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The material derivative idea of continuum mechanics (Ref. i) and the

adjoint variable method of design sensitivity analysis are used to obtain a

computable expression for the effect of shape variations on measures of

structural performance of three-dimenslonal elastic solids (Ref. 2).

Consider the three-dimensional elastic solid shown in Figure I, with the

shape of the domain _ as a d_sig_ variable. In Figure I, z = [z I, z 2, z3] T is

the displacement field and r , P , and F" are clamped_ traction free, and

loaded boundaries, respectively.

Using the principle of virtual work, the variational equilibrium equation

for the elastic solid can be obtained (Ref. 3), where oiJ(z) and gij(_) are

the stress tensor due to a displacement z and the strain tensor due t_ a 2

kinematically admissible yirt_al _i_placement z, respectively, f = if', f , fB]T
is the body force, T = iT , T , T ] is the tractlorl force, and Z is the space

of kinematically admissible virtual displacement. When the Galerkin method is

applied to the variational equilibrium equation for approximate solution, an

approximate finite-element equation is obtained.

DIMENSIONAL EI_ISTIC SOLID

i5

r'

r-x 2

/
Principle of Virtual Work:

3

an(z,z) = fffn[ _ aiJ(z)_iJ(z)]d_

i,j=l

3 . 3

fffa[i_iflzl]dn + ffr2[i!lTizl]dr = _a(z),

for all z _ Z

• FEM Equation is an approximate equation of the variational equation.

Figure 1
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Since the shape of domain _ of the elastic solid is treated as the design

variable, it is convenient to think of _ as a continuous medium and utilize

the material derivative idea of cont[,luum mechanics. The process of defor_nlng

to _. by mapping _ = T(_,T) may be viewed as a dynamic process of deforming
L . T

a continuum, wzth T playing the role of time. A design velocity field can be

considered as a perturbation of design variable (Refs. 2 and 4).

Suppose z (x) is a solution of the variational equilibrium equation on
the deformed domain _ . Then the mapping z (x) E z [x + Tv(x)) is defined on

T T T T
and z_(x ) depends on T in two ways. First, it is the solution of the

boundarg-vilue problem on _ . Second, it is evaluated at a po%nt x T that
• T

moves with T. Exlstence of the pointwise material derivative z is shown in

Ref. 2. If zT has a regular extension to a neighborhood U T of the
closure _ of _ then the partial derivative z' exists. One attractive

T'
feature o_ the partial derivative is that, with smoothness assumptions, it

commutes with the derivative with respect to x i (Ref. 2). (Fig. 2.)

VARIATION OF DOMAIN

r

x = T(x,T) = x + rV(x)
T

n = T(n,T)
T

dx _T(x,T)
T =

V(x) - dr _T

zd I=_-_ zT(x + rV(x)) T=0 = llm
T+0

= z'(x) + vzTv(x)

i = 1,2,3

zT(x + TV(x)) - z(x)

T

Figure 2
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A common form of structural performance measure involves stress in an

elastic solid. Consider a locally averaged stress functional _ over a small

subdomaln __C _ of the elastic solid, as shown in Figure 3, where g(o) is a

stress measure such as yon Mises stress or principal stress and mp is a
characteristic function that has a constant value on fl and its integral is

I. The averaged stress measure depends on shape of th_ domain in two ways;

first directly on the domain over which the integral _s carried out and second

on the stress o that, in turn, depends on the displacement field z.

Taking the first variation of __, using material derivative formulas of

Refs. 2 and 5, _[ is obtained. To o_tain an explicit expression for _' in

terms of the vel_city field V, a variational adjoint equation is introduced b_y

replacing z _ Z by a virtual displacement_ ICZ and equating terms involving

to the energy bilinear form an(l , %), yielding the variational adjoint
equation for the adjoint vari_)le %.

