N 8 7 - **1:7764**

NARS SURFACE SCIENCE REQUIRENENTS AND PLAN

J.D. Blactc, H. Ander, **and D.T. Vanlman Los** Aiamos **National Laboratory Los Alamos, New** Mexico

ABSTRACT

We **analyze the requirements for obtaining** geological, geochemical, **including** masses **of drill rigs and surface vehicles, will need to be** landed. **estimated vehicles** instruments will be positioned_and_rock_and_subsurface_core_sampl **obtained. geophysical, and** meteorlogical **data on the** surface **of** Mars **associated with** manned **landings. We** identifiy **specific instruments and estimate** their mass **and power requirements. A** total **of** 1-5 metric tons, **not** Power associated **only with the scientific instruments is** We define some requirements for surface rover **and suggest** typical exploration **traverses during** which

INTRODUCTION

The **purpose of** this **paper** is to **present an** analysis **of desirable physical** science **activities (geology, geophysics,** meteorology) associated with manned Mars landings. **The scientific rationale and objectives** for Mars Investigations **are discussed in detail** in **previous studies (e.g., [1]); differences associated** with **the** manned aspects are **discussed in** *references* **[2]** and **[3].** As a **context** for **the plan,** we **assume a** multiplelanding mission **scenario that** leads **to** a **permanent** manned **surface base called** "Columbus **Base"[4].** In this **approach, during each of** the **first three** missions **a crew of four lands at different sites and performs** scientific **investigations for about two** months. **On these first three landings, the crew has the** aid **of an extra vehicular activity (EVA) rover vehicle** wlth a **range of** about **10km. On the fourth** mission, **one of the previously visited sites** is **selected for development** as **a base from** which more **extensive explorations** will **take place.** More **capable surface transportation** is **assumed to be** available at **this point, namely a shirt sleeve (SS) rover** with a **range of** about **100km.** A **remotely piloted** air**plane of the type suggested by Clarke, et al [5]** is **also assumed to be** available **by the fourth landing** as an **Instrument carrier for long range (1000+km) geochemical, geophysical,** and **atmospheric surveys as** well **as visual reconnaissance.**

We **define** instrumentation **needs and give estimates of power and** mass **requirements** in **order to help estimate the total** landed **payload** from **which propulsion and other requirements can be calculated. Our** mass **and power estimates represent upper** limits **because they are based on present technology.** We **expect that** advances in instrument **technology stimulated by** mission **requirements such as those proposed here will greatly** *reduce* **the ultimate payload** mass **and power values. The** main **science questions** we **address here** are **the composition and structure of the solid planet and the nature of geological** and atmospheric **processes. As** a **consequence,** we **emphasize geologic sampling and geophysical** and meteorology **observations.** We **do not discuss life science or operational engineering science requirements.**

ROCK COMPOSITION AND PROPERTIES

Samples

Obtaining **rock and soil** samples will be **a primary** function **of the landing team.** We **suggest that a total sample** mass **of** 100-500kg **should** be **returned to Earth** from **each of the** first **three landing sites. Of these amounts, about** 25_ **should** be **returned** in **sealed, refrigerated storage containers** so **as to retain volatile** materials **and** heat-sensitive **structures** in **as close to a pristine** martian **environment as possible. Samples will consist of** hand-sized **rocks, 50-100g soil** samples (including **special samples to investigate** microenvironments), **and core** samples **obtained** with **the aid of drilling equipment.** The **surface sampling, cataIoglng, and documentation procedures** will be **derived** from **those developed during the Apollo** lunar **explorations [6]** and are **not discussed** further here.

We **suggest that each** landing **team take one** 100m-long **core at the landing site and** numerous 10m-long **cores at remote sites during rover traverses.** These **cores** will be **essential** for **analysis of** near **surface physical properties and** geologic **stratigraphy.** The **cores** will be **examined on the surface and portions selected** for **environmental storage and return.** The **remaining cores can** be **studied** by **the crew while present on the surface and/or stored** locally **at ambient conditions** for **future retrieval. Judging from experience on Earth,** hole **diameters of** 15cm **and core diameters of 5-10cm seem appropriate. Details of the equipment that will** be required **to perform these coring operations, including** masses **and**

533

power requirements, are **given In reference [7].** It Is **assumed** that the **landing craft and rover vehicles will be capable of supporting the respective drilling and sample storage equipment.**

Petrology/geochemistry:

The landing **craft should have analytic equipment capable of determining rock compositions quickly** to **help guide the sampling and geologic exploration. These instruments will remain behind on** the lander **for future use. Instrumentation, with estimated mass and overall power requirements, will** include the **following:**

1. **A combined x-ray fluorescence/diffraction instrument (exchangeable anode, wlth capability of synchronized movement of tube, sample, and detector). This instrument is for major-element chemistry and for mineral analysis. NASS: 70 kg**

