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Summary

A method for modeling joints to assess the influence of joints on the dynamic response of truss

structures has been developed. The analytical models, which are based on experimental joint

load-deflection behavior, use springs and dampers to simulate joint behavior. An algorithm for

automatically computing nonlinear coefficients of the analytical models is also presented. The joint

models are incorporated into a nonlinear finite-element program through use of special nonlinear

spring, viscous, and friction elements. Next, the effects of nonlinear joint stiffness, such as dead

band in the joint load-deflection behavior, are studied. Linearization of joint stiffness nonlinearities

is performed to assess the accuracy of linear analysis in predicting nonlinear response. Viscous

and friction damping are then used to show the effects of joint damping on global beam and truss

structure response and equations for predicting the sensitivity of beam deformations to changes in

joint stiffness are derived. In addition, the frequency sensitivity of a truss structure to-random

perturbations in joint stiffness is discussed and results are shown which indicate that average joint

properties may be sufficient for predicting truss response.

Introduction

The increased access to space made possible by the NASA Space Transportation System has

resulted in radically new spacecraft designs. Spacecraft larger than 300 ft in diameter, such as

the hoop-column antenna (ref. l) and the Space Station reference configurations (ref. 2), are being

designed. These spacecraft, shown in figures 1 and 2, make extensive use of truss structures to span

large distances because trusses provide high stiffness with low mass. Many of these spacecraft require

accurate dynamic analysis for prediction of loads, stability, shape control, and pointing accuracy.

The dynamic analysis of truss structures may require detailed modeling to maintain accuracy in the

analysis.

Individual truss members are connected to one another through joints. In most civil engineering

truss structures, joints are typically welded or bolted so that little or no displacement occurs across

the joint relative to the displacement of the members. For this type of joint, analytical modeling

assumes either member-to-member rigid or pinned connections. Truss structures proposed for space

applications have joint designs which permit the erection or deployment of the truss members. Unlike

civil engineering structures, joint designs for space structures have finite tolerances between mating

surfaces which permit the joints to rotate or to be latched. Tolerances result in a region of dead

band where joint motion can occur with near-zero force. Joint dead band is believed to significantly

affect the response of truss structures and may require detailed modeling to include these effects in

the overall, or global, analysis.

Truss structures are often referred to as being "joint dominated" because of the number of joints

and their influence on overall truss response. The joints influence the dynamic response of trusses in

two major ways, first by reducing the effective truss stiffness and second by introducing additional

damping compared with structures for which the members are rigidly connected. To predict the

influence of joints on truss response, detailed characterization of joint properties will likely be

necessary. Several publications describe experimental characterizations of joints and modeling of

jointed structures.

Built-up structures possess a number of mechanisms to dissipate energy resulting from the

mechanical interfaces or joints which join structural components together. References 3 to 7 discuss

a large number of joint tests and analyses to determine the dominant sources of joint damping. At

low frequencies, there is uniform agreement that Coulomb friction mechanisms on a macroscopic

level dissipate the majority of the energy. At higher frequencies, Aubert et al. (ref. 7) have identified

a number of rate-dependent damping mechanisms that. dissipate energy. Examples of rate-dependent

joint damping mechanisms are acoustic radiation, air pumping, viscous damping, and impacting of

surfaces. Only structures with low-frequency oscillations are considered in this study; thus, only

Coulomb friction and viscous damping have been included in the analysis herein.



To obtainanalyticalmodelsof joints, the dampingandthe stiffnessof the joints shouldbe
measuredfromthejoint hardware.Reference8 hasusedclassicload-deflectiontestingto measure
joint stiffuess.Load-deflectiontestingcanalsobeusedto extractdampinginformationby testing
at severaldifferentloadingrates.At highfrequencies,the individualload-deflectioncurvesdonot
describerate-dependentdampingmechanismsadequately.Consequently,theauthorsof references7
and9 haveuseda modifiedload-deflectiontechniquecalledforce-statemapping.Force-statemaps,
asshownin figure3, areproducedfrom a three-dimensionalplot of the joint responsein which
force,velocity,anddisplacementaredisplayed.Resultsfromreferences7 and9 indicateforce-state
mappingis a viablejoint testmethodevenat relativelyhighfrequencies.Thejoint testmethod
usedin this study is load-deflectiontesting. Thismethodwaschosenbecauseonly low-frequency
vibrationsareconsidered.

The majority of existingmethodsfor modelingstructureswith joints usevariationsof the
componentsynthesismethod.Craigpresentsa goodreviewof state-of-the-artsynthesismethods
in reference10. For rigid connections,the basicmethodspresentedin references11to 15may
beemployed.However,whenthe connectionsareflexible,as is the casein practice,the number
of viablecomponentsynthesismethodsis reduced.Onemethodwhichenablescomponentsto be
connectedthroughflexiblejointsisreferredtoasastiffnesscouplingprocedure(ref.16).Thestiffness
couplingprocedureallowsnaturalvibrationmodesof componentsto becombinedthroughalinear
stiffnessmatrix. Anothermethodhasbeenproposed(refs.17to 20)whichexploitsLagrange's
equationsandLagrangemultiplierstoallowcomponentsto beconnectedthroughnonrigidconstraint
relations.In reference20,ageneralizationof theLagrangemultipliermethodpermitstheanalysisof
structuresconnectedbynonlinearjoints.Forstructureswithonlyafewjoints,thismethodisfeasible.
However,for structureswith manyjoints,the Lagrangemultipliermethodrequiresthe solutionof
manyadditionalequations.Thus,componentsynthesismethodsfor systemswith manynonlinear
joints donot appearto beanymoreefficientthan finite-elementanalysismethods.Consequently,
thepresentstudyfocusesondevelopinga finite-element-basedanalysisfor detailedjoint modeling
becauseof its generalityandeaseof implemcntation.

