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SUMMARY

Three semi-empirical aerodynamic stall models are compared with respect
to their 1ift and moment hysteresis loop predication, 1imit cycle behavior
prediction, easy implementation, and feasibility in developing the parameters
required for stall flutter prediction of advanced turboprops. For the compar-
ison of aeroelastic response prediction including stall, a typical section
model and a plate structural model are considered. The response analysis
includes both plunging and pitching motions of the blades.

In model A, a correction to the angle of attack is applied when the angle
of attack exceeds the static stall angle. 1In model B, a synthesis procedure
is used for angles of attack above static stall angles and the time history
effects are accounted through the Wagner function. In both models the 1ift
and moment coefficients for angles of attack below stall are obtained from
tabular data for a given Mach number and angle of attack. In model C, referred
to as the ONERA model, the 1ift and moment coefficients are given in the form
of two differential equations, one for angles below stall and the other for
angles above stall. The parameters of these equations are nonlinear functions
of the angle of attack. The effects of vortex-shedding, an important feature
of dynamic stall, are not considered in model A, accurately considered in model
B, and approximately considered in model C. However, it is oaserved that the
high frequency, low amplitude oscillations, sweep, and high subsonic Mach num-
ber operating environment of advanced turboprops favor 1ight stall conditions
where the effect of vortex-shedding is less severe. This permits the use of
simple models like models A and C in the stall flutter analysis of advanced

turboprops.

INTRODUCTION

Highly- Toaded propellers, called advanced turboprops, are proposed to
power transport aircraft at high subsonic speeds. The renewed interest in the
propeller is brought about by the significant benefits in fuel consumption.
Flutter analysis of these turboprops is needed to determine the critical
(flutter) speed below which the aircraft has to operate to avoid catastrophic
failure. A response analysis is needed to determine the loads on the blades
and fatigue life of a turboprop. Figure 1 shows a typical advanced turboprop
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wind tunnel model. The blade is made thin to increase the drag divergence

Mach number, and is swept to reduce the local effective Mach number. The sweep
introduces a large degree of coupling between bending and torsion, which alters
the aeroelastic behavior. 1In addition, to hold propeller diameter to a rea-
sonable value, and to have high disk loading, a large number of blades are
provided for the advanced turboprop. Consequently the turboprop has to be
analyzed accounting for aerodynamic interaction between the blades. The aero-
elastic response and flutter analysis of advanced turboprops is an ongoing
research effort at NASA Lewis Research Center.

Under normal conditions (ref. 1), the blade sections of a conventional
propeller are at low angles of attack, the flutter speed is high, and generally
there is an appreciable margin of safety between the operating speed and the
flutter speed. However, during the take-off period, the propeller blade sec-
tions may operate at high angles of attack and could be subjected to stall
flutter, a self-sustained vibration in a periodically separated flow condition.
The flutter speed at this condition is very low, and stall flutter affects the
fatigue life of the turboprop. Hence, predicting this stall flutter speed is
a critical design task, and an appropriate method of analysis of stall flutter
is a critical research need. Prediction of flutter speeds at low angles of
attack (classical flutter) for advanced turboprops has been performed by modi-
fying the existing analysis methods as described in reference 2. Both ana
lytical and experimental results are presented in reference 3. Recently,
additional experimental flutter data was presented in reference 4. 1he analy-
ses included the effect of number of blades (cascades) and the blade sweep.
However, the studies on stall flutter are few and mostly empirical. This is
due to the complexity in modeling the flow in a periodically separated flow
state.

The objective of the present effort is to develop stall flutter models
for advanced turboprops. As a part of this general effort, the available
dynamic stall models are reviewed and applied to simple structural models to
study the extent of their validity, and to select an appropriate model for
advanced turboprop application. In this report, threc dynamic stall models
are used together with typical section and plate structural models. Their
performance is investigated from the view point of 1ift and moment hysteresis
loop prediction, limit cycle prediction, easy implementation and the feasibil
ity of developing the corresponding stall models for arbitrary airfoils. The
plate model in conjunction with its normal modes is considered in order to
explore whether the analytical integration of the loads in the blade spanwise
direction is feasible. T1he numerical study is performed for a single blade
and cascade effects are not included.

NOMENCLATURE

A nondimensional rate of angle of attack, ca/2V
a empirical parameter, equations (20b), and (20e)
ap distance between midchord and elastic axis, measured in semi-

chords positive towards the trailing edge.

agg static lift curve slope




m

static pitching moment curve slope at zero angle of attack
semi-chord, m

1ift coefficient in linear range, equation (20a)

lift coefficient in nonlinear range, equation (20b)

1ift coefficient given by linear relation, equation (20a)
static 1ift coefficient

unsteady cg, equation (18a)

moment coefficient in Tinear range, equation (20d)

moment coefficient in nonlinear range, equation (20e)
moment coefficient given by linear relation, equation (20d)
static moment coefficient

unsteady cp, equation (19a)

normal force coefficient

chord length, m

aerodynamic 1ift force coefficient

aerodynamic moment coefficient about quarter chord
aerodynamic moment coefficient about elastic axis
empirical parameter, equation (19a)

plunging degree of motion, positive downwards

polar moment of inertia of airfoil mass about elastic axis

torsional stiffness coefficient corresponding to pitching
displacement

bending stiffness coefficient corresponding to plunging
displacement

unsteady aerodynamic empirical factor, equation (3)
reduced frequency, based on semi-chord

length of the plate, m

Mach number, normal to leading edge

mass of the airfoil per unit span
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NM
P1,P2,P3
S

Qh
01,02, . ..Q7
Re

number of blade segments
number of normal modes
empirical parameters for Cyy, equation (18b)
total aerodynamic moment about elastic axis, positive nose up
total aerodynamic 1ifting force, positive downwards
empirical parameters for Cpy, equations (18d)
Reynold's number

1;7655, radius of gyration about elastic axis in semi-chords
empirical parameter, equation (20b); radial distance on the blade
airfoil static moment about elastic axis

nondimensional time measured from instant of stall onset

predicted value of sp when vortex Teaves trailing edge,
equation (16)

reduced time, Vt/b; also empirical parameter, equation (20a)
thickness of the airfoil; time

wt, nondimensional time parameter

airfoil thickness to chord ratio

time when dynamic stall first occurs

nondimensional flight speed parameter

resultant velocity = \ﬁaﬁfZ ; 92, m/sec

free stream velocity, m/sec

S/mb, distance between the elastic axis and the mass center
measured in semi-chord, positive towards the trailing edge

instantaneous angle of attack; pitching degree of motion,
positive nose up

amplitude of oscillation, deg
dynamic moment stall angle, equation (15), deg
effective angle of attack, deg, equation (1)

decay parameter, equation (3)




g angle of dynamic reattachment, equation (17), deg

e angle of attack when vortex near trailing edge

ag mean or initial angle of attack, deg

ags static stall angle, deg

B Prandt1-Glauert number

B] empirical constant, equation (18e) normally equals 0.18
Y stall delay function, equation (2)

71;72 functions defined in equations (4) and (5)

Ao, shift in angle, equation (18b), deg

Aa2 shift in angle, equation (18c), deg

AaDS incremental dynamic stall angle, equation (1)

AC| difference between static 1ift and extended linear 1ift
AC_7,AC 2 incremental 1ift coefficients, equations (18d) and (18e)
ACpm difference between static moment and extended linear moment
ACp incremental moment coefficient, equation (19b)

81,82 dynamic parameters, equation (18q)

R i (e
Am’ “wm’ At
Cat’CAR’CwR empirical parameters, equations (16) to (18)

LTS PR empirical parameters for CMU’ equation (19b)

A empirical parameter, equation (20a)
u m/ﬂpb2 airfoil-air mass ratio

3 nondimensional plunging displacement
P free stream air density

Zh damping parameter in plunging motion
L damping parameter in pitching motion
o empirical parameter, equation (20a)
dc(s,M) Wagner function, equation (14)

Q rotation speed, rad/sec



I frequency of harmonic oscillation, rad/sec

W (Ka7f;7 uncoupled pitching frequency of airfoil, rad/sec
wh 1/(Kﬁim) uncoupled plunging frequency of airfoil, rad/sec
sign() sign of ( ): either positive or negative

()° 3a()/at

gL a()/at

oy 3() /3t or a()/as

=) diagonal matrix

[] matrix

Stall, Dynamic Stall and Stall Flutter

As the angle of attack of an airfoil increases, the 1ift coefficient
starts increasing. After a certain value of the angle of attack is reached,
however, the 1ift drops suddenly because the flow over the airfoil separates.
This is the condition of stall. This separation process depends on the air
foil shape (leading edge radius), thickness, Reynold's number, maximum thick-
ness position, and Mach number. It has been recognized (refs. 5 and 6) that
there are threc principal types of stall: (1) trailing edge stall, where
there is a gradual loss of Tift at high 1ift coefficient as the boundary layer
separation progresses gradually forward from the trailing edge, (2) Tleading
edge stall, where there is an abrupt loss of 1lift, as the angle of attack for
maximum 1ift is exceeded, with 1ittle or no rounding over of the 1ift curves;
and is associated with the bursting of a laminar leading edge separation bub-
ble, and (3) thin airfoil stall, where there is a gradual loss of 1ift even at
Tow 1ift coefficients, and develops when a separation bubble originates near
the leading edge and lengthens progressively as the angle of altack increases.
The behavior of the 1ift coefficient in each type of static stall is shown in
figure 2. 1t has also been found that trailing edge stall occurs for airfoils
having thickness to chord ratio t/c greater than 0.15, leading edge stall
occurs for airfoils having t/c of 0.09 to 0.15, and thin airfoil stall for
airfoils having t/c less than 0.09.

The term dynamic stall refers to the unsteady separation and the stall
phenomena of an airfoil oscillating into and out of stall. Figure 3 (from
ref. 7), shows the flow field structure, as well as the normal force and pitch
ing moment characteristics throughout an oscillation cycle of an airfoil during
dynamic stall for an NACA 0012 airfoil. The predominant feature of dynamic
stall (ref. 7), is the shedding of a strong vortex like disturbance from the
leading edge region, which alters the chord wise pressure distribution. This
vortex moves down stream over the upper surface of the airfoil at about 35 to
40 percent of free stream velocity. The unsteady aerodynamic forces due to
the passage of this vorticity produce a 1ift and nose down moment, with values

much greater than the corresponding static stall loads. The magnitude of the
increase depends on the strength of the vortex and its distance from the sur
face. The formation and movement of the vortex depends on the airfoil shape,
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angle of attack and the rate of angle of attack. The distance of the vortex
from the airfoil depends on the rate of angle of attack and the instantaneous
angle of attack. As the vortex leaves the trailing edge, a peak negative
pitching moment is obtained. The airfoil then remains stalled until the angle
of attack drops sufficiently for reattachment of the flow to occur.

