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SUMMARY 

A review i s  presented on research and development o f  techniques f o r  
nondestruct ive eva lua t ion  and charac ter iza t ion  o f  advanced ceramics f o r  heat 
engine app l i ca t i ons .  H igh l igh ted  I n  t h i s  review a re  Lewis Research Center 
e f f o r t s  i n  microfocus radiography, scannlng l ase r  acous t ic  microscopy (SLAM), 
scanning acoust ic  microscopy (SAM),  scanning e l e c t r o n  acoust ic  microscopy 

a (SEAM), and photoacoustic microscopy (PAM). The techniques were evaluated by 
e app ly ing  them t o  research samples o f  green and s in te red  s i l i c o n  n i t r i d e  and 
I s i l i c o n  carb ide i n  the  form o f  modulus-of-rupture bars conta in ing  seeded 

vo ids.  P r o b a b i l i t i e s  o f  de tec t i on  of  vo ids were  determined f o r  diameters as 
small as 20 f o r  microfocus radiography, SLAM, and SAM. Strengths and 
l i m i t a t i o n s  o f  the  techniques f o r  ceramic app l i ca t i ons  a re  i d e n t l f i e d .  The 
a p p l i c a t i o n  o f  u l t rason ics  f o r  charac ter iz ing  ceramic mic ros t ruc tures  i s  a l so  
discussed. 
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INTRODUCTION 

The need f o r  q u a n t i t a t i v e  assessment of t he  r e l i a b i l i t y  o f  f l a w  de tec t i on  
techniques ar ises  from the  app l i ca t i on  of f r a c t u r e  mechanics p r i n c i p l e s  t o  the  
design o f  c r i t i c a l  pa r t s .  The f rac tu re  mechanics concept assumes f laws are  
present i n  a l l  ma te r ia l s  and q u a n t i t a t i v e l y  descr lbes t h e l r  e f f e c t  on s t ruc -  
t u r a l  i n t e g r i t y .  Thus, a c r i t i c a l  crack s i z e  t h a t  would r e s u l t  i n  unstable 
crack growth can be def ined f o r  any combination of ma te r ia l  and load ing  condi- 
t i o n s  ( r e f .  1) .  For simple components such as pressure vessels, f r a c t u r e  
c o n t r o l  can be achieved by proof  t e s t i n g  t o  a pressure which exceeds the  
opera t ing  s t ress .  I f  the  vessel does n o t  f rac tu re ,  the absence o f  c r l t i c a l  
f laws i s  assured. For complex s t ructures however, proof  t e s t i n g  l o g i c  may no t  
be app l i cab le  because i n  many cases It i s  n o t  poss ib le  t o  dup l i ca te  p r e c i s e l y  
t h e  na ture  o f  operat ing stresses. Therefore, s t r u c t u r a l  i n t e g r i t y  o f  complex 
components must be es tab l i shed by a d i f f e r e n t  approach, t he  most p r a c t i c a l  o f  
which may be nondestruct ive evaluat ion (NDE). 
screen out pa r t s  conta in ing  f laws equal t o  o r  g rea ter  than the  c r i t i c a l  crack 
s i z e  be fore  they are p u t  i n t o  serv ice ( r e f .  2 ) .  I n  some app l i ca t i ons  i t  may 

The r o l e  o f  NDE would be t o  



be necessary t o  ensure t h a t  f laws s i g n i f i c a n t l y  smal ler  than c r i t i c a l  s i z e  are  
absent if s u b c r i t i c a l  crack growth due t o  such th ings  as s t ress-corros ion o r  
f a t i gue  i s  t o  be avoided. 

The use o f  f r a c t u r e  mechanics concepts i n  ceramic component design places 
a premium on the  a b i l i t y  o f  nondestruct ive i nspec t i on  t o  de tec t  small de fec ts  
( r e f s .  3 and 4 ) ,  and on the  need t o  determine the  p r a c t i c a l  r e l i a b i l i t y  o f  an 
NDE procedure when t h a t  procedure i s  considered f o r  de tec t i on  of f laws of a 
s p e c i f i c  type and s ize  ( r e f .  5 ) .  
s igner  i s  t o  r e l y  on NDE t o  assure t h a t  components a re  f r e e  o f  f laws t h a t  
exceed a speci f ied s i z e  i n  the  ma te r ia l  chosen f o r  a p a r t i c u l a r  serv ice  env i -  
ronment. If the design i s  such t h a t  the  c r i t i c a l  crack s i z e  i s  g rea ter  than 
the smal lest  f law t h a t  can be r e l i a b l y  detected ( o r  t h e  l a r g e s t  f l a w  t h a t  w i l l  
be missed a s i g n i f i c a n t  p ropor t i on  of t he  t ime)  then the  Inspec t ion  process 
can be used. The d i f f e rence  between the  smal lest  de tec tab le  f l a w  and the  
c r i t i c a l  crack s i ze  can be regarded as a measure o f  t h e  margin o f  safety.  