STRESS SHAPE SENSITIVITY

fffn g[a(z))an

tpp = fffn g[o(z)) m dfl = P

P ffn d_

P
3

_p = fff_[ [ g ij(z)olJ(z)]mpdfl
",j=1 O

3 3 k T

- ffffl _ [ [ g ij(z)cijk£(vz V£) ]mpdn
i,j=1 k,£=l o

+ fff_ g div Vm d_- fffn gmpd_ fffn m div VdflP P

3

an(X,X) = ff [ [ g ij(z)oiJ(_)]mpdfl,
i,j=l o

for all _ C Z

Figure 3
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Using the adjoint variable method of design sensitivity analysis (Refs. 2
and 4) and the domain method of Ref. 5, an explicit and computable expression
for _i in terms of the velocity field V is obtained. Evaluation of the design

P
sensitivity _p requires the solution z of the original variational equation
and the adjoint variable X of the variational adjoint equation. This is an
efficient calculation, using finite-element analysis, if the original
variational equation for z has already been solved, requiring only evaluation
of the solution of the sameset of finite-element equations with a different
right side, called an adjoint load.

For problems with smooth data in which stress is continuous, design
sensitivity analysis results can be used for a pointwise stress functional.

^

To obtain the formula, shrink the subdoma[u fl to a point _, where xG _ • In

this case, the characteristic function becomeg the Dirac delta measure, p

Even though sensitivity analysis results for only a stress functional are

presente4 here, the method is also applicable for displacement at a specified
^

point x and eigenvalue design sensitivity analysis, as shown in Refs. 2 and 5.

(Fig. 4.)

p

3 3 ..kt(vzkTv£) ]mpdflHf I [ I gij( >c
i,j=l k,£=l

+ fff g div Vm dfl - fff gmpdfl fff m div Vd_
P _ _ P

3 iT T

aO(z,%) : - fffn _ [oiJ(z)(Y% Vj) + oiJ(%)(Vz i Vj)]da
i,j=l

3

+ fffn[i,_'=l oiJ(z)eiJ (_) ] div Vdfl

3 3 fili
zO(x) = fffn _ xi(vfiTv)da + fffa[i_ i ] div Vda

i=! =

3 3 3

+ fir2 {- _ Ti(v_iTv) + (V[ _ Ti%i]Tn + H[ _ Tixi])(vTn)}dr
i=l i=l i=l

• Pointwlse stress functional can be treated for problems with smooth data.

Figure 4
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For numerical implementation of shape design sensitivity analysis, the

boundary P of the domain _ must be parameterized. There are several methods

to parameterize the boundary r (Ref. 6). Since the result of shape

optimlzation depends on the parameterization method used, it must be general

and flexible enough to represent a large class of structural shapes. It is

desirable that the parameterization method has the following properties:

smoothness, fairness, required order of continuity, controllability in global

and local senses, and a variation diminishing property. Among several

parameterizationmethods, Bezier and B-spline surfaces are commonly used (Ref.

6). Both Bezier and B-spline surfaces use a set of blending functions and

are defined in terms of characteristic polyhedra.

Points px.(V,W), i = 1,2,3, on a Bezler surface are constructed by taking
i

linear combinlations of a set of blending functions Bm,M(V ) and Dn,N(W ) and X i

coordinates c of control points (vertices of the characteristicmnx

polyhedron). A _ezier surface represented by a 4X4 array of points is shown

in Figure 5. If a Bezier surface is used, positions c of the control
mnx i

points are shape design parameters.

MODELING FOR SHAPE (BEZIER SURFACE)

×3

C31_.___J_ C44

°12-"

x2 ¢13 el4

×1

M N

Pxi(V,W) = [ _ Cm=0 n=0 mnxi Bm'M(v)Dn'N(w)
i = 1,2,3

Positions c
_nx.

1

of the control points are shape design parameters.

Figure 5
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The next step is to develop a general method of defining and computing a

velocity field in the domain, in terms of the perturbations of the positions

of control points. It is shown in Ref. 7 that regularity of the velocity

field must be at least at the level of regularity oF the displacement field of

the structure. This suggests use of displacement shape functions to

systematically define the velocity field in the domain. Moreover, a velocity

field that obeys the governing (elliptic) equation of the structure can he

selected. That is, a perturbation of the boundary can be considered as a

displacement at the boundary. With no additional external forces and a given

displacement at the boundary, the finite-element equation can be used to rim!

the displacement (domain velocity) field, where {V b} is the given perturbation

of nodes on the boundary, {V d} is the node velocity vector in the interior of

the domain, and {fb } is the fictitious boundary force acting on the varying

boundary.

