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ABSTRACT 

A review of the e n t i r e  research  program s ince  i t s  incept ion  t e n  years  ago is 
given i n  t h i s  f inal  repor t .  The i n i t i a l  e f f o r t  focused on t h e  effects of 
impur i t i e s  on t h e  e f f i c i e n c y  of s i l i c o n  so la r  ce l l s  t o  provide f i g u r e s  of 
m a x i m u m  allowable impuri ty  dens i ty  f o r  e f f i c i e n c i e s  up t o  about 16 t o  17% 
(AM1). Highly accura te  experimental  techniques (Capacitance Trans ien t  
Spectroscopy) were extended t o  charac te r ize  t h e  recombination p rope r t i e s  of t he  
r e s i d u a l  impur i t i e s  i n  s i l i c o n  s o l a r  cell. A novel numerical s imula tor  of 
s o l a r  ce l l  was a l s o  developed, using the  C i r c u i t  Technique f o r  Semiconductor 
Analysis,  which has provided exac t  t heo re t i ca l  design cri teria on t h e  maximum 
allowable impuri ty  dens i ty .  Recent e f f o r t  u n t i l  t he  end of t h i s  program has 
focused on t h e  de l inea t ion  of the mater ia l  and device parameters which l i m i t e d  
t h e  s i l i c o n  AM1 e f f i c i e n c y  t o  below 20% and on an inves t iga t ion  of ce l l  designs 
t o  break the  20% barrier. 
e f f i c i e n c y  design cri teria,  i f  a l l  implemented successfu l  i n  one c e l l ,  could 
g ive  AM1 e f f i c i e n c i e s  of 20% o r  higher .  These include implementing a t h i n  
graded-base back-surface-field by epitaxy, minimizing emitter contac t  and 
s u r f a c e  o r  i n t e r f a c e  recombination losses us ing  high/low emitter junc t ions ,  
removing junc t ion  per imeter  recombination lo s ses ,  and maintaining a high base 
lifetime. 
ce l l  design of Green came c l o s e s t  without using a graded base nor  s p e c i a l  
perimeter loss reduction. Novel designs of the  cel l  device s t ructure  and 
geometry can f u r t h e r  reduce recombination l o s s e s  as well a s  t h e  s e n s i t i v i t y  and 
c r i t i c a l n e s s  of  t h e  f a b r i c a t i o n  technology required t o  exceed 20%. These 
inc lude  texturized-grooved emitter and r e f l e c t i n g  back su r face  f o r  higher  
absorpt ion,  f l o a t i n g  emitter t r a n s i s t o r  c e l l  t o  e l imina te  emitter bulk and 
su r face  recombination, and po lys i l i con  emi t te r  and base contac t  barriers t o  
f u r t h e r  reduce emitter contac t  recombination. These innovat ive cell  designs 
are e s s e n t i a l  t o  reach t h e  fundamental or  i n t r i n s i c  l i m i t  of  25% e f f i c i ency .  It 
i s  concluded tha t  t h e  p r a c t i c a l  l imi t a t ion  i n  s i l i c o n  ce l l s  with e f f i c i e n c y  
s u b s t a n t i a l l y  higher  than 20% comes from recombination of  t h e  photogenerated 
carriers a t  t h e  r e s i d u a l  impuri ty  and defect  recombination c e n t e r s  i n  the base. 
Th i s  c a l l s  f o r  f u r t h e r  research on the  fundamental cha rac t e r i za t ion  of  t h e  
carrier recombination p rope r t i e s  a t  t h e  chemical impurity and physical  de fec t  
cen ters .  
technology can be successfu l  i n  a t t a i n i n g  e f f i c i e n c i e s  g r e a t e r  than 20%. 
forms, such as po lyc rys t a l l i ne  s i l i c o n  and amorphous s i l i c o n ,  are unl ike ly  t o  
exceed 20% e f f i c i e n c y  due t o  the physical d e f e c t s  i n  these materials, g ra in  
boundaries i n  t h e  former and dangling bonds i n  t he  lat ter,  which are e f f i c i e n t  
recombination s i tes  and which cannot be completely passivated,  such as by 
hydrogen o r  o t h e r  neu t r a l i z ing  impur i t ies ,  i n  order  t o  reduce the  r e s i d u a l  
a c t i v e  recombination cen te r  d e n s i t i e s  i s  less than lo1' ernm3. 

It is shown t h a t  the known and newly proposed high 

Fabr ica t ion  of such a cell  has not  been reported al though an  earlier 

It is f u t h e r  shown tha t  only s ing le  c r y s t a l l i n e  s i l i c o n  c e l l  
Other 
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I. INTRODUCTION 

This  program began on Ju ly  1 ,  1982. The first t echn ica l  manager of t he  

con t r ac to r  was D r .  Ralph Lutwack of the J e t  Propulsion Laboratory. 

emphasis was on a s tudy of  t h e  r e l a t i o n s  of t h e  material p rope r t i e s  and h igh  

e f f i c i ency  s o l a r  ce l l  performance on mater ia l  composition, which was a l s o  the  

con t r ac t  t i t l e .  The ob jec t ives  were covered by two i n t e r r e l a t e d  tasks: ( 1 )  

theoretical and experimental  s t u d i e s  of  impurity related energy l e v e l s ,  

d e n s i t i e s  of these l e v e l s  and electron-hole thermal capture  and emission rates 

a t  these l e v e l s ;  and (2)  generat ion of  mathematical models t o  descr ibe  t h e  

experimental  r e s u l t s  i n  order  t o  a i d  i n  the  s p e c i f i c a t i o n  of the  material 

properties and device s t r u c t u r e s  required for very high-eff ic iency s o l a r  cells. 

D r .  Li-Jen Cheng of  the  Jet Propulsion Laboratory has served as t h e  second 

t echn ica l  manager u n t i l  the  end of t h e  contract ,  June 15, 1986. 

The i n i t i a l  

The planning t o  expand and focus more sharp ly  on t h e  last aspec t  of task 

(2) began i n  August 1983 r e s u l t i n g  i n  the add i t ion  of tasks 3 and 4. 

calls f o r  the  i d e n t i f i c a t i o n  of  the  factors which l i m i t  the  AM1 e f f i c i e n c y  of 

s i l i c o n  s o l a r  cel ls  wi th  e f f i c i e n c i e s  below and above 20% and recommendation 

of practical so lu t ions  t o  achieve e f f i c i e n c i e s  greater than  20%. 

concerns experimental  demonstration and the  practical implementation of  the 

recommended p r a c t i c a l  so lu t ions .  

Task 3 

Task 4 

T h i s  is the  t h i r d  and f i n a l  technical  r e p o r t  of  t h i s  program. 

t i o n  t o  the previous t echn ica l  r e p o r t s  [1,2] and r e s u l t i n g  publ ica t ions  i n  t h e  

open l i terature [3,4], f ind ings  fram t h i s  program have a l s o  been repor ted  a t  

I n  addi-  
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the High-Efficiency Modeling Workshop on March 13, 1984 [5],  t he  High- 

Eff ic iency  Crys t a l l i ne  S i l i c o n  So la r  C e l l  Research Forum from Ju ly  9 t o  11, 

1984 163, the 24th, 25th and 26th P ro jec t  In t eg ra t ion  Meetings on October 2, 

1984 C71, June 19, 1985 [8] and A p r i l  29, 1986 [g ]  r e spec t ive ly ,  and t h e  

Workshop on Low-Cost Polys i l icon  f o r  T e r r e s t r i a l  Photovol ta ic  Solar  C e l l  

Applications on October 28, 1985 [ lo] .  

pa ten t  appl ica t ion  which was j o i n t l y  submitted by Chih-Tang Sah and Li-Jen 

Cheng and f i l e d  by t h e  Jet Propulsion Labortory and NASA w i t h  t h e  United S t a t e s  

Pa ten t  Office i n  February, 1986 [ l l ] .  

New ce l l  s t r u c t u r e s  were proposed i n  a 

Th i s  f i n a l  r e p o r t  w i l l  p resent  summaries of  t h e  r e su l t s  of t h i s  program. 

Progresses a r e  described i n  t h e  next  s ec t ion ,  s e c t i o n  11. 

is given i n  s e c t i o n  111. References c i t e d  i n  t h e  t e x t  are enclosed by t h e  

square bracket [ 3 and a l ist  of re ferences  i s  given i n  s e c t i o n  I V .  

A concluding summary 



I1 PROGRESSES 

Object ives  of  t h e  t a s k s  a r e  first given. They are then  followed by a 

desc r ip t ion  of the progresses  made. 

2.1 THEORETICAL AND EXPERIMENTAL STUDIES OF IMPURITY RELATED ENERGY LEVELS, 

LEVEL DENSITIES AND CARRIER CAPTURE RATES. (Task 1)  

Th i s  t a s k  was a cont inua t ion  of a previous J P L  c o n t r a c t  whose main 

o b j e c t i v e  was t o  provide accu ra t e  and de ta i led  cha rac t e r i za t ion  of t h e  

recombination p rope r t i e s  of  r e s i d u a l  impurity recombination c e n t e r s  i n  s o l a r  

cell  grade s i l i c o n .  That effor t  was summarized by its program manager, D r .  Ralph 

Lutwack [12]. 

which are no t  completely removed during the  s i n g l e  c r y s t a l  growth processes ,  

such as t h e  Czochralski and t h e  float-zone techniques and o t h e r  techniques 

developed s p e c i a l l y  f o r  low c o s t  s o l a r  c e l l s  such as t h e  cast technique. 

of the p r i n c i p a l  r e s idua l  impur i t ies  which can s i g n i f i c a n t l y  increase  t h e  

recombination rates of t he  photo-generated e l e c t r o n s  and ho le s  are the  

t r a n s i t i o n  metals commonly found i n  t h e  s i l i c o n  feed s tock ,  such as  T i ,  Mo, W 

and o t h e r s  [13,14]. I n  add i t ion ,  recombination impur i t i e s  can be introduced 

during r e f i n i n g  of s i l i c o n  feed s tock ,  such as i n  t h e  zinc reduct ion  process 

[15]. Impur i t i e s  such as gold are a l s o  introduced, unavoidably, dur ing  

f a b r i c a t i o n  even i n  t h e  most advanced s ta te-of- the-ar t  s i l i c o n  VLSI production 

l i n e s .  

The r e s idua l  impur i t i e s  a re  present  i n  t h e  o r i g i n a l  s i l i c o n  s tock  

Some 
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2.1.1 HISTORICAL SUMMARY 

I n  the e a r l y  phase of  t h e  s o l a r  photovol ta ic  pragrams which began around 

1975, e f f o r t s  were directed t o  an  inves t iga t ion  of inexpensive s o l a r  grade 

s t a r t i n g  s i l i c o n  material E123 which conta ins  high d e n s i t i e s  of  these  r e s i d u a l  

i m p u r i t i e s  [13,14]. 

panels  would no t  a l low t h e  complete removal of t hese  r e s i d u a l  i m p u r i t i e s  from 

t h e  s i l icon c r y s t a l s  grown from s i l i c o n  s tocks  having a high concentrat ion of 

these impuri t ies .  Ef f ic iency  were l i m i t e d  t o  about 15%. I n  order t o  assess 

the  importance and t h e  maximum allowable dens i ty  of these r e s i d u a l  impur i t i e s  

f o r  a given c e l l  e f f i c i ency  i n  t h e  15% range, accura te  recombination rates of  

e l e c t r o n s  and holes  a t  these residual impuri ty  recombination cen te r s  must be 

known. 

determine the e f f e c t s  of  these impur i t i e s  on the  s i l i c o n  s o l a r  c e l l  performance 

and t o  provide detai led cha rac t e r i za t ion  so t h a t  accura te  e lectron-hole  

recombination parameters a t  these impurity s i tes  can be obtained. 

of these  recombination r a t e s  are needed i n  o rde r  t o  optimize t h e  design of 

s i l i c o n  so la r  c e l l s  t o  reach the  lowest manufacturing cos t .  

S i l i c o n  p u r i f i c a t i o n  methods t o  achieve low cos t  c e l l s  and 

A focused effor t  was d i r ec t ed  by Jet Propulsion Laboratory E121 t o  

The values  

The most accura te  and s e n s i t i v e  method for  t h e  determinat ion of  t h e  

recombination parameters has been t h e  capaci tance and c u r r e n t  t r a n s i e n t  

technique pioneered by Sah and h i s  graduate s t u d e n t s  during 1964 t o  1972 E161 

which was fur ther  r e f ined  and improved by h i s  r ecen t  graduate  s tuden t s  El7-231. 

The technique is so s e n s i t i v e  t h a t  it can detect the  t rapping  of  2000 e l e c t r o n s  

o r  ho les  trapped a t  a recombination l e v e l  i n  a p/n junct ion.  

During t h e  previous con t r ac t ,  a d e t a i l e d  c h a r a c t e r i z a t i o n  of t h e  carrier 
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recombination p r o p e r t i e s  a t  the z inc  center  was completed and the maximum 

allowable z inc  concent ra t ion  a t  a given c e l l  e f f i c i e n c y  was computed [l8]. 

E f f o r t s  were a l s o  made on the  cha rac t e r i za t ion  of  other impur i t i e s  which may be 

present  i n  solar grade s i l i c o n ,  such as Ti and V. 

The support  of t h i s  p ro jec t  was sh i f t ed  t o  o t h e r  sources  during t h e  

cu r ren t  JPL con t rac t  due t o  redirecting the  cu r ren t  efforts t o  t he  designs and 

l i m i t i n g  f a c t o r  de l inea t ion  of very high e f f i c i e n c y  cells. 

based on t h e  i n c o r r e c t  assumptions t h a t  i n  order t o  reach very high 

e f f i c i e n c i e s ,  above 205, these impur i t ies  cannot be present  even a t  t h e  p a r t  

per  b i l l i o n  l e v e l  i n  t he  s i l i c o n  s i n g l e  c r y s t a l  p r i o r  t o  ce l l  f a b r i c a t i o n  and 

t h a t  t h e  residual recombination could be from process induced c e n t e r s  

introduced dur ing  ce l l  f a b r i c a t i o n  r a the r  than  impur i t i e s  o r i g i n a l l y  present  i n  

t h e  s t a r t i n g  c r y s t a l .  

the  remaining impur i t i e s  and on whether it is  a chemical impuri ty  o r  a phys ica l  

defect (vacancy) or  t h e i r  complexes; but  regardless, the i r  presence prevents  

t h e  e f f i c i e n c y  t o  reach its i n t r i n s i c  value. 

25%-AM1 [2,4,6,10], is l i m i t e d  by non-impurity and non-defect recombinations 

such as  t h e  band-to-band thermal and Auger recombination lo s ses .  The concern 

on uncont ro l lab le  random in t roduct ion  of t h e  impuri ty  recombination cen te r  

during ce l l  f a b r i c a t i o n  is qu i t e  ser ious.  Even f o r  t h e  c l eanes t  s i l i c o n  VLSI  

f a b r i c a t i o n  f a c i l i t y  and production l i n e  t o  date, there is  no assurance t h a t  

t h e  r e s i d u a l  recombination impurity l eve l  i n  t h e  f i n a l  s i l i c o n  device c h i p  can 

be kep t  below a dens i ty  of 1 . 0 ~ 1 0 ~ '  atom/cm3, We have demonstrated [18] tha t  

t h e  ce l l  e f f i c i e n c y  is l i m i t e d  by electron-hole recombination a t  t h e  impuri ty  

c e n t e r s  even a t  t h i s  low impurity densi ty  l e v e l .  Thus, the quest ion on which 

recombination impurity o r  defect t h a t  limits a cu r ren t  production s i l i c o n  ce l l  

The dec is ion  was 

Other uncer ta in t ies  were a concern of  t h e  i d e n t i t y  of 

The i n t r i n s i c  value,  estimated a t  
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t o  less than 20%, is  st i l l  an open one. And, t o  reach e f f i c i e n c i e s  above 20%, 

a l l  res idua l  recombination impurity d e n s i t i e s  must be con t ro l l ed  t o  a l e v e l  

s i g n i f i c a n t l y  (one o r  two o rde r s  o f  magnitudes) below lo1' atom/cm3 which is 

y e t  t o  be a t t a i n a b l e  by the cu r ren t  s ta te-of- the-ar t  s i l i c o n  VLSI technology. 

Thus, t h e  quest ion of  r e s idua l  recombination impuri ty  and defect c e n t e r s  

that  w i l l  l i m i t  t he  e f f i c i ency  i n  c e l l s  above 20% remains a very important one 

which must be resolved. Without t h e  d e t a i l e d  recombination parameters, only a 

b l ind  brute-force and expensive p u r i f i c a t i o n  and f a b r i c a t i o n  procedure can be 

used t o  reduce recombination losses and there i s  no assurance that  reproducible  

e f f i c i e n c y  g r e a t e r  than 20$ can be a t t a i n e d  cons is ten t ly .  

cont inuing the  fundamental cha rac t e r i za t ion  work, which was t h e  p r i n c i p a l  

ob jec t ive  of t h e  previous con t r ac t  f o r  cel l  e f f i c i e n c i e s  from 10 t o  16% o r  18% 

range, should be emphasized aga in  for  very high e f f i c i e n c y  c e l l  research i n  

order t o  reach e f f i c i e n c i e s  above 20%. To date, low cost is y e t  t o  be a v i ab le  

quest ion on cells above 20% s i n c e  t h e r e  i s  no ex i s t ence  proof i n  one f a b r i c a t e d  

ce l l  which has been designed and b u i l t  t o  take  i n t o  account of a l l  the  

cu r ren t ly  known high e f f i c i e n c y  design considerat ions.  

have already predicted an  e f f i c i e n c y  greater than 20% i n  a p lanar  cel l  

s t r u c t u r e  without t h e  new high-eff ic iency device innovations.  

The importance of 

These cons idera t ions  

Due t o  t h e  r ed i r ec t ion  and new focus of t h e  c u r r e n t  con t r ac t ,  t he  support  

of t h e  cha rac t e r i za t ion  e f f o r t  on impuri ty  recombination cen te r s  was s h i f t e d  t o  

o t h e r  sources i n  order t o  continue t h i s  valuable  research e f f o r t .  It is 

continued not only f o r  its a n t i c i p a t e d  p r a c t i c a l  importance j u s t  stated,  bu t  

a l s o  the  fundamental understanding of t h e  recombination mechanisms and rates 

tha t  can be der ived f r a n  t h e  ca re fu l  and detailed measurements. Through the  
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advance i n  t h e  fundamental undertanding, f u r t h e r  design guides  can be expected 

t o  he lp  a t t a i n i n g  very high e f f i c i e n c i e s  a t  lower cos ts .  

basic research is continued i n  order  t o  take advantage o f  t h e  large number of 

impurity-doped s i l i c o n  s i n g l e  crystals ca re fu l ly  grown under cont ro l led  

condi t ions  by t h e  Westinghouse Research Laboratory under a previous Jet 

Propulsion Laboratory cont rac t .  Our e f f o r t s ,  no t  supported by t h e  c u r r e n t  J P L  

con t r ac t ,  never the less ,  produced seve ra l  major breakthroughs on t h e  use  of  t h e  

t r a n s i e n t  capaci tance method t o  determine t h e  recombination p rope r t i e s  of 

deep-level e l ec t ron  and hole  t r aps .  These new methods have made it poss ib le  t o  

completely cha rac t e r i ze  t h e  recombination p rope r t i e s  of t h e  z inc  and t i tanium 

c e n t e r s  which could be important residual impur i t i e s  i n  s i l i c o n  s o l a r  cells. 

These have been reported i n  journa l  a r t i c l e s  and summarized as follows. 

