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I. MODELLING OF THE SCOLE CONFIGURATION

. PARAMETRIC STUDY OF THE IN-PLANE SCOLE SYSTEM -
FLOQUET STABILITY ANALYSIS

* THREE DIMENSIONAL FORMULATION OF THE SCOLE SYSTEM DYNAMICS

+ Rotational Equations of Motion
- Structural Analysis - Boundary Conditions
+ Generic Modal Equations

- WHAT WE CAN LEARN ABOUT THE OPEN LOOP SYSTEM?

- Consider SCOLE configuration without offset of the
mast attachment to the reflector and without flexibility

- Consider SCOLE configuration without mast flexibility
but with offset in the direction of orbit (strawman)

. Conslder SCOLE configuration with offsets in two
directions but neglecting mast flexibility

- Consider general SCOLE §ys$tem dynamics

- IMPLICATIONS FOR CONTROL STRATEGIES
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Parametric Study of the System
. Let us assume that the interface point between . the reflector and the
mast is at the center of mass of the retlector
»x-owx-o-c5-cs
Under this assumption, the equation becomes
-8, ce, dur[Banlatet)], Q* Cye, en(QTed)
2 Cyjac, apmiyac+d)}-% (T, -T.y) & = 0 (2.5)

which in the absence of gravity gradient, yields the following first

integral of the motion:

¥ [#eiat +@) + LG, mu (2T+D)

+Ce4fpc, wr(Tt+d)] =K (2.6)
This equation is plotted in the phase plane (8°,8) for different values
of u and Qf (Figs. 272)

Floquet Analysis

The angular motion about an axis perpendicular to the orbit plane in

the absence of gravity gradient is described by: .

9”.-. [- cs/c, - C¢/c‘ un.Q?.'] 9,-- [c.‘_-c.& MQ‘C] & (2.7)
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Case 2. No gravity gradient, but offset.

c c c
—zcosﬂ'r-—s- --2-Qsin$'21'

p(t) = ¢ ¢ 1

o

[2(x)] = [P(1)] [2(1)]

219 = PriZyy + PraZyy (1)
Z12 = Pr1Z1z * PraZap (2)
2é1 - P2i211 + P22221 (3) which becomes
ézi = Z1i since Py . 1 and Py3 = 0
222 = P21Z12 * PaaZps (4) which becomes -
222 = Z12

from (3) Z,q = 2{1)substituted into (1) yields
221 = Pi1221 + PioZpy

similarly ffon kﬁ) 222 - 212)substituted into (2) yields

222 = P11232 + P12Zp;

. s N d
since EI = constant it P1? = Poy
Then
. - . d
221 = P11221 * P21 = 33 (P11Z27)
i . . d
and 222 = P11222 * P112z2 = 37 (P112p3)

These two last equations are integrated and the following results
for Z31 and Z,, obtained.
Za1 = P1iZgy * Ky
Z22 - P11222 + K2
but from (3), Zg](%) = Z11(1) and from (4)

Z22(t) w 2,,(D)

Therefore, Z21(0) = Z91(0) = P11(0)251(0) + Ky » Ky =1

since Z11(0) = 1 and 23¢(0) = 0
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252(0) = 292(0) = 0 = P11(0)Z32(0) + Ky

[ [od . Cc c
> - Ej + c—z + Kz = o or KZ - - Ez + Ei
1 1 1 1
The two last equations integrated once, yield

ORIGIEAL o lu s
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Solution of the first order equations
dz —
_a_2_2. - P11222 - - (-2—5—) (1) ‘
T e
The presence o 5;22 and P11222 in the equation suggests a product of the
type ¢(t)Z52(1)
but - d (¢Z?_2) = — 222 + ¢ d 222 (2)
Multiplying (1) by ¢(t) yields

o
¢:—$22-¢P11222-~¢(-2c—°§)

1
which can become _
d C -C
3z (4222) = - ¢ (—1-) .
if one can find ¢(t) (int:egrating factor) such that
d¢

It "~ ¢ Py
el - :
+ n ¢(t) = J"PH dt = I—Ezcos Qtr dt + I Eid-r
- 1 1

Cc (]
1) = -2 -2
n ¢(v) cnsinm'*- l't"'K

or ¢(t) = exp [- -L sin or] _eG.S.r+K)
from _(Zw) - - (.%25)
Zo2 = f (55:52) '
222 - exp[c‘- A\Q.a.t ..Cfr Kl CS Cl)jﬂp[ C; P\uﬂt+C3Z+K] dt
l
Qg '\-l..ct Ca'c‘_ Gy n%c, 'C/ ---.
g, o] Sted - @-2a T
o [c‘%] L+ 5%, *(““/C.) HAS
Therefore, exp[.Q& Mﬂ-t +CS%] 'k I+ (C“c")t'f Q:;__Q) t/&*‘ -
ac,
Z3p = exp _Lqu:c ~aT- KJ(CS-G:. ) e (C«b (-s'-c.., ... (Cr-'-u)“t ...---H:)

