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A System for Routing Arbitrary Directed Graphs on SIMD 

Architectures 

Sherry1 Tomboulian 

ABSTRACT 

There are many problems which can be described in terms of directed graphs that 

contain a large number of vertices where simple computations occur using data from con- 

necting vertices. A method is given for parallelizing such problems on an SIMD machine 

model that is bit-serial and uses only nearest neighbor connections for communication. 

Each vertex of the graph will be assigned to a processor in the machine. Algorithms are 

given that will be used to implement movement of data along the arcs of the graph. This 

architecture and algoriths define a system that is relatively simple to build and can do 

graph processing. All arcs can be traversed in parallel in time O(Z), where T is empiri- 

cally proportional to the diameter of the interconnection network times the average degree 

of the graph. Modifying or adding a new arc takes the same time as parallel traversal. 

This wok was supported under the National Aeronautics and Space Adminirtnticn under NASA Crntnd No. NASI- 
18107 while the author was in residence at the Institute for Cunpukr Applidms in S c i i  a d  Engineering 
(ICASE). NASA h g l e y  Research Center. Hampt~m. VA 23665. 
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1. Introduction 

A class of problems can be described as directed graphs, where simple computations take place at the 

vertices based on the values of the neighboring vertices; examples include semantic networks, circuit 

design, and topographical problems. While the computation at each vertex is frequently trivial, these prob- 

lems are often time consuming because the number of vertices in the problem is on the order of tens or 

hundreds of thousands. 

One natural way to apply parallelism to this type of pb lem is to assign exactly one processor to 

each vertex in the graph and to have some mechanism for realizing the arcs. This small grain approach has 

a great deal of appeal. Since existing MIMD machines [7] have a few hundred or thousand processors, it 

is not be feasible to use them to parallelk large graph problems using one vertex per processor. SIMD 

architectures [71 support finer granularity, but often do not easily support generalized message passing 

schemes. This paper pvides an introduction to a method of embedding graphs in a class of SIMD archi- 

tectures. More complete details can be found in 1181. 

The method presented here assumes that the graphs have a sparse set of arcs. The average number of 

arcs that each v e x  has is relatively small, bounded by some constant c where c<otumber ofvertices. 

Another requirement is that the graph be semi-dynum’c, Le., edges can be added or deleted, but the majority 

of graph edges remain 6x4. This is the typical situation one encounters in an information acquisition and 

learning system, where new information is coming in and is being changed, but only a small @on of the 

existing information will be changed at any time. A third requirement is that the operations to be per- 

formed are fairly homogeneous. That is, in general the same (or nearly the same) computation is con- 

currently performed at all vertices. 

Algorithms will be presented for arranging pphs in SIMD architectures that have a variety of net- 

work topologies. The basic idea is to m t e  a mapping of the graph to the network in which message colli- 

sion is impossible. The assignment of data to processors and the arrangement of connections are completely 

and automatically determined by the algorithm. Arcs can be added or modified easily. 
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1.1. Existing SIMD Routing Algorithms 

Nassimi and Sahni have studied permutations in SIMD architectures. In [12], parallel algorithms for 

setting up a Benes permutation in O(10g4N) for a hypercube or shuffle exchange network are presented. It 

has been shown [I71 that many standard networks, such as the hypercube, can simulate a Benes permutation 

network in O(1og N )  time, so once set up an SIMD machine using hypercube or shuffle exchange could then 

perform a permutation in O(2og N) time. In [14] they present an algorithm for permuting or sorting N data 

items on a hypercube or perfect shuffle network with N""' processing elements, (1 I k I IogN), in time 

O(k IogN). Batcher presented a sorting network with O(Zog2N) delay and O(N log%) switches in [l]. 

Using methods presented in [17], this hardware sorting scheme can be simulated on a hypercube in time 

O(log2N) for sorting N numbers. 

The methods presented here are more general than the ones mentioned. Rather than just permutations 

or sorting, random graphs can be embedded. Another feature is that the algorithm works on a much wider 

variety of networks including those that are not completely regular. A third feature is that arcs can be 

changed without having to redefine the entire embedding. While the set-up time for graphs is longer in our 

system, the empirical time for parallel traversal (presented later) is competitive with the methods men- 

tioned above. 

2. Machine Model 

The algorithms presented here apply to architectures having the following properties. Since the 

machine model used is SIMD, there is a single control unit and a large number of slave processors which 

can execute the same instruction stream simultaneously. It is possible to disable some processors so that 

only some execute the instruction stream, but it is not possible to have two processors performing different 

instructions at the same time. An instruction involves both a particular operation code and the local 

memory address. It is assumed that a processor cannot perform local indirect address operations. This res- 

triction makes implementing certain structures, such as queues, difficult within individual processors. How- 

ever, it allows the memory of all processors to be addressed (conceptually) by a single address driver, 

reducing the silicon area n d e d  for these necessary parts of memory. 

The processors have their own local memory. Neither indirect addressing nor global memory is 



-3- 

assumed to be available. The memory is relatively small -- on the order of a few hundred or a few 

thousand bits. Information hadex between processors must be done through the neighbor connections (see 

below). Each processor has a unique id nwnber stored in its local memory. 

There exists some channel for getting information from the processors back to the control unit. The 

minimum requirement is that one processor acts as a serial port between the pmessm and the control unit. 

If one processor has a linlr to the controller, then with a network as described below it is possible to get 

data fnwn any procam to the controller in time proportional to the diameter using software. Additionally. 

processors must be able to read from or wxite to their neighbors' memories (either facility is sufficient since 

one can simulate the other). 

The processots are connected via a network. The following network requirements are sufficient to 

solve graph problems. given the algorithms presented below, and allow the construction of relatively cheap 

networks. (Note that these are the requirements for the topology of the physical network connections such 

as a grid or a hypercube, not the graph being embedded.) 

