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ABSTRACT

The flow in a two-dimensional curved channel driven by an azimuthal
pressure gradient can become linearly unstable due to axisymmetric perturba-
tions and/or nonaxisymmetric perturbations depending on the curvature of the
channel and the Reynolds number. For a particular small value of curvature,
the critical Reynolds number for both these perturbations becomes identical.
In the neighborhood of this curvature value and critical Reynolds number, non=-
linear interactions occur between these perturbations. The Stuart-Watson
approach is used to derive two coupled Landau equations for the amplitudes of
these perturbations, The stability of the various possible states of these
perturbations is shown through bifurcation diagrams. Emphasis is given to

those cases which have relevance to external flows.
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1. INTRODUCTION

In plane channel flow, instability arises due to the amplification of
Tollmien-Schlichting (TS) waves. As these waves grow, they modify the mean
flow, produce higher harmonics, interact with other waves, and probably pro-
duce turbulence. The 1initial stage of development of these waves from the
linear region to the weakly nonlinear domain was analyzed by Stuart (1958) who
derived tﬁe Landau equation for the temporal development of the TS wave. The
presence of the cubic nonlinearity in this equation modifies the otherwise
exponential variation inherent in a linear theory. This theory was able to
explain the existence of an equilibrium finite amplitude perturbation in cer-
tain regions near the neutral curve.

Taylor (1923) was the first to consider the instabilities that arise due
to the curvature of streamlines. He investigated the flow between two concen—
tric cylinders due to the rotation of the inner cylinder with the outer cylin-
der stationary. He found that the flow becomes unstable when the parameter
Re(d/Rl)l/2 (now referred to as the Taylor number) exceeds a value of about
41. Here R; 1is the radius of the inner cylinder, d (<<R;) 1is the gap width
of the cylinders, and Re 1is the Reynolds number based on the speed of the
inner cylinder and d. The instability that appears as the speed of the inner
cylinder exceeds the critical value is in the form of toroidal vortices.
These vortices are modelled theoretically by an axisymmetric perturbation and
they are stationary when they first appear.

Dean (1928) also investigated the instability in a curved chanmnel due to
the curved streamlines (see Figure 1). The flow in his experiment was gener-
ated by an azimuthal pressure gradient. The channel is formed by portions of

two concentric cylinders having channel width d <K Rj. Basing the Reynolds



number, Re, on the mean speed of the unperturbed flow, Dean (1928) and
Walowit, Tsao, and DiPrima (1964) found that instability arises when
Re(d/Rl)l/2 exceeds a value of about 36. Here, too, as in Taylor”s experi-
ment only axisymmetric disturbances were considered.

In a detailed analysis of the linear stability of curved channel flow,
Gibson and Cook (1974) argued that in a curved channel of very small curvature
non-axisymmetric disturbaqces can play a significant role in destabilizing the
mean flow. Such perturbations are analogous to TS waves in a plane channel.
Their linear stability analysis shows that for channels with very small
curvature, the critical Reynolds number for the TS waves is almost independent
of n, (n = R1/R2, R2 = radius of outer wall), and it approximates very
closely the corresponding value for a plane channel. The critical Reynolds
number for the axisymmetric instability (Ggrtler vortices), on the other hand,
is quite sensitive to n for n close to 1 (Figure 2). For a pérticular
value of n = N the critical Reynolds numbers for these instabilities are
identical, For a slightly wider channel, the critical Reynolds number for the
G;rtler instability is lower than the almost constant critical Reynolds number
for the TS perturbation. For a narrower channel, the critical Reynolds number
for the Gortler instability is higher. It is, therefore, reasonable to expect
that near nc both perturbations could exist simultaneously and thereby
interact with each other.

The purpose of this paper is to analyze the weakly nonlinear interactiomn
of these two instabilities (one axisymmetric and the other non-axisymmetric)
which arise when the radius ratio is nearly nc. We use a multiple scale
version of the Stuart-Watson method approach to derive the two coupled

ordinary differential equations for the amplitudes of these perturbations.