Furthermore, t h i s  

2.1.2 SUMMARY OF BREAKTHROUGHS ON CHARACTERIZATION OF RECOMBINATION CENTERS 

The major breakthroughs are summarized i n  t h i s  sec t ion .  The de ta i l s  are 

documented i n  the  c i ted jou rna l  a r t i c l e s  from which t h e  new measurement 

procedures can be repeated and the recombination parameters obtained. 

are: 

These 

( 1 )  t h e  i d e n t i f i c a t i o n  of  add i t iona l  sources of  nonexponential t r a n s i e n t s  i n  

the capacitance-versus-time decay curves [19] which showed t h a t  an abrupt  o r  

s h a r p  change i n  t h e  dens i ty  of the recombination c e n t e r s  w i t h  pos i t i on  o r  depth 

i n  t h e  p/n junc t ion  can give rise t o  a non-exponential t r a n s i e n t  even when the  

recombination dens i ty  is  very low, 

(2) the  development and in-depth demonstration of a new v a r i a t i o n  of t h e  
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capaci tance t r a n s i e n t  method which allows t h e  determinat ion of both t h e  

major i ty  and minori ty  c a r r i e r  recombination and capture  rates a t  equi l ibr ium 

o r  zero e l e c t r i c  f i e l d ,  a t  a one-level o r  even two-level recombination cen te r ,  

using only ONE p/n junc t ion  diode [17], 

(3) t h e  i d e n t i f i c a t i o n  of  the  quantum mechanisms which c o n t r o l  the  magnitude of 

the  capture  and recombination rates of e l e c t r o n s  and holes  a t  t h e  two zinc 

acceptor  centers  i n  s i l i c o n  [203 and the  two t i tan ium donor c e n t e r s  i n  s i l i c o n  

[21], and 

(4) t h e  demonstration of  t h e  importance of  impuri ty-related recombination a t  

the sur face  and the  i n t e r f a c e s  on t h e  accuracy of  the measured e l e c t r o n  and 

hole  capture and recombination rate c o e f f i c i e n t s  1223. 

The new method has also been app l i ed  r e c e n t l y  t o  r e so lve  the controversy 

on t h e  nature  and in t e r - r e l a t ionsh ip  of  the two gold l e v e l s  i n  s i l i c o n  showing 

tha t  the gold acceptor  l e v e l  a t  t h e  s i l i c o n  midgap is not  related t o  t h e  

phosphorus donor dopant dens i ty  as suggested by D. Lang bu t  is most l i k e l y  t h e  

i s o l a t e d  s u b s t i t u t i o n a l  gold c e n t e r  wi th  t h e  n e u t r a l  binding p o t e n t i a l  f o r  a 

hole or  an e l ec t ron  [23]. This  midgap gold l e v e l  could be one of  t h e  most 

important res idua l  recombination s i t e  i n  very-high-efficiency (>20%) s i l i c o n  

s o l a r  cells s ince  i t  i s  well known t h a t  a r e s i d u a l  amount of  gold is st i l l  

present  i n  t h e  highest  p u r i t y  chemicals used i n  s i l i c o n  i n t e g r a t e d  c i r c u i t  

fabrication. 

2.1.3 FUTURE PROSPECTS 
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To a t t a i n  very high e f f i c i ency ,  e f f i c i enc ie s  g r e a t e r  t han  20$, the  

importance t o  have detailed complete charac te r iza t ion  of the  e l e c t r o n  and hole 

recombination p rope r t i e s  a t  t r a p s  from both chemical impur i t i e s  and p h y s i c a l  

defects cannot be emphasized enough. 

of  t h e  t echn ica l  bases on t h e  needs f o r  such a complete and in-depth 

cha rac t e r i za t ion  research  e f f o r t .  

d e f i n i t e l y  t h a t  cha rac t e r i za t ion  of recombination c e n t e r s  is a t  i t s  infancy,  

but a very promising beginning i n  view of the powerful new measurement 

techniques described i n  t h e  previous subsection. 

c e n t e r s  ( z inc  and t i tanium) and no physical de fec t s  have been charac te r ized  t o  

t h e  l e v e l  of detail  and accuracy required t o  do f i r s t - p r i n c i p l e  ( i n  c o n t r a s t  t o  

empir ica l )  design opt imiza t ions  using the exac t  solar cel l  computer s imulator  

t o  be descr ibed i n  t h e  next  subsection. Considerable f u r t h e r  e f f o r t s  and 

c a r e f u l  measurements are necessary f o r  t h e  many chemical-impurity and 

physical-defect c e n t e r s  which are l i k e l y  t o  be respons ib le  f o r  t h e  r e s i d u a l  

base recombination losses that  l i m i t  the  s i l i c o n  s o l a r  cel l  e f f i c i e n c y  t o  20%. 

The previous subsec t ions  have given much 

The cur ren t  state of the knowledge shows 

A t  p resent ,  only two impuri ty  

1 

A s t rong  need f o r  compound semiconductor material research, similar t o  

t h e  s i l i c o n  impurity s t u d i e s  descr ibed here, was recognized and emphasized by 

D r .  Henry Brandhorst of  NASA Lewis Research Center i n  a r ecen t  r epor t  t i t l e d ,  

I s sue  Study on Mult i junct ion Compound Semiconductor So la r  Cells for  

Concentrators ,  i n  space app l i ca t ions  1241. A l l  of t h e  novel and new extensions 

of t h e  capaci tance t r a n s i e n t  spectroscopy techniques,  developed f o r  s i l i c o n  

j u s t  described, are d i r e c t l y  app l i cab le  t o  t h e  c h a r a c t e r i z a t i o n  of  e l e c t r o n  

and hole  t r a p s  i n  G a A s  and related compound semiconductor solar cells. 



2.2 GENERATIOIN OF MATHBlATICAL MODELS TO DESCRIBE THE EXPERIMENTAL RESULTS 

AND TO SPECIFY THE MATERIAL PROPERTY REQUIREMENTS FOR H I G H  EFFICIENCY 

SOLAR CELLS. (Task 2)  

There are two parts t o  t h i s  task: (i) formulat ion of  a mathematical 

model f o r  so l a r  c e l l s  and (ii) the app l i ca t ion  of  of  t h e  model f o r  numerical 

a n a l y s i s  and s imula t ion  of  solar cell  performance. 

2.2.1 MATHEMATICAL MODEL AND COMPUTER SIMULATOR OF SOLAR CELLS 

Formulation of  t h e  mathematical model and a computer s imulator  o f  s o l a r  

cells  were accomplished during t h e  previous con t r ac t  based on a new numerical 

technique t o  be descirbed below. 

w r i t t e n  i n  FORTRAN, was developed from e x i s t i n g  codes w r i t t e n  by us p r i o r  t o  

the beginning of t h e  previous cont rac t .  

the  performances of s o l a r  cel ls  of any dopant and recombination impuri ty  

p r o f i l e s  using the  experimentally measured e l e c t r o n  capture  and emission rates 

a t  the  recombination c e n t e r s  i n  the cell.  

A most v e r s a t i l e  s o l a r  cel l  s imulator ,  

This  s imula tor  can accura te ly  compute 

The method involves  t h e  numerical s o l u t i o n  of  the s i x  semiconductor o r  

Shockley equations by a new technique, known as t h e  C i r c u i t  Technique f o r  

Semiconductor Analysis (CTSA, which is a l s o  synonymous w i t h  C.T. Sah Associates 

i n  recognizing t h e  e f f o r t s  of a group of h i s  former a s s o c i a t e s  and graduate 

s tuden t s  who had cont r ibu ted  t o  coding t h e  program based on t h e  circuit  model 

developed by him i n  a series of about t en  ar t ic les  during 1962 t o  1972). For a 

re ference  of t h e  detai ls  of  t h e  development, see t h e  zinc paper C181, t h e  first 

annual r e p o r t  of t h e  previous con t r ac t  [25] and a summary given i n  t h e  i n v i t e d  
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high-eff ic iency paper [SI which is a l s o  at tached as appendix A. 

technique, t h e  s i x  ( o r  seven i f  t he re  a r e  two recombination l e v e l s  i n  t h e  ce l l )  

semiconductor equat ions are first employed t o  synthes ize  two equiva len t  c i r c u i t  

models, one f o r  the d.c. cu r ren t s  and voltages and one f o r  t h e  small-signal 

c u r r e n t s  and vol tages .  

small-signal impedance o r  admittance of  the device af ter  d.c. convergence is 

achieved. The small-s ignal  c i r c u i t  model is a l s o  used as t h e  e r r o r  c i r c u i t  

model t o  compute the errors i n  t h e  d.c. vol tages  o r  p o t e n t i a l s  of each node 

af ter  every i t e r a t i o n  cycle .  

co r rec t ions  t o  t h e  previous d.c. vol tages  a t  each node t o  g ive  a set  of new 

d.c. vo l tages  which is then used t o  compute t h e  values  of  t h e  r e s i s t o r s  and 

capac i to r s  of t h e  c i r c u i t  elements of the error c i r c u i t  model. Using these 

equiva len t  c i r c u i t  models, t h e  numerical s o l u t i o n  procedure becomes very 

s t r a i g h t  forward - involving the so lu t ion  of  t h e  mat r ix  equat ions of  the e r r o r  

c i r c u i t  model f o r  each i t e r a t i o n .  

I n  t h i s  

The l a t t e r  was o r ig ina l ly  developed t o  compute t h e  

These voltage e r r o r s  are then  used as t h e  

I 

There a r e  many obvious advantages of t h i s  method compared w i t h  t h e  

conventional f i n i t e  d i f f e rence  and f i n i t e  element methods. (1) A l l  the  c i r c u i t  

elements i n  t h e  small-signal o r  e r r o r  c i r c u i t  model are related t o  physical  

processes  of d i f fus ion ,  d r i f t ,  c a r r i e r  capture and emission a t  deep t r a p s  o r  

deep l e v e l s ,  and carrier interband generation and recombination. ( 2 )  Boundary 

condi t ions  can be set very e a s i l y  by short ing,  opening o r  connecting r e s i s t o r s  

and c a p a c i t o r s  t o  t h e  appropriate  nodes, even f o r  h igh ly  nonl inear  boundary 

e f f e c t s ,  without t he  need of making any approximations such as tha t  employed i n  

t h e  a n a l y t i c a l  approaches used i n  t h e  f i n i t e  d i f f e rence  and f i n i t e  element 

methods. ( 3 )  Any geometry can be easi ly  dealt  wi th ,  e i ther  using a rec tangular  

g r i d  o r  non-rectagular g r i d  w i t h  v i sua l  p i c tu re s  of t h e  fundamental t r a n s p o r t  
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processes  occuring a t  each node o r  g r i d  point .  ( 4 )  The numerical so lu t ion  

method follows the  conventional ones used i n  f ind ing  the  r o o t s  o f  a sparse 

matr ix  without having t o  develop any new techniques.  

very r a p i d  and seldom f a i l s  even w i t h  poor i n i t i a l  guesses. 

admittances are automatical ly  computed without f u r t h e r  e f f o r t s  after a 

convergent d o c .  s o l u t i o n  is obtained. ( 7 )  The electrical  c i r c u i t  concepts and 

the proper t ies  of the c i r c u i t  elements, capac i to r ,  resistor, indepedent and 

dependent cur ren t  and vol tage sources ,  are familiar t o  engineers  and 

(5)  Convergence has been 

(6)  Small-signal 

phys i c i s t s .  

As an  example, a complete set of  current-vol tage characteristics of  a 

solar cell  a t  AM1 o r  another  i l lumina t ion  l e v e l  and the  fou r  p r i n c i p a l  cell  

performance parameters, VOC, JSC, FF and EFF, can a l l  be obtained i n  about 60 

CPU seconds on a CDC Cyber-175 computer wi th  s i n g l e  (60-bi t )  p rec i s ion  and a t  

an accuracy o f  0.01 mV. Th i s  benchmark is obtained for  a n  arbi t rary doping 

impuri ty  p r o f i l e  and another  a r b i t r a r y  recombination c e n t e r  dens i ty  p r o f i l e ,  

even i f  the  i n i t i a l  guess i s  no t  a h ighly  accura te  equi l ibr ium s o l u t i o n  of t h e  

electric po ten t i a l  d i s t r i b u t i o n .  The CPU time could be reduced t o  15 seconds 

o r  less i f  t h e  i n i t i a l  guess comes from the  i l lumina ted  s o l u t i o n  of a 

previously converged so lu t ion .  The computed r e s u l t s  include a l s o  t h e  depth  

va r i a t ions  of a l l  t h e  i n t e r n a l  device parameters, such as t h e  recombination 

rates, the  charge states, t h e  dens i ty  of  recombination c e n t e r s  i n  each charge 

state,  the d e n s i t i e s  of t h e  t rapped  e l e c t r o n s  o r  ho les  a t  t he  recombination 

cen te r s ,  the band e l ec t ron  and hole  d e n s i t i e s ,  the  electric f i e l d ,  the 

e l e c t r o s t a t i c  p o t e n t i a l ,  t h e  quasi-Fermi p o t e n t i a l s  of electrons and holes ,  and 

the n e t  space-charge densi ty .  
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2.2.2 APPLICATIONS OF THE CTSA SOLAR CELL SIMULATOR 

The second ob jec t ive  involved the appl ica t ion  of t h i s  s o l a r  ce l l  

s imulator  t o  e x p l o i t  the  var ious  mater ia l  and device geometry combinations tha t  

may improve o r  l i m i t  t he  e f f ic iency .  

designs have been computed during the  previous JPL con t r ac t  [25-331 and t h e  

f i r s t  year of  t he  cu r ren t  con t r ac t  [ l , 3 ]  using t h i s  mature and exac t  s o l a r  ce l l  

simulator.  The experience accumulated from these ca l cu la t ions ,  and t h e i r  

comparisons with the  results published by o t h e r s  using o the r  methods such as 

t h e  f i n i t e  d i f f e rence  and f i n i t e  element methods, suggest t h a t  our  s imula tor  is  

supe r io r  and cons i s t en t ly  g ives  more accurate  r e s u l t s  w i th  n e g l i g i b l e  random 

noise  due t o  t runca t ion  and d i s c r e t a t i o n  e r r o r s .  The following is a h i s t o r i c a l  

summary of t h e  use  of t h i s  s o l a r  cel l  simulator t o  explore  the  l i m i t i n g  f a c t o r s  

and b a r r i e r s  t o  higher  e f f i c i e n c i e s .  

made i n  the previous con t r ac t  [251 and ends w i t h  t he  l a tes t  s imula t ions  made 

i n  t h e  c u r r e n t  con t r ac t  [ l l .  

O f  the  order  of  one thousand solar ce l l  

It begins w i t h  t h e  earliest  s imulat ions 

During the  first app l i ca t ion  of t h i s  s o l a r  c e l l  s imulator  from January 

1977 t o  Apri l  1978, t h e  effects of the following f a c t o r s  on t h e  s o l a r  ce l l  

e f f i c i ency  were computed and s t u d i e d  1251: s u b s t r a t e  dopant impuri ty  

concentrat ion,  presence of a second and coupled recombination l e v e l  o r  t he  

two-electron o r  two-hole t r a p ,  su r f ace  recombination, and high i l l umina t ion  

l e v e l s  t o  100 Suns. The s teady-s ta te  l oca l  l i f e t i m e s  are a l s o  displayed as a 

func t ion  of depth i n  t h e  ce l l  and t h e i r  v a r i a t i o n  r e l a t e d  t o  t h e  fundamental 

cap ture  and emission rates of c a r r i e r s  a t  t h e  t r a p s .  Included in t h e  d i sp lays  

were l ifetime va r i a t ions  w i t h  pos i t i on  i n  t h e  d a r k ,  a t  t h e  OC (open c i r c u i t ) ,  

MP (maximum power) and SC ( sho r t  c i r c u i t )  condi t ions  as well as from 1 t o  100 
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suns. The h igh  l e v e l  lifetime and high l e v e l  i n j e c t i o n  condi t ions  become very 

evident  i n  t h e  100-sun results. Conclusions a r r ived  a t  are l i s t e d  as follows. 

( 1 )  Efficiency as high as 22% can be achieved f o r  a gold recombination dens i ty  

of 1OI2 Au/cm3 

cells doped w i t h  T i  and V are cons i s t en t  w i t h  those pred ic ted  by t h e  s imulator .  

( 3 )  There is a pred ic t ab le  advantage of t h e  p-based (n+/p/p+) cel l  over the  

n-based c e l l  (p+/n/n+) due t o  the smaller hole  l i f e t i m e  i n  the  n-base than  t h e  

e l ec t ron  l i f e t i m e  i n  t h e  p-base, which advantage diminishes a t  the high 

i n j e c t i o n  l eve l  of 100 suns. 

f u r t h e r  supports t h e  content ion t h a t  t he  e f f i c i ency  is l i m i t e d  by the  base 

l ifetime or recombination i n  t h e  base. 

e f f i c i e n c y  is observed i n  t h e  presence of a second and coupled recombination 

l e v e l  over t h e  case of a one-level recombination center .  

de fec t  recombination c e n t e r s  i n  t h e  d i f fused  emitter must have very high 

d e n s i t i e s  and must be phys ica l ly  located near  t h e  p/n junc t ion  boundary t o  have 

a s i g n i f i c a n t  e f f e c t  i n  degrading t h e  ce l l  e f f i c i ency .  For example, a l i f e t i m e  

of 0.1 nanosecond a t  the f r o n t  emitter su r face  g ives  n e g l i g i b l e  e f f i c i e n c y  

reduct ion while it becomes s i g n i f i c a n t  when the recombination c e n t e r s  are 

located a t  t h e  p/n junct ion.  (7)  The pos i t i on ,  i l l umina t ion  l e v e l ,  and bias 

l e v e l  va r i a t ions  of  t he  l i f e t i m e s  from the  s imula t ions  i n d i c a t e  that  

experimental measurements of t h e  l i f e t i m e s  can be meaningful only if it is  

measured a t  the opera t ing  i l l umina t ion  and bias l e v e l s .  

c i r c u i t  decay (DOCD) and t h e  dark forward-injection-reverse-recovery ( D F I R R )  

methods frequent ly  used g ive  s u b s t a n t i a l l y  d i f f e r e n t  l i f e t i m e s  than the photo- 

conduct ivi ty  l i f e t i m e s  (PCD) i n  s t rong  l i g h t .  It was suggested tha t  a more 

re l iable  method than the  DOCD is t h e  small-signal i l lumina ted  open-circui t  

vol tage decay (SSIOCD) method. Two types of small-s ignal  e x c i t a t i o n s  were 

o r  a base lifetime of  16 p a .  (2 )  The measured experimental 

(4) Higher e f f i c i e n c y  a t  lower base r e s i s t i v i t y  

( 5 )  Increased lifetime and hence 

(6) Impurity and 

Hence, the dark  open 
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suggested: (i) a small vol tage  s t e p ,  and (ii) a small inc rease  o r  decrease of 

t h e  i l l umina t ion  from the  steady-state one AM1 sun. Another re l iable  method i s  

t o  ob ta in  the small-signal decay time constant of the  s h o r t - c i r c u i t  cu r ren t  

t r a n s i e n t  after a small voltage s t e p  or a small i l l umina t ion  change. 

new methods would give lifetimes close t o  the OC and SC condi t ions.  

t o  get the  lifetimes for  the  maximum power condi t ion ,  the  c u r r e n t  o r  vo l tage  

decays should be measured by b ias ing  t h e  ce l l  t o  the maximum power condi t ion 

under t h e  desired i l lumina t ion  condition. To t h e  best of our  knowledge, these 

new methods have not  been implemented by JPL and other s o l a r  c e l l  researchers, 

although JPL has  sponsored seve ra l  subsequent lifetime measurement projects 

using the conventional dark methods whose r e s u l t i n g  lifetimes are not 

r e l evan t  t o  c e l l  performance optimization s t u d i e s  s i n c e  they do no t  

correspond t o  t h e  OC, SC o r  MP conditions. 

These two 

S imi l a r ly ,  

Optimization of the  cel l  design using t h e  s o l a r  ce l l  s imula tor  was 

continued from Apri l  1978 t o  March 1979. 

( 1 )  Back su r face  f i e l d  s u b s t a n t i a l l y  increases t h e  e f f i c i e n c y  over  c e l l s  w i t h  

back ohmic contac ts  w i t h  the major improvements-in open c i r c u i t  vol tage from 

550 mV (16.2%) wi thou t  BSF t o  670 mV (19.6%) with  BSF and a d i f fused  

back-surface-field prof i le  impurity densi ty  profile.  (2) There i s  neg l ig ib l e  

d i f f e rence  between an  ideal d i f fus ion  p ro f i l e  f o r  t h e  emitter impuri ty  compared 

wi th  an nea r ly  abrupt  p r o f i l e ,  both giving 19.6% (19.587 versus 19.592) , 
f u r t h e r  support ing t h e  content ion t h a t  a t  19% and above, t h e  e f f i c i e n c y  is  

S t u d i e s  included the  following C261. 