Such in fo rmat ion  i s  essen t ia l  If the  de- 

The r e l i a b i l i t y  o f  var ious convent ional  nondestruct ive techniques f o r  
de tec t i on  o f  cracks i n  m e t a l l i c  a i r c r a f t  engine components was repor ted i n  
re ference 6. 
f o r  f laws i n  heat engine ceramics i s  presented i n  references 7 t o  10. This 
paper examines some o f  t he  fac to rs  t h a t  in f luence the  d e t e c t a b i l i t y  o f  minute 
f laws i n  ceramics, and focuses a t t e n t i o n  on requirements f o r  assur ing adequate 
de tec t i on  s e n s i t i v i t y  and r e l i a b i l i t y  w i t h  rad iographic  and acoust ic  micro- 
scropy techniques. The paper a l so  discusses the  a p p l i c a b i l i t y  o f  thermo- 
acoust ic  techniques f o r  ceramic app l i ca t i ons  and a program f o r  cha rac te r i z ing  
ceramic microst ructures through u l t r a s o n i c  measurements. 

The only  p rev ious ly  repor ted work on NDE de tec t i on  r e l i a b i l i t y  

RELIABILITY OF FLAW DETECTION 

Spec i men P r  epar a t  i on 

Figure 1 shows a f l o w  cha r t  which descr ibes the  prepara t ion  o f  specimens 
conta in ing  seeded voids.  The S I C  s t a r t i n g  powder contained s i n t e r i n g  a ids and 
b inder  ma te r ia l  (boron and carbonaceous r e s i n s ) .  The Si3N4 s t a r t i n g  powder 
contained 6 percent Y2O3 and 6 percent Si02 t o  promote d e n s i f i c a t i o n  du r ing  
s i n t e r i n g .  For surface voids,  a l l  o f  the  powder necessary t o  make up the 
specimen thickness was poured i n t o  the  d i e  and the  microspheres were pressed 
i n t o  the top surface. For i n t e r n a l  voids the  amount of powder pu t  i n  the d i e  
before and a f t e r  placement o f  the  microspheres was c o n t r o l l e d  t o  achieve the  
des i red vo id  depth i n  the  f i n i shed  specimen. The d i e  pressed bars were vacuum 
sealed i n  l a t e x  tub ing  and co ld  lsopressed t o  approximately 60 percent  o f  f u l l  
dens i ty .  
vapor ize the p l a s t i c  microspheres. The as-s in tered dens i t y  of s i l i c o n  carb ide 
ranged f r o m  94 t o  97 percent o f  f u l l  t h e o r e t i c a l  dens i t y  w h i l e  f o r  s i l i c o n  
n i t r i d e  i t  was more than 98 percent o f  t h e o r e t i c a l .  
ured nominal ly  28 mm long, 7 mm wide, and 2 t o  4 mm t h i c k ,  as requ i red  f o r  NDE 
r e l i a b i l i t y  determinat ions.  A f t e r  NDE, i n t e r n a l  vo ids were exposed by diamond 
g r i n d i n g  and measured by o p t i c a l  and e lec t ron  microscopy. 
l i s t e d  i n  t a b l e  I .  The dimensions o f  voids i n  green compacts were assumed t o  
be equ iva len t  t o  the  seeded spheres. 
f a b r i c a t i o n  and vo id cha rac te r i za t i on  i s  g iven i n  re ference 10. 

A f t e r  removing the  l a t e x  the  compacts were heated i n  vacuum t o  

As- f i red  t e s t  bars meas- 

These data a re  

A complete d e s c r i p t i o n  o f  specimen 
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NDE Techniques and S t a t i s t i c a l  Analys is  

The r e l i a b i l i t y  o f  mlcrofocus radiography and scanning l a s e r  acous t ic  
microscopy (SLAM) f o r  de tec t i on  o f  seeded voids was evaluated over a wide 
range o f  vo id  diameters and depths. P r o b a b i l i t y  o f  de tec t i on  data was ob- 
ta lned f o r  scanning acoust ic  microscopy (SAM) a t  a s i n g l e  vo id  diameter and 
depth. B r i e f  descriptions of t he  NDE techniques and t h e  procedure used t o  
s t a t i s t i c a l l y  analyze f law detec t ion  data fo l low.  De ta i l ed  desc r ip t i ons  are  
g iven i n  references 7 t o  11. 

Microfocus x-ray. - The x-ray s y s t e m  ( f i g .  2) was operated i n  t h e  30 t o  
60 kV range w i t h  a molybdenum anode which produced photon energy l e v e l s  be- 
tween 17 and 20 keV. 
reduced f i l m  con t ras t  which i s  undesirable. 
magn i f i ca t ion  o f  2.5 were made by t h e  p r o j e c t i o n  method and examined w i t h  the  
a i d  o f  a 7X o p t i c a l  magn i f ie r .  

Higher photon energy l e v e l s  were found t o  r e s u l t  i n  
Radiographic f i l m  images a t  a 

- SLAM. - The SLAM technique i s  i l l u s t r a t e d  I n  f l g u r e  3 .  100 HHz u l t r a -  
sonic waves t ransmi t ted  through the  specimen are  modulated by m a t e r i a l  sur face 
and i n t e r n a l  c h a r a c t e r i s t i c s .  
reaching the r e f l e c t i v e  f i l m  on t h e  cover s l i p  a re  detected by a l a s e r  beam 
r a s t e r  scanned over an area approximately 2 rm square. The beam i s  r e f l e c t e d  
i n t o  a photodetector and converted t o  an e l e c t r o n i c  s igna l .  Thus, an image o f  
t h e  acoust lc  per tu rba t ions  caused by features such as cracks, voids, dens i t y  
va r ia t i ons ,  etc. ,  a re  d isp layed i n  rea l  t i m e  on a v ideo moni tor  a t  a magn i f i -  
c a t i o n  o f  near ly  1OOX.  

