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Fig. 2.1. SCOLE System Geometry in the Deformed State (2-D)
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Parametric Study o£ the System

Let us assume that the interface point between.the reflector and the

mast is at the center of muss of the reflector

÷ X = 0 ÷ X ° 0 = C5 = C6

Under thZs assumption, the equation becomes

which In the absence of gravity gradient, yields the folZowing first

integral ofthe, motion:

Tl_ls equation is plotted in the phase plane (e*,9)

of _ and n, (Figs. 2.2)

(2.5)

(2.6)

for different values

Floquet Analysls

The angular mot£on about an axis perpendicular to the orbit plane in

the absence of gravity gradlent is described by:

(2.7)

2.3
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Case 2.

p(_) .

No gravity gradient, but offset.

c 2 c 5 c 2
-- cos_T .... _ sin aT
cI cI c 1

1 0

[z(_)] - [P(,)] [z(,)]

Then

Zll " P11Z11 + P12Z21

Z12 " Pl 1Z1 2 + P12Z22

Z21 " P21Zll + P22Z21

(1)

(2)

(3) which becomes

Z21 " Zll since P21 " 1 and P22 " 0

722 " P21Z12 + P22Z22 (4) which becomes "

Z22 " Z12

from (3) Z21 " _11; substituted into (I) yields

Z21 " Pl1721 + P12Z21

similarly from (4) Z22 = 7.12>substituted into (2) yields

z22 " PII_-22+ P_2z22

c5 d

since cq = constant d-_ Pll = P22

"" ° d

Z21 - PI1Z21 + P11Z21 - _ (PIIZ21)

" d
and Z22 - P11Z22 _ P11Z22 - _ (P11Z22)

These two last equations are integrated and the following results

for Z21 and Z22 obtained.

Z21 " PllZ21 + K1

Z22 - P11Z22 + K2

but from (3_Z21(z) -Z11(z) and from (_)

Z22(x) , Zl2(X)

Therefore, Z21(Ol - Z11(0) - P11(O)Z21(O) + K1 ÷ K1 - 1

since Z11(0) - 1 and Z21(0) - 0 18

2.10
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cI c1

The two last equations integrated once, y£e.ld

Z22(0) ,,,Z12(0) ,,0 = PIi(O)Z22(O) ÷ E2

0"2+- _'+--,-K2-oor K2- "_"+'_
c 1 Cl

Z21 " P11221 + 1

.... c2-c 5

_-z2 " P1;z:,2- (-_-')

OF POOR QU:_L_

Sol, ut.lo,n of tbe,,f_rst order equations

dZ22 c2_- P11Z22 - - ( ) (1)
. , _ •

The presence of _2 and P11Z22 in the equation suggests a product of the

type $(,)Z22(_)

but d d$ d
(¢Z22) - _ Z22 + $ _ Z22 (2)

Multlplylng (1) by @(¢) yields

d_ - ¢ P11Z22 - ¢ (c2-cs)
c1

which can become

c2-c 5
d . _ (_.E_)d-_ (_Z22 ) ¢

J. o

if one can find ¢(_)(integrating factor) such that

de

+'.,,,(.,-I-",, ,. o.+I
c2. " lcc Cl

Zn ¢(.T) =.-c.---._sin _ + _T ÷ I(
cl 1 +

or _(,) - exp [-_= sin Q,] .e_ K)
Cl- • c1

from d(Z22_) . _¢ (c2-c5)

_ c1
Z = Z r . (cS-c2) d

22 ¢ / + c
" , 1 f

Z22 ¢+Sl ¢1 Ca. z ¢ Z,, t.., .,, ¢'

•x,,[e.+%,]_---,+c,_, ..,C+,,:/m)-..,._..

4,r., I "

z+2. ore,[_,.,.,_-._t-K,.](+__,.) +to+ +_ m++ _:'_'.'J_,+--'_)
(c5"c2) K1 - 1 + XI cl

Z22(0) = 1 ÷ Cl = c5_c-----_

l?
2.11



_2 L_
dZ21 = PIIZ21 ÷ I where P11 = -- cos _x -
d_ cl ¢I

Integrat£ng factor ¢ ; d_ = - ¢'P11
dT

-- . -.C z z

Integrating term by term yields,

since Z21(0) = K' - 0 ==_

• .. _1 , I & . *. •

+F=-- _T f'[, ., , =,, * - =,.,"*
" ""' - "_ - L'=t'c' -- ¢_ L .... '_ "t:

z,,(,)- expl%fi,c' _a.'c_c,,,&_:JL,+ L**-*=,c,_-_',_-_')_- * .... .

