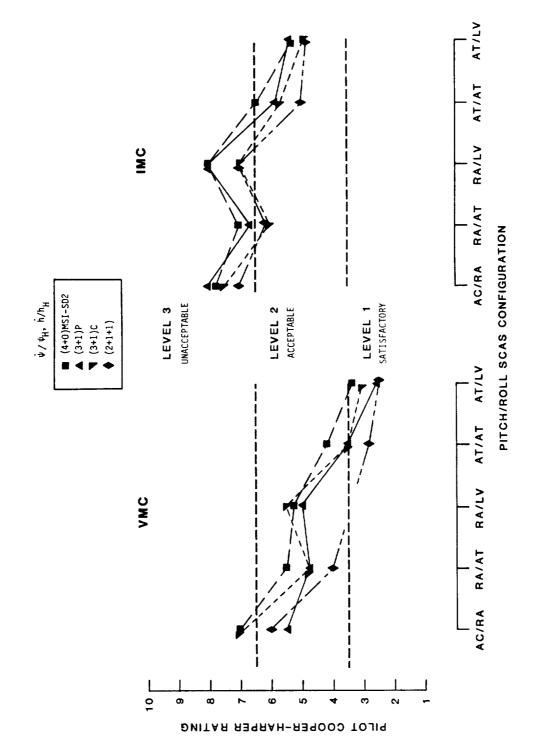


Figure 5-9

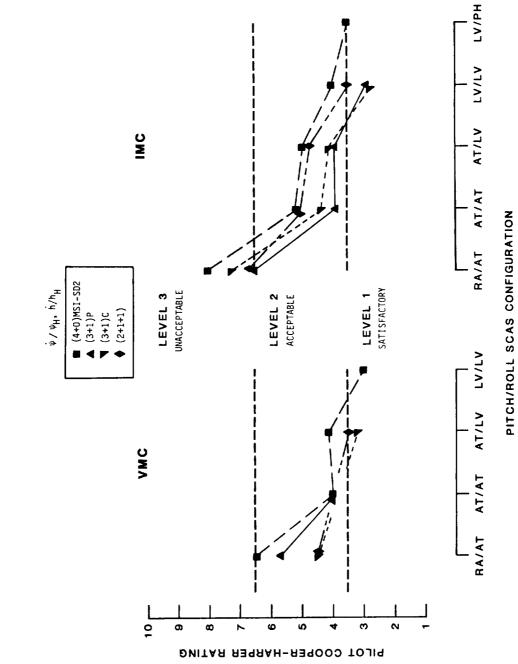


Figure 5-10

display symbology. Marginal Level 2 ratings were obtained with an AT/LV system. Level 1 ratings were achievable with a velocity command system having either velocity or position stabilization.

In contrast to the ratings assigned for the other tasks under VMC, ratings for the Bob-up Task were more degraded. VMC performance was degraded compared to IMC because of the direct feedback given to the pilot by the IHADSS display symbology while performing the IMC task. In fact, VMC performance as measured by X-Y position deviation during the Bob-up Task was significantly degraded over the IMC task.

Because of inadvertent cross-coupled inputs, the 4-axis sidestick controller received degraded pilot ratings for the Bob-up Task. Separation of the controllers, particularly vertical, improved pilot ratings significantly. The best ratings were achieved using a (3+1) Collective configuration combined with a velocity stabilized system.

The IMC Acceleration/Deceleration Task primarily a single-axis longitudinal maneuver with Altitude Hold and Heading Hold selected, was the easiest of the four IMC tasks. As shown in Figure 5-11, Level 2 ratings of approximately 4.0 were obtained with all controllers except for the (3+1) Pedal configuration. Workload and task performance were influenced primarily by the following factors: (1) tendency to couple pitch control into side-stick vertical control, (2) vertical control coupling into lateral-directional requiring pilot compensation, (3) pilot disorientation during a nose-up maneuver; confusing head motion with aircraft attitude changes, and (4) poor resolution of longitudinal/lateral positioning during deceleration to hover. Precise control of aircraft position during the deceleration to hover was difficult due to poor resolution of longitudinal speeds and rate of closure, thought to be caused by the limited field-of-view and limited peripheral cues. Small lateral speeds were difficult to discern from small yaw rates especially at low speeds.

Performance of the Slalom Task under IMC with Altitude and Heading Hold selected was primarily a two-axis lateral-directional control task. Pilot ratings (Figure 5-12) were degraded by approximately one point compared to the Acceleration/Deceleration Task. Task performance was judged principally on the ability to execute coordinated turns and achieve a desired curvilinear path around obstacles at constant speed. Primary factors which increased workload and degraded pilot ratings were: (1) tendency to couple side-stick yaw control inputs into roll and/or pitch, (2) difficult turn coordination due to lack of peripheral cues with the IMC visual display, and (3) tendency to become disoriented with IHADSS when head movements were made to locate desired flight path projection. It was difficult to distinguish the effects head response from air-craft response.

PILOT RATINGS - ACCELERATION/DECELERATION TASK

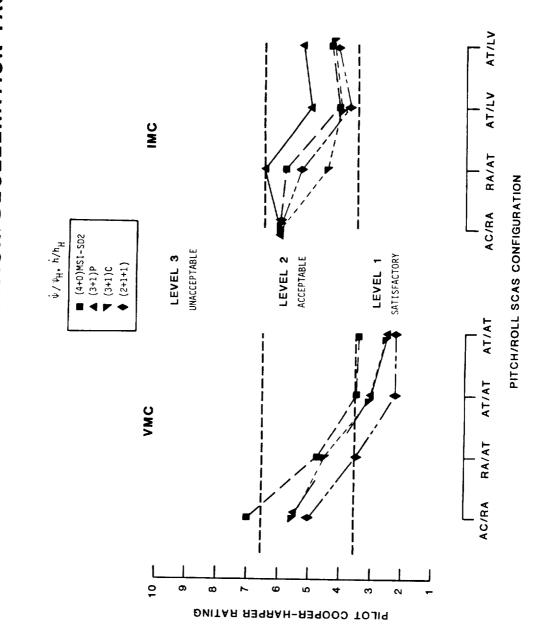


Figure 5-11

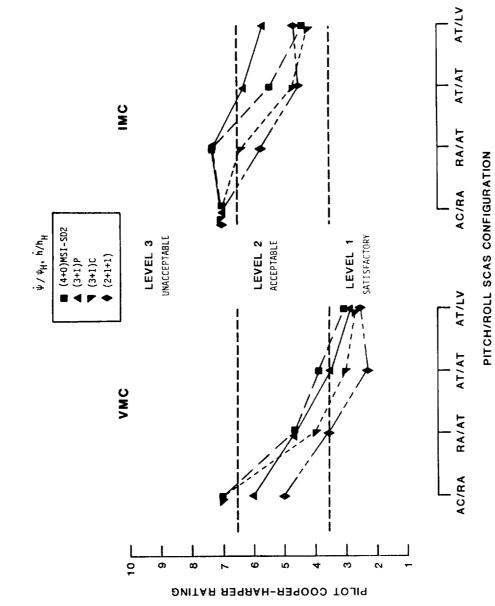


Figure 5-12

For the Acceleration/Deceleration and Slalom Tasks, the (3+1) Pedal configuration received more degraded pilot ratings than all other configurations. If large errors were allowed to build up, precise corrective control inputs with the pedals were difficult to achieve, and overcontrol of yaw often resulted. Precision yaw control on the side-stick provided improved lateral-directional control for IMC.

5.2.3 SCAS Effects

Primary SCAS - Longitudinal/Lateral

For the most difficult IMC tasks (NOE and Slalom), the acceleration command/rate stabilization system (AC/RA) exhibited Level 3 handling qualities (Figures 5-9 and 5-12). With the addition of attitude stabilization, the RA/AT system received marginal Level 2 ratings for IMC with high workload required to achieve adequate performance. It was extremely difficult to maintain precise flight control parameters (airspeed, lateral ground track, sideslip, etc.). Continuous pulse-type control inputs were required for best performance. When velocity stabilization was combined with a rate command system (RA/LV), for all low-speed maneuvering tasks there was a significant degradation in pilot ratings, particularly noticed for the NOE Task (Figure 5-9). Pilot workload and compensation to achieve lateraldirectional coordination were noticeably higher, possibly indicating an inherent conceptual design problem with this combination (i.e., having the stabilization type more than one integration away from the command type).

A large improvement in IMC ratings for all tasks was obtained with an attitude command system. With the same level of attitude stabilization, an attitude command system (AT/AT) improved pilot ratings an average of one rating point when compared to the rate command system (RA/AT). A similar improvement occurred in the VMC ratings. Pilot comments indicated that the attitude command system exhibited a noticeably stronger feel of "apparent" stability. The pilots felt more continuous in the control loop with a strong force/attitude (force/linear acceleration) relation. By having more precise control of attitude, maintenance of airspeed and ground track and execution of coordinated turns were performed with lower workload. There was also less tendency to overcontrol with an attitude command system particularly for large maneuvers and/or control reversals.

When combined with an attitude command system, velocity stabilization improved pilot ratings for maneuvering tasks by about half a rating point for both IMC and VMC. The ease of maintaining airspeed and effecting turn coordination during the Slalom and NOE Tasks, and the ease of varying airspeed and maintaining lateral ground track during the Acceleration/Deceleration and NOE Tasks was the major benefit noticed with the attitude command/velocity stabilization system.

The influence of SCAS configuration on pilot ratings for the Bob-up Task is shown in Figure 5-10. The attitude command system yielded pilot ratings in the low Level 2 region (CHPR \cong 4.5). Use of a velocity command/velocity stabilization system reduced pilot workload, improved task performance, and achieved Level 1 pilot ratings for the Bob-up Task with all controllers except the 4-axis small-deflection configuration.

Velocity command response characteristics were reported to be more jerky than the attitude response system, however, small position changes could be made easily. The addition of position stabilization, evaluated only with 4-axis controllers, made the Bob-up Task a series of single-axis control maneuvers. Level 1 ratings and excellent position hold were achieved.

As previously stated, attitude command systems were preferred over rate command systems for all low speed tasks. Time histories of two data runs with different CMD/STAB systems are presented in Figures 5-13 and 5-14 for the Bob-up Task. Both data runs were performed under VMC using the MSI-SD2 SSC in the 4-axis configuration. Pilot ratings were 3.5 for the AT/LV system and 6 for the RA/LV system. Improved control of position, altitude, and heading was achieved with the AT/LV system. Pilot control inputs with this system were less active and smaller in magnitude than with the RA/LV system.

Figure 5-15 presents an example of Bob-up Task performance achieved as a function of SCAS configuration. Deviations in longitudinal and lateral position from the initial/desired hover location are used to calculate a mean radius, i.e. a circle containing one-half the total number of data points. Data are presented for Pilot A and five controller configurations as a function of pitch/roll SCAS configuration. Compared to the rate command system, a large improvement in performance and pilot rating can be seen for an attitude command system. Best performance was achieved with a velocity command system (mean radius \leq 12 feet) for all controller configurations evaluated by pilot A. Data for the 4-axis controllers show degraded performance and pilot ratings, particularly for the attitude command system.

Secondary SCAS/Controller - Directional/Vertical

Directional and vertical SCAS configurations were varied for the RA/AT, AT/AT, and AT/LV systems of the primary SCAS matrix. All controller configurations were evaluated. In general, the yaw rate command/heading hold system provided the best pilot ratings with the pitch/roll attitude command systems for all controller configurations and tasks. Turn coordination and lateral ground track could be controlled easily, particularly for VMC. A yaw acceleration command system made it more difficult to execute precise heading changes or to establish a zero yaw rate at a desired heading. Low speed turn coordination and lateral ground track were also degraded due to this

TIME HISTORY OF BOB-UP TASK RA/LV

FLT 15

RUN 15

1900

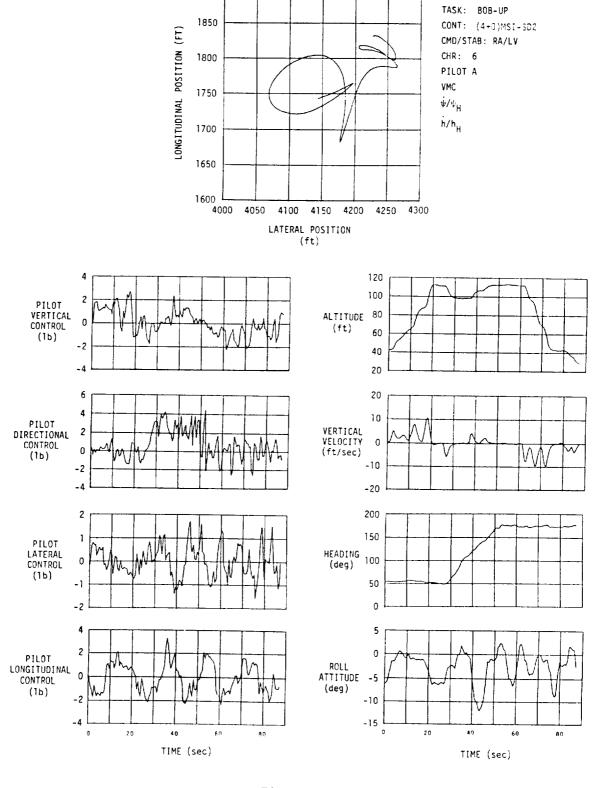


Figure 5-13

TIME HISTORY OF BOB-UP TASK AT/LV

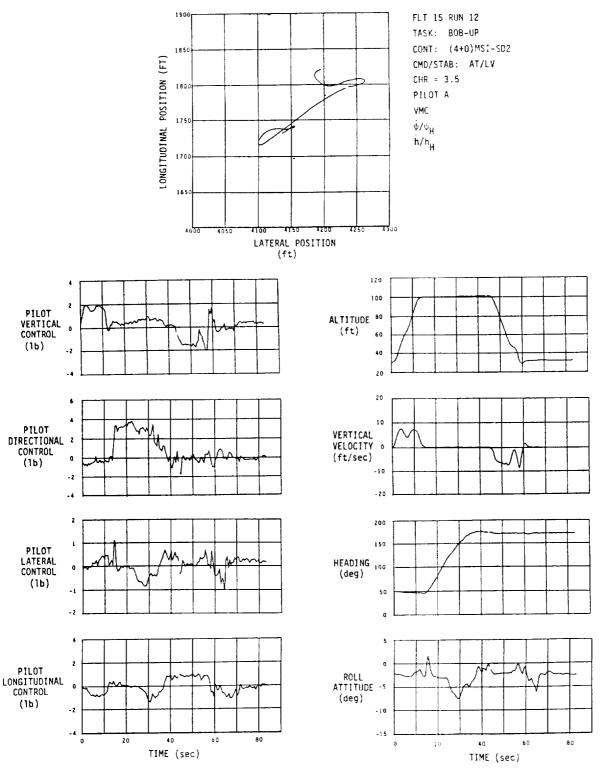
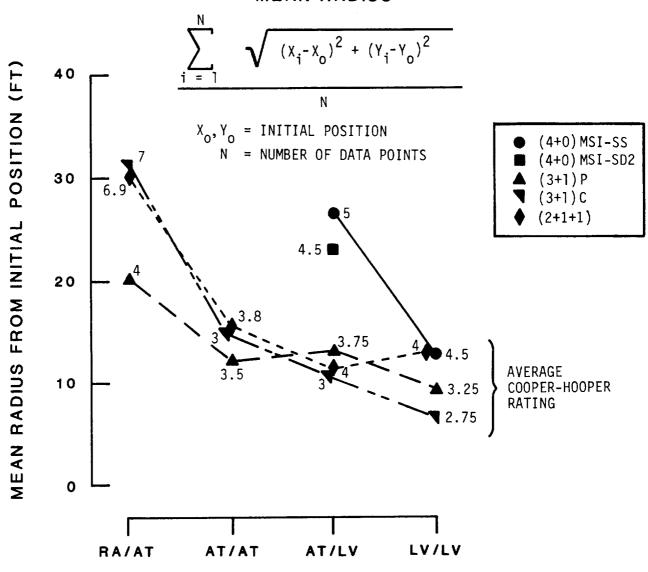



Figure 5-14

BOB-UP TASK PERFORMANCE

- ALTITUDE HOLD ON
- HEADING HOLD ON
- IMC
- ALL DATA AVERAGED
- PILOT A ONLY

MEAN RADIUS

PITCH/ROLL SCAS CONFIGURATION

inability to modulate or vary yaw rate precisely, particularly with the pedals.

An important interactive directional SCAS/controller effect is shown in Figure 5-16 where yaw control on the 4-axis side-stick is compared to yaw control with the (2+1+1) configuration for the Slalom Task. Yaw acceleration command for the 4-axis or the (2+1+1) configuration degraded pilot ratings with all pitch/roll SCAS configurations when compared to the yaw rate command system. When yaw acceleration command was implemented on the side-stick, either a (3+1) Collective or (4+0) configuration, pilot ratings were degraded with the pitch/roll attitude command system, but improved with the rate command system. For the low speed coordinated turn maneuver, yaw acceleration command improved control capability by eliminating the requirement for steady forces to control yaw rate. It is difficult for the pilot to modulate forces in one or two axes (pitch/roll rate control) while holding a steady force in another axis (yaw rate command for turn coordination). The yaw acceleration command system provided improved control harmony for lateraldirectional maneuvering when implemented with the pitch and roll rate command systems.

Also shown on Figure 5-16, the yaw acceleration command/yaw rate stabilization system generally received better pilot ratings than the yaw acceleration command/heading hold system. As previously noted for the primary SCAS RA/LV system, a degradation of task performance was observed if the stabilization level was more than one integration away from the command type.

The vertical rate command/altitude hold system achieved the best pilot ratings for all pitch/roll SCAS systems and controller configurations. Vertical rate command provided good control of vertical speed and precise control of altitude, particularly for VMC. Acceleration command in the vertical control axis degraded control accuracy and necessitated pulse control inputs to achieve the best flight path performance.

Figure 5-17 compares vertical control on the side-stick ((4+0) configuration) and conventional collective lever ((3+1) Collective or (2+1+1)). Vertical acceleration command on the collective lever degraded the IMC handling qualities to Level 3. As with yaw control on the side-stick, vertical acceleration command on the side-stick offers the benefit of eliminating the need to hold steady vertical control forces to achieve a steady vertical rate. However, based upon the results, the benefit of altitude hold and vertical rate command apparently offset the requirement to hold vertical control forces. These particular results may be biased by the lack of strong vertical motion and rotor/drive system noise cues in the simulator.

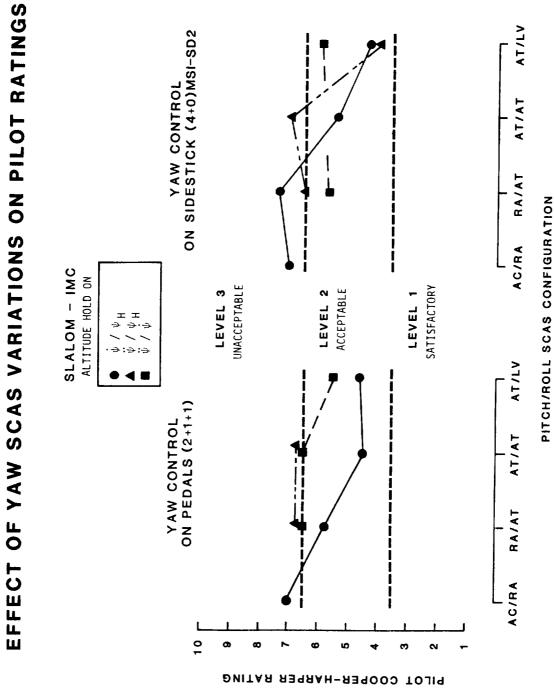


Figure 5-16

EFFECT OF VERTICAL SCAS VARIATIONS ON PILOT RATINGS

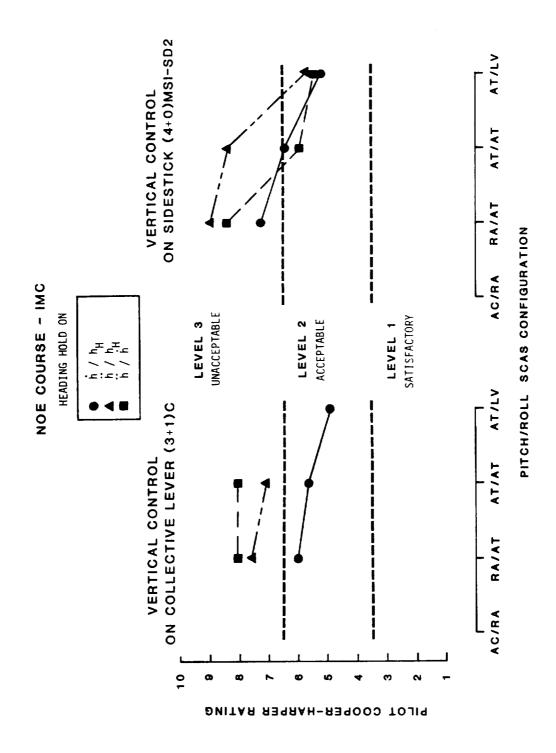


Figure 5-17

6.0 PHASE 2 SIMULATION RESULTS

The primary objectives of the simulation experiments at the NASA-Ames facility were: (1) to investigate forward flight control laws, including blending of control modes between low-speed and forward flight, (2) to continue the evaluation of side-stick controller configurations, including a new 4-axis controller with limited deflection in all axes and a left-hand side-stick for vertical control, and (3) to assess the effects of a more valid representation of aircraft motion.

Two phases of piloted simulation activity were performed during Phase 2. Phase 2A utilized 65 pilot flight hours and evaluated handling qualities under VMC using the four-window CGI display. Low-speed, transition, and forward flight tasks representing elements of the entire scout/attack-helicopter mission were emphasized during Phase 2A. Phase 2B evaluated the same mission tasks under IMC with the IHADSS. A total of 55 pilot flight hours (46 IMC hours and 9 VMC hours) were utilized during Phase 2B.

AFCS Modifications for Phase 2 Simulation

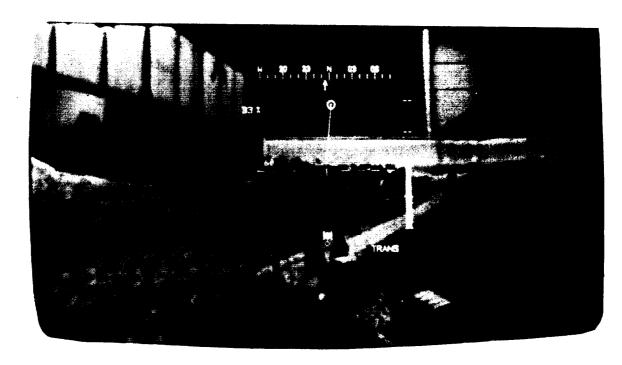
The AFCS model implemented for Phase 1 simulations at Boeing Vertol was modified for Phase 2 to include additional feedback and feed-forward paths required for forward flight control laws. Airspeed and lateral acceleration stabilization signals and cross-axis control paths required for decoupling and automatic turn coordination were added to the original Phase 1 AFCS, which had been designed primarily for hover and low speed flight.

Transient-free switching between complementary airspeed stabilization and ground speed stabilization was provided in the longitudinal AFCS. In order to switch between a roll attitude command/lateral velocity stabilization system (AT/LV) at low speed and a roll rate command/altitude hold system (RA/AT) for high speed maneuvering flight, a selectable hybrid lateral AFCS configuration was provided (AT/LV-RA/AT). A cross-axis command path from the lateral to directional AFCS was implemented for automatic turn coordination where a commanded bank angle signal was used to calculate a turn-rate command as a function of The vertical AFCS was also modified to include gain scheduling as a function of airspeed for the altitude and altitude rate feedback paths. High gains were provided to achieve tight altitude hold for precision hover tasks and lower stabilization gains were used during high speed flight. altitude and altitude rate feedback signals were also mechanized in the vertical axis using a vertical acceleration sensor.

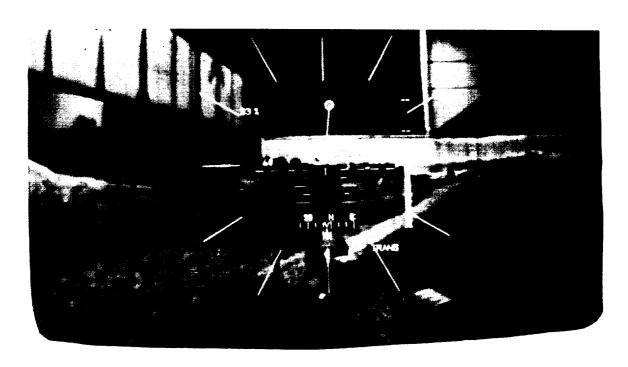
IHADSS Modifications

Several modifications were made to the IHADSS symbology used in the Phase 1 IMC simulation study. These changes, incorporated during preliminary Phase 2 IHADSS checkout testing, were based on pilot commentary received during the Phase 1 simulation program at Boeing Vertol.

Figure 6-1 compares the formats used during Phase 1 and Phase 2B. As shown in this example, the changes include:


- Additional pitch-attitude symbols to provide a more compelling and accurate display of pitch and roll attitude.
- 2) The movement of the heading symbols to the lower center of the display to eliminate the eye muscle strain caused by its usual location well above the display center; the heading scale was also truncated to declutter the display.
- 3) The replacement of the diamond-shaped aircraft nose symbol which, during Phase 1, was found confusing and awkward by test pilots. The cockpit reference display, which provided information concerning aircraft orientation relative to head azimuth and elevation, was designed to alleviate the disorientation problems of the diamond-shaped symbol by NASA-Ames engineers. As shown in Figure 6-1, the cockpit reference display consists of evenly spaced, converging lines all directed toward the nose of the aircraft.

The above changes, though not quantitatively evaluated, were felt by all subject pilots to improve the IHADSS symbology effectiveness.


Controller Development During Phase 2

Handling qualities problems with the stiff 4-axis controller were demonstrated during the Phase 1 simulation experiments. In addition, slightly improved handling qualities for specific tasks resulted from adding limited deflection to the longitudinal and lateral axes of the side-stick (MSI-SD2). Based on Phase 1 simulation results, Phase 2 experiments were directed toward investigating the possible benefit of improved vertical and directional axis control through a 4-axis controller with small-deflection in all axes (MSI-SD3). This new 4-axis controller, is shown in Figure 6-2 along with the stiff-stick and small-deflection controller (MSI-SD2). A new grip, similar to the grip used in the Reference 18 program, was also included with the new controller (MSI-SD3) to minimize the vertical-to-

VARIATIONS IN IHADSS SYMBOLOGY

PHASE 1 SYMBOLOGY

PHASE 2 SYMBOLOGY

Figure 6-1

ORIGINAL PAGE OF POOR QUALITY

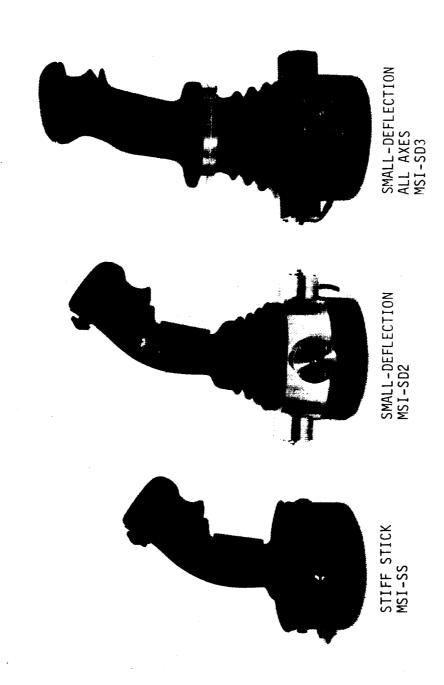


Figure 6-2

longitudinal-and-lateral control coupling inherent with the original grip used for Phase 1 simulations.

In addition, continued simulation studies and design efforts during Phase 2 were aimed at improvement of the (3+1) Collective controller configuration using a left-hand side-stick vertical controller instead of a conventional collective lever implemented as a stiff-lever. The stiff-stick and small-deflection configurations (MSI-SS and MSI-SD2) were available for use as a single-axis left-hand vertical controller. Left-hand control of collective in the (3+1) Collective configuration was implemented through the longitudinal control axis of either controller.

Finally, a brassboard 4-axis controller (Figure 6-3) similar to the actual design to be flight tested on the ADOCS demonstrator aircraft was evaluated during Phase 2B simulation activity. The brassboard controller, manufactured by Lear Siegler, Inc., was designed to have force/deflection characteristics very close to the MSI-SD3 controller manufactured by Measurement Systems, Inc. (Table 3-1). An alternate grip design developed by Boeing Vertol is also shown mounted on the brassboard controller. This grip was not used during the Phase 2 simulations.

6.1 SIMULATOR EFFECTS

Comparison of Phase 2 pilot rating data with Phase 1 results was desired to understand the effects, if any, of the NASA-Ames VMS, which provides a higher fidelity motion cue environment. An assessment of the effects of large motion on pilot kinesthetic coupling with various side-stick controller configurations was particularly desired during Phase 2 simulation. As a result of the effects of large motion, it was necessary to modify control response shaping characteristics to achieve satisfactory pilot ratings for all tasks, particularly the Precision Hover Task.

6.1.1 Effect of Simulator Visual Display/Motion System

Initial Phase 2 data were obtained for the small-deflection controller (MSI-SD2) using Phase 1 response shaping functions. A comparison of these data with Phase 1 data is shown in Figure 6-4. Pilot ratings are similar for the multi-axis NOE maneuvering task when comparing two SCAS configurations -- a rate command/attitude stabilization (RA/AT) and an attitude command/velocity stabilization (AT/LV) system. Phase 2 ratings were degraded approximately 0.5 points with the attitude command system and pilot comments indicated a tendency for over-control. Improved pilot ratings and task performance compared to the Phase 1 data were achieved with the rate command system.

LSI BRASSBOARD CONTROLLER WITH EXPERIMENTAL GRIP

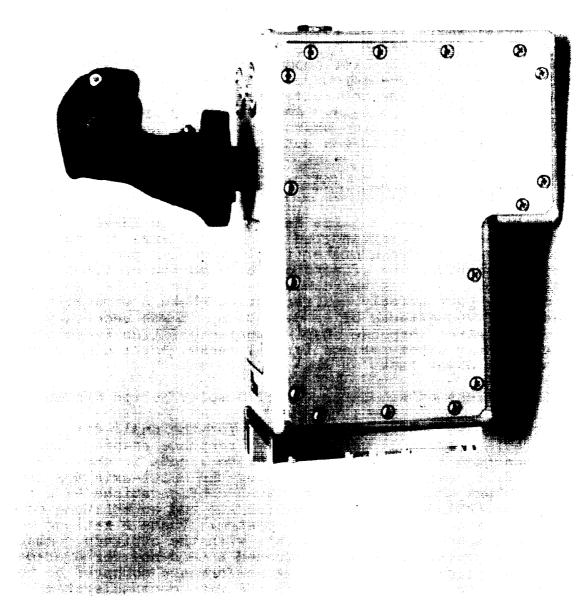


Figure 6-3

SIMULATION FACILITY COMPARISON

PHASE 1 DATA VS PHASE 2 DATA
ALL DATA - VMC (4+0) MSI-SD2 WITH PHASE 1 SHAPING
ALTITUDE HOLD ON
HEADING HOLD ON

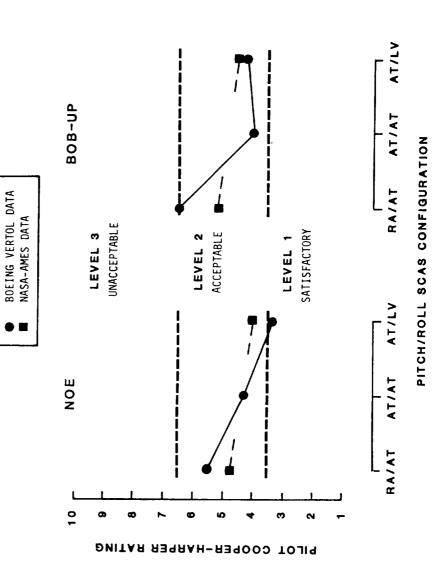
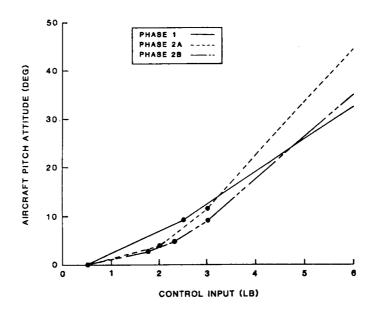


Figure 6-4

Pilot comments indicated that the NASA Ames CGI display provided improved visual cues compared to the Boeing Vertol television display image, especially for maneuvers in the vertical axis. Relative to Phase 1, the NOE Task during Phase 2A seemed qualitatively easier to fly at the same airspeed, and control of height was improved. This effect was particularly noticeable when the task was performed with a rate command (RA/AT) system. The pilots felt that the CGI terrain representation lacked granularity variation with altitude, but the strong motion and peripheral visual cues provided a very effective simulation of the NOE Task.

Advantages of the CGI visual display system and effects of stronger vertical motion cues were more evident during the Precision Hover and Bob-up Task. Pilot comments indicated that the excellent color, clarity, and depth-of-field of the CGI display afforded strong spatial position cues which improved their capability to perform the Precison Hover and Bob-up Tasks. A comparison of average pilot ratings for the Bob-up Task (Figure 6-4) reveals the same trend as data for the NOE Task, i.e. improved performance for the rate command (RA/AT) system and slightly degraded ratings for the attitude command (AT/LV) system. Pilot comments during initial Phase 2A simulation also indicated that their ratings were degraded due to excessive response sensitivity for small force inputs, particularly for the Precision Hover Task. This effect was attributed to the increased motion cues provided to the pilot by the VMS simulator.


6.1.2 Modification of Control Response Shaping

The larger motion and improved visual fidelity of the NASA Ames Vertical Motion Simulator necessitated adjustment to the PFCS command shaping characteristics developed during Phase 1 at Boeing Vertol. In order to provide acceptable response characteristics, both for small high-frequency precision control tasks and low-frequency larger amplitude maneuvers, it was necessary to increase the number of breakpoints in the control response shaping functions, thereby providing a more gradual change of sensitivity gradient.

As an example, pitch and roll attitude command response shaping developed during Phases 1, 2A, and 2B is compared in Figure 6-5. Modifications to the low control force region resulted primarily from pilot comments obtained during performance of the Precision Hover Task. Very small and precise control inputs were required for this task. A higher initial sensitivity gradient as used during Phase 1 resulted in degraded pilot ratings due to a tendency for over-control in the larger motion simulator at NASA-Ames. An increase in response sensitivity for larger control inputs was desirable to reduce control forces required for large maneuvers, i.e. Slalom and Approach-to-Hover.

LONGITUDINAL AND LATERAL ATTITUDE COMMAND SYSTEM RESPONSE SHAPING FUNCTIONS

LONGITUDINAL ATTITUDE RESPONSE

LATERAL ATTITUDE RESPONSE

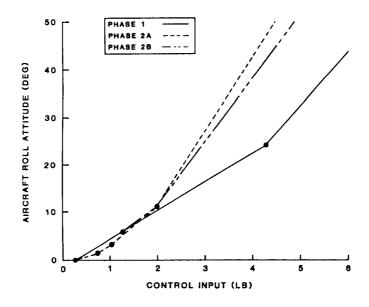
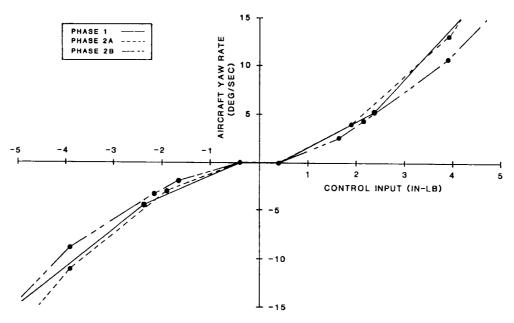


Figure 6-5

Rate response shaping for the vertical and directional axes implemented on the 4-axis controller is shown on Figure 6-6. Because of stronger vertical motion cues provided by the NASA-Ames VMS, vertical response sensitivities were greatly reduced for Phase 2 relative to Phase 1 response shaping. Again, this modified shaping was required primarily for the Precision Hover Task.

A complete set of response shaping functions used to obtain pilot rating data during each simulation phase is provided in Appendix A. Response functions are defined for all control axes and the generic types of command systems investigated.

The effect of the revised vertical axis shaping in terms of pilot ratings is shown in Figure 6-7 for the NOE, Precision Hover and Bob-up Tasks. Pilot ratings obtained for the new small-deflection controller (MSI-SD3) with Phase 1 response shaping are compared to ratings achieved after revised shaping functions were implemented. The improvement in the multi-axis NOE and the Bob-up Tasks was about one pilot rating point. improvement of 1.5 to 2.0 rating points was achieved for the Precision Hover Task. This result occurred because the Precision Hover task required lower force and high frequency controller inputs in the region most affected by the shaping modifications. For all low speed tasks under VMC, the modified shaping improved pilot ratings and provided Level 1 handling qualities for an attitude command system with velocity stabilization.


6.2 CONTROLLER EVALUATIONS

Phase 2 simulation experiments continued the investigation of the effect of controller force/deflection characteristics and the level of integration of controlled axes on a single controller. The new 4-axis controller design (MSI-SD3) having small-deflection in all axes was fabricated specifically for Phase 2A. This controller was compared to MSI-SD2 which achieved best pilot ratings during Phase 1. In addition, the 4-axis stiff controller (MSI-SS) was available for use as a right-hand controller or a single-axis left-hand controller for vertical. Left-hand side-stick control of the vertical axis was evaluated in the (3+1) Collective configuration through the longitudinal control axis of either MSI-SS or MSI-SD2.

The various controller configurations are identified by numerical subscripts to indicate both the right-hand and left-hand (where applicable) controllers being evaluated. For example, (4+0) MSI-SD3 indicates that the MSI-SD3 controller was evaluated as a right-hand 4-axis device while (3+1) Collective MSI-SD3, MSI-SD2 is the identifier for a configuration consisting of the MSI-SD3 Controller on the right as a 3-axis device and the MSI-SD2 Controller on the left solely for collective control.

DIRECTIONAL AND VERTICAL RATE COMMAND SYSTEM RESPONSE SHAPING FUNCTIONS

DIRECTIONAL RATE RESPONSE

VERTICAL RATE RESPONSE

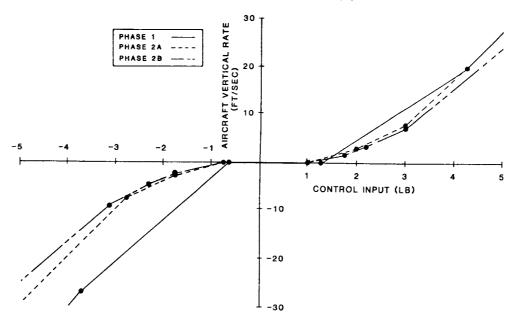


Figure 6-6

EFFECT OF VERTICAL SHAPING CHANGES

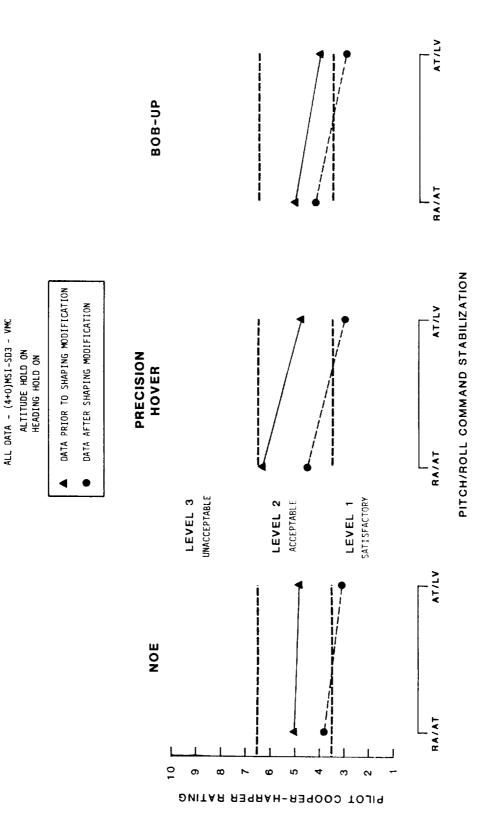


Figure 6-7

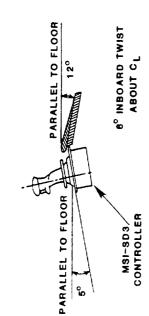
6.2.1 Controller Orientation

Controller orientation for both the right-hand and left-hand side-stick controller was adjusted to a position acceptable for all test pilot participants. Orientations were chosen to minimize interaxis control inputs as well as to provide a comfortable arm position to reduce fatigue. Figure 6-8 illustrates the orientations used during Phase 2A and Phase 2B. A picture of the controller installation for both simulation phases is given in Figure 6-9. As shown, left-hand side-stick controller orientation for both simulation phases was very Since the left-hand controller was only for singleaxis vertical control, interaxis coupling was not a problem and comfort was the only factor affecting orientation of the left-hand side-stick. Selecting a suitable right-hand controller orientation was more difficult. The Phase 2A right-hand controller orientation shown was chosen for the MSI-SD3 controller. During Phase 2B, the ADOCS Brassboard (LSI) controller replaced the MSI-SD3 as the prime right-hand SSC. differences in forward tilt and inboard twist were required for each controller as seen in Figure 6-9. The right-side armrest position was altered to accommodate the larger physical size of the LSI controller unit. Pilot ratings presented in Section 6.2.4 compare the MSI-SD3 and LSI Brassboard controllers with each having the orientation as shown; no difference in pilot ratings was noted. All pilots agreed that the orientation selected for each of the controllers was satisfactory.

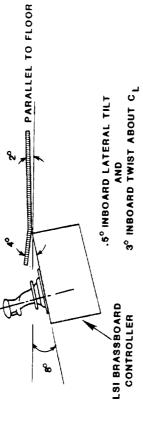
6.2.2 Alternate 4-Axis Controller Comparison

The new small-deflection controller (MSI-SD3) was introduced to the simulation study during Phase 2A and tested relative to the MSI-SD2 and MSI-SS configurations used during Phase 1. Each controller was evaluated in the (4+0) configuration for three low speed tasks--NOE, Precision Hover, and Bob-up. Figure 6-10 presents a comparison of pilot ratings for the three 4-axis controllers shown in Figure 6-2.

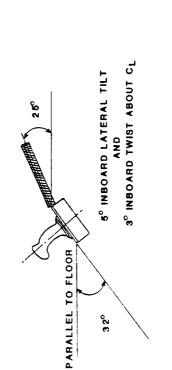
For all low-speed tasks the MSI-SS and MSI-SD2 controller received pilot ratings that were degraded approximately one rating point compared to the MSI-SD3 configuration. The MSI-SD3 controller was the only 4-axis configuration to receive Level 1 ratings of approximately 3.0 to 3.5 with the higher levels of pitch and roll command and stabilization. With the same AFCS configurations, i.e. AT/AT and AT/LV, the MSI-SS and MSI-SD2 controller achieved Level 2 pilot ratings of approximately 4.0. In general, higher AFCS stabilization levels for all controllers significantly reduced the effects of inadvertent control inputs or aircraft upsets, and less stabilized AFCS configurations increased pilot workload.


As observed during Phase 1, it was more difficult with the

SIDE-STICK CONTROLLER ORIENTATIONS


PHASE 2A

PHASE 2B


RIGHT HAND CONTROLLER MOUNTING

RIGHT HAND CONTROLLER MOUNTING

LEFT HAND CONTROLLER MOUNTING

4º INBOARD TWIST ABOUT CL 8º INBOARD LATERAL TILT 20° PARALLEL TO FLOOR 30°

Figure 6-8

LEFT HAND CONTROLLER MOUNTING


ORIGHNAL PAGE IS OF POOR QUALITY

SSC INSTALLATION COMPARISON

PHASE 2B

PHASE 2A

4-AXIS CONTROLLER COMPARISON

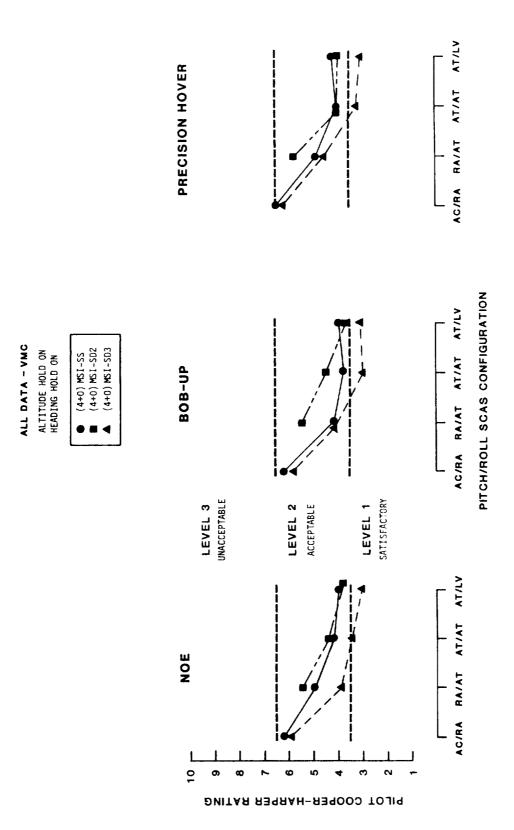


Figure 6-10

stiff-stick to modulate forces, particularly for high-frequency control tasks such as the Precision Hover. The stiff controller provided poor tactile feedback to the pilot and gave the feeling of not being 'tight' in the control loop, especially during large amplitude maneuvers. The stiff-stick also exhibited more of a tendency toward pilot-induced oscillation (PIO).

The MSI-SD3 Controller (deflection in all axes) was unanimously preferred by all pilots over both the MSI-SD2 Controller and the stiff-stick design (MSI-SS). All pilots felt that deflection in each control axis provided better definition of individual axis commands, reduced the tendency for inadvertent coupling of control inputs, and allowed precision control tasks to be performed more accurately.

Based on pilot comments the MSI-SD2 Controller (deflection in pitch and roll) was considered an improvement for pitch and roll control when compared to the stiff controller design. However, overall pilot ratings were slightly more degraded than the stiff-stick controller. Pilot comments again indicated that poor control force harmony resulted from the combination of two stiff control axes and two deflection control axes on the same controller. This controller (MSI-SD2) had undesirable force modulation characteristics in yaw and collective. High frequency control was difficult in these axes and performance during the Precision Hover Task, although better than the stiff controller (MSI-SS), was marginally acceptable. Both MSI-SS and MSI-SD2 provided Level 2 handling qualities for all tasks and AFCS configurations.

One important anthropometric characteristic was common to all 4-axis controllers evaluated; the pitch and yaw orientation of the controller and grip with respect to the armrest was critical to minimize pilot fatigue and reduce cross-axis coupling.

Three minor problems were observed with the MSI-SD3 Controller design during the course of Phase 2 testing:

- (1) Maximum yaw axis control travel and forces were excessive for comfortable hand-wrist motion.
- (2) Forward tilt of the grip with respect to controller mount introduced inadvertent roll/yaw coupling.
- (3) Small mechanical free-play (manifested as a force deadband) degraded precise longitudinal axis control for small control inputs.

6.2.3 Left-Hand Vertical Side-Stick Controller Evaluation

A comparison of the stiff-stick (MSI-SS) and small-deflection controller (MSI-SD2) mounted on the left as a vertical controller in a (3+1) Collective configuration was performed. Right-hand control of pitch, roll, and yaw was accomplished using the

MSI-SD3 Controller. For the data presented, both the directional and vertical axes were implemented as rate command systems with Heading Hold in the yaw axis and Altitude Hold in the vertical axis.

Results of the evaluation are presented in Figure 6-11. The left-hand deflection controller improved pilot ratings by an average of one-half point compared to the stiff controller. Level 1 ratings were achieved with an attitude command system (AT/AT or AT/LV) in pitch and roll for all low speed tasks. Pilot performance was particularly improved during the Bob-up Task where accurate control of aircraft height was required. Pilots found that collective control forces and small height changes were easier to modulate if small deflection was provided in the left-hand vertical controller. Based on these results, the small-deflection controller (MSI-SD2) was selected as the primary left-hand vertical controller for subsequent evaluation of the (3+1) Collective and (2+1+1) controller configurations during Phase 2.

6.2.4 ADOCS Brassboard Controller Evaluation

An initial investigation was performed during Phase 2B to evaluate the ADOCS brassboard controller manufactured by Lear-Siegler, Inc. in comparison to the MSI-SD3 small-deflection controller utilized for Phase 2A simulation study. The brassboard controller was designed to have force/deflection characteristics similar to the MSI-SD3 controller (Table 3-1).

Various VMC tasks were flown to compare both controllers using the same grip (Canadian NAE version as described in Volume 2). Figure 6-12 presents pilot ratings for the NOE Task with both controllers in a 4-axis configuration. As shown, little difference in pilot ratings resulted between the two controller configurations. Pilot comments indicated that the brassboard controller "felt" slightly better. Therefore, it was used for the remainder of Phase 2B simulation.

6.2.5 Alternate Grip Comparison

Pilot comments from Phase 1 and Phase 2A simulations led Boeing Vertol to develop an alternate grip design (Figure 6-13). The objective of the new grip design was to provide better defined grip control surfaces, especially for application of directional and vertical forces. This alternate grip design was available at the start of Phase 2B simulation for comparison to the Canadian NAE-type grip used during Phase 2A.

Both grips were evaluated back-to-back when mounted on the ADOCS brassboard controller. For both the NOE and Precision Hover Tasks performed under VMC, the Canadian NAE grip was preferred. The experimental grip was found to be unacceptable by all evaluation pilots. Though it did provide better defined

LEFT-HAND VERTICAL CONTROLLER COMPARISON

ALL DATA - VMC ALTITUDE HOLD ON HEADING HOLD ON

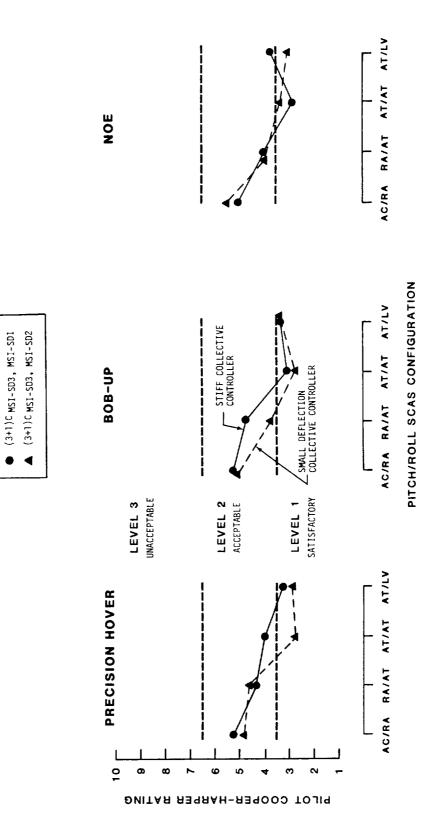


Figure 6-11

4-AXIS CONTROLLER COMPARISON

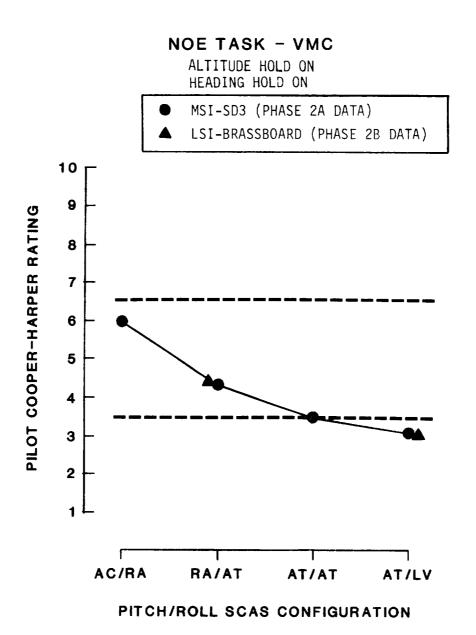


Figure 6-12

Figure 6-13

BOEING EXPERIMENTAL GRIP

CANADIAN NAE TYPE GRIP

ORIGINAL PAGE IS OF POOR QUALITY

GRIP COMPARISON

99

control surfaces, the pilots found that it was uncomfortable, awkward, and created a tendency to tightly grip the controller.

6.3 CONTROLLER/SCAS CONFIGURATION EFFECTS

All tasks were evaluated with three selected controller configurations (i.e. (4+0), (3+1) Collective, and (2+1+1)) to assess the effects of side-stick controller integration level on handling qualities. Overall Phase 1 pilot ratings for the (3+1) Pedal configuration were not as good as the (3+1) Collective and (2+1+1) controller configurations. Therefore, the (3+1) Pedal configuration was not included during Phase 2 in order to concentrate on improvement of vertical control through a separated vertical controller.

6.3.1 Low-Speed Tasks

A summary of results obtained for variations of pitch and roll SCAS and controller configurations is shown in Figure 6-14 for three low speed VMC tasks--NOE, Precision Hover, and Bob-up. Data in Figure 6-14 were obtained for VMC with yaw rate command/heading stabilization and vertical velocity command/altitude stabilization in the directional and vertical axis, respectively.

For the VMC low-speed tasks, the effect of pitch and roll SCAS configuration is very consistent for all controller configurations and tasks. As shown on Figure 6-14, an attitude command system with either attitude stabilization (AT/AT) or with groundspeed stabilization (AT/LV) was required to achieve Level 1 ratings for these tasks under VMC. The rate command/attitude stabilization system (RA/AT) resulted in Level 2 ratings for all controller configurations and tasks. The acceleration command/rate stabilization system (AC/RA) however, consistently provided borderline Level 2/Level 3 ratings.

Pitch and Roll SCAS Configurations

Time histories for the NOE Task (Figures 6-15 and 6-16) show the degradation in task performance with a rate command/attitude stabilization (RA/AT) system compared to an attitude command/velocity stabilization system (AT/LV). Large variations of bank angle occur throughout the task with the rate command system, resulting in larger sideslip excursions than exhibited with the attitude command system. Tighter control of bank angle and side-slip was achieved with the AT/LV system as evident by the improved pilot ratings.