Theobjectiveof this studyis to developa systematicprocedurewherebytheinfluenceofjoints
ontheresponseoftrussstructurescanbequantitativelydetermined.Thisprocedurecanbebroken
into threeareas:First, joint characteristicsaredeterminedexperimentally.Second,analysesare
developedwhichenablejoint-dominatedstructureresponseto be accuratelypredicted. Third,
numericalstudiesaremadeof the structureresponse.Severaljoint modelsare developed,and
modelstiffnessanddampingparametersaredeterminedwith analgorithmbasedonoptimization
techniques.Incorporationof the joint modelsinto globalstructuralanalysisisperformedwith the
finite-clementmethod.Numericalexamplesof the transientresponseof beamandtrussstructures
with joints are thenpresented.The effectsof stiffnessnonlinearitiesandviscousand frictional
dampingmechanismsarealsostudied. Finally,numericalresultsof linearizedjoint modelsare
comparedwith full nonlinearresuIts,andthe sensitivityof globalstructureresponseto variations
in joint propertiesispresented.

Nomenclature

A

B

C

C1

C

E

Ed

cross-sectional area of the beam

viscous damping matrix

magnitude of joint dead band

initial joint dead band position

viscous damping coefficient

Young's modulus of the beam material

energy dissipated by damping
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Superscripts:

a, b, c

Subscripts:

a, b, c, d

J

R

Analysis

force vector

friction damping force

frequency

shear modulus of the beam material

moment of inertia of the beam cross section

stiffness matrix

spring stiffness of the joint

spring stiffness of the joints in the axial, lateral, and rotational displacement

directions

normalized spring stiffness of the joints in the axial, lateral, and rotational

displacement directions (see eqs. (10))

total beam length

mass matrix

nodal mass

vector of friction forces

number of time steps

objective function

time

axial displacement

lateral displacement

total joint displacement

mass density of the beam material

rotational displacement

nodal displacement vector

nodal velocity vector

nodal acceleration vector

circular frequency

circular frequency of simply supported beam

parts of the joint model (see fig. 6)

nodes of the joint elements and of the beam

beam deformations with joints

beam deformations without, joints

Analytical joint models should permit joint damping and stiffness behavior to be simulated, but

should be simple enough so that the model parameters can be identified from test data. The design



of trussstructurejoints canproduceeccentricitiesin the loadtransmissionpathwhichresultin
couplingofaxial,bending,torsion,andsheardeformations.Thus,completecharacterizationofjoint
dampingandstiffnessrequiresa seriesof testswhichcan identifycoefficientsof fully populated
dampingand stiffnessmatrices.This task is evenflmher complicatedby the fact that manyof
the joint propertiesarenonlinear,so that linearsuperpositioncannotbe used. Assumptionsin
theanalysisarerequiredto permitthe modelparametersto be identifiedthrougha limitedseries
of tests. The presentstudyusesa nonlinearmodelfor the load-deflectionrelationship;however,
couplingbetweenaxial,bending,torsion,andsheardeflectionshasbeenneglected.Thissimplifying
assumptionresultsin identificationof only the diagonaltermsof the joint dampingandstiffness
matrices.

Thejoint modeldevelopmentmethodusedhereinfollowstheflowchartof figure4. Threemajor
componentsof modeldevelopmentareinvolved.First, choosethe formof thejoint analysismodel
to beusedin the globalanalysisof the trussstructure. Second,designand conducta seriesof
experimentsto determinetheload-deflectionbehaviorof thejoint. Thetypeof experimentdepends
on the formof the chosenanalysismodel.Forexample,if no rate-dependentdampingis modeled
in tile analysis,onlystatictestsarerequired.Third, determinecoefficientsof theanalyticalmodel
whichmostcloselyreconstructtheexperimentaljoint behavior.Thisisusuallyaccomplishedthrough
minimizationof theerrorbetweenthepredictedandthemeasuredresponse.

Thenext threesectionsdiscussthethreecomponentsofjoint,modeldevelopment.Anextension
of thestandardanelasticmodel(ref. 19)isdescribed,followedbya descriptionofexperimentaltests
whichcanbe usedto characterizejoint behavior.Sampleexperimentaldataarepresentedfrom
a representativespacetrussjoint, andanalgorithmis usedto reducethe experimentaldata into
coefficientsof the joint analyticalmodel. Numericalresultsfromthe algorithmarepresentedfor
bothsimulatedandexperimentaldata.Subsequently,thefinite-elementprogramforglobalanalysis
of beamandtrussstructuresisdescribed.

Model Selection

Analytical models for truss structure joints should be of a form which can be incorporated into

the global structure analysis. This study uses the finite-element method for the global analysis; thus,

it is only natural that the joint models should be finite elements. Linear springs and linear viscous

dampers are the simplest joint finite elements. As described previously, a number of nonlinear

stiffness and damping mechanisms are present in structural joints. Consequently, nonlinear springs

and dampers have been chosen to model the joint response.

In reference 21, Lazan presented several models which have been used in material stiffness and

damping analysis. The Maxwell model consists of a viscous damper in series with a spring. The

Maxwell model, shown in figure 5, exhibits infinite creep as the frequency of excitation approaches

zero. The Voight model eliminates the creep problem by placing the spring in parallel with the

damper. Unfortunately, the Voight model becomes rigid at high frequencies. An anelastic model of

a Voight unit in series with a spring is also shown in figure 5. This three-parameter model, referred
to as the standard anelastic model, exhibits none of the limitations of tile Voight or Maxwell models.

Since joints exhibit material damping characteristics as well as macroscopic Coulomb friction, the

standard anelastie model has been modified as shown in figure .5. The standard anelastic model is

augmented with a friction-spring unit placed in series with the other elements. The resulting model is
referred to herein as the modified standard anelastic (MSA) model. Nonlinear response of the MSA

model can be aqhieved if some or all of the coefficients are allowed to be functions of displacement,

velocity, or load, or any combination of these three. Displacement-dependent coefficients have been

used in this study for the stiffness, friction, and viscous coefficients.