1t can also be seen that airfoils during dynamic stall exhibit large hys
teresis loops in both 1ift and pitching moment curves when viewed as a func-
tion of angle of attack. This means that an airfoil with positive &« stalls
at an angle o greater than the section static stall angle, agg, known as
stall delay, while the stall recovery during negative « occurs at an angle
less than agg. 1t can also be observed that the pitching moment coefficient
shows loops representing contributions to negative damping (clock-wise loops)
and positive damping (counter clock-wise loops), and a net negative damping
may lead to divergent oscillations. It is to be noted that for oscillations
that occur wholly below or wholly within stall, there is always positive damp-
ing. Only for oscillations about a mean angle of attack near static stall can
the net pitch damping become negative.

In summary, dynamic stall begins at an angle of attack greater than the
static stall angle, followed by the shedding of vorticity from the leading and
trailing edges. As the airfoil oscillates in and out of stall, the dynamic
forces and moments show hysteresis and can attain values that are far greater
than their static counterparts. T1he dynamic stall phenomenon and its effects
vary depending on the airfoil shape, reduced frequency, mean angle and ampli-
tude of oscillation, Mach number, Reynold's number, type of airfoil motion,
sweep, and three-dimensional flow effects.

An important difference between stall flutter and classical flutter is in
the character of flow. Stall flutter occurs with partial (1ight dynamic stall)
or complete (deep dynamic stall) breakaway of the flow from the airfoil during
at least part of every cycle of oscillation. This is in contrast to classical
flutter, where the flow is attached to airfoil at all times. The essential
feature of stall flutter is the nonlinear aerodynamic reaction to the motion
of the airfoil. This nonlinear nature allows, in principle, the prediction of
the final equilibrium amplitude of vibration (a 1imit cycle). This is differ-
ent from classical flutter where only the stability boundary is usually deter-
mined. 1In short, stall flutter refers to a self-excited and self-sustained
vibration in a periodically separated flow condition. Stall flutter also
differs from classical flutter in that the torsional and bending frequencies
are not necessarily close together even though both modes contribute to the
stall flutter.

1t has also been observed in stall flutter (ref. 8) that (1) there is a
sharp drop in critical flutter speed, (2) the flutter frequency rises towards
the torsional frequency, (3) the motion is predominantly torsion (single degree
of freedom flutter), and (4) the stall flutter speed reaches a minimum and
rises until the flow is completely stalled.

DYNAMIC STALL MODELING
The complexity in modeling stalling is due to the following reasons:
(1) flow separation and turbulence effects during part of the cycle of oscil-

lation; (2) a new variable, the mean angle of attack «y, is introduced into
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the determination of aerodynamic derivatives and automatically requires con-
sideration of the effects of Reynold's number and airfoil shape; (3) the aero-
dynamic derivatives can no longer be simply superimposed (as in classical
flutter) i.e., the aerodynamic results of a pitching motion cannot be separated
from those of a simultaneous translatory motion; and (4) rate of angle of
attack effects must be included in the analysis.

Earlier work on unsteady stalled flow has been either wholly experimental
or consisted of empirical and semi-empirical modifications to classical
flutter theory. These earlier studies have been based on the hypothesis that
the decrease in flutter speed may be due to a decrease in aerodynamic torsional
damping. Halfman, et al., (ref. 8) reviewed these methods and presented exper-
imental data for 1ift and pitching moment in pure pitch, and in pure plunge.
Sisto (ref. 9) presented a nonlinear mechanics approach to the problem of stall
flutter, and verified his predictions with experiments for both isolated and
cascade of blades. Schnittger (ref. 10), used data of Halfman et al. to inves-
tigate stall flutter in compressors and found that cascade effects have a sup-
pressing effect on stall. Amer and La Forge (ref. 11) developed a procedure
for calculating blade bending moments, torsion moments, negative aerodynamic
damping, and the 1ift hysteresis during stall using Halfman, et al. experi-
mental data. Baker (ref. 1) conducted experiments to measure the stall flut-
ter speeds of thin wings representative of propeller blades. Rainey (ref. 12)
measured aerodynamic damping to investigate stall flutter. Ham (ref. 13) con-
ducted experiments to investigate stall flutter of helicopter blades. Carta
(ref. 14) used an energy principle to calculate aerodynamic damping, and used
Halfman et al. data at high angle of incidence for turbojet engines.

Recent research on dynamic stall followed two approaches, one theoretical
(refs. 15 to 32), and the other based on experimental data, references 33 to
41. These research efforts on dynamic stall are summarized in references 42
to 47. The flow elements to be included in dynamic stall modeling are dis-
cussed in reference 48. Reference 47 tabulated the dynamic stall prediction
methods according to the technique used in the formulation, and roughly graded
most of the models according to the salient features of each model. An updated
version of the table is presented in table 1, from which the strengths and
weaknesses of the models can be seen more readily.

The theoretical approaches are the Navier Stokes methods, the discrete
vortex methods, and coupled viscous inviscid methods (zonal methods). Navier-
Stokes methods (refs. 15 to 17) attempt to solve the relevant equations in
their fundamental form by numerical techniques. The discrete vortex approach
(refs. 18 to 24) normally ignores the viscous terms in the basic equations and
assumes potential flow without the boundary layer. The viscous nature of the
flow is modeled or taken into account, by the generation and subsequent induced
transport of discrete combined vortices. The manner and location of their
generation is normally obtained empirically or via appropriate boundary layer
calculations. 1In the zonal methods (refs. 24 to 32) the various regions of
flow, viscous, nonviscous, and transition regions, are modeled separately. In
the numerical implementation of the model, the regions interact in an iterative
manner. These theoretical models require a lot of computer time and are 1im-
ited by the assumptions and restrictions of the formulation. So they are not
suitable in a routine aeroelastic analysis.

Semi-empirical methods (refs. 33 to 41) based on experiments attempt to
simulate the gross features of stall. They have gained much interest for the
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following reasons: (1) they attempt to use static data with a dynamic correc-
tion. This is advantageous because static data can be easily generated and
automatically includes the effects of Reynold's number, Mach number, and air-
foil shape. (2) They take less computer time so they can be used in a routine
aeroelastic analysis.

In the published Titerature there are four types of models for dynamic
stall based on experimental data (semi-empirical). The first (ref. 33) is to
use measured data tabulated in a three-dimensional array (angle of attack,
reduced pitch rate, reduced pitch acceleration) with an appropriate correction
for local Mach number. This requires a large amount of data storage for each
airfoil, frequency of oscillation and the associated interpolation. The second
(refs. 34 and 35) is to utilize a corrected angle of attack when the angle
exceeds the static stall angle. This correction is a function of the rate of
change of angle of attack.* The third (refs. 37 and 38) is to reduce the
large volume of data obtained from experiments to compact expressions (synthe-
sization). The fourth (ref. 39) is to describe the 1ift and moment coeffi-
cients in terms of ordinary differential equations (ONERA model). The last
two models attempt to fit the experimental data by way of equations. It should
be noted that in the first two models the time history of the motion is not
taken into account.

The empirical parameters used in the semi-empirical models referred above
are usually obtained from airfoils oscillating in pitch about quarter-chord.
However, an arbitrary motion includes both pitch and plunge motions. So stall
modeling should include separate h and h terms in the identification of
the empirical parameters. This would seem to require experiments that allow
for plunge as well as pitch motions. But, it would certainly be convenient if
only dynamic-pitch experiments were needed and the plunge effects could be
derived from them by other means. Many of the existing dynamic stall modeling
methods do not take into account this distinction. Reference 49 maintains
that the equivalence between pitch and plunge is not valid since the way the
stall cell forms and propagates is different in pitch and plunge. However,
tests have shown that the equivalence between pitch and plunge is reasonable
in light stall but not in deep stall. For more discussion on the equivalence
of pitch and plunge see references 50 and 5. In the semi-empirical models,
mentioned above, the ONERA model attempts to take this distinction into
account.

In the following the last three semi-empirical models, which are desig-
nated as A, B, and C, are described. These methods are selected on the basis
of their availability and easy implementation. Equations are presented to
calculate 1ift and pitching moment coefficients. Equations similar to those
given for pitching moment coefficient can be used to calculate coefficient of
drag. It is to be noted when calculating the resultant velocity on the air-
foil that the present study is restricted to nonrotating structural models,
hence the resultant velocity is same as the free stream velocity.

*The M11 model of reference 36, corrects the angle of attack as a function of
rate of angle of attack, but idealizes the loading due to vortex as an impact load
at the instant of stall occurrence. The magnitude of this impact loading is
obtained from experiments.



MODEL A - CORRECTED ANGLE OF ATTACK APPROACH

This model is presented in references 34 and 35. In this model, the
actual angle of attack, «, is corrected to obtain an effective angle of

attack «.. Then, the coefficients ¢ and c¢ , which are functions of
E ') mc/4

Mach number, are obtained from static airfoil data. The correction to the
angle of attack is a function of rate of angle of attack and is based on
oscillating airfoil test data.

The relation between the actual and the effective angle of attack 1is

given in terms of an incremental dynamic stall angle, AaDS, as
ap = o - K.I AaDS (1)
Then an empirical relation is established from experiments between Aa and

the rate of angle of attack as, DS

ac| AT
Bapg = ¥ ‘2v‘ = Y VIA| (2)

Here V 1is the resultant velocity, ¢ 1is the chord of the airfoil, & 1is the
rate of angle of attack, A 1is the nondimensional rate of angle of attack, the
function Yy has to be determined empirically from oscillating airfoil test
data, and Ky 1is given by

Ky = 3/4 + 1/4 sign(a) (3)

The function <y 1is a function of Mach number, airfoil maximum thickness
to chord ratio and has different values for 1ift and moment. This indicates
that the influence of +y 1is not the same for both 1ift stall and moment stall.