L£k¢i _, _ "t

It is seen that Zl1(0) = 1

OF pOOR quAkrt_

_._2 20
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• Unstable points

Scable points

0 pose sCsble po_Cs

_-- 0.0

mo - O. L

38.91 ....
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12.36
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0.29 ----'_
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FiE. 2.3 FloqueC Stab_lity Diagram - SCOLE Confisuration-No Offset
No Gravity Gradient.
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Fig. 2.5 Floquet Stability Diagram - SCOLE Configuration

No Gravity Gradient
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Fig. 2.4 Floquet Stability Diagram - SCOLE Configuration

No Gravity Gradient.
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FLOQUET STABILITY ANALYSIS

2D SCOLE OPEN-LOOP SYSTEM

- OffSet of _he mast GttGchment polnt on the reflector

results In on lncreGse In the number of stGbIe points

for the lower frequencies

• Number of stob|e polnts increases for MR/Mm > 1,O

ZG



I. MODELLING OF THE SCOLE CONFIGURATION

• PARAMETRIC STbDY OF THE IN-PLANE SCOLE SYSTEM -

FLOQUET STABILITY ANALYSIS

• THREE DIMENSIONAL_FORMULATION OF THE SCOLE SYSTEM DYNAMICS

• Rotatlonal Equations of Motion

• Structural Analysis -'Boundary Conditions

• Generic Modal Equations

• WHAT WE CAN LEARN ABOUT THE OPEN LOOP SYSTEM?

• Consider SCOLE configuration without offset of the

mast attachment to the reflector ond without flex_biIity

• Consider SCOLE configuration without mGst flexibility

but with offset in the direction of orbit (strawmon)

• Consider SCOLE conflgurotlon w_th offsets In two

dLrections but neglecting most flexibility

• Consider general SCOLE system dynamics

- IMPLICATIONS FOR CONTROL STRATEGIES
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A. Angular Momentum of the Shuttle About i_s Mass Center z G

The angular momentum of the Shuttle, taken as a rigid body in a circular

orbit, consists of contributions due to rotation about its center of mass

plus the translation along the orbit.

--PSs/c= T G -_S/Ro (£.9)

where
F

m /[9050443 0 z45,393
IG = 6,784,100 0

L145, 393 0 7,086,601

in z(x,y,z) (i.I0)

_S/Ro _x £ +_y J ÷_z k (i. II)

B. An_ular Momentum of the Beam about G

Consider an element of mass, dm, of the beam located at some point,

p, such that GP = r° + q - r

where:

(1.12) ÷r = -zk is she position vector of p in the undeformed state
o

(1.13) _(z,t) = u i + v j in which, u and v are the x and y com-

portents of the mode shape vector.

--_

The angular momentum of dm about G, d Hm/G is given by:

d (-R_-e_ tRodmd_/G - _x_ (t.t4)

/G R + r x _ r dm

3.6 29



which is expressed explicitly as:

where

,.._' ÷I¢/.)x _,l,_'_' " _ ..d _ .,i-_o#i,,
t)

After subs=i=utlng the different terms into equation (1.14), =he followlng

expression results:

//> A

" _< "<<>,7<,>,Since ,u.(z,iO = i_ Px (_)s (z) and v(_.,t:) = r.. py

we consider for one mode in ghe open-loop situation)

(I. 16)

' sin (m_= + =)SxCZ) andu _ --_

' sin w' (z)= =-_y ( y t + _)Sy
(1.17)

3.7 3O



Assuming small elastic displacements such that, _ << i

£2

and _2(z)/£2 << l_ and dividing dHm/G by _£2 where _ is an assigned'

frequency and _ a reference length, then,

(1.18)

where p is the mass per unit length of the beam. After multiplying both

sides of this equation BY GZ2, there results:

+ b _+_o ++-+_-+,_""_'_'_),]':'/,o<'- <_'+'>
The total angular momentum of the mast about G is obtained by lnce-

grating (1.19) over th_ total length of the mast,

/-/_ = So dH_/_
(1.20)

The ten terms appearing in dHm] G are integrated using integral tables-e.g.

