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ABSTRACT 

In this paper we analyze and compare the performance on a hypercube mul- 

tiprocessor of some of the major multigrid techniques used in practice. The  model 

problem considered here is tha t  of solving the 2-D incompressible Navier-Stokes 

equations representing the flow between two parallel plates. Results obtained by 

implementing the different multigrid schemes on an iPSC are presented. Effects on 

the overall performance of various parameters of the algorithms, of the partitioning 

strategies employed, and of some of the characteristics of the underlying architecture 

are discussed. 
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1. Introduction 

Multigrid algorithms are found to be optimal and efficient for solving a large 

class of problems involving partial differential equations on sequential machines. 

Recently there has been increased interest in parallelizing these algorithms. Although 

the multigrid methods exhibit a high degree of parallelism in the individual operai 

tions involved, i t  is not necessarily true tha t  these algorithms perform optimally on 

multiprocessor systems as well. T h e  performance of a multiprocessor system solving 

a given problem depends on several parameters. These include architecture depen- 

dent parameters, algorithm dependent parameters, and implementation dependent 

parameters. In this paper we discuss some of the performance issues involved in the 

parallel implementation of these algorithms and present some experimental results 

obtained by solving the ZD Navier-Stokes equations for incompressible fluid flow on 

the Intel’s Personal Supercomputer (iPSC). All the experimental results presented 

here are obtained with the Release 3.0 iPSC operating system. In the following sec- 

tion we briefly describe the idea behind the multigrid methods and present three 

different algorithms based on this idea. In Section 3 the model problem is given. In 

Section 4 the performance issues involved are discussed and some experimental 

results are presented. Conclusions are given in Section 5.  

2. Multigrid Algorithms 

Consider a differential equation given by LU = F with boundary conditions 

BU = g defined on an n -dimensional domain in R O .  For simplicity of exposition 

let L be an elliptic operator. Let the difference scheme LA U h  = F A  with boundary 

condition B A  U h  = g A ,  approximate this differential equation. 
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Now suppose we are solving the difference scheme by relaxation (Gauss-Seidel in 

lexicographic order, for instance). T h e  error here can be written as e," = UA - u," 

where, u," is the current approximation after the n- th  relaxation sweep. Now con- 

sider the ratio p,,  = lle,"+l 11 / 11e,"11 where, 11 * 11 denotes the Lznorm. From numer- 

ical experiments i t  is seen tha t  the above ratio increases with n from some value 

p o  < 1 and approaches a number tha t  may be very close to one. T h a t  is, conver- 

gence is fast in the first few steps and then slows down. 

A closer study reveals tha t  whenever the error e,,'' is not smooth, pn is small, 

giving a good convergence rate. When e," is smooth the resulting convergence rate 

becomes poor. T h a t  is, relaxation smoothes the error. T h e  main idea of multigrid is 

this: if the error is smooth , approximate it by a coarse grid, say of mesh size 2 h .  

Applying this idea recursively one arrives at a multigrid algorithm. It  involves relax- 

ation sweeps on all levels, transfer of residuals from a fine to coarse level, and inter- 

polation of correction from coarse to fine level. An important property of such an 

algorithm is that the rate of convergence remains independent of the size of the 

problem if the order and the frequency with which the grids are visited are chosen 

properly. 

T h e  recursive idea described above for reducing the error in the solution of the 

problem gives rise to a cyclic order of computation and these are referred to as the 

multigrid cycles. Different multigrid algorithms have been developed depending on 

the order and the frequency with which the grids are visited within a cycle. The  

most commonly used ones are the V and W cycles. In addition to these two types 

there is another type of cycle called F cycle which is less well known. A scheme called 

Full MultiGrid (FMG), in which the first approximation on the fine level is obtained 
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Fig. 1 (a) V Cycle (b) F Cycle 

by solving a similar problem on a coarser level, yields optimal performance. A 

detailed description of the various multigrid techniques and the algorithms based on 

these cycles is given in [Brandt 19841. For the sake of clarity, we will refer to the 

algorithms based on these three cycles as the V, F, and W algorithms. All three algo- 

ri thms make use of the FMG scheme. Furthermore, the basic multigrid operations in 

these algorithms remain the same, but  the number of times a given grid is visited 

within a multigrid cycle is different. We will see tha t  the relative performance of 

these three algorithms on multiprocessor systems is not the same as on the sequential 

machines. 