2. An electron beam instrument optimized for imaging (scanning electron microscope), but **equipped for energy-dispersive analysis (microprobe). This instrument** Is **for** mlcrofossll **exploration and for mineral analysis. NASS: 80 kg**

3. A combined thermogravimetrtc/differentlal scanning calorimeter instrument for hydrous mineral analysis. MASS: **15 kg**

4. Sample powdering, dissolution, and optical analysis equipment. NASS: 40 kg

5. A gas and water analysis system based on one or more of atomic absorption, gas chromatography, laser emission spectroscopy, and mass spectroscopy. MASS: **50 kg**

PETROLOGY/GEOCHENISTRY SYSTEN - TOTAL ESTINATED **NAS\$:** 255 **kg TOTA_.___LL ESTIMATED POWER: 2 kw**

Rock Physical Properties:

Rock physlcal properties will **be observed directly during rover** traverses, **in** the t_edlate **vlclnlty of** the *lander,* **and remotely by geophysical** means **(discussed below). Suggested requirements** for the **direct observations are** listed **below.**

Soil: Core penetrometer and plate bearing tests wlll **be performed automatically at every rover sampling stop.** MASS: lOkg

Core holes: Each of the **lOm-long core holes** will **be used** for **an in sltu seismic Q and P-wave veloclty** measurement **by deploying a reusable**

acoustic probe in **the** hole **and** hitting **the** nearby **surface with a** springloaded or chemically-propelled impacting source. MASS: 15 kg

POWER: 1 **w**

To determine basic rock mechanics properties, **about** ten **hand-sized** rock samples at **each** EVA site **will** be **crushed** in **a slmple** point load press to obtain strength data under martian **conditions.** No sample preparation is required for these tests but **after crushing,** samples **can then be used** for petrology/geochemlstry analysis after further preparation. MASS: 20 kg

POWER: **1/2 w**

Pieces of the lOm **core and** surface samples will be used to measure dielectric **constant** under **in** situ **atmospheric conditions** in order to interpret radar **absorption** data. **MASS:** 3 kg

POWER: 1 w

SURFACE SCIENCE **TELEMETER STATION**

Conceptual Design and Requirements

We propose that multiple, **iong-duratlon** science stations be deployed by **a two-man crew operating from a** rover vehicle. A number of identical stations, shown schematically in **fig.** 1, **will telemeter** their data to the **landing** base **for** up-link to **the** main **craft.** In **the** initial landings, **a** maximum of four stations will be deployed **from an** EVA-type rover. In **later** landings, more stations **will** be deployed **at** larger ranges using the SS rover. The stations will be powered by radioisotope thermal genera**tors (RTGs)** for **an** operational lifetime of **at** least 10 years. The stations will **have** the **following** instrumentation, **consisting** of separate **functional** packages interconnected by **cable.**

SEISMOMETER:

A **3-axis,** broad-band **(0.1-50 Hz),** high **sensitivity** seismic **unit** that **will** be well **coupled to** ground by installation in **a** drilled, **cored, and backfilled** hole **(see** fig. 1). **MASS:** 1 **kg**

POWER: 1/2 w

ELECTROMAGNETIC **SYSTEM:**

A permanent, passive **electromagnetic (EM)** data **acquisition** system **will** be installed **at each** Surface Science Telemeter Station **(SSTS).** This **equipment** will be similar to **tensor** magnetotellurlc **(MT) systems** widely used in Earth applications. The system we propose **consists** of **a** three-

FIGURE 1

Schematic Illustration of the proposed strument Modules are explained in th $S36$ Surface Telemeter Station.

axls fluxgate magnetometer for magnetic (H) field measurements **less than** 10-3Hz, **a three-axis coll** magnetometer for **H-fleld measurements from** 10 -3 to 102Hz, **and a** two-axls **horizontal electric (E) field** dipole **for measurements** from 10 -3 to 102Hz. Thus, **with** thls **equipment,** the **martian** magnetic spectrum **and** It's tlme **variations** may be studied below lOOHz, **and** subsurface **electrical** resistivity **estimated to** great depths in order to **help** determine radial structure **and** thermal **state.** The presence of **the** E-field dipoles **will** permit **estimates** of **the** tensor **electrical** resistivity **from** 10 -3 to 102Hz. Deep **magnetic and electric field** sounding. DC to 100 **Hz: MASS:** lOOkg

POWER: 1/2 **w**

METEOROLOGY SYSTEM: Instruments to measure: **Temperature, wind** speed and direction, barometric pressure, aerosol content (mini-LIDAR?), **and composition using a** mass **spectrometer: MASS: 20** kg

POWER: 10 **w**

HEAT FLOW PROBE: **MASS:** 1/4 kg

POWER: 1/2 w

DIGITAL TELEMETRY/DATA PROCESSING SYSTEM - 15 **channel (AM) with** mlcroVax -equilvalent or better processing **capacity: MASS:** 15 kg POWER: **25 w** RTG POWER SUPPLY **(50 watts): MASS: 25** kg