= -.]__(4,,++z) H,..,+/e,b+_<_A.3

+e+:_+,___+,:,+._.+:, _+/+,.+,;._.z____:+A.'))ni ,,s, ' _ ,e+

3.8
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To simplify the uotation, let

÷
(I.,Zl]

%

After substitution of the fi" gl

Hm/G, one arrives at:

and

Y_

for Px,y in the expression of

3.9
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C. Angular Momentum of the Reflector about G.

Since small deflections for the beam are assumed, the reflector can

be assumed to be located at a constant distance from G, the Shuttle mass

center.

Using the transfer theorem for the angular momentum, (See Appendix

_)

:.,D_Ro + <1.24)

where_r/o I and _rlRo - _rls +_r/s (1.25) are both expressed in the

same coordinate system, R2(x2,Y2Z2) , moving with the reflector. In

R2 (principal axes of inertia of the reflector),

["°:II:" :I_rlol " 0 - 4,969

0 0 Ir3 L 0 9,93

(1.2_

wi_hj' - +in *+ i2+ cos+rj2

therefore,

(1.28)

3 •10 33
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D. Angular Momentum of _he System about G

The angular momentum of the system ffithe sum of the angular momentum

of each component evaluated at the same point

In .the expression for the total angular momentum, the last term will now

be expressed in R(x,y,z) by simply _ransforming i2, J2,1 and k 2 into func-

(1.36)



Rotational Equations of Motion. (Torque Free)

In the linear range,

(A)

+c_+_'+<,,;_vm_z,, ) +?p<,,:+,.=.¢.,_,,-,,,.¢

+ _o'=-.=<,,oi)<,:(<,,,;e+r.jt_(<,,._'-<,,:.se_c4_+r)_.l

+._eI_s+_¢-<,,._be, x _+J'+<..,_;,_;)]+,v,-z,_,÷

+,v,y[_(¢'+_.;'_,,._'d_,')-xri'+_,:)..,/:a (,.+5)



it=J>

I. il

OZ,_+ _..*l_. _<,'_x-+:,,jf+
,_' _

c<_+<..,,/.:,,_ _,<,_

37
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o STRUCTURAL ANALYSIS

A. Governin_ Differential Equations

The governing partial differential equations for the system (beam)

are comprised of two one-plane-bending equations (2.1) and (2.2) and oue

axial torsion equation, (2,_).

All these equations assume small displacements and slopes, uniform

denslt7 and distribution of stiffness_and the torsional equation is de-

rived for a circular shaft.

for the X-Z plane bending: _£ _ ,_---_
(2.1)

where 0 is the density of the beam, A its cross sectional area, and

(2.2)

(El'), x (El)y its (x-z) and (y-z) plane bending stiffnesses;respectively.

Assuming separation of variables for u(z,t), one may write u(z,t) -

rx(Z)px(t) , and equation (2.1) can then be rewritten as:

= _ __ __ (2.3)

YA
This equation is valid if and only if both sides are equal to a constant:

I
2

.o

Therefore Px +m'2 Px=0(2"4) which integrates into

Px(t) = cos (_t + _), (2.5);where _ is a phase angle.

this equation yields.

m_Tk

(2.6)

37
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A similar reasoning enables us to find the solutlou of equation (2.2) in

the following form:

Finally the z axis torsional bending is described by:

<_._>_Z_,o: _G_"J_,e;
eta y - _jz

the modulus of rigidity of the beam.

where G is

Assuming %(z,t) = 0(z) Pz (t) and substituting it into equation (2.9)
r

yields:

(2.10)

(2.11)

Therefore,

4.0
3.24



B. Boundary Conditions. (I-X) and Natural Frequencies of Vibration

The following relationships between shear, moment, and beam dis-

placement are used in the boundary conditions

El (3) v =- El_i_v(3)
Vx = L3 u Y L3

M -- E-! v(2) M =- El u(2)
x L2 y "2"-L

and

GIp _0
M _
z L _c (2.17)

Where, V x = shear force in the x direction

V y t ,, ,, " " y direction

M x My and M z the moment x,y, and z components, respectively.

Ip is the beam polar moment of inertia. Let Msbe the mass of the

Shuttle while M r is the mass of the reflector. The dlsplacemenu in the

x direction of a point located at z t 0 is given by u(O,t)-&yo#(O,t)

and that in the y direction by v(O,t) + _Xo_(O,t ) where aXo, _Yo are

Uhe coordinates of the c.m. of the end body (_uttle).