While these two equations cannot be solved explicitly, they nevertheless yield
significant information about the various possible bifurcations that can take
place in the presence of these perturbations. Moreover, the stability prop-
erties of the equilibrium states can be deduced.

When considering a growing boundary layer, a self-consistent analysis of
wave interactions within it requires the application of the triple deck theory
as shown by Hall and Smith (1984). In channel flows, however, we do not need
to consider the effects of boundary layer growth, thereby greatly simplifying
the analysis while still giving a qualitative picture of what might happen in
an unbounded flow. It 1is in this context that we wish to study the G;rtler/TS
interaction in a curved channel. This study may be viewed as an extension of

the work of Gibson and Cook (1974) into the weakly nonlinear regime.

2. MEAN FLOW AND PERTURBATION EQUATIONS

Let (r, 8, z) be the cylinderical coordinates with the axis of the
concentric walls along the z-axis and R; and R, the radii of the inner and
outer cylinder respectively (see Figure 1).

When the flow between the concentric walls is maintained by a constant

azimuthal pressure gradient %g (< 0), the solution of the momentum equa-

tions yields

U(r) = W(r) = 0, (2.1)

where U(r) and W(r) are the radial and axial mean velocities, respective—

ly. The azimuthal velocity is given explicitly by
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V(r) = ig—-%g-[r log r + n gzn ( D],
r(l-n")

(2.2)

(n<r<t)
where v and p are the kinematic viscosity and density, respectively,
and n = Ri/Ro. Here the distance from the axis is normalized with respect
to R,, so that r wvaries from n at the inner radius to 1 at the outer

radius.

A channel with small curvature will behave locally like a plane channel,
and for it the azimuthal velocity V(r) should approach the familiar para-

bolic shape. As 1 approaches 1, the velocity

v(r)=-?°—9-5[<1— 2 c(1 - )] (2.3)
7vp 90 nt ¢ .
=v t1-2), 0<Lz<1 (2.4)
R
o oP 2
where Vm——m'ﬁ(l —n) (2.5)
and T is given by
r=(-=-n)g+n. (2.6)

Thus z varies from 0 to } as r varies from n to 1. Note that
in this limit, v, 1is four times the center line velocity.

Based on (2.3), (2.4), (2.5), and (2.6), (2.2) can be simply expressed as

v(r) = Vm f(r) (2.7)




where
2
f(r) = - _1__2.. [r log r +n__}2_ng_ (rz - 1)] . (2.8)
(1-n) r(1-n")
The fully nonlinear disturbance equations for the radial velocity u,

azimuthal velocity v, axial velocity w, and the continuity equation are as

follows:
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where the quantities that appear in (2.9), (2.10), (2.11) and (2.12) are non-

dimensionalized versions of primed physical quantities shown below:
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Axial position z = z7/d




Azimuthal velocity v = v7/V.

Note that u” and w” are scaled with respect to the diffusive velocity
scale while v° 1is scaled with respect to the convective velocity scale. The
mean flow is (0, V_ f(r), 0) and the nondimensionalized perturbation is (u,

v, w) in the (r, 6, z) direction. The Reynolds number

Re = Vm d/v,

where d = R, = Ry.

The effect of the purely azimuthal (non-axisymmetric) and the purely
axial (axisymmetric) perturbation can be modelled by a general expression for
the perturbation proportional to exp [ot + i(kz + mo)] where the non-
dimensional axial wave number k = k“d, the non—-dimensional azimuthal wave
number m = m”, and the non-dimensional complex growth rate
3 can now be

]
replaced by o, ik, im respectively within the linear part of the equations

v
o = o’/(iﬂ) =op+ 10, The partial derivatives 3es 9,5
o

(2.9) tO (2.12).
The four equations of motion can be writtem as a set of six first—order

ordinary differential equations, as was done by Eagles (1971). Thus we write

P gg s g >V W g (2.13)

so that the equations can be written as



where L is a 6% 6 matrix representing the linear contribution and n
is a six element vector containing the nonlinear terms. The last three ele-
ments of the vectors g and n are zero at the two channel walls. The terms
representing the linear and nonlinear contributions will be discussed in the

next section after an explicit expression for g 1is given.