Tile MSA model has four nodes, as indicated in figure 6. For each degree of freedom (DOF) a

different set of coefficients relates the displacement of that degree of freedom to the applied load.
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The MSA model has three components in series, and the total displacement across the joint is

(Ca -- Cd) = (¢_ -- Cb) + (¢b -- ¢c) + (¢c -- Cd) (1)

where ¢ is the nodal displacement vector. For the planar structures analyzed in this study, three

degrees of freedom at each node are present and

¢-- w

¢

For a force F_:, applied to the joint model, the displacement across the viscous unit is given by

M_¢ + B_p_b + K_,¢ + N, = F_/, (2)

where

M_0= r°°°iJm b 0

0 0 m d

S_t CC0 ]-c c 0

0 0 0

0 0 0

k a -k a 0 0 1
-k a k a + k b -k b 0

10 -k b k b + k c -k c

0 0 -k _ k _

/ ° }Ffsgn ((bb - _2c)

0

0
F¢=

0

-F

k_,
t"

The modified standard anelastic model with constant coefficients (i.e., k¢, k_0,
3v

results in linear load-deflection relations (with the exception of friction). To allow for more general

nonlinear load-deflection relations, a polynomial function for each coefficient can be used. Figure 7

shows the load-deflection shape functions for constant coefficients and variable coefficients. The sum



of theseshapefunctionsdescribesthetotal joint displacement.Thevariablecoefficientsusedin this
studyto permitnonlinearforcedisplacementbehaviorare

k a _ .a: k'r_ p (Ca -- Cb) r-l

r=l

t

kb : E kb_ (_)b -- _bc)r-1

r=l

k = (¢c - CeV-

r=lv I

r:= - r-'
r=l

w

C = E Cr_ (Ca -- ¢b) r-1

r=l

(3)

where s, t, u, v, and w are the number of terms in the polynomial and subscript r refers to the rth

coefficient of the polynomial.

The modified standard anelastic model with variable coefficients allows general nonlinear behavior

to be modeled. However, the polynomial expressions used for the stiffness coefficients do not

adequately account for changes in load-deflection behavior because of joint dead band. Figure 8

shows a load-deflection response in the presence of dead band C and with initial joint dead band

position Cl. To model the dead band, the stiffness of each spring is modeled in a piecewise manner,

such that

k=O

_-_( C) r-Ik = kr_ Ca-¢b-_-[-Cl
r-l

k= kr_ ¢.-%+_+C1
r=l

-- -- el _ _)a -- ¢b S -_ -- CI

C

(¢a--¢b>-_-C,)

C

(¢a--¢b <-_--CI)

(4)

where n is the number of terms in the polynomial representing the spring element amplitude-

dependent stiffness behavior. Equation (4) is a general expression for nonlinear stiffness, including

a region of zero stiffness (or dead band).

The modified standard anelastic model permits arbitrary damping and stiffness nonlinearities

by allowing independent stiffness, friction, and viscous mechanisms to occur. This allows general

load-deflection behavior, but it requires the use of four nodes in the analysis model. Since the joint

analysis model is to be incorporated into a global analysis, a joint model with fewer nodes is desired

to minimize the number of equations in the analysis. A second model with only two nodes that

uses a spring, a" viscous damper, and a friction damper in parallel could be constructed as shown in

figure 9. With the nomenclature of figure 9, the displacement across the joint is given by equation (2)

M_Z,_ + B_q: + K_:¢ + N_ = F_

13
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where

M¢:[oa mbO]

BW=[ c-c c c]

K_ = -k (5)

(¢o- }

Nonlinear motion can be modeled with variable coefficients of the form given in equations (3)

and (4). We can construct a fully linearized two-node model by setting F_ = 0 and using constant
coefficients for c_ and k_. A two-node linear representation of stiffness and damping is the simplest

model for a joint. The modified standard anelastic model, the nonlinear two-node model, and the
linear two-node model are summarized in figure 10.

Several observations can be made about the MSA model. The displacement of a joint for this

model is both force and rate dependent. The rate dependence results from the viscous unit. Although

the modified standard anelastic model requires more than two nodes, the additional insight provided
by independent stiffness, viscous, and friction mechanisms can be useful. The nonlinear two-node

model is the simplest nonlinear model to include in a global analysis. The two major limitations of

this model are rigidity at high frequencies and coupled friction, viscous, and stiffness mechanisms.

The first limitation results from the viscous damper being in parallel with the spring. This limitation

is acceptable for low-frequency vibrations. The second limitation prevents independent friction,
viscous, and stiffness mechanisms from occurring. Nevertheless, this model will be used often in

global structural analysis because it requires only two nodes. The linear two-node model is the

simplest, model one can use to model both stiffness and damping effects of joints. Because the model

is linear, almost all finite-element programs can use this model in a global structural analysis. In
addition, it is advantageous to have a linear representation of structures for load analyses and control
system design.

Load-Deflection Tests

Characterization of joint damping and stiffness properties requires both static and dynamic

testing. Accurate measurement of load-deflection behavior requires precise instrumentation and

experimental setups. Test data for this study have been acquired with the Instron Model 1350

Dynamic Test System and the MTS Systems Corp. closed-loop materials test system for load-

deflection testing. General capabilities of Instron and MTS machines include force or displacement

control, internal load and displacement measuring devices, and programmable force or displacement
time histories. For joints where dead band is expected, displacement control is desirable because

the force cannot be servo controlled with zero stiffness. Classic load-deflection hysteresis loops are

measured under either sinusoidally controlled applied displacement or load. The circular frequency
co can be used to change the rate of applied displacement or load.

Tests should be performed at near-zero frequency (quasi-static) and at several higher frequencies.
The quasi-static tests permit rate-independent stiffness and friction measurements without the

complication of rate-dependent damping. Tests at selected higher frequencies can be used to

determine rate-dependent mechanisms such as viscous and impact damping. Reference 7 presents

an excellent discussion on instrumentation requirements and data acquisition systems and should be

studied before joint testing is undertaken. As mentioned previously, the load-deflection testing
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technique presented herein is mainly applicable at low frequencies, where the rate-dependent

damping mechanisms are not dominant.

Joints for truss structures are of many different designs. Two typical joints are shown in figure 11.

A joint, of the design shown in figure ll(b) has been tested with the load-deflection procedure for

the axial degree of freedom. Test data measured at a frequency of 1 Hz are shown in figure 12.

The nonlinear character of the response is indicated by the joint stiffening or hardening as the

displacement increases. Also, the stiffness in compression is different from that in tension. The

pointed ends of the hysteresis loop indicate the presence of friction. These data were obtained at

higher stress levels than are anticipated for space structures to show the nature of joint nonlinearities.

For this joint the dead band is negligible. The next section describes an algorithm to reduce the

data of figure 12 into .coefficients of the joint analysis models described earlier.

Curve-Fit Algorithm

The least-squares error method is commonly used to identify coefficients of analytical models from

test data. This method minimizes the error between measured and predicted response quantities.