(5
222(0)-1*—cl— Kl-‘l*Kl

)
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Zpp = exp[c‘ QT . C-_:'C]{ 14 (Cs-C;)C _,_(Cs C;) 'C " (C;-Q) Z."‘ j

since 222 - Z1z(r) = exp Cl /huﬂ.t Cs CJ{ Cg c;) + (Cs € ‘t+ -'- --
<

+(2;cum c.)'"‘l’[a /Mat _sr”,, cs-ct)(* (Cs-Ca.J T, - --}

Z12 = exp :‘:L/mat Qsc_” C;-v:.caﬂ-t *[(ant—CG)(C@c‘Cg)

. (C'sc-_‘c‘) ]tg.[ Ctmﬂ-t-cs)(Cs-c; (Cc-c;)SJ'c‘ . __-_} ‘

212_(1') - exp[c‘c—a fwm QT o 'C]{_ésl.f'*wat) + C%_;Ez (c3°"’i‘t‘cl).’. - -

< 1,

Zi2(0) = exp] $2 M AT _ Q_S.'cJ[C_;(ch_t-a)HH Cs-C: T4 (Cs-a ty.
'ch <y C.‘ : Cy

c_ii%.‘ - P”Za + 1 where P.” = ;—]2? cos Qrt - %i
Integrating factor ¢ ; %1_3 == ¢'Pyy
> = exp[ Ce A\‘u.Q'C*_COt +|<] and

221 = 'j}bdt = Exf[c‘ Amﬂt-c"f K]S‘bdt
exp [ Ca m..ﬂ_t+ Cftl ~ “_(CQ-CJ. g _'.((.4‘-61) 'Cz
Integrating term by term yields,
Zo1 = exp[%/mn:c Cc t][t+ (C_r:c..) 'c?- (C'-c a..)
since Z31(0) = K' = 0 % .
00« e £ MeRE - T[T, (S0 Ty (3200 T ]
221 - Zn(r) exp [C‘ /"“'Qt c’ t']{l+ s-aﬂt +£C"'C‘) Tl "3

+[Cz. mRT _sI exp[._&./}mg'c c:-c][t+ Cs‘—Cz)'C‘ (""c‘) Z'/*'"'J
Z11(0) = exp [Gfyc, pmlT - cs/c‘t_“_'u. (Cs-CztCremRT - c;)_. - -
Zy1(x) = exp[nc pwa QT —~ C' Z][H € (e T-1)T 4 c_,_(Cs_c,_)@;Rto-l)<

i
4+ ----

It is seen that Z;1(0) = !

‘+--- +K]
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Fig. 2.3 Floquet Sfability Diagram - SCOLE Configuration-No Offset
No Gravity Gradient.
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Fig. 2.5 Floquet Stability Diagram - SCOLE Configuration
No Gravity Gradient
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Fig. 2.4 Floquet Stability Diagram - SCOLE Configuration
No Gravity Gradient.
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FLOQUET STABILITY ANALYSIS
2D SCOLE OPEN-LOOP SYSTEM

* Offset of the mast attachment point on the reflector

results in an increase in the number of stable polnts
for the lower freaquencies

e Number of stable points increases for MR/Mm > 1.0

26




I. MODELLING OF THE SCOLE CONFIGURATION

* PARAMETRIC STUDY OF THE IN-PLANE SCOLE SYSTEM -
FLOQUET STABILITY ANALYSIS

v - THREE DIMENSIONAL FORMULATION OF THE SCOLE SYSTEM DYNAMICS

- Rotatlonal Equations of Motion |
» Structural Analysis - Boundary Conditions
- Generic Modal Equations

- WHAT WE CAN LEARN ABOUT THE OPEN LOOP SYSTEM?

- Consider SCOLE configuration without offset of the
. mast attachment to the reflector and without flexibility

- Consider SCOLE configurotiqn without mast flexibility
but with offset in the direction of orbit (strawman)

- Consider SCOLE configuration with offsets in two
directions but neglecting mast flexibility

- Consider general SCOLE $ystem dynamics

- IMPLICATIONS FOR CONTROL STRATEGIES

27




—-~ Reflector
Me

Fig. 2.1. SCOLE System Geometry in the Deformed State (2

2.15 28

-D)




A. Angular Momentum of the Shuttle About its Mass Center, G

The angular momentum of the Shuttle, taken as a rigid body in a circular
orbit, consists of contributions due to rotation about its center of mass

plus the translation along the orbit.