41



Now, an attempt will be made to cast the i0 equations describing

the boundary co=ditions into the following matrix form:

[ M ] {A} = 0 which has a non-triv£al solution only when det [M] = O.

BoCo

Since there is no offset at the Shuttle end, AXo - AYo = O.

(I) becomes

Therefore

E..__3_.m = +

Explicitly

B.C. (II) becomes

=

Equation (III')

£¢

_._ '9"2



Equation IV'

Equation V'

m

Equation VI'

Equation VII'

Equation VIII'

"_ / -/

3.30
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Equation IX'

L

Equation X '

4-4
3.31



3. GENERIC MODE EQUATIONS

Consider an elemental mass, dm, of the body whose instantaneous position

from the center of mass of the Shuttle is r. The equations of motion of

dm can be written as

a dm - L ( ) + fdm + _dm (3.1)

where a is the inertial acceleration of dm; f, the gravitational force per

unlt mass; e, the external force per unit mass; q,the elastic _isplacement _

of dm; and L, a linear operator which when applied to the small elastic

+

displacement, q, yields the Elastic forces acting on din.

The gravitational force per unit mass f, can be expressed as

f = fo +Mr (3.2)

where fo is the gravitational force per unit mass as the center of mass

of the body considered and M = matrix operator.
o

In what follows, the generic mode equations will be derived based

on a Newton-Euler formulation. The principal assumptions made in this

development are: i) within each component of the system, the mass

and structural properties are uniformly distributed; 2) the material

of each component is isotropic; 3_ the system is deformed in such a

manner that it experiences only small strains (Within the linear range)_

4) elastic displacements are small as compared with the characteristic

linear dimensions of the system; 5) the natural mode shapes of free

vibrations of the system are known _ priori; 6) the system is nominally

earth pointing; 7) the system is considered to be closed: no mass

transfer across its boundaries.

3.33



The vector equation (3.1) can be written in the frame moving

with each body as:

Ocm_ r + _xr + c_xr + oo,(wxr)jdm = L( + +¢)d_ (3.3)

Note thac r and r are the velocity and acceleration of dm as seen from

the body fixed frame. The symbol"_refers to the inertial angular velocity

of the body. The instantaneous position vector, r, of dm can be written

as r = fo + _ (3.4)

where r% is the position vector of dm with respect to G, center of mass

of the Shuttle, in the undeformed state; q is the elastic displacement

of dm. Hence

q (3.5)

For small amplitude elastic displacements, one can write the elastic

displacement, q, as a superposition of the various modal contributions

according to _o

(3.6)

= modal amplitude

and
m

Vr,', P
(3.7)

The mode shape $(n)(z) is associated with the natural frequency, _n, and

satisfies the following conditions

3.34
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where MnlS the generalized mass in the nth mode.

L(} (3.9)

_.ld_ = o

o_a g. _ d,. - o

(3.10)

(3.11)

This here assumes that the structural frequencies are much greater than the

1.745 hour/orbit, _o = 0.001 rad_ orbital angular velocity. This enables

one to use, with a high degree of accuracy, the mode shape functions

corresponding co non-rotating structures, The generic mode equation is

obtained by taking the modal components of'all internal, external and

inertial forces acting on the system, i.e.,

00xr +OJxr + ¢.0× _'1

M

The various

(3.12)

terms appearing in equation (3.12) can now be expanded as

follows:

(3.13)

(3.14)

47
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(3.15)

3.16)

.17)

(3.18)

M

4- H

(3.20)

where En is the modal contribution of the external forces £n the nth mode.
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(A)

(B)

(C)

IMPLICATIONS FOR LINEAR CONTROL STRATEGIES

After suppression of mast vibrations, linear system

eQns. have constant coefftclent% control laws can be

synthesized based on LQR techniques.

For the sPecial cases where the in-plane rotational dynamics

separate from the out-of-plane dynamics, separate control

lawscanbe generated for pitch and the rail-yaw systems.

When reflector offset results in coupling between the

in-plane and out-of-Diane systems, a bias momentum

scheme could be considered so that the controllers serve

to decouple the system via removal of the relevant coupling

terms. Care should be taken so that saturation will not occur.