Classic least-squares error minimization is applicable only to linear systems. Since the joint models

have nonlinear equations, a modified least-squares error method was developed based on optimization

strategy. Numerical results of the algorithm for simulated and experimental data follow.

The coefficients of equation (2), which describes the displacement of the MSA model for applied

force vector F_,, can be determined by a trial-and-error procedure through use of an optimization
procedure. The ADS program (ref. 22) is a compilation of optimization procedures which perform

constrained and unconstrained minimizations. This program has been used as a subroutine for an

algorithm developed specifically for joint damping and stiffness analysis. The algorithm requires

an analytical joint model and experimental load-deflection joint data as input. Output from the

algorithnl are analysis model coefficients and the mean-squared error between the experimental data

and the analysis prediction.

An unconstrained objective flmction is used in the algorithm, which minimizes the mean-squared

error between test and analysis by minimizing the function

1 N,

o : xo )
g=l

(6)

where Na is the number of time steps, X is the total joint displacement, and subscripts e and a

refer to experiment and analysis, respectively. Equation (6) is minimized through adjustment of

the design variables, which are the coefficients of equation (2). Since the objective function O is

unconstrained, the Davidon-Fletcher-Powell variable metric method is used in conjunction with a

golden section search method. Both methods are contained in the ADS program.

In an optimization procedure, a solution strategy must be devised to ensure convergence. This is

particularly important when the design variables have significantly different effects on the objective

function. Design variables of the joint models are selected to be stiffness and damping coefficients.

The stiffness design variables govern the slope of the load-deflection curve, whereas the damping

design variat)les govern the area enclosed by the curve. From trial and error, a three-pass solution

strategy was developed to obtain a converged solution in the curve-fit algorithm,

The flowchart of figure 13 shows the three-pass solution strategy of the algorithm. Pass 1 is

made with only stiffness coefficients to obtain the proper slope of the load-deflection curve. The

damping coefficients are set to zero. Pass 2 sets the stiffness coefficients to the values obtained from

pass 1 and allows the damping coefficients to be varied. Pass 2 usually produces a good estimate

of the damping; however, a third pass reduces the objective function further. Pass 3, the third and

final pass in the solution, uses the stiffness and damping coefficients from passes 1 and 2 as starting
values. With all coefficients free to be varied, the final solution is achieved.

[IF,17:



Variablestiffnessanddampingcoefficientsoftheformgiveninequation(3)aresolvedinamanner
analogousto that describedfor constantcoefficients.Thenumberofdesignvariablesisequalto the
total numberof unknowncoefficients.Forthegeneralnonlinearmodifiedstandardanelasticmodel,
stiffness,deadband,friction,andviscouscoefficientsarepresent.

The polynomialform usedto modelnonlinearitiescanproducelocalminimaof the objective
function.Optimizationmethodsoftenconvergeto oneof thelocalminimawhenthestartingvalues
of thedesignvariablesarenotcloseto thetrueminimum.Thus,goodestimatesof thestiffnessand
dampingcoefficientsarenecessary.Thealgorithmhasa preprocessorwhichestimatesthestiffness
coefficientsbasedonthe initial slopeof theempiricaldata.Thedampingcoefficientsareestimated
in the preprocessorthroughcomputationof the energydissipatedpercyclein the experimental
data. Theenergydissipationis initially dividedequallybetweenthefrictionandviscousdamping
mechanisms.

Simulatedandexperimentaldatahavebeencurvefit with thealgorithm.Figure14showsthe
load-deflectionresponseof the modifiedstandardanelasticmodelwith constantcoefficients.The
dashedcurveis simulateddatacomputedwith thefollowingvalues:

k_ = 400 lb/in.

k_ = 600 lb/in.

c = 800 lb/in.k_0

Ff= 10 lb

cg, = 2.5 lb-sec/in.

F_, = 100 sin 27rt lb

The joint mass has been divided equally at each node with a total joint weight of 1 lb in the

simulated data. The simulated data were analyzed with the algorithm, which computed the following
coefficients:

k_ = 572 lb/in.

k b'_t = 511 lb/in.

c = 569 lb/in.

F_= 11.7 lb

c_ = 1.16 lb-sec/in.

A comparison of the simulated and the predicted load-deflection curves in figure 14 shows very

good agreement. The simulated coefficient values and the predicted coefficient values, however, are

considerably different. The total response is accurate since it is the combination of coefficients which

is important and not the individual coefficients. That is, with three springs in series in the modified

standard anelastic model there is no unique solution for the stiffness coefficients. Thus, the algorithm

converges to one of the local minima close to the true minimum.

To study the effects of nonlinearities, simulated nonlinear data were analyzed with the algorithm.

The simulated data maintained constant damping coefficients, but the stiffness coefficients were
variable. The coefficient values are

k_ = 400 + 600[¢a - Cbl + 8000 (Ca - Cb) 2 lb/in.

k_ = 400 + 6001¢ 5 -¢cl + 8000 (¢b - ¢c) 2 lb/in.

k_, = 400 + 6001¢_ - _bd[ + 8000 (_)c -- Cd) 2 lb/in.

Ff= 151b

cg, = 20 lb-sec/in.

(7)



The absolute value of the displacement was used to obtain symmetric tension and compression

response. The simulated nonlinear data were analyzed with two analysis models. First, tile MSA
model with constant coefficients was used. The response, as shown in figure 15, did not match the

simulated data accurately. The constant coefficients computed with the algorithm are

k_ = 667.6 lb/in.

b = 466.4 lb/in.k o

c = 656.2 lb/in.k o

= 28.5 Ib

c 0 = 2.6 lb-sec/in.

The second model used to predict the simulated nonlinear data given by equation (7) used the

MSA model with constant damping coefficients but variable stiffness coefficients of the following

form:

k_ = k_o -[- k_OlCa -- Cbl -t- k_O (Ca - _bb)2
b

kbl ,+ %0tCb- 0cl+ kb ,(¢b - 0c)

o + k Ol C - + (¢c -

(8)

The response from use of this model agreed well with the simulated data, as shown in figure 16. The

coefficients cc;mputed with the algorithm are

kbO

C

k O

F f

c_

= 462 + 111910a - ¢bl + 3215 (¢a - Oh) 2 lb/in.

= 424 + 11081¢ b -¢cl + 3202 (¢b -- ¢c) 2 lb/in.