From equation (2), it can be seen that v 1is the slope of the straight
line representing the variation of AaDS with VﬁKT. The slipe is constant
for thicker airfoils. However, for thin airfoils, experimental data reveal
that there are two slopes Y and Yoo depending on the values of «/EET. The
value of ~/[A] at which the slope changes is designated as “/TKTBreak . The
definitions of Yi0 Yoo AQDS’ and «fﬂfr are schematically shown in figure 4.

The values of vy, for both 1ift stall and moment stall are 1isted below:

Lift Stall
Yo = 1.4 - 6.0 (0.06 - t/c), If Mach No. < 0.4 + 5.0 (0.06 - t/c)
Yo .= 0. If Mach No. > 0.9 + 2.5 (0.06 - t/c)
i 0, 5 (4)
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Moment Stall

You = 1.0 - 2.5 (.06 - t/c), If Mach No. < 0.2
Yom =0 If Mach Nei > 0.7 ¥.2.5 (.06 = tfc)
Yim = 0.0 (5)

where subscripts L and M denote 1ift and moment respectively. It is to be
noted that in the above expressions, the effect of Mach number is included in
the definition of Y, and Y, The variation of Y, with Mach number fis

schematically shown in figure 4. Also based on experimental data, ‘JIAIB K
is expressed in terms of t/c as i

JIAT

The next step is to express A“Ds in terms of Y0 Yoo and AJ|A].

ey = 0506 + 1.5 (0.06 - t/c) (6)

A°"[)S & (Y](L,M) ~IAl) (sign &) if 'JlA < ~“A|Break (7)
¥ooss~ <Y1(L,M) Mg reak * Yo(1,my (NIAL - “lA'Break)>519" (&)
i 134 > “IA'Break (8)

This formulation has the effect of reducing the angle of attack for positive
&, and of increasing the angle of attack for negative &. The final 1ift and
moment coefficients are calculated as

C (a.)
Co = e a (9)
7 = X
E,L Co = 0
Q
“mc/a = Cm(aE,M) (10)
where «o is the angle of attack for zero Tift.

o =

It should be noted that in this formulation the effects of Mach number
and thickness to chord ratio are explicitly included. This will be useful in
the application of this model directly to advanced turboprop blades, which are
very thin, operate at different Mach numbers along the radius, and have a
varying thickness to chord ratio along the radius. It should be noted that
above formulation is used only when the actual angle of attack is above the
static stall angle. This implies that after separation of the flow, the
reattachment is assumed at static stall angle. Reference 38 observed that
this may not reproduce the pitching moment loop correctly, thereby affecting
the aerodynamic damping calculations.
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MODEL B - SYNTHESIS PROCEDURE

Reference 38 presents a synthesized approach to dynamic stall modeling.
The synthesized data essentially consist of semi-empirically obtained analyti-
cal expressions representing qualitative approximations to the various observed
physical features associated with the dynamic stall of airfoils. The model
adequately accounts for the effects of formation and streamwise travel of the
dynamic stall vortex. The process involves curve-fitting analytic expressions
to the test loop data with the objective of determining the unknown parameters
or coefficients embedded in the analytical expressions.

Three dynamic parameters are defined to predict the dynamic stall events:
(1) the instantaneous angle of attack, «; (2) the nondimensional rate of angle
of attack, A; and (3) a decay parameter, o, which accounts for the time
history effects of the change in «, and is based on the Wagner function. The
data on which this synthesis procedure is based accounts for some effects of
airfoil shape, Mach number, and Reynold's number. 1In the following, the decay
parameter, «, 1is defined, then three stages of dynamic stall are identified
and expressed in terms of the empirical parameters obtained from the synthesis
procedure. The relations for unsteady 1ift and moment based on the above
parameters are presented.

Definition of o
For a two-dimensional airfoil going through an arbitrary change in angle

of attack, one can describe an instantaneous effective angle of attack, ar, by
using Duhamel's integral (ref. 40),

S
ag(s) = a(0)o (s,M) +,/: de o.(s - o,M) do (1)

where «(0) corresponds to the initial angle of attack, M represents Mach
number, ¢c (s,M) (Wagner function) is the response to a step change in «,
and s 1is the nondimensional time given by

s = 2V t/c (12)
The decay parameter is given by

ey o(s) - QE(S) (13)

The decay paraneter, o4, is the difference between the instantaneous
angle, « (s), and the effective angle ap s and, therefore, acounts for the

time history effects of the change in «. The effect of compressibility is
also incorporated in the definition of «, by defining

2 2
b, (s,M) = 1. - 0.165 ¢ 00433 (1-H) g 535 ¢0-35 (1M 7/ e

The calculation of A, and o, for sinusoidal motion and arbitrary
motion are given in the latter sections.

(14)
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Prediction of Dynamic Stall Events

In the published literature, three stages of dynamic stall are defined:
(1) the onset of stall, which gives the angle at which stall starts (see
fig. 3); (2) the vortex at the trailing edge, which gives the time (nondimen-
sional) taken for the vortex to travel to the trailing edge; and (3) the
reattachment, the angle at which the flow reattaches to the airfoil. 1In the
present model these three stages are related empirically by the nondimensional
rate of angle of attack, A, the decay parameter, oy, and the static stall
angle, agg. The values of A, o4, and agg correspond to the values at the
instant of moment stall, since moment stall occurs prior to 1ift stall.

Onset of stall: The angle of attack at which the stall begins is given by

+ C e (16)

@ = (Fl5,. el G
SS

Dm AmAm wmwm
where subscript m refers to values at the point of moment stall and the
empirical parameters e, CAm' and Cwm are obtained from curve fitted experi-

mental data.

Vortex at the trailing edge: After the occurrence of moment stall, there
is a significant increase in negative pitching moment due to the travel of the
stall vortex. The maximum negative pitching moment occurs when the vortex is
near the trailing edge of the airfoil. The time at which the vortex leaves

the trailing edge is given by

St 1.0/(CM/\m + Cat“Dm) (17)
where S it is the total nondimensional time for the vortex to travel from the
leading edge to the trailing edge, and the empirical parameters CAt and
Cat are obtained from experiments.

Reattachment: For Mach numbers < 0.4, the reattachment occurs at an angle
which is less than the static stall angle. At higher Mach numbers, Gpp

(67
RE
can be greater than the static stall angle a -
e = - ¢ Caphn * Crtum) %ss (E5%
The empirical parameters CAR and CwR are curve fitted for a given airfoil

from experiments.

In summary, there are seven empirical parameters to predict the dynamic
stall events and they depend on Mach number, Reynold's number, sweep angle and
airfoil shape.

Now the unsteady 1ift and moment coefficients, including dynamic stall
effects, are expressed in terms of additional empirical parameters and are
given below.

Unsteady Lift Coefficient

a - Aa] - Aaz) ¥ aosLAo;.| + ACL] + ACl2 (18a)
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Aa] - (P]A + Pzaw b P3) B (18b)
Aa2 = 62QSS (18c)
2
ACL] = Q]A + Qzaw + 03(a/ass) + 04(a/ass) (18d)
3
2 (BySp)
ACL2 = 056] + Q6Aa2 + Q_, (qu) = e 5 (18e)
(B 5,
2V (t - t,.)
_~ _dm’
Sm = x (18f)
=0 a < a
— SS
a
e a <a<fa
aco SS Dm
81
®0m Sm 2
=ff=— = 1 1 - S 0 < S S Sput
SS mt
=0 Sm” Smt
=0 a < a
EE R STS
o
= 1 ac < a < “m
SS
a
62 LS 1 0 < Sy < Smt
%
a a - @
o | e N
%55 “TE ~ *RE
=0 a < et (18g)

where &7 and &) depend on onset of stall and reattachment.

In equation (18a), agg 1is the conventional static 1ift curve slope. The

shift in angle of attack, Au] and Aaz, are associated respectively with the

unsteady effects below stall and with the occurrence of dynamic stall and
reattachment. AC; 7 represents the unsteady effects over static 1ift for
unstalled airfoils, and AC p» represents the effects associated with dynamic
stall. Equation (18a) expresses the synthesized unsteady coefficient as a sum
of static 1ift coefficient, Cls’ at some shifted angle (a—Aa] Aaz) plus an
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increment 1ift coefficient (ACL1 + AC|2). For unstalled cases Aa2 and

ACy o are zero. Also By = 0.18, sp 1is time measured from the instant of the
occurrence of dynamic moment stall. The parameters Py through P3 and Q
through Q7 are determined empirically by means of least squares curve fitting
of equation (18a) with the test data.

Unsteady Moment Coefficient

= C Aaz) + aomAa2 + ACm (19a)

mcsa = Cmy = Cus. (o -

L
ACm = n_'A + n2aw + n3 <0-SS> + n4 lawl + Y'I5<§.I + nsl_\az + n7aDmADmSm

(19b)

In equation (19a), apm 1is the static moment at zero angle of attack, normally
zero, and Cyg 1s the static moment coefficient about quarter chord. The
parameters ny through n, are determined by least square curve fitting of

the test data. For unstalled airfoils, the last three terms are zero.

1t should be noted that (1) the delay, the time from the onset of static
stall to actual stall, is taken into account by calculating the actual dynamic
stall angle from the curve fitted experimental data, (2) the difference in
pitching and plunging motion is not taken into account explicitly. The total
angle of attack and its derivative are used in the formulation, and (3) vortex
formation and its effects are accounted for.

MODEL C - ONERA MODEL

The ONERA model (ref. 39) describes the 1ift and moment coefficients in
terms of ordinary differential equations. The equations are of first order in
the linear flow regime (attached flow), and they are of third order in the
nonlinear regime (separated flow). the third order equation simulates the
pseudo inertial, pseudo damping, and pseudo elastic forces of a fluid oscilla-
tor. The parameters (six for 1ift, and five for moment) in the differential
equations are identified, as functions of angle of attack, by parameter iden-
tification of test data. These tests are conducted about each mean angle of
attack at various reduced frequencies at small amplitude (=1°) of oscillation.
They showed good correlation for angles of attack up to 23°. Reynold's number
and Mach number effects are included implicitly from a static airfoil data
base. It should be noted that a differential equation automatically accounts
for the time-history effects.