Since the vibration frequencies of the mast are much greater

than those of the gravity-gradient forced rigid rotational

modes, actuators placed at strategic paints on the mast

could be used for QUiCk removal of the vibrations without

inducing substantia[ disturbances on the rigid modes.

Once the mast deformations have been reduced to a specified

level, the techniques described in (A) and/or (B) could

than be utilized.

%
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CONTROL ISSUES:

CONTROL OF LARGE STRUCTURES WITH DELAYED INPUT IN

THE CONTINUOUSTIME DOMAIN

CONTROL _ITH DELAYED INPUT IN THE DISCRETE TIME DOMAIN

_/ • CONTROL LAW DESIGN FOR SCOLE USING LQG/LTR TECHNIQUE

• OPTIMAL TORQUE CONTROL FOR SCOLE SLEWING MANUEVERS

• Kinematical and Dynamical Equations

• Optimal Control - Two Point Boundary Value Problem

• Estimation of Unknown Boundary Conditions

• Numerical Results

• Discussion and Further Recommendations
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IV.B
STABILITY ANALYSIS OF A SECOND ORDER SYSTL_ WITH DELAYED INPUT

The vibration analysis or large space structures is performed using
4.

modal analysis and _odal coordinates, transforming a coupled second order

dltFe4_entlal equatlons or partial dltferentlal equations into n decoupled

second order differential equatIQns of the Form

xl ÷ _i2xl - F£
- (1)

i-l,2,...,n

where xl-i th mOdal coordinate

_i-i tb natural _requency

fl= _nFluenoe oF the actuators on the i th mode, and

the control law OF the Form

(2)

controls and stabillze_ the sys=e= (i). The e£fec= of delay in uhe

control Force was investiEated wlth numer Lcal simulation rot the

_ollowing numerical example, i

xi + 6_i(_-h) + 36xi=0
(3)

It was observed that for del_.y, h > 0.15, inscabillcy results.

The analy=ical ve, iFicatlon oF the above observation As obtained as
Follows 2 :

The roots oF the characteristic equation

G(s,h) = _ PI (s) e-Shi = 0

_=0

(4)

can be evaluated From the aux_lary equation

_Pi(s)(l-Ts)21 (l+Ts) 2n-21 =0

i=0

where

Lz+j  J

(5)

(6)
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Applying the above result to equation (3), the corresponding

characteristic equation is given by:

G(s,h) - Z Pi(s) e"shl (?)

i-O

where Pc(S) - s2 ÷ 36 "_

Pl(S) - 6s (8)

The auxilary equation is written as

T2S 4 ÷ (2.';"+ 6T2) S3 + (I + 36T2-12T)S 2

÷ (72T + 6) S ÷ 36-0 (9)

Using the Routh-Hurwltz criterion, Equation (9) has imaginary roots for

Using relation (6), h can be evaluated as:T-0.0426 at _-9.7.

mh - _/2

or h - 0.16

(10)

._ (ll)

It is also brought to our attention 3 that the above result can be arrived

at without the approximation (6) for a second order system as follows:

The characteristic equation for system (i) with the control law of

the form

fi " -2_i_ixi(t-h) (12)

is written as

S2 _ 2_i_ie-hS S ÷ _i2 - 0 (13)

To evaluate the minimum h for which equation (13) has unstaD_e roots

replace S by Jm as:

-m 2 ÷ J2_imle-Jmh _ ÷ mi2 - 0 (I_)

Using e-]mh - cosmh-J sin_h., (15)

Equation (14) can be written as:

(_ 2 + Z_i_i_sln_ h + '_i ) ÷ j (2_i_ic°smh) " 0 (16)

&.iA
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Thus for. equation (16) to be valld

Cos_h - 0

or =b = _ (2P + 1)
Z

P = 0,1,2,...

and -,

_2-2¢i_t_s_-_t2 - 0

the roots of Equation (18) are

,J
= = _t {¢I sln_m -+/I ÷ r.i2}

Taking the positive _ and substituttng into (17)

It(1+2P)
['t =

2= l{ _;is J.n=h+_}

Thus givln8

hmi n - 0.1618

for the numer Ical example (3).

(1?)

(18)

(19)

(20)

(21)

Thus the example second order system considered with the natural

period o_ oscillation of 1 second can not tolerate mor_ than 0.16 seconds

of delay without becomlng u_stable. Thus the general problem of delay in

control input must be carefully considered in the control system

implementation of larse space structures.