I mainly l i m i t e d  by base recombination. T h i s  conclusion eluded the s o l a r  cel l  

researchers f o r  t h e  next  three o r  fou r  years u n t i l  around 1983 when t h i s  author  

repeated the s ta tement  a t  everyone of h i s  PIM presenta t ions  f o r  t he  next  three I 
, 
l or fou r  yea r s  t h a t  base recombination is t h e  l i m i t  - NOT t h e  emitter 

I -15- 
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recombination. ( 3 )  Auger recombination i n  t h e  heavi ly  doped emitter has 

neg l ib l e  e f f e c t  on t h e  e f f i c i e n c y  (16.236% dropped t o  16.226%) and a l s o  i n  the  

heavi ly  doped BSF layer (19.592% dropped t o  19.565%). 

recombination on either t h e  f r o n t  o r  t h e  back surface has n e g l i g i b l e  effect on 

t h e  e f f ic iency  when the  emitter impurity dopant dens i ty  is lo2' 

effect becomes larger when the su r face  dopant dens i ty  drops t o  10 c m  . ( 5 )  

Enhanced s o l u b i l i t y  of the recombination impurity such as gold i n  the d i f fused  

emi t t e r  by t h e  h igh  dens i ty  of emitter dopant impurity aga in  has l i t t l e  effect 

on the  e f f ic iency  u n t i l  t h e  s u b s t i t u t i o n a l  gold dens i ty  reaches one atomic 

percent ,  an impossible s i t u a t i o n  s ince  it exceeds the  s o l i d  s o l u b i l i t y  unless  

i t  is incorporated by ion  implantat ion or  recent  s u p e r l a t t i c e  technology. Even 

a t  such  an improbable h igh  concentrat ion,  t h e  e f f i c i e n c y  is reduced only by 

about 1% from 16.198% t o  14.951%. The inf luence  is less f o r  gold i n  the  BSF 

(4 )  Surface o r  i n t e r f a c e  

The 

18 -3  

l a y e r ,  f o r  example, t he  e f f i c i e n c y  drops from 19.261% without gold t o  18.125% 

w i t h  5% of gold i n  t h e  BSF l a y e r  and assuming a l l  5% are e l e c t r i c a l l y  a c t i v e  

recombination centers .  (6) Simulation has also been made f o r  the  effect  of  

defect-impurity p a i r s  i n  t he  emitter and BSF l a y e r s  as recombination sites on 

t h e  e f f i c i ency  s ince  i t  is  well-known that pair  and higher order  complexes are 

l i k e l y  t o  form i n  the  presence of high d e n s i t y  of dopant i m p u r i t i e s  such as 

phosphorus and boron. 

ohm-cm P+/N/N+ 16.8% ce l l  whose designed value would be 19%. 

t h a t  emi t te r  recombination w i t h  1% gold o r  0.1% boron-vacancy complex i n  t h e  

emitter could account f o r  the degraded e f f i c i e n c y  observed. 

time, t h e  experimental s i l i c o n  s o l a r  ce l l  parameters of an impuri ty  doped ce l l ,  

i n  t h i s  case t h e  Ti-doped Westinghouse cells ,  are compared wi th  theory. The 

CTSA Solar  Cel l  Simulator is used. 

of e lec t rons  and holes  measured i n  Ti-doped junc t ions  and crystals 

Comparison was made w i t h  t he  Sandia high e f f i c i ency  10 

It was concluded 

(7) For t h e  first 

Using t h e  prel iminary recombination rates 
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(ex t rapola ted ,  although very inaccurately from photoconductivity lifetime 

measurements), the fou r  c e l l  paraemters computed from the s imula tor  were i n  

exce l l en t  agreement w i t h  t h e  measured values ,  f o r  T i  concent ra t ion  from 5x10 

t o  

cu r ren t  dens i ty  from 22 mA/cm2 t o  8 mA/cm2 and e f f i c i e n c i e s  from 101 t o  2.5%. 

The agreements over such a large range (three o rde r s  of magnitudes of T i  

concent ra t ion)  were p a r t i c u l a r l y  satifying s ince  no previous a n a l y t i c a l  theory 

of s o l a r  cells  could be used t o  successful ly  compute t h e i r  performance a t  such 

a high concent ra t ion  of  recombination densi ty  l e v e l  t h a t  it approaches t h e  

dopant impuri ty  concentration. 

t rapping  is so high t h a t  the  simple minority carrier d i f f u s i o n  theory is no 

longer  va l id .  

11 

cm-3 , open c i r c u i t  vo l tages  from 550 mV t o  440 mV, s h o r t  c i r c u i t  

A t  such a high dens i ty  of  recombination cen te r ,  

A major app l i ca t ion  of the CTSA Solar Cell Simulator was its app l i ca t ion  

t o  t h e  determinat ion of the allowable zinc concentrat ion s i n c e  one of the  JPL 

material projects used zinc t o  reduce Sic1 

low c o s t  g ranu la r  s i l i c o n .  This  was summarized by Lutwack on page 11 of h i s  

program report [123. 

t echn ica l  r e p o r t  of t h e  previous contract  E271 and a journa l  ar t ic le  [18]. 

o rder  t o  reach an  e f f i c i e n c y  of 201, the  zinc concent ra t ion  i n  the  f in i shed  

ce l l  must be less than 5 ~ 1 0 ~ ~  Zn/cm3 i n  the  P+/N/N+ cel l  and 2 ~ 1 0 ~ '  Zn/cm3 i n  

t h e  N+/P/P+ cell .  

i n  an  f l u i d i z e d  bed r e a c t o r  t o  y i e l d  

The r e s u l t s  of t h i s  s imulat ion was given i n  t h e  t h i r d  

I n  

I 

A comprehensive app l i ca t ion  of the  s imulator  was made t o  determine the  

optimum th ickness  of BSF cells t o  achieve the h ighes t  possible e f f i c i ency  s i n c e  

t h e  s h o r t  c i r c u i t  cu r ren t  would decrease w i t h  decreasing th ickness  while the  

open c i r c u i t  vol tage w i l l  i nc rease  monotonically wi th  decreasing thickness .  

-17- 



T h i s  work was reported i n  t h e  four th  t echn ica l  r e p o r t  of t h e  previous con t r ac t  

[281 and published i n  a journa l  paper 1323. 

were simulated (about 16 t o  17%) although the  conclusion holds  f o r  h igher  

e f f i c i e n c y  c e l l s .  

th ickness  of t h e  a c t i v e  base and emitter layers,  no t  inc luding  t h e  substrate. 

Thus, f o r  manufacturabi l i ty  and high y i e lds ,  an e p i t a x i a l  l a y e r  of 50 micron 

t h i c k  would be t h e  desirable s t a r t i n g  materials. 

s imulat ion of t h i s  type could not be accu ra t e ly  done using a n a l y t i c a l  s o l u t i o n s  

s ince  both t h e  d i f fus ion  p r o f i l e s  of t h e  emitter and FSF and the  nonl inear  o r  

high in j ec t ion  l e v e l  e f f e c t  i n  t h e  t h i n  base l a y e r  must be taken i n t o  account 

which cannot be modeled c o r r e c t l y  by the approximate l i n e a r  a n a l y t i c a l  

so lu t ions  employed by many s o l a r  cel l  researchers. 

Only moderately e f f i c i e n t  cells  

The optimum th ickness  was about 50 microns which is t he  

A cel l  opt imiza t ion  

The simulator has a l s o  been used t o  de l inea te  a n  erroneous p red ic t ion  of  

t he  thickness dependence of t h e  f i l l  factor by t h e  one-dimensional low-level 

a n a l y t i c a l  model employed i n  Hovel's book on So la r  Cell and by articles i n  

Buckus's r ep r in t  c o l l e c t i o n  on s o l a r  cel ls  [29,33]. The a n a l y t i c a l  model does 

no t  pred ic t  a drop-off of  t h e  f i l l  f a c t o r  a t  large th ickness  due t o  neglec t ing  

the bulk s e r i e s  r e s i s t a n c e  and nor  a rise a t  very small th ickness  when emitter 

recombination dominates over t h e  base, r e s u l t i n g  i n  a change from intermedia te  

i n j e c t i o n  l eve l  i n  the  base t o  low i n j e c t i o n  l e v e l  i n  the emitter, t he  l a t te r  

due t o  t h e  high major i ty  carrier dens i ty  i n  t h e  emitter. Th i s  paper i l l u s t r a t e s  

one important use of t he  exac t  so lu t ion  and the  CTSA Solar  C e l l  Simulator which 

i s  espec ia l ly  important f o r  i s o l a t i n g  t h e  o r i g i n  of the  1% increase  o r  decrease 

of e f f ic iency  i n  t h e  above 20% range. Such a de l inea t ion  s tudy  would be f u t i l e  

using the  approximate a n a l y t i c a l  theory which cannot take i n t o  account o f  t h e  

nonl inear  c a r r i e r  t r anspor t  and recombination mechanisms which con t r ibu te  o r  
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are t h e  causes.  

To f u r t h e r  improve t h e  c o l l e c t i o n  e f f ic iency  and ce l l  performance, t h e  

s imulator  was employed t o  f i n d  t h e  optimum parameters f o r  a BSF cel l  with a 

b u i l t - i n  electric f i e l d  from impurity gradient  i n  t h e  base. 

i n t u i t i o n s  ind ica t ed  t h a t  t he  s e n s i t i v i t y  of t he  e f f i c i ency  t o  the  dens i ty  of 

t h e  recombination impurity i n  t h e  base should be s u b s t a n t i a l l y  reduced by t h e  

presence of t h e  bu i l t - i n  e l e c t r i c  f i e l d  s ince  it he lps  t o  sepa ra t e  the  

photo-generated e l ec t rons  and holes before they recombine and hence allowing 

higher  impuri ty  dens i ty  a t  a prescr ibed ef f ic iency .  

s t r u c t u r e  was simulated i n  t h e  first technica l  r epor t  of  t h e  cu r ren t  con t r ac t  

[ l ]  and published i n  a journa l  art icle [2] .  

recombination c e n t e r  model, it was shown t ha t  a pene t ra t ion  of t h e  d i f f u s e d  BSF 

l a y e r  of 40 microns i n t o  a 50 micron based l a y e r  can g ive  a s u b s t a n t i a l  

increase  of  the  cel l  e f f i c i ency ,  from 18% t o  over 20%. It f u r t h e r  shows t h a t  

such a penet ra t ion  or  grading of  t he  base would reduce t h e  s e n s i t i v i t y  t o  the  

Physical 

The graded base BSF 

Using the  zinc impuri ty  as the 

I 

I 
I 

I 
I 

recombination impuri ty  dens i ty  by one order of magnitude. For 20% e f f i c i ency ,  
11 3 

I t he  Zn concent ra t ion  must be less than 10 Zn/cm i n  a BSF without grading. 
3 Grading inc reases  t h i s  t o  10l2 Zn/cm t o  s t i l l  maintain a 20% ef f ic iency .  
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2.3 IDENTIFICATION OF EFFICIENCY LIMITING FACTORS BELOW AND ABOVE 20% AND 

RECOMMENDATION OF PRACTICAL SOLUTIONS (Task 3)  

T h i s  ob jec t ive  was added t o  the  c o n t r a c t  about January 1, 1984 i n  order 

t o  focus on t h e  new t h r u s t  i n  high e f f i c i e n c y  and very h igh  e f f i c i e n c y  solar 

cel l  research and development undertaken by t h e  JPL/DoE s i l i c o n  s o l a r  cel l  

program. Th i s  t a sk  conta ins  three ob jec t ives  which are: (1 )  i d e n t i f i c a t i o n  of 

l i m i t i n g  f ac to r s  below 205, (2)  q u a n t i t a t i v e  analyses  f o r  high e f f i c i e n c y  ce l l  

designs and ( 3 )  recommendation of practical so lu t ions  f o r  greater than 20% 

s i l i c o n  so la r  c e l l s .  

t echn ica l  report [31 and an extended vers ion was published i n  a special i s s u e  

of t h e  Solar  Cell journa l  on high e f f i c i e n c y  s o l a r  cel ls  [4]. 

paper 141 includes add i t iona l  h is tor ical  information of  t h i s  DoE/JPL s o l a r  cel l  

and o t h e r  NASA s o l a r  ce l l  programs as w e l l  as a de l inea t ion  of  the f u t u r e  

research d i r ec t ions  and needs on solar cel l  device and material physics  and 

manufacturing process engineering. 

special issue may be delayed, t h i s  i n v i t e d  paper is  reproduced i n  appendix A i n  

i ts  e n t i r e t y .  

Resul t s  of  t h i s  s tudy were reported i n  t h e  second 

The i n v i t e d  

Since t h e  d i s t r i b u t i o n  of t h e  s o l a r  c e l l  

Additional p r a c t i c a l  so lu t ions  were proposed using innovat ive s t r u c t u r e s  

which are disclosed i n  a NASA/JPL pa ten t  app l i ca t ion  [ l l ] .  Their d i sc losu re  i n  

t h e  form of a PIM r epor t  o r  a con t r ac t  t echn ica l  r e p o r t  has been delayed by the 

pa ten t  f i l i n g  process. A brief summary w i l l  be given. 

Inves t iga t ions  on t h e  three ob jec t ives  are descr ibed i n  t h e  following 

three subsections.  

second technical  r epor t  121 i n  December, 1984, are added. 

New results obtained or  published s i n c e  the r e l e a s e  of the 
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2.3.1 EFFICIENCY LIMITING FACTORS BELOW 20% 

Cells w i t h  20% or  smaller e f f i c i e n c i e s  are mainly l imi t ed  by carrier 

recombination v i a  r e s i d u a l  impuri ty  and defect  recombination c e n t e r s  i n  the 

base layer. I n  t h e  h ighes t  e f f i c i ency  c e l l s  repor ted  by Green w i t h  grooved 

emitter su r face  and hence increased emit ter  s u r f a c e  recombination area, base 

recombination is still more than  a f ac to r  of  two higher than t h e  grooved 

emitter whose i n t e r f a c e  recombination is  almost an  order  of magnitude higher 

than t h e  b e s t  non-grooved emitter also reported by Green. Some earlier h igh  

e f f i c i e n c y  cells of t he  17% range were a lso  l i m i t e d  by the lack of a back 

su r face  f i e l d  l a y e r  t h a t  sh ie lds  t h e  photo-generated e l ec t rons  and holes  f r m  

t h e  back ohmic contac t  which has near ly  i n f i n i t e  recombination rate. 

To i d e n t i f y  t h e  causes which l i m i t  t h e  cel l  e f f i c i ency  t o  205, w e  

compared the  publ ished cel l  performance data and diode da rk  cu r ren t  of  selected 

groups of highest e f f i c i e n c y  cel ls  reported t o  date w i t h  the theory. 

Solar  Simulator is NOT used t o  g ive  t h e  theory f o r  a very s imple reason - i n  

order  t o  reach the highest e f f i c i ency ,  t h e  diode must be a t  low i n j e c t i o n  l e v e l  

and fol low t h e  ideal Shockley dark diode equat ion,  J = Jl*Cexp(qV/kT) -11, 

which w e  have demonstrated [2,4], and base recombination l o s s  must be the  

r e s i d u a l  recombination loss  wi th  recombination a t  a l l  o the r  regions of the 

diode e l imina ted ,  which w e  have a l s o  demonstrated [2,41. 

Shockley dark diode equat ion would accurately g ive  the u l t imate  e f f i c i e n c y  of a 

junc t ion  diode s o l a r  cell .  It is most appropriate  t o  determine how c l o s e l y  t h e  

experimental  high e f f i c i ency  cells reported t o  date approach tha t  pred ic ted  by 

the ideal theory.  

The CTSA 

I 

Thus, the ideal 

Th i s  does not  n u l l i f y  t h e  u t i l i t y  of  t h e  CTSA S o l a r  Cell 
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Simulator s ince  it is  sti l l  needed t o  given exact s imula t ions  i n  order  t o  guide 

the p rac t i ca l  design of optimum cell s t r u c t u r e  or  dopant concent ra t ion  prof i le  

t o  reach the highest poss ib le  e f f i c i ency  a t  and above 20$, f o r  i n  p rac t i ce ,  the  

ideal  diode characteristic is d i f f i c u l t  t o  a t t a i n  and t h e  CTSA S o l a r  Cell 

Simulator can provide the design cons idera t ions  and r u l e s  t o  approach t h e  ideal 

diode. 

To de l inea te  t h e  poss ib l e  lo s ses  of t h e  s ta te-of- the-ar t  cells, t h e  

expected performance from the  ideal  diode ce l l  is tabula ted  i n  Tables I and I1 

[2,41, and compared wi th  those of  t h e  high e f f i c i e n c y  cel ls  reported t o  date i n  

Table  I1 [34-38]. The ideal diode ce l l  performance is computed based on two 

inpu t  parameters: t h e  experimentally measured J1 and t h e  shor t  c i r c u i t  cu r ren t ,  

JSC, which is set a t  36 mA from one o p t i c a l  pass through a cel l  of about 200 

micron th ick  and an  AM-1.5 i l lumina t ion  of  100 mW inpu t  o p t i c a l  power which 

corresponds to  32 mA at AM-1.0 of about 88.92 mW 143. 

A comparison of  t h e  experimental cel ls  with theory  i n  Table  I1 shows t h a t  

t h e  f i l l  f ac to r  (FF) appears t o  be the  remaining parameter tha t  causes  the 

experimental e f f i c i e n c y  t o  f a l l  below t h e  theory.  

probably a main problem whi le  the high base r e s i s t i v i t y  g iv ing  the  nonideal o r  

h igh  l e v e l  i n j e c t i o n  condi t ion  i n  the base is also a con t r ibu t ing  f a c t o r  even 

a t  0.1 ohm-cm due t o  the long lifetime i n  t h e  very h igh  e f f i c i e n c y  cells. 

Series r e s i s t a n c e  is 

For a l l  of the cells l i s t e d  above, base recombination is still the main 

l i m i t i n g  loss, a t  least by a f a c t o r  of two and o f t e n  by as much as a factor of 

t e n  o r  higher than emitter su r face  recombination. 
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TABLE I 

PERFORMANCE PARAMETERS OF THE IDEAL DIODE 

SILICON SOLAR CELLS 

(AM1 or  At41.5, 24.0C) 

SOURCE 

* * * * * * 
THEORY 
THEORY 
THEORY 
THEORY 
THEORY 
THEORY 

J1 JSC 
(A )  (mA) 

*********a ***ffff* 

2.04E-16 36.0 
2.123-15 36.0 
2.21E-14 36.0 
2.303-13 36.0 
2.403-12 36.0 
2.503-12 36.0 

voc 
(mV 1 

84 0 
780 
72 0 
660 
600 
540 

***** 
FF 

******** 
0.8664 
0.8588 
0.8501 
0.8402 
0.8286 
0.8151 

EFF 
($1 

*****i* 

26.20 
24.12 
22.04 
19.97 
17-90 
15.85 

Legned: a r e a = l  .0cm2, PIN=lOOmW. 
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TABLE I1 

PERFORMANCE OF SEVERAL H I G H  EFFICIENCY 

LABORATORY SILICON SOLAR CELLS 

SOURCE/ AUTHORS J1 JSC voc FF EFF BASER 
(CELL TYPE) ( A )  (mA) (mV) (%I  (ohm-cm) 

Green 1.8E-13 670 0.1 
Green N+/P/P+ 4. 2E- 13 38.3 661 0.824 20.9 0.2 
Green N+/P/P+ 2 . 9E- 1 3 37.0 654 0.829 20.1 0.1 

**************** ********** ****** ***** ******** ******* *****#** 
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2 .3 .2  ANALYSIS FOR H I G H  EFFICIENCY CELL DESIGNS 

The reported ce l l  performance given above has no t  incorporated a l l  t h e  

poss ib le  high e f f i c i e n c y  design considerat ions which have been analyzed and 

discussed i n  t h e  l i terature,  such as t h e  th inne r  base and graded base, and 

f u r t h e r  reduct ion  of base recombination center  dens i ty .  

experimental  efforts have concentrated on inc reas ing  the  c o l l e c t i o n  area using 

mul t ip le  r e f l e c t i o n  by grooving o r  t ex tu r i z ing  the  emitter surface t o  inc rease  

t h e  s h o r t  c i r c u i t  cur ren t .  The increased emitter su r face  or  i n t e r f a c e  area 

g ive  a corresponding inc rease  of  t he  emitter surface recombination cu r ren t  

which offsets the increased  s h o r t  circuit cur ren t .  

grooving, a s a t u r a t i o n  cu r ren t  of 1.8E-13 A was obtained f o r  approximately 36 

mA of s h o r t  c i r c u i t  cur ren t .  Grooving increased t h e  s h o r t  c i r c u i t  cu r ren t  t o  

The published 

For example, w i t h o u t  

38.3 mA but  also increased t h e  sa tura t ion  c u r r e n t  t o  as high as 4.3E-13 A so 

t h a t  t h e  r a t i o  of s h o r t  c i r c u i t  t o  sa tu ra t ion  cu r ren t ,  (38.33-3)/(0.433-12) = 

893-9 is  a c t u a l l y  decreased from t h e  nongroove value of (36E-3)/(0.18E-12) = 

200E-9. 

back su r face  would be more e f f e c t i v e  since it would inc rease  the s h o r t  c i r c u i t  

cu r ren t  but  no t  t h e  emitter recombination area o r  emitter recombination 

cur ren t .  