To use _' in Figure 4 for sensitivity computation, first perturb design

parameter bi _posltions of control points), i=l, 2,..-,k, a unit magnitude to

obtain a boundary perturbation {Vb}. Then domain velocity {V d} is obtained.

Using {Vd} and displacement shape functions, _! in Figure 4 can be evaluated,

which gives _/_b. This method requires k sol_tlons of the velocity
1

equation. However, much as in adjoint analysis, this is an efficient

calculation, requiring only evaluation of the solution of the same set of

finite-element equations with a different right side for each unit

perturbation of bi, i=1,2, .-.,k. (Fig. 6.)

AUTOMATIC REGRIDDING FOR SHAPE DESIGN

Regularity of the velocity field must be the same as that of the

displacement field

Use of displacement shape functions to define velocity field

Velocity field gives transformation mapping T(X,T)

[Kdd] {Vd} =_ [_d ] {Vb}

Solve above equation k-tlmes

Excellent for boundary layer and/or substructuring technique

Figure 6
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The automatic regridding method presented in Figure 6 can be used with

the boundary-layer approach (Ref. 8) and/or substructuring techniques very

effectively. That is, if a large portion of the structure is fixed, except

for the boundary layer (or substructure), then the part of {Vd} that

corresponds to the fixed portion can be set equal to zero, thus reducing the

dimension of [Kdd].

Once a design change has been determined using an iterative design

process, regridding of interior grid points can be carried out using {Vd}.

the initial grid is optimized using an adaptive method (Ref. 9), the

regridding methc)d presented will tend to avoid distortion of the finite
elements.

If

To illustrate use of the automatic regriddlng method, a fillet problem

(Figure 7) is used. In Figure 7, regridding is performed at three stages. It

is interesting to observe that the method has a tendency to maintain

orthogonality of the elements. That is, if the initial grid is regular, then

the deformed grid tends to be regular. Also, the method presented can be

utilized as mesh generator. That is, starting from a regular shape with a

regularly patterned mesh (Figure 7(a)), the present method can be used to

generate a mesh (Figure 7(d)) directly (Ref. I0).

AIJTONATIC REGRIDDINC FOR FILLET PROBLEM
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• The method can also be used as a mesh generator.

Figure 7
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To demonstrate use of the automatic regridding method for shape design,

an engine bearing cap (Ref. Ii), subject to oil film pressure and a bolt load,

is treated (Figure 8). Oil film pressure is a radial pressure loading,

assumed to be uniform. The engine bearing cap is modeled as a three

dimensional elastic solid. Due to symmetry, only the right half of the cap is

analyzed. The finite-element configuration and loading conditions are shown

in Figure 8. The material used is steel, with Young's modulus and Poisson's
ratio of E = 1.0 × I0 psi and v = 0.3, respectively. The finite-element

model shown in Figure 8 contains 82 elements, 768 nodal points, and 2111

active degrees of freedom. For analysis and design velocity fields, the ANSYS

finite-element STIF 95 (Ref. 12), which is a 20-node isoparametric element, is

used. As in Ref. 13, implementation of design sensitivity analysis is

performed outside the ANSYS finite element code.

The shape design variables for this problem are: The shape of the

varying surface FI, distance c5 of clamping bolt center line AB, and distance

c 6 of edge from the cap centerline. For surface r , a Bezier surface with a
1

4×4 array of points is used. For simplicity, only x2-coordinates of four

control points c I through c 4 are allowed to vary. That is, surface r I has

curvature in the ×l-direction only.

ENGINE BEARING CAP

CLAMPING BOLT FORCE= [4,775 lb.