The model consists of three equations that relate the 1ift coefficient of
an airfoil to its angle of attack. They are:
* * * * k

CL] + xCL] = XCLQ + NSO + oa + SO (20a)
* % * * ‘
CI_2 + aCI2 + rCl2 = -(r ACL + Ea) (20b)




o = Ly * G

(20c)
where Cy 7 and Cpp are the 1ift coefficients in the linear and nonlinear
regions of angle of attack (below and above static stall angle respectively),

a 1is the total aerodynamic angle of attack of the airfoil, & 1is the angle of
attack due to pitching motion, and h/b 1is the angle of attack due to

plunging motion. Cj o 1is the static Tift coefficient in the linear region of
angle of attack. aC_ 1is the difference between the extended linear 1ift curve
(CLg = apgge) and the actual static 1ift curve (Cys). cg 1is the resulting
total Tift coefficient as shown in figure 5.

Similarly, the moment coefficient can be expressed as a first order dif-
ferential equation for angles below static stall angle with an additional sec-
ond order differential equation for angles above static stall angle. However,
the first order differential equation is not necessary for moment coefficient
since the Theodorsen function C(k) does not appear in equation for moment
coefficient in Theodorsen's moment equation for a flat plate, reference 52,
equation (5-312). Therefore the equations for moment coefficient are given as

* * * k
CM] = CMQ + SO + ca + SO (20d)
* k * *
CM2 + aCM2 + rCM2 = -(r ACM + Ea) (20e)
Cmc/4 = Cm1 + Cmp (20f)

where Cym7; and Cymp are the moment coefficients in the linear and nonlinear
regions of angle of attack. Cmg 1is the static moment coefficient in the 1in-
ear region. ACy 1is the difference between the extended linear curve and the
actual static curve as shown in figure 5. cpcyq s the resulting total moment
coefficient.

In equations (20a) to (20e), the (*), (**) operators represent deriva
tives with respect to nondimensional time, « = V t/b. The values of the
parameters, A, s, a, o, r, E are different for 1ift and moment coefficients,
and are obtained from wind tunnel tests. However, their general behavior can
be identified and is presented below.

For an airfoil with a fixed Reynold's number, and Mach number, the param-
eters n, s, a, o, r, E are functions of the blade angle of attack only, and
must be determined from wind tunnel test data of the corresponding airfoils by
parameter identification. The parameter, A, is the time-delay parameter asso-
ciated with the 1ift deficiency function. It provides for changes in magni-
tude and phase of the 1ift. The parameter s 1is the apparent mass term. The
parameters in equations (20b) and (20e) are associated with the stall phenome-
non. In particular, a is a damping parameter; r is the frequency of the
stall response, and E 1is a phase shift parameter associated with the stall
response. The parameters defining the differential equations showed a remark-
ably common behavior with several airfoils, that is they have shown approxi-
mately the same values for r, a, E, o for each airfoil, and same dependence
on AC_. The parameter r happens to be the same for 1ift and for moment.
This means that the resonance frequency is in fact a property of the flow
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which manifests itself in every type of force. The static values (Ci s, Cms)
can be approximated by polynomials. The static curves are very sensitive to
airfoil shape and conditions of flow, but the unsteady characteristics are not.

It should be noted that the stall delay time, the time from the instant
the angle of altack exceeds the static stall angle to the occurrence of actual
stall, is introduced explicitly while solving the equations. This is done by
keeping the right-hand side of equations (20b) and (20e) equal to zero until
the static stall angle is reached and the delay time is met. This delay time
(in terms of reduced time), based on experimental data, is taken as 10 for
1ift and 5.8 for moment (see ref. 40). The effects of pitch and plunging
motion are distinguished by separating the terms that multiply the total angle
of attack (pitch + plunge) and that multiply the pitch rate terms. This is in
contrast to model A and model B, where such distinction was not made. However,
it should be noted that in the ONERA model, the system dimension increases with
number of integration points (3 for 1ift and 2 for moment), and it can be used
in a linearized stability analysis.

In reference 53, the equations (20a) to (20e) are used to obtain the
dynamic response of a typical section helicopter blade, and in reference 54 to
an entire helicopter blade. It should be noted that this type of modeling,
expressing aerodynamic force in the form of differential equations has been
attempted in reference 55. 1In particular reference 56 has used it in the
dynamic stall analysis of helicopter blades.

A flow chart of the three dynamic stall models is given in figure 6.

GOVERNING AEROEILASTIC EQUATIONS OF MOTION

This section presents the governing equations used in the aeroelastic
study conducted with the three dynamic stall models described earlier. Three
simple structural models are considered.

1. Calculation of 1ift and moment coefficients for airfoils oscillating
sinusoidally in pitch about quarter chord. This study will show the degree of
correlation with published results.

2. A typical section model having pitching and plunging motion.
3. A plate model having pitching and plunging motion.

The flat plate case simulates the case of an advanced turboprop while reducing
the complexity in the structural modeling. When the aeroelastic equations are
formulated in terms of normal modes, for example as in reference 2, the struc-
tural modeling is identical with that of flat plate. For the aerodynamic force
calculations, the dynamic stall models require as input the angle of attack

and its derivatives at each section along the radius. This can be easily
implemented in the flat plate model by including the rotational effects in the
calculation of angle of attack and its derivatives. Hence a flat plate case

is a natural example to start with and to extend to the advanced turboprop.
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Airfoils Oscillating Sinusoidally in Pitch About Quarter Chord

For stall models A and C, the angle of attack and its time derivatives
are given by

a = ol + a sin ot

w a CO0S wt 2l

I

&
e =-00 asin ot

where o« 1is the instantaneous angle of attack, «p, mean angle of attack, a

is amplitude of oscillation, and « 1is the frequency of oscillation. A time
delay of 10 for 1ift and 5.8 for moment is used in model C, based on the study
of reference 40.

For stall model B, the angle of attack, «, nondimensional time derivative
of angle of attack, A, and the decay parameter, a«,, required in the calculation
of the effective angle of attack are given by

@ =a * a sin (wt) (22)
=@y + a sin (ks) (23)
A = k o cos (ks) (24)
ay = AY7 (K,M) + (a - ag) Yo(k,M) (25)
where k = o b/V, s = Vt/b and
0.165 (1-M°) (0.0455) 0.335 (1-M°) (0.3
b TR, Ca e e e ““—‘é"z"("'zl (26)
k™ + (1-M7)" (0.0455) k- + (1-M")" 0.3
2 2
.Yz(k’M) = _._2._AV__.__O...L]z,b_g_‘__k_...._‘,__.__é + _2-. ._'3_3_52K_..___2. (27)
k= + (1-M7)" (0.0455)" k= + (1-M7)" 0.3

For each time step n, the angle of attack, A and «, are calculated.
The angle of attack i1s compared with the static stall angle. 1f this angle is
above the static stall angle, the 1ift and moment coefficients are obtained
from corresponding equations of the three dynamic stall models. Then the
normal force coefficient, Cy, is given by cg cos (a). 1t should be noted
that in contrast to models A and B, model C requires integration of differen-
tial equations.

A Typical Section Model

The typical section is a representative section, usually taken at
75 percent span. Figure 7, shows a typical section oscillating in pitch and
plunge. The plunge motion h 1is positive downwards, and the pitch motion «
is positive nose up. The equations of motion can be written as
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mh + S& + Cph + Kph = Qp (28)

Sh-+ Thals Cob e alon = 0 (29)

where m 1is the mass, S is static balance, K, 1is the plunge spring coeffi-
cient, K, 1is the pitching spring coefficient, C, and C, are the mechanical
damping in plunge and pitch respectively, Q, and Q, are the force and moment
on the airfoil.

Letting t o= wt, and & = h/b, the equations can be written as

i} <“h> ; 9
R (30)
@ h W mbw2
)_( E“ +r 2 a" + c a' +r 2 (?&) 2 5 = __02‘-,-_ (3])
a a a a \w mb2 2

With zero mechanical damping, and expressing Qpn and Q, 1in terms of
normal force, Cy, and moment coefficients, cp, respectively, equations (30)
and 31 can be written as

i gE " el gl et {-E“} (32)

(U'k) auk® { m

where k = wb/V, U* = V/bwy, u = m/mpb2.

The elements of [M] and [K] are

w 2
h : 2
e (m > ’ Kat= Ko =985 Kia =y

where ka is the static unbalance, ro s radius of gyration, wh, w, are

uncoupled bending and torsion frequencies, p 1is the density of air, b 1is

semi-chord, m is the mass per unit length, u is the mass ratio, V 1is the
resultant velocity, and w 1is reference frequency.

In the previous section, the angle of attack and its derivatives were
given explicitly for sinusoidal oscillations. However, a structure performs a
more general motion. Therefore, it is required to calculate the angle of
attack (a), the nondimensional time rate (A) and the decay parameter (ay),
for an arbitrary motion. This i1s given below.

At any time step n, the velocities tangential and perpendicular to the
leading edge are given by (see fig. 7)

Up = h + xa + V sin (ag + a) (33)
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U = V cos (ag + a) (34)
from which the instantaneous angle of attack is given by
Yp
ooe = arctani| -— (35a)
n UT

With this instantaneous angle of attack, the parameter A and «, are deter-
mined by using the following equations:

8 (de) ) -(].50:" - 2an_] »+ O.ASan_Z) -
n (ds) (as)
n n
using the backward difference scheme, and
where
2
-0.0455 (1-M") (As)n
Xn = Xn‘] e + 0.165 (an - o.n_.l)
2
0.3 (1-M7) (As)n
Yn = Yn-1 e + 0.335 (an - °n-1) (35d)
t
(As)n = 2 Un s

where ¢ is the chord, U, is the velocity normal to the leading edge at
time step n, and subscripts n, (n-1), etc., indicate the values at the n,
(n-1) th step in a step-by step integration method.