— e J—
Hs/G = IG ws/Ro (1.9)
where
- 905,443 0 145,393
Ig = 0 6,784,100 0 = [1u]
145, 393 0 7,086,601
in R(x,y,2z) (1.10)
- ~ ~ ~
ws/p = Uyx i+oey jFu, k (1.11)

B. Angular Momentum of the Beam about G

Consider an element cf mass, dm, of the beam located at some point,
- -~ -+ ->

P> Such that GP = T, +q=1r

where:
(1.12) ?o = —zi is the position vector of p in the undeformed state
(1.13) E(z,t) =y i +v 3 in which, u and v are the x and y com-
ponents of the mode shape vector.
The angular momentum of dm about G, d.ﬁzlc is given by:

-

— d i X
d Hm/, =~ F x i (=Rk+r) ,Rodm (1.14)

-> - " bend d -
d Hm/G = (¢ x W Ri+r x 3t YIRO) dm

3.6 | ‘ 29



which is expressed explicicly as:

whf:f/% //Ji rut *?f/}xaz,;?,_ */jé""“ ""f/)"' "//o’i ul "2/}/ /0/27

7/ -J/jluaﬂ{/j‘, = (4 - &y v=-3

43,)2‘ ,«-(v.*ajﬂg’ﬁ&)/‘f /w-.:f-zzag,/[

.‘a(%j/‘\
Gk v 3 v 7)., 34 r v ) &

- Wy tt-conv) - pr i -

After substituting the different terms into equation (1.14), the following
expression results:

a//;’;/a - /[}/0’7#0%11/7‘ V(- )

-fj‘aJan
+l-gaoR - 3 (i

Gt Llayu-ann) s iy, ) ;

+/:.#C&/€+d/?f:+tlgdj- v(a'—a% ”}fj/l(lz; fl)‘a%,yf/ﬂlm (1./5)

Since u(z,t) = g p (t:)s (2) and v(z,t) = g p (t)s® (z),

(1.16)
we consider for one mode in the open-loop situation,
= L}
u -mx sin (th + a)sx(z) and
[ ] - ' v .
V= uy sin (wy t + y)sy(z) (1.17)
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' Assuming small elastic displacements such that, e 3 << 1

and s§ (z)/l << 1, and dividing de/ by 922, where @ is an assigned ° '

frequency and £ a reference length, then,

iﬁ% ~ 4/{;y¢3qa+a&jj4 # L3R -3 4 &} o

4_32%}}'* Ry, fdfdj a{yj”‘/{/ﬂfl (1.18)

where p is the mass Per unit length of the beam. After mulciplying both

sides of this equation by 922, there results:

s = {35 1346 +220e) 2+ (e -3l # Ve wgtey )]
+ / VDo + JU Ly »«g#ag,)a{jfa} - (1.19)

The total angular momentun of the mast about G is obtained by inte-

grating (1.19) over the total length of the mast,

/7//6_/0////6

The ten terms appearing in de/

(1.20)

¢ are integrated using integral tables- e.g.

/fﬂf’é : -MM@Z‘*«’/ / 3 oty oy Gty

+ Bewth3)dy =

Sy i1y [ (2, L), & (louisl | onhe_

/

R H

St R Sy

3'8

3!

z/



To simplify the notation, let

£(8:) - /AL/sz _@Z)+ 8/ caft s ok

;Ca/ﬁ.@éf @éz(/+ 2 /JM! aﬁf ’//(z.w

Filh) = Aifg -enfht) _ Bt - a;/@ﬂ-_lgﬁ,-z
| | + G/ &%”:{4‘ / (/.42)

Mm

After substitution of the fi’ 8y and & for Py y in the expression of

-
Hm/G, one arrives at:

/7{%- = /}_Zm //a%aa(au’ z‘m)f{ - cv’.%é(@/z‘f//' ;{ - &, 3{3/4"
# [ REL lilatralf , g enuits )y _ £77

+[a'2'm/“&)é*“/ﬁ s 6@ m@;)l‘f T/){-jajpfu{@}f_fﬁﬁj‘éy (1.23)

3.9
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C. Angular Momentum of the Reflector about G.

Since small deflections for the beam are assumed, the reflector can

be assumed to be located at a constant distance from G, the Shuttle mass

center.

ITIA)

Hy = Z/}o wr/,ea+/%cox_(aa)/e

Using the transfer theorem for the angular momentum, (See Appendix

(l 24)

where nr/ol and o / o / + / (1.25) are both expressed in the

same coordinate system, Rz(xz,yzzz), moving with the reflector.

. R2 (principal axes of inertia of the reflector),

Irl 0 0 4,969
nrlol = 0 Ir, 0 = 0 4,969
0 0 Ir3 0

with j' = sin L 2+ cos ¢ jz

therefore,

C(J/,e,- /Cﬁz"%)t * @/#Cﬁ; fgrhééz,‘ﬂ;w@;/}
. &4

3.10

o | (.26

9,938

(1.29)

(1.28)
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/7/'/5:&),

4 /%/{J/fc/rf}djf ~(alr clurxc)lf s (Blarx)-a sy )b / (1.34)