The r e l a t i v e  i n t e n s i t y  and phase o f  t h e  waves 

- SAM. - The SAM technique uses a s i n g l e  t ransducer t o  generate and rece ive  
u l t r a s o n i c  energy ( f i g .  4 ) .  
focuss ing moderately h igh  frequency u l t r a s o n i c  energy ( 3 0  t o  100 MHz) on a 
small spot, r a s t e r  scanning the  lens w i t h  respect t o  t h e  sample, and time-gate 
sampling the r e f l e c t e d  u l t r a s o n i c  pulse amplitude. Any fea tures  t h a t  produce 
an acoust ic  impedance mismatch w i t h i n  the  sample o r  a change i n  acous t ic  
impedance a t  the  specimen sur face can cause d e t e c t i b l e  v a r i a t i o n s  i n  the  
d i g i t i z e d  and s tored s p a t i a l  map of  r e f l e c t e d  s igna l  amplitude. I f  a f l a w  i s  
l a r g e r  than the  f o c a l  spot, some degree of f law s i z i n g  can be achieved. Flaws 
smal ler  than the  foca l  spot can be detected bu t  i f  two o r  more a re  loca ted  a 
wavelength o r  l e s s  apar t  they cannot be resolved. 

Good s e n s i t i v i t y  and r e s o l u t i o n  a re  achleved by 

S t a t i s t i c a l  Analysis 

Due t o  unce r ta in t i es  associated w i th  equipment, operator ,  f l a w  character-  
i s t i c s ,  etc. ,  the de tec t i on  o f  f laws i n  engineer ing ma te r ia l s  and components 
i s  p r o b a b i l i s t i c  i n  nature and must be evaluated us ing a s t a t i s t i c a l  
approach. Since an at tempt a t  de tec t ion  o f  a g iven f l a w  can have on ly  two 
poss ib le  outcomes ( i t  I s  e i t h e r  detected o r  missed) the  p r o b a b i l i t y  o f  detec- 
t i o n  (POD) can be descr ibed by the  binomial  d i s t r i b u t i o n .  The f laws were 
grouped i n t o  s i z e  i n t e r v a l s  because f a b r i c a t i o n  var iab les  precluded making 
l a r g e  numbers o f  voids i n  a wide range o f  d i s c r e t e  s izes.  The p r o b a b i l i t y  o f  
d e t e c t i o n  was ca lcu la ted  f o r  each i n t e r v a l  by the  ' op t im ized  p r o b a b i l i t y 1 I  
method descr ibed i n  re ference 5. 
and p l o t s  NDE r e l i a b i l i t y  data i s  l i s t e d  I n  re ference 7 (NASA TM vers ion)  

A For t ran  computer program t h a t  ca l cu la tes  
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P r o b a b i l i t y  o f  Detect ion Resul ts 

NDE r e l i a b i l i t y  data f o r  t he  microfocus x-ray technique 1 s  presented i n  
f igures  5 and 6 i n  the  f o r m  of p l o t s  o f  p r o b a b i l i t y  o f  de tec t i on  versus vo id  
s i ze  expressed as percent of t o t a l  specimen th ickness.  As shown i n  t a b l e  I, 
the i n t e r n a l  void diameters ranged from 50 t o  5 2 8  pm i n  the  green specimens 
and 20 t o  477 pm i n  the f u l l y  dens i f i ed  bars. 

~ l l  of the POD curves are  character ized by a sharp drop i n  p r o b a b i l i t y  o f  
de tec t ion  i n  a reg ion below approximately 2 . 5  percent th ickness s e n s i t i v i t y .  
f i gu re  5(a) shows t h a t  t h e  de tec t i on  s e n s i t i v i t y  o f  i n t e r n a l  voids i n  green 
s i l i c o n  n i t r i d e  i s  nea r l y  the  same as i n  green s i l i c o n  carbide, approximately 
2 . 5  percent a t  a POD o f  90 percent.  The curves i n  f i g u r e s  5(b) and ( c )  a re  
more reveal ing,  showing t h a t  surface voids are  more e a s i l y  detected than 
i n t e r n a l  voids f o r  both ma te r ia l s .  Analysis o f  a l i m i t e d  number o f  i n t e r n a l  
voids i n  green compacts revealed they were p a r t i a l l y  f i l l e d  w i t h  loose powder, 
which has the  e f f e c t  o f  reducing con t ras t  on the  x-ray f i l m .  This could 
account f o r  the lower apparent s e n s i t i v i t y .  I n  n a t u r a l l y  occur r ing  voids t h i s  
may be l ess  o f  a problem because they are  no t  usua l l y  produced by vapor iz ing  a 
suppor t ing mater ia l  such as the  seeded spheres used i n  t h i s  i nves t i ga t i on .  
Fo r  green mater ia ls ,  there fore ,  the  POD data presented here f o r  surface voids 
would probably apply t o  n a t u r a l l y  occur r ing  i n t e r n a l  voids regardless o f  the  
f a b r i c a t i o n  technique used t o  make the  specimens o r  pa r t s .  