Higher levels of stability and control augmentation were evaluated for the Precision Hover and Bob-up Tasks in addition to the same SCAS systems evaluated for the low-speed maneuvering tasks: the NOE and 30-Knot Slalom Tasks. Two velocity-command systems were included in the matrix of test configurations: one having outer-loop groundspeed stabilization

SUMMARY OF PILOT DATA FOR LOW SPEED TASKS

ALL DATA - VMC

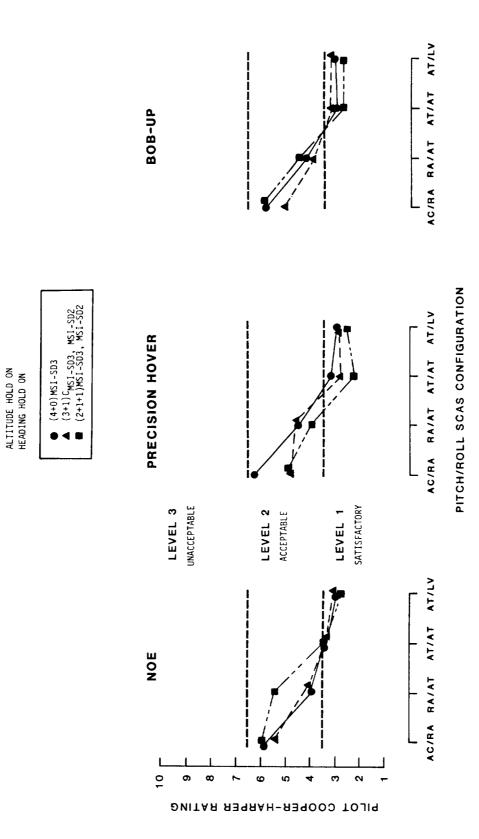


Figure 6-14

TIME HISTORY OF NOE TASK - IMC RA/AT SYSTEM

CMD/STAB SYSTEM - RA/AT, $\dot{\psi}/\psi_{H}$, \dot{h}/h_{H} CONTROLLER CONFIGURATION - (4+0)LSI

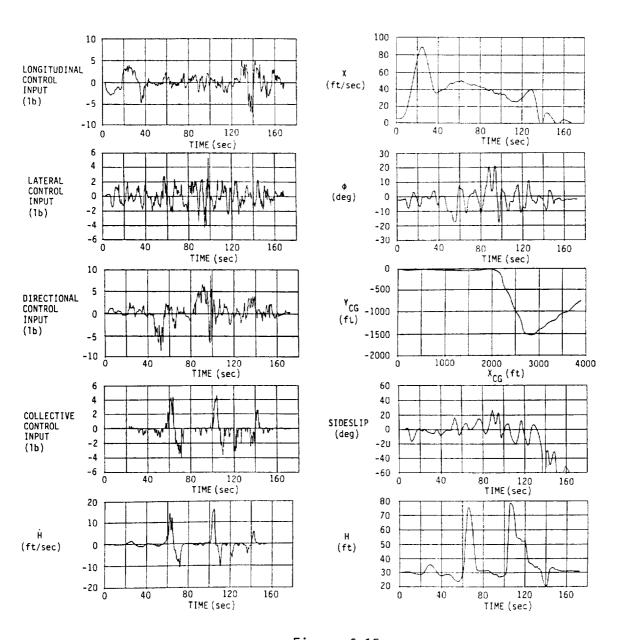


Figure 6-15

TIME HISTORY OF NOE TASK - IMC AT/LV SYSTEM

CMD/STAB SYSTEM - AT/LV, ψ/ψ_H , h/h_H CONTROLLER CONFIGURATION - (4+0)LSI

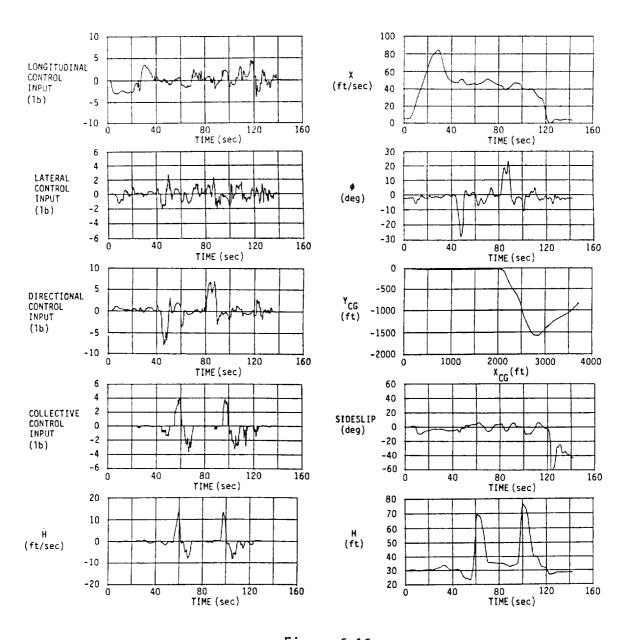


Figure 6-16

(LV/LV) and the other incorporating a position-hold feature (LV/PH).

Pilot ratings for the IMC Precision Hover Task under wind and turbulence conditions (Figure 6-17) were improved with a velocity-command system (LV/LV) compared with an attitude-command system (AT/LV). Satisfactory ratings were obtained with all controller configurations evaluated, with the velocity-command/position-hold (LV/PH) system which received the best ratings, approximately 2.5 on the Cooper-Harper scale. In the calm air condition, all SCAS configurations obtained Level 1 ratings.

As shown in Figure 6-18, the highest level of command/stabilization (i.e. LV/PH) was required to achieve Level 1 pilot ratings for the IMC Bob-up Task with wind shear and turbulence. Without the Position Hold Mode engaged, Level 2 ratings were achieved for this task. In calm air however, Level 1 ratings were obtained for all controller configurations and SCAS systems evaluated.

Yaw and Vertical SCAS Configurations

A comparison of SCAS configuration changes in the yaw and vertical axes is presented on Figures 6-19 and 6-20. The effects of switching from yaw rate to yaw acceleration command (Heading Hold Off) or vertical velocity to vertical acceleration command (Altitude Hold Off), was defined for all controller configurations; however, only the (4+0) MSI-SD3 and (3+1) Collective MSI-SD3, MSI-SD2 configurations data are presented.

A yaw rate command/Heading Hold system was preferred by all pilots for all evaluation tasks. Level 1 ratings were achieved for this directional control system with pitch and roll attitude command configurations, i.e. AT/AT and AT/LV. With a yaw rate command system, the pilots could modulate yaw rate precisely and make deadbeat heading changes with low workload. Yaw acceleration command made it very difficult for the pilots to achieve a desired yaw rate, and multiple control inputs were required to control the helicopter to a desired heading. Yaw acceleration control, especially during yaw reversals, lacked precision and gave a feeling of increased yaw inertia.

The effect of yaw acceleration command on pilot ratings varied with the task. Figure 6-19 shows that the greater the requirement for directional control during the task, the larger the degradation of pilot ratings. The Precision Hover Task, with a minimum requirement for compensation in yaw, showed little difference in ratings. For the NOE Task, where yaw inputs were required to coordinate the turns, an average degradation of one pilot rating point resulted. The Bob-up Task required the pilot to modulate yaw control forces accurately to arrive at a specific target heading. Pilot ratings with a yaw acceleration command system for this task degraded by as much as two rating

COOPER-HARPER

PILOT

RATING

(UNACCEPTABLE) (SATISFACTORY) (ACCEPTABLE) LEVEL 3 LEVEL 2 LEVEL 1 PILOT RATINGS FOR PRECISION HOVER TASKS AT/LV LV/LV LV/PH ****************** PITCH/ROLL SCAS CONFIGURATION CALM AIR (2+1+1)LSI, MSI-SD2 (3+1)CLSI, MSI-SD2 ALTITUDE HOLD ON HEADING HOLD ON - IMC -(4+0)LSI AT/LV LV/LV LV/PH ************** WIND/TURB 9 6 က ~

Figure 6-17

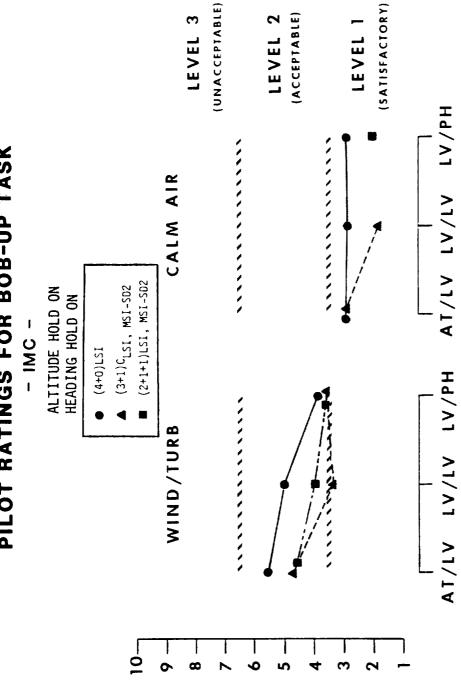


Figure 6-18

PITCH/ROLL SCAS CONFIGURATION

TOILG

COOPER-HARPER

RATING

EFFECT OF DIRECTIONAL SCAS VARIATIONS ON PILOT RATINGS

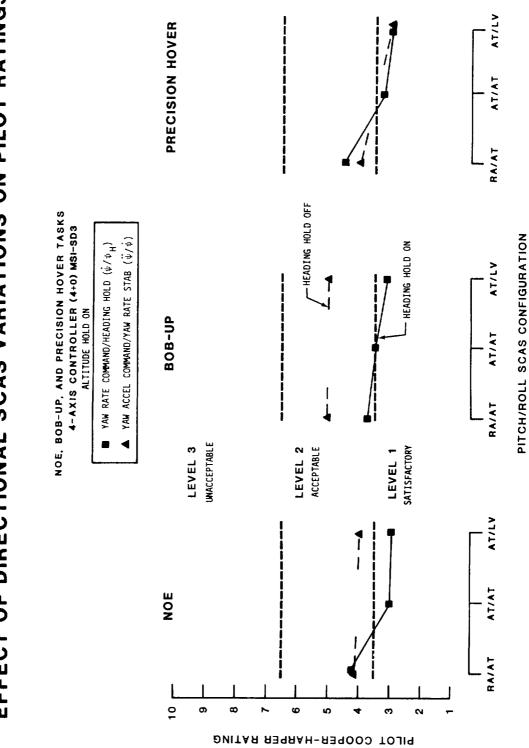


Figure 6-19

EFFECT OF VERTICAL SCAS VARIATONS ON PILOT RATINGS

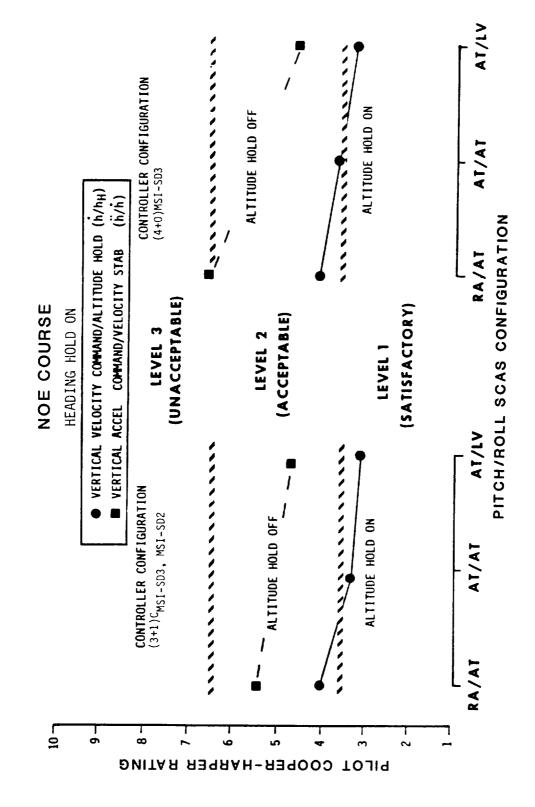


Figure 6-20

points compared to the yaw rate command system. Level 1 pilot ratings with yaw acceleration command were only achieved for the Precision Hover Task with a pitch and roll attitude command system. The Bob-up and NOE Tasks, which required larger directional control maneuvers, exhibited Level 2 pilot ratings.

Figure 6-20 shows that the vertical velocity command/Altitude Hold system achieved the best pilot ratings in conjunction with all pitch and roll SCAS systems in the (4+0) MSI-SD3 and (3+1) Collective controller configuration. Pilot comments indicated that it was difficult to modulate vertical velocity precisely with the acceleration command system. Consequently, vertical control was imprecise and required multiple reversals to attain a desired altitude. The vertical velocity command/Altitude Hold system made precise modulation of vertical velocity and altitude easier, thereby considerably reducing pilot workload.

Vertical acceleration control on the side-stick offered the benefit of eliminating the need to hold vertical forces to achieve a steady vertical velocity (while modulating forces in other axes at the same time). However, the benefits of Altitude Hold and vertical velocity command apparently offset the disadvantage of holding vertical control forces.

A comparison of data for the (4+0) MSI-SD3 and (3+1) Collective MSI-SD3, MSI-SD2 controller configurations in Figure 6-20 indicates that for the lower level pitch and roll SCAS configurations, separating vertical control from the right-hand side-stick controller was beneficial with Altitude Hold Off, e.g. about one rating point improvement for the RA/AT system.

Controller Configuration Effects

The effects of separate vertical and yaw controllers--(3+1) Collective and (2+1+1) configurations--were evaluated for all the low-speed tasks. Figure 6-14 shows that pilot ratings for the (4+0) MSI-SD3, the (3+1) Collective, and the (2+1+1) controller configurations were essentially equal for the NOE Task under VMC. Level 1 ratings were achieved for higher SCAS stabilization levels. For the Precision Hover and Bob-up Tasks, separation of controllers had a more significant effect on pilot ratings. An improvement in pilot ratings was achieved with the (2+1+1) controller configuration which received ratings of 2.0 to 2.5 for the Precision Hover Task. At reduced SCAS stabilization levels, this trend was not as evident.

Controller configuration did not have a significant effect on pilot ratings for the NOE Task under IMC. Collective control inputs were required only for single-axis vertical maneuvering over the berms. Providing vertical control from a separate left-hand controller did not have a noticeable effect on pilot rating for this task. Figure 6-21 shows that the 4-axis

PILOT RATINGS FOR NOE TASK

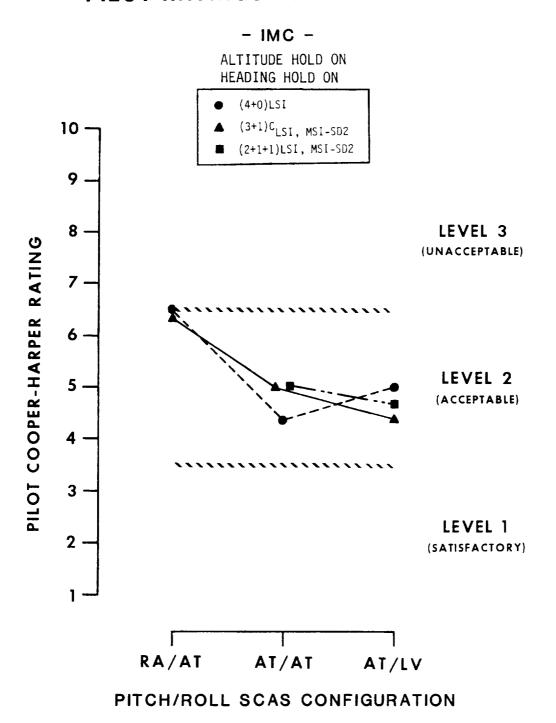


Figure 6-21

controller achieved pilot ratings comparable to the (3+1) Collective and (2+1+1) configurations for the NOE Task.

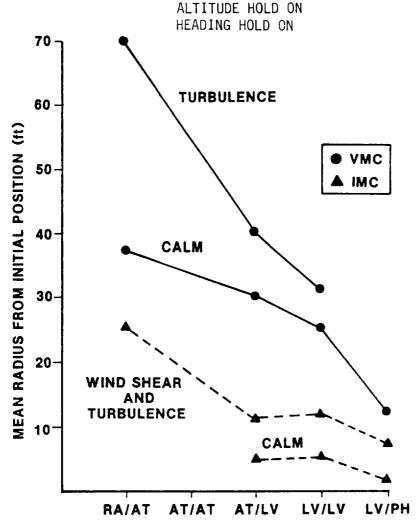
Little preference for a particular controller configuration was noticed for the IMC Precision Hover Task as well (Figure 6-17). This task required high-frequency pilot control using primarily single-axis inputs. Cross-axis control coupling was not a major problem for the Precision Hover Task. The Bob-up however, showed a distinct preference for separate controllers under IMC with or without wind shear and turbulence (Figure 6-18). As the Bob-up required multi-axis inputs, cross-axis coupling with a 4-axis controller became more noticable as the stability level decreased.

Effect of Wind Shear and Turbulence

Most pilot rating data collected during Phase 2B for the Bob-up and Precision Hover Tasks were obtained under conditions of wind shear and moderate turbulence; initial baseline data were gathered in calm air for comparison. The effect of wind shear and turbulence on pilot ratings is also shown on Figures 6-17 and 6-18 for both the Bob-up and Precision Hover Tasks. Pilot ratings were degraded approximately 1.5 points under turbulence and wind shear conditions.

The effect of turbulence on Bob-up Task performance is presented in Figure 6-22. Deviations in longitudinal and lateral position from the desired hover location are used to calculate a mean radius, the radius of a circle containing one-half the total number of data points. For a lower level of stability and control augmentation, mean radius is significantly greater with turbulence compared with calm-air conditions. Even though the pilots' ratings for the IMC Bob-up Task were degraded, their performance under IMC was better than VMC performance. This outcome is due to the lack of strong visual position cues in the simulation under VMC, particularly at the higher altitudes reached during the Bob-up maneuver. Also, the additional guidance provided to the pilot by the IHADSS display symbols is an advantage for maintaining a Precision Hover under IMC.

6.3.2 Slalom Tasks


The 30-, 90-, and 140-Knot Slalom Tasks were all designed as lateral avoidance maneuvers to test lateral/directional controll-ability. The 30-Knot Slalom required manual turn coordination while both the high-speed Slalom Tasks evaluated the automatic turn coordination feature designed in the ADOCS AFCS.

Pitch and Roll SCAS Configurations

For the 30-Knot Slalom Task under IMC, the AT/LV system re-

EFFECT OF TURBULENCE ON BOB-UP PERFORMANCE

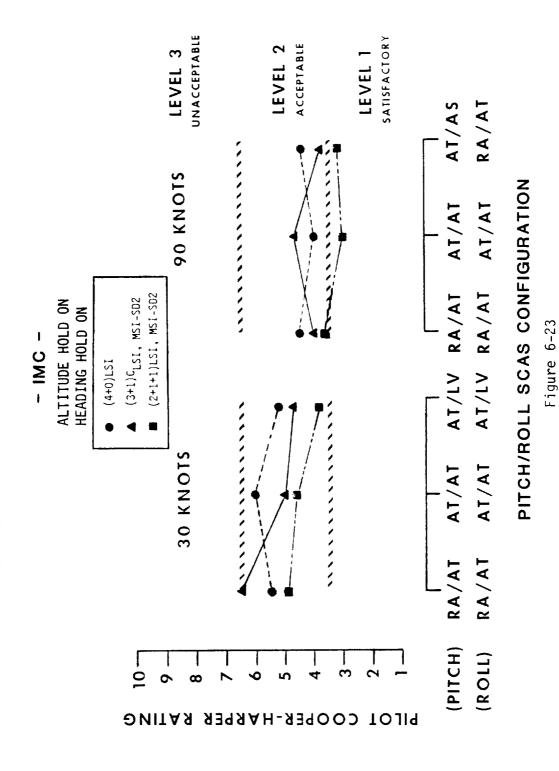
-IMC AND VMCDATA FOR 4-AXIS CONTROLLER CONFIGURATION

PITCH/ROLL SCAS CONFIGURATION

Figure 6-22 112

ceived the best pilot ratings (Figure 6-23). This system was preferred over the RA/AT or the AT/AT system because of improved groundspeed hold during maneuvering. The SCAS had less of an effect on pilot ratings for the 90-Knot Slalom Task under IMC.

Time history data for the 30-Knot Slalom Task with AT/LV and RA/AT systems are presented in Figures 6-24 and 6-25 respectively. As discussed, groundspeed deviations for the rate command/attitude stabilization system (RA/AT) are greater than the ground-speed deviations which occurred with an attitude command/velocity stabilization (AT/LV) system. With the AT/LV system, improved ground track and smaller variations in sideslip were maintained. Both time history cases presented for the Slalom Task were obtained with the same pilot and the (2+1+1) controller configuration under IMC.


For the 90- and 140-Knot Slalom Tasks, variations in pitch and roll command and stabilization levels showed that a hybrid SCAS configuration--AT/AS in pitch and RA/AT in roll--was much preferred over the other SCAS configurations evaluated (Figure 6-26). The requirement to hold heavy forces in a turn with a pitch and roll attitude command system (AT/AT) caused a significant degradation in pilot ratings of about 2.5 points. This SCAS configuration exhibited a severe degradation of flight path accuracy and airspeed hold, as well as a tendency toward PIO.

Automatic Turn Coordination

The effect of Automatic Turn Coordination on pilot ratings for the 90-Knot Slalom Task under VMC is shown in Figure 6-27. Data are presented as a function of controller configuration for the best pitch and roll SCAS configuration -- attitude command/airspeed stabilization (AT/AS) in pitch and roll rate command/attitude stabilization (RA/AT) in roll. controller configurations, the automatic turn coordination system improved pilot ratings by approximately 2.0 rating points, and significantly reduced pilot workload by making the slalom maneuver a single axis stick-steering control task. Level 1 ratings were achieved with all controller configurations with the turn coordination system engaged. The lack of automatic turn coordination significantly degraded flight path performance, especially at lower AFCS command and stabilization levels.

The turn coordination system designed for this simulation used lateral acceleration feedback above 50 knots to balance the aircraft automatically in turns. The system implementation appeared to have a detrimental effect on the pilots' ability to trim the aircraft with non-zero lateral acceleration. Since lateral control introduced a turn rate command into the yaw axis, it was difficult to establish steady yaw and lateral

PILOT RATINGS FOR SLALOM TASK

114

TIME HISTORY OF 30-KNOT SLALOM TASK - IMC AT/LV SYSTEM

CMD/STAB SYSTEM - AT/LV, $\dot{\psi}/\psi_{H}$, \dot{h}/h_{H} CONTROLLER CONFIGURATION - (2+1+1)LSI, MSI-SD2

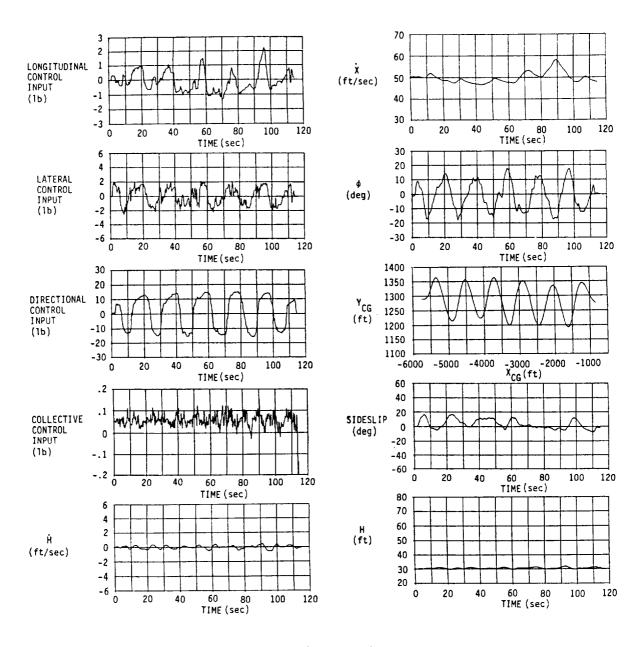


Figure 6-24

TIME HISTORY OF 30-KNOT SLALOM TASK - IMC RA/AT SYSTEM

CMD/STAB SYSTEM - RA/AT, $\dot{\psi}/\psi_H$, \dot{h}/h_H CONTROLLER CONFIGURATION - (2+1+1)LSI, MSI-SD2

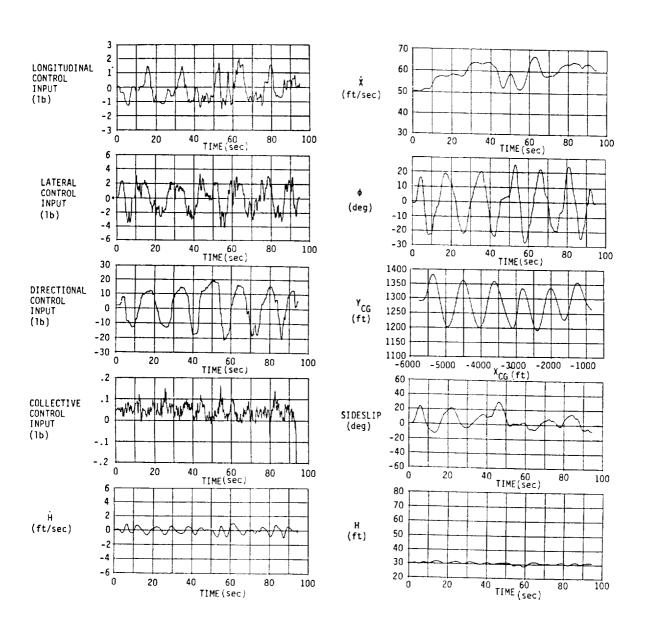


Figure 6-25

PILOT RATINGS FOR HIGH-SPEED SLALOM TASK

AUTOMATIC TURN COORDINATION

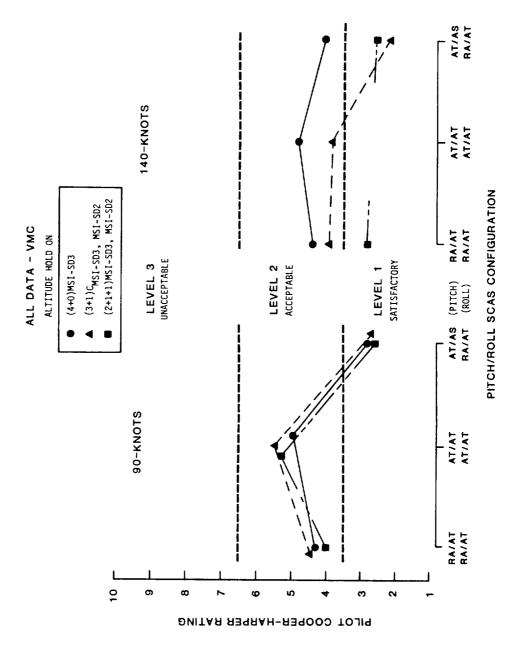


Figure 6-26

EFFECT OF AUTOMATIC TURN COORDINATION ON PILOT RATINGS

90-KNOT SLALOM TASK

ALL DATA - VMC SCAS CONFIGURATION: AT/AS (PITCH); RA/AT (ROLL)

- A (4+0)MSI-SD2
- B (4+0)MSI-SD3
- C (3+1)C_{MSI-SD3}, MSI-SD2
- D (2+1+1)MSI-SD3, MSI-SD2
- TURN COORDINATION OFF
- TURN COORDINATION ON

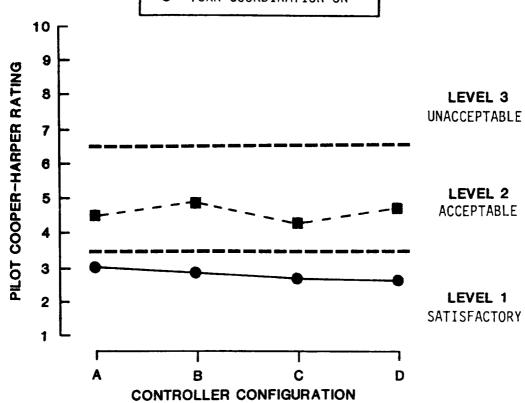


Figure 6-27

control positions required to establish an unbalanced flight condition.

Controller Configuration Effects

For both the 30- and 90-Knot IMC Slalom Tasks, the pilots preferred separated controllers [i.e., (3+1) Collective and (2+1+1)], as shown in Figure 6-23. The pilot's ability to maintain a constant airspeed and altitude was a primary measure of performance for these tasks. Pilot comments indicate that more cross-coupling occurred with the 4-axis controller and resulted in significant airspeed and altitude deviations. Overall, for both Slalom Tasks, the (2+1+1) configuration received the best pilot ratings. Pilots' comments suggest that there was more tendency to couple roll inputs into yaw with the (4+0) and (3+1) Collective configurations. The (2+1+1) configuration eliminated roll/yaw interaxis control coupling for this task.

The results of the 90-Knot and 140-Knot VMC Slalom Tasks are presented in Figure 6-26 for three primary controller configurations. At 90 knots with Turn Coordination selected, the effects of controller separation were minimal. All controller configurations received comparable pilot ratings. The 90-Knot Slalom Task was primarily a single-axis lateral stick-steering task supplemented by pitch axis modulation to control airspeed. Automatic Turn Coordination and Altitude Hold reduced the need for compensation in the yaw and vertical axes. Therefore, any advantages of separated controllers for the Slalom Task at 90 knots were diminished.

This situation did not exist at 140 knots for the Slalom Task with Automatic Turn Coordination On. The (4+0) MSI-SD3 controller exhibited degraded ratings compared to the separated controller configurations. Only Level 2 ratings were obtained with the (4+0) MSI-SD3 configuration even with the best pitch and roll SCAS configuration. Level 1 ratings were achieved for the (2+1+1) configuration with either a pitch and roll rate command system (RA/AT) or the preferred combination system (AT/AS in pitch and RA/AT in roll). The (2+1+1) configuration seemed slightly more tolerant to the higher commanded roll rates and attitudes associated with the Slalom Task at 140 knots.

6.3.3 Approach-to-Hover Tasks

These experiments evaluated the benefit of blending SCAS modes in the transition region (40 to 60 knots). The transition evaluation tasks were designed to study mode switching characteristics in both a straight and a turning deceleration and descent to hover with and without a crosswind. Generally, the effects of crosswind during the Approach-to-Hover Tasks were negligible.

Pitch/Roll SCAS Configurations

Overall, both the attitude command/attitude stabilization (AT/AT) and the hybrid SCAS (AT/AS-AT/LV, RA/AT-AT/LV) were favored over the rate command/attitude-stabilization (RA/AT) system for the Approach-to-Hover Tasks (Figure 6-28), with satisfactory ratings achieved for the straight and right-Turning Approach-to-Hover under both VMC and IMC.

The hybrid command/stabilization system (AT/AS-AT/LV, RA/AT-AT/LV) was felt to be the best system for these tasks as it eliminated the requirement to hold forces in turns as the attitude system required, while also allowing precise attitude control when attempting to achieve a hover which the rate command system lacked.

Controller Configuration Effects

Controller configuration had a significant effect on pilot ratings for the Approach-to-Hover Tasks, as presented in Figure 6-28. Separated controllers - (3+1) Collective and (2+1+1) configurations - improved VMC and IMC pilot ratings by 1.0 and 1.5 pilot rating points compared with the 4-axis controller configuration. Pilots had more difficulty with the 4-axis controller during the transition tasks because of the requirement to hold forces in the vertical axis while modulating pitch and roll control. Transfer of vertical control from the right-hand 4-axis controller to a single-axis left-hand side-stick eliminated this control problem and improved pilot ratings appreciably.

Precise modulation of airspeed while holding a steady vertical force during the descent portion of the Straight Approach-to-Hover Task with a vertical velocity command system (h/h_H) was difficult with the (4+0) configuration and resulted in Level 2 pilot ratings. Pilot ratings under IMC for this task were marginal Level 2 with the (4+0) configuration and significantly degraded compared to VMC ratings of approximately 4.0. Flight path control was markedly improved and pilot workload reduced by separating the collective axis from the right hand controller, providing better axis identification and resulting in Level 1 pilot ratings of 2.0 under VMC. Level 1 ratings were also achieved under IMC with the hybrid pitch/roll SCAS configuration.

The vertical acceleration command system (h/h) eliminated the requirement to hold steady vertical forces in a descent. However, this advantage was offset by the resultant characteristics of closed-loop vertical control. There was a consistent tendency to overcontrol which produced poor controllability and large flight path errors. Steady cross-winds had negligible effect on pilot performance and workload, regardless of the SCAS configuration.

PILOT RATINGS FOR APPROACH TO HOVER TASKS

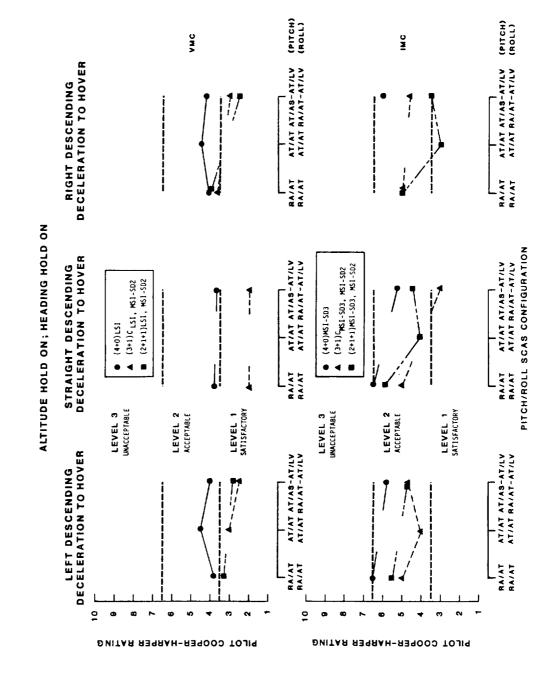
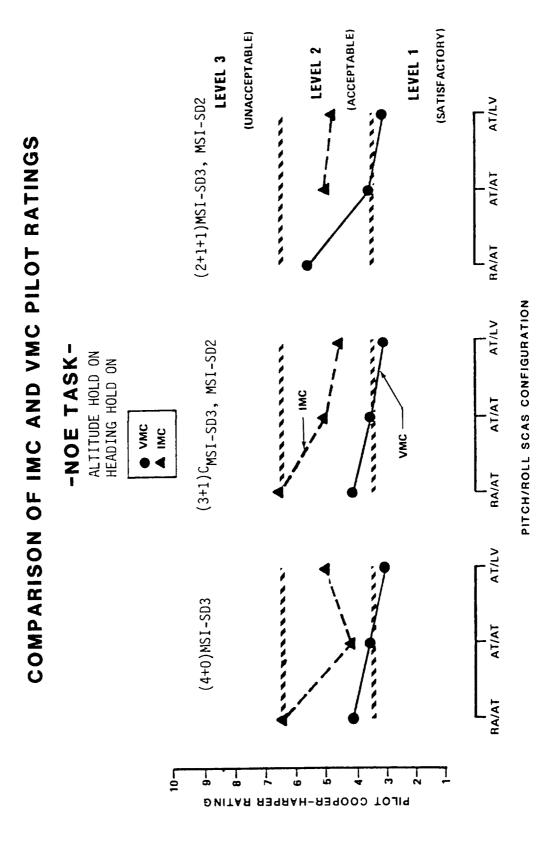


Figure 6-28

The multi-axis Turning Approach-to-Hover Task also produced degraded pilot ratings in the (4+0) configuration. Again the separation of the vertical axis with the (3+1) Collective configuration significantly reduced pilot workload by improving axis identification. During a turning descent under VMC the roll attitude command system (AT/AT) required the pilot to hold lateral control forces, as well as a vertical force, while modulating yaw and pitch control inputs. Pilot ratings for the pitch and roll rate command system (RA/AT) were slightly improved for VMC compared to the AT/AT system because the need to hold steady lateral forces was eliminated.

Anthropometric characteristics of the human wrist make it easier to turn the wrist (or twist the grip) to the left rather than the right. As a result, it was more difficult to modulate or hold right yaw control forces when coordinating a turn to the right. Experiments showed that 6.0 degrees of inboard rotation of the controller with respect to the armrest provided a more comfortable neutral position for yaw control. With this adjustment to controller orientation, pilot performance improved for right turns without degrading performance in left turns.


6.4 IMC/VMC COMPARISON

Flight under IMC with the IHADSS had a significant effect on pilot ratings for the low-speed NOE maneuvering task. Figure 6-29 compares VMC data from Phase 2A and IMC data obtained during the Phase 2B simulation for the same NOE Task. Combinations of three controller configurations and three SCAS types are compared. Average IMC pilot ratings were degraded approximately 1.5 points relative to the VMC ratings for all ASCS and controller combinations evaluated. Satisfactory handling qualities were achieved under VMC with an attitude command system, whereas handling qualities degraded to only acceptable with the same AFCS configuration for the IMC task.

The NOE Task flown under IMC was found to be the most difficult and demanding task for the evaluation pilots to perform. The IHADSS display provides a limited instantaneous field-of-view image and gives minimal rate-of-closure cues to the pilot, thereby making this task extremely difficult to perform with low levels of stability and control augmentation.

The ability to maintain horizontal ground position was used by the pilots as a measure of performance for the Bob-up Task. Under IMC this information was explicitly displayed to the pilot by the bob-up mode symbols of the IHADSS display. The benefit obtained from the extra "feedback" to the pilot provided by the IHADSS symbology is shown by the results presented on Figure 6-22. Performance of the Bob-up Task, as indicated by deviation of hover position, improved significantly under IMC with IHADSS. Not only did the position symbol aid the pilot in

Figure 6-29

holding position, but the velocity vector served to direct him back to his initial position.

For the Approach-to-Hover Tasks (Figure 6-28), the noted degradation in pilot ratings under IMC were a result of the poor rate-of-closure cues and limited field-of-view supplied by IHADSS. During the turning Approach-to-Hover Tasks in particular, the large head movements required of the task caused the pilot to become disoriented and unable to tightly control his flight path.

7.0 SUMMARY OF PILOT EVALUATION DATA

In order to summarize task/SCAS/controller effects on pilot workload and performance under both VMC and IMC, all pilot rating data for each simulation phase were reorganized into various matrices, including:

- (1) a task/SCAS matrix with all controller configuration ratings combined and averaged
- (2) a controller/SCAS matrix with all task ratings combined and averaged, or
- (3) a task/display matrix with all SCAS and controller configurations combined.

In addition to pilot rating data, pilot qualitative comments were recorded for each data run. All commentary was analyzed to understand the reason for each pilot rating and to identify prominent factors which influence the pilot rating for each configuration variable.

7.1 SUMMARY OF PILOT RATINGS

7.1.1 Task/Display Effects

Pilot rating data for all controller configurations were averaged for each task/SCAS combination. Figures 7-1 and 7-2 present the results of this analysis for Phase 1 and Phase 2, respectively. In addition to the effect of SCAS configuration, there was a significant effect of task on pilot ratings for The IMC display effects showed an additive degradation of pilot workload/performance as task difficulty increased. comparison, VMC pilot ratings were predominantly affected by SCAS configuration and, except for the Precision Hover and Bob-up Tasks, where visual cues become weak, task had little effect. When comparing IMC results to VMC results obtained during Phase 1, the mean increase in pilot rating points for each task was: NOE course 2.3, 30-Knot Slalom 2.0, Acceleration/Deceleration 1.2, and Bob-up 1.3. The same comparison of data for Phase 2 shows that the mean increase in pilot rating points by task was: NOE course 1.9 - straight and Turning Approach-to-Hover 1.7, Precision Hover 0.15, and Bob-up 1.45.

Figure 7-3 presents a comparison of VMC and IMC ratings for all tasks evaluated during the Phase 2 simulation. The VMC data are from Phase 2A testing and the IMC data were generated during the Phase 2B simulation phase. Data shown are Cooper-Harper ratings averaged over all controller configurations and AFCS types evaluated for each task. As seen in Figure 7-3, the average rating did not vary significantly as a function of VMC task. However, task variation had a larger effect on pilot rating for flight under IMC with the IHADSS. The largest degradation in IMC pilot ratings occurred for the NOE Task.

SUMMARY OF TASK EFFECT ON PILOT RATINGS

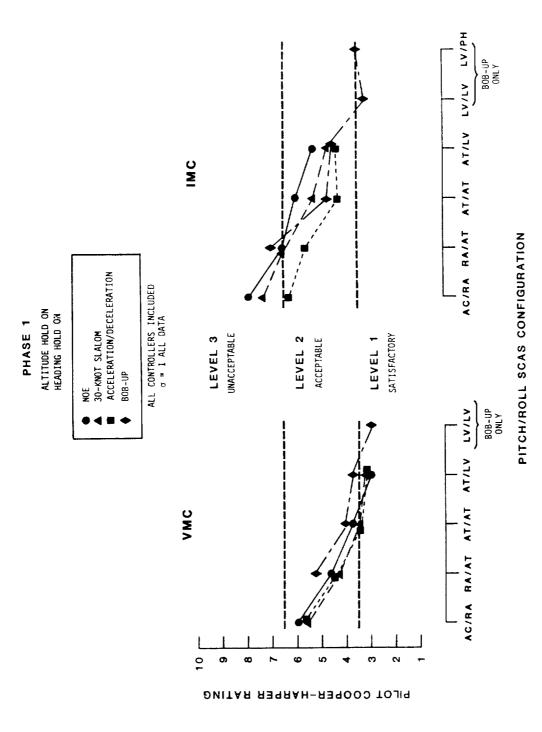


Figure 7-1

* IMC - WITH WIND & TURBULENCE

Figure 7-2

PITCH/ROLL SCAS CONFIGURATION

AVERAGE COOPER-HARPER RATING

PRECISION ■ VMC UNACCEPTABLE LEVEL 2 ACCEPTABLE SATISFACTORY **▲** IMC LEVEL 3 LEVEL 1 SLALOM (90 kt) ALL PITCH/ROLL AFCS AND ALL CONTROLLER CONFIGURATIONS COMBINED RIĞHT TURNING APPROACH **EFFECT OF TASK ON PILOT RATINGS** BOB-UP ALTITUDE HOLD ON HEADING HOLD ON SLALOM LEFT STRAIGHT (30 kt) APPROACH NWC Y IMC NOE 2 ω

TASK

HOVER

Figure 7-3

More pilot head motion was required for low speed maneuvering tasks such as the NOE, 30-Knot Slalom, and Turning Approach-to Hover Tasks. Pilot comments indicate that the rapid head movement required to monitor aircraft position and ground track caused disorientation and increased workload. For tasks in which little or no head motion is required, such as the Precision Hover and Slalom at high speed (90 knots), IMC ratings approached those for the same tasks conducted under VMC.

7.1.2 SCAS Effects

The effect of primary SCAS configuration on pilot ratings for the 30-Knot Slalom, Acceleration/Deceleration, and NOE Tasks of Phase 1 is summarized in Figure 7-4. Pilot ratings from the three tasks were combined into a single primary SCAS/controller matrix, thereby tending to average out the effect of task. A comparison of VMC with IMC is also shown. The average degradation of IMC ratings compared to VMC ratings for all SCAS configurations is 1.8 on the Cooper-Harper rating scale. For each SCAS configuration, the range of pilot ratings from the best to worse controller configuration was an average of one and one-half rating points for both IMC and VMC.

Figure 7-1 shows that an acceleration command/rate stabilization system (AC/RA) exhibited Level 3 ratings for the IMC tasks, and the addition of attitude stabilization with a rate command response system (RA/AT) received marginal Level 2 ratings. With the same level of attitude stabilization, an attitude command system (AT/AT) improved both IMC and VMC pilot ratings by over one rating point. When velocity stabilization was combined with an attitude command system, pilot ratings for the maneuvering tasks improved an average of half a rating point for IMC and VMC.

A similar analysis of Phase 2 pilot rating data for forward flight maneuvering tasks -- NOE, 90- and 140-Knot Slalom and Approach-to-Hover Tasks -- was performed. The comparison of VMC with IMC results for Phase 2 is presented in Figure 7-5. IMC ratings were degraded 1.5 rating points on the average for all SCAS configurations. SCAS configuration effects are identical to the results noted for Phase 1. That is, a rate command/attitude stabilization system (RA/AT) received marginal Level 2 ratings under IMC. Best ratings were achieved for the forward flight/transition tasks with a hybrid SCAS system in pitch and roll -- pitch attitude command/airspeed hold and roll rate command/attitude stabilization in forward flight; and attitude command/ground-speed stabilization in pitch and roll for low speed flight.

A summary of primary SCAS effects from Phase 2 data is presented in Figure 7-6. These data were generated by combining all controller configurations and tasks in a single SCAS/display matrix. Pilot rating data for each controller configuration were weighted equally; that is, an average of all ratings for

SUMMARY OF PRIMARY SCAS/CONTROLLER EFFECTS

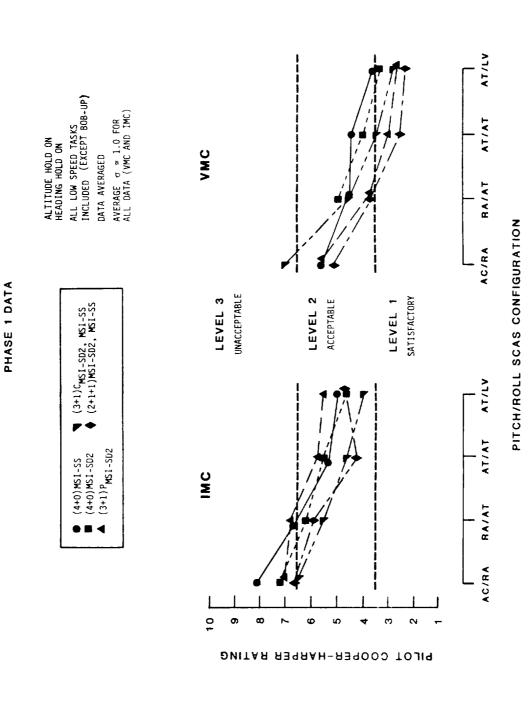


Figure 7-4

SUMMARY OF PRIMARY SCAS/CONTROLLER EFFECTS

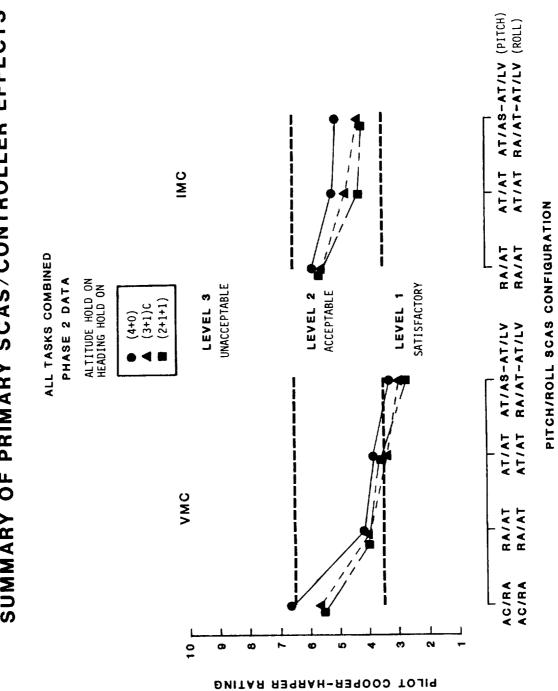


Figure 7-5

131

SUMMARY OF PRIMARY SCAS CONFIGURATION ON PILOT RATINGS

PHASE 2

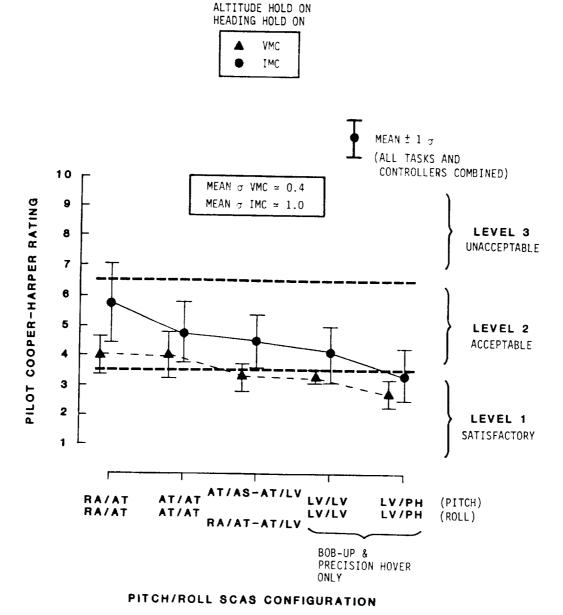


Figure 7-6

each controller configuration was first determined for each element in the SCAS matrix before the final mean rating for all controllers/task combinations was calculated.

As indicated in Figure 7-6, satisfactory pilot ratings were achieved consistently only under IMC with the LV/PH system for the Precision Hover and Bob-up Tasks. Although receiving, on the average, only adequate ratings, the hybrid longitudinal and lateral AFCS was preferred for the IMC maneuvering tasks over all AFCS configurations investigated. The longitudinal and lateral RA/AT system yielded both marginally adequate handling qualities under IMC, when averaged over all tasks and controller configurations, and the widest dispersion of pilot ratings.

7.1.3 Controller Effects

Based on average pilot ratings from Figures 5-9 through 5-12, a ranking of controller configurations was determined for each task as shown in Table 7-1. Each task was weighted equally to obtain an overall IMC and VMC ranking for each controller configuration.

The (3+1) Collective controller configuration provided the best overall pilot ratings for all IMC tasks. A tendency to cross-couple directional control into roll was observed during coordinated lateral-directional turn maneuvers, particularly during initial evaluations. However, this cross-coupling tendency diminished quickly and pilot adjustment to yaw control on the side-stick was easily made.

Pilot ratings for the (3+1) Pedal configuration were more degraded than other controller configurations for lateral-directional maneuvering tasks under IMC (Figure 7-4). However, for the VMC tasks, the (3+1) Pedal ratings ranked in the middle and received improved ratings when compared to the 4-axis configuration.

The (2+1+1) controller configuration in general achieved good pilot ratings for all three IMC low-speed maneuvering tasks. For the IMC Bob-up Task (Figure 5-10), the (2+1+1) configuration ranked better than the 4+0 but worse than the (3+1) configurations. The (2+1+1) configuration achieved the best ratings for all the VMC maneuvering tasks.

The separated controller configurations were favored overall during Phase 2 as well as indicated by Table 7-2. Both the (2+1+1) and (3+1) Collective configurations were found for all tasks. Of the 4-axis controllers evaluated, the MSI-SD3 or the LSI (both with deflection in all axes) were the clear favorites. Pilot comments reiterate those presented from Phase 1.

CONTROLLER CONFIGURATION RANKINGS

FROM PHASE 1 SIMULATIONS

> 4	CONTROLLER		RANKING BY TASK	BY TASK		OVERALL
CISTEN	CONFIGURATION	ACCEL/DECEL	SLALOM	NOE	B08-UP	(ALL TASKS)
	(4+0) MSI-SS	3	4	5	4	5
	(4+0) MSI-SD2	4	က	4	4	E
MC	(3+1) P	2	2	೮	2	3
	(3+1) C		-	-	Н	
	(2+1+1)	2		- 1	3	5
	(4+0) MSI-SS	2	5	4	DATA NOT	ç
	(4+0) MSI-SD2	4	4	2	FOR ALL	4
VMC	(3+1) P	2	ĸ.	7	CONFIGURA-	2
	(3+1) C	2	2	m	CNOTI	3
	(2+1+1)	П	1	1		

Table 7-1

Tahle 7-2

CONTROLLER CONFIGURATION RANKINGS

FROM PHASE 2 SIMULATIONS

		RANKING	т	-	2	9	5	ĸ	4	2	ы	
	HIGH SPEED TASKS	140-KNOT SLALOM	C Z	DATA UNDER	∑ E	ı	ı	ю	I	2	-	
	1	90-KNOT SLALOM	ო	2	-	ı	ю	2	ı	4	ī	
	SKS	STRAIGHT RIGHT- DESCENDING- DECENDING- DECEL. DECEL. APPROACH TO APPROACH TO HOVER	ო	2	p-1	1	•	ж	ı	2		
¥	TRANSITION TASKS	STRAIGHT DESCENDING- DECEL, APPROACH TO HOVER	m		2	•	ı	2	,		1	
RANK BY TASK	TRA	LEFT- TURNING- DESCENDING- DECEL: APPROACH TO HOVER	ო		2	,	1	т	1	- -	2	
'n		BOB-UP	က	-	2	ß	9	ю	4		2	
	DIASKS	NOE	7	1	m	9	2	ю	2	-	4	
	LOW SPEED TASKS	30-KT SLALOM	m	2	-		Q.	DATA	UNDER	VMC		
		PRECISION HOVER	,	, ,	ო	9	cs.	4	٣	7	1	
		CONFIGURATION	(4+0)LSI	(3+1)C _{LSI} MSI-SD2	(2+1+1)LSI, MSI-SD2	(4+0)MSI-SD1	(4+0)MSI-SD2	(4+0)MSI-SD3	(3+1)C _{MSI} -SD3,-SD1	(3+1)C _{MSI} -SD3, -SD2	(2+1+1)MSI-SD3,-SD2	
		DISPLAY		S S				VMC				

7.2 PILOT COMMENTARY

All pilot comments were analyzed to determine the primary qualitative characteristics of each SCAS or controller configuration that influenced overall pilot ratings. Advantages and disadvantages of each SCAS or controller configuration element are summarized in Tables 7-3 through 7-7.

PILOT COMMENTS ON CONTROLLERS

MSI-SD3	MSI-SD2	MSI-SS
 BEST CONTROLLER DESIGN EVALUATED YAW TRAVEL EXCEEDED HAND-WRIST MOTION CAPABILITY MECHANICAL DISCREPANCIES IN LONG AXIS DEGRADED FORCE/ DISPLACEMENT UNIFORMITY IMPROVEMENT OVER MSI-SS AND MSI-SDZ FOR SAS OFF FLIGHT, AND FOR PRECISION TASKS LARGE MOTION IN EACH AXIS PROVIDED GOOD DEFINITION OF AXIS COMMANDED 	 POOR FORCE MODULATION IN YAW AND COLLECTIVE HARMONIZATION POOR MARGINAL TACTILE CUES DURING HIGH FREQUENCY MANIPULATION STRAIGHT LINES ON GRIP PROVIDED GOOD AIRCRAFT TO CONTROLLER AXIS CORRELATION 	 FORCE MODULATION DIFFICULT ESPECIALLY DURING LARGE AMPLITUDE MANEUVERS POOR TACTILE FEEDBACK, DO NOT FEL TIGHT IN LOOP, ESPECIALLY IN HIGH FREQUENCY TASKS SUSCEPTIBLE TO P10 INTOLERABLE TO P1LOT-TO-PILOT VARIANCES STRAIGHT LINES ON GRIP PROVIDED GOOD AIRCRAFT TO CONTROLLER AXIS CORRELATION

NOTE: (1) IN ALL CONTROLLERS PITCH-YAW ORIENTATION IS CRITICAL IN ALLEVIATING FATIGUE.

