
NASA Contractor Report 178242 

(NASA-CB-178242) 3EE IBbEi?!AL-VCBIEX 
EI;UAITIGYS f i n a l  &sport ( € l a  L C a i I i i o o  Univ-) 
17 P CSCL 01A 

THE THERMAL-VORTEX EQUATIONS 

John V .  Shebalin 

OLD DOMINION UNIVERSITY 
Norfolk,  V i r g i n i a  

Contract NAS1-17993 
February 1987 

National Aeronautics and 
Space Administration 
Langley Research Center 
Hampton,Virginia 23665 

NE7- 18536 

Unclas 
43765 



John V. Shebalin 

Department of E lec tr i ca l  and Computer Engineering 
Old Dominion University,  Norfolk, VA 23508 

AB ST RACT 

The Boussinesq approximation is extended so as to e x p l i c i t l y  account for 

the  transfer  of f l u i d  energy through viscous ac t ion  i n t o  thermal energy. 

Ideal  and d i s s i p a t i v e  in tegra l  invariants are discussed,  i n  addition to the  

general equations €or thermal-fluid motion. 
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In this paper the equations of motion for a thermo-gravitationally 

stratified fluid are developed. These equations are pertinent to atmospheric 

and oceanic flows in which temperature variations affect fluid flow through 

boundary forces and in which fluid motion affects temperature variations 

through viscous dissipation (in addition to convection). The equations 

developed here are an extension of the Boussinesq approximation in that they 

explicitly account for the transfer of fluid energy through viscous action 

into thermal energy. These equations thus conserve physical energy, while the 

Boussinesq equations do not. 

This is not to say there are no conserved quantities in the Boussinesq 

approximation. In 2-D flows there are two: the first, sometimes called the 

energy, involves the velocity squared and the temperature (or density) 

perturbation squared. This is not strictly the physical energy, which is 

linear in the temperature perturbation. The second conserved quantity in 2-D 

flow, apparently unrecognized, is essentially the spatial correlation of the 

vorticity and temperature perturbation. 

Here the general equations for thermal-fluid motion will be discussed 

first. Then the two-dimensional version of these will be detailed. Next, the 

standard Boussinesq approximation will be discussed: in particular, the two- 

dimensional form. Finally a summary and conclusion will be given. 

GENERAL BlpUATIaRS’ 

In this work, the fluid under consideration will be treated as 

incompressible, i.e. , density change with respect to pressure is negligible; 

however, density will change with temperature. 

written as 

The fluid density can then be 



P =  P O +  P’ 

where p is a constant  and p’ is t h e  dens i ty  v a r i a t i o n .  S imi l a r ly ,  the 

temperature is given by 

0 

T = T  + T ’  
0 

where T is a constant  and T’ is t h e  temperature  v a r i a t i o n .  The r e l a t i o n  

between p’ and T’ is l i n e a r  and is given by 

0 

p’ = - P o r n ’  

where 8 is t h e  thermal-expansion c o e f f i c i e n t  of t h e  f l u i d  ( a t  T ). 

The p res su re ,  i n  t u r n ,  is given by 

0 

P = Po + P’ 

P o = P o g .  r 

where p’ is t h e  p re s su re  v a r i a t i o n  and 

+ +  

+ + 
Here g is t h e  acce le ra t ion  due t o  g r a v i t y  and I: is a p o s i t i o n  vec tor .  

In  t h e  p re sen t  

g r a v i t y  : 

-P 
+ v .  RT= 

- av’ 
at 

(he re  v is t h e  

( 3 )  

( 4 )  

( 5 )  

case,  t h e  Navier-Stokes 

- 1  4 + v * 2 = +  9’ 
P 

equat ion must inc lude  the  e f f e c t s  of 

(6) 

kinematic v i s c o s i t y ) .  If we now place ( 1 1 ,  (31, ( 4 )  and ( 5 )  

i n t o  (6) and neglec t  second and h igher  order q u a n t i t i e s ,  w e  a r r i v e  a t  

a v ’ +  + - + v . w = - V(p’/p0) + v& - rn’; at 

This ,  a long with t h e  incompress ib i l i t y  condi t ion  

+ 
v . v = o  

form t h e  ve loc i ty  equat ions  of t h e  Boussinesq approximation’. 