= 375 + 1100[¢c - ¢d]+ 3228 (¢c -- ¢d) 2 lb/in.

= 6.8 lb

= 12 lb-sec/in.

Even though the simulated data were produced by the same model used in the analysis, exact agree-
ment was not obtained. This is because of the presence of local minima to which the optimization

algorithm converged. Should the algorithm converge to a local minimum of unacceptable accuracy,
the solution should be restarted with different estimates for the design variables.

The algorithm was also used to analyze the test data of figure 12. The test data were modified

to preserve tension and compression symmetry. The data were analyzed with the modified standard

anelastic (MSA) model with constant damping coefficients and variable stiffness coefficients of the

form given in equation (8). The predicted load-deflection curve is compared with the test data in

figure 17. Again the curve fit is good. The coefficients for these data computed with the algorithm

are

k_ = 31 264 + (4.943 x 106)1¢a - ¢bl + (1.775 x lOs) (Ca - ¢b) 2 lb/in.

b = 28074 + (3.735 × 106)[¢b -- ¢cl + (1.528 x l0 s) (¢b -- ¢c) 2 lb/in.k_

k_ = 26696 + (4.145 x 106)[¢c - ¢dl+ (1.693 x 108) (¢c -- ¢d) 2 lb/in.

= 229.7 lb

co = 96 lb-sec/in.

10
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The ability of the algorithmto reduceexperimentaldata into a setof stiffnessanddamping
coefficientsfor empiricaljoint modelshasbeenshown. Thejoint analyticalmodelparameters
identifiedwith thecurve-fitalgorithmcanbeincludedin a globaltrussstructureanalysisthrough
useof thefinite-elementmethod.Thenextsectiondescribestheglobalanalysisusedin this study.

Global Structure Analysis

A mixed finite-element program for beams and two-dimensional trusses (refs. 23 and 24) has

been modified to include nonlinear joint properties. An analytical formulation by Reissner (ref. 25)

for geometrically nonlinear curved beams forms the basis of this program. The program has been

used because of its availability and ease of modification for inclusion of nonlinear joint dements.

Several modifications to the program were made to permit modeling of joints, damping, and truss

configurations.

The fundamental unknowns of the mixed program are nodal forces, velocities, and displacements.

Four types of elements have been formulated for use in a finite-element model: beams, springs, viscous

dampers, and friction dampers. A consistent formulation for each type of element has been used

to maintain compatibility with the field variables. The beam element formulation is described in

reference 23; thus, only the joint elements are described herein.

A one-dimensional spring element with two displacement nodes and one stress node has been

formulated. A typical two-dimensional joint requires three spring elements to represent the joint

load-deflection behavior, one element for each degree of freedom. Nonlinear load-deflection response

of a joint is modeled with displacement-dependent stiffness parameters. The spring element governing

equations are derived with an energy formulation. Figure 18 shows a typical spring element with

lumped masses and external loads at the two displacement nodes a and b. With the sign convention

shown, the constitutive relation for the spring element is defined as

F = [kr (Ca- Cb)r]
r=l

where F is the internal spring force vector, kl¢ is the linear stiffness of the spring for the Cth degree

of freedom, kr_ (r > 1) are nonlinear stiffness coefficients, and n is the number of terms in the

polynomial representing the spring element amplitude-dependent stiffness behavior. (For a linear

spring element, n = 1.)

The polynomial form of the constitutive relations permits modeling of continuous nonlinear load-

deflection behavior. However, joint load-deflection response can exhibit a region of dead band where

essentially no force is required to produce a relative displacement between the joint ends. This dead

band can be modeled in a piecewise manner. Figure 8 shows load-deflection response in the presence

of dead band C. In addition, the initial position of the joint is described by the quantity CI. The

force transmission of the joint is

F=0

( c )rF= Ekr_ Ca--¢b--'_+Cl
r=l

r----1

(-C-el ¢a-¢bC-el)I
(9)

For generality, equation (9) has been used in the spring element formulation.

A one-dimensional viscous damper element similar to the spring element formulation has been

formulated to permit modeling of viscous damping mechanisms. Nonlinear viscous damping has

been modeled with displacement-dependent viscous parameters.

11



The following energy dissipation term E d has been added to the total energy functional:

?/

r=l

This energy dissipation term reduces to classic linear rate-dependent viscous damping for n = 1. For

n > l, nonlinear damping is modeled as being dependent on both velocity and displacement. This

allows general treatment of nonlinear rate-dependent damping mechanisms.

A one-dimensional friction element has been formulated to permit modeling of frictional damping

mechanisms. Tile energy dissipation term is defined as

r:l

This energy dissipation term reduces to classic Coulomb friction for n = 1. For n > 1, amplitude-
dependent friction can be modeled.

The governing equations for the entire structure are obtained from assembly of the elemental

contributions. The structure governing equations given can be integrated in time to solve for the time

history response of the structure. An explicit half-station central-difference integration technique
has been used in this study. The disadvantage of explicit integration is the small time-step size

required for numerical stability. The finite-element analysis program as it currently exists can solve

for structures with up to 150 degrees of freedom using approximately 200 kilobytes of core memory.
The next section presents numerical results of the finite-element program for several beam and truss

structures with linear and nonlinear joints.

Results and Discussion

This section presents numerical solutions from the finite-element program to study the effects of

joints on transient response of beam and truss structures. In addition, eigenvalue analysis has been

performed to study the sensitivity of the fundamental vibration frequency to changes in linear joint
stiffness.

A beam with joints at each end has been analyzed to study the behavior of individual truss

members. The beam was loaded with a step load such that the frequency and amplitude of vibration

could be determined from the transient response. Changes in global beam response because of

changes in joint stiffness characteristics have been investigated and beam response with nonlinear
joint stiffness has been compared with that with linearized joint stiffness. Viscous and friction

damping in the joints have been modeled to evaluate global beam damping.
Also, the transient response of a planar, cantilevered, four-bay truss subjected to a tip step load

has been modeled to study global truss response. The truss response with nonlinear joint stiffness

and with linearized joint stiffness is presented. Damping of global truss response resulting from

friction damping in the joints is also shown.