3. PERTURBATION EXPANSION FOR NONLINEAR WAVE INTERACTION

The perturbation to the mean flow 1s expressed in the form:

q= ¢€{(AE+ BF)+ c.c.}

2 2 2 *
+e“{(CE" +DF" + G EF + H EF) + c.c.}

0

+ 203 2 + k 79

(3.1)

*
+e3{(£E3+EF3+EE2F +£E2F

*
+ QEF2 +RE F2) + c.c.}

+ 83{(_5_ E+TF)+ ceco} + 0(54),
where q 1is the perturbation vector given by (2.13), c.c. represents the com-

plex conjugate of the terms in the preceding parentheses, ¢ is a small ex-

*
pansion parameter, represents complex conjugation.




The vector

_A_= (81,32,83,84,85,66)1‘ (3.2)

..

represents the Gortler perturbation,

B = (b},by,by,by,bs,be)" (3.3)

represents the TS perturbation,

E = exp(ikz),
(3.4a,)b)
F = exp(imd)exp(ot),
and
¢ =0, % ioI . (3.5)

AE and B F represent the Gortler and TS instabilities respectively.

Other terms represent higher harmonics and the mean flow modification which
arise due to the quadratic nonlinearity in the equations.

The amplitude coefficients C, D, G, and H are due to the direct
interaction between the TS and the Ggrtler instabilities. As self interaction
occurs for each of these instabilities, the mean flow profile itself becomes
modified through the generation of effects represented by J and XK. The
terms at order 53 arise due to the interactions of the terms of order 82
and the G;rtler and TS perturbations.

As will become clear later, it will not be necessary to solve for the

unknown coefficients at order e3. By using the solvability condition for
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the equations governing S and T, the evolution equations for the amplitude
of the G;rtler Qé) and of the TS Qg) waves can be found. The method of
multiple-scales used in this paper for obtaining these evolution equations
follows closely that suggested by Matkowsky (1970).

Throughout, we will require that the last three components of the vec-
tors A to T are zero at the two curved walls in order to satisfy the zero
velocity boundary conditions.

For the perturbation expansion (3.1), the appropriate slower time vari-

able is 1 defined by

T = e’t, (3.6)
where € is the same small expansion parameter used earlier. This gives
3
+ € a—i_' . (307)

The Reynolds number Re is expanded about a value R, on the neutral sta-

bility curve so that

Re = RO + € Rl. (3.8)
Hence,
Rl 2
1/Re = 1/R, -~ — ¢ (3.9)
0 2
R
and
2 2 Ry 2
1/Re” = 1/R. = 2 —=€". (3.10)
0 3
R

Returning to (3.1), we now regard all the vectors A to T as functions

of both and T. For example:
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A > A(T) X(1)

B » B(z) Y(1)

which states that in the neighborhood of the neutral stability curve the solu-
tions for the 1linear problem, A(z) and B(z), adequately represent the
shape of the perturbations in the weakly nonlinear regime. The amplitudes of
these perturbations, X(t) and Y(1), depend on the slowly varying time

variable Te

The remaining vectors can be represented similarly, e.g.,

¢+ (@) x50

H > H(Z) X(1) Y(t).

Henceforth, when referring to vectors A to K we will only be con-

sidering their spatial dependence because it can be shown that the temporal
dependence cancels out throughout the equations for these vectors.
By substituting (3.1) and (3.7) to (3.10) into (2.13), we obtain an equa-

tion for q of the form:

IQ)

q = Ll[az,ae]g + Tl[at]ﬂ

(%]

z
+ 2L [ ,0,1q
2z 9+

2 2
+ € Tél[at]i + g T22[31]ﬂ. (3.11)

+ N [3,,3,]1 {a® q}

+ e’ N,[3 ,0,]1 {g® q} .
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Ly, Ly, Ty, Toy, Tpo are linear operators, equivalent to 6x6 matrices.