From the performance point of view the parameters tha t  characterize these 

algorithms are the amount of computational work done per cycle, the number of 

cycles required for achieving the desired accuracy, and the order and the relative fre- 

quency with which different grids are visited. T h e  last parameter is not so important 

for the  sequential implementations but is a crucial factor for parallel applications. 
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Fig. 2 W Cycle 

If wL denotes the total amount of computational work on the highest level L 

then it can be shown that  the total work per FMG cycle for the V algorithm is 

asymptotically less than or equal to - * w L .  16 I t  is less than or equal to -*wL 64 and 
9 27 

4.wL for the F and W algorithms, respectively. These calculations assume tha t  the 

number of relaxation sweeps on each grid is a small constant. If the number of mul- 

tigrid cycles necessary to  achieve the desired accuracy is also a small constant then 

all three algorithms perform optimally, i.e., in time 0 (wL ), on sequential machines. 

Characterizing the convergence properties of these algorithms is difficult, but 

experimental results suggest tha t  in general the convergence rates per cycle for the 

W algorithm are the best and those of the V algorithm are mediocre. The  F algo- 

rithm is somewhere between the two, usually slightly worse than the W algorithm. 

So the W algorithm is almost always preferred over the other two on sequential 

machines. 
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Figures 1 and 2 illustrate the order in which the three algorithms visit the 

different levels within a cycle. Here the increasing level numbers indicate finer mesh 

sizes. T h e  letters within circles denote the number of relaxation sweeps on the 

corresponding levels. On levels with empty circles r + r 2  number of relaxations are 

performed. It can be easily verified that for the V algorithm each level is visited 

exactly once within a multigrid cycle. For the F algorithm, level i is visited 1 - i + 1 

times where 1 is the highest level for tha t  cycle. For the W algorithm, level i is 

visited 2'< times. Thus, the number of visits to the coarsest level grows exponen- 

tially for the W algorithm, whereas for the F algorithm it grows linearly. T h e  

significance of this property will become clearer in Section 4 where we discuss perfor- 

mance issues. 

3. Model Problem 

T h e  model problem considered here is that  of solving the 2-D steady state 

incompressible Navier-Stokes equations. Such equations arise, for example, in study- 

ing the fully developed flow between two parallel plates where one plate may be 

moving with respect to the other plate. Their solutions present some of the 

difficulties involved in solving real life problems, but  a t  the same time are simple 

enough for experimentation on currently available multiprocessor systems. 

T h e  equations in terms of vorticity w and stream function ll, are: 

All, = w 

u W ,  + v wI = - Aw. 1 
Re 

Re is the Reynold's number of the fluid flow and u and v are the velocity com- 

ponents in the X and Y directions, respectively. T h e  velocity components are given 
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in terms of the stream function 1/, by, 

u = - +g and v = +=. 

If the computational domain is SI = ((2, y)  I 0 5 x 5 1, 0 5  y 5 1) and if 

Uo is the  velocity of the moving plate, then the boundary conditions for such a flow 

are given by, 

u =  v = o  a t y  = O  
u = Uo, v = O  a t y  = 1  
Periodicity is imposed in the X direction and 
a constant pressure gradient is imposed on the flow. 

The  details of discretizing and solving these equations using the multigrid methods 

on the hypercube multiprocessor system are given elsewhere'. 

4. P e r f o r m a n c e  Issues in the Parallel Implementation 

There are several parameters tha t  affect the performance of a multiprocessor 

system employed to solve a given problem. These parameters are algorithm and 

implementation dependent as well as architecture dependent. One must take into 

account all these parameters before making a decision about the suitability of a par- 

ticular algorithm for solving a problem on a multiprocessor system. In the following, 

we describe the interaction of some of these parameters. 