This  a n a l y s i s  suggests  t h a t  a l t e r n a t i v e  methods such as r e f l e c t i n g  

2 .3 .3  PRACTICAL SOLUTIONS FOR GREATER THAN 20% CELLS 

From the foergoing ana lys i s ,  it is  suggested t ha t  the 20% e f f i c i e n c y  

barrier can be broken w i t h  the t r a d i t i o n a l  diode ce l l  s t r u c t u r e  w i t h  p lanar  

emitter su r face  by incorpora t ing  the  improvements pred ic ted  by theory,  such as 

t h e  graded t h i n  base [ 1,3], mult ip le  back surface r e f l e c t i o n  [4,391 , high/low 
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junc t ion  emit ter  C401, e l imina t ion  of both perimeter C301 and bulk [31] 

defects, and c l ean  processing t o  r e t a i n  high base lifetime. Texturized and 

grooved f ron t  su r f ace  would only s u p e r f i c i a l l y  increase  the short  c i r c u i t  

cu r ren t  s ince t h e  dark  c u r r e n t  i s  a l s o  increased  by the  larger emitter i n t e r f a c e  

area giving higher emitter i n t e r f a c e  recombination loss. 

incorporat ing these high e f f i c i e n c y  design f e a t u r e s  are y e t  t o  be made. 

Experimental cells  

Several novel techniques and cel l  s t r u c t u r e s  were also suggested which 

could improve t h e  e f f i c i e n c y  and ease the  c r i t i ca l  processing requirements t o  

break the 20% barrier. Among the  novel techniques is the use of po lys i l i con  

emitter th in  s t r ipes  t o  reduce the emitter su r face  recombination loss a t  t h e  

dark  contact  s t r i p e  diodes [2,4]. Based on the data of Neugroschel C411, whose 

recombination ve loc i ty  measurements of po lys i l i con  emitter con tac t s  gave values  

less than 112 cm/sec, and a f i v e  percent  str ipe area, t h e  dark c u r r e n t  dens i ty  

is 2 . 1 5 ~ 1 0 - l ~  A/cm2 i f  base recombination is  el iminated.  

open c i r c u i t  vol tage of 720 mV and 22% AM1 e f f i c i e n c y  as ind ica t ed  i n  Table I. 

This  would g ive  an  

An novel s t r u c t u r e  approach was a l s o  suggested using a two-junction three 

- layer  bipolar  t r a n s i s t o r  s t r u c t u r e  wi th  a non-contacting f l o a t i n g  emitter 

[ l l ] .  

the mult i junct ion layer tandem junc t ion  cel ls  which connects nonin terac t ing  

diodes i n  se r i e s .  The first researchers from Texas Instruments  called it the 

tandem junct ion cell ,  a name which we discard, s i n c e  it does n o t  reflect the 

b ipolar  operation pr inc ip le .  

the co l l ec to r  layers .  The emitter recombination l o s s  a t  the  dark emitter 

contac t  diode is completely el iminated s i n c e  there i s  no emitter con tac t ,  i n  

add i t ion ,  t h e  lateral series r e s i s t a n c e  loss i n  the  t h i n  high r e s i s t a n c e  

This s t r u c t u r e  makes use of  the b ipo la r  t r a n s i s t o r  a c t i o n  i n  c o n t r a s t  t o  

The con tac t s  t o  the  cel l  are made t o  t h e  base and 
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emitter l a y e r  is a l s o  el iminated s i n c e  there  is no emitter cu r ren t .  

f a c t o r  should approach t h e  ideal diode value. Since the c o l l e c t o r  junc t ion  

a l s o  g ives  r ise t o  a photocurrent generator,  t h e  s h o r t - c i r c u i t  cu r ren t  should 

also inc rease  over t h a t  of a diode s o l a r  c e l l  which has only one juc t ion .  

main l i m i t i n g  f a c t o r  of a two-junction three-layer b ipo la r  t r a n s i s t o r  s o l a r  

cell  is the  lateral  base r e s i s t a n c e  which must be minimized. 

i n  designing high e f f i c i e n c y  b ipo la r  power t r a n s i s t o r s  could be used. 

The f i l l  

The 

Known experiences 

2.4 EXPERIMENTAL DEMONSTRATION AND PRACTICAL IMPLEMENTATION 

T h i s  phase of t h e  p r o j e c t  was undertaken by another  con t r ac to r  and there 

was a l s o  plan t o  f a b r i c a t e  cells  in-house fol lowing the high-eff ic iency design 

pr inc ip les .  

o t h e r  cont inuing programs on high ef f ic iency  solar cel l  research. 

The progresses  would presumably be repor ted  i n  t h e  f u t u r e  under 
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111. CONCLUSION 

The exact computer s imulator  adapted t o  solar  ce l l  e f f i c i ency  

maximization and a p p l i e d  t o  nea r ly  one thousand cel l  design s t u d i e s  has proved 

t o  be an  extremely powerful t o o l  t o  provide accura te  opt imiza t ion  of device 

parameters and geometries. 

for  lower e f f i c i ency  recombination-impurity-doped cells t o  a c c e r t a i n  t he  

effects of impur i t ies  but a l s o  ind ispens ib le  for  opt imiza t ion  of material 

p rope r t i e s  t o  achieve m a x i m u m  e f f i c i e n c y  exceeding 20%. 

e f f i c i e n c y  c e l l s ,  the reason f o r  the need of an  exact s imulator  i s  the 

i n t e r a c t i o n  among t he  base and emitter doping concent ra t ion  and the i r  depth  

p r o f i l e  and the i n j e c t i o n  l e v e l  which con t ro l s  the l as t  drop of t h e  f i l l  

f ac to r .  T h i s  one-dimensional s imulator ,  al though has no equals ,  needs t o  be 

extended t o  two dimensions which would r equ i r e  the use of a supercomputer t o  

run. For one-dimensional s imulat ions wi th  200 g r i d  p o i n t s  o r  l a y e r s ,  60 CPU 

seconds on a CDC-CYBER-175 (approximate speed i s  about 5 Mips) are required.  

A 200x200 two-dimensional gr id  would give t o o  long a t u r n  around time t o  a l low 

fo r  effective real-time design opt imizat ion.  

would be about t h e  same, 60 s, for  a two-dimensional s imula t ion  which would be 

a reasonable turn-around time f o r  s tudying optimum grid s i z e  and placement as 

w e l l  as dopant impurity profiles.  

s imulator  has been planned s i n c e  1977 and its implementation w i l l  be r e a l i z e d  

i n  FY86 or  FY87 due t o  the a v a i l a b i l i t y  of a C R A Y - I 1  i n  Urbana. 

Th i s  CTSA Solar C e l l  Simulator is  usefu l  n o t  only 

For t h e  h igh  

On a CRAY, the turn-around time 

The development of  t h e  two-dimensional CTSA 

With the  advances i n  the solar ce l l  technology i n  the pas t  10 years  under 

JPL management and elsewhere and J P L ' s  r e d i r e c t i o n  t o  focus on very high 

e f f i c i e n c y  c e l l s  t o  exceeding the 20% barrier, the  s o p h i s t i c a t i o n  i n  the design 
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theory of  s o l a r  cell,  requi red  t o  accurately predict  cel l  performance, has 

drast ical ly  reduced and turned around a 360 degree circle. 

ideal diode theory i n  t h e  1950s used by M. B. Prince C41 which was t h e  only 

theory ava i lab le .  It then migrated from the  exac t  theory,  such as t h e  CTSA 

Solar Cell numerical Simulator developed a t  t he  beginning o f  t h i s  10-year 

research project for  low e f f i c i ency  cells, back again t o  the ideal a n a l y t i c a l  

theory of t h e  Shockley diode i n  the last few years  f o r  research on t h e  very 

h igh  e f f i c i e n c y  cells. 

mathematical modeling of  the s o l a r  c e l l  is dictated by t h e  low i n j e c t i o n  

l e v e l  requirement t o  break the  20% ba r r i e r  and t h i s  low i n j e c t i o n  l e v e l  

condi t ion  i s  precisely t h e  basis of the Shockley ideal diode law. 

It started w i t h  t h e  

This  backward migration of t he  s o p h i s t i c a t i o n  of t he  

There are many t r a d i t i o n a l  and recent ly  developed design cri teria which 

must be implemented i n  an experimental  diode-type cel l  t o  reach t h e  theo re t i -  

c a l l y  pred ic ted  e f f i c i ency  of more than 20%. 

base i n  a back-surface-field s t r u c t u r e ,  carefu l  e l imina t ion  of perimeter 

recombination and s h o r t s  ac ross  t h e  back-surface-field junc t ion  as w e l l  as the  

f r o n t  su r f ace  p/n junc t ion ,  incorporat ion of  t h e  high/low junc t ion  i n  t h e  

emitter t o  s h i e l d  the photo-generated e lec t rons  and holes  from the emitter 

su r face  o r  i n t e r f a c e  recombination centers ,  poly-s i l icon emitter contac t  

barriers t o  reduce recombination from the dark contact  diode, and further 

improvement of  base lifetime which may become less c r i t i ca l  using t h e  graded 

base j u s t  stated. 

Implement of  a l l  of these high e f f i c i ency  designs i n  one s i n g l e  ce l l  has no t  

been reported. 

design with c a r e f u l  and high-life processing would produce cel ls  exceeding 20% 

e f f i c i e n c y  without using a r t i f ic ia l  concentration schemes such as  the  

Some of these are t h i n  and graded 

A l l  of these are suggested and described i n  t h i s  r epor t .  

It is believed tha t  combination of these high-eff ic iency device 
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t ex tu r i zed  o r  grooved f r o n t  surface.  

made using back su r face  o p t i c a l  r e f l e c t i o n  t o  inc rease  the  absorp t ion  and hence 

the  s h o r t  c i r c u i t  cur ren t .  

t ex tur ized  o r  grooved f r o n t  su r f ace  s i n c e  t h e  i n t e r f a c e  recombination cu r ren t  

is proportional t o  t h e  f r o n t  surface area. 

Fur ther  improvement of e f f i c i e n c y  may be 

A r e f l e c t i n g  back surface is preferred over  t h e  

To s i g n i f i c a n t l y  exceed the 20% barrier and t o  reach t h e  i n t r i n s i c  

e f f i c i e n c y  of about 251, a l l  of  t h e  emitter recombination lo s ses  must be 

e l iminated and the r e s i d u a l  l o s s e s  would a l l  come from t h e  i n t r i n s i c  ( interband 

thermal recombination and interband Auger recombination) recombination losses 

i n  the base. 

supplemented by innovat ive o r  novel device s t r u c t u r e s .  

f l o a t i n g  emitter two-junction bipolar t r a n s i s t o r  solar ce l l  s t r u c t u r e .  

number of f l o a t i n g  emitter s t r u c t u r e s  are proposed as a r e s u l t  of  the  s tudy 

made i n  t h i s  program. 

appears t o  be t h e  most fabricable and manufacturable s t r u c t u r e .  

For such a c e l l ,  the high-eff ic iency design r u l e s  need t o  be 

One o f  t h i s  is t h e  

A 

The e p i t a x i a l  f r o n t  con tac t  f l o a t i n g  emitter cel l  

To reach t h e  i n t r i n s i c  e f f i c i ency  of 25.51, except iona l ly  c lean  and 

s t r e s s - f r ee  f a b r i c a t i o n  processes must be employed and growth techniques of  

very long lifetime s i n g l e  c r y s t a l l i n e  s i l i c o n  (about one mi l l i second)  must be 

developed. For  the two-junction f l o a t i n g  emitter ce l l ,  long lifetime e p i t a x i a l  

growth technique f o r  50 micron t h i c k  f i l m s  must be developed. 

requirements exceed the  cu r ren t  best s ta te-of- the-ar t  s i l i c o n  in t eg ra t ed  

c i r c u i t  research and production technology and must be developed f o r  junc t ion  

areas of more than four  o r  f i v e  inch  diameter. 

These 

The severe demand on crystal and device p u r i t y  and pe r fec t ion  from t h e  
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very high e f f i c i e n c y  requirement e l iminates  all o t h e r  a l t e r n a t i v e  forms of 

materials, such as po lyc rys t a l l i ne  cells ,  amorphous film cells and o t h e r  yet t o  

be invented novel material compositions, as v iab le  candidates  f o r  the very high 

e f f i c i e n c y  solar cells. 

e f f i c i e n c y  c r y s t a l l i n e  s i l i c o n  cells but  also cells made on o the r  materials and 

cells having mul t ip le  junc t ions  e i t h e r  i n  tandem diode o r  i n  b ipo la r  t r a n s i s t o r  

forms. 

very high e f f i c i e n c y  c r y s t a l l i n e  solar cell o r  lower e f f i c i e n c y  c e l l s  on 

po lyc rys t a l l i ne  or  amorphous materials i s  t h e  economically v i ab le  choice f o r  

terrestrial appl ica t ions .  

This  conclusion holds  no t  only for  very h igh  

Manufacturing cost will be the  ul t imate  deciding f a c t o r  on whether the 
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ABSTRACT 

Base recombination a t  r e s idua l  defect and impuri ty  recombination c e n t e r s  are 

i d e n t i f i e d  t o  be the  l i k e l y  cause of t he  20% (AM11 e f f i c i e n c y  barrier i n  the  

highest e f f i c i e n c y  s i l i c o n  s o l a r  cells  reported to-date.  

e f f i c i ency ,  base recombination must be fur ther  reduced by e i ther  stress-free 

and c lean  f a b r i c a t i o n  techniques on high l ifetime crystals o r  novel base 

s t r u c t u r e  design,  such as t h e  graded thin-base back-surface-field s t ructure  

proposed and analyzed by Sah and Lindholm. 

base recombination losses must be eliminated and emitter recombination must  

be reduced. Several  novel emitter designs t o  reduce recombination losses have 

been proposed and one demonstrated. These involve the  reduct ion of emitter 

i n t e r f a c e  recombination lo s ses  a t  t h e  non-contact su r f ace  by high q u a l i t y  

thermal oxide and a t  metal-contact/silicon-emitter i n t e r f a c e  by e i ther  a t h i n  

tunnel ing oxide, as demonstrated by Green, o r  by a po lys i l i con  barrier l a y e r  

between the metal conductor and the s i l i c o n  emitter sur face .  

23.8GAMl has been estimated using Neugroschel's data of emitter i n t e r f a c e  

recombination ve loc i ty  and dark  cu r ren t  dens i ty  of po lys i l i con  barrier l aye r s .  

Novel f l o a t i n g  emitter or  non-contact emitter s o l a r  cel l  t r a n s i s t o r  s t r u c t u r e s  

have a l s o  been proposed by Sah and Cheng t o  reduce emitter recombination l o s s  

for  beyond-20% e f f i c i e n c y  s i l i c o n  s o l a r  c e l l s .  

To reach the 205-AM1 

To break the 20% barrier, r e s idua l  

Ef f ic iency  of 
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I. INTRODUCTION 

The photovol ta ic  phenomenon was discovered by Becquerel i n  1839 who 

observed a l i g h t  induced vol tage when one of e l ec t rodes  i n  an  e l e c t r o l y t e  was 

exposed t o  l i g h t  111. 

was probably f i r s t  introduced by B i d w e l l  i n  1885 [2]. 

s i l i c o n  p/n junc t ion  was demonstrated by Chapin, F u l l e r  and Pearson a t  t h e  B e l l  

Laborator ies  i n  1954 131 who reported an e f f i c i e n c y  of 6%. Photovol ta ic  e f f e c t  

a t  r e c t i f y i n g  con tac t s  t o  Cadmium Su l f ide  s i n g l e  crystals  was a l s o  observed i n  

1954 by Reynolds, Leies, Antes and Marburger a t  the  U. S. A i r  Force Aerospace 

Research Laboratory C41. Since then,  s u b s t a n t i a l  progresses have been made 

towards the development and app l i ca t ion  of p/n junc t ion  s o l a r  cel ls  f o r  power 

generation. The most successfu l  and extensive app l i ca t ions  have been i n  

providing power f o r  sa te l i tes  i n  space. 

c o s t  t e r r e s t r i a l  photovol ta ic  power generat ion systems was suggested i n  t h e  

ear l ier  1970's [5,6] and began i n  e a r n s t  when i n  1972 the  Ad Hoc Panel on So la r  

Cell Eff ic iency of  t h e  National Academy of  Science - National Research Council 

recommended t h a t  a na t iona l  research  and development program be i n i t i a t e d  t o  

inc rease  t h e  s i l i c o n  s o l a r  e f f i c i e n c y  t o  20% [7]. 

proposed by t h e  Rappaport Single-Crystal  S i l i c o n  Solar  C e l l  Workshop Group i n  

1973 [81 wi th  a 1985 goal  of 20% AM1 e f f i c i ency  and $0.50 p e r  peak k i lowat t  i n  

1973 do l l a r .  

was compiled by Backus whose ed i t ed  volume also conta ins  r e p r i n t s  of selected 

papers of h i s t o r i c a l  s ign i f i cance  [g]. A h i s t o r i c a l  review up t o  1972 was 

given by Wolf [9]. 

The term cel l  used i n  s o l a r  and other photovol ta ic  cells  

The first s o l a r  ce l l  i n  

A focused development e f f o r t  f o r  low 

A t e n  year  program was 

A comprenhensive biography of s o l a r  ce l l  l i terature  up t o  1974 
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11. RECENT DEVELOPMENTS 

Based on t h e  NAS-NRC and NSF panel recommendations, a focused ten-year 

program began i n  1975 with  the Jet  Propulsion Laboratory of U.S. National 

Aeronautics and Space Administration as the program manager fo r  t h e  U. S. 

Department of Energy. 

produce low-cost solar array f o r  terrestrial applications. 

review, from the au thor ' s  perspect ives ,  of t h e  focus  on t h e  s i l i c o n  p/n 

junc t ion  s o l a r  ce l l  physics f o r  improving e f f i c i e n c y ,  from t h e  incept ion  of 

t h i s  program t o  the  la tes t  state-of-the-art .  

research and development needs t o  reach t h e  i n t r i n s i c  performance l i m i t s .  

To-date, most of t h e  goals l a i d  down by the  Rappaport Group [8] are near ly  

reached. Fur ther  developments, a l l  i n  s i l i c o n  device process technology, as 

o r i g i n a l l y  an t i c ipa t ed  by the NAS-NRC panel [71, must be undertaken t o  exceed 

t h e  205-AMl barrier. 

Its p r i n c i p a l  mission was t o  develop the technology t o  

This  paper g ives  a 

It a l s o  g ives  a p ro jec t ion  of  the 

The remaining sec t ions  of  t h i s  article a r e b a s e d o n  a con t r ac t  r e p o r t  

prepared by the author  [lo].  

f a c t o r s  which may l i m i t  the  ce l l  e f f ic iency  t o  below 20%. 

also given of the factors which l i m i t  the e f f i c i e n c y  t o  less than 20% i n  the 

state-of-the-art c r y s t a l l i n e  s i l i c o n  so la r  cells  reported i n  t h e  l i t e r a t u r e .  

The f o u r t h  sec t ion  w i l l  summarize the  ana lys i s  t o  g ive  cells  with greater-than- 

20% e f f i c i ency .  

wi th  greater than 20% e f f i c i e n c y  are made i n  s e c t i o n  f ive .  

summary are given i n  sec t ion  V I .  