Now l e t  us consider  t h e  temperature (and by eq. 3, t h e  d e n s i t y )  

evolu t ion .  (I t  is here  t h a t  we d i f f e r  from the s t anda rd  Boussinesq 

approximation and use a more genera l  form). The genera l  equat ion  for  

temperature  evolut ion i n  an incompressible  f l u i d  is 
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- m + v + .  
at 

where x = 
K - is the thermometric conductivity (cm2/sec), K is the thermal 

conductivity, and C 

fluid. The last term in (9) is 

is the specific heat (at constant pressure) of the P 

- where the summation convention is in effect (e.q., vi wi = vi w1 + v2 w2 + 

v3 w3) 

2 . 0 .  p v = o  

- ap + v . v p  = -pv . v 

At this point, let us write the continuity equation: 

+ 
at 

Expanding the divergence term yields 

-b + 
at 

Using (1) and keeping only the lowest order terms (remember 

that V . v - 0 )  gives 

+ + - ap’ + v . Vp’ = -pov . v 
at 

Now, because of ( 2 ) ,  equation (9) may be written 

aT’ + V %vi %k - + v . b’ = xdT’ + -  (- + -) 
at 2cp &k &i 

(11) 

(12) 

(14) 

The term within brackets in (15) and on the right hand side of (14) is small 

compared to the convective term ( v  . b’); also, the thermal expansion 

coefficient Bc10 . The product of Band the bracketed term in (15) is 

+ 

-2 
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t h e r e f o r e  of a higher  order than  any terms being r e t a i n e d  i n  this t h e o r e t i c a l  

development. 

cond i t ion  ( V ? = 0) t i .e.,  any possible con t r ibu t ion  of v v t o  equat ion 

It is for t h i s  reason t h a t  w e  accept t h e  incompress ib i l i t y  

+ 

( 7 )  is neg l ig ib l e .  These a s s e r t i o n s  w i l l  be made q u a n t i t a t i v e  i n  t h e  nex t  

s ec t ion .  

Le t  u s  now examine t h e  energy conserva t ion  i m p l i c i t  i n  (71, (8) and 

(14 ) .  To begin,  w e  use t h e  vec tor  i d e n t i t y  

(16)  

t o  change ( 7 )  i n t o  

(17)  

NOW, (17)  is mul t ip l i ed  by v . , (14)  by Cp 

$ + +  2 + - = v x w - V(p’/p0 + v / 2 )  + ”& - m’g at 
+ + + 

where t h e  v o r t i c i t y  is w z V x v. 

and t h e  r e s u l t i n g  equat ions are added, r e s u l t i n g  i n  

2 a - (I v2 + C T’) = -v  . 
a t 2  P 2 P 

+ + C T’) - Cpxvl”] 

(Here a/&, 2 $ for convenience).  

bracketed terms on t h e  r i g h t  hand s i d e  of (18)  i n  more d e t a i l .  

A t  t h i s  p o i n t  w e  must treat  t h e  las t  t w o  

F i r s t ,  consider  t h e  term whose c o e f f i c i e n t  is v : 

( 1 9 )  

4 



+ + 
Here V . v = a v = 0 is t h e  incompress ib i l i t y  condi t ion.  Using g = - V 4  , 

k k  

t h e  l a s t  term on t h e  r i g h t  hand side of (18)  is 
+ + p ’ +  + - f 3 T ’ V .  g = -  v *  g 

PO 

P’ + = -  
2 -  * o  

Using t h e  con t inu i ty  condi t ion ,  (20 )  becomes 

+ +  P h o  -b P o a p ’  
(2 - B T ’ v . g = V .  

-b = - [$ (pOT’) + V . (pOT’ v ) ]  (21)  

NOW, u s ing  (19)  and (21 ) ,  equat ion (18)  becomes 

IC 
2 

+ d + V +  - -  
PO 2 -0. [v ( 

This energy conservat ion equat ion is accura t e  up t o  f i r s t  o rder  i n  terms such 

as  p’ and T’. Mul t ip ly ing  both s ides  of (22)  by p and i n t e g r a t i n g  t h i s  
0 

express ion  over t h e  volume of i n t e r e s t ,  V I  w e  a r r i v e  a t  t h e  fo l lowing  

d 
d t  
- 

where t h e  t o t a l  energy i n  volume V is 

(23)  

(24)  
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where t h e  v i s c o s i t y  is rl = po u. N o t e  t h a t ,  i n  (24) , 
1 2 - p  v :  
2 0  

p C T’: 
O P  

Kine t i c  energy d e n s i t y  

Thermal energy dens i ty  

6 poT’ = -p’gz: G r a v i t a t i o n a l  p o t e n t i a l  energy dens i ty  (26) 

Severa l  po in t s  should be noted concerning t h e  energy conservat ion 

formulas (23), (24) and (25). F i r s t ,  t h e  re ference  p o i n t  €or the t o t a l  energy 

Second, i f  t h e  volume V is large enough so t h a t  t h e r e  is no energy flow 

through t h e  bounding su r face  (or if t h e  flow is p e r i o d i c  or balanced across 

t h e  boundaries)  then  t h e  su r face  i n t e g r a l  i n  (23) is zero and dE/dt = 0. 