(1) 'Ihe COMeCtiollS between pmcessors have labels (positive integers) associated with them that 

must satisfy cextain requirements. 

'Ihe links must have an inverse (be full-duplex). 

The labels of wires entering and leaving a processor must be unique. (For example, in a grid, a 

procesor has four connections conventionally labeled north,south,east,west; it would be unad- 

missible to have two wires labeled "north".) 

The name of a wire label and its associated inverse must be consistent for all processors. That 

is, if one processor has a wire labeled i, whose inverse is called j ,  then all processors that have 

an i connection must have the inverse called j .  For insrance in a grid, the inverse of 'north' is 

always "south". This does not mean that the same relative positions must have the Same labels. 

The number of different neighbor labels, neighbor-limit. must be a small constant. For example, 

each node in a grid has four neighbors (north, south, east, and west). 

There must exist a path between every pair of processors, and the network diameter is assumed 

to be small, ideally O(1ogN) where N is the number of processors. 

(2) 

(3) 
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Many networks 161 including grid, hypercube, cube connected cycles 1151, shuffle exchange [16], and mesh 

of trees [IO] are admissible under this scheme. 

The Massively Parallel Processor (MF’P) built by Goodyear Aerospace [2] is an SIMD architecture 

that is fairly well suited to the algorithm presented here. The MPP has single bit processors arranged in a 

64 by 64 processor grid, The MPP is not the perfect machine for this algorithm since it is fairly small 

(speaking in a massively parallel sense) and since its interconnection scheme is a grid (of diameter m. 
Nevertheless, the MPP is a good candidate. A parallel machine design that fits our model well is the 

Boolean Vector Machine (BVM) being built at Duke University [19]. It is an SIMD machine that uses the 

cube connected cycles interconnection scheme 1151. A design for an SIMD architecture that is suitable for 

semantic networks was presented by Scott Fahlman [3,4,5]. The architecture he proposed differs from our 

model in that it has a separate network for communication. The routing algorithm he uses, called hashnets 

Fahlman 8Ob1, has some similarities with the one presented here. 

The Connection Machine [8], produced by Thinking Machines CorporatiOn, is an SIMD architecture 

with 64K processors, each with 4K bits of memory. Communication is done by complex routing hardware. 

For many problems, the flexibility provided by such routing hardware is not justified since such hardware is 

expensive. This paper shows how with a simpler hardware arrangement, connections can be formed solely 

by software. 

3. Algorithm 

When discussing this algorithm, there is a high potential for ambiguity when refemng to the physical 

arrangement of the processors in the computer architecture and the vertices of the graph being embedded. 

The graph being embedded will be referred to using standard graph terminology with regards to vertex, arc, 

and degree. Each vertex will be assigned to a different processor. Each arc in the graph will be realized 

by a path in the physical network which is a list of adjacent processors. The path consists of a series of 

links which specify the physical wire labels that connect the processors. In addition to the spatial character- 

ization of a path, a temporal association will also be made. Rules are provided governing paths, and algo- 

rithms are presented to traverse all arcs simultaneously and to add a new arc. 

Since the processors are connected to their neighbors in some predefined topology, a connection 
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between two processors representing an arc in the graph can be formed by passing a message through 

neighboring processors until the message reaches the destination. There are two basic problems with this 

method. The first is that a processor must have some mechanism for determining which neighbor to pass a 

message to. The second is that there has to be some way to deal with collisions of messages. Collisions 

are particularly difficult to deal with in an SIMD environment without indirect addressing since the p m s -  

sors cannot keep individual stack pointem and reference the bottom of the stack indirectly; each position 

would have to be looped through serially. The same mechanism is used to solve both problems. 

We will begin by defining the data structures which will be resident at each processor. 

ALLOCATED ---- boolean flag indicating 
whether this processor is assigned 
a vertex in the graph 

VERTEX LABEL --- label Of graph V-X 

HAS-NEIGHBOR[ 1 ..neighbor-limit] flag 
indicating the existence of neighbors 

SLOTS[I..TI OF 8tr: path information 
START--------- new arc starts here 
DIRECTION------direction to send 

END ----------- arc ends here 
ARC LABEL-----label of arc 

( 1 ..neighbor-limit,FREE) 

The ALLOCATED and VERTEX-LABEL field indicates that the processor has been assigned a vertex in 

the graph. The HAS-NEIGHBOR field is used to indicate whether a physical wire exists in the particular 

direction; for a completely regular topology it is superffuous and its use will be explained later. The 

SLOTS data stn~~ture  is the key to the routing system. It is used to instruct the processor where to send a 

message and to insure that paths are constructed so that no collisions will occur. 

SLOTS is an army with T elements. This value T is called the time quantum. Traversing all the 

edges of the embedded graph in parallel will rake more than one step since messages cannot be sent instan- 

taneously but rather must be passed along through successive neighbors. Traversing all arcs in parallel will 

be considered an uninterruptible operation which will rake T steps. The SLOTS array is used to tell the 

processors what they should do on each relative time position within the time quantum. 

One of the characteristics of this algorithm is that a fixed path is chosen to connect two processors 

and once chosen it is never changed. For example, consider the grid in figure 1. 
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F i g .  1. Grid Example 

If there is an am between A and H, there arc s e v d  possible paths: East-Enst-South, East-South-East, 

and South-East-East. Only one of these paths will be chosen between A and H, and that same path will 

always be used. Besides being invariant in space, paths are also invariant in time. As srated above, traver- 

sal is done within a time quantum T. Paths do not have to start on time 1, but can be scheduled to start at 

some relative offset within the time quantum. Once the starting time for the path has been fixed, it is 

never changed. Another requirement is that a message cannot be buffered, it must p d  along the 

specified directions without interruption so that if the path is of length 3 and it starts at time 1, then it will 

arrive at time 4; if it starts at time 2. it will be guaranteed to arrive at time 5. Further, it is necessary to 

place the paths so that no collisions occur, that is, no two paths can be at the same processor at the same 

instant in time. The rules for constructing paths that fulfill these requirements are listed below. 

