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A beam waveguide is a mechanism for guiding electromagnetic radiation from one part

of an antenna to another through a series of reflectors. Appropriate placement of reflec-

tors on an antenna allows a "beam" to be guided "around the elevation axis" and/or

"below the alidade. " The beam waveguide permits placement of all electronics in a room
on the alidade below the elevation axis, or below the alidade; feed horn covers to be

protected from the weather; and feed electronics to be in spacious rooms rather than in

crowded cones, and always level rather than tipping with change in elevation angle. These

factors can lead to lower costs in new implementation such as Ka-band, better antenna

performance at X-band, more efficient and stable performance of transmitters and receiv-
ers, and lower maintenance and operating costs. Studies are underway to determine

methods for converting the major antennas of the Deep Space Network (DSN) to beam

waveguide operation by 1995.

I. Introduction

A beam waveguide is an open waveguide where electromag-

netic propagation does not depend on the boundary condi-

tions of the walls. A beam waveguide system typically consists

of an arrangement of reflectors that direct the beam from one
location to another. The set of reflectors may be contained in

large tubes, where minimal interaction occurs with the walls of
the tubes.

Beam waveguide systems are used on antennas as a means

of moving the focal point to a more convenient location. For

example, on the Weilheim, Germany, 30-meter antenna shown

in Figs. 1 and 2, the secondary focal point is located behind

the main reflector, beyond the elevation bearing on the eleva-

tion axis. This has the primary advantage of allowing space for
a large room that contains a dual frequency feed horn, two

X-band masers, two S-band parametric amplifiers, receivers,
and a transmitter; it also allows the electronics to remain level

and keeps the feed horn cover dry despite rain.

Beam waveguide systems typically use curved reflectors or
combinations of curved and flat reflectors. Flat reflectors sim-

ply redirect the beam; curved reflectors may refocus the beam
in order to control beam divergence along the waveguide.

Curved reflectors may be ellipsoidal, or paraboloidal; the

shapes are sometimes modified to favor one frequency. Design
considerations are addressed elsewhere (Ref. 1).

Beam waveguide systems can use a pair of reflectors along

the elevation axis to bring the beam down to a feed electronics
room on the alidade. Again, the reflectors can be fiat or curved

as desired. A second pair of reflectors can be used to advantage
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along the vertical axis to bring the beam to a pedestal room

that is below the alidade (Ref. 2). Figure 3 shows these two

configurations conceptually; Fig. 4 shows one of the three

COMSAT antennas at Roaring Creek, Pennsylvania, where all
feeds and electronics are within the stationary buildings on

which the three 32-meter antennas are mounted. Figures 5

and 6 show the 64-meter deep space antenna at Usuda, Japan,

with its three-story alidade building. The spacious interior of

the Usuda alidade rooms provide a laboratory environment for

transmitters, cryogenically cooled low-noise amplifiers, receiv-

ers, and much other equipment (see Fig. 7).

Beam waveguide systems can include many reflectors,

including movable ones, in order to move the beam to any of

several desirable locations. The 45-meter radio astronomy

antenna at Nobeyama, Japan (Fig. 8), has the configuration

of reflectors shown in Figs. 9 and 10. Note that the reflectors

can be moved to redirect the beam. Vernier pointing of the

antenna beam can be accomplished by movement of reflectors.

Figures 11 and 12 show such a system for an aircraft-mounted

98-GHz radiometer, using a 43-cm × 63-cm scanning reflector

(Ref. 3).

The DSN has used reflectors in a fashion similar to those in

beam waveguides for over 10 years. As Fig. 13 shows, the dual-

frequency (S-band and X-band) arrangement of dichroic plate

and ellipsoidal reflector is like a beam waveguide system. How-
ever, these do not move the beam below the elevation axis

and/or alidade. Hence, today DSN antennas contain their
front-end electronics in cones and rooms that are crowded and

that tip.

It is proposed to retrofit beam waveguide systems into

existing DSN antennas, and to employ them on all new DSN

antennas. These beam waveguides will be used to direct the

beam below the elevation axis and/or the alidade, to provide

vernier pointing where needed, to provide frequency sensitive
beam splitting, and to redirect the beam with a movable re-
flector to allow the use of different or redundant sets of

electronic equipment.

II. Performance Gains for the DSN

All advantages to the DSN will accrue because sophisticated
electronic equipment now mounted above the elevation axis in

DSN antennas without beam waveguides can be mounted in

rooms below the elevation axis once beam waveguides are

added. This means that the traditional single or multiple
cones and transmitter rooms above the elevation axis can be

eliminated.

Instead, all electronics will be housed in either a stationary

feed room that does not tip or rotate (typical of COMSAT), or

in a feed room that rotates, but does not tip (typical of Usuda

and Nobeyama).

This has many implications for improved performance and

operation. First, the crowded cones are replaced with spacious
rooms in which new implementations can be installed without

expensive rework. The electronics in the antenna are accessible
all of the time - no need for downtime for maintenance on

the electronics. Equipment can be moved in or out with no
loss of antenna time, and without need for use of the antenna

structure itself as a crane for moving heavy equipment.

Second, equipment can be simpler and easier to maintain

within operating conditions. Cryogenic system gas lines will no

longer traverse hundreds of feet from alidade platforms around
the elevation axis. The lines will be short and fixed with no

flexible sections. The long bundles of power and signal cables
now running from alidade to above the elevation axis will

largely disappear. Cables will be short and fixed. There will be

no gas lines, water lines, or cables above the elevation axis

except for electrical connections for the subreflector control

and aircraft warning lights.

Transmitters will be cheaper to build and easier to main-

tain. For example, a non-tipping transmitter can use steam

rather than water cooling - in fact, an increase in output

power is possible without changing water flow rate because of

increased efficiency of cooling through steam. Tolerances

required for the proposed 34-GHz gyroklystron will be easier

to obtain with a stationary design than with one designed to
be tilted.