A MEANS OF ESTABLISHING A CONTROLLER AXIS-AIRFRAME AXIS REFERENCE IS NECESSARY (i.e., PARALLEL EDGES ON CONTROLLER). (2)

Table 7-3

PILOT COMMENTS ON CONTROLLER CONFIGURATIONS

(4+0)	(3+1) P
 MULTI-AXIS MANEUVERING CONFUSING/IMPRECISE. GOOD HEADING ACQUISITION CHARACTERISTICS IN HOVERING TURNS. VERY PRONE TO INADVERTENT INPUTS AND X COUPLING, ESPECIALLY IN TURBULENCE. TENDENCY TO CONTROL AXES INDIVIDUALLY. 	 IMPRECISE LOW SPEED YAW CONTROL CONSIDERABLE ANTHROPOMETRIC COUPLING (TORSO - ROCKING) POOR ROLL YAW CONTROL PRECISION DURING MANUAL TURN CO-ORD AT LOW SPEEDS.
(3+1) C	(2+1+1)
 BEST CONFIGURATION FOR MANUAL TURN CO-ORDINATION AT LOW SPEED (CONST. SPEED) MINOR ANTHROPOMETRIC PROBLEMS (UPPER TORSO - ROCKING) REASONABLE AXIS IDENTIFICATION SAS OFF. MINOR INADVERTENT INPUTS (AXIS MIS-IDENTIFICATION) SLIGHT TENDENCY TO SEPARATE LAT-DIR MULTIAXIS TASKS (DESCENDING DECELERATING TURN) 	 LOW SPEED MANUAL TURN CO-ORDINATION NOT AS GOOD AS (3+1)c AND (4+0) CONFIGURATION LEAST SUSCEPTIBLE TO INADVERTENT INPUTS GOOD AXIS IDENTIFICATION (IMPORTANT AFCS OFF) EFFECTS OF AFCS DEGRADATION NOT AS APPARENT IN THIS CONFIGURATION.

CONTROLLER ORIENTATION VERY CRITICAL. - WRIST FATIGUE AFTER EXTENDED FLIGHT PERIODS, MAKING CONTROL RESPONSE APPEAR SLUGGISH. $\widehat{}$ NOTE:

SIDESLIP CONTROL PRECISION VERY POOR. ESPECIALLY POOR WHEN CONTROLLED IN CONJUNCTION WITH VERTICAL USING (4+0) OR (3+1)p. 5)

PILOT COMMENTS ON PRIMARY SCAS CONFIGURATIONS

RA/AT	AIRSPEED AND FLIGHT PATH CONTROL MARGINALLY ACCEPTABLE PILOT WORKLOAD & ATTENTION TO CONTROL HIGH: - 0 CONTROL DIFFICULT - ATTENTION TO ROLL CONTROL TOO HIGH DURING LOW SPEED FLIGHT. ROLL RATE CONTROL PREFERRED AT HIGH SPEED.		J. S.
R/	AIRSPEED AND CONTROL MARGI PILOT WORKLOA CONTROL HIGH: O CONTROL HIGH: O TTENTION TOO HIGH DUFLIGHT. RO FLIGHT. RO PREFERRED A	AT/LV-AT/AS (PITCH) AT/LV-RA/AT (ROLL)	PRECISE FLIGHT PATH AND AIR-SPEED CONTROL (G/S SWITCH TO A/S AT HIGHER FORWARD SPEEDS) PILOT WORKLOAD FOR FLIGHT PATH AND SPEED CONTROL WAS LOW CONSIDERABLE TIME AVAILABLE FOR PILOT TO ACCOMPLISH SECONDARY TASKS
'RA	EXTREMELY POOR FLIGHT PATH AND AIRSPEED CONTROL PILOT WORKLOAD VERY HIGH (NO TIME FOR SECONDARY TASKS) TENDENCY TO CONTROL LIKE ON-OFF SYSTEM. (VERY DIFFICULT TO MODULATE ATTITUDES)	AT/LV-AT/ AT/LV-RA	 PRECISE FLIGHT PATH AND A SPEED CONTROL (G/S SWITCH A/S AT HIGHER FORWARD SPEI PILOT WORKLOAD FOR FLIGHT AND SPEED CONTROL WAS LOW AND SPEED CONTROL WAS LOW PILOT TO ACCOMPLISH SECON TASKS
AG/RA	 EXTREMELY POOR FLIGHT PAT AND AIRSPEED CONTROL PILOT WORKLOAD VERY HIGH TIME FOR SECONDARY TASKS) TENDENCY TO CONTROL LIKE OFF SYSTEM. (VERY DIFFICULT TO MODULA ATTITUDES) 	AT	FLIGHT PATH AND TURN CO-ORDINATION IRY BUT DEGRADED
OFF	UNCONTROLLABLE WITH (4+0)MSI-SS & (4+0)MSI-SD2 IN MODERATE MANEUVERS EXTREME PILOT WORKLOAD CONTROLLABLE WITH SEPARATED CONTROLS IN ALL FLIGHT REGIMES (2+1+1) BETTER THAN (3+1)C	AT/AT	 AIRSPEED, FLIGHT PATH AND LOW SPEED TURN CO-ORDINAT SATISFACTORY BUT DEGRADED OVER AT/LV
AFCS OFF	UNCONTROLLABLE WITH (4 & (4+0) MSI-SD2 IN MODE MANEUVERS EXTREME PILOT WORKLOAD CONTROLLABLE WITH SEPA CONTROLS IN ALL FLIGHT REGIMES (2+1+1) BETTER THAN (3+1)C		

Table 7-5

LATERAL CONTROL COMMAND SWITCH-ING FROM AT/LV TO RA/AT AT HIGH SPEED WAS PREFERRED

PILOT COMMENTS ON SECONDARY SCAS CONFIGURATIONS

YAW ACCELERATION CMD	YAW RATE COMMAND	TURN COORDINATION
 VERY DIFFICULT TO ACHIEVE DESIRED RATE. MULTIPLE INPUTS REQUIRED TO ACHIEVE DESIRED HEADING OR YAW RATE YAW CONTROL, ESPECIALLY YAW REVERSALS, LACKED PRECISION. APPARENT AIRCRAFT YAW INERTIA INCREASED. 	 CAN PRECISELY MODULATE HEADING TO ACHIEVE POSITION IN DEADBEAT FASHION. LOW WORKLOAD. 	 EXCELLENT AT ALL SPEEDS. CONSIDERABLY REDUCED PILLOT WORKLOADS. TURNS BECAME ESSENTIALLY A SINGLE AXIS STICK STEERING TASK. COMPLICATED & DEGRADED CONTROL OF SIDESLIPPED FLIGHT, i.e. LATERAL CONTROL ALWAYS EFFECTS YAW CONTROL, SINCE TURN COORPINATION IS A FULL TIME FUNCTION.

VERTICAL ACCELERATION CMD	VERTICAL RATE COMMAND
 VERTICAL CONTROL STEPPY WITH MULTIPLE REVERSALS. DIFFICULT TO MODULATE VERTICAL RATE PRECISELY. WORKLOAD AND PILOT ATTENTION HIGH FOR MONITORING CHANGES IN HEIGHT. 	 CAN PRECISELY MODULATE HEIGHT. DEADBEAT RESPONSE. LOW WORKLOAD.

Table 7-6

Table 7-7

PILOT COMMENTS

OTHER FACTORS

RESPONSE SHAPING	WIND	TURBULENCE
 SATISFACTORY FOR SMALL AMPLITUDE MANEUVERS. REQUIRES FURTHER OPTIMIZA- TION FOR LARGE AMPLITUDE MANEUVERS. 	• WINDS COMPLICATED TASKS, AS STABILITY LEVELS DECREASED.	• IN (4+0) CONFIGURATION MOD. TURBULENCE INDUCED LATERAL BODY ACCELERATIONS WHICH CAUSED INADVERTENT LATERAL COMMAND INPUTS. • SEPARATION OF CONTROLLERS REDUCED PROBLEM SEVERITY.

8.0 CONCLUSIONS

Piloted simulation investigations were conducted as part of the Advanced Cockpit Controls/Advanced Flight Control System (ACC/AFCS) element of the Army's ADOCS program. The effects of variations in side-stick controller configuration and stability and control augmentation characteristics on scout/attack helicopter handling qualities were evaluated using flight simulation facilities at Boeing Vertol and NASA-Ames. Low speed, transition, and forward flight mission tasks were performed under both day visual meteorological conditions (VMC) and night-time instrument meteorological conditions (IMC) using a visually coupled helmet-mounted display.

Conclusions from these investigations are summarized according to major elements of the simulation study, including sidestick controller design, controller configuration, SCAS design, and IMC display effects.

8.1 SIDE-STICK CONTROLLER DESIGN

A 4-axis controller with small-deflection in all axes was preferred over a 4-axis stiff-stick design, or a design having small-deflection in only the pitch and roll axes. Small-deflection in each axis of the controller provided better control harmony which improved the pilot's ability to modulate single-axis forces and enhanced control precision for high-gain tasks such as the Precision Hover. In high workload situations, there was less tendency with a limited-deflection controller to over-control and/or cross-couple control inputs.

Pilot ratings with a deflection controller are less sensitive to variations in control response/force gradient. As a result, it would be easier to design acceptable control response characteristics for a wider range of pilot preferences if a small-deflection device were implemented.

8.2 CONTROLLER CONFIGURATION

4-Axis Controller

With a high level of stability and control augmentation, satisfactory handling qualities were achieved for the low-speed tasks investigated using the preferred small-deflection 4-axis controller. However, the 4-axis configuration exhibited degraded pilot ratings compared to separated controller configurations for:

- o Multi-axis control tasks, such as Precision Hover, Decelerating Turning Approach-to-Hover, and the High-Speed Slalom
- o Reduced levels of stability and control augmentation

Separated Controller Configurations

The separated vertical controller configurations -- (3+1) Collective and (2+1+1) -- achieved similar overall pilot ratings which were generally improved compared to the integrated 4-axis controller configurations for the lower levels of stability and control augmentation investigated. Either separated vertical controller configuration was preferred for the high speed slalom maneuver and the descending decelerating approach-to-hover task. Separation of the vertical controller provided the following significant advantages for VMC or IMC terrain flight:

- Elimination of unintentional cross-axis coupling, especially vertical-to-pitch/roll coupling.
- Reduction of pilot workload for multi-axis tasks due to the separation of any required steady vertical or directional control forces from continuously modulated pitch and roll forces.

Directional control on the side-stick -- (4+0) and (3+1) Collective configurations -- provides more precise heading control than the pedals. There is a tendency to inadvertently couple yaw control to roll; however, all pilots easily compensated, eliminating or minimizing this characteristic. The (3+1) Pedal configuration significantly degraded pilot ratings during Phase 1 IMC tasks because of yaw controllability. The limited field-of-view helmet-mounted display had a strong effect on lateral-directional control. Use of separated pedals for VMC tasks was not a problem. With good peripheral visual cues, directional control becomes a less demanding task.

8.3 SCAS DESIGN

The level of handling qualities attainable by various generic SCAS configurations was defined as follows:

Pitch and Roll AFCS

For low speed maneuvering and Precision Hover Tasks under VMC, an attitude command/velocity stabilization system provided satisfactory handling qualities for all controller configurations.

In forward flight satisfactory ratings under VMC were achieved with a hybrid combination of control laws consisting of pitch attitude command/airspeed stabilization in longitudinal and roll rate command/attitude stabilization in lateral.

Satisfactory handling qualities were not achieved for any combination of controller and AFCS investigated for the low-speed IMC maneuvering tasks. Satisfactory ratings were obtained under IMC for both the Bob-up and Precision Hover Tasks

when performed in calm air with a longitudinal and lateral velocity command/velocity stabilization system. With wind and turbulence, the addition of a position hold feature was required to maintain satisfactory ratings for the Bob-up Task.

Yaw and Vertical AFCS

Heading and altitude stabilization were beneficial for all tasks. Yaw rate and vertical velocity command systems were preferred for all tasks and controller configurations. However, with a pitch and roll rate command system, there exists a preference for side-stick yaw acceleration and vertical acceleration command systems to eliminate the requirement to hold steady forces during multi-axis maneuvers.

Control Law Mode Switching

To achieve the desirable low speed and forward flight handling qualities without pilot selection, the control laws required automatic phasing during transition as follows:

- o <u>Longitudinal</u> Pitch attitude command/groundspeed stabilization for low speed and pitch attitude command/airspeed stabilization at high speed.
- o <u>Lateral</u> Roll attitude command/groundspeed stabilization for low speed and roll rate command/attitude stabilization at high speed.
- o <u>Directional</u> Full-time heading hold for low speed and turn coordination in forward flight.

The method developed to switch control laws felt natural to the pilot. No undesirable effects on handling qualities were evident during transition maneuvers.

Automatic Control Force Trimming

For stiff-stick or small-deflection controllers, elimination of steady forces for steady-state helicopter trim must be automatic through design of the primary control system and/or AFCS control response laws. The build-up of long-term steady forces is unacceptable.

8.4 IMC DISPLAY EFFECTS

The reduction in quality of visual cues and occasional disorientation experienced when looking off the aircraft centerline with the helmet-mounted display caused significant degradations in handling qualities for certain IMC tasks relative to the identical tasks conducted under VMC. This degradation was especially severe for a low-speed NOE maneuvering task which required a significant amount of pilot head motion to acquire the required visual information. Significant improvements in

position hold performance for hover occurred for the IMC tasks compared with the VMC tasks because of the pilots' use of the displayed superimposed symbols which included explicit inertial velocity and position error information.

9.0 RECOMMENDATIONS

The recommendations presented herein are based on the results of the simulation studies as presented previously. As Boeing Vertol was awarded both the ACC/AFCS element of the ADOCS program contract and the ADOCS demonstrator program, the recommendations presented in this section have already been incorporated into the demonstrator control system design. The specific output from this program is described in the following sections:

- (1) Recommendations for the side-stick controller configurations and/or design.
- (2) Design data for control laws, display laws, and sensor processing.
- (3) Sensor information necessary for the AFCS and display system.

9.1 CONTROLLER DESIGN

The definition of a multiaxis side-stick controller (SSC) design for use in the ADOCS demonstrator aircraft was a primary objective of the ACC/AFCS simulation study. Force/deflection characteristics were defined and the effect of the number of axes controlled by the SSC was investigated.

Recommended design characteristics for the various controllers to be manufactured by Lear Siegler Inc. are based on the ACC/AFCS simulation results. Design characteristics for the 4-axis, right-hand SSC are given in Table 9-1 for each control axis. Force/displacement characteristics for alternate controllers, including a left-hand single-axis collective controller and small-deflection force pedals, are defined in Table 9-2. The Lear Siegler manufactured ADOCS brassboard 4-axis controller with the characteristics outlined in Table 9-1 was evaluated during the final piloted simulation phase. The results from this simulation demonstrated that an acceptable hardware design was achieved.

In addition to the 4-axis configuration, the simulation studies investigated the alternate controller configurations as previously defined. Because the separated controller configurations (ie. the (3+1) Collective and the (2+1+1) configurations) received improved pilot ratings for certain tasks, the demonstrator aircraft should contain provisions to study these configurations as well as the 4-axis configuration.

9.2 CONTROL LAW DESIGN

The control laws developed during the ACC/AFCS program were designed to provide the handling qualities required to accomplish the attack/scout helicopter mission. The control laws

RECOMMENDED 4-AXIS CONTROLLER FORCE/DISPLACEMENT CHARACTERISTICS

	T T		Т	
BREAKOUT	0.0 lb	0.0 Jb	0.0 16	1.0 1b (up) 0.6 1b (down)
MAXIMUM FORCE	+ 15.9 1bs	+ 12.8 1bs	+ 35 in-1bs	15.82 1b (up) 13.86 1b (down)
MAXIMUM DISPLACEMENT	+ 7.6 degrees or + 0.8 inch at 6 inch radius	† 7.6 degrees or † 0.8 inch at 6 inch radius	+ 7.0 degrees	+ .156 inches
GRADIENT	2.09 lb/deg	1.67 lb./deg	5.0 in-1b/deg	95. 1b/inch (up) 85. 1b/inch (down)
AXIS	Longitudinal	Lateral	Directional	Vertical

Table 9-1

RECOMMENDED ALTERNATE CONTROLLER FORCE/DISPLACEMENT CHARACTERISTICS

	T	
BREAKOUT	+ 0.5 lbs	+ 6.0 lbs.
MAXIMUM FORCE	± 16.5 lbs	± 45.0 lbs
MAXIMUM DISPLACEMENT	± 6.10 degrees or ±.64 inch at 6 inch radius	+ .78 inches
GRADIENT	2.19 lb/deg	50.0 lb/inch
CONTROLLER	Single-axis collective (left-hand)	Pedals

were implemented in a manner that facilitates the evaluation of various SCAS command/stabilization systems during flight testing of the demonstrator aircraft. The recommended PFCS design provides control shaping for both AFCS ON and OFF operation and includes a force trim method that eliminates the requirement for open loop integrators which are undesirable due to redundancy management constraints; i.e. no open-loop integrators are included in the PFCS path due to redundancy management restrictions.

9.2.1 PFCS Design

Significant features of the recommended PFCS design are briefly described as follows:

Force Transducer Quantization - 8-bit signal quantization is required to provide acceptable response resolution in each axis.

Nonlinear Command Response Sensitivity - To provide acceptable response characteristics for both small precision control tasks and large maneuvers, nonlinear command shaping as described in Figures (A2, A4, A6, and A8) is required.

Derivative Rate Limiter (DRL) - A derivative rate limiter is required in each axis to limit the magnitude of initial acceleration response during rapid maneuvers when using a force controller. Characteristics of the limiter were individually selected for each axis so as to reduce peak responses for large control inputs without affecting control precision for small force inputs. Appendix A (Figure A-9) presents the recommended values for the DRL in each axis.

Command Signal Shaping - Forward path lead-lag shaping is included in the PFCS full time for augmented flight conditions. Lead-lag time constants are selected to properly match the desired command model and basic helicopter response characteristics in order to achieve a balanced or small AFCS output during dynamic maneuvers. During AFCS OFF operation, a parallel high-gain lag path with a long time constant is included to automatically reduce steady-state control trim forces to an acceptably low level.

The PFCS design also incorporates a pilot trim switch for AFCS OFF flight. This enables the pilot to trim forces by activating a track-store device which stores the required trim force and slowly injects the command into the PFCS allowing the pilot to remove forces. Alternatively, another automatic method to activate the trim function should be developed for the demonstrator aircraft.

AFCS Port Limiting - All AFCS outputs pass through frequency-selection and limiting networks in the PFCS. The AFCS signals are split between a long-term trim and a high-frequency dynamic

compensation path. Each control axis has its own frequency selective/limiting network.

The long-term trim path includes a high-authority limit and rate limit for low-frequency trim correction signals such as directional or vertical control trim variations with airspeed. High-frequency stabilization signals pass through both authority limits with the lower limit dominating. A cross signal path from the rate limiter continually recenters the low-authority dynamic path. The interface network will ramp to zero after AFCS disengagement.

9.2.2 AFCS Design

The stability and control law features recommended for the ADOCS demonstrator design are summarized in Tables 9-3 and 9-4. These design features for AFCS ON flight evolved from the extensive ACC/AFCS simulation studies. Low-speed and forward flight control laws are defined in Table 9-3 for the basic AFCS configuration. Table 9-4 identifies the selectable modes that provide the handling qualities to meet attack helicopter IMC or VMC mission requirements for Precision Hover capability and for tight flight path control during low-speed NOE maneuvers.

Basic AFCS

The basic longitudinal AFCS provides a pitch attitude command system for longitudinal maneuvering at all airspeeds. A pitch attitude command system permits precise control of longitudinal acceleration and velocity trim with a low level of pilot workload. Long-term airspeed retention is provided above 45 knots, and automatic transient-free switchover to a longitudinal groundspeed stabilization system is accomplished below 40 knots.

The lateral axis includes a roll attitude command/lateral velocity stabilization system for precise low-speed maneuvering. Lateral control laws change to a roll rate command/roll attitude hold system in forward flight. A rate command system in forward flight eliminates the requirement to hold control forces in banked turns. Transition between control laws is accomplished smoothly and controlled automatically by logic. Gain switching produces low-rate control trim changes and aircraft responses that are undetectable to the pilot. Automatic coordinated turns in forward flight are obtained using only lateral side-stick controller inputs, i.e. a commanded yaw rate is cross-fed from the lateral axis command model to the directional axis command model.

With Heading Hold disengaged, the basic directional axis has yaw rate stabilization with a yaw acceleration response to command inputs. Balanced flight during forward flight turns, as well as level trim conditions, is achieved automatically by lateral acceleration feed-back to the directional control.

BASIC SCAS MODES

AXIS	HOVER/LOW SPEED	W SPEED	FORWARD FLIGHT	LIGHT
	COMMAND	STABILITY	COMMAND	STABILITY
LONGITUDINAL	PITCH ATTITUDE	LONGITUDINAL GROUNDSPEED (LOW GAIN)	PITCH ATTITUDE	AIRSPEED HOLD
LATERAL	ROLL ATTITUDE	LATERAL GROUNOSPEED (LOW GAIN)	ROLL RATE & YAW RATE (TURN COORD)	ROLL ATTITUDE HOLD
DIRECTIONAL	YAW ACCELERATION	YAW RATE	YAW ACCELERATION	YAW RATE & LAT ACCEL (TURN COORD)
VERTICAL	VERTICAL ACCELERATION	VERTICAL VELOCITY	VERTICAL ACCELERATION	VERTICAL VELOCITY

SELECTABLE SCAS MODES

AXIS	HEADIN	HEADING HOLD	VELOCITY GROUNDSPE	VELOCITY STABILITY GROUNDSPEED < 40 KNOTS	нолев ного	1010	ALTITUDE HOLD	ALTITUDE HOLD
	COMMAND	STABILITY	COMMAND	COMMAND STABILITY	COMMAND	STABILITY	COMMAND	STABILITY
LONGITUDINAL	ı	i	РІТСН АТТІТИDE	LONGITUDINAL GROUNDSPEED (HIGH GAIN)	LONGITUDINAL GROUNDSPEED	LONGITUDINAL GROUNDSPEED OR POSITION HOLD		
LATERAL	ŀ	ı	ROLL	LATERAL GROUNDSPEED (HIGH GAIN)	LATERAL GROUNDSPEED	LATERAL GROUNDSPEED OR POSITION HOLD	1	
DIRECTIONAL	YAW RATE	FULL TIME HEADING HOLD AS $<40(kts)$ $$ HEADING HOLD $\phi \leqslant 3^{o}$ $\phi \leqslant 3^{o}$ $\phi \leqslant 3^{o}$ AS $>40(kts)$	ı	ı	YAW RATE	HEADING HOLD	,	ı
VERTICAL	ı	ı	ı	1	VERTICAL VELOCITY	ALTITUDE HOLD (RADAR)	VERTICAL	ALTITUDE HOLD :- BARO OR RADAR < 1000 (ft)

The basic vertical AFCS (Altitude Hold Off) is implemented to have a vertical acceleration response at all airspeeds for commanded collective inputs. Hybrid vertical velocity stabilization using filtered normal acceleration feedback is used to augment the basic helicopter vertical damping.

Selectable Modes

The following pilot selectable modes are activated by buttons from a Mode Select Panel.

HEADING HOLD - The baseline directional system is implemented as a rate command/Heading Hold system which is automatically selected when the AFCS is initially engaged. The Heading Hold Mode operates full-time at low speeds. At airspeeds greater than 40 knots the Heading Hold Mode is controlled by logic that automatically locks and unlocks Heading Hold stabilization as required during maneuvering. The pilot can disengage Heading Hold from the Mode Select Panel which converts to basic control laws -- a yaw acceleration command system with yaw rate stabilization.

ALTITUDE HOLD (Barometric and Radar) - A selectable Altitude Hold Mode is provided for both a radar or barometric altitude reference system. Barometric Altitude Hold can be selected at any altitude and airspeed. With Altitude Hold engaged, constant vertical velocity (rate of climb/descent) is commanded by the pilot. If Altitude Hold is engaged while climbing or descending, the vertical velocity will be maintained until the vertical controller is returned to neutral. As the rate of climb/descent returns to zero, the aircraft will lock on to the current altitude.

Radar Altitude Hold is only selectable below 1000 feet AGL. If height is increased above 1000 feet while commanding rate of climb, the Radar Altitude Hold Mode will automatically disengage. The Radar Altitude Hold system is implemented with higher stabilization gains than the barometric system for tighter altitude retention, particularly during precision hover tasks.

VELOCITY STAB - NOE maneuvering at low speeds under IMC required control laws that enable the pilot to maintain tight flight path and ground speed control for single-axis and multi-axis maneuvers. The advantage of an attitude command system with high-gain ground-speed velocity stabilization was demonstrated during ACC/AFCS simulation studies. Maintenance of desired ground track particularly with a limited field-of-view was easier while performing low speed maneuvering, e.g. lateral side-step, longitudinal acceleration/deceleration and coordinated lateral/directional turning (slalom) maneuvers. A high level of velocity stability also improves the rejection of gust and wind disturbances during precision maneuvers around hover.

The Velocity Stabilization Mode is selectable from the Mode Select Panel and engages high-gain groundspeed stabilization feedback paths. Appropriate command model gains are also changed to provide the same attitude response sensitivity characteristics as implemented for the basic AFCS control laws. The Velocity Stabilization Mode can be selected at ground speeds less than 40 knots. The mode is automatically disengaged if ground speed exceeds 40 knots, and must be reselected if required.

HOVER HOLD - The attack helicopter mission dictates precise hover control and maintenance of helicopter X-Y position while executing the Bob-up task -- a vertical unmask/remask maneuver, target search and acquisition, and weapons firing. A Hover Hold Mode is provided as a selectable mode to achieve precision performance requirements for the Bob-up task. The Hover Hold Mode is selected by the pilot from the AFCS Mode Select Panel, or can be automatically activated by Bob-up display mode logic, implemented as part of the attack helicopter Pilot Night Vision System (PNVS). Engagement of the Hover Hold Mode will automatically engage the Heading Hold and Altitude Hold Modes if not already engaged.

Based on ACC/AFCS simulation results, a longitudinal/lateral velocity command system in combination with high-gain velocity stabilization is implemented as the baseline hover hold system. Position reference signals derived from velocity information are also available in the longitudinal and lateral AFCS for position stabilization feedback as part of the Hover Hold Mode. A flight evaluation and comparison of a velocity and position reference system for the hover hold task will be conducted during the Demonstrator program.

Appendix A presents the control law diagrams, including corresponding logic requirements, to implement these modes as previously described.

9.3 Display System

The selectable display modes used to meet attack helicopter operational requirements for various mission tasks are:

<u>Cruise</u> - high-speed level flight enroute to the forward edge of the battle area;

<u>Transition</u> - low-speed NOE maneuvers such as dash, quick stop, and side-ward flight;

Hover - stable hover with minimum drift; and

Bob-Up - unmask, target acquisition, and remask maneuvers over a selected ground position.

A three-position (center off) mode select switch is required to sequence through the four modes in either the forward direction (i.e. Bob-Up, Hover, Transition, Cruise) or reverse direction. This switch should be accessible to the pilot's left-hand, mounted on the left-hand side-stick controller or on the control panel. If mounted on the controller, the switch's breakout force should be minimal (i.e. less than 50% of the SSC breakout force).

Logic to automatically enable/disable display modes should be considered. For instance, the Bob-Up and Hover display modes could be restricted to low speed flight less than 50 knots while the Cruise mode operates only for high speed flight at airspeeds greater than 50 knots.

The symbology dynamics used to aid the pilot under IMC with IHADSS have a significant effect on aircraft handling qualities. It is necessary to ensure compatibility of the symbol dynamics for the various modes and varying dynamic characteristics of the AFCS configuration.

The display mode logic should automatically change the symbology format/sensitivities and AFCS control laws, primarily to reduce pilot workload and to improve low speed maneuvering and hover hold task performance. During ACC/AFCS simulation studies, improved pilot ratings resulted from incorporating the following display modifications. Comparisons to the symbology dynamics and format of the baseline AAH display system are given.

- (1) Velocity vector sensitivity was decreased by a factor of two for all modes, i.e. from 6 knots to 12 knots full scale in the Hover and Bob-Up modes, and from 60 knots to 120 knots full scale in the Transition and Cruise modes.
- (2) Hover position sensitivity was decreased for the Bob-Up mode from a full scale deflection of 44 feet to 88 feet. Consideration should be given to non-linear scaling of hover position to keep it on scale for large excursions in position.
- (3) The cyclic director, or longitudinal and lateral acceleration cue, approximated by washed-out pitch and roll attitudes, requires different sensitivity and time constant values as a function of the command response system type provided by the AFCS. That is, the attitude command system for low-speed NOE maneuvering in the transition and hover mode requires different cyclic director dynamics than a velocity command system for the bob-up task. The Bob-Up display mode automatically engages the AFCS Hover Hold mode providing a velocity command system.

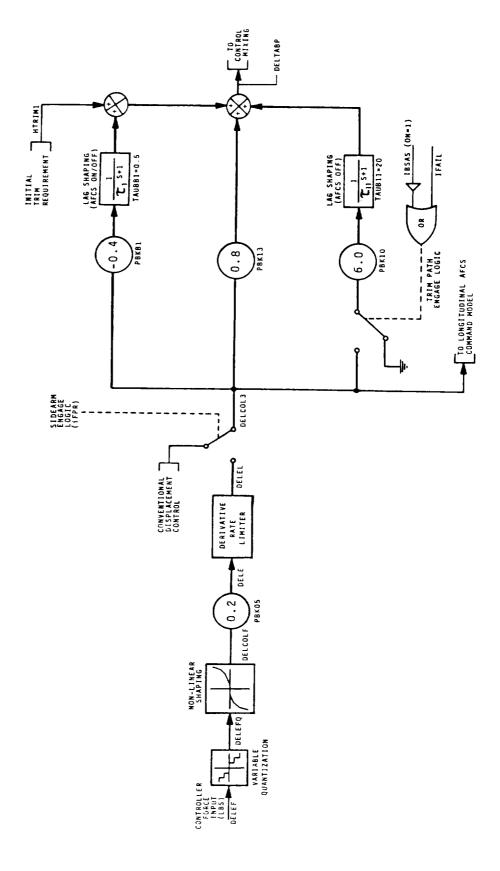
- (4) A horizon line was included in the symbology format for all modes. The AH-64 has a horizon line in the transition and cruise modes only.
- (5) Lateral acceleration was used to drive the "ball" display instead of side-slip angle to augment turn coordination cues at low speed.

REFERENCES

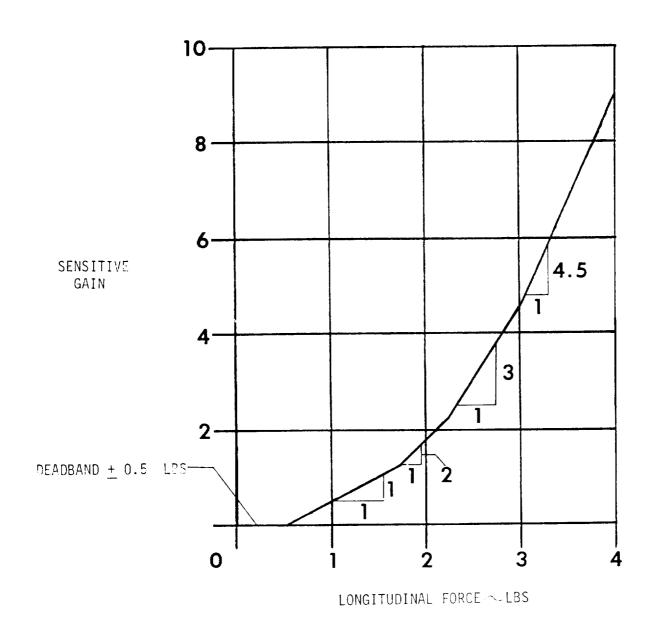
- Tsoubanos, C.M. and Kelly, M.B.: "Pilot Night Vision System (PNVS) for Advanced Attack Helicopter (AAH)". AHS Preprint No. 78-16, Presented at the 34th Annual National Forum of the AHS, Washington, DC; May 1978.
- "Military Specifications Flying Qualities of Piloted V/STOL Aircraft." MIL-F-83300.
- 3. Landis, K.H.; Glusman, S.I.; Aiken, E.W.; and Hilbert, K.B.; "An Investigation of Side-Stick-Controller/Stability and Control-Augmentation System Requirements for Helicopter Terrain Flight Under Reduced Visibility Conditions." Presented at the 22nd Aerospace Sciences Meeting, AIAA-84-0235, January 1984.
- Jones, A.D., "Operations Manual Vertical Motion Simulator (VMS) S.08," NASA TM-81180, 1980.
- 5. Talbot, P.D., Tinling, B.E., Decker, W.A., and Chen, R.T.N., "A Mathematical Model of a Single Main Rotor Helicopter for Piloted Simulation," NASA TM-84281, 1982.
- 6. Hilbert, Kathryn B., "A Mathematical Model of the UH-60 Helicopter." NASA TM 85890, April 1984.
- Howlett, J.J., "UH-60A Black Hawk Engineering Simulation Program: Vol. 1, Mathematical Model," NASA CR-166309, 1981.
- 8. "Air Vehicle Technical Description Data Report UH-60A Input Data for C-81 Rotorcraft Simulation Program" SER-70189, March 1977.
- Abbott, W.Y., Benson, J.O., Oliver, R.G., and Williams, R.A., "Validation Flight Test of UH-60A for Rotorcraft Systems Integration Simulator (RSIS)". USAAEFA Project No. 79-24, September 1982.
- 10. Aiken, E.W., "A Mathematical Representation of an Advanced Helicopter for Piloted Simulator Investigations of Control System and Display Variations", USAAVRADCOM TR80-4-2 (NASA TM-81203), July 1980.
- 11. Landis, K. and Aiken, E., "An Assessment of Various Side Stick Controller/Stability and Control Augmentation Systems for Night Nap-of-the-Earth Flight", <u>Helicopter</u> <u>Handling Qualities</u>, NASA CP-2219, April 1982.

- 12. Landis, K., Aiken, E., Dunford, P., and Hilbert, K., "A Piloted Simulator Investigation of Side-Stick Controller/ Stability and Control Augmentation System Requirements for Helicopter Visual Flight Tasks," Presented at the 39th Annual Forum of the American Helicopter Society, Paper A-83-39-59-4000, St. Louis, MO, May, 1983.
- 13. Smith, S.B.: "Limited Flight Evaluatin of Side Stick Force-Deflection Characteristics on Aircraft Handling Qualities". AFFTC-TR-77-34, Nov. 1977.
- 14. Smith, S.B. and Miller, C.M.: "An Evaluation of Sidestick Force/Deflection Characteristics on Aircraft Handling Qualities". AFFDL-TR78-171, Oct. 1978.
- 15. Hall, G.W. and Smith, R.E.: "Flight Investigation of Fighter Side-Stick Force-Deflection Characteristics". AFFDKL-TR-75-39, May 1975.
- 16. Black, G.T. and Moorhouse, D.J.: "Flying Qualities Design Requirements for Sidestick Controllers". AFFDL-TR-3126, Oct. 1979.
- 17. Cooper, G.E. and Harper, R.P., Jr., "The Use of Pilot Rating in the Evaluation of Aircraft Handling Qualities," NASA TN D-5153, 1969.
- 18. Sinclair, M. and Morgan M.: "An Investigation of Multi-Axis Isometric Side-Arm Controllers in a Variable Stability Helicopter". National Research Council Canada LR-606, NRC #19629, Aug. 1981.

1			

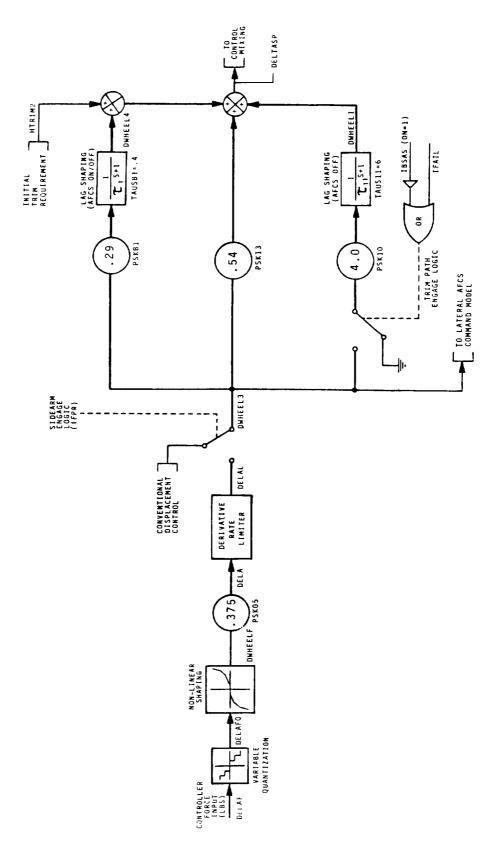

APPENDIX A

Functional block diagrams, representative of the control laws utilized during the final simulation phase, are included in Appendix A.

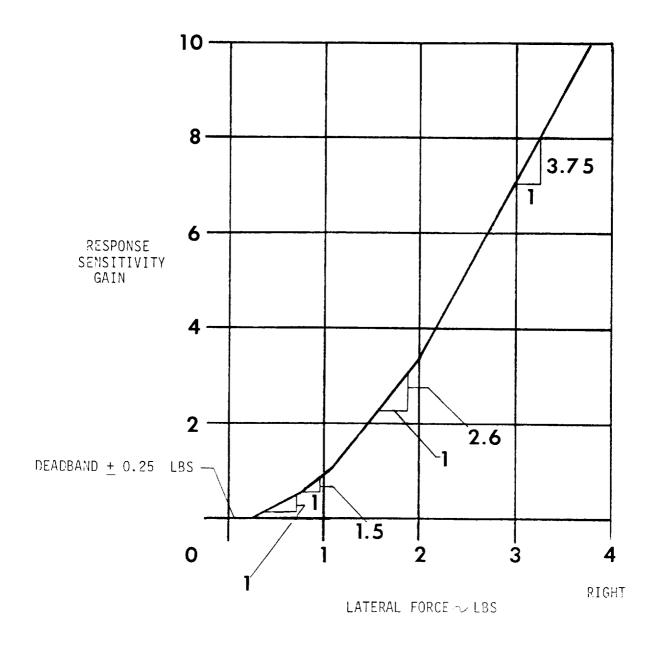

Included are:

- A-1 Longitudinal PFCS
- A-2 Longitudinal Control Response Shaping
- A-3 Lateral PFCS
- A-4 Lateral Control Response Shaping
- A-5 Directional PFCS
- A-6 Directional Control Response Shaping
- A-7 Vertical PFCS
- A-8 Vertical Control Response Shaping
- A-9 Derivative Rate Limiter
- A-10 Control System Mixing
- A-11 Longitudinal AFCS
- A-12 Lateral AFCS
- A-13 Directional AFCS
- A-14 Vertical AFCS
- A-15 Airspeed Complementary Filter
- A-16 Altitude Complementary Filter
- A-17 Position Feedback Derivation
- A-18 Altitude Hold Logic
- A-19 Heading Hold/Turn Coordination Logic
- A-20 Hover Hold Logic
- A-21 Longitudinal/Lateral Mode Switching Logic
- A-22 Longitudinal Rate Response Sensitivity
- A-23 Longitudinal Attitude Response Sensitivity
- A-24 Longitudinal Velocity Response Sensitivity
- A-25 Lateral Rate Response Sensitivity
- A-26 Lateral Attitude Response Sensitivity
- A-27 Lateral Velocity Response Sensitivity
- A-28 Directional Rate Response Sensitivity
- A-29 Directional Acceleration Response Sensitivity
- A-30 Vertical Rate Response Sensitivity
- A-31 Vertical Acceleration Response Sensitivity

LONGITUDINAL PFCS

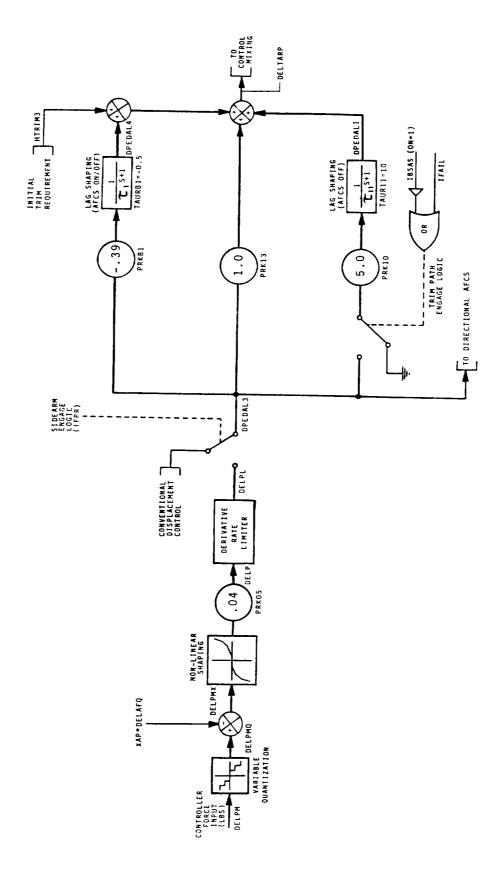


LONGITUDINAL CONTROL RESPONSE SHAPING

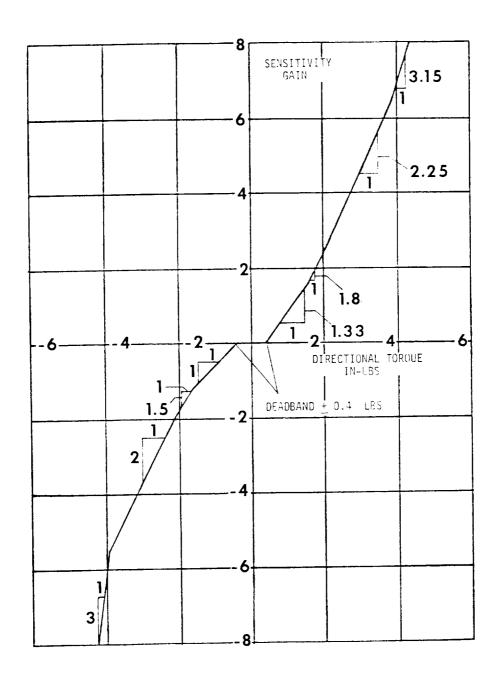


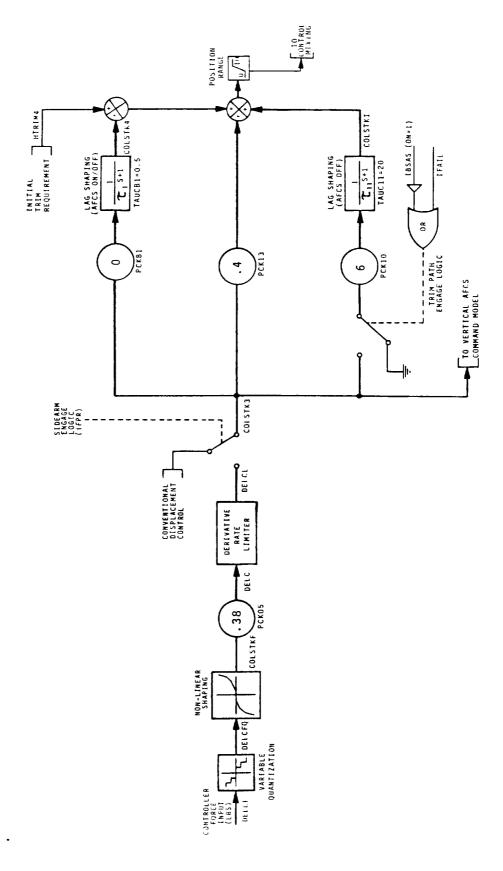
A-2

LATERAL PFCS

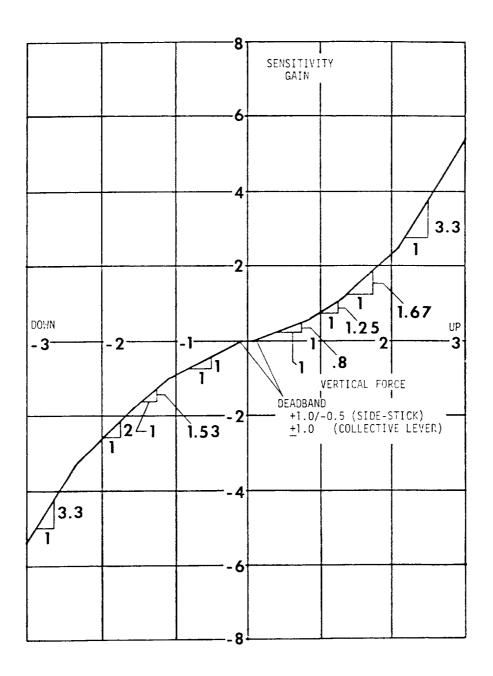


LATERAL CONTROL RESPONSE SHAPING

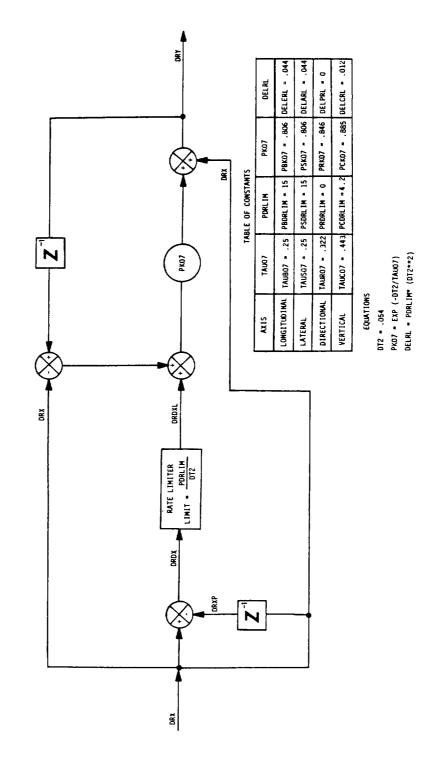


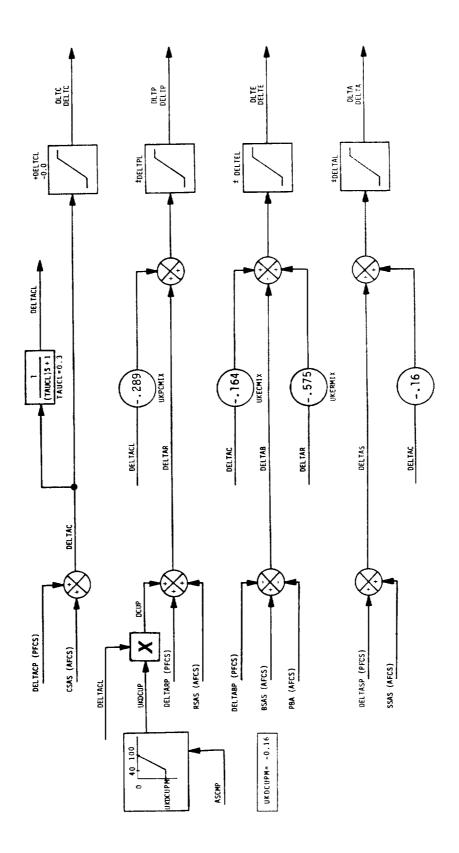

SYMMETRICAL FOR LEFT CONTROL FORCES

DIRECTIONAL PFCS

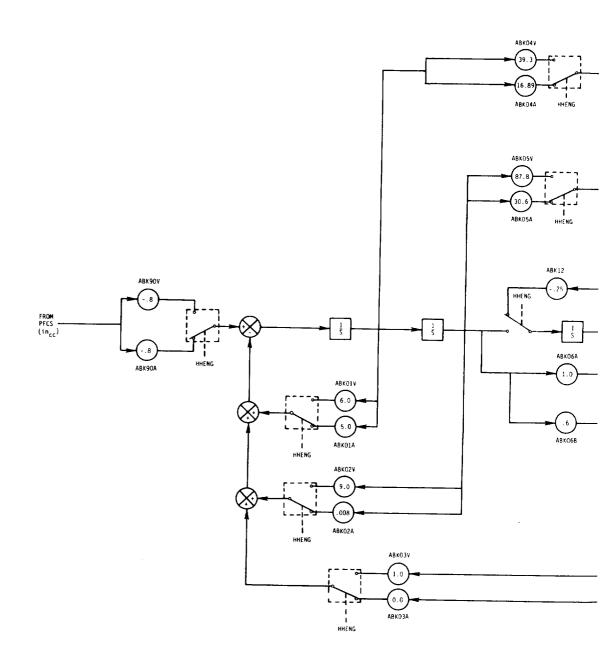


DIRECTIONAL CONTROL RESPONSE SHAPING

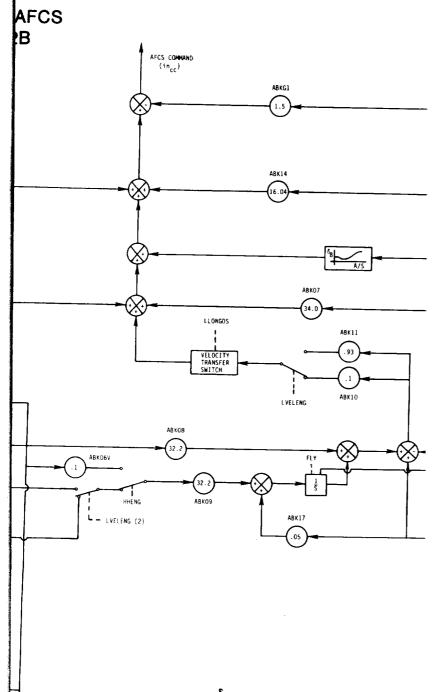




VERTICAL CONTROL RESPONSE SHAPING



DERIVATIVE RATE LIMITER

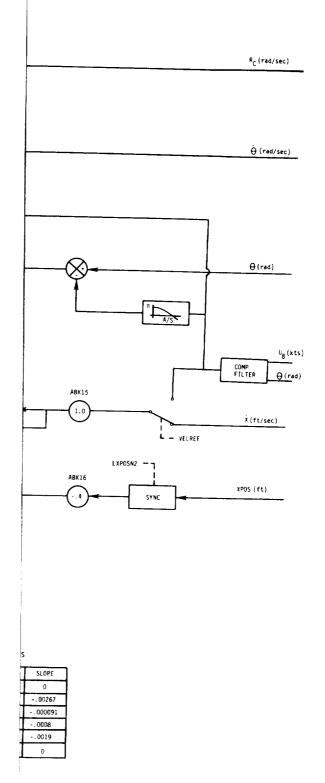


ADOCS LONGITUDINAL ACC/AFCS PHASE 2

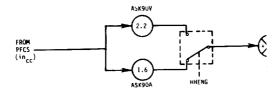
ı		

δ.	٧s	A/S
OR.	13	7/3

A/S(kts)	δ _B (in)	SLOPE
-40	. 3124	0
40	. 3124	0134
51	. 165	0
60	. 165	.003
65	.18	. 027
80	. 588	. 0207
94	.88	.0117
100	. 95	.00625
108	1.0	.0058
120	1.07	.00165
140	1.103	0