For s in tered mater ia ls ,  the  data i n  f i g u r e  6 show many i n t e r e s t i n g  fea- 
tu res .  For example f i g u r e  6(a) i nd i ca tes  unusual ly  good s e n s i t i v i t y  t o  i n t e r -  
n a l  voids i n  s i l i c o n  n i t r i d e .  However, chemical ana lys is  o f  vo id  wa l ls ,  
reported i n  reference 10, proved t h a t  de tec t i on  o f  some i n t e r n a l  voids i n  
s i l i c o n  n i t r i d e  was in f luenced by a depos i t  o f  y t t r i um,  a s t rong absorber o f  
x-rays. 
radiograph, r e s u l t i n g  i n  enhanced d e t e c t a b i l i t y .  This cond i t i on  could occur 
i n  any s in te red  ma te r ia l  t h a t  u t i l i z e s  s i n t e r i n g  a ids  composed o f  heavy e le -  
ments. The enhanced d e t e c t a b i l i t y  phenomenon was no t  observed w i t h  voids 
seeded i n  s i l i c o n  carb ide ( f i g .  6 ( b ) ) ,  which d i d  no t  con ta in  s i m i l a r  s i n t e r i n g  
a ids.  

Thus, some o f  t he  voids appeared t o  have a h igh  dens i ty  s h e l l  on the  

NDE r e l i a b i l i t y  data f o r  SLAM i s  presented i n  f i g u r e s  7 and 8. Figure 7 
which contains data f o r  surface connected voids only,  shows the  e f f e c t  o f  
surface cond i t ion  and specimen thickness on d e t e c t a b i l i t y  o f  f laws. From the  
POD curves f o r  as - f i r ed  specimens, i t  i s  ev ident  t h a t  0.90 p r o b a b i l i t y  o f  
de tec t ion  a t  0.95 confidence l e v e l  was no t  a t t a i n e d  f o r  any th ickness up t o  4 
mm. However, when the  same specimens were l i g h t l y  po l i shed t o  a surface 
f i n i s h  o f  nominally 2 pm, t he  POD was s i g n i f i c a n t l y  improved. POD o f  0.90 
was achieved for a l l  specimen thicknesses. Thus, i t  appears t h a t  a s - f i r e d  
surfaces cause a background no ise  l e v e l  h igher  than can be t o l e r a t e d  f o r  
nondestruct ive de tec t ion  of minute defects  by SLAM. The measured surface 
f i n i s h  o f  as - f l red  samples was 8 pm (peak- to-va l ley)  bu t  i t  should be noted 
t h a t  topography was t h e  on ly  surface c h a r a c t e r i s t i c  t h a t  was measured. 
poss ib le  t h a t  other fac to rs  such as f i n e  near-surface po ros i t y ,  a c t i n g  as 
u l t r a s o n i c  wave sca t te rers ,  could have con t r i bu ted  t o  the  genera l l y  low POD 
f o r  as-f i red samples . 

It i s  

F igure 8 shows a p l o t  which summarizes SLAM POD data obtained f o r  i n t e r -  
n a l  voids i n  specimens w i t h  diamond-ground surfaces ( r e f .  9) .  The boundaries 
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of the bar graphs i n d i c a t e  the minimum vo id  s izes and maximum depths ( f r o m  t h e  
laser-scanned surface) a t  which 0.90/0.95 POD/confidence-level was achieved. 
A s  expected, there  i s  a s i g n i f i c a n t  e f f e c t  of vo id  s i z e  and depth. However, 
t he  p l o t  a l so  shows t h a t  0 . 9 0 1 0 . 9 5  i s  obtained a t  g rea ter  depths and smal ler  
vo id  s izes  i n  s i l i c o n  n i t r i d e  than i n  s i l i c o n  carbide. This i s  probably due 
t o  d i f f e rences  i n  mic ros t ruc ture  between the  two mater ia ls .  
s i l i c o n  carb ide was an order of magnltude grea ter  than I n  s i l l c o n  n i t r i d e .  
The bu lk  po ros i t y  i n  S i l l c o n  carb ide was a l s o  h igher  than i n  s i l l c o n  n i t r i d e .  
Both of these cond i t ions  would have the e f f e c t  o f  inc reas ing  u l t r a s o n i c  
s c a t t e r  and reducing the  POD o f  voids I n  s i l i c o n  carb ide r e l a t i v e  t o  s i l i c o n  
n i t r i d e .  

The g r a i n  s i z e  i n  

Also shown i n  f i g u r e  8 i s  a s ing le  data p o i n t  represent ing p re l im ina ry  
r e s u l t s  obtained w i t h  the  SAM technique. Voids a t  on ly  a s i n g l e  diameter 
(nominal ly  20 pm) s i t ua ted  1 mn f r o m t h e  scanned sur face were a v a i l a b l e  a t  
the  t ime o f  the SAM evaluat ion.  A l l  o f  38 voids were detected i n  s i l i c o n  
n i t r i d e  samples, y i e l d i n g  a POD be t te r  than 0.9010.95 f o r  t h i s  very small vo id  
s i z e  a t  a depth o f  about 50 times the diameter. The method needs t o  be eva l -  
uated f o r  a greater  range of depths, mater ia ls ,  and mic ros t ruc tures  b u t  prom- 
i s e s  t o  be an extremely useful  technique f o r  scanning c r i t i c a l  areas o f  heat 
engine components. 