I n  t h e  next s ec t ion ,  t h e  equat ions  w i l l  be w r i t t e n  i n  non-dimensional 

form. This w i l l  allow f o r  t h e  r e l a t i v e  s i z e  of va r ious  terms t o  be determined 

and e s t a b l i s h  cri teria f o r  dec id ing  on t h e  s i m i l a r i t y  of flow i n  d i f f e r e n t  

phys i ca l  s i t u a t i o n s .  Applicat ion of t h e s e  r e s u l t s  t o  flows wi th in  t h e  

NASA/LaRC V o r t e x  Research F a c i l i t y  w i l l  provide a q u a n t i t a t i v e  example. 

A t  t h i s  po in t  w e  w i l l  in t roduce  t h e  presence of a temperature  grad ien t .  

The f l u i d ,  a t  r e s t ,  w i l l  have a uniform v e r t i c a l  temperature g rad ien t  

y ( O C / c m ) ;  t h e  temperature v a r i a t i o n  will t hus  be composed of t w o  parts: 

T ’ =  y z +  T (27) 

Here T is t h e  temperature anomaly f i e l d .  P lac ing  (27) i n t o  (14) gives 

6 

.’ 
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This, along with the equation for fluid motion ( 7 )  and incompressibility 

condition (8) are the equations of motion for our thermal-fluid system; these 

are the equations we wish to put in nondimensional form. 

In order to produce our nondimensional equations, we w i l l  use the 

following characteristic values: 

Table I Characteristic Values 

L: length 

V: velocity 

y: temperature gradient 

B: coefficient of thermal compressibility 

g: gravitational acceleration 

v: kinematic viscosity 

x: thermometric conductivty 

cp: 

N = Jky: Brunt-Vaisala frequency 

specific heat at constant pressure .. .. .. 

The quantities in Table I can be combined into nondimensional groups'; 

these groups have values for specific flows which allow them to be compared to 

other flows. The pertinent groups are given in Table 11. 
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Table I1 Dimensionless Groups 

VL 
V 
V 

X 

s r -  = -  
NL N* 

Reynolds number: R ; . -  

P r a n d t l  number : P = -  

St rouha l  number: V I  

V 2  
L g  

Froude number: F = -  

2 Grashof number: G = (RN*) 

V2 DuLong number : m=- 
Y.L cP 

W e  may now t ake  equat ions  ( 7 )  and ( 1 4 )  and t ransform them i n t o  

I n  t h e s e  equat ions ,  v w i l l  be measured i n  terms of 
+ 

dimensionless  equat ions.  

V, T’ in terms of YL, (pO/p 1 i n  terms of g L ,  and t i m e  t i n  terms o f  N-’. 
0 

Remembering t h i s ,  t h e  equat ions  are 

- & + N * V .  s 1 +  % = - -  + ’ ?‘d+ N* T’; 
FN* 

ar 1 +  1 Du 2 
k N* N*W ( a  v + ai vk) v . PP’ = - 2”’ +-  + -  

2N*R k i 
- 

(29)  

( 3 0 )  

In  o r d e r  t o  estimate t h e  values  of t h e  c o e f f i c i e n t s  i n  (29)  and (30 )  for 

a practical s i t u a t i o n ,  w e  have drawn t h e  c h a r a c t e r i s t i c  va lues  from a t y p i c a l  

experiment a t  the  Vortex Research F a c i l i t y  a t  NASA/L~RC’. 

i n  Table 111, along with t h e  associated dimensionless numbers. 

These are presented  

A t  t h i s  poin t  w e  can estimate t h e  var ious  sizes of the t e r m s  i n  (29)  and 

(30). The r i g h t  hand s i d e s  of (29)  and ( 3 0 )  are important  i n  re la t ion  t o  t h e  

s i ze  of t h e  v V terms on t h e  l e f t  sides, which have c o e f f i c i e n t s  of l /N*.  
+ 

a 



Table I11 Typical Values 

v = 50 cm/sec 

L = l O C m  

v = .145 cm2/sec 

)( = .202 cm2/sec 

y = .OlOC/cm 

g = 980 cm/sec2 

= 3.48 IO-~/OC 

c 

N = 0.185 sec" 

R = 3450 

= 1.012 x 107 cm2/(sec2'oC) P 

P = 0.72 

N* = 0.037 

Du = 0.0025 

F = 0.255 

G = 16300 

Thus, the relative sizes of the various terms to these "convective" or 

inertial terms is given by their coefficients with the 1/N* factor divided 

out. These relative coefficients are given in Table IV. 

Table IV Relative Coefficients 

+ 
v equation 

- 3.92 
= 2.9 xi0 

- -  
F 

-4 - 
R 

(N*12 = 1.4 x 10 
-3 

T "equation 

1 -4 - =  4.0 x 10 
RP 

- =  7.2 
R 
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At this point, let us estimate the validity of assuming 

incompressibility. If we nondimensionalize (15) we have 

-8 1 2 = (1 .4  IO-’) + (2.5 IO (ak vi + a i k  

Thus, in a dimensionless representation where all variables and their 

spatial derivatives are nominally of unit magnitude, the error in assuming 

incompressibility is about one part in ten million. 