Theilr dependence on the differential operators Bz, 3 3 and d is

8’ "t T
indicated within the square brackets. Both El[az,ael {_g_@ q} and

!b[az,ae] Qléafﬂ represent nonlinear terms containing the operators 82
and Be. LSGB.E} symbolizes quadratic terms comprised of the components
of q. Here onwards we shall refer to gl[az,aa] {¢® q} by N,.
in the analysis of (3.11) we will only be concerned with terms of 0(83), it

Since

will not be necessary to consider the term szgzlaz,ae] {a® g} which is
0(84). The elements of the operators are given explicitly in Appendix A.

To determine the linear stability problem for the Ggrtler and the TS per—-
turbations acting individually, terms of 0(e) need to be considered. From
these terms, those with coefficient E will give the linear stability pertur-
bation equations for the Gzrtler disturbance. Similarly, the terms with

coefficient ¥ will give the equations for the TS disturbance.
At 0(e)

(1) The terms with coefficient E give

dA

f = Ll[ik,O]é_ + Tl[O]é (3.12)

for the Gortler perturbation.

(11) The terms with coefficient F give

dB
T Lllo,im]la_ + Tl[ioI]E (3.13)
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for the Tollmien-Schlichting perturbation.

From these equations, vectors A and B can be determined. Note the
difference in the parameters of the operators in (i) and (ii), particularly

the fact that 9. =10 for the Gortler while for the TS, 3, = io

t ¢ 1° In

both cases we are considering neutrally stable perturbations.

When collecting terms of 0(22) for determining vectors C to X, the
operators L,, T21, Ty9 can be neglected because when they operate on g,
contributions of 0(52) are produced. As these operators are already pre-
multiplied by ez, the net contribution from these terms will be 0(84)
and hence negligible. 1In the equations for C to K that follow, the non-
linear contributions are contained in N;. 0f the six elements of the vector
representing the contribution from N;, only the first three (nl, ny, n3) are
non-zero, and these are 1listed following each equation. The discussion
following (3.5) gives the physical basis for presence of the vectors C to
K.

At 0(82)

(1) The terms with coefficieat E2 give

dc

_—= L1[21k,0]C + TIIO]C + nonlinear contribution from N

= N, (3.4

where az
2
n, = -(1 = n){- —%—-- as/r}
R.r

0
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n, = a,a, + 3435(1 -n) + ik a,.a
2
4a3 + ik a6 .

65

=
i

a

(ii) The terms with coefficient F2 give

d D
E?: = L1[0’2im12-+ Tl[2 icI]Q_+ nonlinear contribution from Nl’ (3.15)
where 9 2
b4 b5
mp e -
of
2
R
- - {b4b2 . imb5 0 . bl‘b51
2 (1-n) T r '
Ro
n, = (1 -n) -f—-imbsb6 + b3b4.
(ii1) The terms with coefficient EF* give
dc
T = Ll[ik,-im]§_+ Tl[-ioI]§_+ nonlinear contribution from -Bl’ (3.16)
where
* * ik b* i b* 2a_b
2a4 b4 im a4b5 ik b& a6 6 a4 m a5 4 a5 5
= A=) et — -3 et
Ror 0 RO(ITn) Ro(l—n) 0
e im R a_b. brtb ik a_b.
. =(1_n){aabz+ 4%2 " To %% | PaPsTuts | TE A%
2 (1=n) r r (1-n)
* * * *
n, = -im(l - n) R, a_.b, + a,b, + b,a. + ik b.a