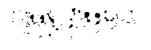

O VS A/

A/S (kts)	A (rad)
-40	. 094
40	. 094
58	.046
80	.044
100	. 028
140	048

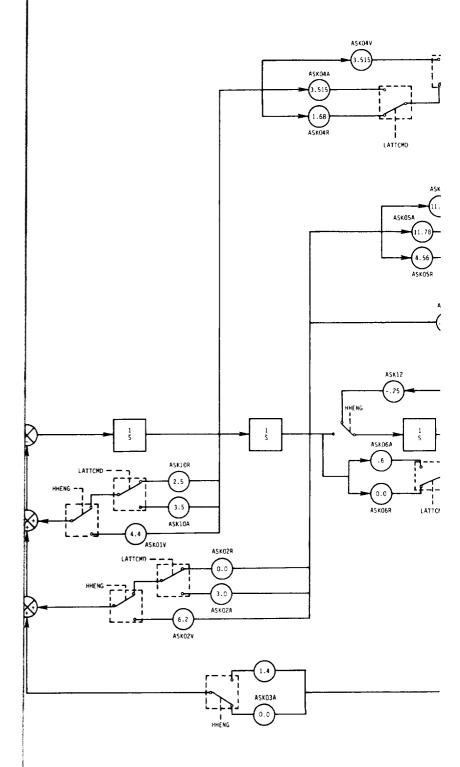

FOLDOUT FRAME

1			

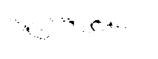
ORIGINAL PAGE IS OF FOOR QUALITY

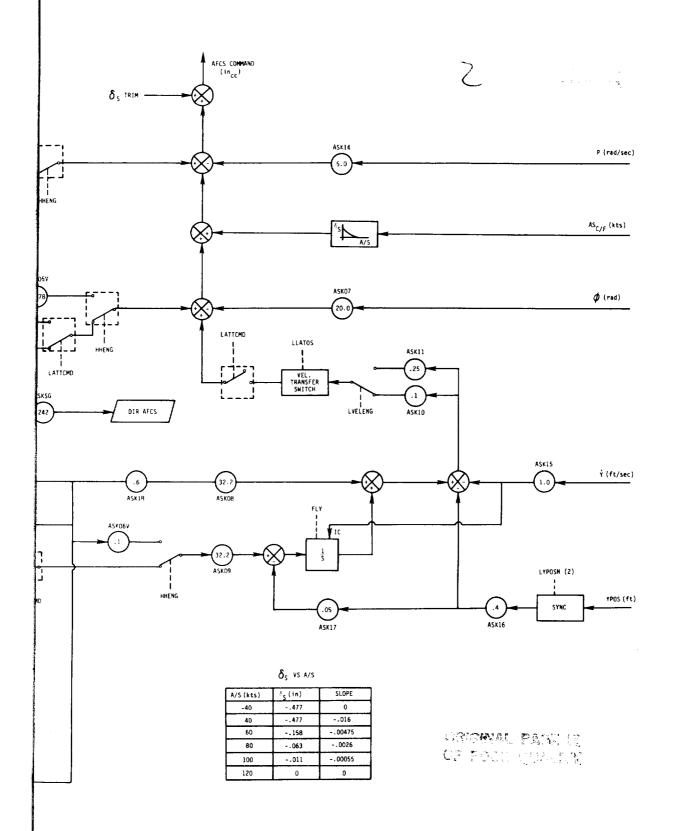


,		

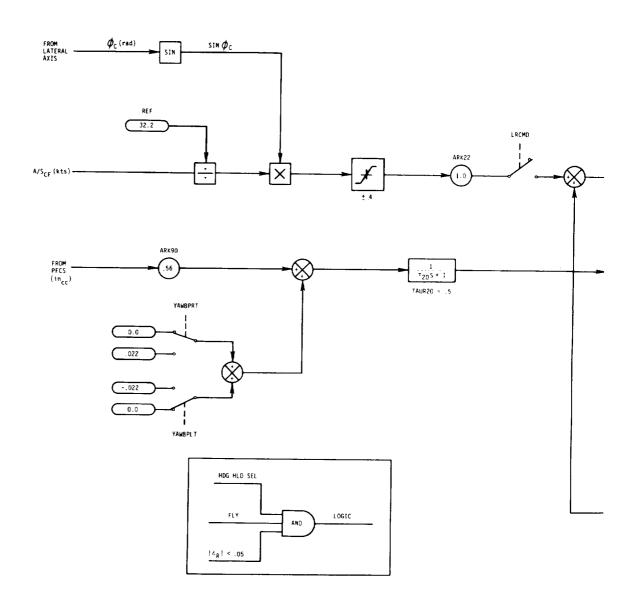


Ć

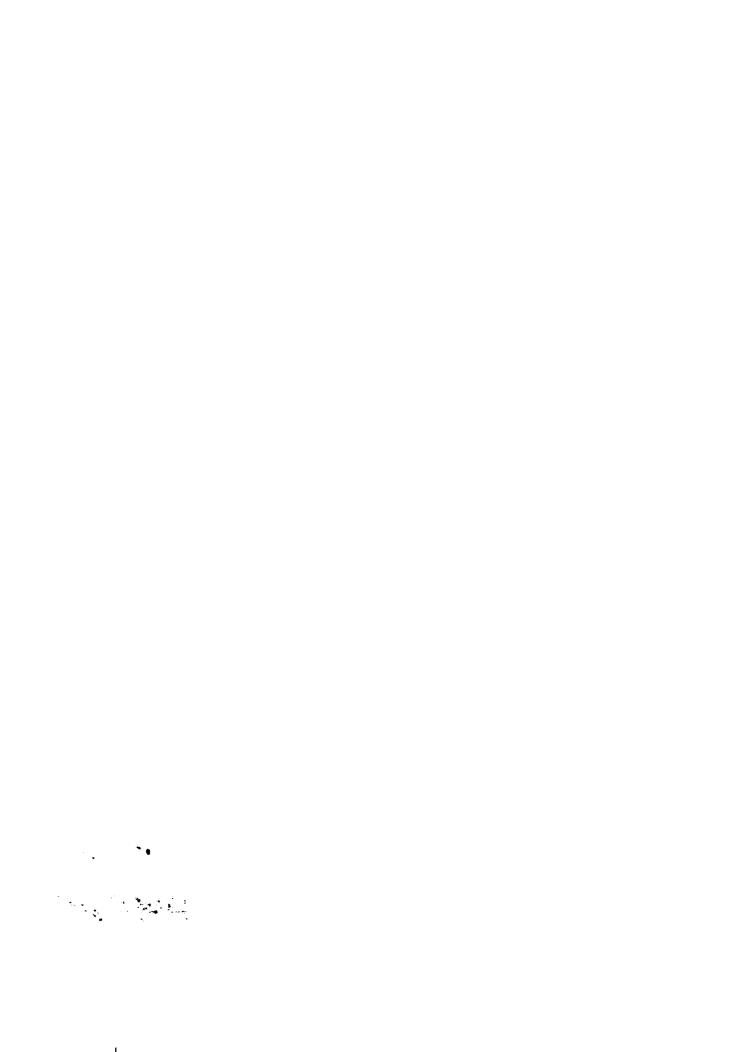

OF POOR QUALITY



ADOCS LATERAL AFCS ACC/AFCS PHASE 2B

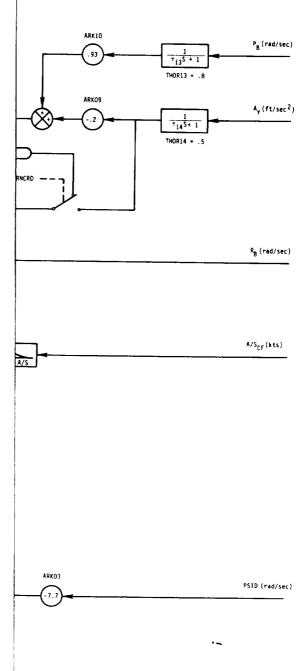


FOLDOUT FRAME



OF POOR QUALITY

S DIRECTIONAL AFCS C/AFCS PHASE 2B



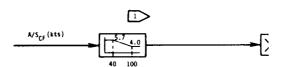
 δ_{R} vs a/s

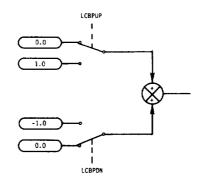
A/S (kts)	δ _R (in)	SLOPE
-40	055	0
40	055	0025
56	095	0
62	095	.004
67	075	.0078
80	.026	.00345
100	. 095	.00185
120	. 132	0

EOLDOUT FRAME 2

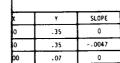
3 EOLDOO MANA

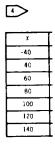
CF FOOR GUALINY

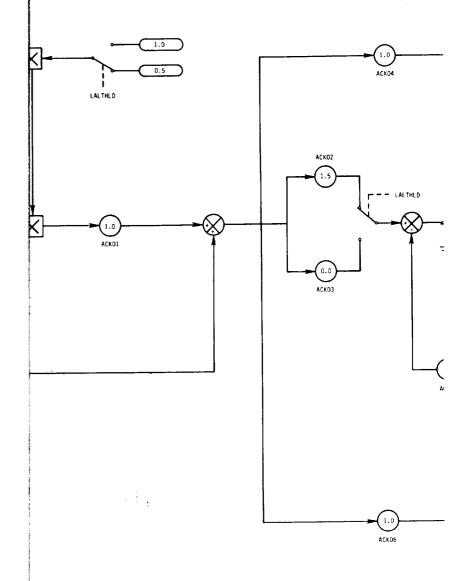

FOLDOUT FRAME


X	γ	SLOPE
-40	5.7	0
40	5.7	0283
100	4.0	0

2

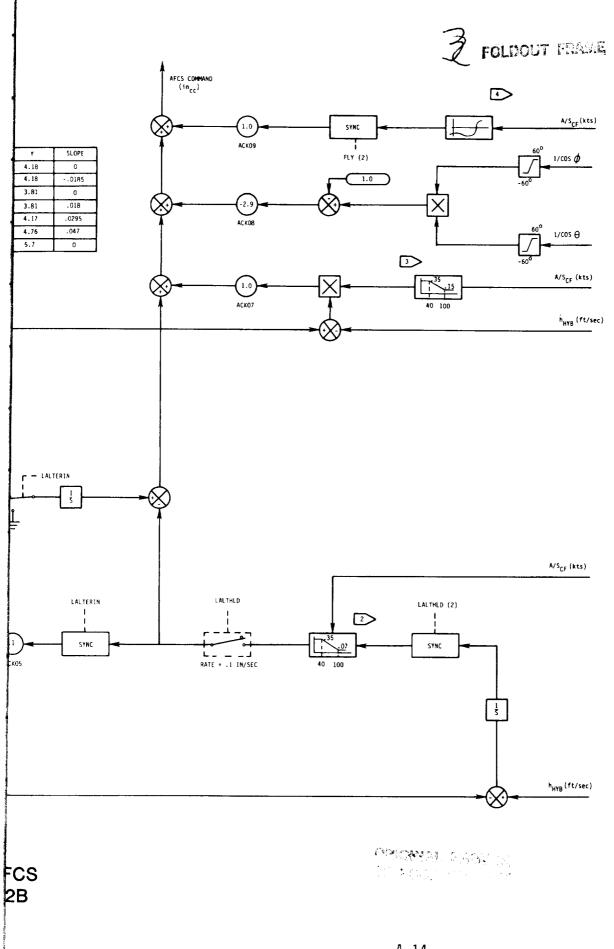

_
-4
7
1





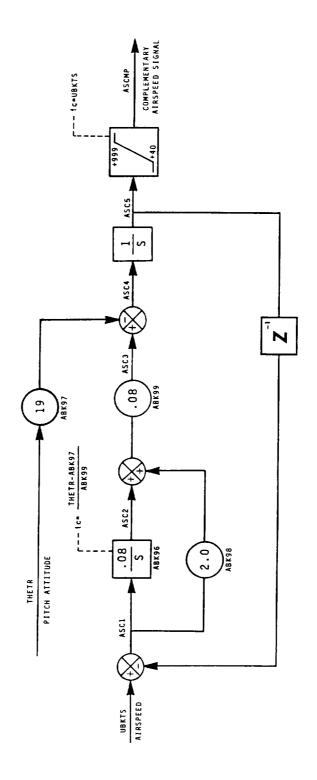
OF POOR QUALITY

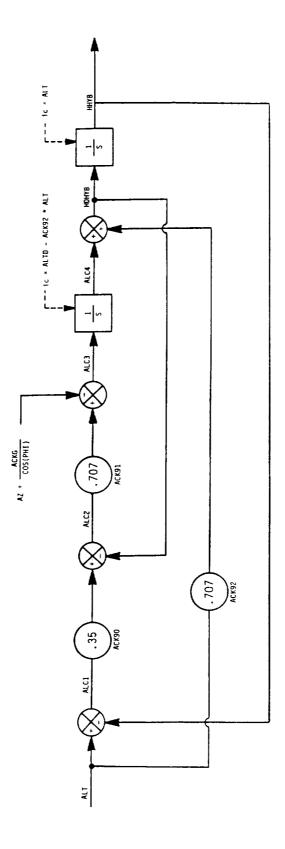
ſ	x	Y	SLOPE				
ı	-40	. 35	0				
Ì	40	. 35	0033				
1	100	16					

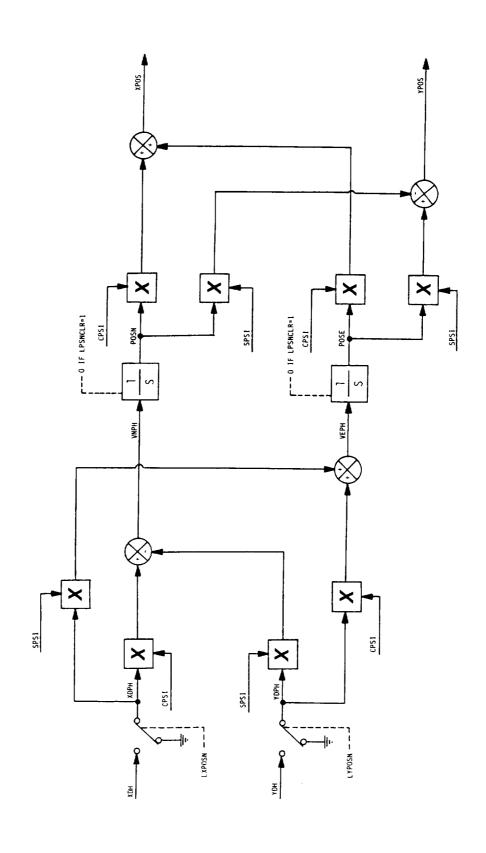


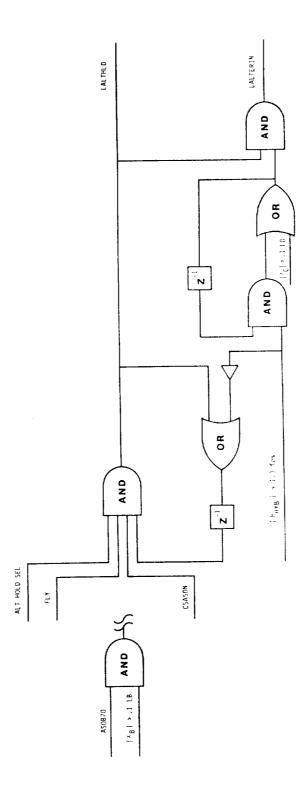
ADOCS VERTICAL AF ACC/AFCS PHASE

ECHOOUT FRAME 2

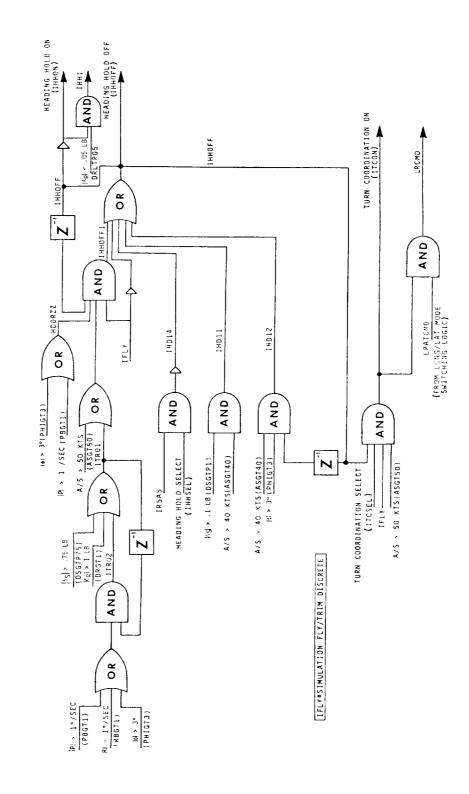

I		


A-14

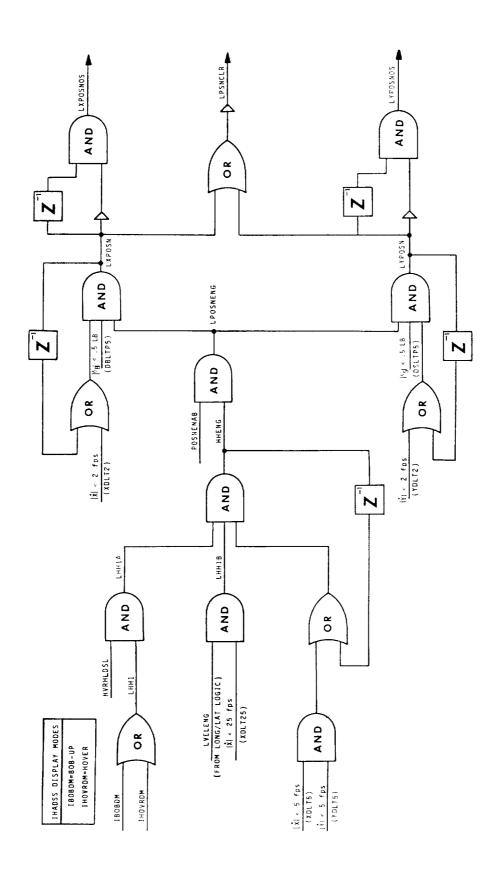

AIRSPEED COMPLEMENTARY FILTER

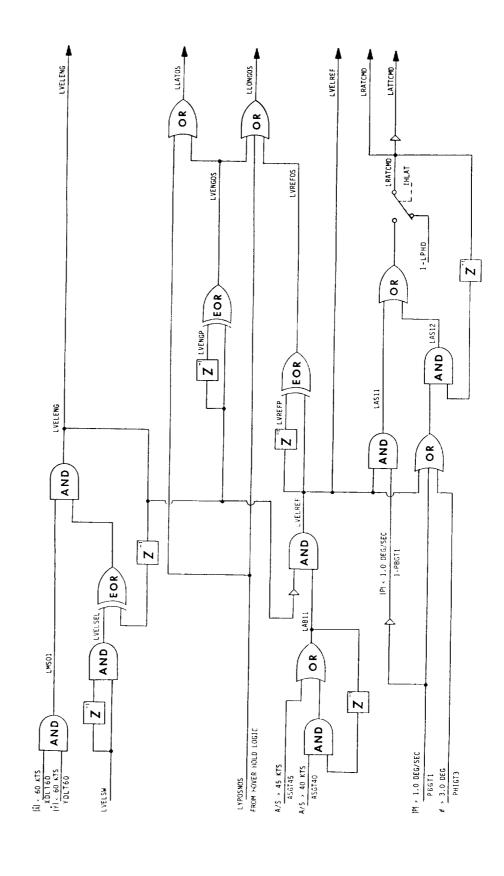


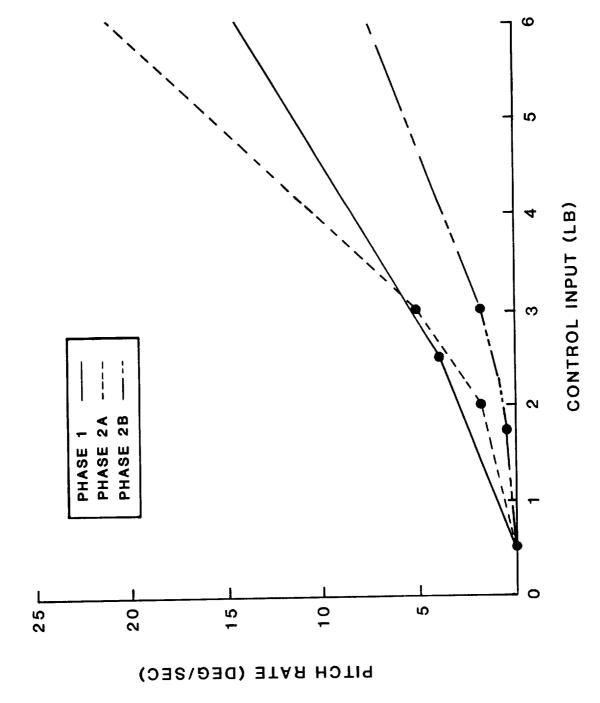
C-3

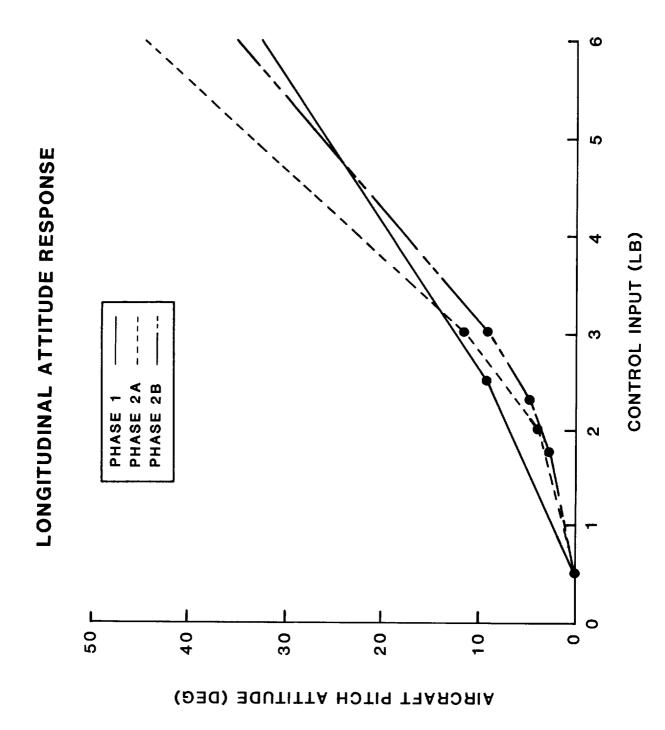


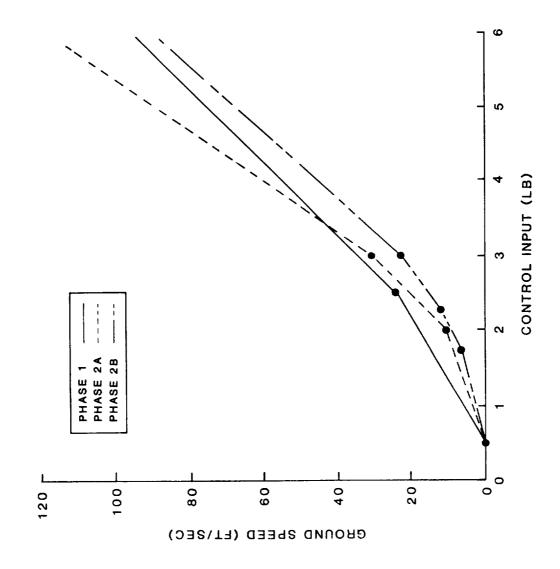
POSITION FEEDBACK DERIVATION

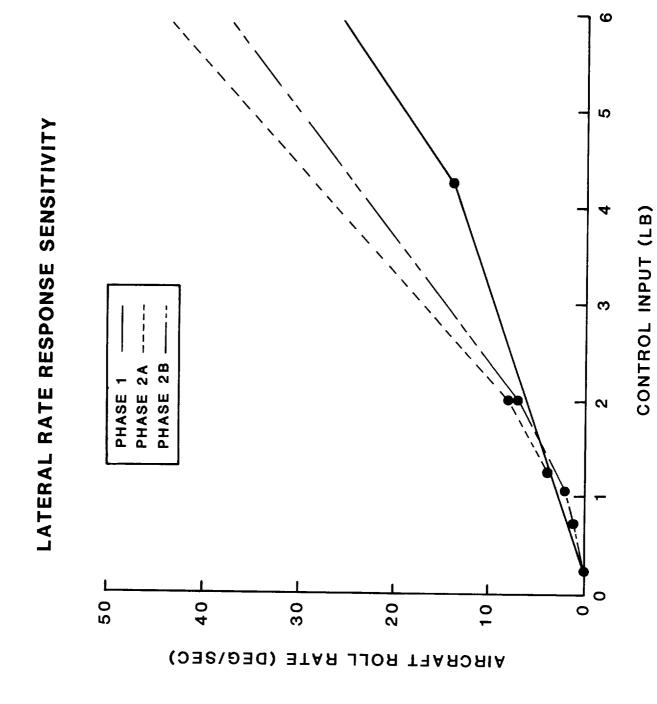


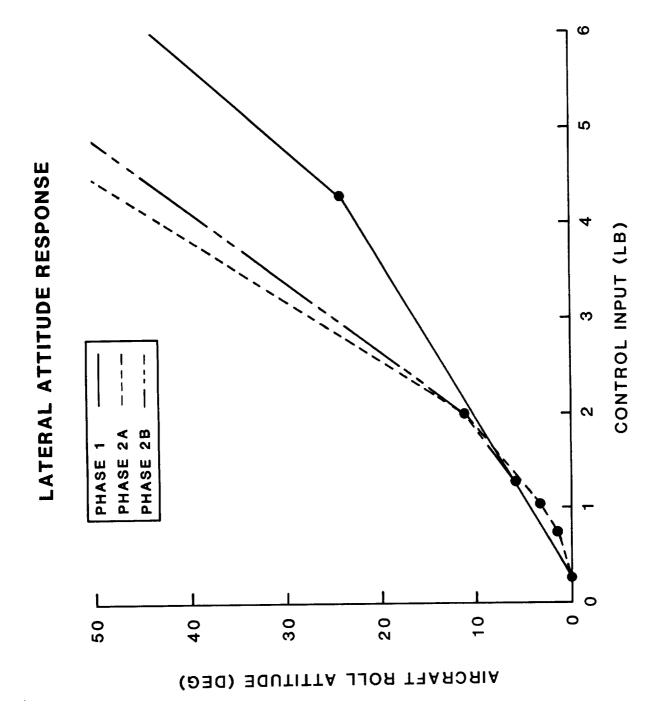

HEADING HOLD/TURN COORDINATION LOGIC

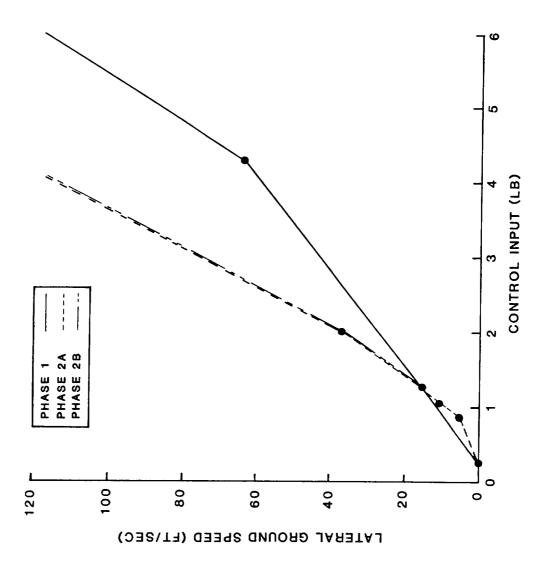


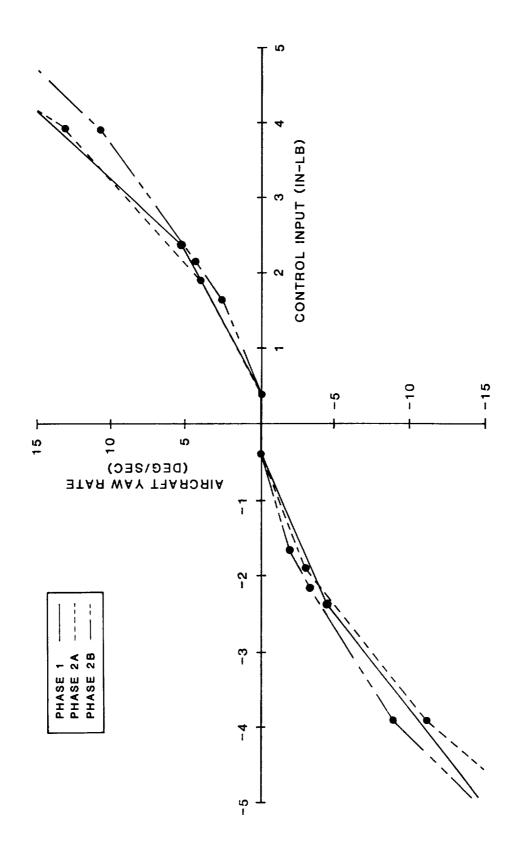

HOVER HOLD LOGIC

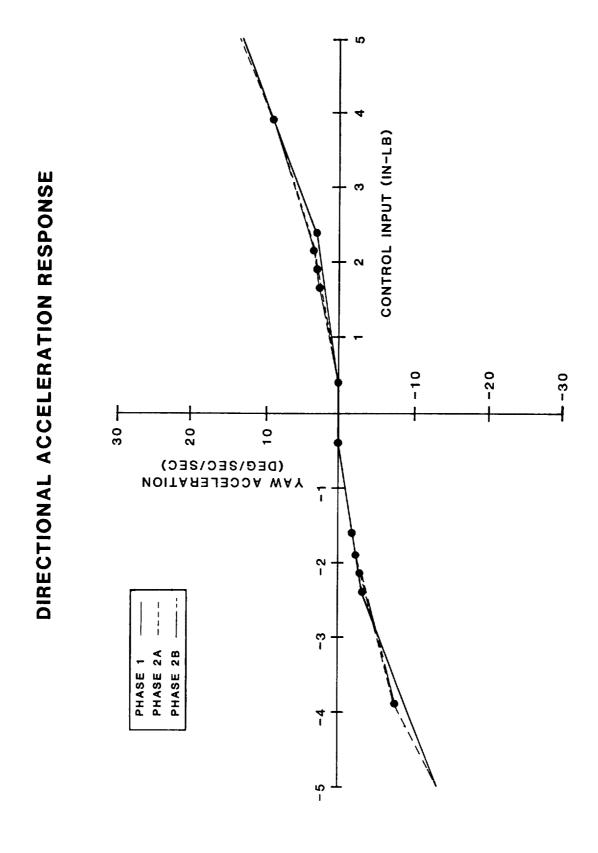

LONGITUDINAL/LATERAL MODE SWITCHING LOGIC

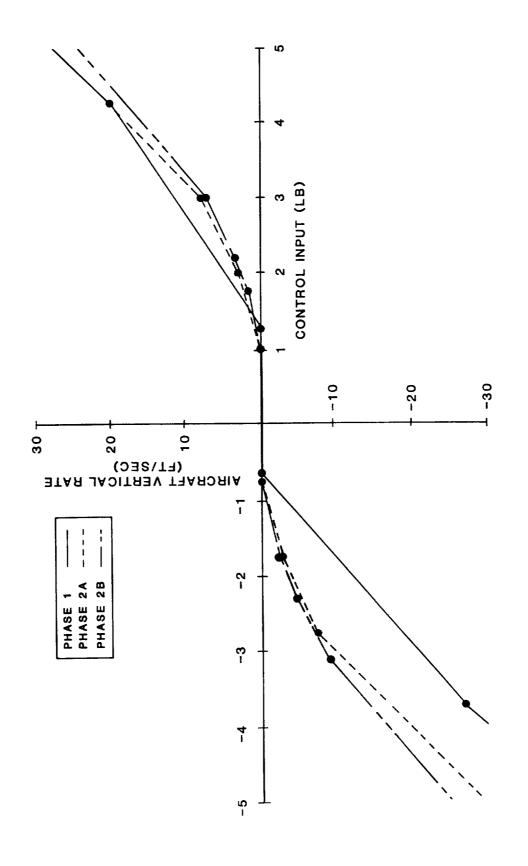


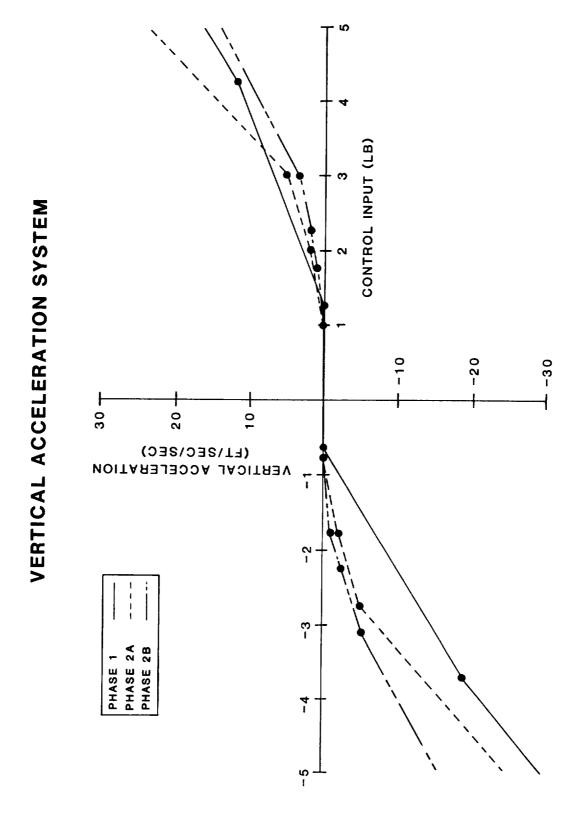



LONGITUDINAL VELOCITY RESPONSE








DIRECTIONAL RATE RESPONSE

VERTICAL RATE RESPONSE

APPENDIX B

Appendix B contains trim sheets and small-perturbation stability and control derivatives which represent the UH-60A math model used in the Boeing Vertol Simulator. Trim sheets and derivatives are included for airspeeds between hover and 140 knots at 20 knot increments.

OF POOR QUALITY

	0 0	· (42.0	OMEGA RR	X 000T	350755	MACH NO	F F 2	103055	CMO FR 94342FP	CMO AR 73940E-0	54715F-0	THOF 80	THOR BO	PFR +0	0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	988	208 00000E+	16962E+	ELCNUD 3302E+0	81088 781295+0
	SEC. NO.	· · · · · · · · · · · · · · · · · · ·	0 IN RAP= 18	0.27540E+32	25LC T0	IXZ 167005+	MU PR.	DELTA FR 1103448-0	35.74 R	u +	50.00 100 100 100 100 100 100 100 100 100	2 FRHT 13368E+0:	BICF 900	8 ICR 900CC.	L488 833	M498 BD	1173 93	31RR 900 -0.903755-02	H&R 800Y 0.10774800	Y9R 800Y -0.11285=+00	-0.79430E-02
	TAIM TAPE	•	IN ZCG= 0.	0.23258E-02	0.000005+00	0.37200E+05	MU 58 0.114653-02	π + υ.C.	V TIP 23 0.69919E+33	91 ER -0.977635+33	31 RE -0.11153E-01	0.131215+31	0+	AIC & BE	LMBF 800	3≘+ 3≘+	A1F2 300 -0.191755+01	-3.97763E+00	+FR 300Y +0.537145+03	-0.325618+03	SIC MEF 0.00000E+00
A + A	ASE RUN NO."		xCG= -9.2	0.000005+00	0.000005+00	0.400000+03	-3.34407E-01	A HUB FR -0.485038+0+	0.303505+01	-3.18175±+C1	0.11344E-01	X/X 0.23690E+01	0.14353E+01	-0.32C10E+02	-0.12392E-05	-0.49177E-05	N/III 0.13461E-05	WINT 178+01	7,1V 000000.c	-0.229313+00	O.DUDUDE+00
- N I M	FLIGHT NO. = B	3.0 KT	EMP= 59.0 0G	J.30000E+00	0.03000E+30	0.5629JE+04	-0.56565E-01,	-0.25984E+04	-0.331648+01	0.31490E+01	40 88 0.10054E+01	-3.19774E+00	0.10763E+04	-0.39239E+03	0.521125+04	-0.127535+05	N 3,307 -0,33086€+05	-0.969825+01	0.00000E+00	3.00000E+30	-0.17997 <u>=</u> +02
AC-5-HU		0.0 KT WH	600.0 FT T	0.000000-0	0.56941E+01	0.23217E+02	1,33235E+02	1080UE E	108005 P	0.433115-03	0.10939E-02	0.14237E+34	-0.32561E+03	-0.16903E+05	-0.62092E+04	0.14142±+05	N = 27T 0.330335+05	3.33330€+30	0.353035+90	3.30005+00	-3.1970CE+32
	3/16/9~	0.5 KT V=	= 263.0 H=	PSI 0.03039≣+93	-3.61379Et7	BICER 0.165535+31	644M4 FS	-0.32551E+03	-0.14455E+00	-0.11331E-03	-0.13378E-05	-0.57533E-03	-0.30105E-02	O.30005+00	-0.60750E-02	M V.TAIL 0.13342E-02	N V-TAIL 0.352528-01	8874 VT 0.00000+800000	0.512495 0.51249 0.51249	-C+E+2-15 - 2+ 20	0.214308-01
	₹ 7:52	KT U=	24.9 L35 RPM	-0.25675E+01	J.033975-31	-0.11369E+01	S13M1 RR J.13751E+0G	-0.53714E+03	NO9M4L 5	-3.18591=-33	0.16280E-25	-3.10564E+31	0.0000000000000000000000000000000000000	-0.162355+01	J. BOBOJE+SO	-0.45511E+32	0.00000E+00	3.00000 ± 00	0.12007E+03	-3.44332E+90	0.94919E+30
	TIME-DAT	VT3T= 32	3	THETA 0.511688+01	-0.12334E-01	THETO FP 0.23011E+C2	SIGMA HU 0.320838-01	7HRUST 70 0 10 0 10 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.539965-32	0.105025-01	0.78085E+02	0.30505+00	2.5580E+03	-0.2c520£+01	-0.134335+04	0.24452E+01	40 00 €	-0.861195+32	-0·	10 ± 549898+02

ORIGINAL PAST IS OF POOR CHALITY

N													
(I)													
> + 4	⊬ ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±												_
F4	r u		0.5883	0.4308	1.0530	-7.1672	1.0181	1.3047	3.2557	0.0194	C.0138	-0.2461	6.8327
-	00	K/2	53	4	0.5	16	01	30	5	01	5	24	80
4	59.00	7	·	ö	÷.	۲.	÷.	Ļ.	ř	ö	ပ်	ċ	÷
>	0.00					,						•	
	ő												
œ				01	~	4	2	۲۱	2	1		~	m
u i	u H	5	90	20	90	12	63	. 7	6	25	C 7	03	57
C	ALT. TEMP	¥ /	-0.1064	1.0502	-1.4502	0.2124	-1.5607	-1.5443	0.3915	0.0257	-0.0401	0.0033	-0.3573
-4	4 ⊢		i		•		1	1			•		•
r)													
o.			C	c)	0	ന	1)	v	. 1	~	4	œ.	0
-	X I S	2	30	37	4)	13	76	17	(t)	13	53	5	0,4
Z	× u	¥ .	1.6300	0.5070	0.0696	0.0263	-1,7769	1.2256	-0.4804	-0,0102	-0.0234	0.0189	-0.6400
c)	n o		4	C	O	O	Ţ	•	0	0	0	0	?
U	0.50												
O	0 0		J		۲.	æ	e	D		ųΩ	C 1	a	φ.
z			-3.002¢	0.0261	0.0313	0.0798	-0.1789	-3.4325	-2.2823	0.0915	0.0082	-3,3910	-0.035
-1		N/122	ō	Ċ	41	Ċ	Τ.	-1	5.	C,	C	0	٠
_	. "	Ż	Ç.	O	0	C	9	0	- (1	O	Ö	7	
<u>-</u>	VEL. #												
F1	> ~												
		>	5.	-0.0059	0.0108	-0.0103	(C)	5277	-2.2921	0.0002	3.0122	0.3021	-0.0083
-		≻ ⊬1	32	5	C)	5	2.3121	5	0	()	\overline{c}	00	90
m	0 Z	4/14	-9.3251	c.	Ö	Ö	Ö	Ġ	Ċ	Ċ	r)	Ö	Ċ
STRABILITY	8) Z		- 1	٠		'		'	١				,
	F- C												
·	0. 2.		~†	۵,	٨.	۲,		٢	NI	•	۲,	Ø	^ -
	# 1552+.91 # -9.20	. / z x x	-3.0654	1.4593	-3.777	₩ 000.0	-3.4157	-1.8527	3.1952	3.0641	-2.3243	0.0036	-3.3957
	61	.:	0	-1	۲.	()	,	(r)	٠.	10		()	()
	Ë		_ O	-	7	רי	12		Ċ		- 7	O	<u> </u>
S	ა. ა. ი.												
cı	رة ن												
⊲ ⊢ ⊬					~								
+ -			0313	0 E L S	- III	DELC							F T
_			Ö	0	Ö	Ö	n	7.4	C Cr		>	3	F-4

0.53 LIST HT -19.63 212.72 -796.53 207.49 79-41 -1.39 -10.35 2.72 THRUST T 11.73 -7.99 -259.29 -512.79 125.67 -264.27 -252.33 3818.91 -773.95 -1834.24 THRUST F STABILITY AND CONTROL DERIVATIVES -37.14 -15.38 -85.77 -726.01 -531.71 -0.56 0.03 15.34 -3.74 YFR 930 -521.85 -18.06 -267.62 916.61 -705-6¢ 127.51 0.28 15.52 -3.97 -368.74 129.38 HFR BOD 69.95-39.25 288.05 -7910.05 -4778.54 -1157.96 6436.95 -14632.29 5.34 115.37 1039.86 4HB 80F -81.85 -2.28 -113.11 -14624.05 -6493.40 -662.20 285.24 09-68-15.95 104.25 5375.23 LH3 80F 1.9096 -0.0426 -5.4947 -2.4433 -0.3245 -0.000-0-0.1073 0.0053 -0.0303 0.0392 -0.0337 815053 -2.9763 -0.4357 9.2928 9280.0 3.1035 -0.0175 -1.7030 2.4459 -5.5057 0.0020 0.0434 A180FR UTTAS 0.0016 -0-3597 0.5822 -0.1734 -0.1522 -0.1354 -0.3921 -0.3605 -0.0583 ACER

DELR JELC

DELS

0.03

-7.20 -0.46 0.16 -1.07

1	15 A 4		6.2	3MEGA RR 0.12712E+03	0.00000E+00	0.34365E+01	44CH NO. 0.48711E-31	0.28738E+07	0.15805E+36	-3.95167E-02	-0.63939E-02	0.70381E+00	THOF 800	THOR 800 0.230865+02	0.00000E+00	0.0000cE+00	0.30000E+30	0.300000000	0.173325+95	0.535175+02	91CRR 0.33136£+00
;	0 =		O IN RAPE 168	0.27540E+02	0.030000±+00	1×Z 0.15760E+04	MU RR 0.55374E-01	0.10348E-01	0-11885-02	0.31556F#05	0.86749E+03	0.18339E+01	0.32235E+01	0.00000.0	-0.55591E+02	MHBR 80D 0.182986+03	A148 830 0.05438E+00	9183 300 -0.158725+00	H&R 300* 0.33858E+01	+3.12999E+01	-0.33542E+00
	TRIM TAPE S		IN 206= 0.	RDE 0.23258E-02	0_00000±00	0.372005+05	MU F3 0.459365-01	V TIP FR 0.73904E+03	V TTP RP 0.09919=+33	-0.38183£+90	-0.473225+00	0.12780E+01	-0.31890E+01	0.00000E+00	-0.10126E+04	-0.704065+04	-0.26492E+01	81F2 305 -0.381006+00	HFR 300Y -3.987345+33	-0.51917E+03	31C 45E
V	ASE RUN NO.		xc3= -9.2	0.300005+60	0,30000E+00	0.400000+05	LAMDA R2 -0.78568E-01	-0.70408 F2	M HU3 RR 0.12817=+03	-0.25+92=+01	0.470025+00	X/M 0.38736E+01	0.39760E+00	-0.31924E+02	-0.84125E-04	M/IYY 0.47065E-03	0.321/N 0.34990E-0	-0.450035+02	0.000000.0	-0.25716E+02	0.00000E+00
≥; ←	60 H *CIZ 1.1511111	2.4 KT	£MP= 50.3 06	0.500005+00	0.360005+00	1XX 0.542005+04	-0.452015-01	-3.10126E+04	1, 141938+23	A0 F3 C. 307955+01	00+325656.0	+0.88858E+01	0.99343E+03	-0.36345E+03	0.56784E+04	-0.116545+05	+0,30376E+05	-0.31017E+02	0.030005+00	0.00000E+00	-0.179978+02
400-10		3.0 KT ¥=	800.0 FT T	00+300000000000000000000000000000000000	352540 PLT 3.52540E+31	14573 TR 3.224215432	183510 HT 0.38395510	31355E+05	10.50.40.00.00.00.00.00.00.00.00.00.00.00.00	0.432695-03	0.034010+05	X = RCT 0.137595+04	-0.51917E+03	-0.15929E+05	-0.558015+04	0.943988+04	N F.23T 0.301335+05	0.353305+30	6.44488 6.443399	0 + 300000 + 00 0 + 000000 + 00	-J.1970JE+J2
:		3.0 KT V=	= 203.1 HE	0.000000 0.00000000	-3.57712±+50	0 - 3310 HZ	CO+#80 FEV *C	-0.519175+23	0 mci	CY 58 -0.1*3565-03	-D. 504 88 8 - D. 4	-0.52135+30	-0.43170E+01	O.30CCCE+30	-0.111615+02	0.213475±01	0.136372435	3573 VT 0.055335+30	0.690325+01	-C-112399+00	CDVT C.214905-31
,	(:22	.2 KT U= 2	24.9 L3S RPW	-0.15100E+01	-3.11393E+21	-2.11200E+21	51574 35 0.13751E+JO	-3.98734E+33	0. 400 400 400 400 400 400 400 400 400 4	-0.34357E-00	01 24 2 7 2 m = 04	0.24745E	J. GOGGGE+GG	2 4.TAIL 0.20163±+53	0.000000000000	A 4.TAIL 0.55854E+34	0.02000E+30	0.0000 +0000 +0000 =00000 =00000 =00000 =00000 =00000 =00000	10+22800E+07	10 + 3 5 + 3 5 + 0 1	0.227335+00
1	-	VTGT= 32	108	1HETE 0.09055E+01	0.052708+Jū	1HET3 FR 0.223225+02	SIGMA = 0	THAUST F 0.17004E+05	0. 14 0. 14	0.001718-02	0.57931E-32	-0.375025+02	0.00000E+03	Z FUSE 0.39477E+23	-0.87564E+02	-0.331415+34	2.10446m 0.10446m	5574 FS 0.00005+30	-3.51581E+02	### ### ### ### ### ### ### ### #### ####	13.45634#172

OF FOOR GRAFMA

N N N N N N N N N N N N N N N N N N N	59.00 DEG	W/2	1.3859	0.4853	1.4365	-6.8357	0.3253	1.9043	2.8052	-0.1346	-0.0524	-0.3194	4.2948
טר ס 3 א	ALT. =	¥ / }	-0.1043	1.0674	-1.3748	0.2737	-1.3107	-1.5740	0.736	0.0144	-0.0501	0.0092	-0.1250
	20.00 KTS 0.00 FPM	¥ / ×	1.4863	-0.0094	0.8801	0.9745	-1.7222	0.5118	-0.4933	0.0144	-0.0458	7090-0	-1.3990
+ 4 0	756. = 20 8/0 = 0	N/122	0.0013	-0.0498	0.5671	0.0636	0.1014	-0.4056	-3.3775	-0.0026	6.0114	-0.0008	0.0030
A B I L I	Las	M/IYY	-0.3290	0.0031	-0.0109	-0.0243	2.2000	2292.0-	2276*5-	2.0094	0.0042	0.0120	-0.5218
ν Ε	G.W. = 15824.91 C.G. = -9.20	٢/ ت ٨ ×	-0.0721	1.5047	-3.7296	0.1673	-3,5017	-1.6346	0.3549	0.3173	-3.3203	0.0118	0.1348
U F A	ம் பீ)ëlà	DELS	0363	0=LC	O	(1	œ	c	>	3	THI

() ()	2 6733	£ 770 C-	-119.13	-7903.71	-812.93	-37.14	-697.02	-13.57	
			76 36 43	4 4 1	-1.35	575.59	-240.23	-18.49	
	12 (O 10)	† 00 U			0	21 7.2	-505.21	-757.94	
-0.1351	-1.7254	-0.0324	-0.36	-4752.92	A	74.71			
	-3.2395	3.213*	580.25	-030.59	-340.83	-48-54	3626.46	204.31	
7220 (-	3,314,3	94149	-14+36.00	6133.32	391.15	-375.98	-198.35	-118.36	
	7277 31	-1-9759	46.0555-	-14454.05	-755.50	-330.48	-1296.72	7.76	
) i			74 675-	1311_54	132.09	30.21	-1599.79	392.80	
N 40 0 -	6 0 1 0	15571			70 2	ir ir	70.14	5.49	
C10.0	6 6 6 6	10 co			•			,	
(1) (1) (1)	(01)	40.0344	-31.65	24.2.40	12.75	-2.12	23.44	0.5.00	
7020 0	14000	0.0157	30.50	10.27	-10.07	5.51	171.37	72.0-	
77177	1,2657	0.2321	747	730.13	294.03	183.15	-4069.69	-264,36	

B**-**6

	6. 3	0.127125+03	0.300005+00	0.56769E+01	MACH NO. C. 525075-01	0.23738E+07	0.10805E+Ja	CMO FE-02	-0.57383E-02	0.15611E+31	THOF 80D 0.20980E+02	THOR 800 0.20388E+02	0.0000E+00	0.30000=+00	9.20000E+10	0.300006+30	0.16793=+05	0.120115402	31CRR 0.46449E+00
	IN RHP= 12	0.27540E+02	0.00000E+00	0.18700E+34	0.175555+00	0.10527E-01	0.325325-02	2.23965E+05	3.36709E+03	0.23913E+01	BICF 80D 0.37300E+01	0.00000 ± 00	L484 800 -0.11865E+03	MHBR 900 0.245756+03	A188 B03 0.87352E+30	-0.3478 300 -0.347635+00	H*R 305Y 0.10459E+32	-0.27513E+01	-0.46396E+00
	N 2CG= 0.	80E 0.23253E-02	0.0000000000000000000000000000000000000	0.37200E+05	MU FR 0.91759E-01	V TIP FR 0.73904E+03	V TIP 28 0.00919E+03	-0.28552E+00	+0.56335E+00	0.995386+00	-0.29772E+01	0.00000E+00	-0.75881£+03	MH5F 900 -0.63051E+04	A1FR 335 -0.25509E+01	-0.28552£+00	HER 500Y -0.859765+03	-0.33436E+03	0.333335+33
	xcG= -9.2	0.00000-00	O. GÖÖÖDE+OD	0.10000 0.4000 0.400 0.400	-0.59330E-01	-0.68061E+04	M HUB RR 0.177235+03	-0.25009E+01	3.5626GE+00	0.30816E+01	0.72295E+00	-0.320145+02	-0.20141E-05	-0.37282E-05	20-862950°C-	-0.58381E+02	0. 00000E+00	-3.33112E+02	AIC MEF 0.000006+00
3.9 KT	MP= 59.0 06	0.0000c+00	0.30000E+00	1XX 0_\$6290E+04	-0.29032E-31	-J.75881E+03	-0.207515+33	0.23659E+01	0.63736E+00	-0.10459E+02	7 8035E+03	-J.28734E+U3	0.438335+04	-C. 90303E+34	N R.ROT -0.237335+35	-0.237295+32	0.300008+00	37498 0.30000E+00	-0.179975+02
3.0 KT 4.8	600.0 FT TE	0.000005+00	0.44262451 0.442675401	14378 TR 0.109425+02	INCID 47 3.34905E+02	1380UE F 0.23965E+05	0.35709E+3	0.31075£+03	0.01771E-03	0.173635+04	-0.38436E+03	-3.167045+05	+0.41912E+04	M F ROT 0.100755+05	0.232775+05	3.30300E+30	0.000000000000000000000000000000000000	0.000000000000000000000000000000000000	-0.19700E+02
2.0 KT V=	= 263.0 H=	O.JOJOGE+90	-0.33571E+00	37300E+01	0.1204### FS	-0.38436E+03	-3.0725 8 -3.0725	-0.13375g-05	-3.02251E-34	-0.35853E+01	-0.19258E+02	0.27000E+00	-0.44544E+02	M V.TAIL 0.853395+01	N V TAIL 0.54545463	C.3C3C3C+G3	3.54081E+01	-3,112395+38	0.214963-01
4 KT U= 4	4.9 L35 RPM	-3_12937E+01	-3,99936E+30	-3.297725+01	SI3MA RP	NC3MAL = -0.859765+03	NG3%4L 3 0.84873#+01	50-2178-03 -3.294178-03	0.73364E-34	0.35538E+02	O. COUCOSTO	2 H-TAIL 3.576962492	o.bojobetco	0.190075+04	0.30000E to	8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	ALPH HT -J.25150E+71	-3.17650E+33	J.18717E-31
VT3T= 41.	6.₩. ± 1082	14ETA 0.54968E+01	0.30340E+00	14573 FR 0.209835+02	SISMA FR 0.320936-01	148UST = 0.167725+05	0.430150±0	01.53561F-02	0.769635-02	-0.14912E+03	Y FUSE 0.13364E+01	2 FUSE 0.180055+03	-0.14745E+03	M FUSE -0.289495+04	10.39583E+0-	0.300000+00	-0.14759E5	0.24-148+02	-3.243015+32
	13T= 41.4 KT U= 43.0 KT V= 3.0 KT W= 3.9	131= 41.4 KT U= 43.0 KT V= 3.0 KT 4= 3.9 KT .w.= 13824.9 L3S RPV= 263.0 H= 600.0 FT TEMP= 59.0 DG XCG= -9.2 IN 2CG= 0.0 IN RHP= 1284.	VIDT= 41.4 KT U= 40.0 KT V= 0.0 KT H= 3.9 KT 6.W.= 10824.9 LBS RPW= 203.7 H= 600.0 FT TEMP= 59.0 DG XG= -9.2 IN ZGG= 0.0 IN RHP= 1284.3 THEIA .54968E+01 -0.12937E+01 0.0000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.23253E-02 0.27540E+02 0.12712E+	VIDI≡ 41.4 KT U= 40.0 KT V= 0.0 KT H= 5.9 KT 6.W.= 10824.9 LBS RPM= 203.7 H= 600.0 FT TEMP= 59.0 DG XCG= −9.2 IN ZCG= 0.0 IN RMP= 1284.8 .54568±91 -3.12937E+91 0.00000E+D0 0.0000000E+D0 0.000000E+D0 0.00000E+D0 0.23258E-D2 0.27540E+D2 0.12772E+ .54568±91 -3.12937E+91 0.00000E+D0 0.000000E+D0 0.00000E+D0 0.000000E+D0 0.00000E+D0 0.00000E+D0 0.00000E+D0 0.00000E+D0 0.00000E	VIDT= 41.4 KT U= 40.0 KT V= 0.0 KT H= 5.9 KT 6.41= 10824.9 LBS RPM= 263.0 H= 600.0 FT TEMP= 59.0 DG XCG= −9.2 IN ZCG= 0.0 IN RHP= 1284.3 .54568=+01 −0.17537E+01 0.00000E+00 0.000000E+00 0.000000E+00 0.23258=−02 0.27540E+02 0.12712E+ .35546E+01 −0.17537E+01 0.00000E+00 0.000000E+00 0.00000E+00 0.00000E	0.10 ± 40.0 KT V= 0.0 KT 0.0 KT V= 0.0 KT V= 0.0 KT 0.0 KT	VIDIT 40.0 KT V= 0.0 KT V= 3.9 KT 6.WE 10.824.9 10.00 N V= 5.9 KT V= 5.9 KT 1. VETA 10.824.9 10.00 N 0.000000000 0.000000000 0.00000000 0.00000000 0.00000000 0.00000000 0.0000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.00000000000 0.0000000000 0.00000000000 <td>VIDI≡ 41,4 KT U= 40.0 KT V= 0.0 KT H= 5.9 KT G.W.= 10824.9 L3S RPM= 203.7 H= 600.0 FT TEMP= 59.0 BG XG= −9.2 IN ZG= 0.0 IN RHP= 1284.3 JA\$68=01 -0.12932E+01 0.0000000000 0.0000000000 0.000000000</td> <td>6.W. 10824.9 LBS RPW= 203.7 H= 600.0 FT TEMP= 59.0 DG XCG= -9.2 IN ZCG= 0.0 IN RHP= 1284.8 5.\$\$\$6.\$E+01 -0.12\$\$7E+01 0.05\$70E+00 0.00000E+00 0.0000E+00 0.05\$58E+02 0.07\$50E+02 0.07\$72E+ 3.\$\$\$\$6.\$E+01 -0.12\$\$7E+01 0.05\$70E+00 0.00000E+00 0.0000E+00 0.05\$58E+02 0.07\$76E+02 0.07\$76E+ 3.\$</td> <td>VTJTE 41.4 KT UE 42.0 KT HE 3.9 KT G.W.E. 10.826.9 LBS RPME 263.0 HE 59.0 DG XCGE 0.0 DIN RPPE 1284.3 11.45.6.9 LBS RPME 263.0 HE 600.0 FT TEMPE 59.0 DG XCGE 0.0 DG NAME RPME 1284.3 NAME RPME NAME RPME 1284.3 NAME RPME 1284.3 NAME RPME NAME NAME NAME</td> <td>41.4 KT 0= 40.0 KT W= 3.9 KT A= 3.9 KT 6.4. = 10824.9 LBS RPM= 26.3.0 H= 600.0 FT TEMP= \$9.0 DG xG= -9.2 IN ZG= 0.0 IN RHP= 1284.8 0.14562.0 LBS RPM= 26.3.7 H= 600.0 FT TEMP= \$9.0 DG 0.0 DBS 0.0 DBS</td> <td>0.1545a = 1.0 0.055a = 1.</td> <td>0.5 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±</td> <td>6.35 ± 6.1.4 × T 0.3 ± 6.2.0 × T 0.3 ± 6.</td> <td>6.34.4 KT UB 42.0 KT HE 50.0 DKT TEMPE 50.0 DKT NGT N</td> <td>4.12</td> <td>0.35582673 - 0.355</td> <td> </td> <td> </td>	VIDI≡ 41,4 KT U= 40.0 KT V= 0.0 KT H= 5.9 KT G.W.= 10824.9 L3S RPM= 203.7 H= 600.0 FT TEMP= 59.0 BG XG= −9.2 IN ZG= 0.0 IN RHP= 1284.3 JA\$68=01 -0.12932E+01 0.0000000000 0.0000000000 0.000000000	6.W. 10824.9 LBS RPW= 203.7 H= 600.0 FT TEMP= 59.0 DG XCG= -9.2 IN ZCG= 0.0 IN RHP= 1284.8 5.\$\$\$6.\$E+01 -0.12\$\$7E+01 0.05\$70E+00 0.00000E+00 0.0000E+00 0.05\$58E+02 0.07\$50E+02 0.07\$72E+ 3.\$\$\$\$6.\$E+01 -0.12\$\$7E+01 0.05\$70E+00 0.00000E+00 0.0000E+00 0.05\$58E+02 0.07\$76E+02 0.07\$76E+ 3.\$	VTJTE 41.4 KT UE 42.0 KT HE 3.9 KT G.W.E. 10.826.9 LBS RPME 263.0 HE 59.0 DG XCGE 0.0 DIN RPPE 1284.3 11.45.6.9 LBS RPME 263.0 HE 600.0 FT TEMPE 59.0 DG XCGE 0.0 DG NAME RPME 1284.3 NAME RPME NAME RPME 1284.3 NAME RPME 1284.3 NAME RPME NAME NAME NAME	41.4 KT 0= 40.0 KT W= 3.9 KT A= 3.9 KT 6.4. = 10824.9 LBS RPM= 26.3.0 H= 600.0 FT TEMP= \$9.0 DG xG= -9.2 IN ZG= 0.0 IN RHP= 1284.8 0.14562.0 LBS RPM= 26.3.7 H= 600.0 FT TEMP= \$9.0 DG 0.0 DBS 0.0 DBS	0.1545a = 1.0 0.055a = 1.	0.5 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±	6.35 ± 6.1.4 × T 0.3 ± 6.2.0 × T 0.3 ± 6.	6.34.4 KT UB 42.0 KT HE 50.0 DKT TEMPE 50.0 DKT NGT N	4.12	0.35582673 - 0.355		