At most one link can enter a processor at a given time, and at most one link can leave a processor at 

a given time. It is possible to have both one coming and one going at the same time. Note that this 

does not mean that a processor can have only one link, it means that it can have only one link during 

a particular step in the time quantum. It can have as many as T links going through it (since a time 

quantum is length T by definition). 

Any path between two processors (u,v) representing an arc must consist of links at contiguous time 

steps. For example, if the path from processor u to processor v is ( uf,g,h,v ), then if the link from 

u-f is assigned time 1, f-g must have time 2, g-h time 3. and h-v time 4. Likewise if u-f occurs at 

time 5. then link h-v will occur at time 8. 

When these rules are used to form paths, the SLOTS structure can be used to mark the paths. Each 

path goes through neighboring processors at successive time steps. For each of these time steps the 

DIRECTION field of the SLOTS structure is marked, telling the processor which direction it should pass a 

message if it receives it on that time slot. SLOTS serves both to instruct the processors how to send mes- 

sages and to indicate that a processor is busy at a certain time slot so that when new paths are constructed it 



can be guaranteed that they won’t conflict with current paths. 

Consider the following example. Suppose we are given the directed graph with vertices (A,B,C.D) 

and am ( A X ,  B X  , B+D , and D+A) (Figure 2). and that vertices A,B.C, and D have been assigned 

to successive processors in a linear array. ( A linear array in not a good network for this scheme but is a 

convcmimt xmce of examples.) 

Fig. 2. Graph Example 

AJ3,C.D are successive members in a linear array 

First, A ->c can be completed with the map East-East, so 
Slots[A][l] = E, Slots[B][21=E, End[CI[2I=l 

B->C can be done with the map East; it can 
start at time 1, since Slots[B][l] and End[CI[lI are free. 

B->D goes through C then to D its map is East-East. 
B is occupied at time 1 and 2. It is free at time 3, 
so Slots[BI[31=E, Slots[C][4l=E, End[DI[41-1. 

D->A must go through C.B.A. using map West-West-West. 
D is free on time 1, and C is fire on time 2, but B is occupied on time 3. 
D is free on time 2, but C is occupied on time 3. 
It can start from D at time 3, 

SlotsD][3]=W, Slots[CI[4]= W, Sl0ts[B1[5]= W, End[A][5l=l 

Every processor acts as a conduit for its neighbors’ messages. No processor knows where any mes- 

sage is going to ar coming from, but each processor knows what it must do to establish the local connec- 

tions. 

The use of contiguous time slots is vital to the correct operation of the system. If all path-links are 

established according to the above rules, there is a simple method for making the connections. The paths 

have been restricted so that there will be no collisions, and paths’ directions use consecutive time slots. 
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The end of a path is specified by setting a separate bit that is tested after each message is received A 

separate start bit indicates when a path starts. The start bit is needed because the SLOTS array just tells the 

processas where to send a message, regardless of how that message arrived. The start array indicates when 

a message originates, as opposed to arriving from a neighbor. 

The following algorithm is basic to the routing system. 

for i = time 1 to T 
mRALLprocessm 

/* if an arc starts or is passing through at this time*/ 
if SLOT[i].START = 1 or active = 1 

for j=1 to neighbor-limit 
if SLOT[i].direction= j 

write message bit to in-box 
of neighbor j; 

set active = 0; 
FORALL processor that just received a message 

if end[i] 
move in-box to message-destination; 

else 
move in-box to out-box; 
set active bit = 1; 

This code follows the method mentioned above. The time slots are looped through, and the messages are 

passed in the appropriate directions as specified in the SLOTS array. Two bits, in-box and out-box, are used 

for message buffering. 

The time complexity of data movement is O(T x neighbor-Zimir). The neighbor-limit is a critical fac- 

tor in the time. 'Ihe "machine model" section suggested that the number of neighbors be constant, in which 

case the complexity is O(T). While the algorithm will function for networks with large neighbor-limit, the 

time for routing will increase proportionally. 

3.1. Setting up Message Paths 

One of the goals in developing this system was to have a method for adding new arcs quickly. The 

method used to construct new paths is essentially monotonic, with paths added so that they don't conflict 

with any old path. Once a path is placed it will not be re-muted by the basic placement algorithm; it will 

always start at the Same spot at the Same time. ('This does not refer to the ability to change arcs. The user 

can delete or modify an arc at any time, but the path for an arc is static.) Our algorithm adds arcs one at a 

time, not in parallel. 
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The basic idea of the method for placing a arc is to start from the source processor and in parallel 

examine all possible paths outward from it that do not conflict with pre-established paths. As the trial paths 

are flooding the system, they are recorded in temporary storage. At the end of this deluge of trial paths, if 

the destination p~~cessor has been l a c h a ,  then a real path exists. U ~ n g  &e S b i r J  i 2 ~ ~ x A ~ c l o n  a path can 

be backtraced and recorded. This is similar to the LeeMoore routing algorithm [9] [ll] for finding a path 

in a system. 

Suppose that the 8tc (u,v) is to be added. First it is assumexi that processols for u and v have already 

been detennined; otherwise (for now) assume a random allocation from a pool of free processors. It is 

necessary to find a path between u and v that does not conflict with any of the existing paths. The method 

for doing this is a type of flooding. A breath-first search will be performed in parallel starting at the source 

processor. A record is kept of the trial paths resulting from this search. The paths must adhere to the distri- 

bured path rules, so a trial path must not conflict with paths that are already established. For instance, sup 

pose a trial path starts at time 1 and moves to a neighboring processor. but that neighbor is already busy at 

time 1 (as can be seen by examining the DIRECI'ION-SLOT). Since a path that would go through this 

neighbor at this time is not legal, the uial path stops jmpagating itself. If the processor slot for time 2 is 

free. the eial path attempts to propagate itself to that processor's neighbors at time 3. 