A
7, Ty *54-7&/31*@173{&

Where

s~ J(rrdi -3l - v -3y 7; 4 Xy 7)) 4o ¥-dd)) T, |-
b =f'z'f-— & +e U

TAY Tt A X T HAY - X,

cfrv-wyu - wgyr; AX Tt (0Y - X) T

3.13 | 34




D. Angular Momentum of the System about G

The angular momentum of the System = the sum of the angular momentum

of each component evaluated at the same point

T —> - —>
H}‘f’!"f/a = H‘/a + //7;/6 + /s |

=5 +35)¢ +(wZ, Y+ (aZys g5,)E
. lﬁn/[ &y eo(Bt )i - ) i (a3t 1) - e £jl

.4 [ &Japifz-/- M,Au'c@'ffn’)ﬂ 4y &D[a}'ff J‘} 5 - a& é’/j‘
#[ @ enestea)g . a;.m@?ﬁ/ﬁ - & Renleyt+)g, [# J/ |

"
4 /‘/r/ (Wretrsy)l -(al eCurx) s /é(/zxxj—a(#*y// 74
+Cl317723 4%540&»‘44;17;4 (1.35)
In the expression for the total angular momentum, the last term will now
be expressed in R(x,y,z) by simply transforming i,, 3, and k, into func- -

tions of i, 3, and i as follows:
b= tofnt 1 #pmudeng. [ . e Gl £

Fozph s Bl s (i ol -] i iy, ]
# (A b By 0y 4 e g ity ) £

(1.36)

A

4, = Am 87 m&M%;fvmﬁrmy;z
| 35
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Rotational Equations of Motion. (Torque Free)

In the linear range,

/7; * Dy -G A, =0 (»)
= //¢ o) 7y 4 (fr o) Ty s Lo [(0+200 ) ettt

- (¢fwo¢/m/w;z‘m/9/ aa(ag,ﬁf/,{ (¢- m¢/.{’7

-t gy & cnd )5 4 ca 7], (Fp-as )7,

Hwod + s Iz - Iy ) # %ﬁwo%-wo#'}w!wﬁfd/%

+ (0F-200,8)em @yt +)f, - (eob-wi)R ()t +5)g, | |

4D Y T (Y p DB s 0 B) e 5 Mr (1) [(6-1) 5

2 3P - wolf) _ (and r i u)u - X (g s 4 dpsanB)

Pl x]- Mr/qny///m,, W)R + (-tho)di +( wob-urt)d
(el +wy) vy Vet v e @ 4 o bty ) wf&’nt:f/
HM[B Bl X (Freaye &)1, MY
M Y[ G- ld-G)-X(646)]= 0 (1.43)

3.18 Jé




/7{‘«7‘%/'/::-0&/%: o (8)
& Ol Mefalecotihtigf s (s i) cotry
2wy (¢f}w°¢/,4zé(a§z‘+fj74 - 49“31’} affﬁé-@o?ﬁ‘”/“;}’ffdéf %x
t 3(6-8) . Mefi-6 -V (G ongs seng)
+ b X] MXwi - XY (v - %4

“MX(6+6) _ Mr (Y -ar F)(woR+eal) = 0 (I.47)
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'/7§+a)x/i/—.agv/‘/x:0 (c)
- /(;;'-w,, B2y 4 (Becnd), s Mo con et tnn) ]
4 Cdzl { {é.-%ﬂﬁ/ﬁ@.’ffw/% # géa/a)jﬁ)’/% - Cg,,/ﬂ:%/ﬁ;[afff}j %z
Aenady E/&/@’ﬂj}d@ /,‘ /%-(117‘,},’// Cr Y- cto s Bt + B4, cont
+ ool + X (Y co +Puenh o d -an ), ’%'d/?'*/#'-%{y/ r(Pranyu
X (Pravys g ) Hr(v2¥)[a-68 -Bv - B0 coy -y
_}/:({éafo* é-/- %}z.; ¢j,&(0,X9rj_ /”I’ﬂ'/a%p'/‘ao-(g"‘a%j!
(Pl V+ R GX _ Yl coyr f perny 4 & ) [-(¢-wed)arn Zyy
+ M (4 wng) (@ REL aJ}Axé[aJtha/%,c o) chl(y_ecnd) L,

Z 2 3 -
../”)‘Z[%‘Cdv¢j(ajafe +ll +2l) _ Mr(usX )2y - ) o o (-ain §) I
# W (P regoit) s 1 Dol (P et &u/w:f’z‘+af/;z,” # (Bt ey lomfi b )
- Y-t d) 4 oty - i d, - E )7, ¢ OFE Gr

+ Mrcd, /v’/ + (¥ + o B) 4% Xty aJa+¢f

+¢'+ca:;4) - Wl Xt ; Yoo U 4 }f"/%+¢;-w,¢_w°¢;) |

X (8-t0,46:) = O (1.49)
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2. STRUCTURAL ANALYSIS

A. Governing Differential Equations

The governing partial differential equations for the system (beam)
are comprised of two one-plane-bending equations (2.1) and (2.2) and one

axial torsion equation, (2.9).