The t h i r d  sec t ion  w i l l  provide an a n a l y s i s  of  the 

An eva lua t ion  is 

Suggestions f o r  p rac t i ca l  designs of high e f f i c i ency  cells 

Conclusion and 

- 3- 



111. LIMITING FACTORS BELOW 20% (AM1) 

I n  order t o  de l inea te  the f a c t o r s  which l i m i t  the  s i l i c o n  s o l a r  ce l l  per- 

formance below o r  above 20% AM1 e f f i c i ency ,  a general  a n a l y s i s  of  t h e  e l e c t r i c a l  

characteristics is f i r s t  given, i n  s e c t i o n  3.1. The var ious  recombination loss 

mechanisms and their l o c a t i o n s  i n  the s o l a r  ce l l  s t r u c t u r e  are then i d e n t i f i e d ,  

e luc ida ted  and estimated i n  s e c t i o n  3.2. The l i m i t i n g  recombination loss 

mechanisms and s i tes  i n  the  h ighes t  e f f i c i e n c y  s i l i c o n  solar cel ls  repor ted  i n  

t h e  literature are then de l inea ted  i n  s e c t i o n  3.3. 

3.1 GENERAL DESCRIPTION OF THE SOLAR CELL CURRENT-VOLTAGE CHARACTERISTICS 

The performance of solar cells has been estimated, pred ic ted  and computed 

from t h e  so lu t ion  of t h e  s i x  semiconductor equat ions by var ious techniques and 

approximations. These s i x  equat ions,  also known as the  Shockley Equations, are 

given below f o r  t h e  d.c. s teady-s ta te  condition. 

3 = - qDpVP + q v  Pi! = - q v  pw P P P  P 
(3.1.2) 

0 - +  I P + I N  

The first two equat ions are the e l e c t r o n  and hole areal cu r ren t  dens i ty  equa- 

t i o n s  whose components are the d i f fus ion  c u r r e n t s  w i t h  d i f f u s i v i t i e s  D, and Dp 

and t h e  d r i f t  c u r r e n t s  w i t h  mobili t ies p, and p 

respe t ive ly .  

are given by N and P r e spec t ive ly  while  2 is the  electric f i e l d  vec tor  and q is 

for  e l e c t r o n s  and holes  P 
The volume d e n s i t y  o r  concent ra t ion  of t h e  e l e c t r o n s  and holes  

t h e  magnitude of t h e  e l e c t r o n  charge. 
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The second two equat ions are the current  con t inu i ty  equations which state 

t h a t  t h e  divergence of t h e  e l e c t r o n  o r  hole c u r r e n t  dens i ty  is given by the 

, IN or I respec t ive ly .  Due t o  t h e  n e t  volume cu r ren t  genera tor  o r  source 

establ ishment  of d.c. steady-state, these two c u r r e n t  sources  are equal  i n  
P 

magnitude and opposi te  i n  s i g n  as indicated by the  s i x t h  equat ion,  (3.1.6), 

given above. 

The f i f t h  equat ion is t h e  Poisson equation which relates t h e  divergence 
-t 

of the electrical displacement, €E, t o  t h e  n e t  macroscopic volume space charge 

dens i ty ,  p. The l a t t e r  c o n s i s t s  of the cont r ibu t ions  of  t h e  holes i n  the  

DD ' valence band, t h e  e l e c t r o n s  i n  t h e  conduction band, t h e  ion ized  donors, N 

t h e  ion ized  acceptors ,  Nu, and the charges t rapped a t  t h e  recombination 

cen te r s ,  NT. 

The s i x t h  equat ion is derived from the general  k i n e t i c  o r  time-dependent 

rate equat ion  of recombination of e lec t rons  and holes.  It is t h e  most important 

equat ion i n  device physics. 

device theorists even t o  t h i s  day. 

However, it has been i n c o r r e c t l y  treated by many 

The general  time dependent form is  given by 

(3.1.7) q(anT/a t )  = iN + ip 

where nT is t h e  time dependent form of t h e  trapped e l e c t r o n  dens i ty  a t  t h e  

recombination c e n t e r s  which can be decomposed i n t o  a doc .  steady-state 

component and time-vary component, n,(r , t)  = N T ( r )  + n t ( r , t ) .  

state, anT/at = 0, so t ha t  

3 -t -t A t  d.c. s t eady  

(3.1.8) I N  = 'SS 
Ip = - 

where I 

the electron-hole  generation-recombination mechanisms. 

is t h e  n e t  s teady-s ta te  volume generat ion c u r r e n t  dens i ty  from a l l  
SS 

It is  these mechanisms 

t h a t  produce the  photocurrent and photopower by a s o l a r  cell .  It is a l s o  these 

mechanisms which l i m i t  t h e  s o l a r  cell  power conversion e f f i c i e n c y  t o  less than 

100%. 
-5- 



For s o l a r  cells  wi th  an  one-energy-level recombination c e n t e r  and exposed 

t o  solar I l luminat ion,  Iss is composed of a o p t i c a l  generat ion component and a 

recombination component. The recombination component can consist of  as many as 

n ine  parts each from a d i f f e r e n t  recombination mechanism t o  be discussed i n  the 

next  subsection. 

There have been many extensive e f f o r t s  t o  so lve  these s i x  equat ions 

numerically on h igh  speed computers. The exac t  one-dimensional code has been 

completely developed, debugged and used f o r  many solar ce l l  design runs s i n c e  

1978 [ l l ] .  Many cel l -design c a l c u l a t i o n s  have been repor ted  i n  JPL t echn ica l  

r e p o r t s  [ l l-161 and journa l  articles [16-213. T h i s  code is  based on t h e  

c i rcui t  technique f o r  semiconductor a n a l y s i s  [22] and is considered mature. 

It can give the  current-voltage and i n t e r n a l  characteristics of solar c e l l s  

w i t h  any dopant and recombination impuri ty  prof i les ,  inc luding  i n t e r f a c e  and 

sur face  recombination cen te r s ,  and as many as two recombination energy l e v e l s ,  

from two independent recombination cen te r  species o r  from one species of 

two-level recombination cen te r s ,  such as T i ,  Zn, S, Au, V and others. 

Other e f f o r t s  of providing codes for  numerical so lu t ions  of the  s i x  

semiconductor equations have been less successfu l  as suggested by t h e  lack of 

published report of cell  designs.  Most o f  t h e  other efforts have also included 

some approximations t o  the s i x  equat ions pr ior  t o  numerical so lu t ion .  The most 

s e r ious  one which is wide spread  is the  exc lus ion  of the s i x t h  equation. These 

a u t h o r s  a l so  neglected t h e  charge trapped a t  t h e  recombination cen te r s ,  N ($1, 

i n  t he  f i f t h  or Poisson equation. 

s o l u t i o n  can be obtained when t h e  trapped charge term is dropped, although it 

may be much smaller than t h e  dopant charge dens i ty  terms, NDD and N 

importance even a t  10 

T 
There is no assurance that  an  accurate 

Its AA- 
10 cm-3level has been demonstrated by u s  [23-241. 
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Another approach t o  the s o l u t i o n  of the  s o l a r  ce l l  current-vol tage charac- 

terist ics is t o  develop an a n a l y t i c a l  and hence approximate so lu t ion  from the  

s i x  semiconductor equations.  The most famous and widely used one is t h a t  of 

t h e  ideal diode law first given by Shockley i n  1949 which was first used by 

Prince 1253 i n  1955 i n  an  extensive ana lys i s  of  t h e  performance of  p/n junc t ion  

s o l a r  cel ls  with p r a c t i c a l  geometries. T h i s  dark  current-vol tage equat ion f o r  

an ideal diode can be r e a d i l y  extended t o  g ive  us  a genera l ized  and simple 

s o l a r  cell  equat ion which can serve  as a guide f o r  t h e  de l inea t ion  of  t h e  

var ious recombination loss mechanisms i n  very high e f f i c i e n c y  s o l a r  cells. 

following i s  a sketch of t h e  de'r ivation o f  t h i s  a n a l y t i c a l  approximation. 

The 

It 

provides a ball-park estimate of t h e  critical values  of  t h e  recombination 

parameters f o r  cells  below and above 20% AM1 e f f i c i ency .  

D 

/ 
/ 
I 
I 
I 
\ I N* I I - 

Eric 1 osed P HEAT ------ 
Fig. 1 A cross-sect ion view of a s o l a r  ce l l  f o r  t h e  de r iva t ion  

of t h e  general  s o l a r  c e l l  current-vol tage equation. 



With reference t o  a genera l  solar cel l  s t r u c t u r e  shown i n  Fig.1, w e  may 

apply the three-dimensional con t inu i ty  equat ions given by Eqs. (3.1.3) or 

(3.1.4) by in t eg ra t ing  i t  over a s u r f a c e  which enc loses  t h e  e n t i r e  cel l  

as i l l u s t r a t e d  i n  Fig.1. We decompose the  n e t  volume generat ion cu r ren t  

dens i ty ,  Iss, i n t o  i ts  two components e x p l i c i t l y ,  ISS=q(G-R), where G is the 

o p t i c a l  generation cu r ren t  dens i ty  i n s i d e  t h e  ce l l  due t o  t he  penetrated solar 

i l luminat ion and R is the n e t  recombination cu r ren t  dens i ty ,  i n  a l l  parts of 

t h e  ce l l  including the  bulk ,  i n t e r f a c e  as well as surface.  Then, using t h e  

divergence theorem t o  transform t h e  volume i n t e g r a l  of V*Jp o r  V*JN i n t o  

a su r face  i n t e g r a l ,  we ge t  

+ -+ 

f V*fpdV = f jp*d = I = q f (G-R)dV = IL - IR (3.1.9) 

Here, IL i s  the  photocurrent generator  and IR is t h e  diode current-vol tage 

characteristics. I n  t h e  case of  a l i n e a r  system, where t h e  recombination law 

is l i n e a r  i n  the e l ec t ron  and hole concentrat ions,  then IR is j u s t  t he  dark  

diode current-voltage c h a r a c t e r i s t i c s  given by Sah [26]. 

(3.1.10) 

where t h e  sum is  taken over t h e  var ious  recombination regions and m = l  t o  4 as  

summarized below and elaborated i n  t h e  next  subsection. 

m-Value RECOMBINATION REGIONS ******* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
1 Quasi-neutral  base and emitter layers. 
1 Front and back su r faces  or  in t e r f aces .  

1 t o  2 High l e v e l  condi t ion  i n  above regions. 
1 t o  2 Space charge layer .  
2 t o  4 Surface channel. 

An indica t ion  can be made of t h e  requirement on t h e  recombination c u r r e n t  

dens i ty  coe f f i c i en t ,  Jm given i n  Eq.(3.1.10), t o  achieve high performance. 

t h i s  purpose, t h e  bes t  case is taken, namely t h a t  of m = l  s i nce  t h i s  g ives  a 

For 
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current-voltage characteristics which is closest to  the ideal lossless case of 

a sqaure (or rectangular) I-V curve sometimes known as the threshold case. 

Figure 2 i l lustrates the IV characteristics of these cases. 

I 
l 

a 

m = m  / Threshold 

Figure 2 The current-voltage (IV) characteristics 
of several p/n junction solar ce l l s  with 
different recombination loss mechanisms. 
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For general comparisons, w e  also assume tha t  i l lumina ted  area is  equal t o  

t h e  cross-sect ional  area of t h e  recombination volume. Thus, t h e  ideal (but  no t  

lossless) s o l a r  cell characteristics can then be described by 

J = JL - Jl[exp(qV/kT) - 1 1  (3.1.11) 

where J i s  the cu r ren t  dens i ty  flowing i n t o  the ex te rna l  c i r c u i t  from t h e  s o l a r  

cel l  power source and V is t h e  terminal  vol tage of  t h e  cell .  

t h e  i n t e r n a l  series r e s i s t ance  l o s s e s  of the ce l l  i n  t h i s  ideal case. 

We have neglected 

The photocurrent dens i ty  i s  a weak func t ion  of  recombination l o s s  i n  high 

e f f i c i e n c y  c e l l s .  

a v a i l a b l e  photocurrent under AM1 i l l umina t ion  a t  a given ce l l  thickness .  Our 

It can be taken as a cons tan t  and set  t o  the  maximum 

example here and i n  the  remaining s e c t i o n s  of t h i s  r e p o r t  w i l l  take a value of 

36 mA/cm 

dens i ty  a t  t he  earth su r face ,  known as AM1.5, a t  a photopower dens i ty  of 

2 fo r  J which corresponds t o  t h e  labora tory  simulated solar power L 

P I N = 1 0 0  mWlcmL. 

a 50 micron t h i c k  photoactive layer of a cel l ,  w i t h  no f r o n t  and back su r face  

Th i s  closely approximates t h e  photocurrent generated i n  

r e f l e c t i o n ,  and under t h e  real AM1 s o l a r  s p e c t r a l  dens i ty  of  88.92 mW/cmL 

which gives  a photocurrent of 31.49 mA/cm2 obtained by a numerical so lu t ion  of 

the  s i x  semiconductor equat ions using the c i r c u i t  techniques.  (See Table I11 of 

re ference  C171.) T h i s  g ives  a photocurrent response of JSWPIN = 31.4W88.92 

= 0.3541 E 0.36 A/W. For o t h e r  i l l umina t ion  i n t e n s i t i e s ,  material properties 

and cel l  thickness,  only the r a t i o ,  JL/PIN = 36/100 = 0.36 A/W, needs t o  be 

modified and the r e s u l t s  can be scaled. For example, i f  t h e  ce l l  was i n f i n i t e l y  

t h i c k  o r  a l l  photons were absorbed, then t h i s  photo-response r a t i o  is increased 

by 27.6% t o  0.4594 A/W. 

desirable s ince t h e  neglected series ohmic loss  w i l l  be increas ingly  important 

t o  reduce the e f f i c i ency .  

i nc reas ing  t h e  photocurrent whi le  keeping the series r e s i s t a n c e  loss low. 

I n f i n i t e l y  t h i c k  ce l l  is n e i t h e r  practical nor 

Multiple-pass i n  t h i n  cells  would be a so lu t ion  t o  

The 
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two-pass case w i t h  perfect r e f l e c t i n g  back su r face  has been analyzed by u s  [20] 

which showed marginal improvement. 

f o r  t h e  f r o n t  and back surface i l luminated s i l i c o n  cells as a func t ion  of  

th ickness  under AM0 and AM1 (88.92mW) i l lumina t ion  condi t ions  1271. The sum of 

the a v a i l a b l e  photocurrents from the f r o n t  and back i l lumina ted  one-pass cell  

is the upper l i m i t  of t h e  two-pass cel l  with perfect back surface r e f l e c t i o n .  

It is  evident  t ha t  only when the  cel l  is  very t h i n  can the back su r face  

r e f l e c t i o n  improve t h e  Shor t -c i rcu i t  cur ren t  s i g n i f i c a n t l y .  

Figure 3 gives  the a v a l i a b l e  photocurrent  

60 

50 

c( 

v) 
L 30 

10 

0 
001 1 10 lo2 10' lo4 

SILICON THICKNESS (PI 

Figure 3 The ava i l ab le  photocurrent o r  m a x i m u m  sho r t - c i r cu i t  cu r ren t  i n  
i n  s i l i c o n  solar cells as a func t ion  of s i l i c o n  thickness under 
AM0 and AM1 (88.92 mW) i l luminat ion condi t ions  f o r  one-pass 
f r o n t  or  back i l luminated c e l l s .  
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The performance of t h e  s o l a r  cel l  is charac te r ized  by f o u r  parameters, 

t h e  sho r t - c i r cu i t  cu r ren t ,  JSC, t h e  open-circui t  vo l tage ,  VOC, t h e  e f f i c i e n c y  

a t  t h e  maximum load power poin t ,  EFF, and t h e  f i l l  f a c t o r  (sometimes a l s o  known 

as t h e  curve f a c t o r  or  form f a c t o r )  a t  t h e  m a x i m u m  load power po in t ,  FF. These 

can be computed from Eq.(3.1.11) and are given by 

JSC = J L  = Jl*[exp(q*VOC/kT) - 11 

EFF = PMAX/PIN = JMAX*VMAX/PIN 

FF = JMAX*VMAX/JSC*VOC 

where t h e  maximum load power poin t  is obtained by s e t t i n g  t h e  de r iva t ive  

dP/dV=d(J*V)/dV t o  zero using Eq.(3.1.11) f o r  J. The maximum e f f i c i e n c y  can 

a l s o  be computed from 

EFF = FF*JSC*VOC/PIN = (JSC/PIN)*FF*VOC = 0.36*FF*VOC (3.1 15) 

i n  t h i s  case. FORTRAN no ta t ion  convention is used here.  

The r e s u l t s  given by Eqs.(3.1.12) t o  (3.1.15) are p a r t i c u l a r l y  usefu l  t o  

provide a guide i n  t h e  search of solar c e l l  geometries of high e f f i c i ency .  To 

i l l u s t r a t e  t he  numerical range o f  t h e  parameters i n  high e f f i c i e n c y  cells,  a 

set  of parameters are computed and tabulated i n  Table I. 

dark cur ren t ,  J1, must be less than 2.33-13 A / c m  

It shows t h a t  t h e  
2 or  0.2 pA/cm2 f o r  a 20%-AM1 

cell.  

t o  0.2 fA/cm at about 268, which is about t h e  ultimate i n t r i n s i c  l i m i t  f o r  

It decreases about one decade for  each e f f i c i e n c y  rise of 25, reducing 

2 

a s i l i c o n  s o l a r  ce l l  with 50 microns of photoactive l a y e r  as indica ted  i n  

s e c t i o n  4. 

open-circuit  vol tage must i nc rease  by about 60 mV, cons i s t en t  with a simple 

estimate of 58.96 mV o r  2.303kT/q. 

The t a b l e  a l s o  shows t h a t  f o r  each 2% rise of efficiency, t h e  
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TABLE I 

PERFORMANCE PARAMETERS OF THE IDEAL DIODE 
SILICON SOLAR CELLS 

(AM1 o r  AM1.5, 24.0C) 

SOURCE 

******** 
THEORY 
THEORY 
THEORY 
THEORY 
THEORY 
THEORY 

J1 JSC VOC 
( A )  (mA) (mV) ********** ****** ***** 

2.04E-16 36.0 840 
2,123-15 36.0 780 
2.213-14 36.0 720 
2.303-13 36.0 660 
2.403-12 36.0 600 
2.50E-11 36.0 540 

FF 

******** 
0.8664 
0.8588 
0.8501 
0.8402 
0.8286 
0.8151 

EFF 
( % I  ******* 

26.20 
24.12 
22.04 
19-97 
17-90 
15.85 

Legend: Area=l.Ocmz, PIN=100mW. 

The numerical results of Table I also shows t h e  range o f  t h e  d a r k  cu r ren t  

dens i ty ,  J1, for  the less - than  20% cells. For these cells,  the dark  cu r ren t  

is  more than  0.23 pA/cm2 i f  t h e  losses a re  a l l  i n  the  quasi-neutral  regions 

and l a y e r s  o r  a t  the  i n t e r f a c e s  and t h e  c e l l s  are a t  a low i n j e c t i o n  l e v e l  so 

t h a t  they follow t h e  ideal diode law. In genera l ,  cells w i t h  lower 

e f f i c i e n c i e s  s u f f e r  also from recombination l o s s e s  a t  the r e s i s t i v e  defects or  

short c i r c u i t  spots on the  cel l  perimeters I181 and i n  the  bulk and back 

contac t  reg ions  [ l g l ,  i n  the su r face  channels 1261 as w e l l  as a t  recombination 

cen te r s  i n  t h e  quasi-neutral  base layer ,  t h e  last  from r e s i d u a l  c r y s t a l  

growth- and process-induced m e t a l l i c  recombination impur i t ies .  
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3.2 RECOMBINATION LOSS MECHANISMS AND SITES 

Energy loss by photogenerated e l e c t r o n s  and holes through s c a t t e r i n g  and 

recombination l i m i t s  t h e  u l t imate  performance of  s o l a r  cells. Sca t t e r ing  

reduces the mobil i t ies  of e l e c t r o n s  and holes ,  i nc reases  t h e  s e r i e s  r e s i s t a n c e  

and decreases the f i l l  f a c t o r  measured ex te rna l ly .  Recombination lo s ses  

inc rease  t h e  shunt  conductance and t h e  da rk  leakage cu r ren t  which decrease both 

t h e  open-circuit  vol tage and t h e  sho r t - c i r cu i t  cur ren t .  Energy l o s s e s  of  t h e  

photogenerated e l e c t r o n s  and holes  by these two c o l l i s i o n  processes ,  s c a t t e r i n g  

and recombination, w i l l  thereby reduce t h e  e f f i c i e n c y  of t h e  s o l a r  ce l l  s i n c e  

i t  is  given by the product of  t h e  open-circui t  vo l tage  and t h e  sho r t - c i r cu i t  

cu r ren t  as indica ted  by Eq.3.1.13. 