THERMOACOUSTIC TECHNIQUES 

Thermoacoustic techniques can be app l ied  t o  ceramics i n  e i t h e r  a noncon- 
t a c t i n g  mode s i m i l a r  t o  x-ray methods, o r  a contac t ing  mode as i n  u l t rason ics .  
The technique e s s e n t i a l l y  measures r e l a t i v e  d i f ferences i n  sur face and near- 
sur face thermal p roper t i es  of t he  mater ia l  being evaluated. The absorpt ion o f  
i n t e n s i t y  modulated electromagnet ic r a d i a t i o n  focused a t  any p o i n t  on the  
sample g lves r i s e  t o  l o c a l i z e d  c y c l i c  heat ing  and coo l i ng  which i n  t u r n  gener- 
a tes e l a s t i c  waves a t  the  modulat ion frequency. The ampl i tude and phase o f  
these waves can be measured a t  another p o i n t  on the  specimen surface by a 
p i e z o e l e c t r i c  c r y s t a l  i n  contact  w i t h  the specimen, or i n  t h e  surrounding 
medium by a noncontact ing method using a s e n s i t i v e  microphone o r  a l ase r .  
overview o f  the  t h e o r e t i c a l  and experimental aspects o f  the thermoacoustic 
techniques i s  presented i n  re ference 12. 

An 

___. SEAM. - A schematic diagram of t h e  scanning e lec t ron  acoust ic  microscopy 
technique (SEAM), which u t i l l t e s  a scanning e lec t ron  beam heat ing  source and a 
contac t  p iezo -e lec t r i c  acoust ic  sensor housed i n  a scanning e lec t ron  micro- 
scrope enclosure, i s  shown i n  f i g u r e  9. The thermal d i f f u s i v i t y  o f  t he  volume 
o f  m a t e r i a l  con ta in ing  the  f l a w  d i f f e r s  f rom t h a t  of t he  ma t r i x  ma te r ia l .  
Thus, t he  e l a s t i c  waves produced as t h e  I n t e n s i t y  modulated e l e c t r o n  beam 
passes over the f l a w  d i f f e r  I n  amplitude and/or phase from the  surrounding 
m a t e r i a l .  Modulation f requencies can range from 100 Hz t o  10 kHz, the lower 
f requencies achiev ing grea ter  penetrat ion.  
raster-scanned area can be produced, an example of which i s  shown i n  f i g u r e  
10. The SEM backscatter image shows a p o r t l o n  o f  a crack t h a t  o r i g ina tes  a t  
the  edge o f  a s i l i c o n  carb ide modulus o f  rup tu re  bar, as w e l l  as dust p a r t i -  
c l e s  on the  specimen surface. The SEAM image c l e a r l y  shows the  subsurface 
extens ion o f  the crack as w e l l  as the  p o r t i o n  seen on the  SEM image. 
however, t h a t  the  surface dust d i d  not r e g i s t e r  on the  SEAM Image. 

A thermoacoustic image o f  a 

Note, 
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Prel iminary i n v e s t i g a t i o n  of the  SEAM technique i n  the  l abo ra to ry  us ing 
s i l i c o n  carbide and s i l i c o n  n i t r i d e  samples conta in ing  defects  a r t i f i c i a l l y  
induced a t  predetermined loca t i ons  resu l ted  i n  the  f o l l o w i n g  observat ions:  
(I) surface features such as p i t s  and nodules were detected and imaged; (2 )  
cracks produced n a t u r a l l y  by processing, and t i g h t  cracks produced by knoop 
indenta t ions  were imaged; ( 3 )  seeded subsurface voids up t o  100 pm below the  
i n t e r r o g a t i n g  surface were imaged, wh i l e  voids a t  a depth o f  300 pm were 
missed. 
que. Calculat ions show t h a t  r e s o l u t i o n  less  than 10 pm appears t o  be 
a t ta inab le .  
256 l i n e  image of an area 4 by 5 mm. Although the  SEAM technique has good 
s e n s i t i v i t y  and r e s o l u t i o n  c a p a b i l i t y ,  the  need t o  perform the  scan i n  a 
vacuum i s  a disadvantage. I n  add i t i on ,  s ince s t r u c t u r a l  ceramics a re  r e l a -  
t i v e l y  poor e l e c t r i c a l  conductors, a coat ing  i s  necessary t o  a t t a i n  the  s ta ted  
s e n s i t i v i t y  and reso lu t i on .  Therefore, t he  SEAM technique i s  best  su i ted  f o r  
labora tory  mater ia l  eva lua t ion  and does no t  appear promising f o r  p r a c t i c a l  
Inspec t ion  o f  heat engine components. 