In addition, the sensitivity of beam deformations to changes in linear joint stiffness has been

analyzed. Expressions for beam response with joints have been used to compute sensitivity

derivatives of beam response to changes in joint stiffness. The sensitivity of the fundamental truss

frequency has been numerically evaluated by random perturbations in joint stiffness in each of the

truss structure joints. Thirty-five cases have been analyzed to obtain a limited statistical basis for

predicting the sensitivity of structural response to perturbations in linear joint stiffness.

Beam Response

In order to assess the behavior of individual truss members, a beam with joints at each end

(shown in fig. 19) has been studied. The beam has homogeneous properties; however, joints attach

12
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the beam to the ground. The beam properties represent those of proposed Space Station truss

members given in reference 2. The beam is a 2-in.-diameter tube with a 0.060-in. wall thickness and

is 108 in. long. Graphite/epoxy materials with the following properties were used to construct the
beam:

E = 40.7 x 106 lb/in 2

G=Tx1051b/in 2

p = 1.132 x 10 -4 lb-sec2/in 4

For planar vibrations, three degrees of freedom have been permitted for each node. Each joint consists

of three spring elements ku, kw, and k¢, one in each degree of freedom. Linear joint stiffnesses have

been normalized with the linear beam stiffness properties such that

ku - ku kw k¢
EA/e kw - k¢ - (10)EI/g 3 4EI/g

Each joint has a lumped mass of 0.000826 lb-sec2/in, and a rotational inertia of 0.000758 lb-in-sec 2.

Effect of joint stiffness on beam response. The rotational restraint provided by the joint can

significantly alter the lateral vibration frequency of the beam shown in figure 19. Figure 20 shows

the effect of joint rotational stiffness f¢¢ on the fundamental beam frequency. (The stiffnesses ku

and kw have been set to large values to simulate rigid connections to ground in the axial and lateral

directions.) For k_ = 0, the beam is simply supported (_z/Wss = 1.0). As the stiffness increases,

the frequency of vibration asymptotically approaches the clamped-clamped frequency. This result

is certainly well understood. However, the slope of the curve of figure 20 gives a great deal of

insight into the importance of the rotational stiffness. For example, as _:_ approaches zero, further

reductions in _:_ because of nonlinearities would have a very small effect. Similarly, as 1¢¢ becomes

very large, hardening nonlinearities would also produce little change. Thus, to study the effect of

joint nonlinearities on beam response, it is reasonable to choose/% between 0.3 and 10.0.

To study nonlinear effects, the beam response to a step load (as indicated in fig. 19) has been

calculated. The joint rotational stiffness has a hardening nonlinearity defined by

k¢ = 5 × 105 + 5 x 1012 (¢joint) 2 in-lb

where Cjoim is the rotational displacement of the joint. The response under a 10-1b load is shown in

figure 21. For _:_ = 1.93 (k¢ = 5 x 105 in-lb) the beam response is shown by the solid curve. The

beam responds at predominantly one frequency (f = 74.6 Hz), although higher vibration modes have

been excited, as shown by the slight change in amplitude from peak to peak. The beam response

with nonlinear joint stiffness is shown by the dashed curve of figure 21. The response with hardening

joint stiffness has a higher frequency (f = 81.8 Hz) and a decrease in amplitude compared with the

response with linear joint stiffness. Nevertheless, the response is nearly sinusoidal, which indicates
the possibility of linearization.

The nonlinear effect of dead band is shown in figure 22 for k¢ = 5 x 105 in-lb, C = 0.001 rad,

and CI = 0 rad. The dashed curve representing the nonlinear response shows a decrease in frequency

(f = 64.8 Hz) and an increase in amplitude compared with the linear response. The response remains

sinusoidal even with the joint dead band.

Since both hardening stiffness and dead band result in sinusoidal response, it appears that some

form of linearization is possible. Figure 23 shows the beam response with joint stiffness linearized

to match the frequency of the nonlinear beam response. Figure 23(a) shows the linearized response

(kv = 6.7 x 105 in-lb) agrees with the nonlinear response in frequency, but the amplitude of vibration

is smaller than the response with hardening joint stiffness. Similarly, figure 23(b) shows the linearized

13



responsewith k 0 = 2.4 × 10 5 in-lb agrees with the nonlinear response in frequency, but the amplitude

is smaller than the response with the joint dead band. These results indicate that joint nonlinearities

do result in true nonlinear global response; however, the frequency of vibration can be approximated

with linear analysis for steady-state vibrations.

Effect of joint damping on beam response. Joint damping has been modeled with viscous and

frictional elements in parallel with the rotational spring elements which represent the joint stiffness.

Figure 24 shows the effect of joint viscous damping (c o = 300 lb-in-see/rad) on beam response under

a 10-1b load. The dashed curve shows the response with the same dead band nonlinearity as used

ill figure 2. The vibration amplitude decays with time and approaches the static equilibrium value

of displacement. The frequency of vibration also decreases with decreasing amplitude. The solid

curve of figure 24 shows the response of a beam with co = 300 lb-in-sec/rad and with the linearized

stiffness from figure 23(b). The linearized response predicts the time of the first peak; however, the

remainder of the response differs considerably from the true nonlinear response because of the dead

band and the variation of frequency with decaying amplitude. Figure 25 shows the response of a

beam with fl'ictional damping in the joints (F f = 20 in-lb). The dashed curve shows the response

of a beam with joint dead band and friction. The vibration amplitude and frequency both decrease

with time. The solid curve shows the beam response with linearized joint stiffness and F f = 20 in-lb.

The responses differ in both amplitude and frequency. It is interesting to note that although the

linearized response contains only fl'iction damping, the decay rate is not linear. This nonlinear decay

rate may be attributed to the nonproportional nature of friction damping when present only in joints.

To smnmarize, it appears nonlinear joint stiffness can have significant effects on beam response.

For constant vibration amplitudes, such as for steady-state vibrations or for undamped step loading,

the nonlinear stiffness can be linearized to simulate the frequency of beam vibration with nonlinear

joints, ttowever, when the peak vibration amplitudes change with time because of damping, the

frequency of vibration does not remain constant and cannot be linearized.

Truss Response

A cantilevered, four-bay truss, shown in figure 26, has been studied. The truss consists of

16 beam elements with the same properties as those discussed in tile Beam Response section. There

are 32 joints in the truss, 1 at each end of every beam. Both eigenvalue and transient response

analyses have been performed.