OIL FILM PRESSURE= 5000psi

)2

r,

I

I

I

I

\, I
I
t
i

C5

Ca

; I
I I
I I
I I
I I
I I
I I

I I
I I
i i __,

x I

ANSYS STIF95 (20-Node Isoparametrlc element)

82 elements, 768 nodes, and 2Ill active DOF

Figure 8
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The expression for design sensitivity _' of averaged von Mises stressP
over individual finite elements is given in Figure 4, where g(a) is yon Mises

1 and 2
stress. Define @p _p as the functional values for the initial design h

2 I and let _' be the
and modified design b + _b, respectively. Let A_p= _p - _p P
predicted difference from sensitivity analysis. The ratio _'/A_ times I00 is

P P
used as a measureof accuracy; i.e., |00%meansthat the predicted change |_

,_<actly the sameas the actual change. Notice this accuracy measurewill not

meaningful information when A_p is very small comparedto _I, because thegive

difference &_pmay lose precision due to the subtraction _p

Numerical result with a 1%uniform design change; i.e., _b = 0.01 b, are

shownin Figure 9 for randomly selected finite elements. Results given in

Fig_ce 9 show excellent agreement between predictions _' and actual
P

changes A_p, except in element_ 5 and 57. However, the magnitudes of actual

change A_p are small for those elements.

SHAPE DESIGN SENSITIVITY FOR ENGINE BEARING CAP, 6b = O.Olb
(AVERAGED VON MISES STRESS OVER FINITE ELEMENTS)

El. i 2 _' (_/A_pXl00)%No. _P _p A_p P

i 9829.4564 9727.3229 - I02.1335 - 109.7298 107.4

5 11444.4800 1!448.0190 3.5390 0.4482 12.7
I0 17933.5910 17964.5170 30.9260 29.8750 96.6

14 34270.5140 34294.7650 24.2510 23.7614 98.0
20 12670.2480 12634.3500 - 35.8980 - 38.4216 107.0

26 7311.4083 6999.4094 - 311.9989 - 321.7022 103.1

30 7234.2502 7081.2085 - 153.0417 - 159.7947 104.4
35 13328.4650 13264.9790 - 63.4860 - 59.4243 93.6

39 44231.0680 42109.0220 -2122.0460 -2222.5504 104.7
44 5998.6512 5844.9335 - 153.7177 - 165.1199 107.4

48 6822.9614 6736.9477 - 86.0137 - 90.5011 105.2

53 13634.1000 12964.2560 - 669.8440 - 701.6882 104.8

57 6121.4120 6114.6667 - 6.7453 - 8.1242 120.4
62 7041.7283 6971.4204 - 70.3079 - 79.6051 113.2

66 4787.5653 4761.5085 - 26.0568 - 27.6278 106.0

71 6541.8233 6585.9308 44.1075 45.1422 102.4
75 3820.6962 3843.9362 23.2400 22.5210 96.9

80 6240.3854 6285.3485 44.9631 46.3209 103.0

Unit: psi

Figure 9
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A total hip reconstruction consists of a three-dimensional elastic solid

composed of cement, a metal stem, and cortical and trabecular bone (Figure

I0). For simplicity, cortical and trabecular bone are modeled with the same

material properties. Young's modulii and Poisson's ratios for metal stem

cement, and bone are: E l = 207 GPa, _I = 0.3, E 2 = 2.07 GPa, _2 = 0.23, and

E3 = 14.0 GPa, _3 = 0.3, respectively.

The femur model shown in Figure l0 is obtained by approximating the real

cadaver femur model of Ref. 14 with piecewise linear conical solids. For

simplicity, structural and loading symmetries are assumed . Therefore, only

half of the model is analyzed. A vertical load of 4000 N is applied at the

tip of the metal stem.

The finite-element model consists of 16 elements for the metal stem, 28

elements for the cement, and 36 elements for the bone. ANSYS element STIF 95

is used for all finite elements. The model has 525 nodes and 1335 active

degrees of freedom. The model is assumed to be fixed at the distal end of the

bone.

'I_)T_J_.HIP RECONSTRUCI_ION (I.MPL_d_'T DESIGN)

t HTERf'aCC SENSITIVITY

• Pointwise stress and strain energy density at interface.