All these equations assume small displacements and slopes, uniforﬁ
density and distribution of stiffness, and the ‘corsional equation is de-
rived for a circular shaft.

“*(ugp) - ED. Putat)

for the x-z plane bending: - oYY ,fA .-)éq (2.1)

for the y-z Plane bending: = _@ﬂ) (EI)Y Q U(S,t) (2.2)
otz SA " 234

where p is the density of the beam, A its cross sectional area, and

(EI),x, (EI)y its (x-z) and (y-z) plane bending stiffnesses, respectively.
Assuming separation of variables for u(z,t), one may write u(z,c) =

rx(z)px(tb), and equation (2.1) can then be rewritten as:

- @
EIk &
Ph=- EIx

X (2.3)
Tx
This equation is valid if and only if both sides are equal to a constant:

—y 2

X
Therefore Px +-u;2 Py=0(2.4), which integrates into

Px(t) = cos (w;(t: + a), (2.5): where o is a phase angle,

(4)

CO,( $Avzo = ' =0 (2.6)

(EL) x tohere /g é % w,’

this equation yields.
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> Uyt = colitodf Ak, By st upsse deobbgfc-n

A similar reasoning enables us to find the solution of equaﬁion (2.2) in

the following form:

7}/;, ¢ = ﬂ’(a}’z‘f)j/%lm;l}jf (Z%} +an’%3+ Adéj/ (2.8)

Finally the z axis torsional bending is described by:

(2.9) Q jj/d 6 Qi%/f} - " where G is
7t = d 93:

. the modulus of rigidity of the beam.

Assuming ¢ (z,t) = e(z) P, (t) and substituting it into equation (2.9)

yields: v
P/ = _ G d%__,,%
3 - —_-_— Y = Cl% (2.10)
% =7 ;

c:% = A - o (GE+S)  and (2.11)
& z:@ & s By = w2 + 5 cofe (:.Anz)

Therefore,

?ﬁ(} ¢) = m@’f*sy/ 4,/1~,§z fz},’%z j (2.13)

4.0
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B. Boundary Conditions (X-X) and Natural Frequencies of Vibration

The following relationships between shear, moment, and beam dis-

placement are used in the boundary conditions

_EL (3 Vo=~ EL ,(3)
] Vx = 13 u— y L3
==EL (2 M = - EI 4(2) and .
Y - GIp 39
4 L de : ) (2.17)

'where,_, V4 = shear force in the x direction

Vy =" " " " y direction

My MY and M, the moment X,¥, and z components, respectively.

I’7 is the beam polar moment of inertia, let M‘be the mass of the
Shuttle while Mr is the mass of the reflector. The displacement in the
x 'direccion of a point located at z = 0 is given by u(O,t)-AyOO(O,t)
and that in the y direction by v(0,t) + Ax,9(0,t) where Ax,, Ayq are

the coordinates of the c.m. of the end body (Shuttle).

4|



Now,'an attempt will be made to cast the 10 equations describing '

the boundary conditions into the following matrix form:

[M ] {A} = 0 which has a non-trivial solution only when det [M] = 0.

Since there is no offset at the Shuttle end, AXo = AYo = 0.

B:C. (1) become?

Therefore

£ ¥ . + Ms cO* i
4(3' A;:t? /é::o

Explicitly

(A aref s masany

B.C. (II) becomes

a, 2
%5430 = %a)-’;%‘:o

(EL0)A -+ 0f = g *2f ()

Equation (III')

_5._[/4,3/— A,an/g, * & puifly 4 G, ﬂ’/ﬂ/ # D/M/@/
3
=_a)€/\/r/'_ A/Wﬂr- B, “3/41—- C//h«%- & M/gf

+ &Y Ay, A){53an/4,f

3.29 42




s ety o ———— - ———

Equation IV' . '
YR * Bt s Co cnll s 2 outly
=- w‘Mr{-/I;/»;,lig -8, %-Q/n&f/& -3 ends, |

- AX Ay fomfy _ AX, B, eofly ]

Equation V'

%]/ii/:.& + Di/: - C()j/.:_f.!f 2 //&,«.Qj_ %"Af /4,*6’,{/

Equation VI'

%fﬂf/:,B,-f-D/j=-M/§Z’/&/’4¢+c¢)* _‘-7?5!:(5,/;4/7‘6'/)’/

Equation VIT'
%ﬂf/— Ay pufsy - & e + Cz/’"%/gz # be'éﬂ/ﬂzf =
- wé/-zx%p_*ﬁg {A;a:ﬂl ..3&/)»;/4, FC, mfﬂ;'-fbe ”’“Z/i)
= Lo s (4 copty Grmih+ Cycatfnt by owtn)]

Equation VIII'

%ﬁc/:/’y/‘";ﬁr- & enp fC,ﬂm'/ﬁyf .D,anéﬂ,f:

- C‘)J/ :ZZEY" , (A eas; -55,6'»"/31 + @ errdfdy + Dzﬁﬁ'}&]
- J%Krﬂ(/f#,a:/k— 'g/"‘"ﬂh‘ Cr cotyy 4 91’»!4/91)‘;
43
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. Equation IX'

_5_1,,/@ A = -w Ly B

Equation X '

Sl (A cofs ~BimB) = - )~ Ty (somh 161004,
+ Mo (L DX [Aomf o B cofy + Co ity D erfis ]

+ ANLA wfy + B en g 4 ) "’4/4’//
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3. GENERIC MODE EQUATIONS

Consider an elemental mass, dm, of the body whose instantaneous position
-
from the center of mass of the Shuttle is r. The equations of motion of

dm can be written as

‘ddm =L (q) + fdm + odm | (3.1)
where 2 is the inertial acceleration of dm; g, the gravitational force per
unit mass;';, the external force per unit mass; E,the elastic 5lsplacement’
of dm; and L, a linear operator which when applied to the small elastic

>

displacement, q, yields the elastic forces acting oan dm.

e
The gravitational force Per unit mass f, can be expressed as

-> -+

f = fo +M; (3.2)
>
where fo is the gravitational force per unit mass as the center of mass
of the §ody considered and M6= matrix operator.

_In what follows, the generic mode equationé will be derived based
on a Newton-Euler formulation. The Principal assumptions made in this
development are: 1) within each component of the system, the mass
and structural properties are uniformly distributed; 2) vhe material
of each component is §sotropic; 3} the system is dgformed in such a
manner that it experiences only small strains (withinlthe_linear range);,
4) elastic displaceménts are small as compared with the characteristic
linear dimensions of the system; 5) the natural mode shapes of free
vibrations of the system are known 3 priori; 6) the system is nominally
earthvpoiqting; 7) the system is considered to be closed: no mass

transfer across its boundaries.
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The vector equation (3.1) can be written in the frame moving

with each body as:

-

ad = D S - - >

[Om-r F+ x4 OxT + wa(Dx7)]dm = L@‘) + (F*C)dm (3.3)
Note that r and i'are the velocity and acceleration of dm as seen from .

the body fixed frame. The symbol]?‘refers to the inertial angular velocity

->
of the body. The instantaneous position vector, r, of dm can be written

—y ~y =)
as r="Y+9 (3.4)
where 72 is the position vector of dm with respect to G, center of mass

of the Shuttle, in the undeformed state; E*is the elastic displacement

of dm. Hence
-;-s\:.. S5

=) and =q (3.5)

For small amplitude elastic displacements, one can write the elastic
-
displacement, q, as a superposition of the various modal contributions

5’ = .Z Au(t) d)(')(a) (3.6)

0') n=y -
where A"(f) = P (é) (Yg”'* ryl*' el)'/z_ = modal amplitude

according to

~

\a ~
@b')(rf) = nhl4v]+0k
V—;E+ r-aL'l' 6&

and

3.7

(n)

The mode shape ¢ (2) is associated with the natural frequency, w,, and

satisfies the following conditions

T (
@(m) . @ ") dm = S)mn Mn
ﬁﬂ (3.8)
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where M is the generalized mass in the nth mode.

L(§”) =g g™ o

-
(m) -
@ dm = O (3.10)
" .
~—)
‘ (n)
and j E\x @n dm =0
M (3.11)

This here assumes that the structural frequencies are much greater than the
1.745 hour/orbit.3 wy = 0.001 rad/s orbital angular velocity. This enables
one to use, with a high degree of accuracy, the mode shape functions |
corresponding to non-rotating structures. The generic mode equation is
obtained by taking the modal components of all internal, external and

inertial forces acting on the system, i.e.,
5(’:)[5:,,4.? + 3BT +BAY 4 @ x (Bx¥)] dm
M - '
- R(n) o P o '
= gH@ '[L(q)/dm"‘-f*e‘]dm (3.12)
The various terms appearing in equation (3.12) can now be expanded as

follows:
-~ -—>
SM ™ Qe = Oem - j @(u)dm =0 (3.13)
-~
700 = PO
[0 Fdm= [ 35 dm 6o
M M
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J @W (.war)dm = a?-j @(“z(c]?x\qb)dm (3.15)

JCP (wxr)dm = f@ (DX Ve)dm +J )Gﬁ'x’q’ )dw 3. 16)

(3.17)

J@ (wx(wx'"))d'm 4(@ cox(wxr‘o)dm +Jé(d(‘kq)d

D) -
Scﬁ("f L@ dm = _ % Ay M
M dm

(3.18)

g?(n);dm_ ’(@o‘) )C gi MT dw
B AT U

F) -
SM@ *€dm = En (3.20)

where En is the modal contribution of the external forces #n the nth mode..