R e l i a b i l i t y  of de tec t i on  data were n o t  obtained f o r  t he  SEAM techn i -  

The scan r a t e  was q u i t e  f a s t ,  w i t h  a scan t ime o f  125 sec f o r  a 

- PAM. - A block diagram o f  a photoacoust ic microscopy (PAM) system i s  
shown i n  f i g u r e  11. The sample t o  be evaluated i s  placed i n s i d e  an i s o l a t i o n  
c e l l  con ta in ing  a s e n s i t i v e  microphone and a minimal volume o f  gas, u s u a l l y  
a i r .  The sample i s  i l l u m i n a t e d  through a c l e a r  window by a chopped l a s e r  beam 
focused onto the sample surface. L i g h t  absorbed by the  sample i s  converted i n  
p a r t  i n t o  heat, r e s u l t i n g  i n  pe r iod i c  heat f low from the  sample t o  the  sur-  
rounding gas. 
i n g  and coo l i ng  o f  the  specimen and the  gas i n  the  immediate v i c i n i t y  o f  t he  
specimen are  t ransmi t ted by the  bu lk  gas medium t o  the  microphone. 
tude and phase o f  the  acoust ic  s igna l  i s  d i r e c t l y  r e l a t e d  t o  the  thermal 
p roper t i es  o f  t h e  sample and the  surrounding medium, the  chopping frequency, 
and the  c e l l  design. The acoust ic  frequency co inc ides w i t h  the  chopping 
frequency. The depth o f  ma te r ia l  t h a t  can be evaluated depends on t h e  wave- 
length  o f  t he  inc ident  l i g h t ,  the absorpt ion c o e f f i c i e n t  o f  t he  sample, and 
the  thermal d i f f u s i o n  length.  General ly,  t he  depth o f  ma te r ia l  t h a t  can be 
evaluated i s  o f  the  order o f  one o r  two thermal d i f f u s i o n  lengths.  Thus, l i k e  
the  SEAM technique PAM i s  l i m i t e d  t o  specimen sur face and near-surface 
evaluat ion.  

The r e s u l t a n t  pressure f l u c t u a t i o n s  produced by a c y c l i c  heat- 

The magni- 

Extensive i n v e s t i g a t i o n  o f  t he  PAM technique resu l ted  i n  the  the  fo l l ow-  
i n g  observations obtained w i t h  s in te red  s i l i c o n  n i t r i d e  samples: (1)  sur face 
connected pores and inc lus ions  25 pm and l a r g e r  were detected; ( 2 )  subsur- 
face voids and inc lus ions  35 pm and l a r g e r  were detected up t o  70 pm below 
the  i n t e r r o g a t i n g  surface, bu t  voids 200 pm diameter and 200 pm deep were 
missed; ( 3 )  background noise l e v e l  was high, i n d i c a t i n g  extreme s e n s i t i v i t y  t o  
ma te r ia l  var ia t ions  other  than d i s c r e t e  f laws; ( 4 )  the  method was t ime con- 
suming, requ i r i ng  over 4 h r  t o  scan an area 1 cm on a s ide  w i t h  a r e s o l u t i o n  
o f  25 pm. 

When appl ied t o  s i l i c o n  n i t r i d e  samples i n  the  green s t a t e  the  technique 
was s e n s i t i v e  t o  surface imper fect ions and t e x t u r e  v a r i a t i o n s  bu t  d i d  no t  
de tec t  near surface anomalies, i n c l u d i n g  s ide  d r i l l e d  holes up t o  250 pm 
diameter. Background noise l e v e l  produced w i t h  the  green samples was very 
high, making detect ion of even r e l a t i v e l y  l a r g e  f laws d i f f i c u l t .  Op t i ca l  
examination of the reg ion scanned by the  l a s e r  revealed an a l t e r e d  surface 
apparent ly  caused by emission of ma te r ia l  from the  specimen surface. Some o f  
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the  emi t ted ma te r ia l  coated the  c e l l  window, c u t t i n g  down on t ransmiss ion o f  
l i g h t .  
surface cracks i n  the l ase r  scanned regions t h a t  d i d  n o t  occur i n  the  un- 
scanned zones. 
the  PAM technique does no t  appear t o  be an a t t r a c t i v e  a l t e r n a t i v e  f o r  examin- 
a t i o n  of green ceramics, I n  s p i t e  of the  f a c t  t h a t  i t  can be used i n  the  
noncontact ing mode. 

Subsequent s i n t e r i n g  o f  these samples produced a l a r g e  number o f  