• 16 elements for stem, 28 elements for cement, and 36 elements for bone

(all ANSYS STIF95).

• 525 nodes and 1335 active DOF.

Figure i0
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There are 16 shape design parameters: b I through b 8 are the radius of the

metal stem and b9 through b16 are the radius of the outer surface of the

cement, at different locations along the center line. Thus, bi+ 8 - b i,

i=1,2,...,8 is the thickness of the cement at those locations. The shape of

the outer surface of the bone does not change.

The principal stress is used as a design failure criteria for the metal

stem and bone, whereas strain energy density is considered as the design

failure criteria for cement.

Shape design sensitivity results for polntwise principal stress in the

stem at the stem-cement interface are given in Figure II, for a 5% design

change in design parameter b 5. The pointwise stress is measured at a Gauss

point (out of 9 Gauss points) on stem-cement interface of each stem finite

element.

Results presented in Figure 11 show excellent agreement between

predictions _ and actual changes A__, except in element 6. However, the

magnitude of actual change A_p is sm_ll compared to the magnitude of _

this element, so accuracy of the difference is questionable.

for

SHAPE DESIGN SENSITIVITY FOR IMPLANT DESIGN, _b 5 = 0.05b 5

(POINTWISE PRINCIPAL STRESS IN THE STEM AT THE STEN-CENENT INTERFACE)

El. _1 2 ' (_/a_pX100)%No. P _p A@p _p

1 '65.75792800 65.74896400 -0.00896400 -0.00875783 97.70

2 77.13410600 77.24745600 0.11335000 0.11608011 102.41

3 58.03037400 58.53323000 0.50285600 0.52206340 103.82
4 77.00421000 79.96762700 2.96341700 3.01203420 101.64

5 151.71708000 146.27679000 -5.44029000 -5.35753070 98.48

6 234.54156000 234.78980000 0.24824000 0.68237420 274.88
7 288.65995000 291.58509000 2.92514000 3.00576120 102.76

8 149.94087000 149.70614000 -0.23473000 -0.25492036 108.60

9 20.76092900 20.75818400 -0.00274500 -0.00277719 101.17
I0 6.23888850 6.22105300 -0.01783550 -0.01811896 101.59

II 3.99426970 3.91787910 -0.07639060 -0.07985700 104.54
12 6.25765390 6.73601410 0.47836020 0.48739250 101.89

13 15.90449700 15.06538300 -0.83911400 -0.91444092 108.98

14 23.77727200 23.71259200 -0.06468000 -0.06987854 108.04

Unit: MPa

Figure 1 1
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Shapedesign sensitivity results for pointwise strain energy density of
cement on the bone-cement interface are given in Figure 12, for a 5% design

change in design parameter b 9. The pointwise strain energy density is

measured at one of the Gauss points at the bone-cement interface of each

cement finite element.

Results presented in Figure 12 show excellent agreeement between

predictions _' and actual changes A__, except in element 41. However, the
P

of _p for this element is small compared to others.magnitude

Even though results of sensitivity analysis of a pointwlse principal

stress in the stem and pointwlse strain energy density in the cement are

given, for variations of one design parameter for each, variations of all

other design parameters yield similar results. Shape design sensitivity

results for pointwise principal stress in the bone at the bone-cement

interface and for pointwlse strain energy density in the cement at the stem-

cement interface are found to be excellent.

SHAPE DESIGN SENSITIVITY FOR IMPLANT DESIGN, 6b 9 = O.05b 9

(POINTWISE STRAIN ENERGY DENSITY IN THE CEMENT AT THE BONE-CEMENT INTERFACE)