4.1 Partitioning Scheme 

First we describe the effect of partitioning the domain on the distribution of the 

computational load. For the sake of simplicity consider a 2-D square domain with 

'V. K. Naik and S. Ta'asan, A methodology for implemenling multigrid melhode in  eolving Navier-Sfokes equo- 
tione on a hypercube muNiproceeeor eyetern, in preparation. 
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x zL points on the highest level L . We divide the domain on the finest level into 

partitions along the X direction and 2' partitions along the Y direction. T h u s  we 

get 2=+l partitions with each partition having 2L-2 points along the X direction and 

Z L - V  points along the Y direction. We map the partitions onto the hypercube nodes 

in a o n e - b o n e  fashion using the binary reflected grey code scheme [Chan 19861. We 

further assume t h a t  a f i z e d  region partitioning strategy is used, i.e., on the succes- 

sive coarser levels each partition contains regions of the domain, formed by the 

points tha t  are the coarse level counterparts of the fine level points of the partition. 

Under this partitioning scheme, in moving from level L to level max(z , y )  the 

number of points associated with each partition decreases by a factor of four. Below 

level max(z , y )  each partition has at most one line of points. With further coarsening 

the number of points per partition is halved until level min(z, y )  is reached. On that 

level each partition has at most one point of the domain. Furthermore, in moving 

from level 1 to level 1-1, where max(z, y )  2 1 > min(z , y ) ,  the number of parti- 

tions having any points and hence any computational work reduces by a factor of 

two. When 1 is less than or equal to min(z, y )  this number reduces by a factor of 

four. 

With the above described properties of the partitioning scheme, it is possible to 

make some predictions about the performance of the various multigrid algorithms 

under some assumptions about the communication costs. Specifically, i t  is possible to 

develop some analytical bounds on the speedups or efficiency of the system with a 

given set of communication parameters. Here we consider some simple cases and 

> - present some experimental results. Detailed analytical results are presented else- 
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where'. 

Consider the case where there are as many partitions as there are points on the 

finest level i.e., each processor is assigned one point of the domain. In the above 

notation this means tha t  z = y = L. Assume tha t  there are no communication 

costs and so the evaluated performance parameters will represent the upper bounds. 

We consider speedup or efficiency of the system as a measure of the performance. 

We define the speedup of a system with N processors as the ratio of the time taken 

by a single processor to solve a problem to the time taken by N processors to solve 

the same problem using the same algorithm. The  efficiency of this system is obtained 

by dividing the speedup by N .  

T h e  total computational cost incurred with N processors is bounded by the 

computational cost of the processor that  performs work on all the levels. Now for the 

case considered here the work on any level is equal to the work associated with a sin- 

gle point and so, the total computational cost CN of the system is given by, 

i = I  

where, q- is the total number of visits to level i and wi is the maximum work per 

processor on level i - a constant in this case. Thus, 

V. K. Naik and S. Ta'asan, Performance etudiee of multigrid algorithme implemented on mereage pawing ar- 
chilectures, in preparation. 
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Note tha t  here N = 4L. Depending on the type of algorithm chosen, the sum over 

total number of visits varies. It can be shown that  for the V algorithm this sum is 

0 (I,*). I t  is 0 (L') and 0 (2') for the F and W algorithms, respectively. Thus,  the 

maximum speedup with N processors for the V algorithm is 0 (logN:N)' - for the 

1 

algorithm it is 0 , and for the W algorithm i t  is O ( N 2 ) .  This shows that 

when there are as many processors as there are number of points on the fine level, 

the speedup for the W algorithm is far from being optimal even when the communi- 

cation costs are ignored. 

For the cases where the number of points assigned to each pattition on the 

highest grid is more than one, the expressions for the speedups are more complex. In 

general the bounds improve. Here we present some experimental results. T h e  effects 

of the algorithm dependent properties and of the partition size on the computational 

efficiency are shown in Fig. 3. T h e  results shown in this figure are obtained by 

measuring only the computational costs on the iPSC. T h e  efficiencies for each algo- 

rithm are normalized with respect to the computational cost of solving the problem 

using tha t  algorithm on a uniprocessor. Thus, although the efficiencies of the three 

algorithms shown in Fig. 3 cannot be compared directly against one another, these 

curves provide information about the relative degradation in performance as more 
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processors are added or as the partition size is decreased and these trends can be 

compared. Clearly, the sensitivity to the partition size is different for the three algo- 

rithms; V algorithm is the least sensitive and W algorithm is the most sensitive. 

