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ABSTRACT
The Boussinesq approximation is extended so as to explicitly account for
the transfer of fluid energy through viscous action into thermal energy.
Ideal and dissipative integral invariants are discussed, in addition to the

general equations for thermal-fluid motion.



INTRODUCTION

In this paper the equations of motion for a thermo-gravitationally
stratified fluid are developed. These equations are pertinent to atmospheric
and oceanic flows in which temperature variations affect fluid flow through
boundary forces and in which fluid motion affects temperature variations
through viscous dissipation (in addition to convection). The equations
developed here are an extension of the Boussinesq approximation in that they
explicitly account for the transfer of fluid energy through viscous action
into thermal energy. These equations thus conserve physical energy, while the
Boussinesq equations do not.

This is not to say there are no conserved quantities in the Boussinesq
approximation. In 2-D flows there are two: the first, sometimes called the
energy, involves the velocity squared and the temperature (or density)
perturbation squared. This is not strictly the physical energy, which is
linear in the temperature perturbation. The second conserved quantity in 2-D
flow, apparently unrecognized, is essentially the spatial correlation of the
vorticity and temperature perturbation.

Here the general equations for thermal-fluid motion will be discussed
first. Then the two-dimensional version of these will be detailed. ©Next, the
standard Boussinesq approximation will be discussed; in particular, the two-

dimensional form. Finally a summary and conclusion will be given.

GENERAL EQUATIONS3

In this work, the fluid under consideration will be treated as
incompressible, i;e., density change with respect to pressure is negligible;
however, density will change with temperature. The fluid density can then be

written as



p=po+p’ (1)

where % is a constant and p” is the density variation. Similarly, the
temperature is given by

= + 77
T To (2)

where T0 is a constant and T“ is the temperature variation. The relation
between p” and T” is linear and is given by

p” = ~p, BT’ (3)
where B is the thermal-expansion coefficient of the fluid (at To).
The pressure, in turn, is given by

p=p0+p’ (4)
where p” is the pressure variation and

Py = Py 9 - £ (5)
Here ; is the acceleration due to gravity and ; is a position vector.
In the present case, the Navier-Stokes equation must include the effects of
gravity:
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(here v is the kinematic viscosity). If we now place (1), (3), (4) and (5)
into (6) and neglect second and higher order quantities, we arrive at

§Z:+J . W= - Wp/py) + vV - BrYg (7)
This, along with the incompressibility condition

V.v=0 (8)
form the velocity equations of the Boussinesqg approximation1-

Now let us consider the temperature (and by eq. 3, the density)

evolution. (It is here that we differ from the standard Boussinesg

approximation and use a more general form). The general equation for

temperature evolution in an incompressible fluid is
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where y = Eg; is the thermometric conductivity (cm?/sec), «x is the thermal
p
conductivity, and Cp is the specific heat {(at constant pressure) of the

fluid. The last term in (9) is
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where the summation convention is in effect (e.q., Vy Wy SV Wt VW +

vy wy)e

At this point, let us write the continuity equation:

'g—,‘._)'+‘7-0‘7=° (11)
Expanding the divergence term yields
%+3.Vp=-pv.\7 (12)

Using (1) and keeping only the lowest order terms (remember

that V. v = 0) gives

ap”~
ot

Now, because of (2), equation (9) may be written

+v . Vp” = -0,V - v (13)
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Using (3), a comparison of (13) and (14) yields

W n, 2
v.‘7=8[xv2'r‘+2:(i+ %) ]
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The term within brackets in (15) and on the right hand side of (14) is small

(15)

-)
compared to the convective term (v . Vr”); also, the thermal expansion

coefficient B<10_2. The product of B and the bracketed term in (15) is



therefore of a higher order than any terms being retained in this theoretical
development. It is for this reason that we accept the incompressibility
condition (V « v = 0), i.e., any possible contribution of V . v to equation
(7) is negligible. These assertions will be made quantitative in the next
section.

Let us now examine the energy conservation implicit in (7), (8) and

(14). To begin, we use the vector identity

Jx(v6)=%w2-3.v3 (16)
to change (7) into

a;; > »> 2 > >
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where the vorticity is $ = Ux v. Now, (17) is multiplied by \.r) . ., (14) by Cp

and the resulting equations are added, resulting in
3 ,1 .2 +p” v2
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% 2 p P 2 p pX
+> »>
viv . V2v + (%{vi)(akvi) + (akvi)(aivk)]

+

. > (18)
- [fT" v . g]

(Here B/Bxk = ak for convenience). At this point we must treat the last two
bracketed terms on the right hand side of (18) in more detail.