3 0 56 473 473 66 °
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(iv) The terms with coefficient EF give

dH

jg = Ll[ik’im]E.+ T1[1°I]E-+ nonlinear contribution from N,

where
1 1 1 1
-—— 2a,b, = — a,im b, = ——— b, ika, +
RZy A4 Rgr AR5 g2y A6 R2(qny
0 0 0
n, = -(1 - n)
. ag im b4 2 aSbS
R.r - r
0
e R - {a4b2 M I A L Deteas
2 0 R.(1-n) T R.r (1—n)R
0 0 0
Ro(l-—n)
n3 = .____r_._.— im a5b6 + a4b3 + b4a3 + ik a6b6 .

(v) The terms with coefficient EC give

dJ
jg = Ll[0,0]J + T1[0]£_+ nonlinear contribution from ~!1 R
where
2(1-n) * 2ik [ * * 2(1=-n) *
1T TRT o At T (e - ek + S agag
0 R
0
~ * * (1-n) * * * _ k
n, = a,a, + a,a, + (a4a5 + a4a5) + ik(asa6 a5a6)
_ * *
ny = a,a, +a,a, .

(vi) The terms with coefficient 70 give

(3.17)

(3.18)
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dk
jg = L1[0,0]5_+ T1[0]§_+ nonlinear contribution from .El , (3.19)
where %
5%  im x x
n; = 2(1 =) {5—+ g (b,b, - bbg) + beb}
R.r 0
0
~ * * (1-n) * *
n, = b,b, + b,b, + -— {b4b5 + b, b}
Bottm) bob bobil + b,b + bb
ng = ——— {imbgby = imbgbc} + bby + byby .
So far we have collected terms with coefficient £ and obtained the

equations for the spatial dependence of the neutrally stable Ggrtler and TS
perturbations followed by collecting terms that have coefficient 32. At
0(63), we will see that only equations of S and T need to be considered
for obtaining the time evolution of the Ggrtler and TS amplitudes. S and
T are functions of z and T. In the following, we shall again revert to
writing the Ggrtler and TS perturbations as A X(7) and B Y(7) respec-~
tively, with A and B dependent only on G It will be seen from the
form of the equations for S and T that the temporal dependence does not
cancel out; indeed, it is this very property that allows us to get time evolu-
tion equations for X(r) and Y(71).

Collecting terms of 0(53) with coefficient E, and with coefficient F,

we obtain the equations for S and T:
= Ll[ik,0]§ + 1‘1[0]§

+ Ly[1k,0]A X(t) + T, [0]A X(7) + T,,[3_1A X(1) (3.20)
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+ contribution from Nl

and

S
1l

L, [0,im]T + T, (10 1T

+

L,[0,in]B ¥(x) + T, [ic,]B Y(r) + T,,[3_IB ¥(r) (3.21)

+ contribution from !l.

The contributions from !l to both these equations involve a very
large number of terms and are therefore not written explicitly at this
stage. They will however appear in the final equations for X(t) and Y(t).
The homogeneous parts of (3.20) and (3.21) are the same as those of
(3.12) and (3.13) for A and B respectively. In order that the non-
homogeneous equations (3.20) and (3.21) have solutions, the nonhomogeneous
parts of the these equations should be orthogonal to the adjoint column
vectors A and E_ respectively. These vectors are solutions of the

following equations:

~

dA T~
- _[Ll[ik,o] + Tl[o]] A (3.22)
dB T n
i -[L,[0,im] + T [i0,]]" B (3.23)

~

NT ~ o~ ~ "~ ~ ~ ~ ~o ~ ~
where A" = (31’32’33’34’35’36) and B" = (b,,b,,b,,b,,b_,b ). Unlike
the boundary conditions for the equations for A and B where the last three

of their components are zero, here the first three components of E_ and E

are zero at the boundaries.
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Using the orthogonality condition, we obtain the following equations

for X(t) and Y(t):

1
/ d;[KT L, [1k,0]A X(t) + A% « T..[3_]A X(1)
0 2 it = . 22" 1=
(3.24)
+ z? ¢« (contribution from ‘El)] =0
and
1 ~T ~T
[/ dz[B" L, [0,im]B Y(t) + BT, [io ]B Y(t)
5 - 2 - - 21'1=
(3.25)

B T,, [0 1B Y(1) + B - (contribution from Ap] = o.