¶!W3 DIHENSIONAL FUNI 

It is oCten useful (and computationally expedient) to approximate certain 

flows as being two dimensional. In particular, the evolution of vortex wakes 

trailing aircraft and submarines can be studied by examining the dynamics of 

the pertinent fluid in a cross-sectional plane transverse to the direction of 

motion. In this section we will reduce the general equations of motion (8), 

( 1 7 )  and ( 2 8 )  to those appropriate to two-dimensional thermally-stratified 

flow. 

As is well known, the incompressibility condition (8) can be 

automatically satisfied in 2-D flow by expressing the velocity in terms of a 

stream function $ (y,z): 
-+ A 

v = VX(XJI) 
A 

= - X X V J I  

The vorticity, in turn, can also be expressed in terms of the stream function: 

10 



A + 
w =  v x b =  v x ( V  x x  $1 

= v& . V$) - 3 2 9  
= - G P J ,  

The scalar vorticity is thus w = -9 J, where the operator 

9 z a2/ay2 + a2/aZ2 because there is no x dependence in the 2-D 

approximation. 

At this point let us take the curl of eq ( 17) : 

+ + 
= vx(; x i) + vV2w - f3W' x g at 

Similarly, the divergence of ( 17 ) gives 

+ +  + 
v2/2) = V . (v x w) - 8 Vl" . g 

( 3 2 )  

( 3 3 )  

( 3 4 )  

These equations, ( 3 3 )  and (341 ,  are sti,, app Lca-,e to 3-D 

incompressible flow; in particular, they show that the pressure p0 is given, 

at each instant of time, by the instantaneous values of v and T', both of 

which obey non-linear coupled evolution equations. If we now put (271 ,  ( 3 1 )  

and ( 3 2 )  into (281 ,  ( 3 3 )  and (341,  we get a set of equations for studying the 

2-D flow of a thermally-stratified fluid: 

+ 

We also note that the quantity conserved by these equations, for a closed 

system, comes from ( 2 4 ) ;  this is the energy of the system (leaving off time 

independent terms): 

1 1  



E =  I 
V 

. rb 

(38) 

We will call this assembly of equations, (351, (36) and (371, the thermal- 

vortex equations. 

Let us note here that the energy given by (38) is conserved in the 

presence of viscosity and thermal conductivity. As has already been pointed 

out, the energy as given by (38) is explicitly composed of a kinetic part, a 

thermal part, and a gravitational part. This conserved quantity (integral 

I invariant) E can thus be considered to be the actual physical energy of the 

fluid system we are modelling. 

In comparison, let us look at the system of equations which are obtained 

when we set v = x = 0: the inviscid equations. It is well known that in this 

case, (35) and (36) conserve a certain quantity which has been denoted the 

'energy12; this energy E' is 

This, however, is not the physical energy (although, in some computer 

models, it will be numerically close). In addition, with v = x = 0 ,  it is 

easy to show that, for a closed system, there is also another conserved 

quantity : 

C = jv WT dydz (40 )  

The presence of two conserved quantities fundamentally changes the 

evolutionary behavior of a dynamic system6. 

being modelled does not actually have two (or more) integral invariants, 

although our model system does, then the predictions we make with our model 

system must surely be suspect. 

If the physical system which is 

12 



These model systems arise in a number of applications, notably inviscid 

hydrodynamics and magnetohydrodynamics. These are interesting models; their 

numerical realizations indeed give rise to very interesting statistical 

systems whose fundamental behavior depends on the number of integral 

invariants’. However , viscosity (and thermal conductivity) are always present 

in real systems so that the accurate modelling of any real system requires the 

incorporation of the proper dissipative mechanisms (viscosity and 

conductivity). 

The presence of integral invariants allows us a numerical check of our 

simulations: we set u = x = 0 and see that the integral invariants are 

conserved: The real system has u # 0, x f 0; in this case there is only one 

“integral invariant“: the total energy. 

~ S I C n e  

In this paper, the equations of motion suitable for studying the 

incompressible motion of a thermally stratified fluid were developed. It was 

shown that the two quantities which satisfy time evolution equations were the 

temperature anomaly and the vorticity. The equations were therefore termed 

the thermal-vortex equations. 

These expressions (for a closed system) contain one integral invariant, 
which is clearly the physical energy. In contrast, the quantity commonly 

called the energy of the non-dissipative equations ( u  = x = 0) is not, in 

fact, the physical energy. In addition, the non-dissipative equations contain 

a second integral invariant. The presence of two invariants, plus the fact 

that neither is the actual energy, divorces the non-dissipative model from 

physical reality. 
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