First, consider the term whose coefficient is v :

e + (39,003 v, ) + (3v ) (3v,)

=V R &Y
+ ak(vi 3k vi) - vi ak ak vi
* vy B v -, BB vy

= Bk(vi ak vi + vi Bi vk)
= Bk(— 9 v + v, 31 vk) (19)




Here V . ; = ak Ve = 0 is the incompressibility condition. Using ; = - V¢,

the last term on the right hand side of (18) is
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Using the continuity condition, (20) becomes
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Now, using (19) and (21), equation (18) becomes
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This energy conservation equation is accurate up to first order in terms such

as p”“ and T”. Multiplying both sides of (22) by P and integrating this

expression over the volume of interest, V, we arrive at the following

d +> >

— E = - F . (23)
dt ffs ds

where the total energy in volume V is

- al 2 .
E = [ 0y v +(pocp+6p0)'1‘]dv (24)

v 2



and the energy flux is

F=vip +p VZ2+(C +8p)T”
=v [p Py S po'r]

RN R AL 2 (25)
where the viscosity is n = pyV- Note that, in (24),
_;_ po v2g Kinetic energy density
po CPT‘: Thermal energy density
8 poT' = =-p“gz: Gravitational potential energy density (26)

Several points should be noted concerning the energy conservation
formulas (23), (24) and (25). First, the reference point for the total energy
is arbitrary; we can add a constant Ey to E in (24) without changing (23).
Second, if the volume V is large enough so that there is no energy flow
through the bounding surface (or if the flow is periodic or balanced across
the boundaries) then the surface integral in (23) is zero and 4E/dt = 0.

In the next section, the equations will be written in non-dimensional
form. This will allow for the relative size of various terms to be determined
and establish criteria for deciding on the similarity of flow in different
physical situations. Application of these results to flows within the

NASA/LaRC Vortex Research Facility will provide a quantitative example.

NONDIMENSIONAL BQUATIONS

At this point we will introduce the presence of a temperature gradient.
The fluid, at rest, will have a uniform vertical temperature gradient
Y (°C/cm); the temperature variation will thus be composed of two parts:
T = vz + 1 (27)
Here T is the temperature anomaly field. Placing (27) into (14) gives
—gET+;.V‘r=-J.(Y2‘)+xV21:+—2—(8kv
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This, along with the equation for fluid motion (7) and incompressibility
condition (8) are the equations of motion for our thermal-fluid system; these
are the equations we wish to put in nondimensional form.

In order to produce our nondimensional equations, we will use the

following characteristic values:

Table I Characteristic Values

L: length

V: velocity

Y: temperature gradient

B: coefficient of thermal compressibility
g: gravitational acceleration

v: kinematic viscosity

X2 thermometric conductivty

p: specific heat at constant pressure

N = /BgY: Brunt-vVaisala frequency

The quantities in Table I can be combined into nondimensional groups4:
these groups have values for specific flows which allow them to be compared to

other flows. The pertinent groups are given in Table II.



Table II Dimensionless Groups

Reynolds number: R =

yu
v
Prandtl number: P = f
st hal mb v .
rouha : = = = =
u number s NL N*
v2
Froude number: F =
Lg
Grashof number: G = (RN*)2
v2
DuLong number: Du = YL C
p

We may now take equations (7) and (14) and transform them into
dimensionless equations. In these equations, J will be measured in terms of
V, T in terms of ¥L, (p’/po) in terms of gL, and time t in terms of N-1.

Remembering this, the equations are

>
> +> 1 - 1 -
—g%+-:—1;v.Vv=-FN,,V(=Pp—-)+RN,,r Pv+ N 1”2 (29)
0
ar 1 > 1 Du 2
— 4+ -V . ‘= g + 0
R A T A avr (& Ve Y 4 V) (30)

In order to estimate the values of the coefficients in (29) and (30) for
a practical situation, we have drawn the characteristic values from a typical
experiment at the Vortex Research Facility at NASA/LaRCS- These are presented
in Table III, along with the associated dimensionless numbers.

At this point we can estimate the various sizes of the terms in (29) and
(30). The right hand sides of (29) and (30) are important in relation to the

size of the v . V terms on the left sides, which have coefficients of 1/N*.




Table III Typical Values

v = 50 cm/sec

L =10 om

v = .145 cm?/sec

X = .202 cmz/sec

Y = .01°C/cm

g = 980 cm/sec2

B = 3.48 x 10-3/°C

C_. = 1.012 x 107 cmz/(secz"°c)

p

N = 0.185 sec” !

R = 3450
P =0.72
N* = 0.037
Du = 0.0025
F = 0.255
G = 16300

Thus, the relative sizes of the various terms to these "convective" or
inertial terms is given by their coefficients with the 1/N* factor divided

out. These relative coefficients are given in Table 1IV.

Table IV Relative Coefficients

\-; equation T “equation
1 -
= = 3.92 1 - 4.0 x 1074
F RP
1 2.0 x1074
R

- -7
)2 = 1.4 x 1072 -35 = 7.2 x 10



At this point, let us estimate the validity of assuming

incompressibility. If we nondimensionalize (15) we have

1
V.v= (——XXBV )y v2p~ + (——-é’sg) S (3 v, + 2 vk)2
P

-7 -8 1 2
= . - R -— +
(1.4 x 10 ) VZT + (2.5 x 10 ) > (ak v, ai vk)

Thus, in a dimensionless representation where all variables and their
spatial derivatives are nominally of unit magnitude, the error in assuming

incompressibility is about one part in ten million.