The HAS-NEIGHBOR bits are used for the new path algorithm. This field is checked to see if a 

physical neighbor connection exists before attempting to propagate a path in that direction. This allows 

irregular topologies and those with boundary conditions to be supported. 

Trial paths are recorded in a structure called TRIALSLOTS. A mal path knows if the next time slot 

is occupied by referring to the SLOTS data structure. If the destination processor is reached by a path, it 

will be a path that does not violate the rules. Therefore we can trace backwards from the destination pm- 

cessor using the markings in TRIALSLOTS and transfer this good path to the actual SLOTS structure. 

The TRIALSLOTS structure is resident in each processor. Like SLOTS, TRIALSLOTS is an array 

with T elements. For each time slot there is one bit for each direction. The bit indicates whether a trial 

message reached that processor from that direction at that time. It is possible that more than one trial path 

can reach a processor coming from different directions on the same time-slot. Since each of these are pos- 

sible paths, they can all be recorded. 
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The following algorithm provides the mechanism for finding new paths described above. Trial paths 

are conshucted starting from the source processor. The formation of trial paths is attempted for each time 

step l..T. 

SEARCH FOR NEW PATH 

Set Active Bit for Source processoc 
Set Dest Bit for Destination processor; 
for i= l to t imeT 
begin 

FORALL processors with active bit set 
if SLOTS[i].direction is FREE 

begin 
for d = 1 to neighbor-limit 

if HAS-NEIGHBOR[d] 
mark direction d in TRIALSLOTS[i]for neighbor d; 
set next-active bit for neighbor d; 

end 
FORALL processors 
begin 

Move next-active to Active; 
Set source processor to Active; 
FORALL processors with Dest bit set (only 1 will be set) 

if the dest vertex is marked active 
begin 

if dest processor is not busy at that time 
mark the processor as reached; 

turn off its Active bit. 
end 

end 
end 

If the destination processor has been reached by the termination of the algorithm, then there exists a 

non-conflicting path. If it was not reached, there is no path possible without changing existing paths. If the 

destination processor has been reached, pick the time of the incident edge (if more than one, pick arbi- 

trarily), then follow the marked edges backward until the source is reached, making the time-direction 

arrangements permanent by placing them in the SLOTS structure. 

When the path seaching algorithm is completed, all possible paths that emanate from the source pm- 

cessof have been hied and have been recorded if they were valid. The fact that all of the paths have been 

traversed is an important consideration. It means that if the destination is not reached, then it is not possi- 

ble to reach it given the current configuration of the system using the the time quantum T. 

Here is an example for spreading out for searching a linear array: 
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Suppose that the= is already a path from B to E starting at time 1, and we want to addapath from C to A. 

Suppose the time quantum is restricted to be 4. (The time quantum could be set a?. any lhi:, and it is usu- 

ally assumed that it is at least the diameter of the network. By limiting it to 4. it is not possible to make all 

connections since thm are pints that are more than 4 steps a p t )  

Using time as the second dimension, figure 3 shows the line at each time step. The path from B to 

E starts at time 1, is at C at time 2, D at time 3,and arrives at E at time 4. 

/ * 0 

A 0 c 0 E f t 1. 

Fig. 3. Finding a padr in a Linear Array Configuration 

We want to add a path from D to B. The *'s trace the spread of the trial paths from D. Note that proces- 

sur C holds a message already at time 2, so D cannot propagate its message to C at time 1. However, D 

begins a new signal at time 2, which successfully reaches processor B by time 4. Note that, in this trivial 

system, the trial message heading right on the line cannot possibly reach A. However, in a more complex 

network, no simple rule is likely to allow some direction of search to be eliminated. Part of the beauty of 

the system is that the source processor does not "know" where the destination processor is located; it sim- 

ply tries all possible paths outward, and when the spreading is finished the destination is checked to see if 

it has been reached. 

3.1.1. Tracing Paths Backwards 

'Ihe path finding algorithm just given requires that, in order to select and save a new path, the path 

must be traversed backwards. This is done by referencing TRIALSLOTS. Recall the way that 
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TRIALSLOTS was created. On time 1 if the source processor is not h d y  occupied it will write to all its 

neighbors. Specifically, it will Write to TRIALSLOTS for time 1, setting the bit that indicates the direction 

it came from. So, if the destination processor has its TRIALSLOTS marked for time t, it means that it was 

sent a message on time t The destination processor should be set to save the message on time t, by mark- 

ing END[t]= 1. By looking at TRIALSLOTS[t] the destination processor can tell which of its neighbors sent 

the message by taking the inverse of that direction. (Recall that the network requirements specified that 

each physical wire label have a unique inverse.) 

If there is more than one valid link at a given time, the processor will select one of these. Since the 

processor knows that the message came from neighbor k, it will write the direction specified in its 

TRIALSLOTS[t] to SLOTS[t] of the neighbor in the inverse direction of TRIALSLOTS[tl. It will also set 

an activate bit in this neighbor. The process will then iterate, with each processor setting the appropriate 

direction in its neighbor’s SLOTS array and then activating the neighbor and turning itself off. When the 

Some processor is reached, it marks the start of the message and terminates the process by turning its 

active-bit to 0. 

4. Variations 

The sketch of the algorithm presented in the previous sections leaves many loose ends. For instance, 

the processors that hold the vertices were chosen arbitrarily, and so were the paths connecting them. Many 

improvements can be made on this simplistic approach. A few are listed below. 

4.1. Placements of the Data 

Assignment of data to processors is an important problem. If an arc between vertices u and v is to be 

added, and both vertices have been mapped to processors, then there are no choices to be made. However, 

if only one is assigned or neither is assigned then there is some flexibility. The basic system will just pick 

free processors arbitrarily and connect them. This assignment of processors with no thought to connecting 

paths is an unnecessary constraint on the system. 