3.2.1 CLASSIFICATION OF RECOMBINATION PROCESSES 

The electron-hole recombination processes can be ca tegor ized  according t o  

t he i r  o r ig in  and f u r t h e r  de l inea ted  by t h e  energy exchange mechanisms which 

con t ro l  the  recombination rate. Recombination processes wi th  t h e  i n t r i n s i c  

o r i g i n  are those which l i m i t  t he  u l t ima te  performance of a s o l a r  cell.  

b ina t ion  processes w i t h  t h e  e x t r i n s i c  o r i g i n  due t o  crystal imperfect ions,  such 

Recom- 

as chemical impur i t ies  and physical  defects present  i n  t h e  e l e c t r i c a l l y  a c t i v e  

volumes of t he  cel l ,  is  the dominant reason tha t  l i m i t e d  t h e  best s i l i c o n  s o l a r  

c e l l  to-date t o  an e f f i c i ency  below 205-AMl. However, t h e  e x t r i n s i c  o r i g i n  of 

the recombination lo s ses  can obviously be reduced wi th  advanced and by f u t u r e  

advances i n  s i l i c o n  device f a b r i c a t i o n  technology. T h i s  b r ings  hope t h a t  very 

high e f f i c i ency  s i l i c o n  s o l a r  cel ls  can be a t t a i n e d  i n  t h e  f u t u r e  when a l l  t h e  

de l e t e r ious  losses from e x t r i n s i c  o r i g i n  or  c r y s t a l  imperfect ions can be 

el iminated.  A ca tegor iza t ion  of  these recombination processes  i s  given i n  t h e  

following table .  

-14- 



TABLE I1 

RECOMBINATION PROCESSES I N  SOLAR CELLS 

I N T R I N S I C  MECHANISMS ENERGY EXCHANGE PARTNER 
(Interband Trans i t ions)  (Energy Loss Mechanisms) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  *************************a** 

I. 1 Thermal Recombination 
1.2 Radiative Recombination 
I. 3 Auger Recombination 

Phonons ( L a t t i c e  Vibrat ion)  
Photons 
Second Electron or  Hole 

EXTRINSIC MECHANISMS ENERGY EXCHANGE PARTNER 
(Band-bound Trans i t ions)  (Energy Loss Mechanisms) 
************e******************* **********e***************** 

E.l Thermal Recombination (SRH)  Phonons (Lattice Vibrat ion)  
E.2 Radiat ive Recombination Photons 
E. 3 Auger Recombination Second Elec t ron  o r  Hole 

A main fundamental d i f f e rence  between t h e  i n t r i n s i c  and e x t r i n s i c  recom- 

b ina t ion  mechanisms is t h a t  the i n i t i a l  and f i n a l  states of  t h e  e l ec t ron  o r  the 

hole are i n  d i f f e r e n t  energy bands separated by a large energy gap i n  t he  

i n t r i n s i c  processes. The energy exchange o r  l o s s  du r ing  one of  t h e  three 

i n t r i n s i c  recombination processes is much l a r g e r  than  t h e  l a r g e s t  phonon energy, 

about 60 m e V  f o r  o p t i c a l  phonons i n  solids. Thus, except  f o r  the  interband 

thermal recombination t r a n s i t i o n ,  1.1 l i s ted i n  Table 11, other methods must be 

employed t o  d i s s i p a t e  t h e  recombination energy loss of an  electron-hole  pa i r .  

For example, i n  1.2, the r a d i a t i v e  recombination process, the e l e c t r o n  energy 

loss  when dropped i n t o  a hole i s  carried away by a photon. I n  t h e  interband 

Auger recombination t r a n s i t i o n ,  1.3, the  energy loss is carried away by a 

second e l e c t r o n  o r  second hole  which is i n  the v i c i n i t y  of  t h e  recombining 

electron-hole  pair. 
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For the  t h r e e  e x t r i n s i c  recombination mechanisms l i s t e d  i n  Table 11, t h e  

i n i t i a l  o r  f i n a l  state of the recombining e l e c t r o n  and hole is a loca l i zed  o r  

bound s t a t e  located a t  a la t t ice  imperfection, such as a chemical impuri ty  o r  

a physical de fec t  (vacancy, divacancy, vacancy c l u s t e r s  and dangling bonds) o r  

a complex involving many impuri ty  atoms and vacancies. 

and f i n a l  s t a t e s  of the  e l e c t r o n s  and holes  i n  an  i n t r i n s i c  o r  interband 

recombination t r a n s i t i o n  a r e  t h e  nonlocalized band s t a t e s  which extend over t h e  

e n t i r e  crystal. 

covers  a wide range f r a o  t h e  small value of  an acous t i ca l  phonon of  a few m e V  t o  

l a r g e  values approaching t h a t  of  t he  fundamental energy g a p  of  an e lec t ron-vol t  

o r  two. 

I n  c o n t r a s t ,  t h e  i n i t i a l  

The energy exchange i n  the  e x t r i n s i c  recombination t r a n s i t i o n  

Thus, the  i n t r i n s i c  mechanisms cannot be completely el iminated i n  s o l a r  

c e l l s  although ce l l  designs may be optimized t o  reduce the recombination rates 

v i a  these i n t r i n s i c  mechanisms which w i l l  be discussed i n  s e c t i o n  4. However, 

the  e x t r i n s i c  mechanisms can be reduced o r  even el iminated a s  t h e  s i l i c o n  

device f ab r i ca t ion  technology keeps advancing. It should be emphasized t h a t  

t h e  extremely low dens i ty  requirement on t h e  recombination cen te r  dens i ty  over 

extremely la rge  device o r  cel l  areas exceeds the capabi l i ty  of even the latest  

and most advanced s i l i c o n  VLSI c i r c u i t  f a b r i c a t i o n  technology. 

Among t h e  recombination processes l i s t e d  i n  Table 11, t h e  i n t r i n s i c  Auger 

and Radiative mechanisms pose t h e  u l t imate  l i m i t  f o r  greater than 20% AM1 cells 

which is elaborated i n  sec t ion  4. However, t h e  e x t r i n s i c  thermal recombination 

mechanism, the SRH o r  Shockley-Read-Hall process,  accounts f o r  t h e  cu r ren t  

technology l i m i t .  The recombination rate and loss of the  SRH thermal recombina- 

t i o n  process is proport ional  t o  t h e  dens i ty  of  t h e  impur i t ies  and defects. 
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These imperfect ions can be unin ten t iona l ly  but  r e a d i l y  introduced dur ing  the 

cel l  f a b r i c a t i o n  procedures and they may be  present  i n  the  s t a r t i n g  s i l i c o n  

crystal ,  being incorporated dur ing  c rys t a l  growth. Thus, t h i s  l i m i t i n g  f a c t o r  

of  t h e  cur ren t -bes t  cel ls  can be largely removed w i t h  a n t i c i p a t e d  advances i n  

s i l i c o n  i n t e g r a t e d  c i r c u i t  f a b r i c a t i o n  technology. 

3.2.2 RECOMBINATION SITES 

These recombination processes can occur p r e f e r e n t i a l l y  a t  c e r t a i n  regions 

o r  l o c a t i o n s  i n  a solar cel l  which suggests device design and technology inno- 

va t ions  t o  reduce and e l imina te  them. A schematic i l l u s t r a t i o n  of t h e  cross-  

s e c t i o n a l  area of a p+/n/n+ solar cel l  i s  given i n  Fig.2. 

described genera l ly  by a number of l aye r s  and i n t e r f a c e s  where one o r  more o f  

t h e  recombination mechanisms may be important. 

n e u t r a l  emitter, base and back-surface f i e l d  layers; and t h e  p/n junc t ion  space 

charge l a y e r ;  and t h e  in t e r f aces :  t h e  oxide /s i l icon ,  metal/oxide and metal/ 

s i l i c o n  i n t e r f a c e s  on t h e  f r o n t  and back su r faces  i l l u s t r a t e d  i n  Fig.g(a) .  

The cel l  can be 

The layers are: the quasi- 

Not a l l  of t h e  s i x  recombination mechanisms are important i n  these l aye r s .  

For example, i n  t h e  highly-doped p+ emitter l a y e r ,  only the  in te rband Auger and 

t h e  SRH recombination mechanisms may be important. The interband Auger mech- 

anism can be important i f  t h e  major i ty  c a r r i e r  dens i ty  i n  t he  quasi-neutral  

emitter exeeds about lx1017 hole/cm or t h e  emitter l a y e r  sheet r e s i s t a n c e  

exceeds about 0.6 ohm/square [28] s ince  the  Auger recombination rate for  t h e  

i n j e c t e d  or photogenerated e l e c t r o n s  i n  the p+ emitter l a y e r  is propor t iona l  t o  

t h e  square of  t h e  hole concentration. 

2 

For another  example, the SRH mechanisms could also be important i n  t h e  

quas i -neut ra l  p+ emitter if t h e  dens i ty  of t h e  de fec t  recombination c e n t e r s  i n  

t h e  emitter i s  g r e a t l y  increased due t o  heavy doping of  t h e  p+ emitter by a 
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Fig.L+(a) A cross-8ection Vier Of 80l.r cell 8horing the 
dominant recombination processem and locations. 
RADIATIVE and AUGER are the interband radiative 
and Auger recombination mechanims. 8RR I8 the , 

Shockley-Read-Ball thermal recombination at 
defect and impurity recombination centers. Recom- 
bination occur8 both in the bulk lagers and at the 
interface8 betUeen oxide, 8ilicon and ntal(d8rk). 
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Fig.4(b) A croms-eection vier of solar cell 8horing the recom- 
bination velocity repre8entation of the recombination 
rates. 
velocities of volume recombination processes. 
Sry,  8hr and SBY are the real interface recombination 
velocities at the front oxide/8ilicon, front Inetal/ 
8ilicon, back oxide/8ilicon and back metal/8ilicon 
interface.. 

s, SB and SB1 are the effective recombiantion 
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high concent ra t ion  of boron impurity.  

t a i l  states and broadens the boron impurity l e v e l  i n t o  a n  impuri ty  band, both 

of which g ive  a narrowing of the  energy gap. 

i nc rease  the  minor i ty  carrier dens i ty  appreciably by inc reas ing  the  i n t r i n s i c  

carrier d e n s i t y ,  n... 

dark c u r r e n t  c o e f f i c i e n t ,  J1, by the f a c t o r  exp(DEG/kT) where DEG is  t h e  

Heavy doping introduces localized band- 

Th i s  energy gap narrowing w i l l  

The higher  minority carrier dens i ty  would increase  the  
1 

reduct ion o f  t h e  energy gap which appears 

bound 

doped 

There has been no concrete  evidence 

Auger recombination process,  E. 3 i n  

emitter l a y e r  [291. However, it is  

i n  ni. 

showing t h a t  t he  l o c a l i z e d  o r  band- 

Table 11, is important i n  t he  heavi ly  

a n t i c i p a t e d  due t o  both the  large 

major i ty  carrier dens i ty  and t h e  high densi ty  of defects and dopant impur i t ies .  

I n  t h e  quasi-neutral  base l aye r ,  the interband or  i n t r i n s i c  r a d i a t i v e ,  the 

interband Auger, and t h e  SRH loca l i zed  recombination processes may a l l  be impor- 

t a n t .  

cen te r s  w i l l  dominate while t he  interband r a d i a t i v e  and Auger recombinations 

are not  s i g n i f i c a n t .  

process i n  t h e  quasi-neutral  base and emitter layers and a t  the  i n t e r f a c e s ,  are 

reduced o r  e l imina ted ,  t h e  interband or i n t r i n s i c  r a d i a t i v e  and Auger 

recombination mechanisms become t h e  l imi t ing  mechanisms. 

discussed i n  s e c t i o n  4 f o r  very-high e f f i c i ency  cells. 

I n  cells wi th  less than 205-AM1 e f f i c i ency ,  SRH l o s s e s  a t  recombination 

When t h e  e x t r i n s i c  recombination losses, such as t h e  SRH 

T h i s  is f u l l y  

The a n a l y s i s  j u s t  made f o r  t h e  highly doped emitter l a y e r  can a l s o  be 

applied t o  the back-surface-field (BSF) l ayer .  

BSF layer has much less inf luence  on the cell  performance than  t h e  emitter 

layer on the f r o n t  su r f ace  s i n c e  most of t h e  electron-hole  pairs are generated 

by l i g h t  i n  t he  f r o n t  su r f ace  region. 

However, recombination i n  the 

The main requirement f o r  t h  BSF is t o  
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have a s u f f i c i e n t l y  low recombination rate and s t e e p  impuri ty  g rad ien t  a t  t h e  

high-low junct ion so t h a t  most of  the minori ty  carriers are reflected back 

towards t h e  f r o n t  su r f ace  by t h e  low/high junc t ion  in t e r f ace .  

i s  very e f f i c i e n t  o r  loo%, then no photo-generated minori ty  carriers can pene- 

If  t h e  r e f l e c t i o n  

t r a t e  i n t o  t h e  BSF l a y e r  t o  recombine w i t h  t h e  major i ty  carriers there. Then, 

t h e  recombination loss i n  t h e  BSF l a y e r  would have l i t t l e  inf luence  on the 

d a r k  recombination cu r ren t  J1. 

Recombination o f  photogenerated minori ty  carriers a t  t h e  loca l i zed  states 

i n  t h e  i n t e r f a c i a l  l a y e r s  on t h e  f r o n t  su r f ace  can s i g n i f i c a n t l y  reduce and 

l i m i t  t h e  e f f ic iency  by increas ing  t h e  da rk  cu r ren t  J1. From a n a l y s i s  of t h e  

r ecen t ly  reported cel ls  t o  be given i n  sec t ion  3 . 3  it  is evident  t h a t  some of 

these high-efficiency less-than-20% ce l l s  are somewhat l i m i t e d  by recombination 

l o s s e s  a t  t h e  f r o n t  i n t e r f a c i a l  l ayers .  

Recombination a t  exposed sur faces  and i n t e r f a c e s  can occur v i a  t h e  s i x  

mechanisms j u s t  described w i t h  t he  S R H  recombination a t  i n t e r f a c e  and su r face  

states being the  most important and interband Auger mechanism very e f f e c t i v e  

on highly-doped emitter sur faces .  

and surfaces  are t h e  dangling bond s i t e s  of  s i l i c o n  and oxygen a r i s i n g  from 

The recombination c e n t e r s  a t  the  i n t e r f a c e s  

abrupt  t r a n s i t i o n  from a s i l i c o n  l a t t i c e  t o  an  amorphous oxide o r  i n s u l a t o r  

s t ruc tu re .  Extensive s t u d i e s  of these dangling bonds and the i r  genera t ion  and 

anea l ing  kinet ics  i n  the presence of hydrogen and high electric f i e l d  as w e l l  

as h igh  dens i t i e s  of ene rge t i c  e l ec t rons  have been made and quant i f ied  [30,311. 

The hydrogenation and dehydrogenation of these dangl ing bonds as w e l l  as the 

dopant acceptors (B,  A l ,  Ga and I n )  [ 3 2 - 3 4 1  have been in t ens ive ly  inves t iga t ed  

w i t h  extensive proof of  the  formation of t h e  hydrogen bonds w i t h  t h e  group-I11 

acceptors  [ 351. 
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I n  add i t ion ,  the  SRH mechanism is expected t o  be very e f f e c t i v e  a t  the  

contact-metal /s i l icon i n t e r f a c e  Since t h i s  non-rect i fying o r  ohmic Schottky 

barrier usua l ly  conta ins  a high dens i ty  of recombination centers .  Latest c l ean  

oxida t ion  technology has reduced t h e  i n t e r f a c e  recombination losses a t  t h e  

ox ide / s i l i con  i n t e r f a c e  t o  a l e v e l  which is unimportant i n  in t eg ra t ed  c i r c u i t  

appl ica t ions .  However, the  l e v e l  may not  be low enough f o r  above 20% s i l i c o n  

solar cells. Recombination a t  t he  contact-metal/si l icon i n t e r f a c e  mentioned 

above has a l s o  been a s e r i o u s  de t e r r en t  t o  high e f f i c i e n c y  cel ls  above 208-AM1 

ef f ic iency .  

small, t h e  i n t e r f a c i a l  recombination r a t e  a t  such a me ta l / s i l i con  i n t e r f a c e  

is so high  t h a t  there could st i l l  be a s i g n i f i c a n t  n e t  i nc rease  of t he  dark  

cu r ren t ,  J1, from t h e  recombination a t  t h i s  i n t e r f a c e  of the  'dark-diode' i n  

t h e  shades of the conductor f inge r s .  

Even the recombination area of the low coverage contac t  f i n g e r s  is 

3.2.3 COMPARISON OF RECOMBINATION LOSSES BY EFFECTIVE RECOMBINATION VELOCITY 

To estimate t h e  recombination losses a t  the various bulk and i n t e r f a c i a l  

l aye r s  j u s t  discussed,  an e f f e c t i v e  in t e r f ace  o r  surface recombination v e l o c i t y  

This  approach enables us t o  compare t h e  cont r ibu t ions  from the 

var ious regions and l a y e r s  conveniently. The d e f i n i t i o n  comes f r a n  t h e  one-to- 

I ,may be defined. 
I 
I 

one relationship between the dark current, J1, and the  i n t e r f a c e  or  surface 

recombination v e l o c i t y ,  S, a t  a t r u e  surface o r  in t e r f ace .  This i s  given by 

I1 

where Sm 

minori ty  

4 

is t h e  e f f e c t i v e  surface o r  i n t e r f ace  recombination ve loc i ty  of 

carriers impinging onto the  in t e r f ace ,  N, is t h e  minori ty  carrier 

dens i ty  on its a r r i v a l  s i d e  of  the in t e r f ace  and Am is the  area of t h e  s u r f a c e  

o r  i n t e r f a c e  element. 

a r r i v a l  su r f ace  of  t h e  recombination volumes t o  give the  t o t a l  dark current, I1. 

-2 1- 

This  is summed over a l l  the su r faces ,  i n t e r f a c e s  and 



Fig.4(b) shows seve ra l  e f f e c t i v e  and real i n t e r f a c i a l  recombination 

v e l o c i t i e s  i n  a s o l a r  cell. 

t i o n  v e l o c i t i e s  a t  t h e  f r o n t  and back ox ide / s i l i con  in t e r f aces .  SFM and SMB 

are t h e  true i n t e r f a c e  recombination v e l o c i t i e s  a t  the  f r o n t  and back metal- 

contact- to-s i l icon in t e r f aces .  However, SE, SB and SBI are t h e  e f f e c t i v e  

s u r f a c e  recombination v e l o c i t i e s  of  t h e  emitter, the base l a y e r  and t h e  

low/high n/n+ BSF junc t ion  layers .  

For example, SFI and S B I  are the t r u e  recombina- 

One may r e a d i l y  ob ta in  t h e  fol lowing r e s u l t s  by so lv ing  t h e  minori ty  

carrier cont inui ty  and d i f f u s i o n  c u r r e n t  equat ions,  Eqs.(3.1.1) and (3.1.3) 

i n  t h e  p-type region and Eqs.(3.1.2) and (3.1.4) i n  t h e  n-type region,  w i t h  t h e  

d r i f t  cu r ren t s  neglected. 

J 1  = q*NE*SE + q*PB*NB (302.2) 

where 

SB = (XB/tB) + S B I  + SBA + SBO (3.2.3) 

SE = (XE/tE)  + SFI + SEA + SEO (302.4) 

Here, XB and XE are t h e  base and emitter layer  thickness;  t B  and t E  are t h e  

minori ty  c a r r i e r  l i f e t i m e s  i n  the quasi-neutral  base and emitter l a y e r s  

respect ively.  

the back and f r o n t  i n t e r f aces ;  SBA and SEA are the  e f f e c t i v e  recombination 

v e l o c i t i e s  from volume interband Auger recombination i n  t h e  quasi-neutral  base 

and emitter l a y e r s  respec t ive ly ;  and SBO and SEO are those from t h e  volume 

in te rband r ad ia t ive  recombinations. These very s imple expressions are 

app l i cab le  fo r  base and emitter layers which are t h i n  compared wi th  the  

minori ty  c a r r i e r  d i f fus ion  lengths ,  a condi t ion t h a t  holds  well i n  high 

e f f i c i e n c y  c e l l  designs. 