For these aerodynamic parameters, «, A, ap, the 1ift and moment coeffi-
cients (about quarter chord) are calculated from the dynamic stall models A
and B described earlier. Then the aerodynamic normal force and moment coeffi-
cients about the elastic axis are given by

Cy = Cg COS a (36)

Cy

m> Cmcsa t 2 +0.5) (37)

(o (a

h

where cpeyq i the moment coefficient calculated about quarter chord

point. In the case of dynamic stall model C, the stall parameters appearing
in equations (20a) to (20e) are calculated using the above aerodynamic parame-
ters, and the differential equations (20a) to (20e) are integrated along with
the structural equations given in equation (32). A state vector form of this
combined structural/stall model is given in section A.1 of appendix A.
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Plate Model

The governing equations of motion are formulated in terms of normal modes
of a cantilevered plate. The nonrotating normal modes of the plate are
obtained from a NASIRAN analysis. Since any general vibratory motion of the
plate can be expressed in terms of translation of some reference axis and
rotation about this reference axis, the plunge and pitch motions are expressed
about a reference axis. If h(y) is the bending deflection of the reference
axis at station y, when the blade is vibrating in the ith normal (coupled)
mode, and «(y) is the rotation about the reference axis, the displacement at
station y can be expressed as a superposition of the contributions of the
various normal modes as

h = hy ay(t)

@ - Tay ,(0)

where qj(t) is the generalized coordinate, which is a function of time. The
amplitude q4(t) expresses how much of each normal mode is introduced into the
general vibratory motion. The kinetic energy dT of an element dY s

(38)

d1 = 5 Iy, B2 + T (Na(y, )% + S (DY, Da(y,t)] (39)

Substituting for h and « and integrating over the span the total kinetic
energy is given by

12>, 4 (40)
where
m, - f(mh? ¢ W ot 2 Bt Ay (41)
i i a | i
with the normality condition
-/”[mhﬁhj r 1aa1aj + S (hiaj + aihj)] dy = 0 (42)
The potential energy is
U= %Zmawf q? i

where o3 1is the circular frequency of vibration in the ith normal mode.
Then the governing equations of motion can be written as

- 2
ity Bl H S %)

where Q4 1is the generalized force including aerodynamic forces.
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Aerodynamic Velocity Expressions

In the present study, simple strip theory is used to calculate the blade
velocities and forces. Therefore the plate is divided into a number of strips
(segments). For a flat-plate with no pretwist, the velocities at each segment
are given by the same expressions as for a typical section model. Therefore
the angle of attack is given by equation (33), after expressing h and «
motions in terms of normal modes. Then c¢g and cpcyq are calculated from
any of the dynamic stall models described earlier. The 1ift and moment coef-
ficients at this segment are given by equation (36), from which the actual
1ift and moment are calculated. Then the generalized force at segment, j, in
ith mode is given by

fij = (hi (YL + aj(y) M) dI (46)

where dl1 is the length of the segment, L and M are the 1ift and moment at
jth segment, and hj (y) and «a4(y) are values of h and « at the center
of the jth segment.

The total generalized force on the blade for ith mode is given by

N
0 - X 1 (47)

where N s the number of segments, the structure is divided into. The
equations of motion are solved for this time step.

It should be noted that for stall model C, the 1ift and moment coeffi-
cients are given in the form of differential equations, and the combined
structural/stall model has to be solved for each time step. For a plate (con-
tinuum) model, the number of equations in the combined structural/stall model
depend not only on the number of normal modes used, but also on the number of
segments into which the blade is divided. A state vector form of this com
bined structural/stall model for model C is given in section A.2 of appendix B.

RESULTS AND DISCUSSION

The numerical results of the study are presented in this section. The
threc aerodynamic stall models explained earlier are used for comparative
studies. The results and discussion are performed for three simple structural
models: (1) an isolated airfoil oscillating sinusoidally in pitch about
quarter chord; (2) a typical section model performing pitching and plunging
oscillations; and (3) a flat-plate model performing pitching and plunging
oscillations. A computer program with these dynamic stall models and struc-
tural models has been developed and will be expanded to consider the aero-
elastic response of advanced turboprops. The following results show the
validity of the computer program and an assessment of the three dynamic stall
models. The experimental data presented in this report was obtained from
enlarged published plots.

In this study all the calculations are made for three airfoils, namely
NACA 0012, NACA 0012 (MOD) and OA212, and for Mach numbers of 0.3 and 0.4,
since the semi-empirical data is readily available for these Mach numbers. As



pointed out earlier, the dynamic stall effects vary with airfoil geometry and
Mach number. However, the following comment can be made for stall at higher
Mach numbers. The static stall angle decreases as the Mach number increases
and the blade may stall earlier than at low Mach numbers. Experimental data
of reference 56 showed that for Mach number equal to 0.6 there is shock-
induced separation and stall. The dynamic data suggested that the formation
of shock waves somehow inhibit the development of the vortex shedding process.

At this pint, a mention of the effects of other parameters on dynamic
stall is in order. Experimental results of reference 7 indicated that, (1)
increasing reduced frequency decreases the intensity of the dynamic stall
vortex shedding and delays the formation and growth of the leading edge
vortex, (2) cambering the leading edge tends to delay stall onset, (3) the
higher the Reynold's number, the later the separation appears and develops,
(4) sweep reduces dynamic stall effects, (5) the effect of decrease in thick-
ness is similar to the effect of an increase in Mach number, and (6) cascades
reduce dynamic stall effect. The dynamic stall effects also depend on mean
angle and amplitude of oscillation.

It should be noted that when comparing with published results some quan
titative differences may exist since the dynamic stall loads are sensitive to
airfoil static data used. For completeness, the static data (cg and cpe/g
versus «), and the dynamic stall data for the airfoils mentioned above are
given in appendices B and C. When comparing results from model C with those
obtained from model A and model B, it should be noted that model C involves
integration of 1ift and moment equation simultaneously with structural
equations.

Isolated Airfoil Oscillating in Pitch About Quarter Chord

Verification of the published results. - The intention here is to verify
the published results and to check whether the dynamic stall models are cor-
rectly implemented in the computer program.

Stall model A: 1n reference 35, this model was applied to four airfoils,
namely the V23010-1.58, NACA 0012(MOD), V13006 .7, and NACA 0006, and the
theoretical and measured 1ift and moment coefficients were correlated. 1n the
correlation, a variation in the mean angle of attack, amplitude of oscillation,
Mach numbers, and reduced frequency was considered. The test data included
forced pitch oscillations for the four airfoils and plunging oscillations for
the v23010 1.58 airfoil. 1t was concluded that overall correlation between
theory and test was good for the normal force coefficient and was acceptable
for pitching moment coefficient.

To facilitate interpretation of analytical model A, the Tift and moment
coefficients are calculated herein and are shown in figures 8 and 9 along with
the measured data. The NACA 0012(MOD) airfoil in pitching motion at 0.4 Mach
number is considered. Figure 8 presents the plots for a mean angle of 9.93°,
amplitude of oscillation of 4.65° at a reduced frequency of 0.064 and figure 9
presents for a mean angle of 12.25°, amplitude of 4.8°, and a reduced fre-
quency of 0.126. The fiqures reproduce the corresponding ones presented in
reference 35. 1t can be seen from these figures that (1) the 1ift coefficient
is predicted well, (2) the maximum moment coefficient has not been obtained
for the case of k = 0.126, and (3) moment loops are not reproduced correctly.
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A close examination of the results in reference 35 for other airfoils, and for
other flow conditions revealed that the prediction is good for thin. airfoils
at low reduced frequency and the maximum moment coefficient is not predicted.

Stall model B: Reference 38 presents synthesized 1ift and moment loops
for 13 data sets comprising different airfoils (SC1095, NACA 0012, V0012, VR7,
NLR-1, Vv2301-1.58, Yawed 0012), Mach numbers (0.18 to 0.6), reduced frequen-
cies (0.0 to 0.38) and Reynold's numbers 2.5 to 6.2 million). 1In the present
report NACA 0012 is chosen to verify the program. Figures 10 and 11 present
1ift and moment loops for two cases. The cases represent different mean
angles, amplitude, and reduced frequency at 0.3 Mach number and Reynold's num-
ber of 3.8 million. The steady state-data for this airfoil is obtained from
an analytical curve fit program available in GA00PROP computer code (ref. 57).
The static stall angle for Mach number 0.3 is 12°. The 1ift loops from this
model show good correlation with experimental data over the upper portion
(upstroke) but the present program under predicts the 1ift coeflicient in the
returning stroke. But the published results in reference 38 showed good com-
parison even in the down stroke. The reason for this discrepancy between the
present theoretical results and those of reference 38 is not known at this
time of writing. However, it should be noted that in a response analysis, one
is interested in calculating the maximum 1ift obtained in dynamic stall. So
the predicted loops are assumed satisfactory for this purpose. The moment
loops show good correlation with the theoretical and experimental loops of
reference 38. 1In contrast to 1ift loops during the down stroke, the moment
loops behave well throughout the cycle. The good correlation for 1ift and
moment loops may not be surprising since the model is actually experimental
data, reconstructed by analytical curve fitted expressions, which naturally
takes into account all the events that occur in a dynamic stall process.

Stall model C: The ONERA model was first fitted for the 0A212 airfoil
(ref. 39). 1his airfoil has a 1ift stall angle of 10° and a moment stall
angle of 6°. The results are presented for a Mach number of 0.3 and reduced
frequency of 0.05, with amplitude of oscillation of 6° for mean angles of
attack of 12° and 14°. The governing equations are solved using a fourth
order Runge Kutta method. Figures 12 and 13 with designation "a" show the
1ift loops obtained from this model with and without stall delay for mean
angles of 12° and 14°. The model with stall delay predicted the maximum 1ift
coefficient well. The 1ift loops calculated herein are in good agrecment with
corresponding ones in reference 39. The moment loops for the same cases are
presented in figures 12 and 13 with designation "b". Again, the results show
good correlation with those published in reference 39. Introducing stall
delay did not improve the correlation since the range of angle of attack
studied is well above the moment stall angle of 6°. 1t is interesting to note
that the moment curves (even the experimental ones) did not show any loops for
this  aqrfoeid.

Comparison of the three dynamic stall models for a single airfoil. - In
this section, the three dynamic stall models are applied for a particular air
foil. 1In this case, NACA 0012 airfoil, at Mach number - 0.3, and Reynold's

number of 3.8 million is considered.

For NACA 0012 airfoil, the 1ift loops from model B are presented earlier,
and they are calculated here for models A and C. 1In generating these plots,
the static stall angle for 1ift is assumed as 12° for models A and B, and 14°
for model C. To compare all these results, all three loops are shown in
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figures 14 to 17, for four cases by varying the mean angle of attack, amplitude
of oscillation, and reduced frequency. These cases are listed below.