Effect of joint stiffness on truss response. The stiffness of truss structures is strongly influenced

by the axial stiffness of the joints. Figure 27 shows the frequency~of the lateral bending truss mode

as the stiffness parameter I% is changed. (The stiffnesses kw and k¢ have been set to large values to

simulate rigid connections in the lateral and rotational directions.) For ku = 0, the truss frequency

vanishes. As _'u increases, the truss frequency increases asymptotically to 35.2 Hz. A value of

I% = 0.726 has been chosen to study the transient response of the truss.

The transient response of the truss with an external step load of 10 lb has been simulated.

As shown in figure 26, the load is applied at the free end. Figure 28 shows the response at the

point of loading. The solid curve is for a linear axial joint stiffness of ku = 1 × 105 lb/in. The

response is dominated by one frequency, f = 20.9 Hz. Also shown in figure 28 is a dashed curve

representing the response with dead band in the joints (ku = 1 × 105 lb/in., C = 0.0015 in.,. and

CI = 0 in.). The response with joint dead band occurs with a lower frequency (f = 16.0 Hz)

and a nmch higher amplitude than the response With linear joint stiffness. Using a lower linearized

stiffness of ku = 4.9 x 104 lb/in., which takes the dead band into account, one derives the solid curve

in figure 29. Then, the frequencies of response of both the linearized and the nonlinear response

agree, although a difference in amplitude exists. Thus, as was the case for the beam, the truss

response frequency can be simulated with linearized analysis for steady-state vibration.
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Effect of joint damping on truss response. To evaluate the effect of joint damping on the response

of the truss, friction elements have been placed in parallel with each joint axial spring element.

Figure 30 shows the response of the truss with ku = 1 x 105 lb/in., C = 0.0015 in., and CI = 0 in.

in each joint. The dashed curve shows the response of the truss without damping. The solid curve

shows the response with F f = 15 lb. As is the case for the beam, the frequency of the response with

nonlinear joint stiffness changes with time as the amplitude decays.

The degree of frequency shift because of joint dead band is directly related to the amplitude of

vibration. For large vibration amplitudes, the additional displacement because of joint dead band is

small, and the total reduction in joint stiffness and structural frequency would be small. For small

vibration amplitudes, joint dead band can add significantly to the total joint displacement whereby

the effective joint stiffness is reduced. This effective reduction in joint stiffness may or may not have

an appreciable effect on global structural response, depending on the sensitivity of the response to

joint stiffness. The next section contains a discussion of the sensitivity of global beam response to

changes in joint stiffness.

Sensitivity of Global Response to Variations in Joint Stiffness

A beam with joints on each end has been analyzed to determine the sensitivity of beam

deformations to variations in joint stiffness. Expressions for beam displacements with and without

joints are presented. These expressions enable the analyst to determine when the joint, flexibility

needs to be modeled. Derivatives of these expressions with respect to the joint stiffness also allow one

to determine the importance of nonlinearities. A truss structure has also been studied to determine

the effect, of random perturbations of joint stiffness. The axial stiffnesses of 32 joints have been

perturbed, and the fundamental frequency of the truss was computed for 35 different cases. The

analysis of a beam with joints is presented first, followed by the truss-joint perturbation study.

Sensitivity of beam deformation to joint stiffness. Two beams shown in figure 31 have been used to

determine the sensitivity of beam deformations. The first beam (fig. 31(a)) has two nodes, nodes a

and d, with displacement and force vectors, represented by tR and FR, as follows:

/ }
Wa

CR = Ud

Wd

.4)a

Q_
%

FR= /_

where P, Q, and T are the corresponding forces for motions u, w, and ¢. If node d is constrained to

the ground and external forces are applied only at the free end (as would be the case for a cantilever

beam), the displacement and force vectors become

The deformations of the cantilever beam can be computed with a linear beam stiffness matrix such

that

FRa = KRaCR a (ll)
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where

KRa

EA 0 0

-_ 12El 6EI

--v- -w

6E[ 4EI
-W --7--

Equation (11) can be rewritten as

g
7;_ 0 0

e3 g2
0 _ -rE'7

t2
0 --_E'7 7;7

FRa (12)

Equation (12) relates displacements of tile free end of the beam to applied forces.

A similar expression for beam deformations can be obtained for a beam with two joints at each

end, as shown in figure 31(b). This beam has four nodes, and the displacement and force vectors are

FJa }
Fj = FJb

Fjc
Fjd

If we define nodes a and d to be boundary nodes with displacement CB and nodes b and c to beJ

internal nodes with displacement ¢5, the internal nodes can be removed through static condensation.
For

FJd Fjc = )

the beam defornlations are computed by

{F }=[KBOKO' (13)

where

K BB --_

"ku 0 0 0 0 0

0 kw 0 0 0 0

0 0 k¢ 0 0 0

0 0 0 ku 0 0

0 0 0 0 kw 0

0 0 0 0 0 k,

K IB = K ut =

-ku 0 0 0 0 0

0 - ku, 0 0 0 0

0 0 -k¢ 0 0 0

0 0 0 -ku 0 0

0 0 0 0 -kw 0

0 0 0 0 0 -k_
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EA
-_rd+ ku 0 0 Y 0 0

12EI 6EI 12EI 6El
0 T+kw --W 0 O -P-

KI I = 0 6EI 4E[ 6El 2EIT + k¢ 0 _ T

EA EA
--U 0 0 --g--+ ku 0 0

12EI 6EI 12EI 6EI
0 _ _ 0 T +kw --W

0 6EI 2EI 6EI 4EI_ 0 t_- T +k_

Equation (13) is obtained through use of a linear beam stiffness matrix and springs which represent,

the joints. To remove nodes b and c, equation (13) is rewritten as

If node d is constrained to the ground and forces are applied only to node a,

The deformation of node a can be written as CJa = K]laFda, or

EAku

_) Ja : 0

0

0 0

12E Ikw k¢_ 4Elk4,

4Elk¢ 2EIk¢

Fja (14)

where lcu, Ivu,, and _:, are defined by equation (10).