3.36
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I. MODELLING OF THE SCOLE CONFIGURATION

* PARAMETRIC STUDY OF THE IN-PLANE SCOLE SYSTEM -
FLOQUET STABILITY ANALYSIS

* THREE DIMENSIONAL FORMULATION OF THE SCOLE SYSTEM DYNAMICS

- Rotational Equations of Motion
+ Structural Analysis - Boundary Conditions
- Generic Modal Equations

V' - WHAT WE CAN LEARN ABOUT THE OPEN LOOP SYSTEM?

- Consider SCOLE configuration without offset of the
mast attachment to the reflector and without flexibility

- Consider SCOLE configuration without mast flexibility
but with offset in.the direction of orbit (strawman)

- Consider SCOLE configuration with offsets in two
directions but neglecting mast flexibility

- Consider general SCOLE $ystem dynamics

- IMPLICATIONS FOR CONTROL STRATEGIES
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(A)

(B)

(C)

IMPLICATIONS FOR LINEAR CONTROL STRATEGIES

After suppression of mest vibrations, linear system
eans. have constant coefficients, control laws can be
synthesized based on LQR techniques.

For the special cases where the in-plane rotational dynamics
separate from the out-of-plane dynamics, separate control
laws can be generated for pitch and the roll-yaw systems.

When reflector offset results in coupling between the
in-plane and out-of-plane systems, g bias momentum

~ Scheme could be considered S0 that the controllers serve

to decouple the system vig removal of the relevant coupling
terms. Care should be taken so that saturation will not occur.

Since the vibration frequencies of the mast are much gregter
than those of the gravity-gradient forced rigid rotational
modes, actuators placed at strategic points on the mast
could be used for quick removal of the vibrations without
inducing substantial disturbances on the rigid modes.

Once the mast deformations have been reduced to g specified
level, the techniques described in (A) and/or (B) could

than be utilized. |
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CONTROL ISSUES:

CONTROL OF LARGE STRUCTURES WITH DELAYED INPUT IN
THE CONTINUOUS TIME DOMAIN

CONTROL WITH DELAYED INPUT IN THE DISCRETE TIME DOMAIN
CONTROL LAW DESIGN FOR SCOLE USING LQG/LTR TECHNIQUE
OPTIMAL TORQUE CONTROL FOR SCOLE SLEWING MANUEVERS

- Kinematical and Dynamical Equations

- Optimal Control - Two Point Boundary Value Problem

* Estimation of Unknown Boundary Conditions

- Numerical Results’

- Discussion and Further Recommendations
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IV.B  STABILITY ANALYSIS OF A SECOND ORDER SYSTEM WITHVDELAYED INPUT

The vibration analysis of large space structures is performed using
modal analysis and modal coordinates, transforming n coupled second order
differential equations or partlal dirrerential equatxons into n decoupled
second order dirrerential equatigns of the form

Xy * wgeg - £y » (1)

) i=1,2,...,n
where x;j=i th modal coordinate
' wy=1i th natural rrequéncy
fi= 1influence of the actuators on the i th mode, and
the control law of the form

£ = 2 wyx; (2)
controls and stabilizes. the system (l), The effect of delay in the
control force was lnvestigated with numerical Simulation for the
‘following numerical examp;e.l

Xg + 6%y(t=h) 36xj=0 (3)

It was observed that for delay, h > 0.15, instability resulcs.

The analytiecal veriricatlon of the above observation is obtained as

follows?2: |

The roots or the characteristic equation

_e

G(s,h) = Z Pi(s) e‘Shi =0 (4)
t=0
can be evaluated from the auxilary equation
ZPi(s)(l-‘l‘s)Zi (1eTs)2n=21 . ' (5)

i=0
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Applying the above result to equation (3), the corresponding

characteristic equation is givep by:
. 1 "

G(s,h) = ] Py(s) e~shi (7)
i=0
where P,(s) = 32 + 36 o
P1(3) = 65 . _. ‘ (8)

The auxilary equation is written as

T2s% + (2T + 6T2) 83 + (1 36T2-12T)s2

* (72T + 6) S + 36=0 (9)

Using the Routh-Hurwitz criterion, Equation (9) has ilmaginary roots for
T=0.0426 at y=9.7. Using relation (6), h can be evaluated as:

wh = /2 | (10)
or h = 0.16 - (11)
It is also brought to our attention3 that the above result can be arrived
at without the approximation (6) for a second order system as follows:

The characteristic equation for system (1) with the control law of
the form

£i = -2Cjwyx;(t=h) . (12)
is written as

S2 + 2gjwijehS s + w2 = 0 (13)
To evaluate the minimum h for which equation (13) has unstable roots
replace S by ju as:

-2 + J2gjwge~dvh w2 = 0 (14)
Using e~ Juwh , coswh=J sinwn, (15)

Equation (14) can be written as:

oy
(~? + 25 w wsinwh + mi°) * J (25jwicoswh) = 0 (16)

Rl 4
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Thus for equation (16) to be valid

coswh = 0 .
or wh = X (2P + 1) ' o | an
P=0o,1,2,...
and -
mz‘Zciuimsin:nh-miz =0 (18)

the roots of Equation (18) are
w = wy {gysingh + /1 + g2} (19)

Taking the positive and substituting into (17)

- w(1+2P)
Zui{cisinwh-é-/i.?ir} (20)
Thus giving
Rpin = 0.1618 : (21)

for the numerical example (3).