El. 1 2 _' (_/A_pXlO0)%No. _P _p A_p P

17 2.693386 2.864695 0.171309 0.185526 108.30

18 1.324330 1.346854 0.022525 0.025306 112.35

19 1.358676 1.373181 0.014505 0.016123 111.15

20 2.968939 2.965287 -0.003652 -0.003972 108.76

21 6.532172 6.527846 -0.004325 -0.004688 108.39

22 6.197117 6.196119 -0.000998 -0.001068 107.01

23 12.301795 12.302323 0.000528 0.000569 107.74

38 5.474089 5.847445 0.373356 0.398447 106.72

39 2.187812 2.236401 0.048590 0.053682 110.48

40 2.045186 2.077065 0.031879 0.034058 106.83

41 3.616023 3.6[6629 0.000606 0.000478 78.88

42 10.974028 10.976652 0.002624 0.002725 103.84

43 16.638003 16.640659 0.002656 0.002837 106.81

44 22.454411 22.455967 0.001556 0.001666 107.05

Unit: kJ/m 3

Figure 12
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A doubly curvatured arch dam (Figure 13) that is similar to one treated

by Wassermann (Ref. 15) is optimized using higher order finite-element

approximation and the continuum shape design sensitivity analysis method
presented here.

The dam structure and loading conditions are assumed to be symmetric with

respect to the crown cross section. Thus, only half of the dam is analyzed.

Also, it is assumed that the dam foundation is rigid, and the gravel concrete

is homogeneous and behaves elastically. Concrete's elasticity modulus and

Poisson's ratio are E = 21.0 GPa and 9 = 0.2, respectively. Water and concrete

weight densities are I0.0 kN/m 3 and 24.0 kN/m 3, respectively.

To parameterize two surfaces (water and free sides), Bezier surface

parameterization is used with a 4x4 array of points. For a shape design

parameter, the x2-coordinates of 32 control points are selected. The dam

finite-element model contains 36 ANSYS STIF 95 elements, 315 nodal points, and

726 active degrees of freedom.

DOUBLY CURVATURED ARCH DAM

:_Rf'pF - | NP-

\
RRCH ORM SEHSI

oR[P_' - ] NP t

./ 3

Z :(

RRC|I :_HRLY:S I :;.

• 36 elements (ANSYS STIF95), 315 nodes, and 726 active DOF.

Figure 13
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The principal stress is used as a design failure criteria. Principal
stresses are measuredat Gausspoints on the surface of the dam(8 Gauss
points for each finite element). Design sensitivity analysis results are
tested for pointwise principal stresses. Excellent agreement between
predictions and actual changes is obtained.

The optimal design problem for the doubly curvatured arch damis to
minimize the volume of the dam, subject to constraints on pointwise principal
stress on the surface of damand thickness at the top of the dam. For
iterative optimization, Pshenichny's linearization method (Ref. 16) is used.
History of cost function and maximumconstraint violation is shownin Figure
14. Afte_ 17 design iterations, cost is reduced from an initial value of
253,566 m_ to 182,583 m° and the maximumtensile stress is reduced from an
initial value of 3.084 MPato 1.981MPa.

51

2.9

2.7

2.5

2.5

2.1

1.9

1.7

OPTIMIZATION OF DOUBLY CURVATURED ARCH DAM

Minimize volume subject to:

Principal stress; - i0 MPa < _i < 2 MPa, i = 1,288

Dam thickness; 6m < tj, j = 1,4

ARCH DAM OPTIMIZATION COST-CONSTRAINT HISTORY

I 1 | I I I | I

J i I I I I I I

0 2 4 6 8 I0 12 14 16

ITERATION NUMBER

18

Figure 14
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A profile of the final design is shown in Figure 15. The final design

shown in Figure 15 is rather different from Wasserman's design (Ref. 15),

mainly in the bottom portion of the dam. The final design obtained here had

developed a fillet in the bottom corner, which is not observed in Wasserman's

design.

In the crown cross section shown in the Figure 15, the middle portion is

thinner than the top portion. From stress distribution in the final design,

it is observed that the maximum tensile stress in this middle portion is well

below the critical value of 2 MPa. Another interesting observation is that

the compressive stress limit of -i0 MPa has never been violated. In fact, at

the final design, the maximum compressive stress is -5.202 MPa.

A PROFILE OF THE FINAL DESIGN

_R£P7 -XHP=

RRCH DRtl

'R£P7 -]HP=

RRCH n _HRLY$|$. _/X

Figure 15
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