Case 17 a5 = 10° a = 10°, k = 0.04813
Case 2:" o = 12°, a = 10°, k = 0.09756
Case 3: ag = 12°, a = 8°, k = 0.12528
Case 4: a5 = 15°, a = 5°, k = 0.15106

The measured 1ift Toops are also included in figures 14 to 17. The plots
obtained from dynamic stall models A, B, and C are designated by a, b, and c,
respectively. To facilitate comparison, the experimental plots are also shown
in the figures.

Figure 14 shows the 1ift loops obtained for case 1. All three stall
models predict the Toops reasonably well for this reduced frequency of 0.048.
Even the simplest model, model A, gives a very good correlation between theory
and experiment. Model B, as mentioned in the previous section underpredicts
the 1ift coefficient during the down stroke. The ONERA model, model C,
predicts a high 1ift coefficient compared to models A, B, and experiment.

This may be due to the assumption of high static stall angle for the airfoil,
and may be due to the numerical procedure required in integrating the
equations.

Figure 15 presents the plots for case 2. The reduced frequency for this
case is approximately twice that for the previous case. The amplitude of
oscillation is 10°, as in the previous case. 1t can be seen from plot 'a'
that model A did not qualitatively reproduce the experimental curve, even
though the maximum 1ift coefficient is reasonably well predicted. Since the
area of the loop represents the energy transfer, or damping in the system,
this model underpredicts the damping. Models B and C predict the loop
reasonably well.

Figure 16 shows the 1ift loops obtained for case 3. The reduced frequency
and the amplitude of oscillation are 0.125 and 8° respectively. Models A and
C predict a larger maximum 1ift coefficient and model B predicts a lTower maxi-
mum 1ift coefficient compared to experiment.

Figure 17 shows the plots for case 4. The reduced frequency is 0.151,
and the amplitude of oscillation is 5°. 1t is surprising to note that model A
predicts the 1ift loop reasonably well compared to experiment. Model C pre-
dicts a larger 1ift Tloop.

An overall comparison of the figures 14 to 17 indicate that all three
dynamic stall models predicted the 1ift loops reasonably well for the cases
considered. However, the following note is in order regarding the application
of model C. The parameters in model C have been evaluated from tests con-
ducted at small amplitude of oscillation (=1°). Here the model has been
used for predicting 1ift at high amplitude of oscillation (>5°). This model
is expected to give still better correlation with experimental data when used
in a small amplitude of oscillation environment, such as that exists for pro-
pellers and compressors. Models A and B do not have such restrictions on
formulation and use.

25



|

Moment Coefficient

Figures 18 to 21 show the moment loops obtained from models A and B.
Specifically, in these figures, plots (a) and (b) show the loops obtained from
models A and B, respectively. Since the moment data is not available for
NACA 0012 from the ONERA fit, loops from this model are not shown. The plots
are presented for mean angles of attack of 10°, 12°, and 15°, amplitude of
oscillation of 10° and 5°, and reduced frequencies of 0.09756, 0.09633, and
0.151. An overall observation of the figures 18 to 21 shows that the moment
loops are not predicted well by model A. The experimental data shows three
loops. Model A predicts only two loops. Since the area of the curve is pro-
portional to the damping in the system (or energy dissipated/absorbed), stall
response curves from model A may not be accurate. For model B, there is a
very good correlation between calculated and measured results. This should be
expected with this model, because these loops are curve-fitted to experimental
data.

Acroelastic Response Studies with Dynamic Stall Models

The following sections present the results of the response study conducted
with two structural models, a typical section model and a plate model. Both
models perform plunging and pitching oscillations. For a given airfoil, the
comparison of the 1imit cycle behavior with both pitching and plunging oscil
lations from the three dynamic stall models would have been ideal. However,
the moment data is not available for NACA 0012 from model C, for a comparative
study. Therefore response from plunging only is considered for comparison
purpose of the three dynamic stall models. However, for models A and B, both
plunging and pitching are considered and compared. The governing equations
are solved by the Wilson-© method (ref. 59). This method assumes a linear
variation of acceleration between two time steps. The method is an implicit
integration method and is unconditionally stable.

Plunging motion only. - The NACA 0012 airfoil at a Mach number of 0.3 is
considered for the numerical study. T1he response curves are obtained for zero
initial conditions with a time step equal to or less than the 1/10th of the
minimum period of oscillation. The variation of the angle of attack with time
is given by a = ag + h/V, where h is the plunging displacement.

Typical Section Model

The governing differential equation for this case is equation (30). The
values of the parameters in the equation are, mass ratio, w = 76, o = 40.0
rad/sec, and wp = 55.9 rad/sec. Figure 22 shows the variation of plunging
displacement with time at an initial angle of attack of 4.5° obtained from the
three models. The response from the three models shows a converging trend
towards a steady value. Figure 23 shows the variation of plunging displacement
with time when the initial angle of attack is 15°. The models predict differ-
ent behavior. Model A shows a small amplitude 1imit cycle behavior, model B
shows a converged solution. This is due to the fact that model B includes
unsteady aerodynamic effects, and hence predicts a higher stall flutter speed.
Model C shows a high amplitude 1imit cycle behavior since the model in general
overpredicts the 1ift for this airfoil as shown in the previous section.
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Plate Model

Equation (44) is the governing equation of motion for this case with
i = 1. The values of my, and ] are 0.972x10-° 1b-sec?/in. and
999.0 rad/sec. Figures 24 and 25 present the plunging response obtained from
the plate model. Figure 24 shows the response obtained from the three dynamic
stall models for an initial angle of attack of 4.5°. All three dynamic stall
models predict a converging solution. Fiqure 25 shows the response obtained
for an initial angle of attack of 15°. The behavior is as that predicted
above for the typical section model.

Typical Section Model

The governing equations for this combined bending and torsion are given
by equation (32). The numerical study is conducted for the following
structural parameters.

u.o=76.0; ka =H0.255, ap = -0.15, Fo = 06229,
wh = 55.9 rad/sec, w, = 64.1 rad/sec, Zn = 0.0,
o = DD, b = 0.127 m (5")

For these values, the model has both inertial coupling and aerodynamic cou
pling between the plunging and pitching motions. Before starting the response
analysis, it was necessary to find the aeroelastic parameters corresponding to
a neutrally stable condition. Hence, a classical flutter analysis was per-
formed in the frequency domain by using two-dimensional unsteady aerodynamic
theory. This predicted the flutter speed, Vg, as 27.46 m/sec (90.1 ft/sec),
agd reduced frequency, kg, as 0.27624. 1he corresponding velocity parameter,

UF' is given by

o By
UF = B = 3.3135

o3

and this flutter speed corresponds to a Mach number of 0.0811.

In the present time domain analysis, the response analysis was carried out
by varying o™, keeping the values of other parameters constant. The static
data corresponds to a NACA 0012 airfoil, at a Mach number of 0.3 and Reynold's
number of 3.8 million. The static stall angle for this airfoil is 12°. The
initial conditions are taken as t' =0., ¢ = 0., «' = 0., and « = 0.01 rad.

A time step equal to or less than 1/10th of the minimum period of oscillation
is used in the calculations.

Figure ?6a shows the variation of pitching displacement with time when
the airfoil is at an initial angle of 4.5°, obtained from model A. 1t should
be noted that for this angle of attack, which is below the static stall angle,
the aerodynamic theory in model A corresponds to quasi steady theory. The
plot shows three graphs that correspond to U* - 2.50, 2.675 and 2.75. The
graph corresponding to U* = 2.50, shows converging oscillations, whereas
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the one for U* = 2.675, shows sinusoidal oscillations. This is assumed to
be indicating neutral stability, since the angle of attack variation for this
case is well below the static stall angle. The graph for Tl 2.75, shows
diverging oscillations. The value of U* = 2.675 is taken as the one cor-
responding to the flutter speed. This is 21 percent less than the value pre-
dicted from unsteady theory, showing that quasi-steady theory underpredicts
the flutter speed. Figure 26b shows the variation of plunging displacement
with time. It exhibits the same behavior as the pitching displacement.

Figure 27 shows the response curves obtained from model B for the same
structural parameters and for the same initial angle of attack. It should be
noted that the unsteady parameters (below stall) available for NACA 0012 at a
Mach number of 0.3 are used in the response calculation. Figure 27a shows two
g;aphs that correspond to 1/ 3.17, and 3.18. The graph correiponding to
U® = 3.17, shows converging oscillations, whereas the one for U = 3.18,
shows diverging oscillations indicating instability of the motion. Hence the
value of U" = 3.175 corresponds to flutter speed. This is 6 percent less
than the value predicted from unsteady theory in the frequency domain.

Figure 27b shows the variation of plunging displacement with time for the same
parameters as above. It exhibits the same behavior as the pitching
displacement.

Figures 28 and 29 show the response curves obtained from models A and B
for an initial angle of attack of 15°. This is above the static stall angle
of 12° for NACA 0012. The other parameters used in stalled airloads calcula-
tion are Re = 3.8 million and Mach number = 0.3.

Figure 28 shows the variation of pitching displacement with time when the
airfoil is at an initial angle of 15°. Figure 28a is the response curve
obtained from model A. The plot shows two graphs that correspond to u*
equal to 0.1 and 0.2. Both the graphs show that the transients (due to non-
zero initial acceleration and nonzero initial displacement) die out in a
certain amount of time and then the oscillation starts growing indicating
unstable oscillations. It is seen from figure 28a that the time for the
t;ansients to die out is inversely proportional to the velocity parameter,
U". Response curves generated with zero initial conditions (zero velocity
and zero displacement), not shown here, indicated that the oscillations start
to diverge immediately. This indicates that flutter begins essentially at
zero speed compared to U* = 2.75 at an initial angle of 4.5°. However,
this physically unreasonable result is not surprising, since this model did
not predict the moment loops correctly for this airfoil which resulted in
negative damping.

Figure 28b is the response curve obtained from model B, for the same
SEructural and aerodynamic pargmeters. The plot shows tyo graphs, one for
U = 0.45 and the other for U = 0.5. The graph for U = 0.45 shows decay-
ing oscillations indicating stable oscillations. The graph for U* = 0.5 shows
that the airfoil is set into a 1imit cycle behavior. The decay of the transi-
ent and the motion being set into a 1imit cycle is more clearly seen here,
compared to that shown in figure 28a obtained from model A. The critical
stall flutter speed corresponds to (R 0.475, the average of the above two
values. This is 85 percent reduction in flutter speed compared to 3.175 at an
initial angle of 4.5°.
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Figure 29 shows the variation of plunging displacement with time, and it
shows the same variation with time as pitching motion for both the models.