OF POOR QUALITY

F F	F 4 S	+ vi	ы т т	O ≥ 4 ⊁ ⊬	α Ε Β Ο	ا ت 8 ع	IVATIVES
		G.W. = 16524.91	ras	O† ± •∃e∧	40.00 KTS	۵۱۲. =	600.00 FT
	°.3	-0.23	2	3/2 = 0	0.00 mpx	4 6 7 8	59.00 053
		L/24x	¥ ¥ ± 7 ₩	771/8	w/x	¥ / k	K/Z
0513		-3.1393	-0.3345	0.0121	1.2134	-3.1229	2.1593
SHEE		1719	\$ c00°0	-0.0411	+0.0054	1.3371	0.4983
2512		-0.7543	-0.0523	6.5535	0.5925	-1.3643	1.8522
3150		0.5418	0.1394	416040	1.2206	0.3747	-6.6236
0		72.62.5-	2.244.7	50.53.0	-1.5320	-2.2409	+0.1860
		-1657	-1.0102	4278.2-	3.7965	-1.3730	1,3705
0.		2.3244	-1.1221	7564-5-	-0.5337	0.9732	2.3014
-7		-3.2321	-0.0047	10 6; 11	-0.0315	0.3022	-0.1168
_		-0.03b3	-0.1001	0.0121	-3-0255	-0.0573	-0.0413
**		0.0294	2,0047	-0.0040	0.0430	0.3178	-0.5104
HH		-0.0038	-1.0592	0.0205	-2.6809	-0.1553	2.2341

LIFT HT -734.83 188.39 -10.36 -130.85 -13.02 -1.13 -200.80 54.22 415.60 4.02 T TRUGHT -1177.16 51.75 253,52 -785.82 3630.73 -1325.10 -1421.07 47.57 12.91 -2705.66 THRUST F STASILITY AND CONTROL DERIVATIVES -54.30 555.40 -17.18 -25.04 18.71 -1.95 -4.72 10.42 -1042.52 -770.68 YFR 900 -746.76 -449.77 -289.54 772.50 -953.96 157.33 6.87 6.55 -14.39 228.18 HFR 800 -9001.73 59.43 -4813.83 -144.63 5435.92 -14520.20 102.42 33.50 -36.77 1107.93 323.95 #HB 30F -440₊11 5349₊00 -217.42 -14244.29 93.29 -4304.10 -35.34 89.05 1258.44 -790.96 -55.31 LH3 30F -0.0818 0.4735 -5.1656 1.3993 -5.35.5 -1.8075 0.000 -0.5240-0.0354 -5.3229 3130F3 -3.0103 -0.0138 7550.0-2.3535 0.2357 7220.0 0.3305 0 0 • 0 • 0 • 0 • 0 • 0 -1.8113 -5.4633 4180FR -3.3334 -0.1564 0.3546 -0.5722 0.0019 0.2431 0.0073 -0.2332 0.0540 5 T E S SIEC () () () DEFC СX

18.86 -83.17 194.29 -63.02 -46.31

-642.28

-11.20 -10.34

-6.93

-1543.19

-67.69

	-																				
	9.4.G		۳:	34EGA RR 3.127125+33	0.000000.0	0.12269E+02	MACH NO. 0.92039E-31	0.28733±+07	0.103058+36	-0.91703E-32	-C.553235-02	0.163815+01	0.20301E+02	THD& 800 0.20069E+02	0.00000E+00	0.00000E+0C	0.000c0=+00	0.388305+00	0.164735+95	0.78435E402	0.51090E+30
	0 = 10N .0		IN 84P= 1114	0.27540E+02	0.00000E+0c	0.12700E+04	3.147045+3C	0.039055-02	0.952176-02	0.237058+05	0.375738+03	0.12655E+01	81CF 800 0.26692£+01	0.000000000000000000000000000000000000	LW3R 800 -0.23124E+03	MHBR BOD 0.273812+03	&142 300 0.9≎820≅+90	3127 30D -0.71460E+00	138 BUDY 0.111736+02	Y68 330Y -0.0-663E+01	-0.604745+30
	TRIM TAPE SE		N ZC3= 0.3	0.232535-02	0.00000E+00	3,372005+05	MU FR 0.138295+00	V TIP FR 0.739045+33	V TIP AP 0.09919E+33	#3 ## C+ #0.46705##00	-0.87245E+30	0.594935+00	-0.21956E+01	AICR 300 0.000005+00	LH3F 300 -0.104135+04	+0.16032F.C4	-0.4253CE+30	-0.39199 RECO	HFR BEDY -0.220938+05	-0.337775E.0-	0.000000000000000000000000000000000000
A T A	SE RUN NO.		xcg= -9.2 I	0.80000E+00	0.35000E+00	0.49000£+05	-0.58654E-01	# HUS FR -0.152015+04	3.23807E+33	-3.871955+30	3.34365E+C0	X/M 0.122325+01	1/M 0.16435-01	-3.321475+02	-0.387448-05	0.10255E-03	0.10E655-03	-3.305725+02	VIV ⁺ 3.00000.€	10 + 10 + 10 + 10 + 10 + 10 + 10 + 10 +	0. 400000 + 0
T 7 II X D	FLIGHT NO. = 3A	2.3 KT	MP= 59.0 0G	0.50000000	000 00	1XX 0.56290E+34	LAMDA FR	-0.12413E+D4	-0.274338+03	0.26849E+01	3.55123E+10	-0_11175E+32	0.721125+03	-3.269285+03	C. 392475+04	-3.348673+94	- 219345+05	-0.559235+01	3.20000E+30	00000000000000000000000000000000000000	17458 -3.17997E+02
ACe-HU		7.6 KT W=	600.0 FT TE	0.000005+00	050000+0	14640 TV 0.106836+02	14C10 HT 0.217245+02	1039UE = 0.207058+05	403807 6 40484840 8 404840	0.263405-23	0.584948-03	0.108295+34	-3.33737E+03	2 F R	-0.40357E+04	3 F R 2 T 05	20+324505.0	0.71735=+31	A 1	0.00 ± ± 00 0 ± 00 0 0 ± 00 0 0 0 0 0 0	TIMES -0.19700E+02
	/16/84	=V TA 0.	263.0 H=	PST 79F+01	3946384 3946384	70 FR 3740E+	0.4344 FS	SICE F -0.36232E+03	-0.7350Z3 -0.7350Z3+11	CY = 8 -J.11-J355-73	75.5	0.36035E+01	3 < 0.3	Zočoč.	-0.31274E+03	±.₩	>14 2M	10.217.01 10.717.01	0.21814847 1.318148+31	1) 1) 10 10 10 10 10 10 10 10 10 10 10 10 10	0.339245-31
	8: 2	8 KT U= 60	= WAR SET 6.7	#C	0 20000 . 0 20000 . 0 30097 E+0	A'ICFR 251275+	516MA R2 0.187518+33	2~	NC4M4L 2 0.096398+01	GH RR CT 0.0-	. 92447E-	-0.86091E+02	Y H.TAIL	23583E+0	0.000000000000000000000000000000000000	M H T	######################################	3514 HT 217 11 11 11 11 11 11 11 11 11 11 11 11 1	0.0000	14 140 140 140 140 140	0.333148-31
	TIME-DATE	VT3T= 50.	-	1 H 0 1 A 0	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	THETO FR	2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	THRUST			71238E-C	× .	Y FUSE 224015E+0	Z FUSE 134375+0	L FUSE	34 FEUSE 34 55 75 EUSE	2	5575 ES	2172 2172 2173 3177 3177 3177	+ B 1 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	11.7.1 11.7.1 11.7.1

ORRESON PAGE TO OF POOR QUALITY

S														
w.														
		c)												
VITAVI	₩.	5 E G		25	0	~	32	12	3.4	~	10	0	2	22
-	_	_	K/2	99	4	-	53	m	7	Ξ	3	į	2	-
ব	900,39	29.00	7	3.3652	0-3490	2.6133	-7.6382	-0.7327	0.5734	2-4117	-0.0333	-0.0410	-0.6197	1.5102
>	g	0.			_		•	ĭ			ĭ	ĭ	ĩ	•
H	9													
œ				C1	ı	_	2	(1	~	.	4	10	o	9
ш	н	11	2	90	02	14	67	7.2	12	5	Ü	0	16	08
റ	ALT. =	TEMP P	¥ / ¥	-3.1062	1.0025	-1.5141	0.3672	-2.4773	-1.1233	1.2031	-0.0054	-0.0935	0.0169	-0.2086
_	Ā	₽		ï		7	U	ï	Ŧ	•	ř	ï	Ü	ř
C)														
α ⊢ 2		_		m	~	0	'n	O	w	4	Ś	^	9	4
-	K T S	n G	3 .	1.2083	-0.0132	3.7210	0.5895	-1.3305	1.4235	4004-0-	-0.3215	-0.0057	0.0325	-1.6934
0			× ×		-	~:			٧.	7	<u>:</u>	0		•
D U	0	a		-	Ŷ	,,	O	ī	-	ì	ï	ì	C)	ï
	00.00	00.0												
۵	O			2		~	•	M 1	-	0	цı	O	Ņ	ý
Z a			N/222	0.0295	-0.0131	0.6423	0.0014	-0.0123	-0.2951	-0.0080	-0.0025	0.0140	-0.6372	9620-0
	н		~ ``	:	0	9.		3						3
≻ ·	•		-	.,	Ĩ	•		ĭ	Ϋ́	ï	•		ĭ	Ü
•	٧٥٢٠ =	a 2/8												
++				~	_	m)	-	P 43		o	14	m	L1	4
			>	1	13	.0	22	7.7	6	5	0	5	37	5.0
-	S		4/2/4	-0.4117	0.0101	-0.0633	0.1221	2.22.0	-1.2511	-3.1230	0.0033	0.0213	5.0372	-1.4534
u,	2 5	Z	3		C	÷,	O	C	ī	7	(,)	•	L,y	7
STABLETTY		C)												
<u>ب</u>	7.	-9.23		40	-	2	φ.	٠,	c,	^	-	14	o	2
	-4	6	F/IXX	-3.1756	1351	-0.3472	0.3436	-3.4504	-1.+223	3.4537	-3.3321	-0.2203	0.3279	-0.0985
	.0		17	•		(1)		•	•	•		′:	3	
	-			n	-	7	О	n	ī	•	i'	T	(,)	Ŧ
	5.4. # 16524.91	6.5.												
12	75	L)												
ет 	(3	Ü												
H				'n	10	œ	\mathbf{o}							
⊢				SELS	3 3 1 3	DELR	DELC							FFI
\supset				()	(.)	<i>C</i>)	C	U	()	Cr	\supset	>]₹	H

	α 11. α	A 18.04	8. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	בר פו היט	u m m m	O O M O U U I I	(1) (2) (3) (4) (4)	7 H 7 C C F F F F F F F F F F F F F F F F F	THRUST T L	LIFT HT
0613	-0.3509	-3.3957	-0.2297	-610.58	-8229.92	-741.79	c2*75-	-1819.53	-1.72	-69.31
DELS	10.0805	-0.0379	1.8772	86.8867	-100.72	-2.76	534.97	-416.52	-11.43	30.37
DELR	-0.2301	-1.8723	-0.1237	-323.64	-4975.93	-456.13	-20.71	-1179.10	-318,57	-104.32
DELC	0.9284	0.1844	0.4241	1127.10	495.13	-84.30	11.98	4030.15	194.34	89.21
0	0.3257	1.9522	-5.3195	-14152.33	5137.55	505.43	-1138.33	330.64	-155.04	07.78-
CI.	-0.2320	-5.5001	-1.8224	14845.40	-14617.46	-1050.97	-715.66	-1225.20	131.25	-933.56
'n	-0.0820	5.1974	4245-0-	-934.75	637.34	02.79	08.04-	-1434.34	494.05	22.75
7	0.0015	1010.	5.00e0	-15.37	71.77	0 .0 .0 .0	-2.17	20.62	3.52	3.04
>	0.0019	5.3197	10.0233	20"27-	23.	0 10 10 10	19.10	14.04	-15.51	13.64
3	0.3574	J. 2239	0.0465	73.70	63.15	-3.21	8.27	301.50	0.52	-13.69
147 147 147 147 147 147 147 147 147 147	-0.0337 0.62.	-0.0349	-9.0531	105.04	72.36-	8. 0.0	64.98	-2806.25	185.39	-2032-35

Chimanal Page 13 OF POOR QUALITY

3/16/84 0.0 xT	"	κ -	11 12 13 14 14 15 16 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	ASE RUN NC.	TRIM TAPE	Sea. No. = 0	PAGE
		.3 KT W 600.0 FT	3.3 KT TEMP= 59.0 06	xCG= -9.2	IN 2CG= 0.	.0 IN RMP= 113	32.7
4 N H H H H H H H H H H	65+C1	ე.ნევიე≝+ემ	0-300008+00	0.300006+00	nı.∨ı	OMEGA FR 0.275405+02	r
7-1 1-1 1-1	5E+33	0.403355+01	0.33300E+33	0.36600E+00	0.000005+00	DELC TO	. 00000E+
(L)	25+31	3.13755E+32	1xx 0.5520E+04	0.100005+05	0.37200=+05	1xZ 0.167005+04	21378E+
2 F	(11) (11) (11)	10+828204 °C	-0.10057E-01	LAMDA RR -0.47647E-01	MU FR 0.183475+00	3.19422E+00	MACH NO. 0.12149E+00
1115	20+33	0.212678+05	L HUB FR -0.13593E+04	-0.50617E+04	V TIP FR 0.73904E+03	0.100125-01	0.28738E+07
	0 + 0 + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10400F 4 3.29535E+33	-0.330%2+93	M HUB RR 0.27459=+03	V TTP RR 0.59919E+03	0.325305-02	0.108055+06
	10 10 10 10 10	3.29573-33	0.284125+01	A1 =3 -0.19346∈+01	-0.51164E+00	0.21267E+95	-0.92662E-02
	0 KI 1 1 KI	0,43 42 E-03	J.53234E+00	A1 98 0.10262E+01	-3.10242E+01	0.29334E+03	CMO RR . 57525E-0
HON	41. 11.71	0.135885t-04	-3.14243E+02	X/M 0.13349E+01	0.87022E+00	D FRHT 0.182435+01	0.18679E+01
et in ⊢ o	+33	7.35537E+03	0.76991E+03	V/M 0.59292E-02	-0.21422E+01	81CF 800 0.43849E+01	
<000 (±00)	1 1 10 10	0.16565E+35	-0.20153E+03	-0.32142E+02	0.300005+00	81CR BJD 0.00000E+00	THDR 800
ન⊪ ⊢-	=== =================================	0.41027ET34	6.41305E+C4	-0.14412E-03	-0.93745E+03	-0.30190E+03	0 E + 0
et (1) F (2)		3.13°52≅+?\$	-C.9104##-04	0.35515E-04	MH8F 805 -0.51473E+34	MH6R 800 0.306109+03	0.300000+00
F2 111	# 	N = R7T 0.206315+25	Z = 1	3.75716E-34	41FR 800 -0-193688+71	0.11228E+01	0.00000E+00
0	↓ > !!!	3-417734-01	-0.570115+01	-0.230216+02	-0.37155E+00	31RF 300 -0.91719£+00	0.300005+90
		0 4 80 80 80 80	0.0000000000	0.33653€+93	HER 300Y -0.490038+03	0.14243E+02	LF.4 0.16608E+05
	() () *	3.303.33.430	0. 34 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	-5.23571E+02	-0.353375=+03	-3.10266E+02	0.33978E+03
		3.19700E+32	TTWPR 50+379471-0-	0.44 0.000 0.000 0.000 0.000 0.000	9 40 MEN 0 00000000000000000000000000000000000	A 1000 -3.71000	IC 9 R 1715 F + 71

S														
u)														
>		S.												
+4	j	930		4	2	L/V	2	2	1	25	-# (A)	60	27	49
⊢	_	~	£/7	6.	-	-	ò	'n	5	i)	-	ñ	60	7
e v i r v i	00.000	29.00	77	7269-7	0.9133	3.4155	-8.4012	-1-2370	-0.0124	2.5002	0.2154	-0.0309	-0.6827	7970-0-
>	္ခဲ့	o.		7	0	•••	ĩ	ì	Ť	•	_	1	ĭ	ĩ
н	0	V												
œ				_		_	_				_	α,	٥.	_
U I	п	17	_	-0.0859	1.0085	-1.0639	0.3730	-2.5834	-1.0505	1.4493	-0.0040	-3.1119	0.0122	-0.2441
C	.•	<u>a</u>	¥ / ₩	8	Š	õ	17	Ň	Ü	3	J.	-	0	7
	ALT. =	TEMP #	_	ု	-	÷	Ö	2	7		9	?	O	9
_	-	_		•		•		•	·					
~														
		_		0	-	C.	60	00	90	7	2	12	53	82
1 D 8 F 8 C D	KTS	g G	¥ / ×	0.9510	-0.0351	0.5859	0.6733	-1.2183	1.4500	-0.4547	-0.0313	-0.0324	0.0453	-1.5587
2		•	×	ä	ì	-	ř			ċ	Ċ	ď		
	80.00	9		U	Ŧ		_	ì	,	ì	ì	Ĩ	-	ì
	- 3	00.00												
C	80	O			٠.		_		0.1	_	۲.	0	0.	0
z			7	0.0341	-5.3030	0.7126	-0.0139	-3.0297	-3.3152	-3.7151	-0.0017	0.0159	-0.0039	0.0439
⋖			Z Z I / N	C	3	7	5	زز	in		Ċ	ò	ò	ě
	"	#	ž	တ်	्	o.	Ċ	7	Ö	?	्र	O	Ç	0
-	∃. ∨∃L. =	#)/ k			•		•	•	•	•	•		•	
)	>	à												
STABILITY A			_	Ξ	in	-	٠ <u>٠</u>	61	0	5	0	5	<u>~</u>	ω 20
			M/IYY	-0.4301	0.0265	-0.0761	0.0951	0.2072	-1.4453	-2.1105	6400.0	0.0005	0.0081	-1.0783
-	10		<u> </u>	-		•	3		-	į.	`• C:	C)	5	-
u,	r. 5	2	2.	i	(,	ì	.,		ì	ì			•	1.
•1														
.	9	-9.20		_		~	. •			_	_	٨.		0.
S	•	o.	ž	-3.2396	1206	-0.9403	0.3464	-3.5577	-1.3559	0.5331	-5.0317	-0.0237	0.0257	-0.1679
	90	'	L/	i.i	į	76.	Ň	•	~	in	<u>_</u>	· :	?	-
	-		2	Ċ	÷	(,)	Ö	7	7	Ö	- 5	0	0	0
	11	11		•		•		•	·		٠	•		•
	S.M. = 16824.91	ر. ق.												
L/I														
•T	C)	Ü												
Ω ₩ ₩				wi.	'?	œ	ب							-
₽ -				5 E L 3	DELS	5-L3	DELC	a	٠,	~	_	>	7	IHI
2)				4,3		٠,	_,	.,		••		_	-	

ELB -0.4556 -5.1694 -0.3140 -334.51 -8425.34 -650.61 -50.42 -2535.27 6.14 -74.85		а п. я	A16088	516353	L +9 30F	H GCS SH	₩ 008 ×4H	YFR 900	THRUST E T	THRUST T L	LIST MT
-0.0831 -0.0376 1.3646 4955.59 -99.95 6.16 537.48 -427.34 -10.68 -0.5093 -1.976 -0.1751 -473.39 -5060.77 -402.98 -25.61 -1604.05 -903.52 -0.5093 -1.976 -0.1751 -473.39 -5060.77 -402.98 -25.61 -1604.05 -903.52 -0.03516 0.4275 1137.09 934.38 -117.64 -0.96 4424.91 210.53 -0.0250 1.9347 -5.2552 -13950.42 5125.20 653.50 -1162.53 593.40 -180.49 -0.092.0 1.9343 -4283.23 -14731.39 -998.74 -714.72 -1205.18 169.11 -1 -1.000.20 0.2146 -0.3543 -3850.59 123.94 -44.72 -1474.43 567.24 -14.72 44.50 7.14 -1.59 -0.065 3.43 -14.22 44.50 7.14 -1.59 -0.06 3.43 -14.22 44.50 7.14 -1.59 -0.05 3.43 -14.22 76.59 -8.92 5.10 330.24 1.52 -17.80 -0.062 0.000.20 -0.000	c r1	-3.4856			-334.51	-8423.34	-650.61	-50.42	-2535.27	6.14	-74.83
-0.5008 -1.9076 -0.1751 -4.73.39 -5069.77 -402.98 -25.61 -1604.05 -903.52 -50.9352 -	v)	-0.0881			4955.59	56.60-	6.16	537.48	-427.34	-10.68	52.40
0.9875 0.3516 0.4279 1127.09 934.38 -117.64 -0.96 4424.91 210.53	~	-0.5098			-473.30	-5069.77	-405.98	-25.61	-1634.05	-903.52	-140.90
6.03403 1.9347 -5.2550 -13950.42 5125.20 658.50 -1162.53 593.40 -180.400.2205 -5.5431 -1.2393 -4883.23 -14731.30 -998.74 -714.72 -1205.18 169.11 -1 -0.0920 6.2146 -0.3543 -350.59 933.95 123.94 -44.72 -1474.43 567.24 -0.0920 6.2146 -0.3543 -14.22 44.50 7.14 -1.59 -0.65 3.43 -0.0032 0.0159 -0.0054 -14.22 44.50 7.14 -1.59 -0.65 3.43 -0.0042 0.0250 6.0250 -55.07 37.00 1.69 -6.39 9.71 -17.80 -0.0523 0.0253 6.0250 -6.1524 -411.70 3.59 130.73 40.50 -2745.50 -179.65 -2	Ų.	0.9375	3.3516		1137.39	934,38	-117.54	-0.95		210.53	36.23
-5.5431 -1.5393 -4883.23 -14731.30 -998.74 -714.72 -1205.18 169.11 -1 0.2146 -0.3543 -350.59 933.95 123.94 -44.72 -1474.43 567.24 0.2163 -0.0054 -14.22 44.60 7.14 -1.59 -0.66 3.43 0.0159 -0.025 -5.02 37.00 1.69 -6.39 9.71 -17.80 0.0255 0.0252 0.0252 76.59 -8.92 5.10 330.24 1.52 0.0214 -0.1524 -431.70 3.69 130.73 40.50 -2745.50 -179.65 -2		6.2303	1.9343		-13983.42	5125.20	658.50	-1162.53		-180.49	-124.26
0.2146 -0.3543 -350.59 933.95 123.94 -44.72 -1474.43 567.24 0.0163 -0.0054 -14.22 44.60 7.14 -1.59 -0.66 3.43 0.0159 -0.0207 -55.07 37.00 1.69 -6.39 9.71 -17.80 0.0255 0.0355 96.22 70.59 -8.92 5.10 330.24 1.52 0.0014 -0.1524 -431.70 3.69 130.73 40.50 -2745.50 -179.65 -2		-0.2205	-5.5431		-4883.23	-14731.30	72.866-	-714.72	•	169.11	-1196.73
3.0163 -0.0054 -14.22 44.60 7.14 -1.59 -0.66 3.43 0.0139 -0.0207 -55.07 37.00 1.69 -6.39 9.71 -17.80 0.0255 0.0350 9.524 1.52 0.0214 -0.1524 -431.70 3.69 130.73 40.50 -2745.50 -179.65 -2		-0.3929	0.2146		-350.59	933.95	123.94	-44.72	·	567.24	55.86
0.0130 -0.0207 -55.07 37.00 1.69 -6.39 9.71 -17.80 0.0255 0.0255 96.22 76.59 -8.92 5.10 330.24 1.52 0.0014 -0.1524 -431.77 3.69 130.73 40.50 -2745.50 -179.65 -2		-3,3032			-14.22	65.25	7.14	-1.59	-0.66	3.43	10.36
0.0288 0.0362 06.22 76.59 -8.92 5.10 330.24 1.52 0.0014 -0.1624 -431.70 3.69 130.73 40.50 -2745.50 -179.65 -2		0.0012			-55.07	37.33	1.63	-5.39	9.71	-17.80	-9.43
5,3214 -3,1624 -431,77 3,69 130,73 40,50 -2745,50 -179,65 -		0.0623	0.0258	0.0362	26.22	76.59	-8.92	5.13	330-24	1.52	-11.50
	- MINUS 10 10 10 11	133.	5.331	-3.1524	-431.79	3.69	130.73	05.04	-2745.50	-179.65	-2737.68

	-																				
	DASE		5.1	0.127125+03	0.30000E+30	0.332945+02	MACH NC. 0.151628400	0.29738£+07	5.108055+36	-0.93573E-02	-0.65314E-02	0.19400E+01	THOF 800	THD2 800 0.19264E+02	0.30000£+30	0.000005+33	0.30300E+30	3.303305+10	0.167385+05	0-78543E403	51C38 0.91781E+00
	E2. NJ. # 0		0 IN 2HP = 130	2483A FR 0.27540E+02	0.303305+30	0.167005+04	MU 23 0.24208E+00	0.100255-01	0.646.40	0.246755+05	2.301015+03	0.182825+01	81CF 830 0.58589E+01	81C2 300 0.000005+30	LHBR 805 -0.39948E+03	MHBR BOD 0.38630E+03	A1RP 300 0.14264E+01	-3.122275+21	184 800X 0.204305402.0	-0.1°567€402	-0.941155+00
	TRIM TAPE S		IN 208= 0.	ROE 0.232535-02	0.30033E+30	0.37200E+05	MU FR 0.228915+00	V TIP FR C.73904E+63	0.69919E+33	-0.50779E+00	-0.13108E+01	0.86559E+00	-0.21918E+01	0.000005+00	LH3F 800 -0.12114E+34	-0.73826E+04	-0.27773.5+01	91FR 930 -0.455925+33	### B00% ### 817758#03	-0.404555+03	0.930005+30
A	ASE RUN NO. =		xc6= -9.2	0.300005+00	0.30000E+00	IYY 0.40000E+95	-0.44857E-01	-0.73049E+04	36002E+33	41 FR -0.27486E+01	0.13441E+01	0.90035E+00	0.58773E-02	-0.32157E+02	-0.13827E-03	-0.41046E-05	0.78965E-04	#1HT #0.18682E+02	V.*V. 0.30000000000000000000000000000000000	-0.19826E+02	AIC MER C.300005+00
TRIAO	FLIGHT NO. = 8	2.8 KT	≣MP= \$9.0 DG	0_00000E+00	0.000005+00	1xx 0.56290E+04	LAMDA FR -0.19394E-31	-0.16153E+04	-0.423775+63	A0 FR 0.26195E+01	A3 P2 0.63935E+00	-0.20510E+02	V R R R T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-0.35623E+03	L R ROT 0.49075E+04	-0-11049E+35	-0.28333E+05	-0.37255E+01	AT 494 0.33000E+00	3.000000+00	TTWRR -0.179975+02
4C0-HU		5.5 KT KI	500.0 FT T	3.500005+90	0.437925+01	14513 TR 0.183175+02	101010 HT	10RCUE F 3.24075E+05	T2820 5.53122E+03	0.319975-03	0.50653E-33	X = ROT 0.149335+04	-0.40456E+03	-0.16702E+05	-0.47949E+04	0.10872E+05	N = RCT 3.239315+05	0.31505E+01		3.00003e+00	-3.19700E+02
	3/15/34	G.3 KT V≖	= 203.0 H=	-0.31506E+01	05L2 PLT -0.149455+00	0.57205E+01	0.14363E+31	-0.43787E+03	-0.153518+32	-3.152375-33	-0.183318+03	-0.14646+02	-0.23059E+03	J. 200005 + 10	-0.5345JE+J3	0.33930E+02	2.6555555 404985855645	58TA VT -0.315C08+01	10 10 10 10 10 10 10 10 10 10 10 10 10 1	-0+27575+0+	0.25421E-01
	3:9	ג אד ע= 13¢.	24.0 Las RPM	0.30000E+03	-3.35540E+30	+0.25105E+01	3.13751 -C	-0.59438E+75	2.1924aL 9	-3.20072E-33	0.175258-03	-3.91630E+31	0.000000to	2.13155E+55	0.30333£+3c	0.516335+3.	0.0000 TEMPO	3514 17 315062+01	F + 0	-J.14536#+03	0.19148E-31
	TEACHBREE	VT07= 139	G.¥. = 103	1487A	3-14300E+01	THETE #8	0.02083E-01	748UST F 0.16757E+05	0 + 11 × 10 × 10 × 10 × 10 × 10 × 10 × 1	0.03.108-02	3.91565E-02	-0.97313E+03	-0.28488E+03	0.58127E+02	0.421095+03	-0.50211E+04	40+868454.0+	5.53.50 6.0 5.53.50 6.0 5.03.00 1.00	0 + 1	0.152198+02	1 3 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

ORIGINAL FACT IS OF POOR QUALITY

'n													
> + +	n - 1 0 ii 0 ii		ı,		'n	٥	o.	ın	~	m	~	m	
⊢		E /	6.0814	1.0413	4.2553	-8.9236	-1.8369	-0.5135	2.6887	0.0133	-0.0327	-0.7303	-1.8337
ব	59.30	,	, ,		7	8.			5.6	0.0	.0	7.0	
>	600.30 59.30					1	ì	ï	-	Ŭ	ì	ì	ì
nc	•												
11)	11: 11	•	5.	1.0100	90	5	9	2	40	3.0	20	30	62
ລ	ALT. =	× ×	-3.0553	်.	-1.733 <u>0</u>	0.3701	-2.5601	-1.0239	1.5764	-3.0939	-0.1320	0.0084	-0.3362
_	A L		ဂ	-	7	O	2	7	-	P	Ŷ	ò	ŕ
O													
n⁄			m	O.	O	0.	4	(C)		c)	ru.	ın	œ
F Z	X T X		0.6903	-3.073c	0.4753	0.7219	-1.1024	1.3379	-0.5494	-0.0410	0.0022	3.03e5	-0.31%3
د ۲		×	6	Ö	ં	C	÷	_	()	Ö	C	6	
ပ	100.00			'			1		1	'			1
O	000												
2 व	-	"	0.0372	0.0010	3.77.57	-0.0247	-3-3434	5678.5-	-3.8135	-5.0011	7.5	-0.0033	0.3722
	#	221/N	Ċ	j	,~	C .1	à	m	ŵ	ز ،	0.3176	8	5
>	V = #	7.	O	Θ	′)	0	7	P	7	.,	0	Ö	0
⊁ ⊏ =) ix												
		_	<u></u>	ru •	o	^	0.	in.	e)	7	10	.†	-
٠. ت		"/ <u>:</u> Y Y	-ن. ودع5	3,3442	-0.0910	9.1217	0.1633	-1.6205	5480.0-	2.0037	-2.0013	1000.0	-2.6621
a.	L3 S	•	ج.	Ö	Ç.	C ³	Ö	_	c.	c i		Ö	2 .
<1			•		•			'	•		'		'
F-	24.91				_				_				
	1.0	×.	-0.2276	1.4310	-1.3151	3.3434	-3.7391	-1.35.1-	0 7 2 9 7 0	\$300.5-	0 1 0	3+92+4	-0.2038
	5 5	X			•	10	ř.	**)	•		1.3	C.)	Ċ
	и и		*		ī	,	ï	ī	-	7	?	۲)	Ü
(Z1	G+M+ = 15324.91												
er.	3 C												
j													
+ -			りきしょ	SELS	9.13	381.0							<u>-</u>
⊃			Çì	5	Ö	'n	n	• •	œ	∋	>	*	E E

	n. U. U	4150F9	915078	E E E E E E E E E E E E E E E E E E E	I U.O.B. MTV.	4FR 8GD	Y 5 8 8 8 0 0	THEUST F	THRUST T	LIFT HT
40 11 11 (1)	-0.5273	-3.2579	10.3830	-1017.77	-₹653.38	-541.04	-35.51	-3285.06	6.77	00-78-
י ען ט ען ט ען	10.0906	-0.0310	1.8672	4962.36	-82.30	14.70	540.34	-471.75	-14.86	74.82
1 01 1 11 1 21	-0.3970		'	-579.70	-5212.37	-341.48	-15.83	-2064.05	-901.54	-193.12
) C	1,0332			1183.32	1451.16	-123.58	-17.77	4708.18	227.93	53.67
: : : a	0.1327	1.9505	45.1304	-13732.37	5202.32	637.38	-1111.17	372.31	-215.26	-173.49
	-0.2193		-1.3315	-4367.53	-14334.18	-343.23	-710.87	-1238.29	184.56	-1475-43
' re	-0.1130		-0.3505	C430.40	1212.91	155.42	-35.05	-1550.94	613.91	68.0
. 1	- 200 ± 0+			-10.00	45.08	3.11	-0.72	-12.50	3.22	0
. >	0		40.60.0	154.10	30.36	96.0	-7.05	9.10	-19.31	-12.5
	0.00		0.0355	15.501	\$6.00	-12.97	17.2	349.03	2.30	-13.5
다 () () () () ()			-0-1724	Ç [* Q ⊬ ₹ 1	482,20	210.20	0.00 1.4	-2300.11	26"272-	-3703.8
п п п къто										

	PAGE		5.9	O.12712E+03	0.00000E+00	0.47995E+02	0.18204E+00	0.28738E+07	0.10805E+06	-0.94002E-02	-0.79154E-02	0.19060E+01	THOF 800 0.21913E+02	1H08 B00 0.20126E+02	0.00000E+00	0.0000E+00	0.00000E+00	0.500000+00	0.16919E+05	0.13245E+04	0.12340E+01
	EQ. NC.= 0		0 IN RHP# 1573.	0.27540E+02	0.00000E+00	0.15700E+04	MU 48 0.29059E+00	0.15546E-01	0.35066E-02	0.29862E+05	0.33964E+03	0_FRHT 0_12565E+01	BICF 830 0.63340E+01	0.0000000000000000000000000000000000000	LH3R BDD -0.52379E+03	MHSR 500 0.533335+03	A188 800 0.196855+01	-3.162895+01	H42 300Y	-0.32926E+32	-0.12954E+01
	TRIM TAPE S		IN 2CG= 0.	0.232586-02	0.000005+00	0.372005+05	MU F3 0.27404E+00	V TIP FR 0.73904E+03	V TIP RR 0.69919E+03	-0.74201E+33	-0.17623E+31	0.87719E+00	-0.22890E+01	0.000005 0.00000 0.00000	LH3F 800 -0.16637E+04	MH8F 800 -0.53771E+34	-0.23995E+01	81F7 305 -0.52593E+00	-0.38723E+03	YFR 300Y -0.46635E+03	0.00000E+00
ATA	ASE RUN NO. =		XCG= -9.2	0.00000€+00	0.35050E+30	0.400000+05	LAMDA R9 -0.48348E-01	M HUB F9 -0.62336E+04	M HUB RR 0.496038+03	-0.23662E+01	0.185015+01	-0-35477E+00	Y/M 0.58838E-02	-0.32168E+02	-0.12764E-03	-0.23233E-04	0.70985E-04	-0.16110E+02	G. OGGOOE+30	-0.15451E+02	O.OOOOOE+DO
TRIM D	FLIGHT NO. = B	-1.3 KT	EMP= 59.0 0€	0.000005+00	0.00000E+00	0.56290=+34	-C.29044E-01,	-0.10723E+04	-C.55977E+03	0.261908+01	0.32295E+00	-0.31700E+02	V R. ROT 0.11448E+04	-0.45227E+03	0.60447E+04	-3.13938E+05	-3.347765+05	-5.45015E+01	0.503035+CO	37W2R 0.30000E+00	TTWRR-0.179975+62
403-HU		S. 9 KT	600.0 FT Ti	0.500000+30	0.50092E+01	195535+62 0.195535+62	CO+SECTONI CH CIONI	1389UE F 0.29862E+05	104300 8 0 0.349658+03	0.387235-05	0.571535-03	X F.RUT 0.127515+04	-0.46635E+03	-0.169348+05	-0.58693E+04	M F.RCT	0.239983105	0.27594E+01	0.37330E+33	0.30000±00	TTWER 107355+32
	3/15/34	6.3 KT V=	= 203.0 H=	-0.27340E+01	-0.123455+00	31056 0.52651E+21	CHESSOALS	SICE E -0.	-c.330575+02	-0.16354E-03	CY RR -0.37445E-03	-0.23180E+32	-0.31350E+03	o.JovoTAIL	-0.72661E+03	0.53723E+32	N V.TAIL 0.897935+04	-0.27340E+01	-0.03023E+90	-0.251795+50	0.24322E-01
	8:12	.3 KT U= 12	4.9 LBS RPM	0.00000E+00	-3.412655+03	-J.25969E+01	SIGMA R2 0.18751E+00	-0.36405E+03	NGRMAL R 3.293256+02	-J.12658E-J3	CH RR 0.27141E-03	-0.63665E+01	0.00000E+00	Z H.TAIL 0.33588=+35	O. BOSOSETSO	0.95461E+34	0.000000 + JU	3.27343E+31	-J.413125+91	-0.21835E+90	0.23937E-01
	TIME-DAT:	VT3T= 120,	G.W.= 1582	THETA -0.63023E+00	0.15116E+01	1HET0 FR 0.21913E+02	SIGMA F2 0.42083E-01	0.16977E+05	THRUST R 0.12504E+04	GT FR-02	0.11388E-01	-0.13994E+04	-0.36176E+03	2 FUSE 0.22651E+03	0.54949E+03	-0.91494E+04	-0.303675+0+	9574 FS 0.27340E+01	-3.275845+01	0.36311E+01	-0.75711E+01

ω 														
>		DEG												
н	Ħ	0		05	75	5	70	29	25	34	7.2	7.5	72	07
⊢ ⊲	00.000	00	Z / M	7.5805	1.2675	5.1973	7677-6-	-2.2662	-0.5326	3.1334	0.0272	-0.0342	-0.7672	-2.0607
>	0	59.00		~	•	'n	٠ ١	-2	0	M	Ö	0	Ö	-2
н	9	v 1												
m «	п	н		6,9	£	4.5	5.2	7 2	22	2.2	22	16	F	89
0	ALT. =	TEMP =	¥ / H	-0.0169	1.0381	-1.8945	0.3875	-2.4034	-0.9672	1.9175	-0.0022	-0.1516	2,00.0	-0.2889
_	AL 1	¥.	_	0	÷	÷.	o	-2	0	÷	ှဲ	ç	ö	o
n														
or L		_		o	_	0	4	2	2	2	0	25	80	=
2	120.00 KTS	T.	£/X	0.4840	0.0711	0.3879	0.5054	-1.0612	0.9722	-0.5742	0,0460	0.0032	0.0528	-0.9091
C)	0		×	o	0	o	°.	-	Ċ	ç	0	Ċ	ö	ė
U	0.0	00.0												
0	120	_		ĸ	ľ	4	2	ю	Ļ	v)	μī	'n	٨.	2
∠ ∢			N/122	0.0135	3.0015	3.8174	-0.0172	-0.3663	357	914	-0.0013	0.0125	0.0067	0.0312
> -	V=t. =	П	ž	Ö	'n	Ċ	٠.	ģ	-0.3577	-0.9146	0	Ö	Ö.	ö
-	/E.L	#/C =							•	•				
H		•		4	וע	-	m	o	2	Di	()	O	5	0
J H			4/:/4	-3.4734	9.0542	-2.1081	3.1243	0.1705	-1.7512	-0.0752	0.0313	-0.0040	0.0395	-3.2630
rΩ	.35	2	7	င့်	ç.	ç	Ċ	Ö	-	.0	c.	c	ö	ĸ
41 L.	_			•		·			·	·				•
is.	. 91	-9.20		D)	O	c	40	_	ra	4	,	٠,	~	-
	324	Ç	L/IXX	5.2382	1.4350	-1.0759	3.3665	-3.5401	-1.3042	3.7174	0.0007	-3-0324	0.0227	-0.1851
	4		۲.		÷	-	ċ	'n	-	Ċ	Ċ	7	Ġ	Ċ
	11	19		Ċ		•						•		•
n	5.W. = 16824.91 L3S	ا ن ن												
r1 ►	()	Ċ,												
UTTES STABILITY AND CONTROL DERIVATIVES				351.5	DELS	SEL3	DEC							F
⊃				Ö	0	C	Ö	n	C)	Œ	⊃	>	3	HH

	, i	1. 0		יטפ פרו	ב ב ב ב ב ב ב ב ב ב ב ב ב ב ב ב ב ב ב		ם ח ת ג	-		LIFT HT
EL B	-0.7799	-3.4033	-0.4656	-1237.35	75"7706-	-478.54	-10.92	-4388.60	9.15	-85.56
ELS	-0.1160	-0.0535	1.8525	4923.46	-142.28	9.25	556.51	-570.14	-14.63	95.87
813	-0-4926	-2.0538	-0.2685	-713.64	-5453.30	-311.48	-3.50	-2566.75	-1067.40	-236.33
ELC	1. 3687	0.7371	€767*0	1313.01	1959.00	-58.92	-29.19	4948.23	251.79	29.99
	0.1655	1.9500	-5.1023	-13575.34	5162.11	031.38	-1005.82	1055.41	-233.82	-196.94
	-0.2518	-5.6808	-1.3223	-4344.36	-15007_79	-631.62	-700.03	-1439.92	202.91	-1663.30
	-0.1627	0.2360	-0.3632	-823.13	1079.06	146.97	-13.39	-1759.43	661.39	146.96
	-0.0075	0.0105	-0.0030	-7.37	44.06	3.28	90.0	-14.33	3,33	2.25
	0.0003	5.0091	-6.0213	-50.55	24.28	0.50	-7.93	2.75	-21.14	-16.18
	0.3685	3.3433	0.0409	103.03	115.17	-11.42	-0.36	360.86	3.16	-15.25
EASTO TE	. UZERO 140.	-0.0194	-0.2085	-554.03	-51.49	173.25	72.21	-3482.85	-240.98	-4594.86

	-																				
,	9 4 G		۳.	0.12712E+03	0.0000E+00	0.65695E+02	0.21298E+00	0.28738E+07	0.108056+06	-0.98211E-02	-0.10173E-01	0.19242E+01	1HOF 800 0.23494E+02	THOR 800 0.21545 E+02	0.000006+00	0.00000000	0.000005+00	0.000000000	0.17352E+05	0.18640E+04	91C98 0.16838E+01
	0 H.CN .C		IN RHP= 1934	0.27540E+02	0.000005+00	0.18700E+04	MU RR 0.33978E+00	0.10092E-01	DFLTA RQ 0.88933E-02	0.36752E+05	0.40425+03	0.19412E+01	BICF 800 0.68829E+01	0.00000E+00	LHBR 900 -0.67479E+03	MHBR 800 0.75035E+03	A1RP 800	8142 30D -0_214495+01	0.51545E+02	-0.57149E+02	-0.13049E+01
	TRIM TAPE SE		IN 2CG= 0.0	0.23258E-02	0.30000E+00	0.37200E+05	MU FR 0.31884E+00	V TIP FR 0.73904E+03	V TIP RR 0.59919E+03	-0.85523E+00	-0.240475+01	0.89747E+00	-0.24945E+01	0.50000E+00	-0.23319E+04	MHSF 800-	A1FR 800 -0.167325+01	81F2 805 -0_87741E+00	HFR 305Y -0.51314E+01	YER BODY -0.536045+03	31C 48F
4 ⊢ 4	SE RUN NO. =		XCG= -9.2 I	0.000000+00	0.00000E+00	0.100005+05	LAMDA R3 -0.56656E-01	+0.43454E+04	0.691725+03	-0.16351E+01	0.25776E+31	-0.197975+01	0.58659E-02	-0.32109E+02	-0.13346E-03	-0.18028E-03	N/IZZ 0.693045-04	-0.147425+02	0.350506+30	WIRE -0.13653E+02	AIC MEF
Σ Η Ν Η Η	A8 H.CW THOLLA	-8.6 KT	EMP# 59.3 06	0.30000E+00	0.3030aE+03	1xx 0.56290E+04	-3.46796E-01	-0.253875+04	L HUS RR -J.74493E+03	0.267515+01	0.10703=+01	-0.51545E+02	0.14320E+04	-0.53273E+03	0.75217E+04	-0.17336E+05	N 8.80T	-0.55353E+01	0.00000±+00	37W38 0.30030E+00	17W88 -0.179975+02
405-MU		6.5 KT WE	600.0 FT TE	0.000000+00	0.50950E+01	THET3 TA	INCTD HT 0.55240E+00	1389UF = 0.36762E+05	1080UE 8 0.404626+03	0.47070-13	0.630538-03	9192	Y F.R	2 F 39	-0.72919E+04	0.18236F+05	N F.ROT 0.357326+05	3.25310E+01	3.30000E+00	8+45000 CC	17458 -0.19700E+02
	3/15/84	3.0 KT V=	= 263.0 H=	PSI -0.257362+01	0862 Pt	3.00 R	32842 F	STCE F -0.53569E+03	10.01 01 01 01 01 01 01	-5.12041E-73)!C	X V TAIL	Y V TAIL 41957545	2 V TAIL 300000 +50	67215E+5	M V. TAIL 749135+0	11 V.T	-0. 2522 VT	352502+		COVT 0.246528-01
	5:15	7 KT U≖ 14	MEN SET 6.7	40°	0515 PLT	ATCER - 281495+3	13751=+	NORMAL =	2022 4070 4070 4070 4070	C-388-38-3	74 98 42330E-0	1	Y H TAIL	1 4 T T T T T T T T T T T T T T T T T T	I BT T T T T T T T T T T T T T T T T T T	3	14 H C C C C C C C C C C C C C C C C C C	######################################	ALSE THE	35,44 39,64 13	.31079E-0
	TIME-DATE	vrct= 140.	10	1011 PAR 1011	10 11 11 11 11 11 11 11 11 11 11 11 11 1	1	2	1480ST	1	こうながんない	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- Xm - Xm - Da - Da - Da - Da	Y FUSE 277799E40	2 FUSE+1	7 FUSSE - 0	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 1 2 1 2 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3	11 12 12 12 12 12 12 12 12 12 12 12 12 1	100 HG:

⊢ ⊢ ⊃	α v	F 10	A F T	O ≈ 4 	α - - - - - - - - - - - - - - - - - - -	ж О П	UTTAS STABILITY AND CONTROL DERIVATIVES	
	3 (5	5.W. = 16324.91 L3S	Las	VEL. = 140.00 KTS	3.30 KTS	ALT. =	500.00 FT	
	± .0.0	9.20	N H	R/C = 0	0.00 FPM	H GWB+	59.00 053	
		L/IXX	MITYY	ZZI/N	W/X	¥./ >	Z / M	
DEL3		-3.2019	6567-0-	-0.0353	0.3056	0.0162	1760.6	
DELS		1.4431	3.0634	5,0013	-0.2560	1.0593	1.4533	
05L2		-1.1000	-0.1142	0.8331	0.3269	-1.9861	6.1761	
DEC		0.3533	0.1342	0.3175	6877.0	0.3898	00%0*6-	
۵		-3.4634	0.1916	-0.0737	-1.0740	-2.1825	-2.5717	
ď		-1.3148	-1.7769	-3.3469	0,1932	-6.9789	-3.3427	
α		3.7898	-0.0751	-1.0142	-0,5933	2.1197	3.5044	
ס		0.0036	5,0393	-0.3917	-0.0525	-0.0014	6.0195	
>		-0.0345	-0.0352	0.0193	0.033	-3.1724	-0.0392	
Ľ		0.0191	0.0117	-0.0026	0.0475	0.0000	-0.7972	
1 + 1		-0.2382	-3.5275	0.0291	-1.2136	-0.4007	-2.0672	

LIFT, HT	-81.82	113.44	-267.41	10.10	-193.44	-1745.28	174.94	2.16	-19.30	-15.88	-5113.82
THRUST I LIF	3.88	-20.21	-1144.14	268.73	-261.70	200-14	686.48	3.41	-22.37	3.5 =	-323.77
THRUST F T	-4892.40	-664.35	-3071.28	5176.05	1285.64	-1639.02	-1975.55	-8.95	8.40	370.70	-3969.19
YFR 330	5.07	577.82		-41.23	-359.15	-703.91	-1.91	86.0	07"6-	-3.15	84.37
	-434-45	79.0	76.762-	31.84	654.19	-321.51	134.62	8.53	0.32	-9.21	135.47
VAR 300 HFR 300	-9473.43	-192.51	-5738.33	2455.14	5214.91	-15393.28	915.10	75.27	21.79	135.52	-314.57
aCe erl	-1253.93	4593.20	-735.49	1373,35	-13329.53	-4319.70	-855.28	1.16	-51.71	110.39	-722.72
ر ا ا ا	72743-	1.3393	-6.2797	3.5167	-5.3034	-1.8133	-0.3909	7000 * 0	-0.3232	0.0417	7.5644
415.0F4	-3.5646	77.0.0-	-2.1592	9.57.5	1.9571	2702-5-	0.2253	3.3179	0.0082	0.0010	-3.1134
41 11 64	-0.9323	-3.1341	-0.5831	1,1302	0.2379	-3.2412	-0.2128	13.3073	(i) (i) (i)	5.3753	4000

OF POOR CHANGY

APPENDIX C

Appendix C contains the following pilot rating data arranged in primary and secondary matrices.