Because of the  apparent damage done t o  the  specimen sur face 

ULTRASONIC MICROSTRUCTURAL CHARACTERIZATION 

I t  was prev ious ly  shown t h a t  u l t rason ic  v e l o c i t y  and a t tenua t ion  measure- 
ments can be used t o  measure bu lk  densi ty  v a r i a t i o n s  ( r e f s .  13 and 14) and t o  
assess ma te r ia l  s t rength  t o  t he  extent t h a t  i t  i s  c o n t r o l l e d  by micro- 
s t ruc tu re .  This a p p l i c a t i o n  o f  u l t rason ics  i s  being explored i n  g rea ter  depth 
a t  NASA Lewis as ou t l i ned  by the f l o w  cha r t  I n  f i g u r e  12. S in te red  s i l i c o n  
carb ide MOR bars w i t h  c o n t r o l l e d  dens i t ies  and mic ros t ruc tures  have been 
prepared in-house by vary ing the  powder g r ind ing ,  pressing, and s i n t e r i n g  
cond i t ions ,  and by ho t  i s o s t a t i c  pressing. Surface f l n i s h  I s  another v a r i a b l e  
t h a t  w i l l  be studied. A f t e r  inspect ion by es tab l i shed NDE methods, the  bars 
w i l l  be character ized by s p e c i a l l y  developed h igh  frequency u l t r a s o n i c  tech- 
niques. Ava i lab le  frequencies range from 20 MHz t o  as h igh  as 1 GHz. A f t e r  
u l t r a s o n i c  cha rac te r i za t i on  the  specimens w i l l  be f rac tu red  I n  fou r -po in t  
bending. Cor re la t ions  between microst ructure,  bu lk  densi ty ,  sur face condi-  
t l o n ,  and s t rength  w i l l  then be determined. 

CONCLUDING REMARKS 

R e l i a b i l i t y  o f  vo id  de tec t i on  I n  ceramics by microfocus radiography was 
a f f e c t e d  by var ious ma te r ia l  and process r e l a t e d  parameters. I t  was observed 
t h a t  photon energy l e v e l s  l e s s  than 20 keV produced b e t t e r  rad iographic  con- 
t r a s t  and hence b e t t e r  vo id  d e t e c t a b i l l t y  than h igher  energy l eve l s .  Migra- 
t i o n  of y t t r i u m  t o  the  reg ion  surrounding vo id  w a l l s  enhanced the  d e t e c t a b i l -  
i t y  o f  voids i n  many, bu t  no t  a l l  s in tered s i l i c o n  n i t r i d e  specimens. The 
s e n s i t i v i t y  o f  x-rays t o  voids i n  green s i l i c o n  carb ide and s i l i c o n  n i t r i d e  
compacts was reduced by the presence o f  loose powder i n s i d e  the  c a v i t y .  

R e l i a b i l i t y  o f  vo id  de tec t i on  by scanning l ase r  acoust ic  microscopy was 
The l a r g e r  g r a i n  s i z e  and h igher  a f fec ted  by a d i f f e r e n t  se t  o f  parameters. 

r e l a t i v e  po ros i t y  i n  s in te red  s i l i c o n  carb ide resu l ted  i n  s i g n i f i c a n t l y  
reduced de tec t ion  c a p a b i l i t y  than was observed f o r  s i l i c o n  n i t r i d e .  
d e t e c t i o n  i n  both ma te r ia l s  was g rea t l y  improved when the  as-s in te red  sur face 
was removed by surface g r ind ing  o r  po l i sh ing .  Scanning acoust ic  microscopy 
u t i l i z i n g  u l t r a s o n i c  f requencies between 30 and 100 MHz promises t o  be use fu l  
f o r  scanning c r i t i c a l  areas on ceramic heat engine components. Pre l im inary  
data i n d i c a t e  t h a t  voids 20 pm diameter and 1 mm deep can be r e l i a b l y  
detected.  These voids were s i g n i f i c a n t l y  smal ler  and deeper than t h e  smal lest  
vo ids detected w i t h  equal r e l l a b i l i t y  by SLAM and rad iographic  methods. 

Void 

Thermoacoustic imaging techniques were i nves t i ga ted  t o  determine a p p l l -  
Scanning e lec t ron  acous t ic  microscopy c a b i l i t y  t o  simple ceramic t e s t  bars. 

proved t o  be use fu l  f o r  de tec t i ng  t i g h t  sur face cracks and p i t s  and near 
sur face voids less than 100 pm i n  diameter and 100 pm deep w i t h  good 
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r e s o l u t i o n .  However, t h e  need t o  conduct t h e  examination i n  a SEM enclosure 
and t o  coat  the specimen w i t h  a conduct ive  m a t e r i a l  l i m i t s  t he  SEAM method t o  
the  l abo ra to ry .  The photoacoust ic microscopy method was evaluated on both 
green and s in tered specimens. 
p i t s  down t o  25 pm and near-surface voids down t o  35 pm diameter.  AS w i t h  
the  SEAM technique, d e t e c t i o n  was l i m i t e d  t o  w i t h i n  100 pm o f  t h e  surface. 
The PAM method was no t  use fu l  f o r  green ceramic compacts because l a s e r  
scanning apparent ly caused sur face  c rack ing  t o  occur when t h e  specimens were 
subsequently s in tered.  I n  e i t h e r  case ( s i n t e r e d  o r  green m a t e r i a l s )  t h e  
method i s  t ime consuming, which makes i t  u n a t t r a c t i v e  f o r  scanning l a r g e  areas 

The PAM method was capable o f  d e t e c t i n g  sur face  
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Material Original 
sphere 

diameter, 

S i  3N4 80 
115 
200 
321 
528 

S iC 50 
80 
115 
200 
321 

10 

Number of Dimensions a f t er  s inter ing  
spheres . 
seeded Axis, pm Diameter, pm 