Thus the example second order systen considered with the natural
period of oseillation of 1 Second can not tolerate more than 0.16 seconds
of delay without 5ecom1ng unstable., Thus the general problem of delay in
control input must be carefully considered in the cohtrol system

implementation of large space structures.

6l
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the beginning. However, the delay in input in the discrete time domain
can be relatively easily solved as shown below, 10

The dynamie system descrfbed as:

o L
X(1+1) = ¢ Aj X(i-3) + ¢ . Byu(i-3) (53)

J=0 J=1

can be written as

[x(1+1) T Fag Al.-.®8p By By...8 ] [ xci) B]
x(1) I 0...00 0 o0...0 x(i-1) | | o
w1 |0 o..10 o o.. . xtiem | 1o |y ORIGINAL pyvr (g
ui=1) =10 0...00 0 o0..00 U(i-1) | 11 OF POOR QUALITY
u(i) o 0...0 0 I o0..00 ui-2) 0
u(i=2) "o g 0 I..00 ‘ ;'
| 0 0 oo _ ! '
i u(i-l*lZH'O 0...00 0 0..10 ] U(i-!.).j!‘ Lo_l
Z(1+1) A Z(1) B
(54)
which can be written as:
Z01+1) = X 201) + § ey (ssy  °

Thus the augumented dynamic sSystem (52) can be solved as 3 standard
control problem. The only disadvaniage is the increase in dimensionality

of an already large dimensional problem,
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Hl(s) dﬂkfﬁbB — ¢ c =

ﬁz(s) -

a) Full State Feedback

o — - - =

e el s L, lx o L

b) Obs

erver Based Implementation

¢ = (st-a)~L
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IMPORTANT PROPERTIES OF THE TWO TYPES OF IMPLEMENTATIONS:

1. THe CrLosep Loop TRANSFER FUNCTION MATRICES FROM COMMAND Y To
STATE X ARE IDENTICAL IN BOTH IMPLEMENTATION

2. THE LooP TRANSFER FUNCTION MATRICES FROM CONTROL SIGNAL U’ TO

CONTROL SIGNED U (Loop BROKEN AT XX) ARE IDENTICAL IN BOTH
IMPLEMENTATIONS

3. THE LooP TRANSFER FUNCTION FROM CONTROL SIGNAL U” To CONTROL
U (LooPs BROKEN AT POINT X) ARE GENERALLY DIFFERENT. THEY
ARE IDENTICAL IF THE OBSERVER DynAMICS SATISFY:

, =1 -1+1 |
K [T + C (SI-AR™= BIC(SI-A) "Bl . For ALL S.
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For Full State Feedback

X = ¢ B U"

For observer Based Implementation

use

(T

$KC) X = ¢BU' +KCOBU"

+.

" -1 -1 ' "

X = (¢ + KC) (BU'+ KC¢BU")
X = (I + okc) Yo (BU' + KCo BU")

(I - oK(I + Cok)™1C) o (BU' + KCoBU")

¢[B(C¢B)‘1 -K (I + c¢x)‘1] C¢BU"

+ 0[K-K (I + CoK)™! CoK] coBU™

#[B(CoB)™L — k (I . cok) L] ceBu’

+ ®K [I - (I + cok)~lcok] coBy»

o[B(CoB)™' - K (I + cok)~!] comy

+ ¢ [K (I + cox)~ 1] cemyn

(I +aB)™ = [T - a(1+BA)"1p]
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An observer Adjustment Procedure:

T 1

k(q) = £ (q) ¢’ R™

Az + ¢ AT Qlq) - ¢ cTr™ ¢ I =0

Q and R are treated as design Parameters
[For Kalman Filters, these are noise intensity

matrices]

Q (q9) = @y + g2 BvaT
R = Rg
For g=0 K(q) is the hominal Kalman gain
For q + »
KRgT ~ BvVBT
q

or
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II. CONTROL ISSUES:

. CONTROL OF LARGE STRUCTURES WITH DELAYED INPUT IN
THE CONTINUOUS TIME DOMAIN

CONTROL WITH DELAYED INPUT IN THE DISCRETE TIME DOMAIN
CONTROL LAW DESIG& FOR SCOLE USING LQG/LTR TECHNIQUE |
V. OPTIMAL TORQUE CONTROL FOR SCOLE SLEWING MANUEVERS
- Kinematical and Dynamical Equations
* Optimal Control - Two Point Boundary Value Problem
* Estimation of{Unknown‘Boundory Conditions
* Numerical Results‘

- Discussion and Further Recommendations
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