TWO DIMENSIONAL FLOW

It is often useful (and computationally expedient) to approximate certain
flows as being two dimensional. 1In particular, the evolution of vortex wakes
trailing aircraft and submarines can be studied by examining the dynamics of
the pertinent fluid in a cross-gectional plane transverse to the direction of
motion. 1In this section we will reduce the general equations of motion (8),
(17) and (28) to those appropriate to two-dimensional thermally-stratified
flow.

As is well known, the incompressibility condition (8) can be
automatically satisfied in 2-D flow by expressing the velocity in terms of a

stream function ¢ (y,z):

> -~
v = Vx(xy)
=-xx VY
-y 2 g3
=Y T %2y (31)

The vorticity, in turn, can also be expressed in terms of the stream function:

10




7 x (V xx $)

E+
i
<3
X
<
]

V(:: . V) - ::Vzw

=-x 7y (32)
The scalar vorticity is thus w = -\72 Y where the operator
V2 = 32/ ay2 + 82/ 322 because there is no x dependence in the 2-D
approximation.

At this point let us take the curl of eq (17):

dw > > >
- Ux(v x w) + szw- BVr” x g (33)
Similarly, the divergence of (17) gives
vz(ﬂp—+v2/z)=v.(3x$)-evr'.$ (34)
0

These equations, (33) and (34), are still applicable to 3-D
incompressible flow; in particular, they show that the pressure p“ is given,
at each instant of time, by the instantaneous values of \-; and T“, both of
which obey non-linear coupled evolution equations. If we now put (27), (31)
and (32) into (28), (33) and (34), we get a set of equations for studying the

2-D flow of a thermally-stratified fluid:

Bu_ (39 3w _ 3y u 31
e (ay = = ay) + W + BgTy- (35)
At _ (393t _ 2% ot 2y
%= oy % " o ay)+xV2'r+Yay
2 2
+;"—[4(§,2¢—'§;)2+ Zp_ 2y (36)
p ox y

Vz(p'/po)=m2-'1£V2(v2)+ Bq(Y+%) | (37)

We also note that the quantity conserved by these equations, for a closed
system, comes from (24); this is the energy of the system (leaving off time

independent terms):

11



E = f [%p0 v2 + (pocp + B po)'r]dydz (38)
v

We will call this assembly of equations, (35), (36) and (37), the thermal-

vortex equations.

Let us note here that the energy given by (38) is conserved in the
presence of viscosity and thermal conductivity. BAs has already been pointed
out, the energy as given by (38) is explicitly composed of a kinetic part, a
thermal part, and a gravitational part. This conserved quantity (integral
invariant) E can thus be considered to be the actual physical energy of the
fluid system we are modelling.

In comparison, let us look at the system of equations which are obtained
when we gset v = yx = 0: the inviscid equations. It is well known that in this
case, (35) and (36) conserve a certain quantity which has been denoted the
'energy'?; this energy E” is
B = [ e (3% + —51 ?)aydz (39)

This, however, is not the physical energy (although, in some computer
models, it will be numerically close). In addition, with v = y = o, it is
easy to show that, for a closed system, there is also another conserved
quantity:
cC = Iv wt dydz (40)

The presence of two conserved quantities fundamentally changes the
evolutionary behavior of a dynamic systeme. If the physical system which is
being modelled does not actually have two (or more) integral invariants,
although our model system does, then the predictions we make with our model

system must surely be suspect.

12




These model systems arise in a number of applications, notably inviscid
hydrodinamics and magnetohydrodynamics. These are interesting models; their
numerical realizations indeed give rise to very interesting statistical
systems whose fundamental behavior depends on the number of integral
invariants’. However, viscosity (and thermal conductivity) are always present
" in real systems so that the accurate modelling of any real system requires the
incorporation of the proper dissipative mechanisms (viscosity and
conductivity).

The presence of integral invariants allows us a numerical check of our
simulations: we set v = y = 0 and see that the integral invariants are

conserved: The real system has v #0, x # 0; in this case there is only one

"integral invariant™: the total energy.

CONCLUSION
In this paper, the equations of motion suitable for studying the
incompressible motion of a thermally stratified fluid were developed. It was
shown that the two quantities which satisfy time evolution equations were the
temperature anomaly and the vorticity. The equations were therefore termed

the thermal-vortex equations.

These expressions (for a closed system) contain one integral invariant,
which is clearly the physical energy. In contrast, the quantity commonly
called the energy of the non-disgipative equations (v = yx = 0) is not, in
fact, the physical energy. 1In addition, the non-dissipative equations contain
a second integral invariant. The presence of two invariants, plus the fact
that neither is the actual energy, divorces the non-dissipative model from

physical reality.
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