Another point to be noted is that  for the smaller size hypercubes Le., when the parti- 

tion size is large, all three algorithms show improvements in efficiency and the 

difference in the efficiencies of the three algorithms decreases. T h e  effect of the size of 

the partitions is shown explicitly in Fig. 4 for the F algorithm. T h e  other two algo- 

rithms show similar trends. As in Fig. 3 the measurements are made without includ- 

ing the communication costs. T h e  results presented in these two figures suggest tha t  

even if communication is instantaneous, the attainable speedup or efficiency is low if 

the amount of work per partition is small. If the communication costs are included 

in the measurements then the performance deteriorates as shown by Fig. 5 for the F 

algor it h m . 

T h e  efficiency discussed above represents a measure of the ability of an algo- 

rithm to keep the processors of the system busy. I t  does not include the effect of the 

numerical properties of the algorithm. If one is interested in the minimum overall 

cost of solving the problem, then both of these properties must be taken into 

account. The  numerical properties are usually dependent on the problem being con- 

sidered and so cannot be characterized easily. For the V algorithm these properties 

sometimes depend on the mesh size also. For the problem we are considering here 

both the F and W algorithms need about two FMG cycles to solve a 128 x 128 prob- 

lem to the level of discretization error, whereas the V algorithm takes about seven 

cycles for the same. To compare the three algorithms more accurately we compute 

the efficiencies using the best sequential timings which for this problem are given by 

the F algorithm. We refer to  such an efficiency as the normalized efficiency. In all 
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cases the problem is solved to get the same level of numerical accuracy. These 

results are shown in Fig. 6. Note that here the communication costs are included in 

computing the normalized efficiency. It can be seen tha t  when the partition sizes are 

large and the hypercube size is small, both the F and W algorithms perform better 

than the V algorithm in spite of the adverse communication costs. For small parti- 

tion sizes the V algorithm may perform better even though its convergence proper- 

ties are inferior. 

4.2 Partition Shape 

When the number of points per partition on the finest level is more than one, 

the shape of the partitions is another parameter tha t  has to be taken into account. 

Reed e t  al. [Reed 19861 have discussed in detail the combined effect of the iteration 

stencil, the  partition shape, and the communication parameters of the underlying 

architecture on the total communication cost. Their discussion concentrates on 

minimizing the communication cost assuming tha t  the computational work is evenly 

distributed and remains the same through out the computation. For multigrid a l p  

rithms, the fact tha t  the computational work decreases on the coarser levels must 

also be taken into account. We explain this point with the help of an example. 

Consider a domain with 64 by 64 points on the fine level. Assume tha t  64 partitions 

are to be made on the fine level. In the fixed region partitioning scheme, if we use 

square partitions, then each partition has a t  least one point on levels 3, 4, 5, and 6. 

(Level 1 is the coarsest level.) On the other hand if one were to partition the domain 

in strips (one column of 64 points in each partition, for example), then only on level 

6 would all partitions have some points assigned to them. Note tha t  in both cases 

each partition has the same computational work on the finest level. Thus  among 
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squares, rectangles, and strips, squares balance the computational load best. 

Experimental results showing the efficiency of partitions with different shapes in 

balancing the computational load are shown in Fig. 7. Note tha t  the communication 

costs are not taken into account. Here a domain with 64x64 points on the fine level is 

subdivided into 64 partitions. T h e  four different cases considered consisted of parti- 

tions with 8x8 points (8 points in x direction and 8 in y direction), 16x4 points, 32x2 

points, and 64x1 points on the fine level. In the first case we get square partitions 

whereas in the last case we get strips. As expected the squares balance the computa- 

tional load better than any other shapes considered. T h e  results shown here 

correspond to the F algorithm. For the W algorithm these will be more pronounced, 

but  less so for the V algorithm. 