If an arc is added between vertices u and v, it is only necessary that one of the processors be previ- 

ously assigned. If u were assigned and v was not, the trial paths can be generated out from u, and all of the 

free processors that are reached are potential spots for v. Rather than trying to find a path between two 
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specific processors, the system only fails if it can’t find any path between the source processor and any free 

processar. If the destination processor was assigned but the source processor was not, it is still possible to 

use the same trick. To do this, a program which generates the paths backwards can be used. In this case 

the paths would start at the destination and spread out in the reverse direction starting at time T and going 

down to 1. If any of the reversed trial-paths reached a free processor, then u would be assigned to one of 

these and the new path marked in SLOTS. 

43. Methods for picking paths 

There are two major goals in picking paths. One is to minimize the length of the path, which 

corresponds to the number of slots used by that path. The second is to try to distribute the paths to avoid 

unnecessary congestion. Heuristics for picking paths are particularly important when combined with pick- 

ing the position of the processors. 

The basic method indicated that if more than one path reached the destination, the path be chosen 

randomly. This is not consistent with the desire to minimize path lengths. A system for choosing shortest 

path can be applied. This can be done by having the aial paths carry with them the length of their path so 

far. When two trial paths reach the same processor at the same time, the shorter one is chosen, and its 

length value is passed on as the path continues its quest. This will require carrying an extra l o g 0  bits, 

which implies needing a factor of l o g o  more time. 

If path lengths are provided, a variety of optimizations based on shortest path ideas exists. The most 

straightforward of these is to use shortest paths to help choose which processor to pick if there is more than 

one candidate destination. 

4.3. Extensibility of T 

When placing connections, it is desirable to have T small because it is both time and space. is 

proportional to the space needed to represent the arcs since the SLOTS structure has T elements.) However, 

T must be big enough so that the probability of making a connection is high. One way to deal with this 

problem is to have an expanding T. Initially, if the data base being used is small, T can be small. When a 

connection cannot be found, then T can be increased. Of course, this can only be done up to the limit of 

the number of slots that can fit in a processor’s local memory. 
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4.4. self-Loops 

One way to introduce a primitive type of buffering is to have self-loops. when using self-loop, 

rather than having the number of directions each time be the number of neighbors, an extra direction called 

SELF can be added. This extra direction specifies that the value be sent to the sending processor on the 

next time step, i.e., it will simply remain at the processor. Since a self-loop adds to the length of the path 

without getting any closer to the destination, using the self-loop option would not be desirable in the gen- 

eral case. It is potentially useful in situations where the system is heavily congested, and a connection is 

trying to be formed between a and b, but there is no unblocked path; for example, suppose there is a path 

from a to x that arrives at x at time t, and there is a path from x to b that leaves x at time t+l. In this 

situation using a self-loop at x would complete the path. Additionally, self-loops are necessary in the situa- 

tion where the graph to be embedded has self-looping arcs. 

' 

5. Error Recovery 

An intrinsic feam of the routing algorithm is that the links are distributed over multiple processors. 

For a given path, no processor knows where the path comes from or goes to -- it only knows what is in its 

SLOTS array. Funhermore. if a processor were to fail, then there is the potential that all the messages that 

go through the processor could be lost. If a connecting wire were to fail, then the messages that go over 

that neighbor connection would be lost. 

Clearly processor failure in such a system is of great concern. Fortunately it is possible to recover 

from many failures. When it is discovered that a processor is bad, or that a connection to a neighbor is 

bad, it is frequently possible to reconstruct the paths so that no data are lost. Correction is done by tracing 

the path to its source and destination, and then forming a new connection bypassing the faulty processors. 

The bad processor is marked accordingly, and the neighbor links are disconnected by setting the appropri- 

ate HAS-NEIGHBOR bits to 0 in the neighboring processors. 

The easiest kind of processor failure to deal with is the situation where it is possible to read the 

direction-slots array. In this situation the bad processor is marked with a special bit; then starting at time 

step 1, the controller reads the memory to see which slots, if any, are occupied. Each path that goes 

through the bad processor must be reconstructed. To reconstruct a path, it must be traced backwards to its 
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source and forward to its destination. Once the source and destination have been determined, the faulty 

path will be deleted and a new path with the same source and destination will be added. If it is possible to 

read the direction-slots amy, it is easy to trace a path forward to the destination: just use the direction 

slots as in normal routing. To get back to the source, it is necessary to traverse the path backwards. A 

similar method was introduced in the path set-up algorithm. Since we know that the direction slot was busy 

at time i, the neighbars can be examined to see if they sent to the Eaulty processor at time i-1. This process 

is repeated until the source is reached. A bit can be set in the source processor and a different bit in the 

destination, and a path between the two can be added again using a variation of the edge connection routine 

which takes as input two bit vectors, one which is all Os except for the source processor, and one all Os 

except for the destination processor, instead of a some and destination label. Each path passing through a 

faulty processor has to be traced to its start and end points individually, and then re-added. Since there are 

up to T paths passing through any processor, the time of this operation is O(T x time-to-add), which is 

O@ x neighbor-limit). 

A slightly more difficult case is the situation in which it is impossible to read from the memory of the 

faulty processor. This can be handled if the neighboring processors to the faulty me are not themselves 

faulty. The method is fairly straightfonvarct first, at time t, the neighboring processors are examined to see 

if any write to the faulty one. If any does, then the neighbors are again examined to see if any of them 

receive a message at time t+2. It is possible to see if a processor received a message by seeing if it either 

has a stop bit set or if it is sending a message out that does not originate at that processor. If none of the 

neighbors are busy at time t+2, then the faulty processor must have been the destination of the message. If 

one or more of the neighbors are busy, then their neighbors are examined on time t, to see where the mes- 

sage came from. If none of the neighbors at time t+l sent to the processor that was busy at time t+2, then 

the faulty processor must be the connector. Once all connections through the faulty processor are deter- 

mined, tracing forwanis and backwards can be done as above. 