- C-1 Phase 1B/1C Primary Matrix for Acceleration/Deceleration Task-VMC
- C-3 Phase 1B/1C Primary Matrix for NOE Task VMC
- C-4 Phase 1B/1C Primary Matrix for NOE Task IMC
- C-5 Phase 1B/1C Primary Matrix for 30 Kt Slalom Task VMC
- C-6 Phase 1B/1C Primary Matrix for 30 Kt Slalom Task IMC
- C-7 Phase 1B/1C Primary Matrix for Bob-Up Task VMC
- C-8 Phase 1B/1C Primary Matrix for Bob-Up Task IMC
- C-9 Phase 1B/1C Secondary Matrices for 30-Kt Slalom Task (2+1+1)
- C-10 Phase 1B/1C Secondary Matrices for 30-Kt Slalom Task (3+1) Pedal
- C-11 Phase 1B/1C Secondary Matrices for 30-Kt Slalom Task (3+1) Collective
- C-12 Phase 1B/1C Secondary Matrices for 30-Kt Slalom Task (4+0) MSI-SS
- C-13 Phase 1B/1C Secondary Matrices For 30 Kt Slalom Task (4+0) MSI-SD2
- C-14 Phase 1B/1C Secondary Matrices for Bob-Up Task (2+1+1)
- C-15 Phase 1B/1C Secondary Matrices for Bob-Up Task -(3+1)
 Pedal
- C-16 Phase 1B/1C Secondary Matrices for Bob-Up Task -(3+1) Collective
- C-17 Phase 1B/1C Secondary Matrices for Bob-Up Task -(4+0) MSI-SS
- C-18 Phase 1B/1C Secondary Matrices for Bob-Up Task (4+0) MSI-SD2
- C-19 Phase 1B/1C Secondary Matrices for NOE Task -(2+1+1)

- C-20 Phase 1B/1C Secondary Matrices for NOE Task (3+1) Pedal
- C-21 Phase 1B/1C Secondary Matrices for NOE Task (3+1) Collective
- C-22 Phase 1B/1C Secondary Matrices for NOE Task (4+0) MSI-SS
- C-23 Phase 1B/1C Secondary Matrices for NOE Task (4+0) MSI-SD2
- C-24 Phase 1B/1C Secondary Matrices for Accel/Decel Task (2+1+1)
- C-25 Phase 1B/1C Secondary Matrices for Accel/Decel Task (3+1)
 Pedal
- C-26 Phase 1B/1C Secondary Matrices for Accel/Decel Task (3+1) Collective
- C-27 Phase 1B/1C Secondary Matrices for Accel/Decel Task (4+0) MSI-SS
- C-28 Phase 1B/1C Secondary Matrices for Accel/Decel Task (4+0) MSI-SD2
- C-29 Phase 2A Primary Matrix for Bob-Up Task (Old Shaping) VMC
- C-30 Phase 2A Primary Matrix for Precision Hover Task (Old Shaping) VMC
- C-31 Phase 2A Primary Matrix for NOE Task (Old Shaping) VMC
- C-32 Phase 2A Primary Matrix for NOE Task VMC
- C-33 Phase 2A Primary Matrix for NOE Task VMC
- C-34 Phase 2A Primary Matrix for Bob-Up Task VMC
- C-35 Phase 2A Primary Matrix for Bob-Up Task VMC
- C-36 Phase 2A Primary Matrix for Precision Hover Task VMC
- C-37 Phase 2A Primary Matrix for Precision Hover Task VMC
- C-38 Phase 2A Primary Matrix for 90-Kt Slalom Task TC On VMC
- C-39 Phase 2A Primary Matrix for 90-Kt Slalom Task TC Off VMC
- C-40 Phase 2A Primary Matrix for Decel in Turn, Left Turn -TC On VMC
- C-41 Phase 2A Primary Matrix for Decel in Turn, Left Turn -TC Off VMC

- C-42 Phase 2A Primary Matrix for Decel in Turn, Right Turn TC On VMC
- C-43 Phase 2A Primary Matrix for Decel in Turn, Right Turn -TC Off VMC
- C-44 Phase 2A Primary Matrix for Decel/Approach Task VMC
- C-45 Phase 2A Primary Matrix for 140-Kt Slalom Task TC On VMC
- C-46 Phase 2A Primary Matrix for 140 Kt Slalom Task TC Off VMC
- C-47 Phase 2A Secondary Matrices for Bob-Up Task (4+0) MSI-SD2
- C-48 Phase 2A Secondary Matrices for Bob-up Task (Old Shaping)
 (4-0) MSI-SD2
- C-49 Phase 2A Secondary Matrices for Bob-up Task (4+0) MSI-SD3
- C-50 Phase 2A Secondary Matrices for Bob-up Task (Old Shaping) (4+0) MSI-SD3
- C-51 Phase 2A Secondary Matrices for Bob-Up Task -(3+1) C MSI-SD3, MSI-SD2
- C-53 Phase 2A Secondary Matrices for Bob-Up Task (3+1) C MSI-SD3, MSI-SS
- C-54 Phase 2A Secondary Matrices for NOE Task -(4+0) MSI-SD2
- C-55 Phase 2A Secondary Matrices for NOE Task (Old Shaping) (4+0) MSI-SD2
- C-56 Phase 2A Secondary Matrices for NOE Task -(4+0) MSI-SD3
- C-57 Phase 2A Secondary Matrices for NOE Task (Old Shaping) (4+0) MSI-SD3
- C-58 Phase 2A Secondary Matrices for NOE Task -(3+1) C MSI-SD3, MSI-SD2
- C-59 Phase 2A Secondary Matrices for NOE Task (Old Shaping) (4+0) MSI-SD3, MSI-SD2
- C-60 Phase 2A Secondary Matrices for NOE Task -(3+1) C MSI-SD3, MSI-SS
- C-61 Phase 2A Secondary Matrices for NOE Task (2+1+1)
- C-62 Phase 2A Secondary Matrices for Precision Hover Task (4+0) MSI-SD2

- C-63 Phase 2A Secondary Matrices for Precision Hover (Old Shaping) (4+0) MSI-SD2
- C-64 Phase 2A Secondary Matrices for Precision Hover Task (4+0) MSI-SD3
- C-65 Phase 2A Secondary Matrices for Precision Hover Task (Old Shaping) (4+0) MSI-SD3
- C-66 Phase 2A Secondary Matrices for Precision Hover Task (3+1) C SMI-SD3, MSI-SD2
- C-67 Phase 2A Secondary Matrices for Precision Hover Task (Old Shaping) (3+1) C MSI-SD3, MSI-SD2
- C-68 Phase 2A Secondary Matrices for Precision Hover Task (3+1) C MSI-SD3, MSI-SS
- C-69 Phase 2B Primary Matrix for Precision Hover (Grip Comparison) VMC
- C-70 Phase 2B Primary Matrix for NOE Task (Grip Comparison)
 -VMC
- C-71 Phase 2B Primary Matrix for Bob-Up Task (Grip Comparison) VMC
- C-72 Phase 2B Primary Matrix for 90 Kt Slalom Task TC On VMC
- C-73 Phase 2B Primary Matrix for Bob-Up Task In Calm Air IMC
- C-74 Phase 2B Primary Matrix for Bob-Up Task IMC with Wind Shear and Turbulence
- C-75 Phase 2B Primary Matrix for Precision Hover Task In Calm Air IMC
- C-76 Phase 2B Primary Matrix for Precision Hover Task IMC with Wind Shear and Turbulence
- C-77 Phase 2B Primary Matrix for NOE Task IMC
- C-78 Phase 2B Primary Matrix for 30-Kt Slalom Task IMC
- C-79 Phase 2B Primary Matrix for 90-Kt Slalom Task IMC
- C-80 Phase 2B Primary Matrix for Straight Decel Task IMC
- C-81 Phase 2B Primary Matrix for Left Turning Decel to Hover Task IMC
- C-82 Phase 2B Primary Matrix for Right Turning Decel to Hover Task IMC

PHASE 1B/1C PRIMARY MATRICIES

OF POUR CHALITY

PHASE 1B/1C PRIMARY MATRIX FOR ACCELERATION/DECELERATION TASK

CMD/STAB	AC/RA	RA/AT	RA/AT	AT/AT	AT/LV
(4+0) MSI-SS	лет (10 дене) (A 5.33 5-6 5 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PEOT AVERAGE AAGGE POWTS A 6	PECT AVERAGE ANDE PONTS A 4 3-5 4 C 5.33 4-5 5 C 7.4.14 G551	74.07 AVERAGE PANNE POWES A 3 3-3 8 9 4.3 3-7 9 0 1.5 9 0 1.5 7 1 8 3.57 0 1.12 5
(4+0) MSI-SD2	7 7 X . 7.0	5.5 5-6 4 4 4 75 0 - 45	4.5 4-5 3 3 X 4.5 0.1.2	30mru	л 4, th 4-5 п 1, th 2-3 г 2,75 2,5-3 о 2,75 2,5-3 о 2,75 2,5-3 х 3,43 σ, 1,11
(3+1)C	5.5 5.5 × - 5.5	A A VERAGE ANDE PORTO C C D A X - C - C - C - C - C - C - C - C - C -	7 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PLOT AVERAGE RANGE POINTS A 3 1 C C C C C C C C C	PLOT AVERAGE PANGE POINTS A 2.5 1.5-2.5 2 B 7.5 2-3 2 C C C C C C C C C C C C C C C C C C
(3+1)P	5.5 5.5 7.5.5	4-5 4-5	RANGE	ламо <u>е</u>	7 3 8 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(3+1)P	2 S 1 S 5 S 7 X S 5 S 5 S 5 S 5 S 5 S 5 S 5 S 5 S 5 S	PLOT AVERAGE RANGE POINTY C 3 3 1 D 7.3.5 G. 707	A AVENAGE MANGE POWER C C C C C T T C C C C C C C C C C C C	7 2.5 1	PAGT VYGAGE RANGE POWTO 2.5 2.5 0 7.2.25 7.2.25 7.2.25 7.2.25

PHASE 1B/1C PRIMARY MATRIX FOR ACCELERATION/DECELERATION TASK IMC

CMD/STAB					
CONFIG	AC/RA	RA/AT	RA/LV	AT/AT	AT/LV
	PLOT AVERAGE RANGE POINTS	PROT AVERAGE BANGE POINTS	PEOT AVERAGE RANGE POINTS	PLOT AVERAGE RANGE PO	140E
(4+0)	. 7	A 5.5	- -	a 5 5 5 2 5 2 5 2 5 3.4 Z	5 5-5 5
MSI-SS	U a	U a	U a	· ·	٠,٠
	x . 7.0	x . 5, 5	x.6.0	× 4.25 0 . 957	x . 4.0 a. 1.15
	PROT AVERAGE HANGE POINTS	PLOT AVERAGE RANGE POWTS	PROT AVERAGE RANGE POWIS	PE.DT AVERAGE RANGE POWTS	PROT AVERAGE HANGE POWIS
	9	A 6.75 5.5-8 2	7 \$:\$ v	7-4 S A-7	A 5.25 4-7 4
(4+0)	• 0	73	• 0	1 th th-th 3	2 N-H 12 0
MSI-SD2		r		6 1.67 6.6	2 6 6 7 0
	0 7 · x	x . 5, 15 g . 2.02	x - 1, 5	x.4.17 g. 1.17	× .4.33 g. 1.32
	PLOT AVERAGE HANGE POINTS	PILOT AVERAGE RANGE POWTS	PALOT AVERAGE PANGE POINTS	PILOT AVERAGE RANGE POWIS	PILOT AVEHAGE RANGE POINTS
	, 6	2 2-7 5.9 v	4	Z 9-9 9 v	A 6 6-6 2
(3+1)P	1 (4	= 0	. .	m	-
		•			a
	× . 6.0	x.4.5 0.0	<u>π</u> . σ.	x.5 0.1.7	x . 5.3 0 . 1.15
	PROT AVERAGE BANGE DOMYS	PROT AVERAGE RANDE POINTS	PILOT AVERAGE RANGE POINTS	PILOT AVERAGE RANGE POINTS	PROT AVERAGE RANGE POWIS
	- - - -	, S ,	•	A 4.42 4-4.5 3	A 4.58 4-5 6
(3+1)C	a 0	 	• 0	- ·	· ·
		•	•		7
	x . 6. 0	T.4.5 0. 707	x . 0.	T. 4.06 0. TI	x . 4, 3 g70
	PALOT AVERAGE RANGE POMIS	PELOT AVERAGE RANGE POWTS	PROT AVERAGE RANGE POINTS	PLOT AVERAGE RANGE POMTS	PLOT AVERAGE RANGE POINTS
	, , ,	2 5.5-5.5 2	•	2 4-5 T	4.5
(2+1+1)		5 3	• 0	0 3 3-3 2	0 1 3-5 2
		o	a	a	a
	o'9 - <u>x</u>	x · 5.33 0 · , 2 \$	<u>π</u> . σ.	x-3.75 0157	₹.4.16 0 1.04

PHASE 1B/1C PRIMARY MATRIX FOR NOE TASK VMC

CMD/STAB CONFIG.	/	1	AC/RA	A			RA/AT	4T			RA,	RA/LV			ΑΊ	AT/AT			AT	AT/LV	
	12	PLOT AVER	AVERAGE RA	HANGE PO	POBOTS T	PLOT AVE	AVERAGE RANGE	Dana	POSTTS	PE.OT	PE.DT AVERAGE	RAMOE	Poert	10	AVERAGE	Torres.	9 6	Į,	AVERAGE	- nome	d of
(0+1/)	_		_	7-1		-	3	4.5-6.5	•		A 4	6-6.5	•	4	3.78	3	•	4	3	2.92	-
(0++)	_	_		-						•					•		~		2	<u> </u>	~
MS1-55	_	<i>-</i>			_										4	2.5-4	•	u	2.28		•
	_	- -	1 . K 7	9.5	-	- '			+	.	7,			•	_			•		_	_
	4				4	ŀ	107	o B	1		x -6.16	x - 6.10 0 · . 258			I - 4.0	0.1.10	٥		ī - 3.	X - 3.02 0782	25
	3	PLOT AVER	AVERAGE RA	RAMBIE PO	ST.	PR.OT AVE	AVERAGE RANGE	-	gE of	107	AVERABE	RAMOL	POST.	107	AVERAGE	30474	POWOT S	jo k		AVERABE RAMBE POWITS	
(0+0)	•				_	4	6.26	ļ	~	•	Ş		-	٠	3.78	7	~	٠	2.76	2	~
(0+4)					_	•	. 4			•	3		-	•	3		-		ŝ	7	•
MSI-SD2					_		 !						,	u	•		-	o	2		-
		-		-	+	-		-		•	•		-	•	•		-	٥	<u> </u>	Ţ	~
	4	ł		<i>و</i> . ه	+	1		0-1.22			X - 6.26	7-6.25 0.73			× - 4.2	0758			ī. 3	I - 3.38 0 - 383	
	To L	DT AVERAGE		BANGE PO	Promrs.	- 1	AVERAGE RA	RAJEGE	POWTS	PLOT	AVENABE NAMBE PORTS	RANGE	PORTS.	PLOT	AVERAGE	RAMAR	ON OF	ţ	AVERAGE	NAME.	₽
,	•	_	<u>-</u>	-		-	2	<u> </u>	•	•			-	•	ž	3	•	4	278	3	+
(3+1)P	• •	_	_				2.76	2.6-2	- •	• •				•	•		-	•	•	_	<u>-</u>
	٥				_	_								v •	N .	7	*	0 (5	<u>;</u>	~
	j	-	X . K. G.	0.1.78	-	-	¥ . 4 79 G. 1 4			_	-				_			•			
	ļ			ľ		ŀ		1	1				1		2 2 3	9 - 1.4			1 . 2.0	096	
	2	PLOT	AVERAGE RANGE	D.	POWITE PLOT	- 1	AVERAGE RANGE	-	POWTS	5	AVERAGE	BAMOZ	g E	PE.07	AVERAGE	PARGE	PORTS	70.07	PATHAGE	RANGE	o o
0/1.0/	•			-	_	<u>.</u>	4.87	į		٠	3	6.5-6.6	**	•	7	I	•	٠	2	2.5-3	۰
13+170	0				- v			•	۸ -	• (•	3.67	I	^	•	•	2	~
	_																		•		-
		- i	7.0			1	¥ -4.8 G	7		7				1	,						_
	ľ	8		-	ŧ.	ľ		ŀ	ł	ľ			ļ			, ,			x - 3.0	. 306 0417	4
		AVERAGE	30	-+	Poems PLOT	AVERAGE		HANDE.	POMETS	10.	AVERAGE	BANGE	POWETS	101	AVERAGE	Range Pourts	Powerts	į	AVERAGE	PLUT AVERAGE RANGE	POWTS
(0.111)	٠ .	3		6.6-7	_		P -	9-4-6		٠.				4		_	-	٠	2		-
(7+1+1)		4		_	_ 0	- ;	, ,]	- ,	• (• •	- ;		-	•			
	•				-					, .				ه د	Ş		-	0 a	22		-
		i i	x - 6.0 0.	Ø98		1	7-4.0 g.	000		1	\ :	٥.			X - 2.83	X - 2.83 G - 288			-		-
																			3		

PHASE 1B/1C PRIMARY MATRIX FOR NOE TASK IMC

OF POOR QUALITY

PHASE 18/1C PRIMARY MATRIX FOR 30-KT SLALOM TASK VMC

CMD/STAB	AC/RA	RA/AT	RA/LV	AT/AT	AT/LV
(4+0) MSI-SS	A 6 6-6 3 0	A 5.4 5-7 5 a 2.15 2.5-3 2 T.414 0.1.36	A 5.5 5-6 2 a 4 1 b 2 2 x 5.5 6.6 2 x 5.5 7-6 2 x 5.5 7-6 2	707 AVERAGE RANGE POWERS A 4,55 4-5 4 O 4,53 4-6 3 O 707 707	A 3.03 3-3 8 A 4.57 3-7 10 C 2 1 1 X 3.7fG- 1.29
(4+0) MSI-SD2	7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A 5 45.5.5 2 A 4,5 β 1 β 1 β 1 β 1 β 1 β 1 β 1 β 1 β 1 β	PROT AVERAGE RANGE POWETS A 6 B 5.5 3-4 2 C 5 T W.5 0-124	тот ауселав плива гонтта гон	A 3.5 3-4.5 3 1 2.58 2-3 2 3 3-3 2 0 3 3-3 2 0 3 3-3 2 0 3 3-3 2
(3+1)P	2 LOT AVERAGE RANGE POURTS 1	7 107 1 14.8 4,5-5 3 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	PAOT AVERAGE RANGE PORTS D T T T T T T T T T T T T T T T T T T	7.27 2.5-4.5 4 4 3.37 2.5-4.5 4 6 4 7 3.5-5-5-5 6 7 3.5-5-5-5 6	A 2.15 2.5-3 2 A 2.15 2.5-3 2 B 3 3-3 2 C 2 3 3-3 2
(3+1)C	PROT AVERAGE RANGE POUNTS A 7 C C D 7 T 7 T 7	A 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	FEOT AVERAGE RANGE POWES A & S. C. C. X. C. C.	PROT AVERAGE RANGE FONTS A 3 C 0 X 3.0 0.0	PROT VYENGE RANGE FORMS A 3 3-3 2 B 2 1 C 0 E 2 2.66 0 . 577
(2+1+1)	PLOT AVERAGE RANGE POORTS A 5 45-55 6 C 0 E 2 5.0 0 - 1447	7 4.5 4.5 4.5 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	A 5 1 1 1 1 1 1 1 1 1	Р 401 АКЕНДЕЕ В ВАНОВЕ РОМТЗ 1 3 3-3 3 2 1.64 1.5-2 3 2 7-2.3 σ75	2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

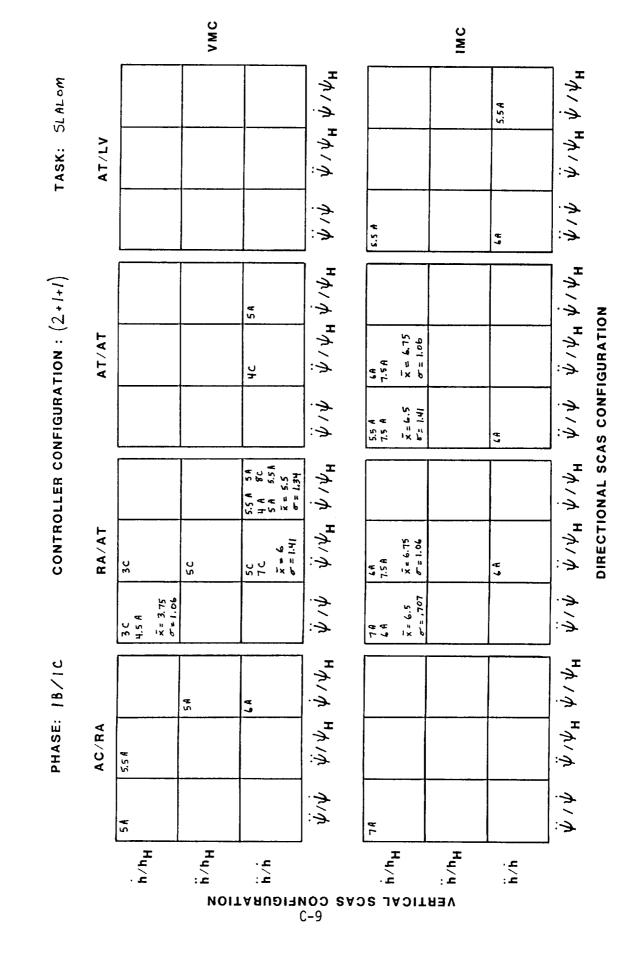
PHASE 1B/IC PRIMARY MATRIX FOR 30-KT SLALOM TASK IMC

AC/	KA			RA/	'AT			RA	/L۷			AT	/AT			AT	/LV	
MOT AVERAGE	RANGE	PONTB	P.E. 01	VERNOE	RANGE	NO POINTS	PALOT	AVERAGE	MANGE	NO POINTS	PROT	AVERAGE		NO. POINTS	PLOT	AVERAGE	BANGE	POINT3
5.8		~	٠.	٠,		~	<	9		_	•	4.625	4.5-5		٠.	4.5	5-4	7
			 • u				• 0	0		_	• 0	_	7-7		• 0	+	3-5	7
			۰				۵				۰				, .			
				× . 6.0				× . 7.0		,		x - 5.1	١١	375	1	× . 4.2		. 157
PROT AVERAGE	RANGE	POINTS	PROT		_	POINTS	FROT	AVERAGE		_	PILOT	AVERAGE	-	_	10.1	AVERAGE	RANGE	OM OF
7		_	4	5.75	8 - 53	7	<	7.5		-	٠	2	7	3-	<	1.1	3-5	7
					•	,	•	-		-	•	5.7	1-7	*	•	*		-
_					<u>.</u>	4	ه ه				.	~		-	U	^	3-3	ν,
			-		1							_			•	,	٠- ٩	~
		1	-					× . F. 2	5 0. 1.	26		x 5.1	14 g. 1.	36		× - 4.3	20.1.2	7
PLOT AVERAGE	RANGE	POINTS	10,1			POINTS	PILOT	AVERAGE		POWTS	TO.M.	AVERAGE	RANGE	NO. POINTS	PR.07	AVERAGE	RANGE	POWTS
٢		_	٠.		8	J	4				<	5.9	4.5-6	5	*	5.1		7
			• v				• 0				• 0	3 co		-	• .	-		-
			٥				٥				• •					2.67	2-3	3
¥.7,0				x - 1.25	012			Ĩ.	۵.			¥ . 6.1		63		19.5 ×	9-1.2	
MOT AVERAGE	RANGE	POINTS	PROT		-	POWTS	1074	AVERAGE	RANGE	POWTS	PILOT	AVERAGE			P4.01	AVERAGE	RANGE	MONTS.
-		_	•		5-55	7	٠				۲	4.42	4-5	•	4	*	3-4-5	9
			• 0	r.	-	_	• 0				• (5.5		-	-			
			٥	_		-					ه د				ه د	70		-
×.70				- 1	0.103			, ×	σ.	1	<u> </u>	¥.44	170.1	25		× . * .	9.5	.
LOT AVERAGE	_	POINTS	PROT	VERAGE	_	NO PORTS	1074	AVERAGE	MANGE	POWTS	PLOT	AVERAGE			PLOT	AVERAGE	RANGE	ON C
-		-	-	5.53	<u>-</u> ر	7	4				<	٦	44-5.5		<	7		-
		-	• (-	•				•		_					
			, a			_					v a	4:23				r	5-5	7
0.7.×			1	x . * 75		-		j.	6		1	¥ -4 6	9			¥. # G	- 5	
	AC/ 8 5 8 7 × - 8.5 × - 8.5 × - 7.0 × - 7.	7	# 4 C / RA 1	AC/RA WEALOR ALMOR PROT 1 T. 1.0 NEALOR ALMOR POWTS T. 1.0 NEALOR ALMOR POWTS T. 1.0 NEALOR ALMOR POWTS T. 1.0 NEALOR PANOR PROT 1 T. 1.0 NEALOR PANOR PROT 1 T. 1.0 NEALOR PANOR PROT 1 T. 1.0 NEALOR PANOR POWTS T. 1.0 NEALOR PANOR POWTS T. 1.0 NEALOR PANOR POWTS T. 1.0 NEALOR POWTS NEALOR POWTS T. 1.0 NEALOR POWTS T. 1.0 T. 1.0	# 5 NUTRIAGE NUTRI	AC/RA RA/AT RA/AT RA/AT RA/AT RA/AT RA/ENGE RANGE RA/ENGE RA/ENGE	AC/RA RA/AT RA/A	AC/RA RA/AT RA/A	AC/RA RA/AT RA/A	AC/RA RA/AT RA/A	AC/RA RA/AT RA/LV RA/L	RA/RA RA/AT RA/AT RA/LV RA/L	F F F F F F F F F F	Fig. Fig.	Net and Note Note	Facility 1968 Facility Fa	F F F F F F F F F F	Factor Action A

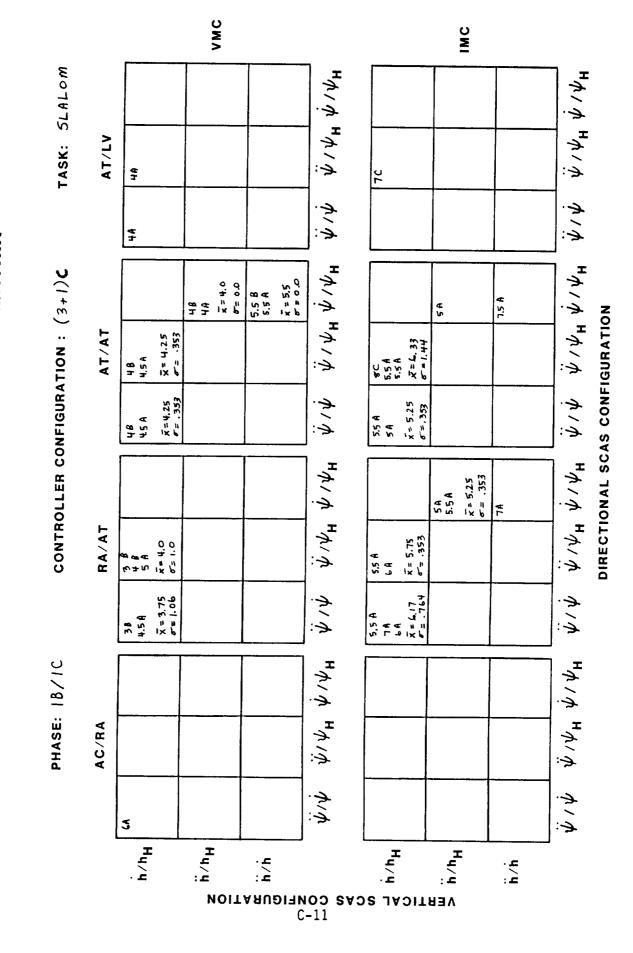
OF POOR QUALITY

PHASE 1B/1C PRIMARY MATRIX FOR BOB-UP TASK

LV/PH	10 on	PADT AVERAGE AVERAGE PARTY	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	Constant Service Constant Cons	Limited Briefler Co.
۲۸/۲۸	P.O. AVERAGE AAMED 100 P.O. C.O. C.O. C.O. C.O. C.O. C.O. C.O.	7. 0.	A. O. A. Frances Property	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1: Q.
AT/LV	And answer track rounts 1 5 5 4 4 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6	100 man 100 mm 1	A NEGAL BANK TOTAL	7.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	701 vietad avant rount 1
AT/AT	A 3 1-3 2 4-6 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	TOTAL STREET AND A	A 1.16 4-4.5 9	A A VIEGO Asset CONT.	1000 panet panet of o
RA/LV	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	The strain strain some strain some some some some some some some some	10 to	A STATE OF S
RA/AT	1 5.5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	102 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	\$ 8-5) C.S	100 100	5 h
AC/RA	74.07 recessed assess 7.000 g	7401 AVEST 10041	On the state of th	D	and the state of t
CMD/STAB CONFIG.	(4+0) MSI-SS	(4+0) MSI-SD2	(3+1)P	(3+1)0	(2+1+1)

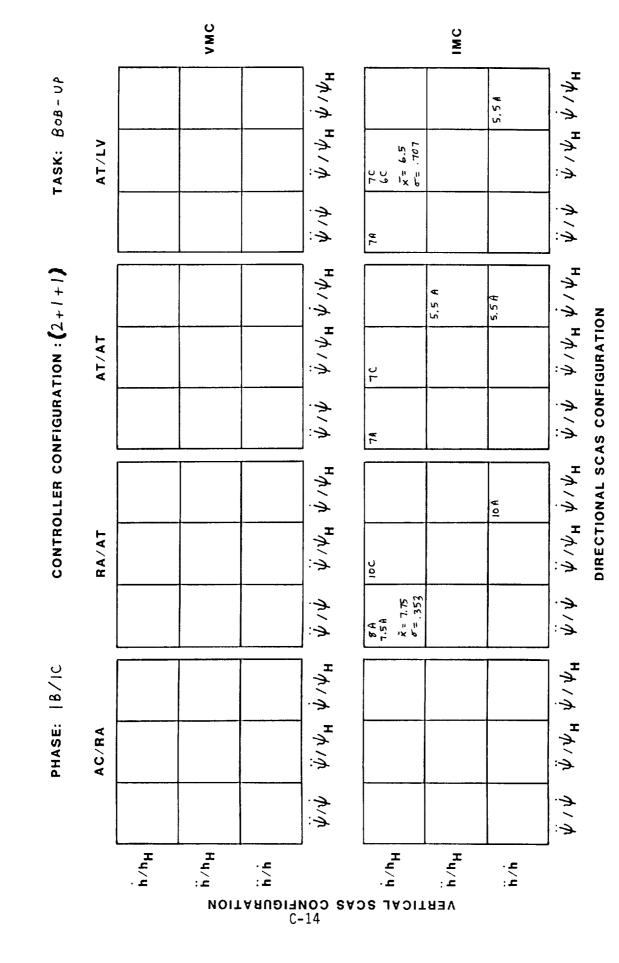

PHASE 1B/1C PRIMARY MATRIX FOR BOB-UP TASK

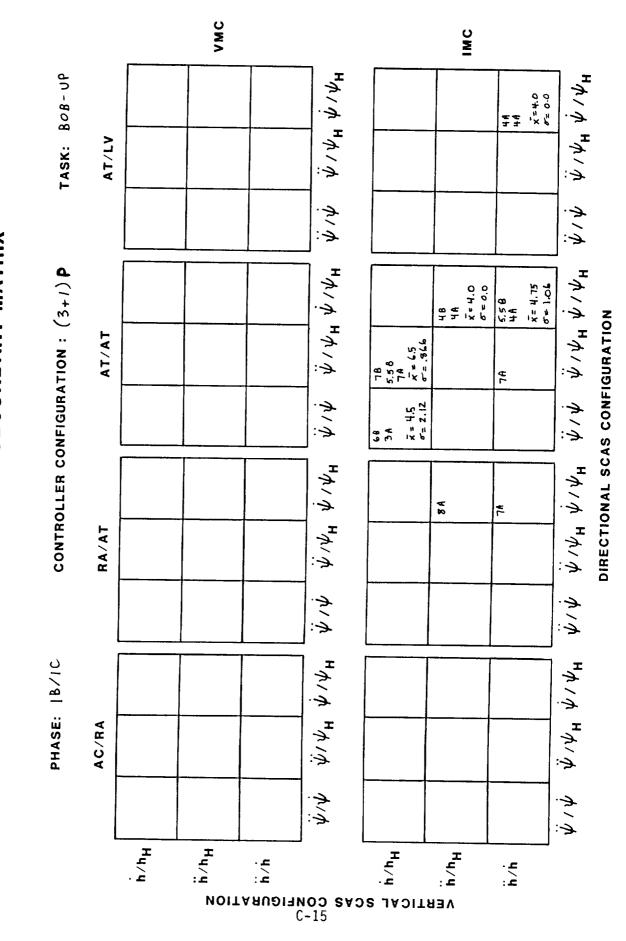
IMC

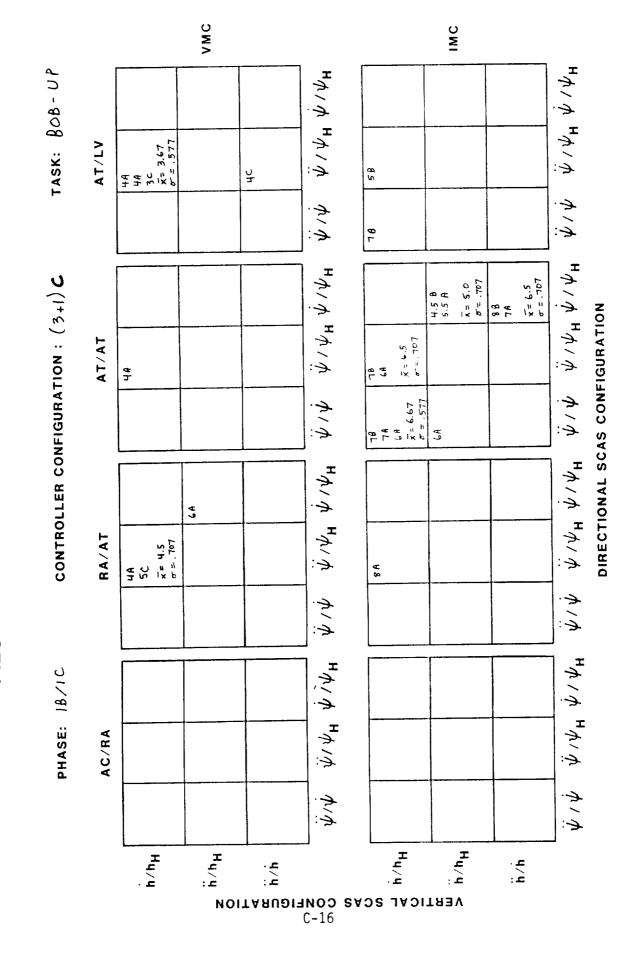

CMD/STAB								
CONFIG.	AC/RA	RA/AT	RA/LV	AT/AT	AT/LV	LV/LV	ГУ/РН	
	PROT AVERAGE WANDE PORTE	PA,OT AVERAGE RANGE POSTS	PLOT AVERAGE RANGE AGMES	PA,DT ATERAGE BANNOE POSTS	SIMON SERVE BEVERY JOTH	1014	PLOT AVERAGE RANGE POWER	-1
(4+0) MS1_SS	< m v c	1 . 0 .	- 5.5	· · · · ·	× • • •	3 3-3 2	***	
	x. 0.	1	1.15	i.6.0	x . 50 0 . 0	x . 3.5 0 . 16	x . 3.5 a . 707	
	PE.DY AVERAGE RANGE POWIS	PA.DT AVERAGE RANGE POSTS	PREST AVERAGE RANGE POUNTS	1074	4 1014	PR.OT AVERAGE RANGE POSITS	PEGT AVERAGE NANGE BORTS	.:1
(4+0)			1 2.5	E 5.4-4 5 4	A 5,24 4-8 7	7 - t	3.5 3-4 2	
MSI-SD2		0 0		6.5 6-7 2	5,33 8,45 9	0 6	v 6	
	Ξ. σ.	i.f.o		1.5.16 g. 1.12	I. 4.92 g. 1.22	i. 4.0 0.0	1.3.5 07	
	PLOT AVERAGE NAMES POSTS	PR.DT AVERAGE RANGE POWTS	STRON SPACE BANGS TO.PT	PR.DT AVERAGE BANGE POSTS	CON BENEFIT PRYECES AT 10 Tel	PALOT AVERAGE RANGE POWERS	PR.OT AYERASS RAMOS POSTS	, £3
(211)0	0	2 6.5 6.7 2		3.5 1-4.5 3	6 2,4-6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	3,125 2.5-4 4		
1/1.0/						u 0	U &	
	10.0	Tor 0 5.3. F		1. 21 099	ĭ · 3.1 σ · · 5.2	F. 2.9 074	ī. a.	7
	PE.DT AVERAGE RANGE PORTS	PLOT AVERAGE RAMBE POSTS	PLOT AVERAGE RAMME POSTS	PLOT AVTRACE PANCE POSITE	BINCH PERFET BOYULAY 10784	RIMOS 2000 BUNDAY LOTS	PLOT AVERAGE RANGE POSTS	
(311)		4 3.25 6-E 4		4 4,33 3-5 3	+ 5-€ +·€ ·	4 2.75 2.5-3 4		
7/1+6)		٠ ٠ ٥			 un #	ve	U a	
		725 0. 95	1. 0.	1.4.13 0.1.15	16 o 10. k . =	1.1.15 0 .191	k. 0.	
	CH BOWN SONERS TO SE	1074	PLOT AVERAGE NAMES POSITS	PLOT AVERAGE RANGE PORTS	BUTCH AVERAGE RABBEE POSSES	RAMON PONTY DESMAN 10 hd	Brand Abenda Anneste 10.00	,
	-		E	-	7	J		
(7+1+7)	• D &		• • •			m		
	0.7.1	1.667 a. 58		10. C.O 0 I	I.4.18 0. 47	1.3.5 0.701	x . 0 .	1
								ı

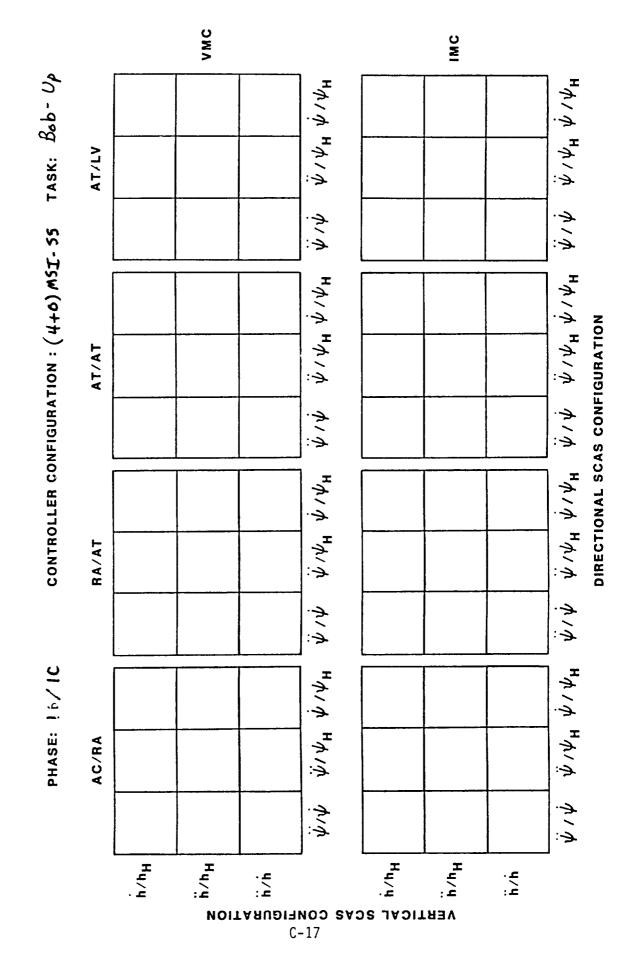
PHASE 1B/1C SECONDARY MATRICIES

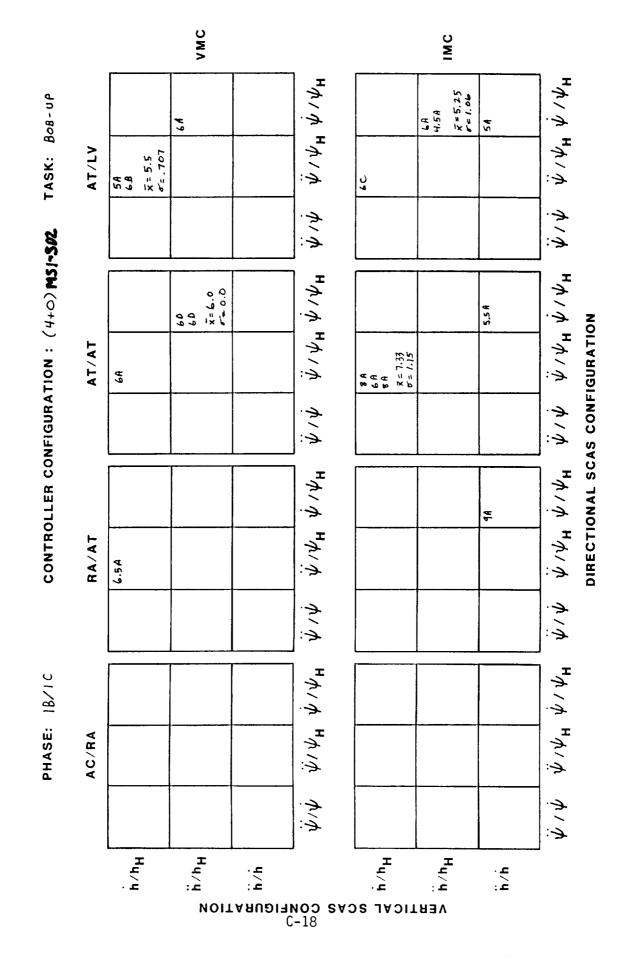
1		

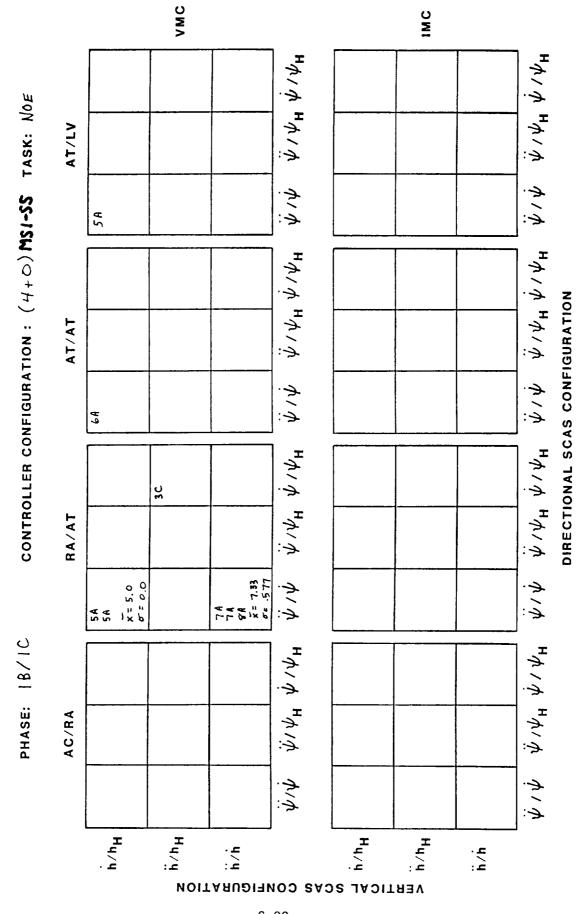



		₩ ^				I ₩ C		
			4.5 A 5 B X= 4.75 G=.353	ψ/ψ _H ψ/Ψ _H			7 A	414 414 414
AT/LV			6.4	414	A 7 1 X A 7 1 X A 7 1 X A 7 1 X A 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			4/4
				414				414
		A A A A A A A A A A A A A A A A A A A	6A 78 X = 6.5 0 = .707	4/4 4/4		8.5.8 A X 1.5.17 7.1.5.17 87:33	4 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	₩/¥ ₩/¥H
AT/AT	64 44 47 × × × 5.17 0=1.04		7.5 A	Ÿ / ¥H	Æ			
	4.5 A			414				414
		4.5 A 4 B X*4.25 0=0.353	4 9	4 / 4 H		A C	9 A 8 A X = X X = X X TOY TOY TOY TOY	414
RA/AT	5,54 A		£ .	414 414H	7.8			4/4. 4/4.
	6.A			4/4				4/4
			6 A	₩/₩				4/4
AC/RA			,	4/4 4/4				4/4. 4/4.
				4/4				4.4
	H _{q/q}	H ₁ /µ	. . . 	٢	H u/u	H 4/4	. t	_




		™				IMC		
				₩/4H 4/4H				de the de the de the
AT/LV	X = 6.5 0 = 3.53			414				10.11
93	X = X = Y = Y = Y = Y = Y = Y = Y = Y =			¥/¥				J
				₩/₩		:		1. 1. 1.
. \	7A 5A 5A X=6.0 07=1.0			4/4 4/4 4/4				T. A. Sant Ach
45	ል የ የ የ የ የ		7.4	414				
		-		4 / 4H				
RA/AT	58 58 57:5,75 50:2,99			414 414 W] ;
	5.5A 5.5A X= 5.25 0'= .353		6A 6A X= C.0 0-00	÷/÷]:
				₩/₩ H				
AC/RA				₩/4 4/4				
-	₹		AF X X X 0.0 u v P	¥/¥] :-
L	Н ч/ч	H 4 / 4		H 4/4	H 4/4	. t	-


		∨ M C				S ■		
		5.5A		₩/₩				₩/\ψH
AT/LV 3.8	5A 4C X= 4.0 7= 1.0			ψ/ψ Ψ/Ψ ψ/Ψ	44 4C 7 = 4,0			14.4 4.4 4.4 14.4 4.4
				4/4	9 XI 6 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			¥ / ¥
				₩/₩ ₩/₩			6 A	H4/4 H4/4
RA/AT AT/AT	5c ×= 4.75 √= .353				4.5 A 7.17.7 7.17.7 7.1.6.3 1.5.3			₩/₩
				¥ / ¥				4/4
				4/4 4/4			7.54	サング サング
RA/AT	58 X = 5.0 7 = 5.0			₩/₩	70 50 70 70 71 71 71 71 71 71 71			₩/\%
5.5A				\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	5.5 C 6.8 XI 5.75 78 .353			4/4
				₩/\\$H				₩/₩ ₩/₩
AC/RA				414 414				#/4 4/4
				4/4				414
L	H 4/4	H ₄ /4	. 4 . 4		H ₄ /4	. H 4/4	. ' ' ' '	

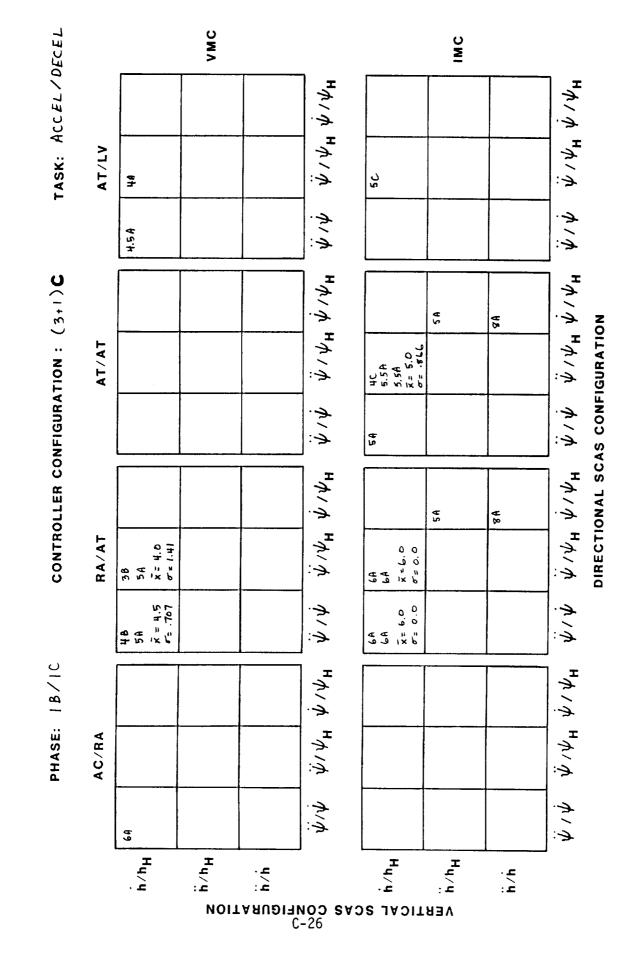

					Ο Ψ						S M		
NoE						4.5 A 5.5 A	X = 5.0	414 414H			9 c c c c c c c c c c c c c c c c c c c	4.5A 6A 5.5A 6A 7.5A 6A X= 5.9 8=1.08	414 414H
TASK: NOE	AI/LV							¥ / ¥		22			₩/₩ ₩/₩
		4,5 A	x=3.5			6A S.A	X= 5.5	414		£		6A 5A x= 5.5 v*.707	414
2+1+1)				5.0 0.0	x= 5.0 \(\sigma = 1.4	6A 5A	x = 5.5 or = .107	ザノケ サノゲ			æ	7.5 A 6.A X= 6.75 r= 1.06	4/4H
TION : (5A 4.5 C	χ= 4.75 σ= .353				-						₩/4H ₩/₩
CONTROLLER CONFIGURATION: $(2+l+l)$		4.5 A 3.C	x= 3.75			5.5A		414	823	, ,			¥1.4
OLLER CC		·				74 5.54 78 5.54	7 = 5.12 8 = .861	414 414H				€	4/4H
CONTRG RA/AT		φ. (n υ	x= 4.75					4/4 4	100				414 414H
	47.0		x= 4,25			¥ 9		¥14	6.8				414
18/10				5.5A 5.0	₹= 5.25 €= .353	6.5 A 6.4	x ₹ 5,13 € = ,353	₩/₩ ₩/₩					ゲ/ゲ _H
PHASE: AC/RA		5.C	x 5.5 0 = .707	<u>၁</u>		-		Ÿ.¥ ₩				:	414H 414H
	Ľ	. A	X 1 2.0					4/4					チィチ
		H _V / _H		z ñ/h _H		א א ט פּ י ב י ב	NFIG	00 sv		74211	# 4 2 4 4	 . 	
							C-1	9 9			/1		

DIRECTIONAL SCAS CONFIGURATION

			V₩ C				O <u>₩</u>		
NOE			U 9	5A 4.5C 6B 7C XII 5.62 9 = 1.11	₩/4H 4/4H		ر بر د د د د د د د د د د د د د د د د د د	AT 40	ザノダ ダノダ _H ダノダ _H
TASK: NOE	AI/LV	2,5C			٠ ب / ب	3 C			÷/ ÷
F		30			₩/₩				¥14
d (1+E)			4.5 A 5,5 C X=5,0 0=.707	4.5.A 5.D 5.D 5.D 5.D 5.D 5.D 5.D 5.D 5.D 5.D	4/4H 4/4H		4 4 4 1 × 9	6A Ar ⊼= 6.5 707. = 7	ψ/ψ _H on
	AT/AT	4.5A 3c X= 3.75 8= 1.06				8.5 A X= 9.25			$\dot{\psi}/\psi_{\rm H}$ $\dot{\psi}/\psi_{\rm H}$ $\ddot{\psi}/\psi_{\rm H}$ $\ddot{\psi}/\psi_{\rm H}$ DIRECTIONAL SCAS CONFIGURATION
NFIGURA		3A 4C 6A 5A X= 4.2S 0= .957			414	44 1X 0.0			₩/₩
CONTROLLER CONFIGURATION :			7.7.8.C XI.S.C XI.S.X.X.X.X.X.X.X.X.X.X.X.X.X.X.X.X.X.X	6A 5A 5.5A 6C 7B 5A X= 5.75	4/4H				V/VH V/VH
CONTRO	RA/AT	5ر			14 414 414H	4			
		6A 4,5C x= 5,25 G= 1.06			÷/÷	7.5 A			ÿ/ÿ
18/1C			7A 6C x=6.5 0=.707	7A 7.5C x=7.17 0=.289	VIVH WIVH				ψ / ψ _H
PHASE:	AC/RA	0 +			₩/₩				414 414 414H
		7A 5.5C X= 6.25 q=1.0b	<u> </u>		¥/¥				¥ / ¥
		H _{q/q}	# : e NOI	TAสบอเจ : ᢏ · ๎ั่	уз сои	T LE CAL SCA	тевт! Т. Т.	; t .t	
				C	-20				

			∨ VM C				o ≅		
NO E					4/4 4/4				ψ /ψ _H
TASK: NOE	AT/LV	148 54 30 X 10 7 X 10 4.0		5C LA X = 5.5 F = .107	ゲノダ	42			414 414 414
		r v			¥14				1
3 (1+ E)			58 58 71 71 5.0	5.54 78 64 5.5A 5.5A 6A x= 5.41	414H 414H		78	od TD	414 414 414
: NOIL	AT/AT	64 4.5A 5.17 x= 5.17 8 = .764		4.2	ÿ/ψ _H	7 A 5.5 A x= 6.25 o= 1.06			
CONTROLLER CONFIGURATION : $(3+\ell)$ C		28			414	88 5A 78 68 68 ×= 6.5 9 = 1.29			4/4
LLER CO			6A 5.5A X = 5.75 0 = .353		ψ / Ψ _H		7.5 A	ez ba	ψ/ψ _H
CONTRO	RA/AT	4.5A 48 3C 5.5A 56 5.8A X= 4.58	6.4		414 414H	7A 5.5A X= 6.25 G= 1.06			4/4 4/4
		5.5#			¥14	7A 6A x = 6.5 0= .707			414
18/1C					<i>ψ</i> / ψ _H				4/4H
PHASE:	AC/RA				414 414 414H				414 414H 414H
		٩L			4/4				¥ / ¥
		H ₄ / ₄	# 4 .e NOU	:ב יב יב	100 ev	. E . E . E	: £	ن د د	•
			HOIT	C-	·21	TICAL SC.	43/		

DIRECTIONAL SCAS CONFIGURATION



		V₩ ∧				S ■		
		7.A		4/4H		64 5.54 x= 5.75 o= .353	5.5A] .
AT/LV	x x x y x y x x x x x x x x x x x x x x			₩/₩₩/₩	J 9			
				4.4]
RA/AT AT/AT AT/LV		70 70 50 71 = 6.33		<i>ψ</i> / ψ _H		₹ 10	44	
AT/AT	3			Ψ/ΨH Ψ/ΨH	88 A 1 A 1 A 1 - x 7 = . S 3			
				÷/÷]:-
		5 C		4 / 4 H		4 A	F.SA	-]
RA/AT	7.8			¥/4 4/4	Ar			
				¥ / ¥				1.7.7.
				<i>₩</i> / ₩				, , , , , , , , , , , , , , , , , , ,
AC/RA			11111	₩/4" ₩/4"				Lite do the host
				¥/¥				i, 1, ii,
•	H _{U/} u	. H H ₄ / H	. H / H		ř. H	. H h/h	; h/h	Ì