Equations (12) and (14) can be used to determine the change in beam deformations when joints

are present.. If equal loads are applied to the beam without joints and to the beam with joints,
FR_ = Fda and

KRa_bRa = Kja_bJa

Thus, the displacement, amplification with joints is

¢Ja = K- 1Ja KRaCRa

or

_Ja

2 o o 1l+k- _

/2 3 g + g
o

!

o o
¢Ro (15)

For Fda = FRa , equation (15) may be used to assess the change in beam deformation when joints are

present. Figure 32 shows the effect of joint stiffness on beam deformations. Figure 32(a) shows the
change in axial displacement ratio as the joint axial stiffness/% is varied. As ku increases, the axial
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displacementbecomesasymptoticto thedisplacementof a beamwithoutjoints (i.e.,u]/ul? = 1).

The sensitivity of the response to changes in axial joint, stiffness is

0

i)_. u CJa =

- oo
0 0

0 0

era (16)

Equation (16) gives the rate of change in axial displacement, for changes in Icu.

Figure 32(b) shows the change in lateral displacement as kw is changed. We obtain this curve

by letting ke approach infinity. Thus, the diagonal term reduces to wj/tv/_ = 1 + (2flew). The rate

0 2 _ (17)--=-¢Ja = CR.
0 ku,

0

of change as ku, is varied is

Figure 32(c) shows the effect of rotational stiffness _:_ on beam rotational displacement. The

rate of change of beam rotation as 1% is changed is

I! ° °0
'=--¢Ja =

Ok¢

o

era (18)

Equation (15) is useful for determining if the joint flexibility needs to be modeled in a truss structure.
Above certain threshold values of joint stiffness, the joint deformations can be neglected relative to

the beam deformations. For values of joint stiffness above these threshold values, only rigid beam-

to-beam connections are necessary in the analysis of a truss. Equations (16), (17), and (18) may

be used to determine the sensitivity of the beam deformations to perturbations in joint stiffness.

These equations are useful for identifying the importance of nonlinearities in joint, stiffness. Since

equations (15), (16), (17), and (18) were obtained by modeling the beam with a single linear beam

element, these equations should be conservative in the sense that actual beams would be even more

flexible than those analyzed herein. Thus, if the joint stiffness has a negligible effect when computed

from equation (15), it will certainly be negligible for actual beams. The next section describes the

effect, of random perturbations in joint stiffness for a truss structure.

Sensitivity of truss frequency to perturbations in joint stiffness. The truss structure shown in

figure 26 (without any joint mass) has been analyzed with random perturbations in the axial joint
stiffness. A value of ku = 0.726 has been used as an average value about which the stiffness was

perturbed. From equation (16/, the rate of change of the effective beam stiffness with _'u = 0.726 is

Thus, the truss response should be quite sensitive to uniform changes in joint stiffness.

The average axial joint stiffness was randomly perturbed by 4-50 percent for each of the 32 truss

joints. That is,
0.363 _< _:u _< 1.088
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For uniform change in axial stiffness, figure 27 indicates that the frequency of tile truss will range

from 16.9 Hz at ku = 0.363 to 24.8 Hz at ku = 1.088. The frequency of the truss with an average

value of joint stiffness of 0.726 is 21.9 Hz. The truss frequency is indeed quite sensitive to uniform

changes in joint stiffness about ku = 0.726.

To assess the effect of random changes in joint stiffness, 35 cases were analyzed to determine

tile frequency of the truss with random perturbations of each of the 32 joints. Figure 33 shows the

results for each of the 35 cases. The flmdamental truss frequency has a mean value of 21.2 Hz with

a standard deviation of 0.81 Hz.

This moderate variation in frequency shows that the global response may be approximated from

the average values of joint stiffness. Even with a ±50-percent perturbation in stiffness, the global

frequency change is small. Thus, in the analysis of large truss structures, using the average value of

joint stiffness may be adequate to predict global structural behavior. This ,,'ill greatly reduce the

analysis and tracking requirements for modeling each joint with differing stiffnesses.

Conclusions

This study reports a straightforward method for testing joints to determine stiffness and damping

coefficients of joint analysis models. The focus of this effort was to obtain finite-element joint lnodels
which exhibited load-deflection behavior similar to the measured load-deflection behavior of actual

joints. Experiments were used to determine stiffness and damping nonlinearities typical of joint

hardware. An algorithm for computing coefficients of analytical joint, models based on test data

was developed which permits analytical models, linear and nonlinear, to be studied such that the

load-deflection behavior exhibited in the experiments can be simulated.

Spring, viscous damper, and friction damper elements were formulated and included in an existing

finite-element computer code. Beams with joints have been loaded and their transient response

simulated with the finite-element program. The effect of linear and nonlinear joint stiffness on the

beam vibration frequency and amplitude was then studied. A truss structure with 32 joints has been

analyzed to study the effect of joints on globat response. Expressions for predicting the sensitivity

of beam deformations to changes in joint stiffness have also been derived. In addition, random

perturbations have been used to evaluate the effect of changes in joint, stiffness on the frequency of

a truss bending mode.

Results from the present, study indicate joint, stiffness nonlinearities produced nonlinear dynamic

response in beam and truss structures for certain joint stiffnesses. For constant vibration amplitude,

joint stiffness nonlinearities produced a sinusoidal beam and truss response and the frequency of

vibration could be simulated with linearized joint stiffness. However, inaccurate amplitudes of

vibration were predicted with the linearized analysis. Random perturbations of joint, stiffness

produced small changes in global frequency, which indicates the average value of joint stiffness

may be adequate to predict global structural behavior. Sensitivity analysis of beams with joints has

also been used to develop equations that show values of joint stiffness exist above which the joint

flexibility can be neglected in truss structure analysis. The relative stiffness of the joints compared

with the truss members is a major parameter that. determines the need for modeling the joints.

NASA Langley Research Center
Hampton, VA 23665-5225
January 13, 1987
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Figure 3. Example of a force-state map.
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Figure 4. Flowchart for empirical joint model development.
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(a) Clusterjoint. (b) Clevisjoint.

Figurel l. Typicaltrussjoints for spaceapplications.
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Figure 12. Joint load-deflection test data measured at frequency of 1 Hz.
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Figure 13. Three-pass solution strategy used in present study.
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Figure 24. Viscous damped beam response with nonlinear and linearized joint stiffness.
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Figure 25. Friction damped beam response with nonlinear and linearized joint stiffness.
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Figure 27. Effect of joint axial stiffness on truss frequency.
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