Neighbor connector failure can be repaired more easily than processor failure. If a link on a particu- 

lar processor is found to be bad, the connection-slots array will be examined for paths which move in that 

direction. For each of those paths the destination processor will be found by tracing the path from that 

neighbor. The some can be found by tracing backwards. The HAS-NEIGHBOR bit is set to 0 in the two 



-16- 

processors that are connected by the bad link. Once the endpoints have been found. the path can be re- 

entered. Since up to T paths may be affected, as many as T2 operations will be needed. 

6. Complexity and Empirical Bounds on T 

Adding an edge (assuming one can be added), deleting any set of edges, or traversing all the edges in 

parallel, all have time complexity O(T x neighbor-limit). If it is assumed that neighbor-limit is a small 

constant, then the complexity is O(T). Since T is related both to the time and space needed, it is a crucial 

factor in determining the value of the algorithms presented. Some analytic bounds on T were presented in 

1181, but it is difficult to get a tight bound on T for general interconnection networks and dynamically 

changing graphs. A simulator was constructed to examine the behavior of the algorithms. Besides the 

simulated data, the algorithms mentioned were implemented for the Connection Machine. The data 

presented by the simulator is consistent with that produced by the real machine. The major result is that the 

size of T appears proportional to the average degree of the graph times the diameter of the interconnection 

network. 

6.1. Simulation 

Simulations were run on a serial machine. The largest machine size that was practical to simulate 

had 512 processors. In each experiment we specified a network, the type of graph to embed, methods for 

picking paths, limits on T, and so forth. For each experiment, 25 trials were run where each trial consisted 

of presenting a data graph, one edge at a time, to the simulator. The simulator was implemented for three 

interconnection networks: hypercube, cube connected cycles, and a toroidal grid. 

Several types of graphs were generated for input to the simulator. Trees were the most extensively 

tested objects. The simulator had facilities for generating k-ary complete trees, or trees with a selected pro- 

bability of having each child. X-trees were also examined. Random permutations (graphs of degree 1 

formed by connecting vertices labeled 1..N with corresponding permuted values) were tested. Random 

graphs were also tested. To generate random graphs a limit on the number of out-edges of a vertex is 

specified. The processors are picked in a random order, and each processor has a random number of arcs 

between 0 and the limit specified each to a random vertex with uniform probability. 
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tree 
height 

5 
6 
7 
8 

L 

grid CCC hyper 
N T N T N T 
64 5 .e .4  64 6.3f.4 64 4.3f.4 
144 6.01.4 160 6 .e .4  128 5.01.4 
256 9.M.8 384 6.4f.5 256 5.B.3 
559 10.4f.7 8% 7.1f.4 512 5.6k.4 

Heuristics can be used to determine the placement of vertices and paths. Rather than , s t  picking ver- 

tices and paths arbitrarily, a combination of using shortest path and picking the destination processor based 

on this shortest path value was used. 

The sizes for the hypercube simulation were 64, 128,256, and 512 processors. For the grid the sizes 

were 64, 144, 256, and 559. Finally, for a cube connected cycles (ccc), the number of processors was 64, 

160, 384, and 8%. Thus the only size they all have in common is 64. The tables shown below (figures 4- 

9) display the experimental mean of the time quantum T for 25 trials of embedding a graph into different 

topologies. Each graph is embedded one edge at a time. and the number of slots needed to represent all the 

arcs in the path is recorded. Each trial using different random seeds for selection of placement and paths. 

The tables show the average T for these different placements. The student-t distribution was used to deter- 

mine the 99% confidance intervals. 

Complete binary trees were generated with the number of vertices in a tree equal to the number of 

processors. or as close as possible for a given sized network. For example, a tree of height 5 can be 

embedded in a hypercube of dimension 6. Results are given for trees presented depth first. (It may be 

noted that the size of T was Sdiumeter of the network. Note that the diameter of the grid for the 4 sizes 

was 8,13,16,and 23; the ccc, 10,13,15, and 18; and the hypercube 6,7,8,and 9.) 

Fig. 4. Time Quantum Results for Embedding Depth First Binary Trees 

The same setup was used for X-trees. An X - w e  has twice as many edges as a tree. While the size 

of T increased, it was less than twice the corresponding values for trees. 
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tree 
1 1  Depth First X-Tree Time Quantum 

grid CCC hyper 
height N I T N l  T N I  T 

Fig. 5. Time Quantum Results for Embedding Depths First Binary X-Trees I 

5 
6 
7 
8 

The results for permutations were similar to the results for binary trees. Since there are N values 

being permuted, each processor has 1 arc. As above, the size of N listed in the table is the size for the 

hypercube. For all three networks, all of the processors were permuted. For instance, the second grid 

entry is actually of size 144, and so all 144 values were permuted. As with the trees, it may be noted that 

64 10.3f.4 64 12.8k.5 64 8.3k.6 
144 13.7k.a 16C 14.4k.6 126 9.5f.5 
256 16.1f.8 384 16.6ct.6 256 10.7k.6 
559 21.8f.7 8% 1 8 3 . 7  512 11.e.6 

the size of T was less than or equal to the diameter of the topology. This is reasonable since there can be 

N 
64 

connections between two processors that are at the maximum distance from each other. 

~~ 

T N T N l  T 
7.8k.3 64 9.7f.5 64 I 5.8k.5 

Permutation Time Quantum 
mid It ccc 11 hvoer 

144 
256 
559 

12.1k.4 160 12.1k.4 128 6.8k.3 
15.8k.4 384 15.4k.6 256 7.W.4 
23.0f.6 8% 18.of.4 512 9.W.5 

The tests on random graphs were included to examine the performance of the algorithms on data that 

were not as regular as the previous cases. When examining the results for T on the previous data, it was 

conjectured that the size of T was proportional to the average number of arcs per processor times the diam- 

eter. For instance, trees and permutations have an average of one edge per processor and use about diume- 

ter slots. X-trees have twice as many edges and use less than 2 x diameter. 