When communication costs are introduced the shape of the partitions may 

affect the performance differently. For the iPSC the cost of initializing a message is 

orders of magnitude higher than sending a single byte across a channel. A single 

packet can contain up to 1024 bytes. In addition, all the channels leaving or entering 

a node cannot be effectively utilized for simultaneously sending or receiving messages. 

For the problem sizes we have considered here, it turns out  tha t  the communication 

costs on the iPSC for the strips are less than those for the squares. This  is shown in 

Fig. 8 for the F algorithm applied to a problem with 64x64 points on the highest 

level. Here the efficiency is based on the computation plus communication cost. I t  is 

obvious from Figures 7 and 8, that  for the problem sizes we are considering, the com- 

munication costs incurred with strips are much less than those for the squares. In 

general this is not true. T h e  problem sizes considered here are special cases and it 

can be easily shown that  for strips, asymptotically, the total number of packets for 
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the  two messages sent out per exchange of information with the neighboring parti- 

tions is greater by a constant factor than those for the four messages sent out  by the 

square partitions when the number of interior points per partition is the same [Reed 

19861. 

4.3 Schemes for Reducing the Communication Costs 

In the partitioning schemes considered above, the regions of the domain are per- 

manently assigned to the processors on all the levels even when the associated com- 

putational work is small. Sometimes it is advantageous to resort to a shifting region 

partitioning scheme. In this scheme below a certain level 1 the work on the entire 

domain is shifted to one node so that  on all the successive coarser levels there is no 

communication cost. On levels 1' and above the computational work is uniformly 

distributed among all the partitions, but below level 1 the computation is serialized. 

T h u s  every time there is transition between levels 1 * and 1 - 1 either the d a t a  has 

to be gathered to one partition or scattered to all partitions from one partition. This 

scheme performs well if I is such that  

1 *-1 1 *-1 

(C~0.t~ ) > CDoml Gl s1 * e  

1 =1 I =1 

where, Cpodl and Cp:.(, denote the computation and communication costs, respec- 

tively, associated with a partion on level I .  C,,,, is the computation cost associated 

with the entire domain on level I .  Gl and SI are the costs of gathering and scatter- 

ing the domain on level 1 * , respectively. 

Experimental results showing the performance improvements brought about by 

serializing the work below some level 1 by moving all the regions to a single node, 

are shown in Fig. 9. Here the percent increase in efficiency by serializing the work 
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below levels 2 through 5 on a 16 PE hypercube is shown for the two problems with 

the finest level domain having 64x64 and 128x128 points. In this figure 1' = 1 

corresponds to the fixed region partitioning scheme i.e., no moving takes place. It can 

be seen tha t  the performance peeks out at a particular value of I * . T h e  savings in 

communication costs achieved by serializing the work above this level is offset by the 

increase in the computation cost. Note that  when the problem size is small or when 

the size of the partitions assigned to each processor is small, the gains are higher. 

Here each partition has a smaller piece of work on the highest level and so the com- 

munication costs are more dominant. By serializing the computation below a certain 

level, the percentage reduction in the total cost is higher than that  in the bigger size 

problem. In Fig. 10 we show the effect of the above described partitioning scheme 

when the computing power is increased by adding more processors. Note tha t  for 

the larger size hypercube, the cost of scattering and gathering the da ta  is also higher. 

But  now the computational work associated with each partition has decreased and so 

the communication costs form a higher proportion of the total cost. 

5. Conclusions 

We have considered the performance issues involved in implementing the mul- 

tigrid methods on a hypercube multiprocessor system. It  is shown tha t  both algo- 

rithm dependent as well as implementation dependent parameters affect the perfor- 

mance considerably and the selection of an algorithm or of a partioning scheme must 

be based on the combined effect of these parameters. We demonstrate by some 

experimental and analytical results that  the best sequential algorithm may not 

always be the most suitable algorithm for parallel processing. A t  the same time an 

algorithm that gives the best speedups may not be the most suitable candidate 
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either. By using the problem of solving the 2-D Navier-Stokes equations as a model 

problem we show tha t  a less well known method given by the F algorithm gives the 

best performance. We have also shown that when the communication costs are high 

instead of balancing the computational load it may be advantageous to sequentialize 

some parts of the work and avoid communication costs in those sections. 
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