DIRECTIONAL SCAS CONFIGURATION

S ✓		₩	
	4.5A Ý/ÝH	5.5A	4/4 4/4 4/4
3C	₩/₩		\$. \$
4C 5A X= 4.5 G=.707 3C	÷/ ÷	5.5 A	¥.4
	s A Ψ / Ψ H		4 / 4 H
4 X Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	sc ₩/₩	78 X=7.25 V=.353	
4 C 4.5 A X = 4.25 G = .353 2 C	¥/¥	6A 7.5 A X= 6.75 0=1.06 AT	
	x=6.62 x=2.29 ψ/ΨH		# # # # # # # # # # # # # # # # # # #
2.5C HC	7C 8C 5=7.5 7=.707	4	₩ / ¼
2 C 1.41	4.4	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4/4
4 S.	₩. ₩.		4 / 4 1
\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	₩/₩		₩, ₩, ₩, ₩
et in in	4/4	A	¥ / ¥
H H H L L L L L L L L L L L L L L L L L	. e : e	+ + + + + + + + + + + + + + + + + + +	
	5.5A 5.5A 3C 4C 4C 4C 3C $\vec{x} = 4.0$ $\vec{x} = 4.0$ $\vec{x} = 4.5$ $\vec{x} = 4.5$ $\vec{x} = 4.5$ $\vec{y} = 1.41$ $\vec{y} = 3.0$ $\vec{x} = 4.5$ $\vec{y} = 1.41$ $\vec{y} = 3.0$ $\vec{y} = 1.41$ $\vec{y} = 3.0$ $\vec{y} = 3.0$ $\vec{y} = 3.0$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5.5 A 5.5 C 4

	N N			∑		
	754 78 7 = 6.0	Ψ/ΨH Ψ/ΨH			£ £	414 414 414
AT/LV	7.8	₩/₩	8A 7.5 A 1 X X 7.5 H 7.5 H 7.5 N			4/4
		¥14				414
	5.58 3.8 X = 4.25 7.1 = 7 5.58 X = 6.25 4.25	Ψ/ΨH Ψ/ΨH		7A 6A X= 6.5 0=.707	5.5A 7.1 7.1 6.25 7 = 1.06	6/4
AT/AT 14 5.5.8 7.8.83	A T	Ψ/ΨH	8 A			4/4 4/4 V/4
4.5A		414				616
	5. A . X	4/4 4/4H		Q.	7A ## X = 7.5 FOT. = 7	4/4. 4/4.
8A/AT 5.5A	4 F	₩/₩				₩/₩.
5,5A		414				ψ / ψ
	r P	₩/₩ ₩/₩				ψ / ψ.
AC/RA		t				1. 1. 1. 1. 1. 1. 1. 1. 1.
		4/4				j. j.
H ₄ / ₄	:4 :4 + '4 - '4	-	, H H H H	: 4 H / H	: - 4 - 4	_

		VMC				N M		
				₩/₩ ₩				1. 1. il.
AT/LV	58 4,5A x = 4,75 c = .353			₩/₩ ₩/₩				to the the the
	4.5 A 7 B X= 5.75 0=1.77			₩/₩				
				4/4H				10 / 1/2
AT/AT	7A 4.5A TA 4.5A X = 5.75 5 = 1.44			4/4 4/4				<u> </u>
	4.5 A 5.5 A 7.5 A 7.5 A 7.11		V9	¥ / ¥				
				4/4 4/4				4/4.
RA/AT	78 4.58 4.58 X = 5,33 V = 1.44			<i>₩</i> / <i>₩</i>				4/4. 4/4.
	5,54 5,54 7:55 7:55 7:0.0		6A 7A x = 6.5 707.707	¥/¥				4/4
				414 414				4/4
AC/RA				W/VH				W. W. W. W. W. W.
	6А		6A 7A x = 6.5 or = .767	₩.¥				414
·	h/h	H ₁ /4	: 4 4/4	•	H _V ,h	. H 4/4	; h/h	_

1	₩ ^		υ <u>≅</u>	
777		₩/₩		¥ / ¥
1 ASK: ACEL (DECEL AT/LV	2.58 5.58 5.11 7.12 7.12 7.12 7.12 7.12 7.12 7.12 7	ψ/ψ ψ/ψ Ψ/Ψ	5.5A HC X = 4.75 G= 1.06	₩/\\$ \\\$\\\\$\\\\$\\\\$\\\\$\\\\$\\\\$\\\\$\\\\$\
		÷.	4.54 4 L 21.2.= X 71.1.= D	÷ / ÷
SE (0 ++		ψ'.Ψ _H		4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.
CONTROLLER CONFIGURATION: (4+0) MSI-3NZ RA/AT AT AT/AT	38 4C x = 3.5 0=.707	ψ/ψ ψ/ψ Ψ/Ψ	4.5 A 3. C 2.5 C x = 3.33 0 = 1.04	ψ', ψ
VFIGURA		÷/ ;		÷ / ÷
LLER CO		ψ / Ψ _H		₩/₩ ₩/₩
CONTRO RA/AT	5A 3C 4:5A 3C 32 87 5 = 3.87 6 = 1.03		40 40 40 41 61 61 61 61 61 61 61 61 61 61 61 61 61	
	5.5 A	<i>ψ\Ψ</i>	5.50	4/4
7 / 8 /		ゲ/ゲ		¥ / ¥
PHASE: AC/RA		H 1/ 1/ 1/1/		ψ.Ψ.Ψ.Ψ.Ψ
		¥/¥		¥ / ¥
	. 4 : 4 4 : 4 7 : 4	. L	VERTICAL SCAS	. L

PHASE 2A PRIMARY MATRICIES

ı		

PHASE 2A PRIMARY MATRIX FOR BOB-UP TASK (OLD SHAPING)
VMC

CMD/STAB CONFIG.		AC,	AC/RA	And the second of the second o		RA,	RA/AT			AT/AT	AT			AT/LV	۲۸	
	PILOT	AVERAGE	RANGE	NO. POINTS	PILOT	AVERAGE	RANGE	NO. POINTS	PILOT	AVERAGE	RANGE	NO. POINTS	PILOT	AVERAGE	RANGE	NO. POINTS
	<			A AFFECTS A	٧	ک	4.5-6	7	∢				<	4,96	4-5	۱ و
(4+0)	ø			e: 4	œ	5.12	4.5-6	-	s o (6 0 (4.16	5.4-4	'n
MSI-SD2	U 0				υ <u>n</u>				υa				ه د			
		××	σ.			× . 5.0¥	4 0.0.522	522		×	σ.			× . 4.67 σ.		0.433
	PILOT	AVERAGE	RANGE	NO. POINTS	PILOT	AVERAGE	RANGE	NO. POINTS	PILOT	AVERAGE	RANGE	NO. POINTS	PILOT	AVERAGE	RANGE	NO. POINTS
	<				<	Ŋ	4.5-5.5	m	∢				٧	3.5	3-4	7
(4+0)	E0				60			ا موروش	8				æ	4.5	4-5	7
MSI-SD3	υ Δ			- Page 14	υα				o n				ပေ ဝ			_
		 × -	 σ.			×	2 0 . 0 . 5	5		×	σ.			μ. ×	0.0.816	
	PILOT	AVERAGE	RANGE	NO. POINTS	PILOT	AVERAGE	RANGE	POINTS	PILOT	AVERAGE	RANGE	NO. POINTS	PILOT	AVERAGE	RANGE	NO. POINTS
	<	9			<	3.5	3-4	2	<	3		~	*	a -	3-4.5	7
(3+1)C	<u></u>	_			æ				5 0				æ	7		
MSI-SD3, MSI-SD2	υ α			tuation is A	υn				υ 6				ധ മ			
		- 0 - 1 - 1	-0			- × ×	TOT.0.0 S	707	1					×	0.0.612	7.7
		×	10.2 1. 25. 35.		4.00		24									

PHASE 2A PRIMARY MATRIX FOR PRECISION HOVER TASK (OLD SHAPING)
VMC

CMD/STAB CONFIG.		AC,	AC/RA			RA/AT	'AT			AT/	AT/AT			AT,	AT/LV	
	PILOT	AVERAGE	RANGE	POINTS	PILOT	AVERAGE	RANGE	POINTS	PILOT	AVERAGE	RANGE	NO. POINTS	PILOT	AVERAGE	RANGE	NO. POINTS
	<				∢	5.28	4.5-6	00	∢				<	4.58	4-5.5	و
(4+0)	60				æ	5, 12	4-7	3	60				ω.	¥.	3-5.5	W
MSI-SD2	υ <u>α</u>				ه ن				0 a				υa			
		<u>×</u>	σ.			× - 5.23	3 0-0793	43		×	σ.			×-4.55	9.0	81
	PILOT	AVEHAGE	RANGE	NO. POINTS	PILOT	AVERAGE	RANGE	NO. POINTS	PILOT	AVERAGE	RANGE	NO. POINTS	PILOT	AVERAGE	RANGE	NO. POINTS
	<				<	(33	8-5	8	<				<	7	カーカ	2
(4+0)	60				60				80				m	į. N	4.5-4.5	7
MSI-SD3	O				O				υ				U			
	۵				۵				۵				۵			
		×	Р		 	x . 6.33	3 0. 1.53	53		- <u>x</u>	σ.			× . 4.25	9.6	289
	PILOT	AVERAGE	RANGE	POINTS	PILOT	AVERAGE	RANGE	POINTS	PILOT	AVERAGE	RANGE	POINTS	PILOT	AVERAGE	RANGE	NO. POINTS
,	<	و.		-	<	4.25	4-4.5	2	٧	m		_	∢	2.5	2-3	7
(3+1)C	-				æ				æ				6	3-		~
MSI-SU3, MSI-SD2					ပ				O				U			
	۵				۵				۵				۵			
		× 6.0				x - 4.25	5 0-0.353	353		× . 3.0				x . 2.8	0.0.758	58

C-30

PHASE 2A PRIMARY MATRIX FOR NOE TASK (OLD SHAPING) VMC

/	L			ſ					L							
CMD/STAB		AC,	AC/RA			RA/AT	'AT			AT,	AT/AT			AT/	AT/LV	
	PILOT	AVERAGE	RANGE	NO. POINTS	PILOT	AVERAGE	PANGE	NO. POINTS	PILOT	AVERAGE	RANGE	NO. POINTS	PILOT	AVERAGE	RANGE	NO. POINTS
	∢				٧	89.h	4-5.5	80	<				*	77.7	4-5	7
(4+0)	80				80	4.75	4-5	7	6				æ	3,67	3-4	· 6~
MSI-SD2	0 1				v				o				v		-	`
	۵				۵				۵		_		٥			
		×	σ.			× - 4.71	σ · ο.5	5		<u>.</u> ×	υ. D			#1.4.×	σ · ο. 58'3	73
	PILOT	AVERAGE	RANGE	NO. POINTS	PILOT	AVERAGE	RANGE	NO. POINTS	PILOT	AVERAGE	RANGE	NO. POINTS	PILOT	AVERAGE	RANGE	NO.
	∢				٧	2	4.5-5.5	W	<				<	3.75	3-4.5	7
(4+0)	ø				m				60				æ	و	7-5	•
MSI-SD3	ပ				v				O				U		p 7	7
	۵				Ω				۵			-,	۵			
		× .	σ.			× 5.0	σ-0.5	5	-		σ.	1		× . 4.8	× . 4.87 0 . 1.65	-
	PILOT	AVERAGE	RANGE	NO. POINTS	PILOT	AVERAGE	RANGE	NO. POINTS	PILOT	AVERAGE	RANGE	NO. POINTS	PILOT	AVERAGE	RANGE	NO. POINTS
	٠	٠		-	<	4.75	5.2 - µ	2	<	+		_	<	2.75	2.5-2	7
(3+1)	89				œ,				80				60	, ,	,	
MST-SD3 MST-SD3	o				υ				O				υ	•		
700-101-100-101	۵				۵				۵				٥	***	7.7.0	•
		0.9 - ×	1 1 1 1			× . 4.75	901.b			- 1 × × − 1 × − 1 × − 1 × − 1] 	× 3. 6	167	
		,								٠٠٢ × ۲				۱ · ×	G 4	

PHASE 2A PRIMARY MATRIX FOR NOE TASK
VMC

CONFIG.		AC	AC/RA			RA	RA/AT			AT,	AT/AT			AT	AT/LV	
(4+0) MSI-SS	PILO7	6 6 6.5	RANGE	POINTS	Pil.OT	5.5 4.75	HANGE	Points	PROT	H.5	RANGE	PONITS	Pa.ot	4.5	4-5 3-4.5	POINTS
		₹ · 6.2	₹ . 6.25 g - 0.25	2.5		× . 5	9.0.4	-		× 4.2	× 4.25 g. 1.0			07		
	PROT	AVERAGE	RANGE	POINTS	PILOT	AVERAGE	AANGE	NO. POINTS	PROT	AVERAGE	RANGE	NO. POINTS	PROT	AVERAGE	RANGE	NO.
(4+0)	٠.				٠.	ν,			٠ ١	۴.5		-	4	3.5	3-4	7
MSI-SD2	υα				υ .	 و			≖ ∪				a 0	3 -	4-4	3 -
1			.6			7.		L	0	7		 	٥			1
	10	70 4 G3V4	70,140	ΟN				ğ		?	٥		I	× . 3. 83	x . 3.83 a. 0.37	7
		2	200	POINTS	PICOT		HANGE	POINTS	PROT	AVERAGE	RANGE	POINTS	PILOT	AVERAGE	RANGE	POINTS
	< 1	٠. ا		-	<		ब : । ब :	7	<	m		_	≺ .	2.75	2.5-3	m
(4+0) MST-SD3	v	۲.		~ ~	s o	ج ج س	٠ ۲	m	e o	* *			8 7 C	2.83	2.5-3	m i
	9	٦	-		٥	ਕ		~	۵	عد ,			۵ ۵		3-4	טש נה
		×. 6.0	x. 6.0 a. 1.1			₹-3.85	x . 3.85 0. 0. 40	0		x 3.5	σ· 0.5			× 3.7	9.0.5	-

GRIGHTAL PAGE IS OF POOR QUALITY

PHASE 2A PRIMARY MATRIX FOR NOE TASK VMC

CMD/STAB	AC/RA	RA/AT	AT/AT	AT/LV
	PLOT AVERAGE RANGE POINTS	PR.OT AVERAGE RANGE POINTS	PLOT AVERAGE RANGE POINTS	PILOT AVERAGE RANGE POINTS
7(3±1)	- S		۸ 2.75 2.5-3 2	۸ 2.5
OTTC)		••••		B 4.25 4-4.5 2
MSI-SD1	υ <u>α</u>	o a	va	د د
	x 5 0.	x . 40 0 . 0.846	× 2.75 σ σ 35	x - 3.67 0 - 0.85
	PELOT AVERAGE RANGE POINTS	PILOT AVERAGE RANGE POWTS	PILOT AVERAGE RANGE POINTS	PILOT AVERAGE RANGE POINTS
/2+1/6	A 6 5-7 2	l h v	۸ 2.5	2-4
J(T+C)	8 5 5-5 2	3	- × .	
MSI-SD3,	5.5		7	c 3.67 3-4 3
MSI-SD2	Q	T a	7	, E
	× 5.5 σ ο ο 7	x - 4 σ σ	x · 3,37 σ · 0.65	x. 3,1250. 0.79
	PILOT AVERAGE RANGE POINTS	PILOT AVERAGE RANGE POINTS	PILOT AVERAGE HANGE POINTS	PILOT AVERAGE RANGE POINTS
(0111)	 -9 -	ر ب	7	4 2.75 2.5-3 2
(11117)	•		a	m
MSI-SD2,	. .	,	m o	v B
	<u>x</u> · ζ σ·	x - 5.5 σ - 0.5	x·3,5 σ·0.5	x.2.83 0.0.24

PHASE 2A PRIMARY MATRIX FOR BOB-UP TASK VMC

CMD/STAB	AC/RA	RA/AT	AT/AT			AT/LV	۲۸	
	PALOT AVERAGE RANGE POINTS	PLOT AVERAGE RANGE POINTS	PROT AVERAGE RANGE	NO. POINTS	PROT	AVERAGE	RANGE	NO. POINTS
	9	1 S.5 1	۸ 4.5	-	<	4.37	4-4.5	7
(4+0)	5.9	3.5 3-4 2	~	-	•	3.67 3-4	7-	2
MS1-55	U A	U A	u a		0 6			
	x . 4.25 0 . 0, 25	x.4.16 0. 1.25	x - 3.75 σ - 0.75			x-3.95 0-0.51	0-0.51	
	FR.OT AVERAGE RANGE POINTS	PILOT AVERAGE RANGE POWTS	PILOT AVERAGE RANGE	NO. POINTS	PROT	AVERAGE	RANGE	POINTS
	٧	اده د	۸ 4.5	-	<	4.25	4-4.5	7
(4+0)		9			•	3.5	3-4	4
MSI-SD2	ů ·	o i	υ		v			
		q	•		٥			
	<u>×</u> · σ ·	× 5.5 σ · ο·7ο7	x . 4.5 a.			x . 3.75	0.56	9
	PRLOT AVERAGE RANGE POINTS	PILOT AVERAGE RANGE POINTS	'S PILOT AVERAGE RANGE	POINTS	PILOT	AVERAGE	RANGE	NO. POINTS
	1 5 Y	A 4.25 4-4.5 2	<	_	4	2.83	2.5-3	3
(4+0)	5.50	3.67 3-4 3	4	~	•	2.73 2	2.5-3	ĸ
MSI-SD3		4.5 3-6		_			4-S.5	m
	7 1	9 9	м	_	۰	m	3-3	2
	¥.5.9 0.0.74	x · 4.2 o · 1.2	x.3 σ.0			x . 2.45 0 . 0. 4	g. O. 4	

OF POOR QUALITY

PHASE 2A PRIMARY MATRIX FOR BOB-UP TASK VMC

CMD/STAB	AC/RA			RA,	RA/AT			AT/AT	'AT			AT	AT/LV	
	PALOT AVERAGE RANGE	POINTS	PILOT	AVERAGE	RANGE	POINTS	PILOT	AVERAGE	RANGE	NO. POINTS	PLOT	AVERAGE	RANGE	POWTS
(3+1)C	5.25	_	٠ .	4.75		-	<	W	3-3	7	<	2.5		
MSI-SD3,			. 0	2.5			. 0				# 0	3.75	3.5-4	. 14
MSI-SD1	a		٥				٥				۰			
	×-5.25 σ.			¥ - 4.6	X . 4.62 0. 0.12			×.3	9		-	x - 3.3	x - 3.32 g · 0.62	2
	PROT AVERAGE RANGE	NO.	PILOT	AVERAGE	RANGE	NO. POWTS	PILOT	AVERAGE	RANGE	NO. POINTS	PLOT	AVERAGE	RANDE	¥O.
(3+1)	A 5.5 5-6		<	4.25		-	٠	2.5		_	4	77.	2.5-3	2
2/1.67 MCT-CD3	4.5 4.5	2 ·	n (w.			•	2.5		-	•		2.5-2.5	
MSI-SD2,	v.	_	۰ ،	3-3-			م ن	w w			o a		4-5	m-
	× 5.1 σ .	σ- 0.58		× 3,8/	0.0.55	55		₹.2.75	9. 0.25	5			7	
	PLOT AVERAGE RANGE	NO. POINTS	PLOT	AVERAGE	RANGE	NO. POINTS	PILOT	AVERAGE	RANGE	NO. POINTS	PLOT	AVERAGE	_	ON .
(2+1+1)	و.	-	۷	~		_	4	2.5		-	4		12	2
MSI-SD3,	n U		• 0				•				•			
MSI-SD2	a		۰ ۵	•		_	o a	m		~	U 0			
	×. 6.0 σ.			x . 4.5	x · 4.5 σ · 1.5			× - 2.75	x . 2.75 a. 0 2 S	.5		x.2.7	x.2.75 σ. 6.2	

PHASE 2A PRIMARY MATRIX FOR PRECISION HOVER TASK
VMC

PHOT AVERAGE RANGE POINTS PHOT AVERAGE RANGE POINTS PHOT AVERAGE RANGE PHOT AVERAGE PHOT AVERAGE PHOT AVERAGE PHOT AVERAGE PANGE	CMD/STAB		AC,	AC/RA			RA/AT	T 4	,		AT/AT	AT			AT/LV	۲۸	
1		PILOT	AVERAGE	RANGE	ND. POINTS	PILOT	AVERAGE	-	POINTS		AVERAGE	RANGE	POINTS	PILOT	AVERAGE	HANGE	POINTS
PHUST AVERAGE RANGE POINTS PROT AVERAGE RANGE POINTS T. 6.5 G · 0.707 T. 6.5 G · 0.707 T. 7. 4.8 G · 0.47 T. 7. 4 G · 1.0 T. 7. 4 G · 1.0 T. 8.7 G · 0 T. 8.7 G · 0		<	9		_	<	5,5		_	<	Ŋ			٠	4.62 45-5	4.5-5	, 1
NEW NEW AGE RANGE PRIOT NEW AGE PRIOT NEW AGE RANGE PRIOT NEW AGE RANGE PRIOT NEW AGE RANGE RANG	(4+0)	5 0 (_		~	a U	4.5	45-4.5	7	an ∪	~		-	s 0	3.9	3 - 4.5	n
FILOT AVERAGE RANGE POINTS PROT	MS1-55	, a				۵				a				۵		i	1
PHOT AVERAGE PANTE PHOT AVERAGE RANGE POINTS PHOT AVERAGE RANGE POINTS PHOT AVERAGE RANGE PANTE PHOT AVERAGE RANGE PANTE PHOT AVERAGE PANTE P		1	× 6.5		707	1	× . + .8	ŧ	1		- i×	9.1.6			x . 4.2	о •	56
N		PILOT	AVERAGE	B-	POINTS	PILOT	AVERAGE		POINTS	PILOT	AVERAGE	RANGE	NO. POINTS	10.114	AVERAGE	RANGE	POINTS
		<				<	5.5	-	_	4	7		_	۷.	-	#-#	7
C C	(4+0)	æ				a	9		-	8				ø.	3 -	3.5-4.5	ナ
PHOT AVERAGE RANGE POINTS PLOT AVERAGE RANGE POINTS PLOT AVERAGE RANGE ANGE A 5 A 4.12 4-4 2 3 3 4 5 5 5 5 5 5 5 5 5	MŠI-SĎ2	ο :				ပေ ဝ				ധ മ				ပေရ			
PLOT AVERAGE RANGE POINTS PILOT AVERAGE RANGE POINTS PILOT AVERAGE RANGE A 5 1 A 4.12 4-4 2 A 3 B 6 1 B 3.67 3-4 3 B 3		3					Y	3 4. 0.2	5	1	×	1	-	1	- - - -	ρ. ο. Ψ	
A 5 H-4 2 A 3 C 4 S B B 3 C C C C C C C C C C C C C C C C C			×	-	ON	10 110	AVEBAGE	RANGE	ON S	PILOT	AVERAGE	BANGE	NO. POINTS	PILOT	AVERAGE	RANGE	POINTS
3.67 3-4 3		PILOT	AVERAGE	4	POINTS	4	4.12	7-1	7	<	3		_	*	2.75	2.5-3	1
0 ((-) 7 0 -	(0+7)	< B	و ۱		_		3.67	3-4	ιv	6	m		_	•	2.83	2.5-3	w r
a = -	MS1-5D3	o ·	80		_	u e	- ب	5-7	7 -	υ <u>a</u>	→ (υ <u>n</u>	3.17	3-3	2 م
× · k 3 · c · .		a !	1	- 1	5	. !	ر ا ا×				× - 3.2	50.0	.43	-	× . 3	9.0.35	35

PHASE 2A PRIMARY MATRIX FOR PRECISION HOVER TASK VMC

CMD/STAB	AC/RA	RA	RA/AT		AT/AT			AT,	AT/LV	
	PILOT AVERAGE RANGE POINTS	PLOT AVERAGE	RANGE POINTS	PILOT	AVERAGE RANGE	IGE POINTS	PILOT	AVERAGE	RANGE	MO. POINTS
(3+1)C	, 5.25 l	A 4.75	_	<	h- h h	7	4	2.75		-
MSI-SD3,	•	·					•	3,5	3-4	7
MSI-SD1	v a	u a		u n			υ 6			
	× 5.25 σ.	\$£. h - ×	\$ 0.0.38	-	x - 4.0 0.	0.0	-	x - 3.2	x - 3.25 0 - 0.54	7
	PLOT AVERAGE HANGE POINTS	PLOT AVEHAGE	RANGE POINTS	PILOT	AVERAGE RAN	RANGE POINTS	PILOT	AVERAGE	RANGE	NO. POINTS
7(17)	1 5 H 5 V	S.# .		<	2,25	_	<	2.75	2.5.3	7
)(1+6)	4.5 4.5-4.5 2	→	_		2.5		•	m	3-3	7.
MS1-5U3,			_	o	~		o	2.15	2.5.2	7
MSI-SD2	a	٥		۵	~	_	٥		3-3	7
	X - 4.68 0 - 0.75	∓ 4.c7	7 G . The		x - 2.69 σ.	σ. ο.32		x - 2.88	9.0	<u>7</u> 3
	PILOT AVERAGE HANGE POINTS	PLOT AVERAGE	RANGE POINTS	PILOT	AVERAGE RAI	RANGE POINTS	PILOT	AVERAGE	RANGE	NO. POINTS
(2+1+1)	- 25	٨		٠	2.5	~	4	2.5	2-3	7
MS1-SD3.	03	6					٠	~	,	_
MCT CD2	ű	v		υ			o			,
705-161	•	د. د	-	٥	7	_	<u> </u>			
	× 5.0 σ.	o. μ . ≍	0.1.0		x.1.25 a. 0, 35	. 0, 35		x - 2.67	70.047	17

PHASE 2A PRIMARY MATRIX FOR 90-KT SLALOM TASK TC ON VMC

CMD/STAB		RA RA,	RA/AT RA/AT			AT, AT,	AT/AT AT/AT			AT/AS-AT/LV RA/AT-AT/LV	-AT/LV -AT/LV	
	PILOT	AVERAGE	HANGE	NO. POINTS	PILOT	AVEHAGE	RANGE	NO. POINTS	PILOT	AVERAGE	RANGE	POINTS
	۲	К		~	<	2		_	<	W	3-3	3
(4+0)	60	S	9-1	7					8		١	١
MSI-SD2	O				o	S		_	υ		····	
	۵		 	 	Q				۵		_ .	
		·x - 4.33	3 0. 1.53	3		× . 5	9.0			× . 3	9.0	
	PILOT	AVERAGE	AANGE	NO. POINTS	PILOT	AVERAGE	RANGE	NO. POINTS	PILOT	AVERAGE	HANGE	NO. POINTS
	۷	W		_	<	9		_	<	2.5		_
(4+0)	6								m			
MSI-SD3	U i	4.63	3-6	7-	O	4.5	4-5	7	υ	W	2-4	7
	۵				۵				a			
		×-4.3	0-1.30	0		× - 5	0.1.0			× . 2.83	\$ a. 1.04	54
	PILOT	AVERAGE	RANGE	NO. POINTS	PILOT	AVERAGE	RANGE	POINTS	PILOT	AVERAGE	RANGE	NO. POINTS
011.07	∢	3		_	<	S		_	<	16.7	h-2	3
(3+1)C MS1-SD3	as (1			60 (•				2.5	2-3	2
WS1-SD2		<u>ب</u>			ء د	و		_	o i			
1	1				, , ,		1		a			
		×-4.5	0- 0.707	07		×-5.5	0.0.707	20		x - 2.7	x . 2.75 0 . 0.83	3
	PILOT	AVERAGE	RANGE	NO. POINTS	PILOT	AVERAGE	RANGE	NO. POINTS	PILOT	AVERAGE	RANGE	NO. POINTS
(2+1+1)	<	\$			٠	5.5		_	<	2.37	2-2.5	7
MSI-SD3.	æ								a			ı
MSI-SD2	U				v	Ŋ	•	~	o	м		_
	٥				٥				۵			
		o. . ×	1 			× . 5.25	0.0.35	.5		× . 2. 58	9.0	52

PHASE 2A PRIMARY MATRIX FOR 90-KT SLALOM TASK TC OFF VMC

CMD/STAB CONFIG.		RA/AT RA/AT	4T 4T			AT/AT AT/AT	/AT 'AT			AT/AS-AT/LV RA/AT-AT/LV	-AT/LV -AT/LV	
	PILOT	AVERAGE	RANGE	NO. POINTS	PILOT	AVERAGE	RANGE	NO. POINTS	PILOT	AVERAGE	RANGE	NO. POINTS
	<	4		-	∢	79.9	2-9	3	<	ŀς		1
(4+0) MS1-502	ш О	` 1		_	m U				⊡ ∪	7		
1	۵				۵				۵	•		•
		×. ب	α·0			x . 6.67	7 0.0.58	80		x - 4.5	σ. ο.5	
	PILOT	AVERAGE	PANGE	NO. POINTS	PILOT	AVERAGE	RANGE	NO. POINTS	PILOT	AVERAGE	RANGE	NO. POINTS
	<	2		_	∢	7		1	<	4.5		-
(4+0)	m				6	6.5	2-9	7	6	S		~
MSI-SD3	ပေ	٧٠		-	υ <u>α</u>				ه د			
	1				1		- 6				32 0 - 34 1:	
		۰ ×	0 · b			× . 6		28		×	. 6.	0
	P1LOT	AVERAGE	RANGE	NO. POINTS	PILOT	AVERAGE	RANGE	NO. POINTS	PILOT	AVERAGE	RANGE	NO. POINTS
(3+1)	∢	5.25	5-5	7	<	v		-	<	4.25	4-4.5	2
MSI-SD3.	6 0 (,		_	6 0 (a	,		•
MSI-SD2	۵ ۵	4			ם כ				م د	T		~
		ا الا الا		7		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			 		0.29	0
		\ \		ON ON				ON				QN
	PILOT	AVERAGE	RANGE	POINTS	PILOT	AVERAGE	RANGE	POINTS	PILOT	AVERAGE	RANGE	POINTS
(2+1+1)	∢				∢				<	4.5		_
(T.T.Z)	m				as				m			
MSI-SD2	۵ ن				υ a				υ <u>α</u>			
		 ×	b	 			η			<u>×.4.5</u>		

PHASE 2A PRIMARY MATRIX FOR DECEL IN TURN; LEFT TURN TASK TC ON

CMD/STAB		RA/AT RA/AT			AT/AT AT/AT	AT AT			AT/AS-AT/LV RA/AT-AT/LV	AT/LV AT/LV			AT/LV RA/AT	LV AT	
	PILOT	AVERAGE RANGE	GE NO.	PILOT	AVERAGE	RANGE	NO. POINTS	PILOT	AVERAGE	RANGE	NO. POINTS	107ld	AVERAGE	RANGE	NO. POINTS
	<	7. 7.	-	<				∢	7	4-4	2	<			
(4+0) MSI-SD3	a u	m		m v	7:5		_	5 0 ()	7	3-5	~	a ப	m		-
2	۵			۵				۵			\	٥			
		× 3.75 σ.	σ. 1.06		× 4.5				×. 4.0	> 0.00.0	707		× - 3.0	1	1
	PILOT	AVERAGE RANGE	GE NO.	PILOT	AVERAGE	RANGE	NO. POINTS	PILOT	AVERAGE	RANGE	NO. POINTS	PfLOT	AVERAGE	RANGE	NO. POINTS
	4			*				٧				<			
(3+1)C	æ			6 3				Б	1			80			
MSI-503, MSI-502	ں د			υ <u>a</u>	m		_	م ن	2.5		_	ပေ 🗅			
	,	¦		1	- 0	1			20				i		1
		×i. ∀			× 3.0				C.7. x				×	ο.	
	PILOT	AVERAGE RANGE	GE POINTS	PILOT	AVERAGE	RANGE	NO. POINTS	PILOT	AVERAGE	RANGE	NO. POINTS	PILOT	AVERAGE	RANGE	NO. POINTS
	4	2.5	_	<				<	m	3-3	m	<			
(2+1+1)	60			60				69				Ф			
MSI-SD3,	υ	*	_	O				O	7		-	U			
705-15W	۵			۵			1	۵] 	1	٥			1
		× 3.25 σ . 1.06	1.06	 	×	σ.			x -2.75	5 0.0.	5		×	σ.	

PHASE 2A PRIMARY MATRIX FOR DECEL IN TURN; LEFT TURN TASK
TC OFF
VMC

	CMD/STAB		RA/AT RA/AT	'AT 'AT			AT, AT,	AT/AT AT/AT			AT/AS-AT/LV RA/AT-AT/LV	AT/LV AT/LV			AT RA,	AT/LV RA/AT	
		PILOT	AVERAGE	RANGE	NO. POINTS	PILOT	AVERAGE	HANGE	NO. POINTS	PILOT	AVERAGE	RANGE	NO. POINTS	PILOT	AVERAGE	RANGE	NO. POINTS
		*				<				≺				<			
	(4+0)	a	-			a a (l		-	as (-			as c			
	MSI-SD3	ם ט	3"			ם כ	ഹ		-	э	r			. Δ			
-41			0.4.×				× · 5.0				× . 4.0				<u>x</u> .	σ-	
=		PILOT	AVERAGE	RANGE	NO. POINTS	PILOT	AVERAGE	RANGE	NO. POINTS	PILOT	AVERAGE	RANGE	NO. POINTS	PILOT	AVERAGE	RANGE	NO. POINTS
		<				<	-			∢				<			
	(3+1)C	Φ.			-	80				Œ.	=		-	æ			
0R.	MS1-5U3,	O C	7	***	_	o c				υ <u>Δ</u>	1		-	ပေ 🗅			
100	300-101	,	 	 	-	, 	 	-			 				- 		
			× + 2.0				, ×	σ.			× . 4.0				: ×	σ.	
		PILOT	AVERAGE	RANGE	POINTS	PILOT	AVERAGE	RANGE	NO. POINTS	PILOT	AVERAGE	RANGE	POINTS	PILOT	AVERAGE	RANGE	NO. POINTS
		∢				∢				<				<			
_	(2+1+1)	60				m.				en en	-			œ			
73	MOI OUS,	υ				U				U	m		_	O			
	705-154	۵				۵				۵				۵			
		 	 .	ρ.			×	σ.			× . 3.0	0		1000	; !×	σ.	
4												The second second to the second second	A			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	

C-41

ORIGINAL PAGE 13 OF POOR QUALITY

PHASE 2A PRIMARY MATRIX FOR DECEL IN TURN; RIGHT TURN

TC ON

CMD/STAB CONFIG.	RA/AT RA/AT	AT/AT AT/AT	AT/LV HYBRID	AT/LV RA/AT
	PILOT AVERAGE RANGE POINTS	PILOT AVERAGE RANGE POINTS	PLOT AVERAGE RANGE POINTS	PLOT AVERAGE RANGE POWTS
(4+0) MSI-SD3	w	5.4. 0		.
	x. 4.1 σ. 0.72	x . 4.5	x. 4.21 0. 0.96	x. 3.62 0. 0.88
	PILOT AVERAGE RANGE POINTS	PILOT AVERAGE RANGE POINTS	PILOT AVERAGE RANGE POINTS	PROT AVERAGE RANGE POINTS
(3+1)C	د ، س	< 1	T	<
MSI-SD3,	c 3.33 3-4 3	■ U	0 2.5 2-3 2	8 5 U
MSI-SD2	0	Q	Q	o
	x . 3.75 σ . ο .96	x	x . 3.0 a . 1.0	x. q.
	PILOT AVERAGE RANGE POINTS	PR.OT AVERAGE BANGE POINTS	PR.OT AVERAGE RANGE POINTS	PR.OT AVERAGE RANGE POINTS
(2+1+1)	→	< :	A 2.5	<
MSI-SD3,	n u	. U	E U	1 0 0
MSI-SD2	a	a	C	۵
	<u>ተ •</u> ≍	<u>×</u> . σ.	× - 2.5	x . σ.

PHASE 2A PRIMARY MATRIX FOR DECEL IN TURN; RIGHT TURN TASK TC OFF VMC

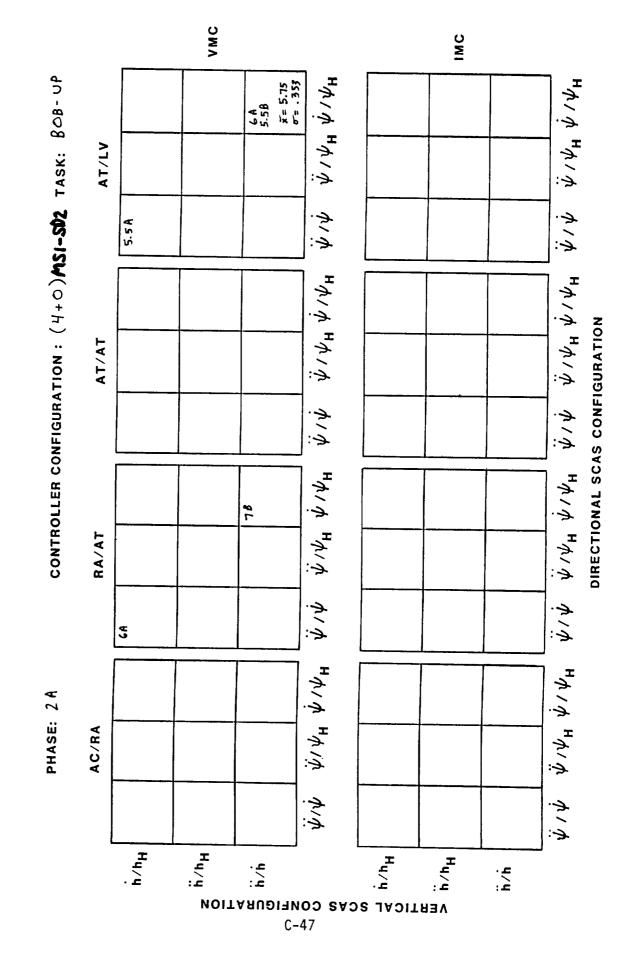
V V RA/AT	E POINTS PILOT AVERAGE RANGE POINTS	5 2 1 3.5 3-4 2	a 0	٩	2.43 × 3.5 0.0.707	E POINTS PILOT AVERAGE RANGE POINTS	<	Δ.	v	۵	\overline{x} . σ	E POINTS PILOT AVERAGE RANGE POINTS	<	m	o	۵	
AT/AS-AT/LV RA/AT-AT/LV	PILOT AVERAGE RANGE	A 4.87 4.5-5	8 0 72.	۵	x.4.750.0.43	PILOT AVERAGE RANGE	<	60	7 0	۵	⊼. 4.0	PILOT AVERAGE RANGE	<	a	U	۵	
AT/AT AT/AT	PILOT AVERAGE RANGE POINTS	*	1 0	Q	⊼.5,0	PILOT AVERAGE RANGE POINTS	٧	60	O	۵	<u>x</u> . σ	PILOT AVERAGE RANGE POINTS	٧	60	o	a	. b
RA/AT RA/AT	PILOT AVERAGE RANGE POINTS	۸ 5.5	m	- 1	×· 4.25σ. 1.77	PILOT AVERAGE RANGE NO.	۸ 3 2-4 2	ω	0 1	9	x . 3.0 g - 1.41	PILOT AVERAGE RANGE POINTS	*	m m	U	Q	. α · ×
CMD/STAB CONFIG.			(4+0) MSI-SD3				(311)	(3+1)U MST 503	MST-503,				(2+1+1)	MST-503	MOT-003	700-101	

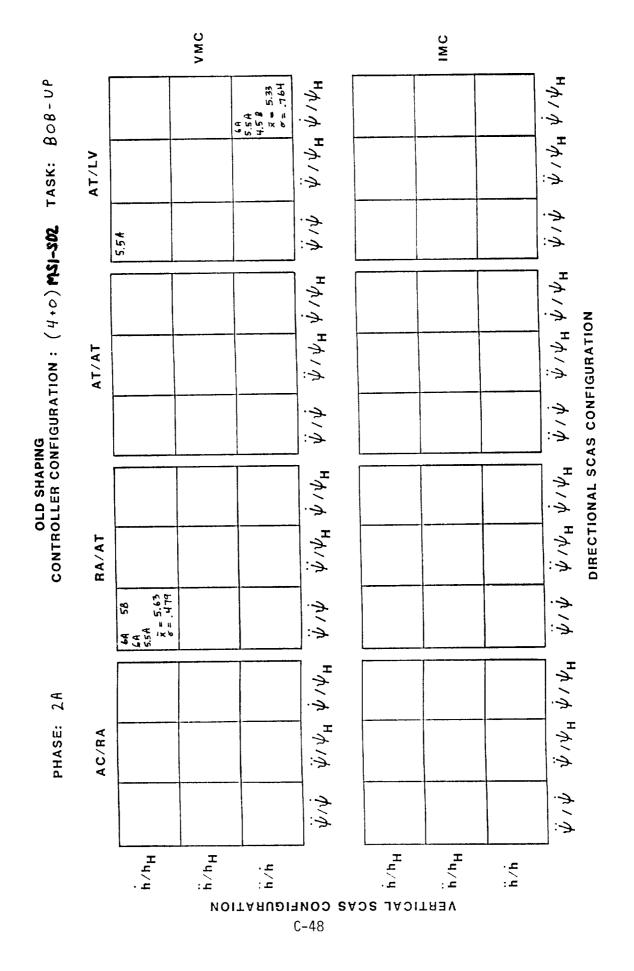
PHASE 2A PRIMARY MATRIX FOR DECEL/APPROACH TASK VMC

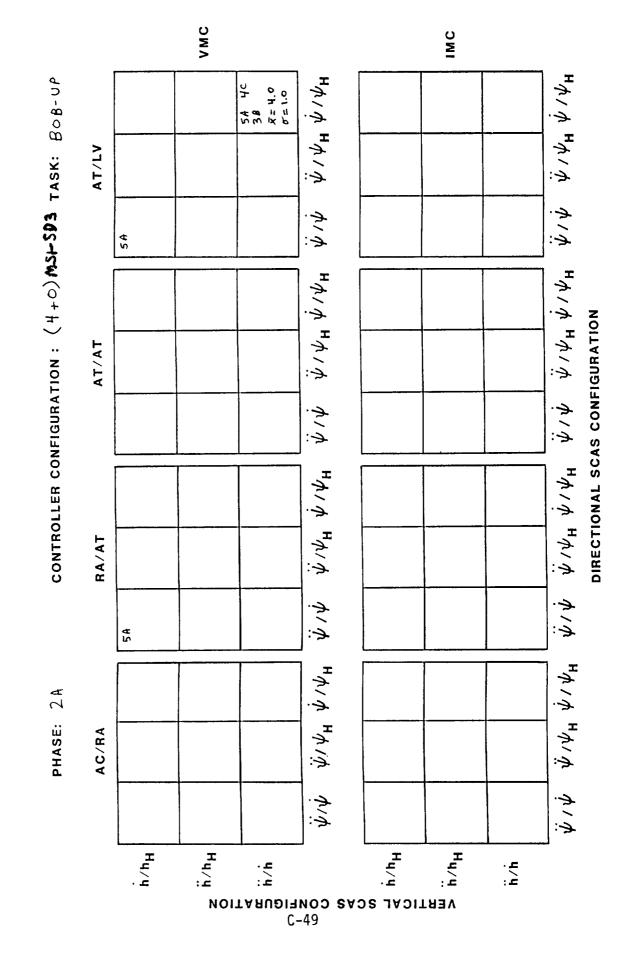
CMD/STAB	RA/AT RA/AT	AT/AT AT/AT	AT/AS-AT/LV RA/AT-AT/LV
	PILOT AVERAGE RANGE POINTS	PILOT AVERAGE RANGE POINTS	PILOT AVERAGE RANGE POINTS
	× 5.5	<	A 4.25 4-4.5 3
(4+0)	a	œ	æ
MSI-SD3	0 3-3 2	U	0 3 3-3 2
	۵	۵	0
	x-3.83σ-1.44	X - G.	x 3.75 0 0.75
	PILOT AVERAGE RANGE POINTS	PILOT AVERAGE RANGE POINTS	PILOT AVERAGE RANGE POINTS
	<	<	<
(3+1)C	6	a	80
MSI-SD3,	0 2 1.5-2.5 2	v	0 2
MSI-SD2) }	۵	۵
	x - 2.0 0 - 6.707	<u>x</u> . σ	<u>x.2.0</u>
	PILOT AVERAGE RANGE POINTS	PILOT AVERAGE RANGE POINTS	PILOT AVERAGE RANGE POINTS
	<	¥	۲
(2+1+1)	B	۵	m
MSI-SD3,	U	U	O
MSI-SD2	a	α	Q
	- - - - -	- b - x	\overline{x} - σ

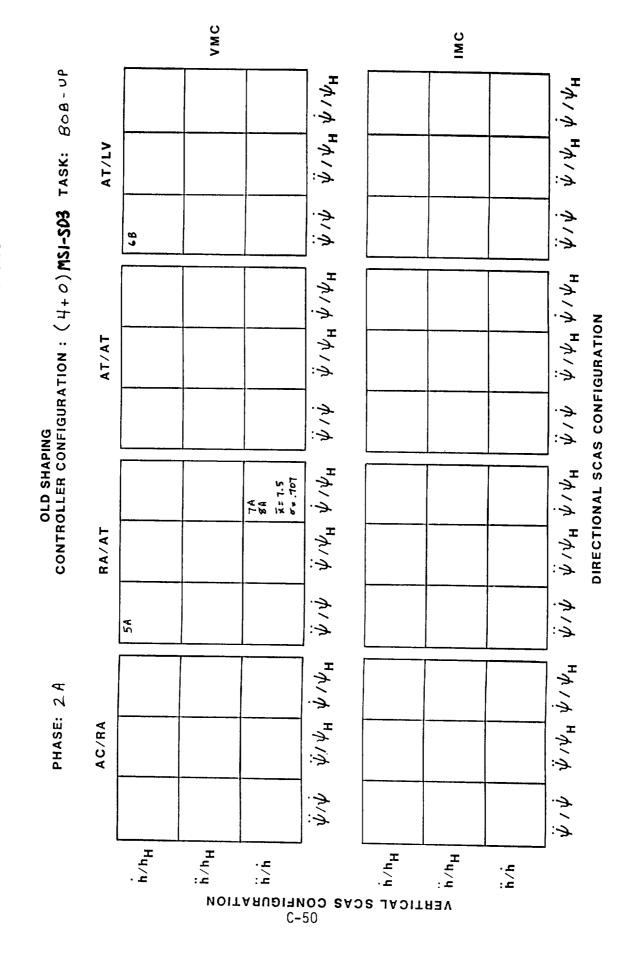
PHASE 2A PRIMARY MATRIX FOR 140-KT SLALOM TASK
TC ON
VMC

4 1-07 0310				F 4	, A T					
CONFIG.	RA/AT RA/AT			AT,	AT/AT AT/AT			AI/AS-AI/LV RA/AT-AT/LV	AI/LV AT/LV	
	PILOT AVERAGE RANGE	E POINTS	PILOT	AVERAGE	RANGE	NO. POINTS	PILOT	AVERAGE	RANGE	NO. POINTS
	1-h h v	7	٧	5.75	5.5-6	7	<	4.25	4-4.5	2
(4+0)		7	60)				m			
MSI-SD3	٥ 4.75, 4.5-5		υ	7		_	υ	3.33	3-4	W
			٩				۵			
	× - 4.37 σ · 6	0.0.48		× . 5.16	1.04	1		x . 3.7	0.0.67	.7
	PILOT AVERAGE RANGE	E POINTS	PILOT	AVERAGE	RANGE	NO. POINTS	PILOT	AVERAGE	RANGE	NO. POINTS
		-	<	2.5		-	٧	7		_
(3+1)C			60				60			
MSI-SD3,	3		O	Ŋ	5-5	7	U	M	2.5-4	m
MSI-SD2	٥	•	۵				۵			
	0 · ρ h · ×	0		₹-4.17	7 0 - 1.44	44		x - 2.75	σ.	0.87
	PILOT AVERAGE RANGE	SE POINTS	PILOT	AVERAGE	RANGE	POINTS	PILOT	AVERAGE	HANGE	NO. POINTS
	*		<				۷	7		_
(2+1+1)	т.		6				8			-
MS1-503.	C 7.E 2-2.5	.5	ပ				O	2.5	2-3	7
MSI-SD2			۵			1	۵	1		1
	x . 2.83 a.	۵.۱.٥٠		×	σ.			x - 2.4	α · ο	55

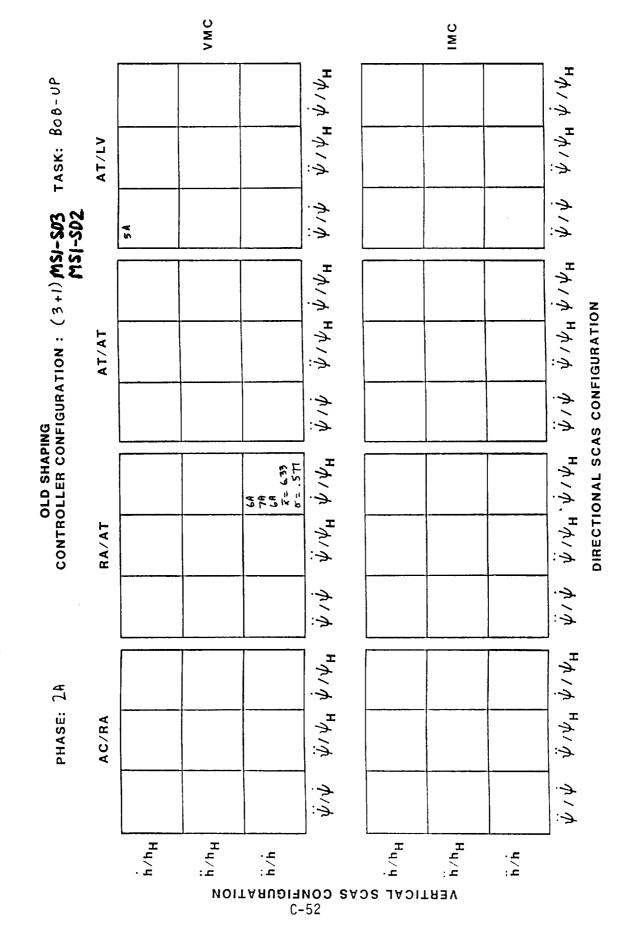

PHASE 2A PRIMARY MATRIX FOR 140-KT SLALOM TASK TC OFF VMC

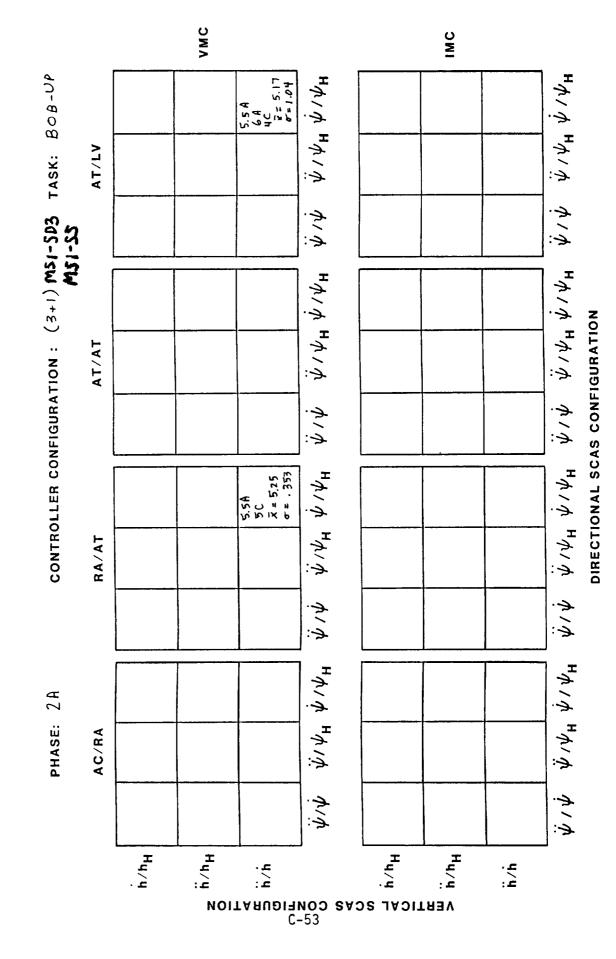

CONFIG.			RA RA	RA/AT RA/AT			AT. AT,	AT/AT AT/AT			AT/AS-AT/LV RA/AT-AT/LV	-AT/LV -AT/LV	
	ă	PILOT	AVERAGE	RANGE	POINTS	PILOT	AVERAGE	RANGE	NO. POINTS	PILOT	AVERAGE	RANGE	POINTS
(0+7)		∢	૭		_	∢	_		_	∢	Ŋ		_
(410) MSI-SD3		as (. 1	;		ao d						,	
		ه د	4.25	₹. •	7	വ വ				ပေရ	7. Z		-
			× - 4.83	3 0- 1.04	± 10		<u>x</u> .7				7.4.75	50.0.35	35
	<u>.</u>	PILOT	AVERAGE	RANGE	POINTS	PILOT	AVERAGE	RANGE	NO. POINTS	PILOT	AVERAGE	RANGE	POINTS
•		<	4.75		-	<	5.75		_	<	4.62	4-5	7
(3+1)C		60				•			,	60			
MSI-SD3,		υ <i>α</i>	7.		-	o i	7			U	4.5	4-5	7
MS1-2UZ		a .				۵				٥			
			× - 4.62	Ġ	0.18		x - 6.37	7 0.0.88	88		× - 4.5	×-4.56 σ. ο.	51
	Ή	PILOT	AVERAGE	RANGE	POINTS	PILOT	AVERAGE	RANGE	POINTS	PILOT	AVERAGE	RANGE	POINTS
(2+1)		<	S		_	<				∢	4.5		-
)(1+C)						80				•			
MSI-5U3,	_	o	M		-	U				O	2.5		_
705-151	- I			1		٥				۵			
			×. 4.0	D-1.41	11		!×	σ.			× .3.5	σ. Ι.	<i>lh</i>