The terms representing (KT e contribution from -El) and (E? « contribu-
tion from _!1) are given in Appendix B. After integrating over Z, these

equations can be written as

d X(x) ;{T(T) = R1 Bl X(t) + 61 X(r)lx(r)l2 + n, x(T)ly(T)|2 (3.26)
and
1X0 - r g, () + 8, WO[XDZ + 0, ¥(0)|1(0)]? (3.27)

where 81,6 , and Nys (1 =1,2), are coefficients obtained from (3.24) and

i

(3.25). R; 1is a measure of the deviation from the neutral stability curve as
is given by (3.8). It appears in (3.26) and (3.27) because it is a common
factor in matrix Ly in (3.24) and (3.25). Equations (3.26) and (3.27) are
the coupled Landau equations which determine the time evolution of the ampli-

tudes of the Gortler and TS perturbations. The analysis of these equations

will be presented after the next section. The following section gives a brief
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description of the numerical method used for obtaining the coefficients A
to K in (3.1). All the terms in the perturbation expansion have been

verified by using the symbolic manipulation language MACSYMA.

4., COMPUTATION OF THE COEFFICIENTS

The equations governing the z dependence of the coefficients A to
K are given in the previous section. A and B are described by a set of
homogeneous ordinary differential equations while the equations for the re-
maining amplitudes are nonhomogeneous.

A fourth-order finite difference scheme (Malik, Chuang, and Hussaini
(1982)) was used to solve these equations. For details of the method, the
reader may refer to Malik, et al. (1982) and Hall and Malik (1986). The cal-
culations were performed on a nonuniform grid which clusters the points near

the walls. A suitable distribution of grid points was obtained using the

relation
gy = (sin(nxi/Z) +1)/2, (4.1)
where
| -1 -
and

N = total number of grid points.

In order to determine the vectors A to K to 3 digit accuracy, 51 grid
points were sufficient for the range of Reynolds number and wave numbers that

we considered.
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The coefficients of the Landau equations derived in the last section are
functions of the vectors A to K. These vectors become dependent on the
slow time variable T only when we perturb the flow from its neutrally
stable state. In the neighborhood of the neutral stability curves for the
G;rtler and TS perturbations, the shape of the vectors (as functions of )
remains wunchanged, and hence we only need to consider the shapes of the
neutrally stable modes.

The familiar wneutral stability curves for the linear Ggrtler and TS
perturbations are presented in Figures 3 and 4, respectively. Here, the
generally accepted convention of labelling one of the arms of the stability
curve as "lower" and the other as "upper" is used. To analyze the different
kinds of possible interactions between a Ggrtler and a TS perturbation at an
arbitrary Reynolds number R consider the schematic diagram of Figure 5.
(Refer to this figure and its caption for the abbreviations GL, GU, TSL, TSU
used in what follows.) A Ggrtler perturbation GL with wave number k; and
Reynolds number Re slightly different from Ry (Re = Ry + ele) can
interact with a TS wave with the same Reynolds number but with wave numbers
m; or my corresponding to TSL and TSU respectively. Similarly, GU with
wave number k, can interact with either TSL or TSU. So, in all there are
four possible interactions.

It can be seen from Figure 2 that for n = RI/RZ = nc = 2,179 x 10_5,
the critical Reynolds number for the Gzrtler and TS perturbations is
8 x 5772.2 = 46176 where 5772.2 is the critical Reynolds number for a
plane channel flow based on half channel width and centerline velocity (Orszag

(1971)). It is for this value of n that we compute the amplitudes A

to K for 46176 S.Ro < 120,000. This range 1is probably sufficient to
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reveal the possible interactions. Results for other values of n in the
neighborhood of n. can be obtained using a simple argument that we will
present in the next section.