TOTAL ESTIMATED SSTS INSTRUMENT MASS, PER STATION - 162 kg

TOTAL ESTIMATED POWER, PER STATION - **37 watts** _50 **w-class** RTG_

EXPLORATION TRAVERSES

Rover surface **vehicles**

Exploration **from** the initial three landing sites **will consist** of **about ten** one-day-long traverses using the EVA rover out to **a** range of **about 5** km. Primary **exploration from** the permanent base **will consist** of **four approximately S-day-long** SS rover traverses out to **a** linear range of **30-40** km. Schematic plan views of rover **traverses and typical** placements of instrumentation **stations and explosive** seismic sources **are shown** In **figs. 2 and 3.** The EVA rover **will carry** modules **for** installation of Surface Science Telemeter Stations **(SSTSs,** described **above)** on **at least** three of the traverses, **and explosives (100** kg) **for at** least **two** seismicsource **stations. The advanced** SS rover **wlll carry** sufficient modules for

FIGURE 2. Schematic plan view of proposed EVA rover science traverses. Possible placements of Surface Science Telemeter Stations and explosive sources for a seismic refraction line are indicated.

 \sim

FIGURE 3. An expanded science station network deployed with the aid of an extended range SS rover. Two, approximately perpendicular seismic lines are shown.

the installation of five SSTSs**and explosives** (100 kg) for one radio armed **and** detonated selsmic-source hole located at the **extreme** range of **each** traverse. Both rover types (EVA **and** SS) **will** be manned by **a crew** of **at** least **two.** In **addition to adequate** llfe support **consumables and** motive **fuel,** the rovers must transport **a** drill rig **and compressor** for the station holes. The SS rover will **also carry a** self-levellng gravlmeter that will **automatically** make **a** gravity measurement **at each** stop **(typically every** several hundred meters).

Oravlmeter: MASS: 10 kg

POWER: 1/2 w

A separate, portable passive EM system that measures three **components** of the H-field and **two** components of the E-field from 10^1 to 10^4 Hz will be **carried** on the rovers. This system **will** be used **for** rapid reconnaissance **around each** SSTS to measure very near surface tensor **electrical** resistivity **that** will yield information on geologic structure **as** well **as** the possible presence of ground ice.

Portable EM system: **MASS: 75** kg

POWER: 0.5w

The **crews** will **alternate for each** traverse with the main base **crew who will** be performing other **activities** such as monitoring the **traverse and** station installation, **examining** samples **from** previous traverses, **and** performing long-range remotely-piloted-vehicle **(Mars airplane)** surveys.

Mars airplane

A remotely-piloted **airplane** or drone will be **assembled** by the **crew at** the permanent base **and** used **to** perform long range **(lO00+km) airborne** geophysical surveys from **about** lO0-1000m **altitude.** The surveys **will** include magnetic, photographic, **low** resolution gravity, **atmospheric com**position, **and** gamma spectrometric measurements. On-board **TV wlll help** guide the vehicle to interesting surface **features.** At the **farthest** distance **from** the lander, the drone will be landed to deploy **a selsmology/meteorology** station.

Mars Airplane **[5]: MASS: 300 kg** SUMMARY

of the surface science equipment and sample collection is given in Tabl 1. **A** summary **of** the **mass and power requirements for** the major **elements** We **estimate** that I-5 metric tons, including mass **for** generation of

t-

E

L

LJ..I -..J I--"

J.

 $\hat{\mathcal{A}}$

541

1-2kw electrical power, will need to be landed on the martian surface to support the basic physical science activities. To these must **be added** masses **and** powers **for** the drilllng **equipment,** rover vehicles, **and air**plane plus **any strictly** operational **equipment (e.g.,** propellant manufacturing plant).

REFERENCES

- **[i] Mars Science** Working **Group,** 1977, "A **Mars** 1984 mission", NASA, TM-78419.
- [2] Carr, M.H., 1984, "Science objectives", **Manned** Mars **Mission** Workshop, NASA, **Huntsville,** AL.
- [3] Blanchard, D., 1985, "Open planetary science questions", **Manned** Mars Mission Workshop, NASA, **Huntsville,** AL.
- **[4]** Blacic, J.D., 1985, "Mars base build-up scenarios", **Manned Mars** Mission Workshop, NASA, **Huntsville,** AL, Los Alamos Report #LA-UR-85-1989.
- **[5]** Clarke, V.C., A. Kerem, **and** R. Lewis, 1979, "A **Mars airplane?",** Astonautlcs **and** Aeronautics, AIAA, **42-54.**
- **[6]** Preliminary Science Reports for Apollo 11, 12, 14, 15, 16, **and** 17, 1969-1973, NASA, SP-214, **235, 272, 289, 315, and 330.**
- **[7]** Blaclc, J.D., J.C. Rowley **and G.E.** Cort, 1985, "Surface drilllng **technologies for** Mars", Manned **Mars** _ission Workshop, NASA, **Huntsville,** AL, Los Alamos Report #LA-UR-85-2037.