SBI and SFI are the  e f f e c t i v e  and real recombination v e l o c i t y  a t  

The recombination v e l o c i t i e s  are given by 
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SBT = XB/tB ( A l l  Level SRH)  (3.2.5) 

SBA = C;+XB*NB (Low Level Auger) (3.2.6) 

SBA = C:+XB+n:+exp(qV/kT) (High Level Auger) (3.2.7) 

SBO = C'+XB+NB ( A l l  Level Radiat ive)  (3.2.8) 

f o r  t h e  base layer .  A similar set  holds  a l s o  f o r  t h e  emitter layer. 

Numerical values of t h e  e f f e c t i v e  surface recombination v e l o c i t i e s  are 

computed f o r  t y p i c a l  cells given i n  Table I11 for  the  s imple SRH case from 

those  cells  given i n  Table I. 

l i m i t s  w i l l  be computed and discussed fo r  the ultimate e f f i c i e n c y  cells. 

ev ident  from Table I11 t h a t  extremely low e f f e c t i v e  i n t e r f a c e  recombination 

v e l o c i t i e s  are required f o r  cells wi th  greater than 20%-AM1 e f f i c i ency .  

also evident  t ha t  t h i s  value is s t rong ly  dependent on t h e  major i ty  carrier 

dens i ty  a t  t h e  i n t e r f a c e  or su r face  where t h e  e f f e c t i v e  recombination ve loc i ty  

is computed. For example, f o r  the 19.88% cel l  which is assumed t o  be l i m i t e d  

mainly by base recombination, t h e  e f f ec t ive  base recombination v e l o c i t y  is 

128 cm/s for  a base doping of 1.OE16 ~ m ' ~ .  

I n  sec t ion  4, t h e  Auger and r a d i a t i v e  

It is 

It is  

Thus, emitter su r face  o r  i n t e r f a c e  

recombination loss can be important only when t h e  emitter i n t e r f a c e  recombina- 

t i o n  ve loc i ty  is more than 12.8+(NE/NB)=1.28E+5 cmls i f  we assume t h a t  t h e  

emitter dopant dens i ty  a t  t h e  e m i t t e r  surface is 1.0E+4 times h igher  than  t h e  

base doping. T h i s  value of emitter sur face  recombination ve loc i ty  is so high 

t h a t  i n  p r a c t i c e  emitter recombination cannot be too s i g n i f i c a n t .  

the  ca l cu la t ion ,  Auger recombination and  energy gap narrowing a t  t h e  very 

highly doped emitter su r face  were no t  included. 

can inc rease  t h e  minori ty  carrier densi ty  a t  the  s u r f a c e  by 10 or  100 times, 

reducing t h e  emitter recombination ve loc i ty  l i m i t  by t h e  corresponding f a c t o r s  

t o  1.28E+4 o r  1.283+3, the  l a t t e r  would make the emitter i n t e r f a c e  recombination 

However, i n  

Energy gap narrowing a lone  
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loss  s i g n i f i c a n t .  

e f f i c i e n c y  decreased when t h e  emitter surface oxide was removed s i n c e  t h e  

bared emitter s u r f a c e  may have a very high s u r f a c e  recombination ve loc i ty ,  

This  is probably t h e  case i n  sOme experimental cells whose 

l.E+6 cm/s o r  higher  on chemically etched surfaces. 

3.2.4 EFFECTS OF OHMIC CONTACTS AND BACK-SURFACE FIELDS 

Table I11 gives a l s o  a n  example which i l l u s t r a t e s  t h e  importance of having 

a back-surface-field l a y e r  t o  reduce t h e  effect of back s u r f a c e  recombination 

loss. This example arises from t h e  question: can t h e  back surface f i e l d  l a y e r  

be replaced by a th ick  base and the  ce l l  still have a very high e f f i c i ency?  

This  is a practical quest ion s i n c e  t h e  BSF l a y e r  r e q u i r e s  e x t r a  ce l l  f a b r i c a t i o n  

s t e p s  a t  high temperatures which usua l ly  reduces the bulk l i f e t i m e  i n  the quasi- 

n e u t r a l  base. 

AM1 e f f i c i e n c i e s  less than 17% due t o  t h e  loss a t  t e  back contact  from not 

A s  a consequence, some o f  t h e  b e s t  production cells  to-date have 

having a highly e f f e c t i v e  BSF l a y e r ,  whose designed t h e o r e t i c a l  e f f i c i e n c y  

exceeds 19s. 

TABLE I11 

PERFORMANCE AND REQUIREMENT OF 20% SILICON BSF p+/n/n+ CELLS 

I ...Base I Recombination 1 I -01 

~680~.8410)20.56~9.4E=14~ 58 
I I I . I 

~700~.8445~21.26~4.3E-14( 27 
t I I 1 I 
~720~.8460~21.90~2.a€-14~ 12 

n 

39 1 i. 7E12 I 
83 I6.5El1 I . 

4071 1.6E11 I 
~ ~~~ 

Legend : PIN=89mW/cm2 ; JL=32PA/cm2 ; 24. OC; (a) S 10 ,PB=lOZo / 10’ - lR-cm 
(a)Sg incrcaacr by 1OX If NB l nc ru . !h~  by 1OX to l O ” ~ m - ~ .  
(b) SBI-O ;\=50vr; ( C )  cP=l. 5E-8m3/. ;tAuger=3. h a .  
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3.3 EVALUATION OF FOUR RECENT HIGH-EFFICIENCY CELLS 

S i l i c o n  s o l a r  cells  w i t h  e f f i c i e n c y  approaching 20%-AM1 have been 

Innovative cell  f ab r i ca t ed  i n  t h e  labora tory  and 17%-AM1 i n  production [36]. 

designs have been developed t o  reduce i n t e r f a c e  and emitter recombination 

losses by Green [37] using a t h i n  tunnel  oxide layer between t h e  contac t  metal 

f i n g e r s  and t h e  n-type emitter l a y e r  i n  a meta l / insu la tor /n /p  (M/I/N/P) ce l l  

s t r u c t u r e  t o  reach an  e f f i c i ency  greater than 19%. 

experimental  performance data of  the best c e l l s  of  fou r  i n d u s t r i a l  l a b o r a t o r i e s  

are compared w i t h  that  predicted by the ideal diode c e l l  theory 

subsec t ions  3.1 and 3.2. From these comparisons, it appears that  bulk recombin- 

a t i o n  i n  t h e  quasi-neutral  base v i a  t h e  SRH mechanism through impurity and/or 

defect c e n t e r s  is the l i m i t i n g  loss on t h e  three higher e f f i c i e n c y  labora tory  

cells whi le  t h e  f o u r t h  cel l  design may be l i m i t e d  by recombination on t h e  back 

sur face .  The experimental L36-401 and computed cel l  performance parameters are 

given i n  Table  I V .  

v a r i a t i o n  and uncer ta in ty  i n  the mater ia l  ( r e s i s t i v i t y ,  mobi l i ty ,  lifetime, 

d i f f u s i o n  l eng th )  and geometry ( length ,  width, junc t ion  d e p t h )  parameters among 

cells i n  a batch. The computed data is based on recombination a t  recombination 

cen te r s  i n  t h e  base only but  t h e  e f f ec t ive  recombination v e l o c i t y  are a l s o  given 

t o  gauge other poss ib le  mechanisms and loca t ions  of  recombination. 

I n  t h i s  s e c t i o n ,  t h e  

presented i n  

One o r  more computed data are given t o  i l l u s t r a t e  poss ib le  

The results of  a l l  four  c e l l s  show that  t h e  experimental  J l ' s  can be 

almost completely accounted for  by the computed J1 using the measured base 

d i f f u s i o n  length  or  lifetime and r e s i s t i v i t y  data suppl ied by t h e  authors .  

predicted e f f i c i e n c y  by the  ideal diode c e l l  theory,  i nd ica t ed  by the  Theory 

rows i n  Table I V ,  i s  smaller than the  experiment i n  a l l  four  cells. 

The 

The loss i s  

- 25- 



TABLE I V  

PERFORMANCE OF FOUR HIGHEST EFFICIENCY SILICON SOLAR CELLS AND 
COMPARISON WITH IDEAL DIODE CELL THEORY 

SOURCE RHO THICK LB TAU J1 JSC VOC FF EFF% SB 
(typelauthor ohm-cm (um) (um) (us)  (A) (mA) (mV) AM1 (cm/s) **********@* ****** ***** **** ***** ******* **** **** ***** **** ****** 

(N+/P/P+ 

I d e a l  Theory 4.0 23 2.OE-12 36.2 605 0.830 18.2 650 
Rohatgi Exp 4.0 150 263 2.OE-12 36.2 605 0.786 17.2 

Exp 0.2 36.0 627 0.800 18.1 

I d e a l  Theory 0.15 
ASEC Exp 0.15 

Exp 10.0 

1.OE-12 36.0 628 0.834 18.9 2200 
36.0 625 0.805 18.1 
36.5 610 0.775 17.2 

Green: University of New South Wales, Australia. 
Sp i t ze r :  Spire  Corporation, Bedford, MA. 
Rohatgi: Westinghouse R h D Center, P i t t sbu rgh ,  PA. 
ASEC: Applied Solar Energy Corporation, C i t y  of Indus t ry ,  CA. 
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TABLE V 

BASE DIFFUSION LENGTH AND BSF SURFACE RECOMBINATION VELOCITY DATA 

SOURCE 

*********** 
Neugroschel 
Neugroschel 
Neugroschel 
Neugroschel 
IdealTheory 
Green 
S p i t z e r  
Rohatgi 
ASEC 

TYPE RHO 
ohm-cm ******* ****** 

N+/P/P+ 10 
N+/P/P+ 10 
N+/P/P+ 1.5 
P+/N/N+ 7.0 
P+/N/N+ 0.6 
M/I/N/P 0.2 
N+/P/P+ 0.3 
N+/P/P+ 4.0 
N+/P 0.15 

TBASE 

***** (4 

2 27 
92 

220 
320 

50 
28 0 
3 80 
150 

LB 
(um) 

450 
600 
600 
503 
320 

( 170) 
150 
26 3 

***** 
TAU 
( u s )  

(60) 
(103) 
(136) 
(200) 

39 
20 

(13) 
(23) 

***** 
S B I  

(cm/s) 

105 
180 
380 

******** 

a0 
( 1 28) SB 
( a50 1 SB 

(1 100)SB 
(652)SB 

(2200) SB 

JSC/AMl VOC EFF 
(mA/cm2) ( m v )  ($1 #******* ***** ***** 

- 
38/AMO 
391AMO 
36.0 
36.0 
36.2 
35.9 
34. a 

- - 
617 0 

605 0 

660 20.0 
653 19.1 

605 17.1 
620 17.1 

622 18.0 

Legend: Values i n  ( are computed. A l l  a t  AM1.5 except two AMOS and a l l  24C. 
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due t o  lower experimental  fill factor,  FF, than theory. T h i s  i s  l i k e l y  to  be 

due t o  series r e s i s t a n c e  not  accounted f o r  i n  t h e  theory and it i n d i c a t e s  t h a t  

f u r t h e r  design refinements of t h e  metal contac t  grid l i n e s  may recover  t h e  

remaining e f f i c i ency  loss i n  t h e  experimental  cells. 

The main conclusion from t h e  comparison between t h e  experimental  data 

and ideal diode c e l l  theory is t h a t  base recombination through de fec t  and 

impurity recombination cen te r s  v i a  t h e  thermal o r  SRH mechanism is  the l i m i t i n g  

recombination loss mechanism i n  these four  cells. Reduction of t h e  series 

r e s i s t a n c e  w i l l  b r ing  t h e  f i l l  f a c t o r  and e f f i c i e n c y  of  t he  experimental  cells 

up t o  t h e  base-recombination l imi t ed  values. 

performance t o  e f f i c i e n c i e s  beyond the t h e o r e t i c a l  values given i n  Table I V ,  

18.2% t o  20.0% a t  AM1, would r equ i r e  design improvement of  t h e  e n t i r e  cel l  t o  

reduce the  base recombination l o s s e s  fu r the r .  

cells  have reported e f f i c i e n c y  reduct ions i n  t es t  c e l l s  where t h e  su r face  

passivat ion oxide is removed, their  highest-eff ic iency oxide-passivated cells  

probably had s u f f i c i e n t l y  low recombination losses i n  t h e  emitter l a y e r  and a t  

t h e  oxide/emit ter  i n t e r f a c e  so that  recombination l o s s e s  i n  the  base was t h e  

most probable remaining loss mechanism. 

Fur ther  improvement o f  t h e  c e l l  

Although t h e  au tho r s  of  these 

The contr ibut ion o f  t h e  i n t e r f a c e  recombination a t  t h e  back su r face  t o  the 

base recombination loss can be i l l u s t r a t e d  by t h e  e f f e c t i v e  base recombination 

ve loc i ty ,  SB, given i n  Table I V  and a comparison of  t h e  experimental  values.  

This  comparison is given i n  Table V. 

were obtained by a new method developed by him E411 which allowed a sepa ra t ion  

of t h e  recombination loss i n  t he  quasi-neutral  base from t h a t  a t  the back 

surface.  

Neugroschel's surface recombination data 

He demonstrated t h i s  technique on many p/n junc t ion  s o l a r  c e l l s .  

-28- 



Four of Neugroschel's s u r f a c e  recombination ve loc i ty  measurements are l i s t e d  i n  

Table  V. 

carrier d i f f u s i o n  length ,  LB; and the back su r face  recombination ve loc i ty ,  

SBI, i n  terms of the  e f f e c t i v e  value a t  t h e  low side o f  t h e  low/high junc t ion  

of  the BSF layer. 

i n  Fig.4(b) or Eq.(3.2.2), f o r  the  four  high-efficiency cells given i n  Table IV 

are a l s o  tabula ted  i n  Table V f o r  comparison with Neugroschel's data and with 

t h e  ideal theory.  Two po in t s  can be made. The e f f e c t i v e  t o t a l  base 

recombination v e l o c i t i e s  of t h e  fou r  high-efficiency cells are s i g n i f i c a n t l y  

higher  than t h e  e f f e c t i v e  BSF layer recombination ve loc i ty  measured by 

Neugroschel. 

important i n  these four  c e l l s ,  al though one would expect some cont r ibu t ions  i n  

t h e  Green and ASEC cel ls  which have no e f f ec t ive  BSF l aye r s .  The second po in t  

t o  be made is t h a t  Neugroschel's data provide experimental  confirmation t h a t  

t h e  e f f e c t i v e  BSF recombination ve loc i ty  can be made q u i t e  low, as low as 80 

cm/s. 

201-AM1 can be achieved. 

The base recombination was measured i n  terms of t h e  base minor i ty  

The e f f e c t i v e  t o t a l  base recombination v e l o c i t i e s ,  SB shown 

This  i n d i c a t e s  that  BSF recombination is not  l i k e l y  t o  be 

For t h i s  value of  BSF recombination l o s s ,  an e f f i c i e n c y  exceeding 
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I V .  ANALYSES FOR ULTIMATE EFFICIENCY LIMIT 

The ultimate performance is  l i m i t e d  by t h e  i n t r i n s i c  recombination losses. 

Refined and stress-free c lean  f a b r i c a t i o n  technology can reduce and e l imina te  

the recombination sites and hence the e x t r i n s i c  recombination losses a t  these 

s i tes ,  but it cannot reduce the i n t r i n s i c  losses. The fundamental i n t r i n s i c  

l i m i t s  are due t o  the interband Radiat ive and Auger recombination mechanisms 

l i s t e d  i n  Table I. The computed theoretical cel l  performances t o  i l l u s t r a t e  

the  ul t imate  or fundamental l i m i t s  are given i n  Table V I .  

w i t h  c e r t a i n  assumptions as follows. 

assumed negl ig ib le .  

concentration p r o f i l e  so t h a t  t h e  t o t a l  major i ty  carrier dens i ty  ( c a r r i e r  per  

They were obtained 

A l l  emitter recombination losses are 

This  is achievable  by proper design of t h e  emitter dopant 

area of the  emitter layer) i s  less than about 1E14 cm-L [28,41] and there is an 

e f f e c t i v e  P+/P f r o n t  surface f i e l d  o r  high/low junc t ion  nea r  t h e  f r o n t  su r f ace  

of the emitter l a y e r  [42]. The assumption of  n e g l i g i b l e  emitter recombination 

is no t  only a practical necess i ty  t o  reach the  u l t imate  e f f i c i e n c y  but  is a l s o  

a v a l i d  assumption s ince  for  an  u l t imate  cel l ,  the base has t o  be t h i c k  t o  

absorb most the  l i g h t  i n  order t o  g ive  high photo- o r  s h o r t - c i r c u i t  current,. 

I n  addi t ion ,  the base doping should be made high t o  reduce the minori ty  carrier 

concentrat ion i n  the base i n  order that  thermal recombination rate of  t h e  

minori ty  carriers v i a  the r e s i d u a l  recombination c e n t e r s  i n  t h e  base can be made 

neg l ig ib l e .  

b ina t ion  i n  t h e  base due t o  the  t h i c k  base, while the former i s  further 

enhanced by the  high base doping o r  high concent ra t ion  of majority carriers 

i n  the base. 

whi le  Auger recombination loss increases  wi th  inc reas ing  base doping, thus, 

These two condi t ions  would inc rease  t h e  Auger and Radiative recom- 

S R H  recombination loss decreases  wi th  inc reas ing  base doping 



there is an optimum base doping f o r  mafimum e f f ic iency .  

can be estimated from t h e  dark  cu r ren t  coe f f i c i en t ,  J1, of  t h e  three 

mechanisms l i s t e d  as follows: 

Th i s  optimum doping 

Radia t ive  Recombination (Interband) 
J1 = q*Co*XB*ni 2 

Auger Recombination (Interband)  

J2/3 = q*Ca*XB*ni (High Level) 

J1 = q*Ca*XB*nf*NB (Low Level) 

Thermal Recombination (Bound-Band SRC) 

J1 = q*Til+XB*n:/NB (Low Level) 

52 = q*~gl*XB*n (High Level) 

For the interband Auger recombination a t  high i n j e c t i o n  l e v e l ,  t h e  diode 

law has a supe r l inea r  s lope  of 3/2 on a log1 vs  V p lo t .  

arises from t h e  dependence of the  interband Auger recombination rate on the  

T h i s  s u p e r l i n e a r i t y  

product of the minori ty  c a r r i e r  dens i ty  and t h e  square o f  t h e  major i ty  carrier 

dens i ty ,  CpNP2 + CnN2P, s ince  N=P=niexp(qV/2kT) when the  base is  a t  t h e  high 

i n j e c t i o n  l e v e l  condition. 

Numerical ca l cu la t ions  a r e  made a t  24C t o  i l l u s t r a t e  t he  ultimate 

performance c a p a b i l i t y  of s i l i c o n  s o l a r  c e l l s  w i th  an e l e c t r i c a l l y  a c t i v e  base 

l a y e r  th ickness  of  XB=50 microns. 

recombination rate is taken t o  be 0.62E6 for  Coni while the interband Auger 

rates are: Cn=2.8E-31 and CP=0.99E-31 cm /s. 

which the  S R H  recombination loss  w i l l  begin t o  reduce the u l t ima te  e f f i c i ency ,  

a base lifetime of 100 us and d i f f u s i v i t y  of 20 cm2/s are assumed. 