The components of A to K for each value of Ry are used to compute
the coefficients 81, 61, nl, 82, 62, and n2 of the two Landau equations.
For computing these coefficients, vectors A and B need to be normalized.
This was done by dividing A by its centerline azimuthal component (center-
line value of ag), and dividing B by its centerline radial velocity com—

ponent (centerline value of b4). Since B and 61 do not depend on the

1
presence of a TS perturbation, each of these has a unique value for each point
on the neutral stability curve. When both GL and GU are considered for a

fixed Reynolds number, 8 and 61 will each have different values on the

1
two arms of the neutral stability wave, corresponding to the different wave

numbers. A similar argument applies to B and n which are independent

2 2
of the Ggrtler perturbatlon. These coefficients will be further discussed in

the next section.

5. SOLUTION OF THE LANDAU EQUATIONS

In this section, we analyze the possible interactions by studying the
properties of the coupled Landau equations. These properties are displayed in
the form of bifurcation diagrams which show the amplitudes of the equilibrium
states and their stability properties.

Equations (3.26) and (3.27) can be written in terms of |X|Z and |Y|2:

2
1 d|x 2 2012 20012
77'1?"_ = 8y [XI7 + 8 XITIX]T + n e X[ 7)Y (.1
1 d|y]? 2 2,12 2,12
R L T MM L ML 1 (5.2)
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where B 8 R’ and n are real parts of the corresponding

1r? Bor? S1r2 Sor0 ™ 2R

Landau coefficient, e.g., B

5 = BZR + 1621. It is found that Bl is real

and so Bl = BlR' By suitably scaling the amplitudes X and Y {1t is

possible to make 61 = -1 and |n2| =1 so as to facilitate the analysis

of the equations. For notational convenience, we replace R1 in (3.26) and
(3.27) by u in the above equations. From here on we shall drop the sub-
script R because all the coefficients of the equations are real.

The growth rates with repect to T (for u =1) of the G;rtler (81)
and TS (82) perturbations are shown in Figure 6 and Figure 7 respec—
tively. In Figure 7 it should be noted that the negative values of 62
corresponds to TSU in Figure 4,

There are two graphs each for n, and 62 depending on the types of
possible interaction between a Ggrtler and TS wave., Figure 8a shows ny
versus Reynolds number for the interaction of GL with TSL and TSU and Figure
8b displays the same variables for the interaction of GU with TSL and TSU.
Figures 9a and 9b give graphs for 52 for the same interactions as given in
Figures 8a and 8b. Figure 10 shows a graph of Reynolds number versus Ny

The graphs of the coefficient of the Landau equation mentioned in the
last two paragraphs have been computed for (1 = n) = (1 - nc) = 2.179 x
10-5, which corresponds to a channel with very small curvature and one for
which the critical Reynolds number for the G;rtler and TS perturbations are
identical. 1In what follows we will extend the analysls to channels for ¢
in the neighborhood of nc.

In (5.1) and (5.2) the coefficients of |X|2 and |Y|2 are uB,
and uBz respectively, which shows that the linear growth rates of ]X\z
and |Y|2 are proportional to the deviation from Ry (Reynolds number

= RO + ezu). Similarly, it is reasonable to assume a linear dependence of
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the growth rate on the deviation from the radius ratio n.e If we write

(1 =n)=( - nc) + ey as a perturbation from a - nc), and take ¢
to be the expansion parameter given by (3.8), the growth rates of [X|2 and
|Y|2 would also be linearly dependent on Ve The effect of the deviation
from (- nc) on the coefficients of the nonlinear terms of the Landau
equations is of a higher order than we are concerned with and so we shall only

consider its effect on the growth rate through the parameter v.