The experiments for random graphs were performed on all three networks using three different limits 

for the upper bound on the number of out-arcs per vertex in the directed random graph. The results 

corresponded almost exactly to the hypothesis. When the limit is 3, the average number of connections per 

processor is 2, and T is about 2 x diameter for all three networks. Likewise, when the limit is 5,  the aver- 

age number of connections is 3; T is about 3 x diameter. The consistency of this result is surprising, and 
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grid 
N T est.T 
64 15f.7 16 

suggest the existence of some underlying analytical principals. 

CCC hyper 
N T est. T N T est. T 
64 1M.8 20 64 11.4f.7 12 

The following three tables display the data for the experimental mean of T. Following each value, in 

144 
256 

parenthesis, is the diameter of the network times the average number of connections per vertex in the 

embedded graph . For the three tables this value is 2.3, and 4 times the diameter of the associated network. 

23.3f1.3 26 160 24.3f.9 24 128 13k.8 . 14 
3W1.3 31 384 30.4k.8 30 256 14k.7 16 

The relationship between the experimental value and the proposed bound can clearly be seen. As in previ- 

144 
256 

ous experiments, confidence intervals are presented calculated using the student t distribution for a 

confi&nce of 99%. 

33.4k1.5 39 160 35.1f1.2 36 128 18.4H.9 21 
43.1f1.7 48 384 44.7f1.3 45 256 20.8k1.0 24 

grid 
N T est.T 
64 28.8fl.O 32 

CCC hyper 
N T est.T N T est. T 
64 36.033.6 40 64 22.m1.0 24 

Fig. 7. Time Quantum Results for Embedding Graphs with avg &gree = 2 

Time Quantum, Random Graph, avg degree = 3 

144 
256 

44.8f1.7 48 160 47.01t1.9 48 128 23.7k1.0 28 
56.7f1.6 64 384 58.3M.8 60 256 27.3k1.3 32 

I Time Quantum, Random Graph, avg degree = 4 I 

Based on this data, we can assume with some degree of confidence that T is pmportional to the aver- 

age n u m b  of arcs per vertex times the diameter of the network. This is a highly significant result. If it is 

assumed that the average number of arcs and the neighbor-limit are bounded by small constants, then Cr, 

the time for a parallel traversal operation, is O(dianzeter). If it assumed that the diameter is O(fog N), then 

CT is O(bg N). 
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63. Connection Machine Implementation 

The Connection Machine is an SIMD architecture with 64,OOO bit serial processors. It differs from 

our machine model only in that it has extra hardware to perform the routing. The automatic routing pro- 

vided can be ignored, and instead neighbor connections can be used for communication. The algorithms for 

connected information processing were implemented on the Connection Machine with the automatic routing 

disabled. 

The implementation of the routing algorithms on the Connection Machine helped point out some of 

the practical derails such as having an input-buffer and output-buffer at each processor so that a message 

that arrives at time t doesn’t overwrite one that will leave at time t. It was also encouraging to note that 

only a few pages of code were needed to realize the appropriate routines and that the routines were written 

and debugged in a few days 

One of the most interesting aspects of the implementation was dealing with the interconnection net- 

work. This was another area which demonstrated the flexibility of the routing algorithms presented here. 

As mentioned previously, the interconnection network is a hybrid between a grid and a hypercube. Each 

processor is configured as an element in a grid, so it has North, South, East, West neighbors, and every 12 

out of 16 processors has a single hypercube wire. So, some processors have N,S,E,W, and H neighbors; 

some do not have the H. AdditionaIly, the implementation here used the grid as a normal 2-d grid rather 

than a toroidal grid. Because of this some processors do not have all 4 of their NSEW neighbors. This 

slight irregularity in the network did not pose any problem for the algorithms. Each processor has 5 bits in 

their HAS-NEIGHBOR structure which were used to indicate the existence of N,S,E.W, and H connections. 

When the placement algorithm was executed, this bit was checked to insure that processors without a con- 

nection did not try to send or receive over a non-existent wire. The algorithm was implemented with the 

shortest path option. 

Test data was collected running on a 16,000 processor segment of the Connection Machine. Com- 

plete binary trees and X-trees were tested ranging in height from 2 to 13. The results were surprisingly 

consistent. A complete binary tree with M vertex, heighr=log(hi), used about log(M) time slots; a tree of 

height 6 used 5 time slots; a tree of height 12 used 8 time slots. An X-tree with heighr=log(M) used about 

W + 2  time slots; an X-tree of height 6 used 16 slots; an X-tree of height 11 used 24 time slots. The 
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results listed are exact numbers, not approximations. The consistency of the results for different sized trees 

was supking. These results are consistent with the simulated data and with the observation that T is 

bounded by d i a m e t e m a v e r a g e - n ~ r - c o ~ c t w ~ .  Experimentation done on the Connection Machine was 

not as thorough or extensive as the simulator test due to time constraints. No data are available on the vari- 

ance of the results. 

7. Conclusion 

Some simple algorithms have been presented which allow arbitrary graphs to be embedded in SIMD 

architectures with a variety of topologies. The time for performing a parallel traversal and for adding a new 

connection appears to be proportional to the diameter of the topology times the average number of arcs in 

the graph being embedded. In a system where the topology has diameter O(logN). and where the degree of 

the graph being embedded is bounded by a constant, the time is assumed to be O(2ogN). This makes it 

competitive with existing methods for SIh4D muting with the advantages that there are no @on' require- 

ments for the farm of the data. Furthermore the topological requirements are extremely general, and new 

arcs can be added without reconfiguring the entire system. The simplicity of the implementation and the 

flexibility of the method suggest that it could be an important tool for using SIMD architectures as graph 

processing machines. 