A t  2k, ni=l.OEIO om-3. The r a d i a t i v e  

6 To i l l u s t r a t e  t h e  condi t ion  a t  

The r e s u l t s  are tabula ted  i n  Table VI. This  t a b l e  a l s o  g ives  the  

performance of  two ohmic-contact c e l l s  t o  i l l u s t r a t e  t h e  effect of  surface and 

i n t e r f a c e  recombination on t h e  ul t imate  e f f ic iency .  
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Table V I  shows t h a t  t h e  u l t imate  e f f i c i e n c y  is l i m i t e d  by both t h e  Radia- 

The maximum e f f i c i e n c y  of t i v e  and high l e v e l  Auger recombination i n  t h e  base. 

t h i s  50 urn c e l l  i s  about 25.4%-AM1. The h igh- in jec t ion  l e v e l  Auger recombina- 

t i o n  l imited performance is  reached if the major i ty  carrier or doping impuri ty  

concentration i n  t h e  50-micron base is less than about 5E16 ~ m - ~ w h i c h  g ives  a 

t o t a l  major i ty  carrier dens i ty  of 2.4E14 cm 

i n  t h e  high-level Auger l i m i t e d  range by reducing t h e  base doping may h e l p  i n  

maintaining the high SRH recombination l i f e t i m e  i n  the  base which is  necessary 

t o  achieve t h e  h igh  e f f i c i e n c y ,  but  t h e  s e n s i t i v i t y  t o  su r face  recombination 

becomes more severe a t  t h i s  high i n j e c t i o n  l e v e l s ,  as ind ica ted  by t h e  SEFF 

data i n  Table V I  and discussed la te r  i n  t h i s  s ec t ion .  

-2 . Designing and opera t ing  the cell 

Table V I  a l s o  g ives  two cells which are l i m i t e d  by the  SRH recombination 

Two design ideas 

T h i s  was a r r i v e d  a t  

processes i n  t h e  base a t  both low and high i n j e c t i o n  l e v e l s .  

may be drawn. ( 1 )  High l e v e l  i n j e c t i o n  should be avoided. 

previously by t h e  observat ion t h a t  t h e  high l e v e l  recombination cu r ren t  l a w ,  

exp(qV/2kT), g ives  a s o f t e r  i l luminated I - V  curve and hence lower f i l l  f a c t o r  

and ef f ic iency .  

t i o n  loss w i l l  become important so as t o  s i g n i f i c a n t l y  lower the  u l t imate  

e f f ic iency .  The example assumes a SRH recombination lifetime of  1 0 0 ~ s  t o  give 

a 23P-AMl ef f ic iency .  To reach 255, t he  SRH base l ifetime must be increased by 

10 o r  t o  g rea t e r  than about 1OOOps o r  1 ms which is  a t  t h e  l i m i t  of t h e  state- 

of-the a r t  of cu r ren t  s i l i c o n  V L S I  technology. 

(2) Table V I  a l s o  g ives  the condi t ion  a t  which SRC recombina- 

Table V I  a l s o  i l l u s t r a t e s  t h e  importance of  having a back su r face  f i e l d  

layer t o  reduce t h e  e f f e c t  of back su r face  recombination which is a must t o  

reach t h e  i n t r i n s i c  o r  u l t ima te  e f f i c i ency .  

asked question of whether t he  back-surface-field layer can be replaced by a 

We may aga in  address t h e  commonly 
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t h i c k  base i n  order t o  avoid the e x t r a  high temperature and lifetime reducing 

s t e p s  t o  fabricate the  back-surface-field layer .  

more important i n  a u l t ima te  l i m i t  cell design s ince  recombination loss i n  such 

a cel l  comes from the minute i n t r i n s i c  o r  interband Auger and Radiative recomb- 

i n a t i o n  losses i n  the base. 

without a BSF low/high junc t ion  and w i t h  an i n f i n i t e  back sur face  recombination 

Th i s  quest ion may become 

The expressions fo r  t h e  dark cu r ren t ,  J1 and 52, 

ve loc i ty  , 

J1 

52 
and 

are given by 

-1 2 = q*DB*XB *(ni/NB) 

= q*DB*XB-l* (ni 

SB=DB/XB (Low Level) 

SB=DB/XB (High Level) 

Suppose L a ,  we ask the  quest-3n of what base th ickness  is  requireL so t h a t  t he  

of recombination loss from t h e  infinite-recombination-velocity back surface is 

less than  t h a t  from interband Auger recombination i n  the base. To answer t h i s  

quest ion q u a n t i t a t i v e l y ,  we set the  corresponding two J l * a  o r  recombination 

v e l o c i t i e s  equal.  Consider the  low l e v e l  case, we have 
XB*Ca*NB*ni 2 = DB*ni/ 2 (NB*XB) 

or 
-2 NB*XB = SQRT(DB/Ca) = SQRT(20/2.8E-31) = 1.OEc16 cm . 

Thus, f o r  a base doping of NB=1 .OE+17 cm3, have a base thickness of XB=1000 ,pm 

o r  lmm is required which not  p r a c t i c a l .  This  f u r t h e r  demonstrates t h e  

importance of having an  e f f e c t i v e  low/high junc t ion  o r  p o t e n t i a l  barrier near  

the back surface t o  s h i e l d  t h e  high-recombination rate back sur face  from t h e  

photo generated minori ty  carriers. 

I n  conclusion, t h e  ultimate ef f ic iency  is reached when a l l  t h e  emitter 

recombination l o s s e s  are el iminated and the e x t r i n s i c  recombination v i a  

recombination c e n t e r s  i n  t h e  quasi-neutral  base on the back su r face  are 
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a l s o  eliminated. 

Radiative and Auger recombination i n  t h e  quasi-neutral  base layer .  

desirable t o  maintain the  low i n j e c t i o n  l e v e l  condi t ion i n  the  base by h igh  

base doping bu t  n o t  t o  exceed t h e  doping d e n s i t y  a t  which Auger recombination 

i n  t h e  base becomes comparable t o  the interband r a d i a t i v e  recombination loss. 

Under t h i s  condi t ion,  t h e  ul t imate  e f f i c i e n c y  is about 25.4% i n  a c e l l  whose 

a c t i v e  quasi-neutral base l a y e r  is 50-micron th i ck .  The physical  t h i ckness  of 

such a cel l  can be considerably l a r g e r  i n  o rde r  t o  provide mechanical r i g i d i t y  

such as by i o n  implantation o r  e p i t a x i a l  growth t o  achieve such a 50-micron 

t h i n  ac t ive  base layer .  

recombination l o s s e s  a t  t h e  r e s i d u a l  impurity and defect recombination c e n t e r s  

i n  t h e  base s i n c e  t h e i r  con t r ibu t ions  t o  t h e  dark cu r ren t ,  J1, are minimized. 

Then, t h e  u l t ima te  e f f i c i e n c y  i s  l i m i t e d  by t h e  interband 

It i s  

A t h i n  a c t i v e  base i s  a l s o  advantageous f o r  reducing 

TABLE VI 

ULTIMATE PERFORMANCE OF SILICON SOLAR CELLS 
(Including the  Effect of Surface Recombiantion) 

T -100 ps; PI = 100 mW(AHl.5); L-Low Level; H-High Level; 1 
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V. SUGGESTIONS FOR PRACTICAL SOLUTIONS 

To achieve e f f i c i e n c y  above 2O$, a l l  recombination lasses must be reduced. 

The ideal diode cell  ca l cu la t ion  given i n  Table I ind ica t ed  t h a t  t h e  dark 

cu r ren t  c o e f f i c i e n t ,  J1, must be less than  0.2 pA/cm t o  reach 20% or  higher 

AM1 e f f i c i ency .  Base recombination loss must be reduced by the b r u t e  force 

approach of reducing the recombination center dens i ty .  

requirement could be made by using a t h i n  a c t i v e  base with a h ighly  e f f e c t i v e  

low/high junc t ion  from the  BSF layer. 

recombination has been demonstrated previously E161 wi th  t h e  add i t iona l  use of 

an opposing d r i f t  f i e l d  t h a t  r e t a r d s  t h e  minori ty  carrier d i f f u s i o n  towards t h e  

back sur face .  

back su r face  can be passivated by a thermal oxide s i n c e  it is well known t h a t  

t h e  ox ide / s i l i con  i n t e r f a c e  has a very low recombination ve loc i ty  i f  a l l  t h e  

dangling s i l i c o n  and oxygen bonds are removed either by slow anneal ing o r  by 

hydrogenation [30,31 and re ferences  therein] .  

t h e  me ta l s t r ipegeomet ry  similar t o  t h e  f r o n t  contact .  

be made r e l a t i v e l y  t h i c k ,  t o  be comparable t o  the minoir ty  carrier d i f f u s i o n  

length  i n  the  BSF layer, me ta l s t r ipescove r ing  as much as 10% of t h e  back 

s u r f a c e  could be s u f f i c i e n t  t o  reduce the back su r face  and back contac t  

recombination l o s s e s  t o  a neg l ig ib l e  level compared wi th  other recombination 

losses .  

back su r face  of the  s i l i c o n  would insure  low series r e s i s t a n c e  from t h i s  source.  

Thus, an optimum base design would be one wi th  a r e l a t i v e l y  t h i n  a c t i v e  base 

l a y e r ,  about 50 t o  100 microns, a very high base lifetime i n  t h e  a c t i v e  l a y e r ,  

a b u i l t - i n  r e t a r d i n g  f i e l d  f o r  t he  minority carriers i n  t h e  base layer, an 

e f f e c t i v e  low/high Junct ion a t  t h e  back-boundary of t h e  quasi-neutral  base 

2 

Some r e l a x a t i o n  of t h i s  

Such an  approach of  reducing base 

To f u r t h e r  reduce the  e f f e c t  of back su r face  recombination, t he  

The back contac t  w i l l  then have 

Since t h e  BSF l a y e r  can 

The low r e s i s t i v i t y  from l a r g e r  metal conductor contac t  areas on t h e  

-35- 



l a y e r ,  a not-too-highly doped BSF l a y e r  t o  reduce recombination loss i n  t h i s  

l a y e r  and a r e l a t i v e l y  low recombination-velocity back s i l i c o n  su r face  o r  

i n t e r f a c e  such as t h a t  covered by a thermal oxide. 

With these design cons idera t ions  f o r  t h e  base, t h e  remaining recombination 

loss would come from the emitter l a y e r  and emitter sur face .  

t i o n s  similar t o  those j u s t  discussed for t h e  base and BSF layer can be used 

t o  design the  emitter t o  reduce emitter recombination. 

much thinner  than t h e  base and t h e  emitter th ikcness  is  m u d l e s s  t h a t  t h e  

minori ty  c a r r i e r  d i f fus ion  length  i n  t h e  emitter i n  con t r a s t  t o  t h a t  i n  t he  

base o r  the  BSF layers .  

f r o n t  s i l i c o n  su r face  w i l l  have a much larger effect on the  dark  cu r ren t ,  J1, 

and on the  e f f i c i ency  than t h a t  a t  t h e  back i n t e r f a c e s  j u s t  discussed. Thus, 

h ighly  e f f e c t i v e  oxide passivat ion of  the s i l i c o n  f r o n t  su r f ace  over t h e  emitter 

junc t ion  must  be employed s ince  a f r o n t  high/low junc t ion  E421 t o  produce 

t h e  re ta rd ing  p o t e n t i a l  barrier aga ins t  minori ty  carriers i s  much more 

d i f f i c u l t  t o  fabricate due t o  the  th inness  of  t h e  emitter layer .  I n  add i t ion ,  

t h e  recombination loss a t  the metal-conductor/emitter-silicon contac t  i n t e r f a c e  

must be reduced s i n c e  t h i s  da rk  contac t  diode could produce a very large dark 

cu r ren t  due t o  t h e  very high recombination ve loc i ty  a t  the me ta l / s i l i con  

i n t e r f a c e ,  even when t h e  f r o n t  contac t  area o f  t h e  f i n e  g r i d s  may be only 1% of  

the t o t a l  f ron t  sur face  area of a ce l l .  

Design considera- 

However, t h e  emitter is 

Thus, recombination lo s ses  a t  t h e  i n t e r f a c e s  on t h e  

Green had approached t h i s  contac t  recombination loss problem by employing 

a t h i n  tunneling oxide between the  contact  metal and the emitter s i l i c o n  as 

indica ted  i n  Fig.r)(b). However, uniform and t h i n  tunnel ing  oxides  of  less than 

20 t o  30A are d i f f i c u l t  t o  grow reproducibly and its s t a b i l i t y  or  r e l i a b i l i t y  

is expected t o  be ra ther  poor, e spec ia l ly  i n  view o f  t h e  high-stress environ- 

ment (high temperature and o p t i c a l  r ad ia t ion )  i n  which a s o l a r  c e l l  must opera te  

r e l i a b l y  over t h e  lifetime of more than twenty years. 
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Another approach, proposed by t h i s  author a t  the  24-th PIM (Pro jec t  

In t eg ra t ion  Meeting of JPL on October 2 and 3, 1984) E431, w a s  t o  use a t h i n  

and doped poly-s i l icon  barrier layer between the  conductor metal and t h e  

heavi ly  doped s i l i c o n  su r face  of the emitter. 

the e f f e c t i v e  su r face  recombination ve loc i ty  of the  polySi /Si  i n t e r f a c e  i n  

very high speed V L S I  bipolar s i l i c o n  t r a n s i s t o r s  wi th  very shallow emitters. 

Table VI1 summarizes selected r e s u l t s .  

computed assuming no base recombination l o s s  and the unreal worse case which 

has t h e  poly-s i l icon barrier over the e n t i r e  f r o n t  s u r f a c e  of t h e  c e l l  

i n s t ead  of j u s t  the contac t  areas. Even i n  t h i s  case, it is evident  tha t  

t h e  po lys i l i con  barrier can s ign i f i can t ly  reduce the  e f f e c t i v e  emi t t e r / con tac t  

i n t e r f a c e  recombination ve loc i ty ,  t o  as low as  112 cm/s, g iv ing  a worse-case 

computed cel l  performance of 19.6%-AM1 ef f ic iency .  

metal contac t  area is only about 15 of t h e  cell area so t h a t  the  e f f e c t i v e  

recombination v e l o c i t y  would be reduced t o  1.12 cm/s or  J1 reduced by 1OOX t o  

4.3E-15 A/cm2. 

e f f i c i ency  of 23.8%. 

interband recombination i n  the base, giving f u r t h e r  support  on t h e  

importance of reducing a l l  poss ib le  emitter recombination losses i n  order t o  

a t t a i n  t h e  highest e f f i c i e n c i e s .  

Neugroschel C441 has measured 

The solar cell  performance data are 

I n  real i ty ,  t he  f r o n t  

This would give a VOC of 769mV, FF of 0.861 and an AM1.5 

This  is still below t h e  fundamental l i m i t  posed by t h e  

I n  summary, one practical so lu t ion  t o  achieve an  AMI o r  AM1.5 e f f i c i e n c y  

of greater than 20% is t o  employ a d r i f t  f i e l d  i n  an  e f f i c i e n t  low/high Junct ion 

BSF ce l l  s t r u c t u r e  wi th  r e l a t i v e l y  t h i n  base such as 25 t o  100 microns of e p i t -  

a x i a l  layer on a n+ s u b s t r a t e  and wi th  an oxide passivated emitter which has a 

po lys i l i con  barrier between the  contact metal and the  emitter i n  t h e  contac t  

s t r ipes .  According t o  the ava i l ab le  data on base lifetime and polyemit ter  con- 

tact  recombination ve loc i ty ,  e f f ic iency  exceeding 20%-AM1 should be a t t a i n a b l e .  
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I TABLE V I 1  

EFFECT OF A POLYSILICON BARRIER LAYER ON THE INTERFACE RECOMBINATION 
VELOCITY OF A METAL-TO-HEAVILY DOPED SILICON EMITTER SURFACE 

DEVICE BARRIER DOPING HEAT JPO SFM JSC VOC FF EFF 

****** ******* ******* ********* ******** ****** **** **** **** ***** NO LAYERS METHOD TREATMENT (A/cm2) (cm/s) (mA) (mV) % 

.......................... 
1E 1500A none 
1F 1500A none 
1G 1500A none 
1A 1500A In - s i tu  
1B 1500A In - s i tu  
1c 1500A In-s i tu  
1D 1500A In-s i tu  

2BE 1500A I n - s i t u  

,--SINGLE BARRIER LAYER------------------------------- 
none 5.8E-10 1.E6 36 463 

800C/64hr 5.5E-10 1.E6 36 465 0.794 13.3 

none 9.23-13 <240 36 630 0.835 18.9 
900C/5min 5.5E-10 1.E6 36 456 

800C/64hr 11.5E-13 (300 36 625 
9OOC/ 5min 8.53-13 <221 36 632 
900C/15min 6.33-13 <164 36 640 0.837 19.2 

1000C/15min 5.OE-13 <130 36 646 

---------------------------DOUBLE BARRIER LAYERS--------------------------------- 
11 1500A none none 4.2E-10 1.E6 36 472 0.796 13.5 

lOOOA In - s i tu  
1 J  Same as 11 above 800C/64hr 4.3E-13 <112 36 650 0.838 19.6 
1K Same as 11 above 900C/15min 4.2E-10 1.E6 36 472 
1L Same as 11 above 850C/64hr 4.6E-13 <122 36 648 
2BA Same as 11 above 750C/ 8hr 4.OE-10 1.E6 36 473 
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V I .  SUMMARY AND CONCLUSION 

I n  t h i s  paper w e  have presented an  ana lys i s  t o  de l inea te  t h e  f a c t o r s  

which may l i m i t  the  cu r ren t  state-of-the-art  c r y s t a l l i n e  s i l i c o n  solar cel ls  t o  

less than  20% e f f i c i e n c y  a t  AM1. 

l i m i t  the  u l t ima te  e f f i c i e n c y  and suggested practical designs which may break 

t h e  20% barrier. These f a c t o r s  are suaunarized i n  the fol lowing table,  Table 

V I I I .  

We have a l s o  discussed t h e  factors which may 

To overcome t h e  cu r ren t  20% barrier, base recombination lo s ses  must be 

reduced i n  t h e  reported cel l  designs.  

Green [371 was no t  optimized t o  reduce base recombination. 

of e f f i c i e n c y  t o  more than 20% requ i r e s  first an  e l imina t ion  of the large base 

recombination i n  t h e  cu r ren t  cel ls  by a novel graded-base back-surface-field 

t h i n  base s t r u c t u r e  suggested by Sah and Lindholm E161 and then by a novel poly- 

s i l i c o n  barrier i n  t h e  metal contac t  t o  emi t t e r  suggested also by Sah 1433 and 

Lindholm. Estimated e f f i c i e n c y  of  such a s t r u c t u r e  could reach 23.8% (see 

Table  V I I I )  which is near  t h e  i n t r i n s i c  l i m i t  of  25% a t  AM1. 

The h ighes t -e f f ic iency  ce l l  repor ted  by 

Further  improvement 

To reach the i n t r i n s i c  o r  fundamental l i m i t  of 25.5s due t o  interband 

Auger and Radiat ive recombinations i n  the base, except iona l ly  c lean  and 

stress-free f a b r i c a t i o n  process technology must be developed and very long 

lifetime s i n g l e - c r y s t a l l i n e  s i l i c o n  (about one mi l l i second)  must be used. 

former is y e t  t o  reach the  state-of-the-art stage and would r equ i r e  concentrated 

and f u r t h e r  extensive development e f f o r t s ,  such e f f o r t s  had been recognized 

first by t h e  NAS-NRC Ad Hoc Panel on Solar C e l l  Ef f ic iency  i n  1972 [7] and the  

Rappaport Workshop i n  1973 [83. 

The 
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TABLE V I 1 1  

SUMMARY OF EFFICIENCY LIMITING MECHANISMS 

EFFICIENCY CURRENT 
RANGE STATUS 

( % I  ********** ************ 
25+ Must e l imina te  

a l l  emitter 
recomb. losses. 

20-24 Must reduce a l l  
base recomb. 
losses. 

18-20 Current best 
cells. 

<18 Current 
production. 

LIMITING MECHANISMS 
AND 

RECOMBINATION SITES . . . . . . . . . . . . . . . . . . . . .  
Interband Auger and 
r a d i a t i v e  i n  base. 

SRH a t  traps a t  t h e  
contac t  and oxide/ 
s i l i c o n  i n t e r f a c e .  
Use polySi barrier 
f o r  contac ts .  

SRH a t  t r a p s  i n  the  
base layer .  

SRH a t  t r a p s  i n  both 
the  base and emitter. 

MAXIMUM 
DARK CURRENT 

J1( A / c m 2 )  ************ 
5. OE- 16 

2 OE- 15 
t o  

2.OE-13 

2.OE-13 
t o  

2 .OE- 12 

>2 OE- 1 2 
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