Cryogenic systems will a!so be cheaper and more reliable.

Stationary units that store large volumes of liquid helium can

be used to operate at temperatures below 4.2 K and extend

mean time between failure for cryogenic systems from 2000
hours to 20,000 hours. Operating at temperatures near 1.5 K

will reduce maser noise temperature by a factor of three, triple

maser gain-bandwidth product, and allow operation of super-

conducting frequency standards in the front-end area equip-
ment room on the antenna.

Frequency stability will be improved by eliminating flexing

cables, controlling the environment for critical equipment and

cable, and measuring and stabilizing or compensating in real

time for beam waveguide length variations.

Finally, beam waveguides can provide increased antenna

performance at X-band in the rain. This is because systems can

be built so that feed horn covers and dichroic plates are not

exposed to moisture. Light rain that should cause only 2 K
additional noise at X-band can add 40 K due to water in the

feed horn cover and dichroic plate with our current system.
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The resulting signal-to-noise-ratio loss of 4 dB can be circum-
vented with beam waveguides. Figure 14 shows relative per-

formance during rain at Weilheim, Germany, and as specified
in the DSN at the 95% weather probability.

III. Converting the DSN

Tests conducted with a DSN S-band traveling wave maser

on the 64-meter antenna in Usuda, Japan (Ref. 4) showed that

the zenith system temperature was 1 K lower than that of a

DSN 64-meter antenna, while at 30 degree and 10 degree

elevation angles, the Japanese system temperature was 2.3 K
and 3 K lower than the DSN's (Fig. 15). Usuda's lower noise

temperature is thought to be due to less microwave scattering

off the smaller quadripod support of the Usuda antenna.

There does not appear to be any major cost difference
between an antenna with or without beam waveguide when

building and equipping a new antenna. Probably the beam
waveguide system has a lower cost. That is, the cost of the

reflector system and large feed equipment room is more than

offset by the reduced costs from not providing a cone, trans-

mitter room, heavier quadripod, added counterweights, added
cryogenic lines, added cabling, and the added cost of "tight"

layout design in the crowded space above the elevation axis.

Thus, since neither lower performance nor higher cost

should arise, it appears to be appropriate to build only beam
waveguide designs for future DSN antennas. The new research

and development antenna planned for the Venus site will not

only utilize beam waveguides, but also be used to conduct

extensive tests to answer questions about how the DSN can

best utilize beam waveguide. Replacements for the old HA-

DEC 34-meter antennas are expected to use beam waveguides.

The remaining issue deals with conversion of the existing 64-/

70-meter and 34-meter high efficiency (HEF) antennas.

Figure 16 shows one "conventional" beam waveguide

configuration that is suitable for a 34-meter antenna (Ref. 5).

For the ttEF antennas, this would require rework of the eleva-
tion axis truss - that is, replacement of the horizontal beam

with a "donut" support to allow the beam to be directed

through to the center of the dish. This configuration is a
possibility for the replacements for the old HA-DEC antennas.

Figure 17 shows a "bypass" mode that transfers the beam

"through" the reflector, but requires no structural changes in
the elevation axis truss. This is a candidate for the HEF antenna

since the horizontal support can be retained; both configura-
tions are being considered for tests in the new research and

development antenna at the Venus site.

Beam waveguide conversion for the 70-meter antennas

remains uncertain. Initial surveys show that at least one

approach can place the beam within the central column now

used for the master equatorial pointing system. This could

permit the pedestal area to be used for all transmitter and

receiver equipment now housed above the elevation axis.

This assumes, however, that the 70-meter antennas will not

use a master equatorial pointing system. Studies are now
underway to find ways of converting to beam waveguide with-

out loss of the master equatorial pointing system, and to find

ways of pointing the 70-meter antenna without the master

equatorial system.

IV. Concluding Remarks

The advantages of beam waveguides to DSN future imple-

mentation and operation are significant. Long range plans call
for conversion of the DSN antennas during the 1990s. Replace-
ment of the old HA-DEC 34-meter antennas is slated for the

early 90s, conversion of the 70-meter antenna for the mid-90s,

consistent with plans to add Ka-band reception; conversion of
the 34-meter HEF antennas are less definite, but expected to
occur .in the late 90s.
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Fig. 1. Weilheim 30-m antenna viewed from front 

Fig. 3. Conceptual configuration of a beam waveguide 

Fig. 2. Weilheim 30-m antenna viewed from rear 

Fig. 4. 32-m COYSAT antenna at Roaring Creek, Pennsylvania 
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Fig. 5. Usuda 64-m antenna 

Fig. 7. Interior of Usuda alidade room 

/ .  . 

Fig. 8. 45-m radio astronomy antenna at Nobeyama, Japan 

Fig. 6. Usuda 64-m antenna rear view 
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Fig. 9. Nobeyama 45-m antenna feed configuration 

Fig. 10. Nobeyama 45-m antenna feed configuration and 
beam waveguide 
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Fig. 11. Millimeter wave imaging sensing system 

Fig. 12. Photograph of millimeter wave imaging sensing system 
antenna and scanning system 
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Fig. 13. DSS 14 64-m antenna feed system 
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Fig. 14. X-band system temperature increase versus 
elevation angle 
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Fig. 15. S-band system temperature versus antenna 
elevation angle 
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Fig. 16. Beam waveguide configuration for DSN 34-m

HEF antenna

,i
I I

tl
Ii,

-- - _--_ELEVATION AXIS

S ELECTRONICS

r _-T .-----g I
i

Fig. 17. Bypass-mode beam waveguide configuration for OSN

34-m HEF antenna
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