¢
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the beginning. However, the delay in input in the discrete time domain

can be relatively easily solved as shown below, lO

The dynamic system descr{bed as:

m

X(I÷I) - }_ Aj X(i-j) .,-£ BjU(I-j) (53)

J-O J-1

can be written as

x(i+1) "I

x(1)

x(i-m+l)

u(i-l) -

u(i)

-Ao AI...0A m B 1 B2..-B 1

I 0...0 0 0 0...0

0 0...I 0 0 0...0

0 0...0 0 0 0..00

0 0,..0 0 I 0..00

_(_L-2) iO

,!

u( i-£+l_ LO

0 0 I..OO

0 0 OO

0...0 0 0 0..I0

x(i>] Box(i-l) 0

x(_.-m)I o

u(i-l) i _ I

u(i-2)! Io

r' I_ ,.

u(i)
r;<..._<;_'S

POOR QUALITY

Z(i÷l) A Z(1) B

which can be written as:

zci÷l) . _" zci) ÷ _ uCi)

(54)

(55)

Thus the augumented dynamic system (52) can be solved as a standard

control problem. The only dlsadva£tage is the increase in dimensionallty

of an already large dimensional problem.

62
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a) Full State Feedback

!

I o

L

i

b) Observer Based Implementation

- (sI_A)-I
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IMPORTANT PROPERTIES OF THE Two TYPES OF IMPLEMENTATIONS:

i I THE CLOSED LOOP TRANSFER FUNCTION MATRICES FROM COMMAND _ TO

STATE X ARE IDENTICAL IN BOTH IMPLEMENTATION

1 THE LOOP TRANSFER FUNCTION MATRICES FROM CONTROL SIGNAL U' TO

CONTROL SIGNED U (Loop BROKEN AT XX) ARE IDENTICAL IN BOTH

IMPLEMENTATIONS

. THE LOOP TRANSFER FUNCTION FROM CONTROL SIGNAL U" TO CONTROL

U (LooPs BROKEN AT POINT X) ARE GENERALLY DIFFERENT. THEY

ARE IDENTICAL IF THE OBSERVER DYNAMICS SATISFY:

= -I-_i
K [I + C (SI-A_ 1 B[C(SI-A) BJ FOR ALL S
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For Full State Feedback

X = _ B U"

For observer Based Implementation

(I + _Kc)_ __,BU' --P_C_BU-

= + KC) (BU'+ KC$BU")

: (I + $_KKC)-15 (SU, + KC$ SU")

= (I - $K(I + C$K)-Ic) _ (BU' +

= ®[B(C_B) -1

KC ¢BU" )

-K (I + CSK) -I] C¢BU'

+ $[K-K (I + CSK) -1 CSK] C$BU"

= $[B(CSB) -I -K (I + CSK) -I] CSBU'

+ _K [I- (i + C_K)-IC_K] C_BU"

= $[B(CSB) -1 - K (I + CSK) -1] CSBU'

+ [K (I + C_K)-I].CeBU ,,

use (I + AB) "I
= [I - A(I+BA)-IB]
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An observer Adjustment Procedure:

k(q) = z (q) C T R -I

AE + Z A T + Q(q) - _ cTR-Ic Z = O

Q and R are treated as design Parameters

[For Kalman Filters, these are noise intensity

matrices ]

2 BVB TQ (q) = Q0 + q

R = R 0

For q=0

For q ÷ ®

or

K(q) is the nominal Kalman gain

KRKT ÷ BVB T
2

q

K

q

I 1

BV _ (R_) -i



II. CONTROL ISSUES=

CONTROL OF LARGE STRUCTURES WITH DELAYED INPUT IN

THE CONTINUOUS TIME DOMAIN

v/.

CONTROLWITH DELAYED INPUT IN THE DISCRETE TIME DOMAIN

CONTROL LAW DESIGN FOR SCOLE USING LQG/LTR TECHNIQUE

OPTIMAL TORQUE CONTROL FOR SCOLE SLEWING MANUEVERS

• Kinematical and Dynamical Equations

• Optimal Control - Two Point Boundary Value Problem

• EstimGtion of Unknown Boundary Conditions

• Numerical Results
s

• Dtscussion and. Further Recommendations
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