References 
111 K. Batcher. " h i h g  Netwarka and their Appliccltionc," The Proceedings of M I P S  1968 UCC, 307-314. pp. 307-314. 

[21 K. Batcher. "Design of a massively pcullilel processor." IEEE Trotu on Computers, Sept 1980. pp. 836-840. 

[31 s. F a h l m ~ .  ""L - A System far Representing ud Using Real-World Knowledge," MlT Press, Cambridge, Massachusetts 1979. 

WI S. Fahlmm. "Design sketch far a mill imchent NETL machine," Proc. AAAf-80,1980. 

S. Fahlman. '"The Hashnu Intemmudcm Scheme," Repon t CMU-CS-80-125 Camegie-Melloo University D e p ~  of Comp. Sc., 
1980. 

(61 T. F a g .  "A S u ~ e y  of Inkrconncciicm Naworlrs." Computer, Dcc 1981 pp.12-27. 

[7] M.  my^. " h e  cunputer 0grniUtiOns md their c f f d v a ~ ~ s . "  IEEE T r m  Conrpvlcrs Vol C-21. No 9, pp. 948-%O. 

181 W. H i s .  "The cane&on M.drinq" MlT Prers, Cambridge, Mass.. 1985. 

191 C. Lee "An algorithm for path w ~ c c f i o n s  and its applicatbs." IRE T r m  Efec Cornput, Vol. EC-10. Scpt 1961, pp. 346-365. 

[lo] T. Leighton, "Padel Canputation Using Meahes of Trees," Proc. International Workhop on Graph Theory Concepfs in Com- 

pu&er Science, 1983. 

[ll] E. MOUE. "Shortest path thrwgh a maze," Anno& of Canpufatwn hbaotory, VoL 30, Cambridge, MA: H m a d  Univ. Pms. 
1959. pp.285-292. 

1121 D. Nassimi and S. Sahni, "Parallel Algorithms to Set-up the Benes Pennutation Network." Proc. Workhop on Inferconnection Net- 
w r h  for Porallel and Disfributed Procwing,  Apd 1980. 



-22- 

1131 D. Nassimi and S. Satmi, "Bene8 Network and Parallel Pemutatim Algorithms." IEEE Trarrractiorrr on Compders Vol C-30 No 5, 
May 1981. 

[14] D. Nassimi and S. Sahni, " P d  Permutation and Sorting Algorithms and a New Generalid Carnection Networlr." JACM, Vol. 
29. NO. 3, J ~ l y  1982 p ~ .  642-667. 

[15] F. Preparata and J. Vuillemin. "The Cube connected Cycles: a Versatile Network for Parallel Camp~tation." Comm. ACM, Vol24. 
NO 5 my 1981, pp. 30@-309. 

[la] H. Stone. "Parallel pnxxssing with the perfect shufflq" IEEE Tram. C w r s  Vol C. No 20. Feb 1971, pp. 153-161. 

[17] C. Thompson. "Gene- anmcction networks for parallel processor intercommunication," IEEE Tran. Compvtrrs Vol C, No 27 
DIX. 78. p ~ .  1119-1 125, 

[l8] S. Tombwl i .  "A System for Routing A h i i  Cammunicatian Graphs on SIh4D Arrhitoctures." Doctoral Dissertation. 
1986Dept. of Computer Science. Duke Univenity, Duham, NC. 

[19] R. Wagner. "The Boolean Vector Machine." IEEE 1983 Cot#erence Proceedings of the 10th AM& IntcrMtbnal Symposium on 

Computer Archirectwe 



Standard Bibliographic Page 

1. Report No. NASA CR-178265 
ICASE Report NO. 87-14 

2. Government Accession No. 

4. Title and Subtitle 
A SYSTEM FOR ROUTING ARBITRARY DIRECTED GRAPHS ON 
SIMD ARCHITECTURES 

17. Key Words (Suggested by Authors(s)) 

7. Author(s) 
Sherry1 Tomboulian 

18. Distribution Statement 

Q- f & ~ W @ g P d ? ? ~ k 0 1 & ~ &  A$$Bcations in Science 
and Engineering 

Mail Stop 132C, NASA Langley Research Center 
Hampton, VA 23665-5225 

12. Sponsoring Agency Name and Address 

National Aeronautics and Space Administration 
Washington, D.C. 20546 

of this page) 19 ec it C 'f. f this report) #ncYaSs&eQ 

15. Supplementary Notes 

21. No. of Pages 22. P i e 
24 1 Ab3 

Langley Technical Monitor: 
J. C. South 

Final Report 

3. Recipient's Catalog No. 

5. Report Date 

March 1987 
6. Performing Organization Code 

8. Performing O r g h a t i o n  Report No. 
87-14 

10. Work Unit No. 

13. Type of Report and Period Covered 

Contractor Report 

505-90-21-01 
14. Sponsoring Agency Code 

Submitted to IEEE Trans. Comput. 

16. Abstract 

There are many problems which can be described in terms of directed graphs 
that contain a large number of vertices where simple computations occur using 
data from connecting vertices. A method is given for parallelizing such 
problems on an SIMD machine model that is bit-serial and uses only nearest 
neighbor connections for communication. Each vertex of the graph will be 
assigned to a processor in the machine. Algorithms are given that will be used 
to implement movement of data along the arcs of the graph. This architecture 
and algorithms define a system that is relatively simple to build and can do 
graph processing. All arcs can be transversed in parallel in time O(T), 
where T is empirically proportional to the diameter of the interconnection 
network times the average degree of the graph. Modifying or adding a new arc 
takes the same time as parallel traversal. 

routing algorithm, SIMD architecture, 
parallel processing, graph embedding, 
interconnection network 

6 1  - Computer Programming and 
Software 

Unclassified - unlimited 

For sale by the National Technical Information Service, Springfield, Virginia 22161 
NASA Langley Form 83 (June lQ65) 