Mean Standard Mean Standard 
deviation deviation 

69 20 4 25 6 
39 37 5 68 5 
31 133 17 139 8 
28 233 16 267 18 
21 307 14 386 15 

50 32 3 58 3 
47 59 6 100 8 
68 77 10 131 8 
19 165 29 194 11 
39 297 19 307 15 



- 100 MESH -100 MESH 
a -S ic  POWDER Si3N4 POWDER 

MICROSPHERES COVERED 
WITH WWDER AND PRESSED 
AT 120 MPa TO FORM GREEN 
TEST BAR - 

I I MICROSPHERES PLACED ON 
POWDER 

VACUUM TO BURN OUT 
MICROS PHERES 

+ I MICROSPHERE POSITIONS 1 I PHOTOGRAPHICALLY RECORDED I 
I 

Si3biq S iNTERED 
2140 OC [ 2 h r  
5 MPa N2 PRESSURE 

Sic SiNIEKtD 
2200 OC 
0.5 hr 
0.1 MPa A r  PRESSURE 

Figure 1. - Fabrication of s i l icon n i t r ide and  s i l i con  carbide test specimens w i t h  
seeded in te rna l  voids. 
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T 

I I  

' AND/OR FILM DISTANCE 
SECONDARY 
RAD IATION S 

Figure 2. - Schematic conf igurat ion of microfocus projection radiography, 
where D is thickness of defect, T is  th ickness of sample, p1 i s  at tenuat ion 
coefficient of the  object, and v2 is attenuation coefficient of the defect. 

RECEIVER SCANNING LASER 

r COVERSLIP 
\ I r CERAMIC SPECIMEN WITH 

)IDS 
SURF 

DYNAMIC RIPPLE -,,,q,k 
I GOLD REFLECTIVE FILM -, ' 

'ACE 

Figure 3. - Scanning laser acoustic microscopy (SLAM) of ceramic test bars containing 
seeded in te rna l  defects. 
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MECHANICAL 
XY-SCAN 

SPECIMEN \ SURFACE 
\ 
\ 

PIEZOELECTRIC 
CRYSTAL 7 
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I KE I 
Figure 4 - Scanning acoustic microscope (SAM). 
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SURFACE VOIDS 1-I INTERNAL VOIDS 

~~ 

THICKNESS SENSITIVITY, PERCENT 

(a) Green Sic and Si3N4- 

Figure 5. - Lower bound probability-ofdetection of surface and internal voids in green isopressed SIC 
and Si3N4 bars by microfocus x-ray. Thickness sensitivity in percent equals 100 tvold dimension 
in x-ray beam direction)l(thickness of specimen in same direction). Probability of detection 
calculated at 0.95 confidence level. 

(b) Green Sic. (c) Green Si3Nq. 
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IN Si3N4 
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- INTERNAL VOIDS 

a 
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(a) Sintered Si3N4. (b) Sintered Sic. (c) Sintered Sic and Si3N4 

Figure 6. - Lower bound probability-of-detection of surface and internal  voids in sintered Sic and Si3N4 
bars by microfocus x-ray. Thickness sensitivity in percent equals 100 (void dimension in x-ray 
beam'direction)l(thickness of specimen in same direction). Probability of detection calculated at 
0.95 confidence level. 
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(a) Specimen thickness, 2 mm. (b) Specimen thickness, 3 mm. (c) Specimen thickness. 4 mm. 

Figure 7. -Effect of specimen thickness and surface condition on probability-ofdetection of surface voids by 
SLAM in sintered silicon nitride. Effect of thickness is  evident only for specimens with as-fired Surfaces. 
Probability of detection calculated at 0.95 confidence level. 
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SINTERED 
SILICON 
CARBIDE 

VOID DIAMETER, pm 

Figure 8 - Effect of void depth, void diameter, 
Eind iiiiiirix iiiateiial on proDability-of-de:ection 
of internal voids by scanning laser acoustic 
microscopy (SLAM) and scanning acoustic 
microscopy (SAM). Probability of detection 
was 0.90 at 0.95 confidence level. 
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SEM ENCLOSURE 

J.1 SCANNING 
ELECTRON C c  BEAM 

fC 
MODULATED 

SPECIMEN 
SURFACE 7\ 

\ $4 A T l M H z  
\ . .  

- 5  MICRON 
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THERMAL 

-7 4- 
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PIEZO-ACOUSTIC 
SENSOR 

TO IMAGE INTENSITY MODULATOR 

Figure 9. - Schematic representation of a thermo-acoustic 
device ut i l iz ing an  electron beam source and a n  ul t ra-  
sonic sensor housed in a scanning electron microscope 
enclosure. 
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(a) SEM backscatter image. 

ORIGINAL PAGE IS 
OF POOR QUALITY 

(b) SEAM image. 

Figure 10. - Images of a spall crack near the  edge of a silicon carbide MOR bar obtained by a 
conventional SEM technique and by scanning electron acoustic microscopy (SEAM). SEAM 
reveals subsurface cracking not s h w n  by SEM. Dust visible in the SEM image was ignored 
by SEAM. 
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Figure 11. - Block diagram of a photoacoustic microscopy (PAM) system ut i l iz ing 
a laser heating source and a gas f i l led specimen isolation cell. 
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Figure 12 - Flow chart of program to study applicability of NDE for charac- 
terizing ceramic microstructure, surface finish, and effects on strength. 
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