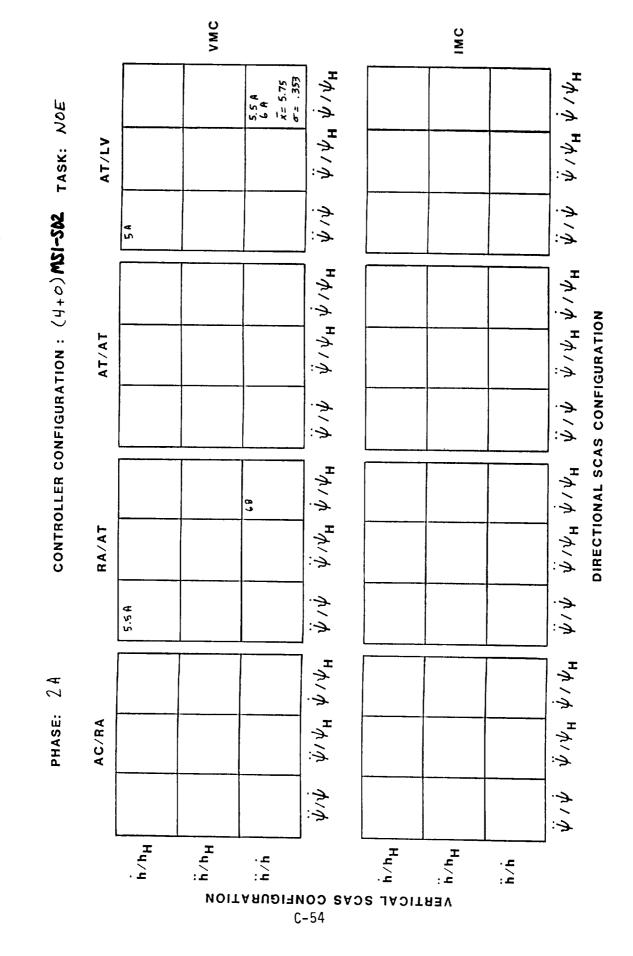


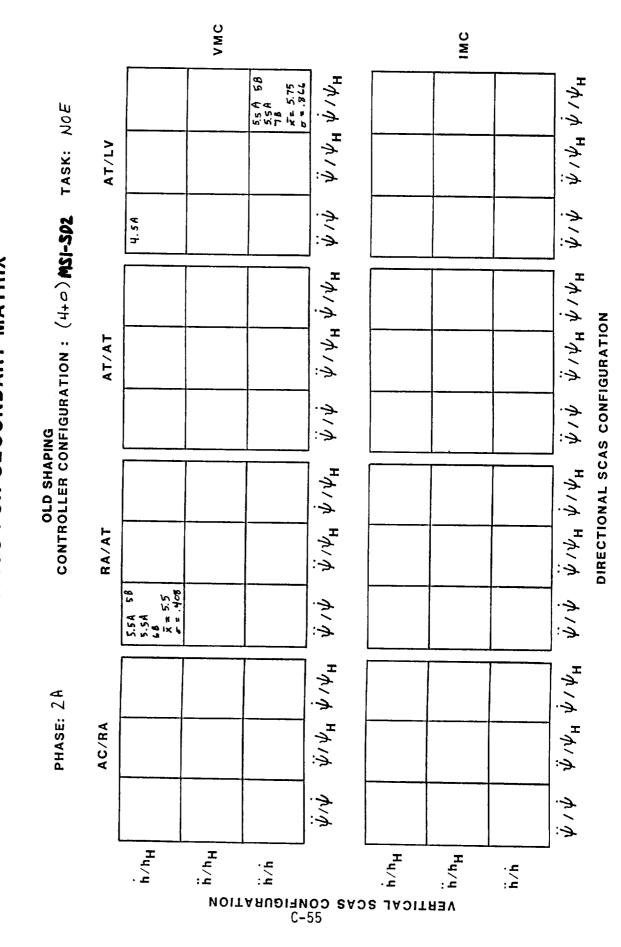

PHASE 2A SECONDARY MATRICIES

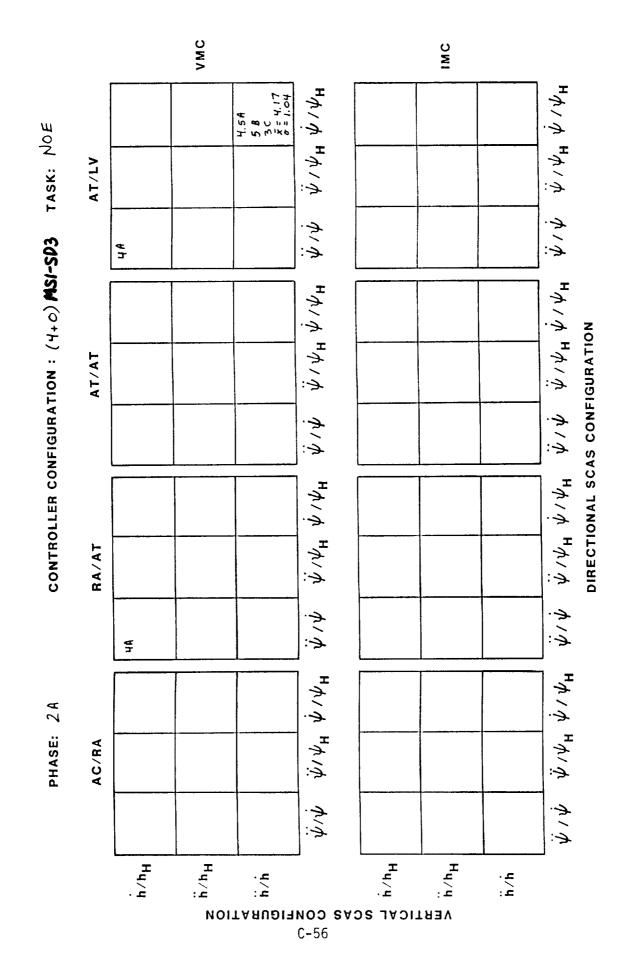

1			

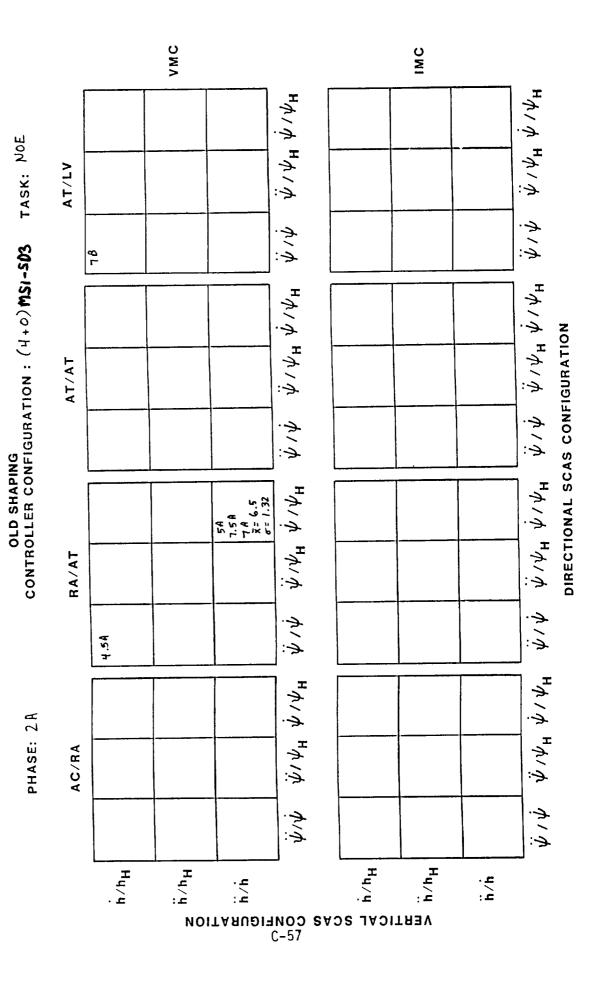


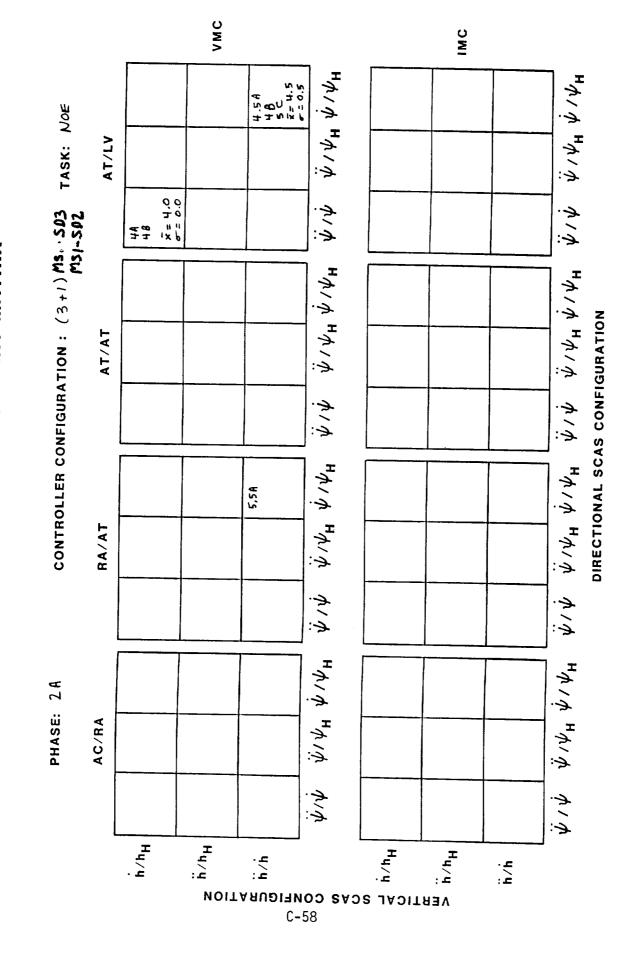


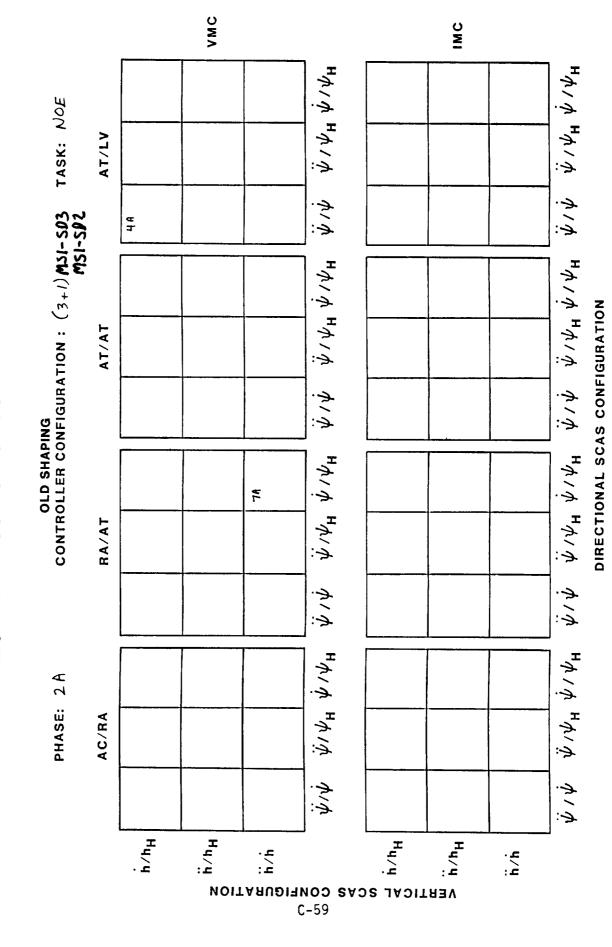


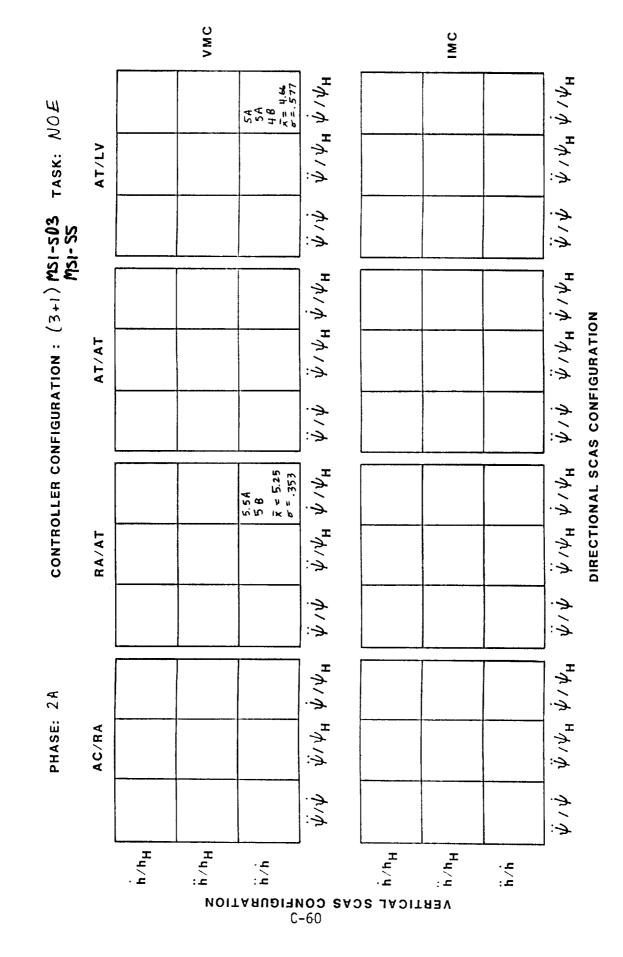


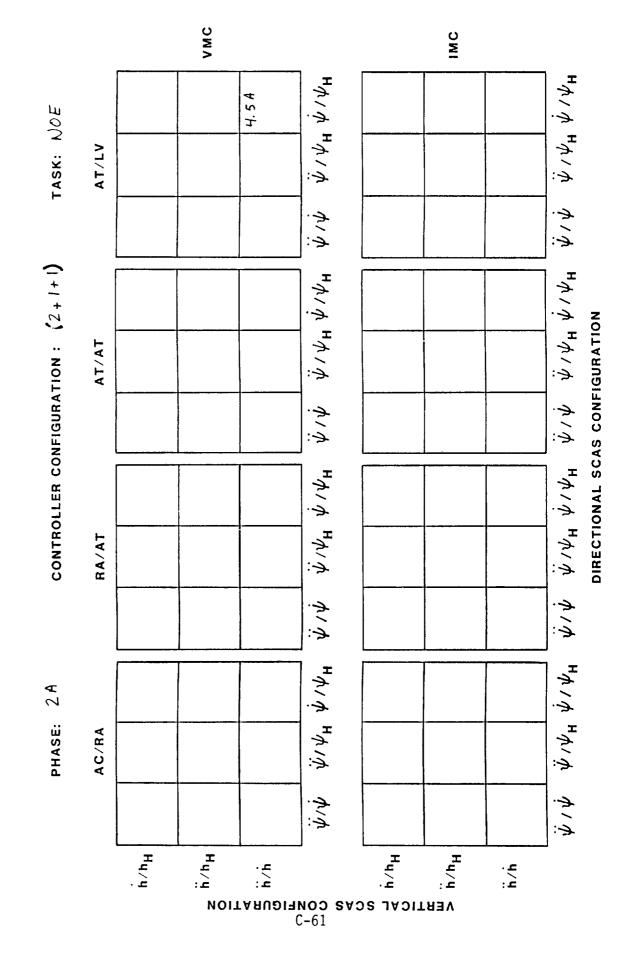


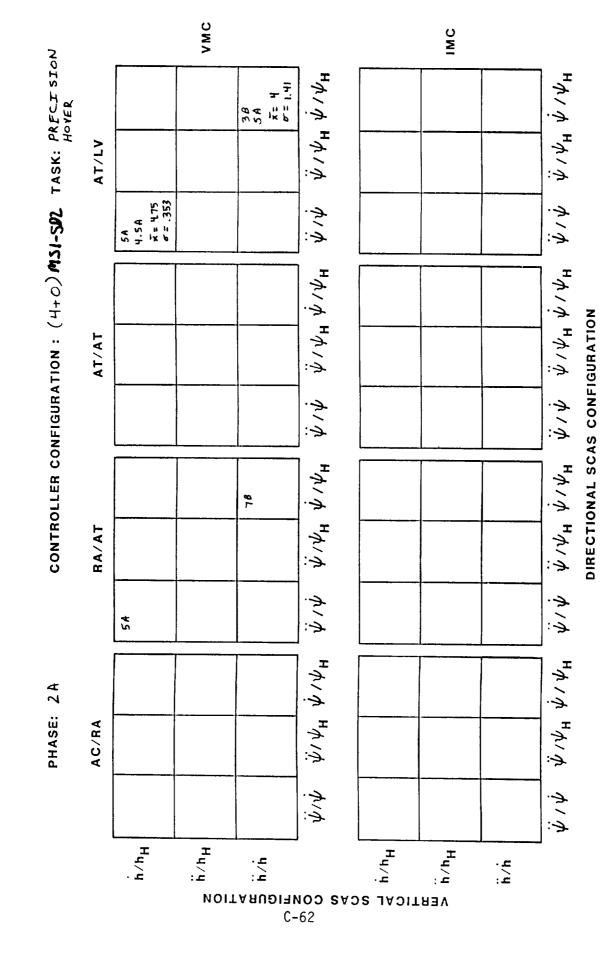


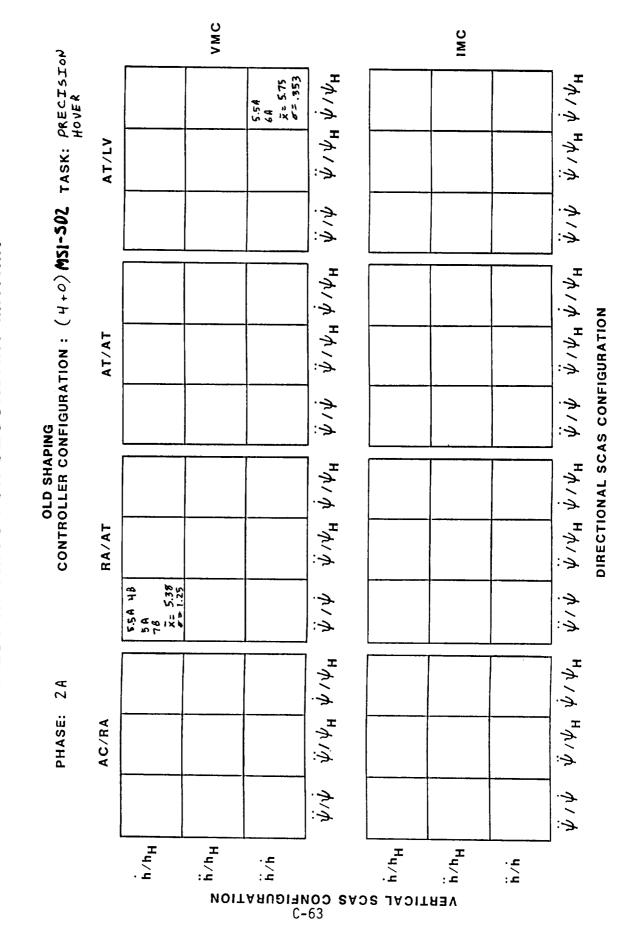

PILOT RATINGS FOR SECONDARY MATRIX

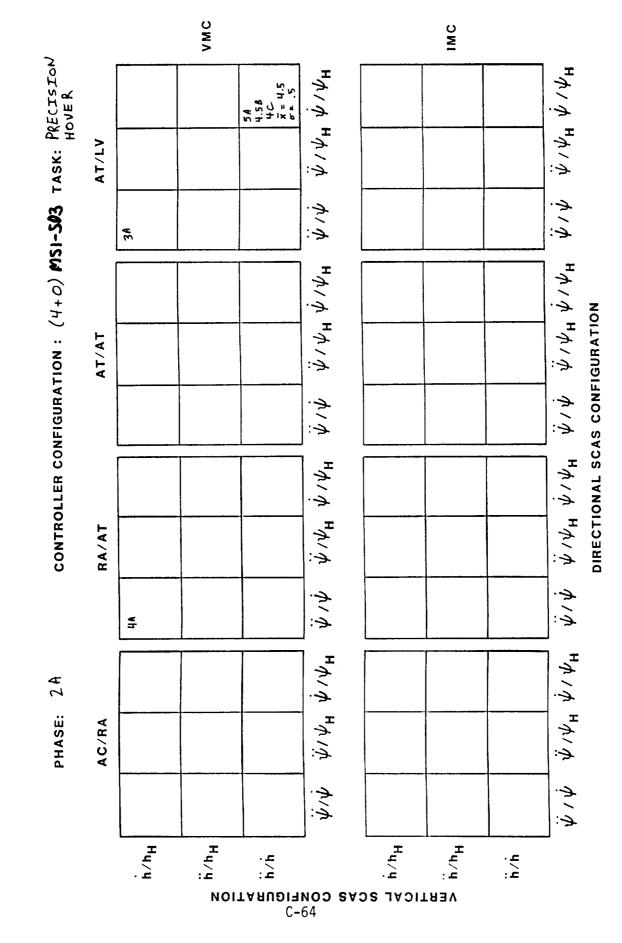


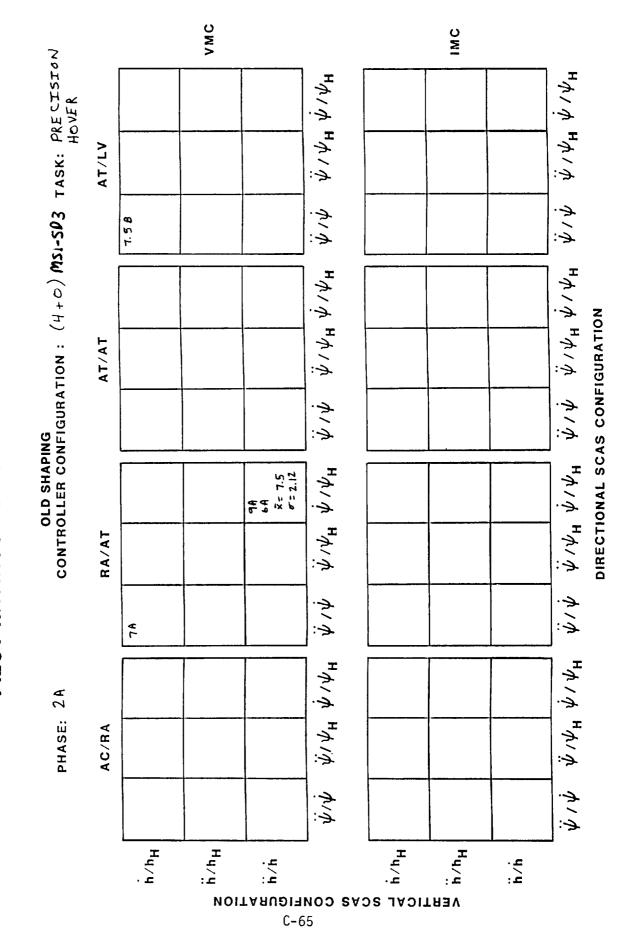


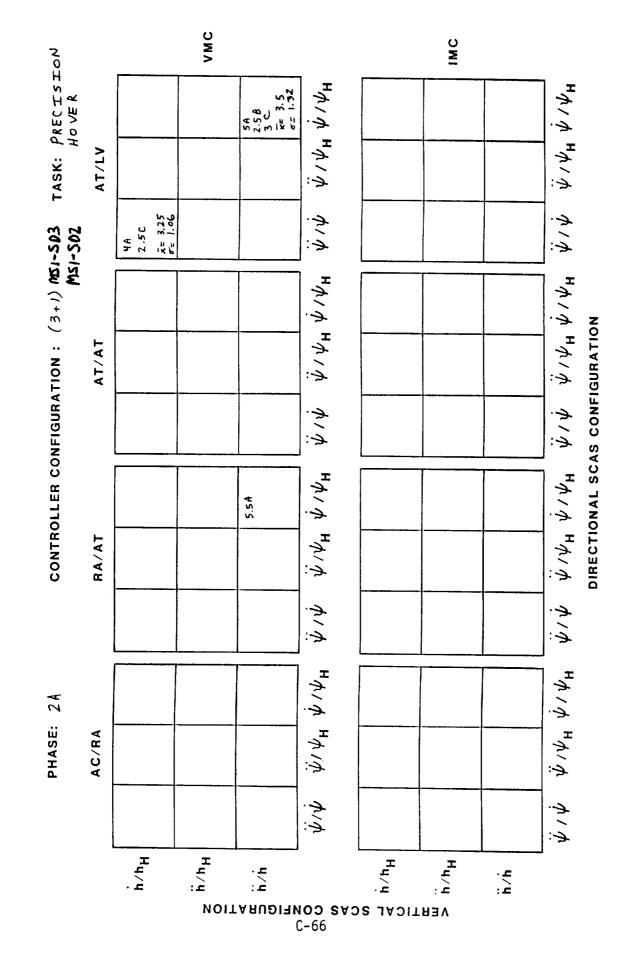


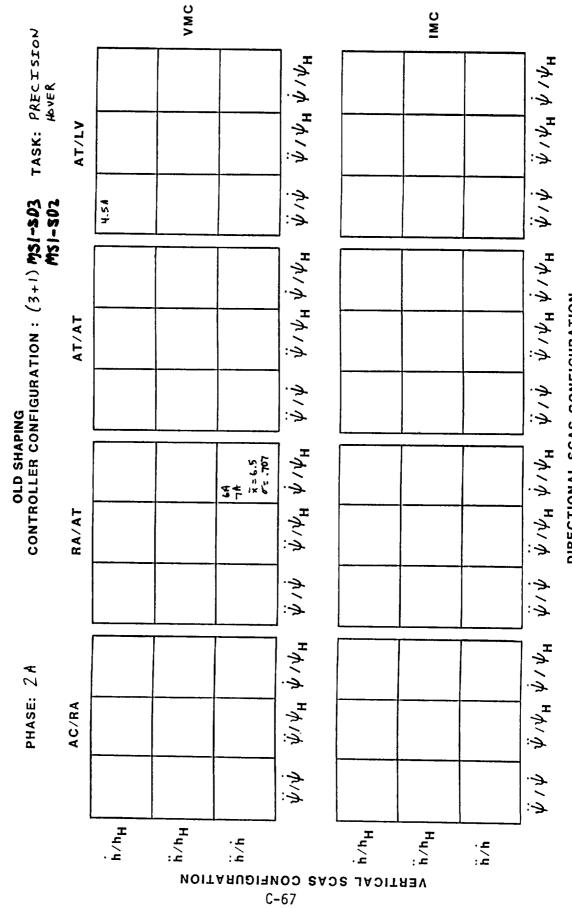


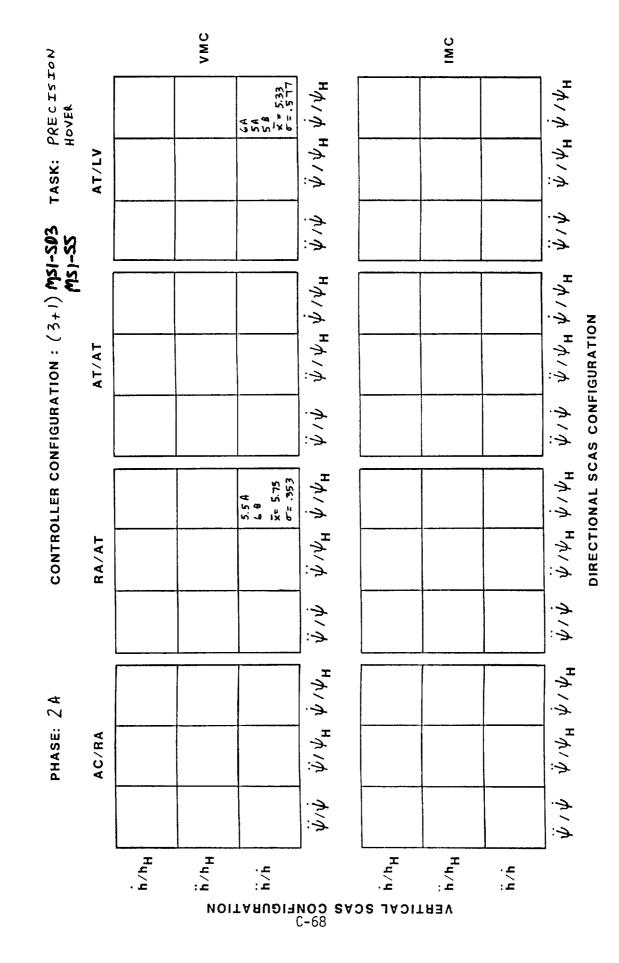












DIRECTIONAL SCAS CONFIGURATION

PHASE 2B PRIMARY MATRICIES

ı		

PHASE 2B PRIMARY MATRIX FOR PRECISION HOVER (GRIP COMPARISON)

VMC

CONFIG.		AT/LV	LV			רא/רא	'LV			ГV/РН	ЪН	
	PILOT	AVERAGE	RANGE	NO. POINTS	PILOT	AVERAGE	RANGE	NO. POINTS	PILOT	AVERAGE	RANGE	NO. POINTS
(4+0)	<				∢				<			
MS1-SD3	0	7		~	•	5.2	2-3	2	60			
COC TAIN	o	*		-	O	7		-	υ			
NAE GKIP	۵	3.5	3- H	7	٥	→	≯ - - -	7	۵			
		×-3.0	g. 0	82		x - 3.25	σ-0.95			×	σ.	
	PILOT	AVERAGE	RANGE	NO. POINTS	PILOT	AVERAGE	RANGE	NO. POINTS	PILOT	AVERAGE	RANGE	NO. POINTS
	ш	±			4				W	3		~
13 1/01/1/	60	٣	3-3	2	80	~	3-3	3	80	8		`
(4±0)LSI	O	#		~	υ	7	3-5	~	O			
EXPERIMENTAL Cold	۵				٥	*	3-5	7	۵			
		<u>x</u> : 3.5	0.0	0.58		× - 3.6	0.0.9			× 3.0	0.0	
	PILOT	AVERAGE	RANGE	NO. POINTS	PILOT	AVERAGE	RANGE	NO. POINTS	PILOT	AVERAGE	RANGE	NO. POINTS
	<				<				<			
(4+0)LSI	ď	6		-	m	3.5	3-4	2	ω			
NAE GRIP	υ	٠		-	U	m	3-3	2	O			
	۵				۵]] 		۵		1	1
	! ! !	× . 3.0	0 · o			x - 3.25	g. 6	.5		· i×	σ.	

PHASE 2B PRIMARY MATRIX FOR NOE TASK (GRIP COMPARISON)

CMD/STAB CONFIG.		AT,	AT/LV			۲۸′	۲۸/۲۸			ΓΛ/	ГV/РН	
	PILOT	AVERAGE	RANGE	NÖ. POINTS	PILOT	AVERAGE	RANGE	NO. POINTS	PILOT	AVERAGE	RANGE	NO. POINTS
	∢				<				М	Ŧ	h-h	2
(4+0)	80	5		_	æ				ø	м	3-3	2
MS1-SD3	O				U				ပ	→		~
NAE GRIP	٥				٥				٥	4.55	4-5	8 0
	 	x - 5	σ.			×	σ.			× - 3.9	σ 6 4	
	PILOT	AVERAGE	RANGE	NO. POINTS	PILOT	AVERAGE	RANGE	NO. POINTS	PILOT	AVERAGE	RANGE	NO. POINTS
	<				*				w	3	h-h	2
(4+0)LSI	æ	±		-	80				•	w	3-3	÷
EXPERIMENTAL	O	5.5		-	υ				υ	4.33	4-5	٦
GRIP	Ω				۵				۵	7	1-	2
		⊼ - 4.7	5 0 - 1.06	6		× -	σ.			∡-3.72	σ65	
	PILOT	AVERAGE	RANGE	POINTS	PILOT	AVERAGE	HANGE	NO. POINTS	PILOT	AVERAGE	RANGE	NO. POINTS
	<				<				<			
151(0+0)	8	7			æ				•	3.5	3-4	2
NAE CDID	υ	٧			υ				U	m	3-3	2
NAL GRIT	۵				۵				۵			
		x - 4.5	7070	۲,		<u>*</u>	σ.			x - 3.25	S 05	

OF POOR QUALITY

PHASE 2B PRIMARY MATRIX FOR BOB-UP TASK (GRIP COMPARISON)

VMC

CMD/STAB		AT,	AT/LV			LV,	LV/LV			LV/	ГУ/РН	
	PILOT	AVERAGE	RANGE	NO. POINTS	PILOT	AVERAGE	RANGE	NO. POINTS	PILOT	AVERAGE	RANGE	NO. POINTS
(4+0)	<				∢				<			
MSI-SD3	Δ.	₩.	h-2	η,	60	2	:	(•			
NAE GRIP	U	ري بر	3-4	ν,	o	4.25	2. p - 4.5	7 ,	υ			
	۵	T			۵	.	T = = = = = = = = = = = = = = = = = = =	2	۵			
		× - 3.4	089	9	1	x - 3.7	σ. 0.97	7		× .	σ.	
	PILOT	AVERAGE	RANGE	NO. POINTS	PILOT	AVERAGE	RANGE	NO. POINTS	PILOT	AVERAGE	RANGE	NO. POINTS
	<				∢				ш	3		-
(4+0)LSI	60	~	2-H	7	ω	2.33	2-3	m	60	7		_
EXPERIMENTAL	o	М		-	o	7	3-5	→	O			
GRIP	۵				۵	3		~	٥			
		×-3.0	0.1.0	>		× 3.37	3.3750.1.2		1	× - 2.5	7. 6.107	107
	PILOT	AVERAGE	RANGE	NO. POINTS	PILOT	AVERAGE	RANGE	NO. POINTS	PILOT	AVERAGE	RANGE	NO. POINTS
	<				<				۷			
(4+0)LSI	æ	~		-	60	M	7- H	2	60			
NAE GRIP	O	ĸ		_	υ	m	3-3	7	o			
	۵				۵				٥			
		× . 3	ο · ο			x - 3.0	0 0.0.82	32		, ×	σ.	

PHASE 2B PRIMARY MATRIX FOR 90-KT SLALOM TASK TC ON - VMC

								I				
CONFTG		RA/ RA/	RA/AT RA/AT			AT/AT AT/AT	AT AT			AT/AS-AT/LV RA/AT-AT/LV	AT/LV AT/LV	
:51 100				Ö.	to ia	ANERAGE	11. 22. 4.	Ö	Pii OT	AVERAGE	RANGE	NO.
	PILOT	AVERAGE	RANGE	POINTS		JA ED A GE	TDM/CH	POINTS				N COIN
()	m				w				w			
(4+0)	10	n	3-3	2	80				a			
MSI-SD3	o	3 75	3-4.5	7	O				U			
NAE GRIP	٥	`	1		۵				۵			
		x . 3.37	6	0.75		 x	σ-			× .	σ-	
	PILOT	AVERAGE	RANGE	NO. POINTS	PILOT	AVERAGE	RANGE	NO. POINTS	PILOT	AVERAGE	RANGE	NO. POINTS
	w				¥				ш	2.25	2-2.5	7
	æ	7 22	2-3	3	6				83	2.33	2-3	co.
(4+0)LSI	O	, i	7-27	7	U				ပ			
EXPERIMENTAL	۵	: : :) : 		٥				0			
GRIP		 × . 4.3	74.1.0	7	1	<u>×</u>	σ.			x - 2.3	g. 0.45	5

PHASE 2B PRIMARY MATRIX FOR BOB-UP TASK IN CALM AIR IMC

CMD/STAB		AT/LV	ΓΛ			LV/LV	,LV			ГV/РН	Н	
	PILOT	AVERAGE	RANGE	NO. POINTS	PILOT	AVERAGE	RANGE	NO. POINTS	PILOT	AVERAGE	RANGE	NO. POINTS
	<				<	,			<	,		_
(4+0)LSI	∞ ∪	m			m ပ	n		_	a ∪	m		-
	۵				۵				٥			
	1	x . 3.0				x . 3.0				×.3.0		1
	PILOT	AVERAGE	RANGE	NO. POINTS	PILOT	AVERAGE	RANGE	NO. POINTS	PILOT	AVERAGE	RANGE	POINTS
	<			·	<				∢			
3/116/	ø	m		_	6				60	7		_
(3+1)0	υ				υ				υ			
	٥				۵		 		۵		1	1
	 	x . 3. 0				×	σ.			×-2.0		
	PILOT	AVERAGE	PANGE	NO. POINTS	PILOT	AVERAGE	RANGE	NO. POINTS	PILOT	AVERAGE	RANGE	NO. POINTS
	<				<				<			
(111)					Δ.				•	7		_
(7+1+1)	U				o				O			
	۵				٥		-	,	٥	-		1
		x	σ.			-×	σ.			×-2.0		

PHASE 2B PRIMARY MATRIX FOR BOB-UP TASK IMC

CMD/STAB									•			
CONFIG.		AT/LV	۲۸			۲۸/۲۸	ΓΛ			ΓΛ/	ГУ/РН	
	PILOT	AVEHAGE	RANGE	NO. POINTS	PILOT	AVERAGE	RANGE	NO POINTS	PILOT	AVERAGE	RANGE	NO POINTS
	<				∢	1			<			
121/04/	a	5.5	5-6	1	œ	י	,	_	m	+	4-4	M
(+10/21	v	5.5	•	_	v	Ŋ	4-6	00	ပ	4.12	3-5.5	7
	۵	Ŋ		-	۵				۵	W		_
		x . 5.4	5.420. 0.49	+4		× - 5.0	0.0.6			x . 3.94	4 0.0.78	9
	PILOT	AVERAGE	RANGE	NO. POINTS	PILOT	AVERAGE	RANGE	NO. POINTS	PILOT	AVERAGE	RANGE	NO. POINTS
	<				٧				<			
/3+11C	80	Ŋ		-	60				80	m	3-3	7
3/1-0/	v	2	9-4	8	U			_	O	4.17	4-4.5	W
	۵	=		-	۵	'n	3-3	2	a			
		× - ч.8	0.0.84	ht.	1	× - 3.3	0.0	.58		x . 3. 7	7 0.0.7	.7
	PILOT	AVEHAGE	RANGE	NO. POINTS	PILOT	AVERAGE	RANGE	POINTS	PILOT	AVERAGE	RANGE	NO. POINTS
	<				۷.				∢			
(2+1+1)	6	'n		_	60	7		-	60	w		_
(1,1,7)	U	رد ک		_	U	-		-	U	3	4-4	7
	۵				۵				۵			
		x - 4.75	5 0.036			× - 4.0	0.0			x - 3.6		8
(* ; * ; *)	0 0	4.5 × 4.75		- 3	U a		~	4.0 0.0	6	0.0	0.0	η ο η σ ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο

NOTE: RATINGS WITH TURBULENCE AND WIND SHEAR

ORIGINAL FACE 13 OF POOR QUALITY

PHASE 2B PRIMARY MATRIX FOR PRECISION HOVER TASK IN CALM AIR IMC

(4+0)LSI B 2			LV/LV				۲۸′	Г∨/РН	
≪ a ∪ c	POINTS	PILOT	AVERAGE	RANGE	NO. POINTS	PILOT	AVERAGE	RANGE	NO. POINTS
8 U C		<				۷			
	_	m	7			8 2	7		_
		υ a	W			o a			
x 2.0		7	×-2.5	0.0.707	70			Г	
PILOT AVERAGE RANGE	NO. POINTS	PILOT	AVERAGE	RANGE	NO. POINTS	PILOT	AVERAGE	HANGE	NO. POINTS
<		<				4			
(3+1)[_	50 (7		_	a 5 (
		, a		**		ם נ			
× 3.0			x - 2.0				×.	σ.	
PILOT AVERAGE RANGE	NO. POINTS	PILOT	AVERAGE	RANGE	NO POINTS	PILOT	AVERAGE	RANGE	NO. POINTS
<		*				<			
8 (2+1+1)		60				m	7		_
) (T_T_T_)		v				v			
۵		٥	•			۵	7		_
<u>κ</u> - Δ.			i×	σ.		1	×.2.0	σ. ο	

PHASE 2B PRIMARY MATRIX FOR PRECISION HOVER TASK IMC

CMD/STAB		AT	AT/LV			רא/רא	۲۸			۲۸,	ГV/РН	
	PILOT	AVERAGE	RANGE	NO. POINTS	PILOT	AVERAGE	RANGE	POINTS	PILOT	AVERAGE	RANGE	POINTS
10 1/0 1/1	< 03	3.75.	7	7	∢ ø	w. 72	3-4	7	< m	m	3-3	7
(4+0)51	0 0	W	-	_	υa	3.78	3-5.5	7	0 0	2.5	2-2	m 4
		× - 3 (6 0.0	55		x . 3.72	g . 0.	97		×.2.89 σ.	O	33
	PILOT	AVERAGE	HANGE	NO. POINTS	PILOT	AVERAGE	RANGE	NO. POINTS	PILOT	AVERAGE	RANGE	POINTS
	<				<				∢			
(3+1)	0			-	6	,			Œ	2	2-2	7
3/116)	O	w N	3-4	7	0 6	w "	7 - 17	<u>-</u> ر	o d	3.33	3-4	~
	۵	→		-	2	٥.٠	7 - 6	7	a 		1	
		× - 3.	×-3.75 σ- 0	0.5		x · 3.33	σ·0	. 58		× - 2.8	P 0 - 0.84	4.8
	PILOT	. AVERAGE	RANGE	NO POINTS	PILOT	AVERAGE	RANGE	POINTS	PILOT	AVERAGE	RANGE	POINTS
	∢				∢				<			
(0+1+1)	80	1 0		-	on .	1		-	c o	7		_
(1.1.7)	Ü	~		_	υ (n			υ d			_
	۵		 		٥	 	1	1	o			
		× . 4.0	0 0-1.4	4		x . 3. 5	0.0.7	,		× . 3.0	0 a. I.4	

NOTE: RATINGS WITH TURBULENCE AND WIND SHEAR

PHASE 2B PRIMARY MATRIX FOR NOE TASK IMC

CMD/STAB	RA/AT RA/AT	AT/AT AT/AT	AT/LV AT/LV
	PILOT AVERAGE RANGE POINTS	PILOT AVERAGE RANGE POINTS	PILOT AVERAGE RANGE POINTS
	7 4	4.5 4-5 2	4 -5 4-5 4
(4+0)			. 5 8-5 4
	x-6.5 σ· 0.707	x.4.33 0.0.57	×. 5.0 σ. σ.5
	PILOT AVERAGE RANGE POINTS	PILOT AVERAGE RANGE POINTS	PILOT AVERAGE RANGE POINTS
	<	•	<
(211)			<u> </u>
7/1+6/	9		3 1
	9 0	9	ر ا
	x . 6.33 0 . 0.57	x-5.0 σ· 1.4}	x. μ.μ σ. ο. 55
	PILOT AVERAGE RANGE POINTS	PILOT AVERAGE RANGE POINTS	PILOT AVERAGE RANGE POINTS
	×	<	<
(2+1+1)	01	5 5-5 2	
(1.1.7)	0,	U G	5 5 6
	5		
	x - 8 33 0 - 2.89	× 5.0 0.0	c + .0 · σ · δ · x · x

PHASE 2B PRIMARY MATRIX FOR 30-KT SLALOM TASK IMC

CMD/STAB CONFIG.			RA	RA/AT			AT,	AT/AT			ΑŤ,	AŤ/LV	
	PILOT		AVERAGE	RANGE	POINTS	PILOT	AVEHAGE	RANGE	NO. POINTS	PILOT	AVERAGE	RANGE	NO. POINTS
151(0+1/)	< m	< 60	9			< n	7	7-7	7	< ∞	رم	5-5	7
(4.0)	0 0		و ي			U a	9 73	-1 		υ <u>α</u>	יא א	4.5-6	м –
			x - 5.67	7 0.0.	58		x-625	9	0.96		x . 5.25	5 0.0.61	61
	PILOT		AVERAGE	RANGE	NO. POINTS	PILOT	AVERAGE	RANGE	NO. POINTS	PILOT	AVERAGE	RANGE	POINTS
						۲				<			
(3+1)C	6		ا د		_	ω.	و			60	B	5-5	8
0/1	υ Δ		-		_	ധ മ	+		_	U E	3 .	3-5	5
			× . 6.5	σ.	707.0		× - 5.0	μ.1 - ρ o		,	× 4.63	Q . D	74
	PILOT		AVERAGE	RANGE	NO. POINTS	PILOT	AVERAGE	RANGE	NO POINTS	PILOT	AVERAGE	RANGE	NO. POINTS
	< 					٠				*			
(2+1+1)	Φ.		: د			60	2		_	•	⇉	h-h	2
,	υ <u>α</u>		-		_	υ Δ	-		_	۵ ۵	3.5	3-4	2
			× S	σ · l. ψ	 			TOT.0.0	707		× - 3.75	σ. ο.	5

PHASE 2B PRIMARY MATRIX FOR 90-KT SLALOM TASK IMC

CMD/STAB		RA/AT RA/AT	RA/AT RA/AT			AT/AT AT/AT	AT AT			AT/AS-AT/LV RA/AT-AT/LV	AT/AS-AT/LV RA/AT-AT/LV	
	PILOT	AVERAGE	RANGE	NO POINTS	PILOT	AVERAGE	RANGE	POINTS	PILOT	AVERAGE	RANGE	POINTS
	<				< <				<			
(4+0)[S]	ns (7		_	6 5 (3-		-	5 3	3.5	3-4	7
	ם ע	ស			ა ი 				υ 4	2	5-5	~
	-	× . 4.5	TOT.0.D	707		× - 4.0	σ.	1	1	<u>×</u> 4.4	σ. σ.	89
	PILOT	AVERAGE	RANGE	NO. POINTS	PILOT	AVERAGE	RANGE	NO. POINTS	PILOT	AVERAGE	RANGE	POINTS
	<				∢				<			
(3+1)	6	7		_	æ	2. 2.	4-5	7	60		4-4	7
2(1.6)	υ Δ				م ن				۵ ۵	т		_
	1	× +.0	σ.		-	. 4.5 × - 4.5	701.0.0	707		× 3.67	σ.	0.58
	PILOT	AVERAGE	PANGE	NO. POINTS	PILOT	AVERAGE	HANGE	POINTS	PILOT	AVERAGE	RANGE	NO. POINTS
	<				∢				<			
(2+1+1)	æ	-		2	œ				ø	3.5	3-4	7
(1,1,7)	Q	w		· –	υ	~	3-3	2	υ	3.33	3-4	٣
	۵				۵				۵			
		x · 3.67	7 0.0.58	8		×.3	ь 0			× - 3.4	0.0.55	55

PHASE 2B PRIMARY MATRIX FOR STRAIGHT DECEL TASK

CONFIG.		RA,	RA/AT RA/AT			AT/AT AT/AT	AT/AT AT/AT			AT/AS-AT/LV RA/AT-AT/LV	AT/LV AT/LV	
	PILOT	AVERAGE	RANGE	NO. POINTS	PILOT	AVERAGE	RANGE	NO POINTS	PILOT	AVERAGE	RANGE	NO
	<				∢				<			
	60	•		_	тэ.				80	ß		`
(4+0) LSI	v				U				υ	٧, ٧		_
	۵	^		_	۵				۵	ه		-
	 	× . 6.5	g. 0.707	707		<u>×</u>	σ.			× . 5.3	5.33 a. 0.58	58
	PILOT	AVERAGE	RANGE	POINTS	PILOT	AVERAGE	RANGE	NO. POINTS	PILOT	AVERAGE	RANGE	POINTS
	<				<				<		,	(
	60	Ŋ		-	•				8	m	3-3	7
(3+I)C	o				o				o	ы		_
	۵	v		_	۵				٥	W		_
	1	× 5.0	9.0			×	σ.			× 3.0	000	
	PILOT	AVERAGE	RANGE	ON POINTS	PILOT	AVERAGE	RANGE	NO. POINTS	PILOT	AVERAGE	RANGE	POINTS
	<				<				<		_	
		6	2-9	2	85	<u>.</u>			ø	ഹ	9-h	7
(2+1+1)	O	7		_	U	<u> </u>			U	'n		-
	٥	9		-	۵		1 1 1	!	ا ا م	N	ı	-
		×-5.7	× - 5.75 σ - 1.25	2.5		⊼ . म.ठ	0			×. Ψ.≶	5 a.1.3	

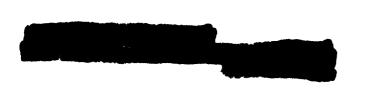
PHASE 2B PRIMARY MATRIX FOR LEFT TURNING DECEL TO HOVER TASK IMC

CMD/STAB		RA/AT	AT			AT/AT	'AT			AT/AS-AT/LV	AT/LV	
CONFIG.		RA/AT	AT			AT/AT	'AT			RA/AT-	AT/LV	
	PILOT	AVERAGE	RANGE	NO. POINTS	PILOT	AVERAGE	RANGE	NO. POINTS	PILOT	AVERAGE	RANGE	NO. POINTS
	•				<				<			
	< B	9		_					•	e	2-7	m
(4+0)LSI	u)			o				o			
	٥	7	•	_	۵				٥	5. S.	2-6	7
	1	×-6.5	707.0.0	707	1	× .	9.			× 5.8	σ. ο.ε	0.84
	PILOT	AVERAGE	RANGE	NO. POINTS	PILOT	AVERAGE	RANGE	NO. POINTS	PILOT	AVERAGE	RANGE	NO. POINTS
					<				۷			
	. •	Ŋ		_	6			_	6 0	-	3-5	w
(3+1)C	U				U				O	!		,
	a	v	5-5	7	۵				۵	5.33	5 - k	2
	1	- S · ×	0.6			× - 4.0				x - 4.67 0.		1.03
	PILOT	AVERAGE	RANGE	NO. POINTS	PILOT	AVERAGE	RANGE	NO. POINTS	PILOT	AVERAGE	RANGE	NO. POINTS
					<				<			
	; co	lο		_					60	7.5	4-5	7
(2+1+1)	O				O				ပ			
	Δ.	9			٥				۵	ل م	5-5	2
		× - 5.5	ď	0.707		×	υ D	1 1 1		i i×	4.75 a. 0.5	5

PHASE 2B PRIMARY MATRIX FOR RIGHT TURNING DECEL TO HOVER TASK IMC

	AT/AS-AT/LV RA/AT-AT/LV	AVERAGE RANGE		9-9 9		× . 6.0 σ · 0	AVERAGE BANGE		5 4-6		4.25 4-5	x. 4.6 0.0.79	AVERAGE RANGE		3.5 3-4			× 3.5 σ ο . το 707
		PILOT	<	æ	ပရ		PILOT	<	co.	ပ	۵		PILOT	<	æ	O	٥	<u> </u>
		POINTS					POINTS						POINTS		_			
	AT/AT AT/AT	RANGE				σ.	RANGE					σ-	RANGE					σ.
	AT, AT,	AVERAGE				×	AVERAGE					i×	AVERAGE		m			× . 3.0
		PILOT	<	Œ,	د ن		PILOT	*	æ	o	0		PILOT	<		u	۵	
		POINTS					POINTS		7				NO POINTS		-			
	RA/AT RA/AT	HANGE				σ.	RANGE		5-5			0.0	RANGE					σ.
	RA, RA,	AVERAGE				× .	AVERAGE		S		 	× 5.0	AVERAGE		ហ			× 5.0
		PILOT	∢	6	0 n		PILOT	∢	6 0	ပ	Δ 		PILOT	<	т,	ပ	۵	
CMD/STAB	CONFIG.			121(0+1)	(4.0) [3]				(3+1)C	0/4.07					(2+1+1)	(1.1.7)		

1. Report No. NASA CR- 177339 and USAAVSCOM TR 84-A-7	2. Government Accession No.	3, Recipient's Catalog No.
4. Title and Subtitle Development of ADOCS Control	lers and Control Laws	5. Report Date March 1985
Volume 3 - Simulation Result		6. Performing Organization Code
7. Author(s)		8. Performing Organization Report No. D210-12323-3
K. H. Landis, S. I. Glusman		10. Work Unit No.
9. Performing Organization Name and Address		1L263211D315
Boeing Vertol Company		11. Contract or Grant No.
P. O. Box 16858		NAS2-10880
Philadelphia, PA 19142		13. Type of Report and Period Covered
12. Sponsoring Agency Name and Address	and Administration	Final Report 1/81 - 6/84
National Aeronautics and Spa Washington, DC 20546 & U.S.		14. Sponsoring Agency Code
Command, St. Louis, MO 63166		505-42-11
15. Supplementary Notes		


Point of Contact: Technical Monitor, Edwin W. Aiken, Ames Research Center,

Moffett Field, CA 94035. Phone: (415) 694-5362; FTS: 464-5362, AUV: 359-5362

16. Abstract

The Advanced Cockpit Controls/Advanced Flight Control System (ACC/AFCS) study was conducted by the Boeing Vertol Company as part of the Army's Advanced Digital/Optical Control System (ADOCS) program. Specifically, the ACC/AFCS investigation was aimed at developing the flight control laws for the ADOCS demonstrator aircraft that will provide satisfactory handling qualities for an attack helicopter mission. The three major elements of design considered during the ACC/AFCS study are summarized as follows: Dilot's Integrated Side-Stick Controller (SSC) -- Number of axes controlled; force/displacement characteristics; ergonomic design. Stability and Control Augmentation System (SCAS)--Digital flight control laws for the various mission phases; SCAS mode switching logic. Pilot's Displays -- For night/adverse weather conditions, the dynamics of the superimposed symbology presented to the pilot in a format similar to the Advanced Attack Helicopter (AAH) Pilot Night Vision System (PNVS) for each mission phase as a function of SCAS characteristics; display mode switching logic. Volume I is an Executive Summary of the study. Findings from the literature review and the analysis and synthesis of desired control laws are reported in Volume 2. Results of the five piloted simulations conducted at the Boeing Vertol and NASA-Ames simulation facilities are presented in Volume 3. Conclusions drawn from analysis of pilot rating data and commentary were used to formulate recommendations for the ADOCS demonstrator flight control system design. The ACC/AFCS simulation data also provide an extensive data base to aid the development of advanced flight control system design for future V/STOL aircraft.

J	Helicopter Rotorcraft	18. Distribution Statemen Unclassified -		
19. Security Classif, (of this report)	20. Security Classif. (of this page)	21. No. of Pages	22. Price*
Unclassified	Unclassif	ied	313	