Plate Model

The response of the plate is analyzed using normal modes. These normal
modes are obtained from a NASTRAN analysis. The plate is 3 in. in length,
1 in. in width Schord) and 0.05 in. thick. The material density fis
2.6x10-4 1b sec2/in4, Young's modulus 7.89x10® 1b/in2 and Poisson's ratio 0.3.
The analysis used QUAD4 elements. 1In the present study, two normal modes are
used in the analysis. For this problem, the first and second normal modes are
essentially the first bending and the first torsion modes. From the NASTRAN
analysis, the first two generalized masses are 0.9720x10-5 1b sec2/in. and
0.161x10-9 1b secz/in., and the corresponding frequencies are 999.2 rad/sec
and 5860.55 rad/sec. The NACA 0012 airfoil at Mach number 0.3 is considered
for the aeroelastic study. The governing equations of motion are given by
equation 44. The response is calculated with the following initial conditions:

dy = 4y =4, = 0.0 and q, = 0.01, where d, and d, represent the first two

normal coordinates and a, and 4, their derivative with nondimensional time.
The variation of the normal coordinates with time is shown in figures 30 to 33.

Figure 30 shows the variation of the first normal coordinate (the first
bending mode) with time when the flow is approaching the plate at an initial
angle of attack of 4.5°. Since the initial angle of attack is below static
stall angle (12° for this airfoil), the response is a quasi-steady response
for model A. Both models predict the same qualitative behavior, even though
model B predicts a slightly lower amplitude due to unsteady effects included
in the model. The response is seen to decay indicating an approach to steady
displacement. Figure 31 shows the variation of the second normal coordinate
(first torsion) with time at the same initial angle of attack. The response
again seen converging to a steady value.

Figures 32 and 33 show the variation of first and second normal coordi
nates, respectively, with time when the initial angle of attack is 15°, which
is above the static stall angle. Both models predict a diverging type of
oscillation. This means that the plate is unstable for this initial angle of
attack. Further investigation is required to predict the stall flutter bound:
ary from both-models with other initial angles of attack varying from 4.5° to
15°. However, it can be noted from previous sections that model B predicts a
higher initial angle of attack than model A for the plate to become unstable.

DISCUSSION OF ADVANCED TURBOPROP APPLICATION

The theory and the computer program presented in this report can be
directly applied to predict the response of an advanced turboprop with dynamic
stall. However, proper blade data for the advanced turboprop airfoil is
needed. Figure 34 shows the airfoil section distribution for SR2 advanced
turboprop. The thickness ratio (t/b), twist (aB), design 1ift coefficient
(C_p), and planform (b/D) distribution were established to provide for high
efficiency. The airfoil sections used are NACA 16 series from tip to the
45 percent radius portion, and 65 series with circular arc (CA) camber lines
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from 37 percent radius to the root with a transition fairing in between.

These airfoils have been chosen for their high critical Mach number and wide,
low drag buckets. This necessitates generation of static and dynamic data for
a number of airfoils along the radius.

The operating conditions of the advanced turboprop indicate that the
advanced turboprop blades are subject to high frequency, low amplitude oscil-
lations. This is a favorable condition for 1ight dynamic stall, since the
penetration of the airfoil into stall is small, and the duration in the stall
condition is small, even when it is operating at static stall angles. This
does not allow the boundary layer to reach the leading edge or the formation
of a vortex like disturbance. This implies that models A and C may predict
the stall behavior of advanced turboprop reasonably well. Also as mentioned
in earlier sections, model C has been formulated under the assumption of small
amplitude. From the theoretical analysis point of view, boundary- layer meth-
ods, rather than full Navier-Stokes solutions may be sufficient for advanced
turboprop application. However, it should be cautioned that light dynamic
stall is very sensitive, to airfoil shape, particularly, and to the leading
edge radius. Depending on this radius, the flow may separate at the leading
edge and may result in deep stall. It is worthwhile here to mention the con-
clusions drawn from an experimental study of stall flutter characteristics of
NACA 16 series in reference 60. The study indicated that: (1) an increase in
camber, thickness ratio or design 1ift coefficient increases the static stall
angle, (2) an increase in leading edge radius or in the droop has a slightly
detrimental effect on stall, and (3) an addition of trailing edge camber
increases normal force coefficient before stall.

An extensive literature search has found that no static data at and
beyond stall and no dynamic data exists for 16 series airfoil. Hence the
following procedure is recommended to obtain static and the dynamic data to
use for advanced turboprop analysis. Generate the steady data and a single
dynamic loop data for a representative NACA 16 series airfoil using Navier-
Stokes solution methods (ref. 17). Then develop the ONERA dynamic stall model
from the data obtained from the Navier Stokes code. Use this ONERA Navier-
Stokes model to calculate the stall induced loads at all sections along the
radius when the angle of attack exceeds the slatic stall angle. Then compare
the response ol the advanced turboprop obtained from the ONERA Navier- Stokes
dynamic stall model, and model A.

SUMMARY AND CONCLUSIONS
Three dynamic stall models are compared for performance and easy imple-
mentation. The response of a typical section model and a plate model are
studied for these stall models. The procedure and the computer program can be
directly used to analyze the response of advanced turboprops with dynamic
stall.

In summary:

1. A1l three dynamic stall models are implemented in a computer program
and the program is checked out.
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2. A1l three dynamic stall models are applied to a single airfoil to cal-
culate 1ift and where possible moment loops, and the strong and weak points of
these models in predicting the stall behavior are identified and discussed.

3. Stall flutter response is calculated by using all three dynamic stall
models and two structural models.

4. A formulation for the stall flutter analysis code for advanced turbo-
prop is suggested.

The following conclusions are drawn from this study:

1. The operating environment of an advanced turboprop favors the condi-
tion of light stall, where the vortex induced loads are not very severe.
Therefore, simple dynamic stall models 1ike model A and model C can be used
for advanced turboprop application.

2. The ONERA model, model C, involves fewer parameters in modeling the
dynamic stall model than the synthesis procedure, model B. Model A involves
only one empirical parameter but must be tested for advanced turboprop air
foils and high frequency low amplitude oscillations that occur in advanced
turboprops.

3. The differential form of the ONERA model suggests that it could be
used in a linearized stability analysis.
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APPENDIX A

AEROELASTIC EQUATIONS W1TH ONERA DYNAMIC STALL MODEL (MODEL C)

This appendix presents the state vector form of the combined structural-
stall model for a typical section model and a plate model with ONERA dynamic
stall model (model C).

A.1 Typical Section Model

The governing equations of the typical section are given by equation (32),
and can be written as (with multiplication factors absorbed into the
matrices)*

&

o ek e 13 -C0S a 0.0 )
[M] + [C] + [K] = (A.1.7)
ap ap ap (ah + 0.5)coS « 2.0 Cmc/4

where o is the angle of attack, and operator ()' indicates derivative
with respect to t (= wt). s

From ONERA formulation, cg and cpe/q are given by equations (20c)
and (20f) as

¢ 0 1.0 1.0 0.0 0.0 0.0
b ' Cro (A.1.2)
G S 0.0 0.0 0.0 1.0 0.0

Substituting equation (A.1.2) in equation (A.1.1), we obtain

*Note 1: « is the pitching degree of freedom, subscript p is used to
distinguish it from «, the instantaneous angle of attack.

Note 2: The transformation from the operator ()* to ()' is (OF = k()',

where k = 99, w = reference frequency, b 1is semi-chord and V 1is reference
velocity.

Note 3: 1he multiplication factors include 0.5 pV2C and 0.5 pV2C2 to get
actual Tift and moment.
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where subscripts L and M

: E
Mo M
+k2LM2--< fy B0y + i a) (A.

are used to indicate 1ift and moment coefflicients.

1.5)

Combining equations (A.1.4) and (A.1.5) and writing it in state veclor

form, we obtain

(0] (1]

ik -1 'e)

L2 [0] 0.0

C 0.0

(0]

Defining

equation (A.1

(0]

(17" (AL 108, ]
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A.2 Plate Model (Continuum Model)

The governing equations of motion, formulated in terms of normal coordi-
nates, are given by equation 44 as

- 2 :
m.q; + mimiq1 = Q1 L = lES 20 ek N (A.221)

where mj, wj, g3, Q3 are respectively the generalized mass, circular fre-
quency, normal coordinate, generalized force in ith normal mode, and NM is
the number of normal modes used in the analysis.

The generalized force, Q4, is given by the following equation
Q 2
0, f L(y,t) hy(y)dy +f M(y,t) oy (¥)dy (A.2.2)
0 0

where L(y,t) and M(y,t) are the normal force and pitching moment at y at
time t, & 1is the length of the plate, hy and «3 are the normal modes in

plunging and pitching in ith mode.

Let the plate be divided into N number of segments. Then Q3 can be
evaluated as

" ho(y )y L. (Y. t) + al(y.)dy.M (y,,t ] A.2.3
Q 321[ JYAYSL Y E) ¢ ag(y,)dy My, ) (A.2.3)
where Jj indicates the jth segment, dyj is the length of the jth
segment, hi(yj) and «j(yj) are the normal modal values at station

Yj- Equation (A.2.1) for NM normal modes can be written as

[M1{q} + [K]{q} = {Q}

where
2 2 2 2
e i
[M] = m], m2, ST mi, e mNM_I . [K] = m]w], m2w2, oy mi“i’ o mMNwNﬂJ
{a} = (ay, a5, --- Gy, .- qNM) and  {Q} = (Qy, Qp, --- Qy, ... QNM)
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The vector {Q} is given by

Number of segments

wv

(=]

E
Q, 3 ho(yddy,  ey(yyddy,  hy(y,)dy,
' S
. =
T ! : :
Q s hy(yddy, ey (yy)dy, by (y,)dy,
: 2 . .

P

=z
m MYy 0¥y ay(¥y)dY, By (¥5)dY,
or

{Q} -

as(¥,)dy, ... hy(yy)dyy
ay(yy)dy, ... hy(y)dyy

anulYp)dy, o hyu (v )dyy

L(yy,t)
M (yq.t)
Lo(y,,t)

My(Y,0t)

X Lj(yj.t)

Mj(yj.t)

Ly(¥yo )

M t)

Ny

[Bel{F}

a, (yy)dyy

a,(yy)dyy

°1(yu)dyN

oYyl dyy

NM * 2N

(A.2.4.1)

2N * 1

(N2:4:2)

lhe 1ift and moment at each segment are related to their coefficients as
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or

{X} = [Bgpl{Z}

where 7 = {Z], 12, e lj, e [N} and {lj} = {CL], Clos CL2’ Cmp? CMZ} j'

Here A5 and B5 are the A5 and 85 matrices of jth segment defined
3 .

earlier in Section A.1. The vector Ly s given by equation A.1.5 for each

segment. Substituting from equations A.1.5, A.2.6, A.2.5, A.2.4 into
equation A.2.1, and writing in state vector form, the final equations are
given by A.2.7, given below.
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where Kk, ko,
each segment.

IO e
The s%ze of

. ky are the values of the reduced frequency for

the matrix is (2 x NM + 5N).
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APPENDIX B
DYNAMIC STALL DATA FOR MODEL B AND MODEL C

This appendix presents the dynamic stall data for model B and model C
that is used in generating the hysteresis loops for the NACA 0012 airfoil.
The Mach number is 0.3 and the Reynold's number is 3.8x106.

Model B: The following data corresponds to data set number 2 in
reference 38 generated through synthesization method. The values of the
parameters appearing in equations 16 to 19 are given below:

GSS = ]20

Py/rad = 17.988, Pr>/rad = 2.410, P3 = -0.1661

Q1/rad = 1.8347, Qp/rad = 0.2123, Q3 = -0.0307, Qs - -0.0966,

Qg = 0.7754, Qp/rad = 2.842, Qy/rad/rad = 7.55]1

n]/rad = 2. 782; n2/rad = =0.191, ng = ~0.0035, n4/rad = -0.0082,
ng = 0.3462, n6/rad = =1.205% n7/rad/rad = -6.354

e = 0.125, Cpnji= 8,64, Cny = -0-05, Cat = 0.084, Cot = 0.0073,
Car = 1.790, Cur = -0.743.

where ('5—) = () agg-

Model C: Reference 58 generated the 1ift hysteresis loop for NACA 0012
airfoil using a single experimental loop. The values of the parameters
appearing in equation 20 are given as

xl0.7, s - 0.09, o = 0.080 - 0.13AC|
Cig = -0.01 * 0.114 o
CLs = Cry, a < 10°
Cis = -0.01 + 0.114 &« - 0.013 (a - 10.)2 10° < a < 14°
CLs = 1.378 + 0.478 (e-1-5(a-14) _ q) a > 14°

2

Vr = 0.20 + 0.10ACL

a2 g5 O.IOACﬁ
2
£ - -0.07aC, R ke B

tq (stall delay) = 10, (AC_ = 0.208 + 0.0104 (a-14))
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APPENDIX C
AIRFOLL STATIC DATA

In this report three airfoils, namely 0A212, NACA 0012, NACA 0012(MO0D),
are used for the aeroelastic response study with dynamic stall. For complete-
ness, the static data of these airfoils are presented below. The data for
0A212 is presented in polynomial form, and for NACA 0012 and NACA 0012(MOD),
the data is given in tabular form.

0A212 airfoil: Mach number = 0.3

Lift coefficient

= 10°
S'S
.
CI_Q, = 7.] ]80 [¢3
e
Cis =11 780 @ (ragg <o <eg)
7 )
Cis ?% a; (lol 10°) (e, < o < 26)
g :
w3 5a. el 107) {(2h<m =-a, )
3 1 55
1=1
ag = 1.24, a] = 0.124, ap - -0.0630597, az = 0.01395201,
aq = -0.0017390851, ag = 0.0001245913, ap = -4.6842925x10-6,

aj = 1.0879/3x10-8

For angles greater than 26° (or < 26°), this polynomial diverges.
Therefore, beyond, |a| > 26°, a constant value of 1.26 is used.

ACL = 0. for ( agq < a < agg)
= Cg - Cus (lal > agg)

Moment coefficient

ags = 6°
CMg = & + pa
Cus = Cmg - ACw

where € = -0.006, p = -0.0014. 1lhe difference in the linear extension and
* true static moment, ACy, is given below:

Let ©7 = 6°, 0p = 13°, 03 = 14.6°, 04 = 20°, Max = 0.0155 and Min = -0.056.
lhen for angle of attack, «,

between -0 and O ACy = 0.

between 07 and 07 ACy = Max ~—— "



between o, and 03 ACM = -Max - e(a-ez) + [3Max + (2r+q-p)(03-02)]*

2
(a - 92)2 (= - 02)3
e [2Max tr g - p)ifies fmian) e
(0. - © )2 3 2 (o )3
3 2 3 2
between 03 and 04 ACM = -(q - p)(a 63)
0.01(a - 04)
> 64 ACM =% Mt e T
R
LR, < p
M+ plo, -~ @)
2Max 4 q
where T e (] sy St ni
02-0 64-03

NACA 0012(MOD) airfoil: The data is presented for two Mach numbers.
The cg and cpeyq With o are given in a, cy (Or cpeyq) PAiIrs. agg
is static stall angle, agy 1is 1ift curve slope, and agym is moment curve
slope. o« 1is in degrees, cg and cpc/q - are per degree.

The following static data is for a Mach number of 0.4.
Rgic, = 90, aog‘ = 6.6463/rad, aom = O.

Datance /(0.0 0.8), (1.74, -.196), (3.65, .414), £5.55, .657), (1.56;..891),
(2548 U8l ), w(11.3%, .957), (13.35, .853), (15.¥5, .812), (19508, :.951),
(23594, S 057)

Data cpeyalt0., 0.), (1.74, -.018), (3.65, -.013), (5.55, -.016),
(7.56, -.001), (9.48, -0.002), (11.37, -.096), (13.35, -.126), (15.15,
S.127), (19.08, - .152), (23.94, .182)

The following static data is for a Mach number of 0.6.
ags = 5.6°, agg - 8.48/rad, agpy = 0.

Data cg/(0.0, 0.0), (1.65, .256), (3.54, .536), (4.51, .679), (5.6, .768),
(7.44, .889), (9.34, .921), (11.26, .939), (14.96, 1.071), (18.12, 1.025),
(18.86, 1.042)

Data cpesq/(0.0, 0.), (1.65, 0.), (3.54, -.001), (4.51, .006), (
(7.44, -.013), (9.34, -.053), (11.26, -.058), (14.96, -.123
(18.86, ~.134), (40., -.134)

.008),

5.6,
R X R 5

NACA 0012 airfoil: The data is presented for two Mach numbers. The «cg
and cpey/q with o are given in «, Cg (Or cCpc/q) pairs. agg s static
stall angle, agg s lift curve slope, and agy 1is moment curve slope. o« is in
degrees, cg and cpc/q are per degree.

The following static data is for a Mach number of 0.3.

asg = 12°, agg = 6.30254/rad, agp = 0.
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Data cg/(0., 0.), (.5, .05695), (1., .1139), (2.0, .227), (4., .452), (5.,
.563), (6., .612), (8., .883), (9., .983), (10., 1.079), (11., 1.168),
(11.5, 1.209), (12., 1.246), (12.5, 1.2757), (13., 1.293), (13.5, 1.78),
(14., 1.229), (14.5, 1.1376), (15., 1.066), (15.5, 1.0343), (16., 1.0097),
(17., .9255), (19., .9369), (21., .948)

Data cpcyq/(0., 0.), (1., .00002), (2.0, .00004), (4., .000051),
(6., .0), (6.5, -.000014), (7., .000031), (8., - .00005/), (
(9.5, -.000015), (10, .00004), (10.5, .00012), (11., .000284
.000164), (12.5, - .0005565), (13., -.002985), (13.5, -.00974
-.02495), (15., -.0665), (16., -.0/819), (18., - .08931), (20
(22., - .10855)

(5., .000032),
9., -.000047),
)! (I2 ’
o e
.0, -.09839),

The following static data is for a Mach number 0.4.
ags = 9%, dgg - 8.944/rad, agy = 0.0015

.05928), (1., .1185), (2.0, .23652), (4., .46905),

Pataley /0. B.) & (5,
(6., .692/7), (8., .89991), (9., .99295), (10., 1.0/31),
C

|

(5., .h48231), ;
(1., 1.13210), (11.5, 1.1464), (12., 1.1459), (12.5, 1.1296), (13.,
1.106), (13.5, 1.09), (14., 1.0865), (14.5, 1.0851), (15., 1.0736),
(15.5, 1.0433), (16., 1.0121), (17., 1.0112), (19., 1.0095), (21.,
1.0078), (25., 1.0043)
Data cpeysq/0., 0.), (1., .00012944), (2.0, .0002558/), . .0004/534),
(5., -.0005414), (6., —.0005415/), (6.5, .00050136), (/., - .0004223),
(8., .00009/8), (9., .00054897), (9.5, .00102), (10., .00i5628), (10.4,
.0020693), (11., .0022224), (12., - .00232), (12.%, -.0106/9), (13.,
.024558), (13.5, .04069), (14., - .05433), (15., -.071335), (16.,
.0828), (18., .090655), (20.0, .099%64), (22., .10953), (#5., .126417)

(.
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FIGURE 1. - WIND TUNNEL MODEL OF AN ADVANCED TURBOPROP.
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FIGURE 2. - THREE TYPES OF STALL.
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FIGURE 3. - DYNAMIC STALL EVENTS ON NACA 0012 AIRFOIL.
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CALCULATE ANGLE OF ATTACK (@)

CALCULATE RATE OF ANGLE

OF ATTACK (@)
MODEL A MODEL C
MODEL B
CALCULATE % OBTAIN FOR BOTH LIFT AND
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FIGURE 6. - FLOW CHART OF THE THREE DYNAMIC STALL MODELS.
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FIGURE 8. - DYNAMIC COEFFICIENT LOOPS FROM MODEL A FOR NACA 0012
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FIGURE 10. - DYNAMIC COEFFICIENT LOOPS FROM MODEL B
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