Equations (5.1) and (5.2) can now be written as

2

LAR® ) vy 012 s, 1012 0y fxl2)) 5.3
x|

7 =g = By + ) Y7+ 8, [YIT[X]T 4y Y] 7[¥]%. (5.4)

The zero-growth rate curves for |X|2 and |Y|2 are straight lines in
the (v,u) plane, passing through the origin and having slopes of (_Yl/Bl)
and (-YZ/BZ) respectively. Numerical computations show the first slope to
be of order =107 and the second to be approximately zero; therefore in what
follows, we take Yy = 0. To compute these slopes, the wave numbers for the
GZrtler and TS waves were fixed at their values for y =0, v = 0, which 1is
equivalent to R = Re, and (1 - n) =01 - nc). The slopes were found for
this neighborhood for these fixed wave numbers. As can be expected, the
slopes are of the same order of magnitude as those of the curves for the
critical Reynolds number versus (1 -n) given by Gibson and Cook (see
Figure 2). Note that the wave numbers change along their curves, while in our

case we keep them constant. We computed the change in Reynolds number with

change in (1 - n) at the cross—over point shown in Figure 2.
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There are four possible steady state solutions to (5.3) and (5.4):

(1) [x|2 = o, Y12 = 0 (5.5a,b)
) |¥|2=o0 1x|2 = - LRI N (5.6a,b)
b Tl' u 81 . ]
2 2 By
(1i1) [x|° =0, lY|© = - = (5.7a,b)
2
2 VY,
2 VY

To assess the stability of these states, it is necessary to linearize the
equations about these states. The reader may refer to Boyce and DiPrima
(1977) for a discussion of the stability analysis of such coupled equations.

Table 1 summarizes the values of 81’“1’ and Gi,i =1,2 , for the
four possible interactions. This tabulation is mainly to facilitate the
analysis and discussion of these interactions; other values can be obtained
from the graphs for these quantities. This table of results can be used to
show that many possible equilibrium states exist depending on the Reynolds
number. Here we shall concentrate on the three cases which we believe to be
of most practical importance. The bifurcation pictures for the other cases
can be found in say Keener (1976) or Guckenheimer and Holmes (1984).

The three cases we consider are:

(a) Interaction of Gortler and TS waves for n = nc + ezv and
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Re = Rec + ezu. Here we consider the cases when the Reynolds number
is at or very close to the critical value for both perturbations, and
with wave numbers corresponding to the critical Reynolds number and
its vicinity. Representative values for this case can be found near
the end of each of Sections A - D in Table 1.

(b) Interaction of TSL with GL.

(e¢) Interaction of TSL with GU.

Case (a): In this case, it is found that nI/n2 > 81/82 > 61/62,

Gi < 0, ny > 0, Bi >0 for i = 1,2. For v > 0, the Ggrtler mode is the
most unstable on the basis of linear theory and for v <0 the TS wave is
the most unstable.

The solution (5.5a,b) exists for all values of u whilst (5.6a,b) and
(5.7a,b) exist for p > -vYI/B1 and ¢ <O respectively. The mixed mode
solution (5.8a,b) can exist for either a finite, zero or semi-infinite range
of values of U depending on 81’“1’51' In the present case, we find
that if v € 0, the mixed mode does not exist. However, for v >0 the
mixed mode exists for a finite range of values of u including the
origin. The bifurcation diagrams for this case are shown in Figures
(11a,b). 1In these figures, continuous and broken lines correspond to stable
and unstable solutions of the Landau equations respectively. We note that the
TS mode can never be in stable equilibrium without the presence of a G;rtler
mode. In contrast to this situation, the G;rtler mode can exist alone and be
stable to small perturbations. However, the finite amplitude states in these
figures are unstable to sufficiently large perturbations. This instability

leads to |X| and |Y| terminating in a finite time singularity as in the
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case for a TS wave in a straight channel. Thus, the threshold amplitude
phenomenon of Meksyn and Stuart (1951) persists in the presence of G;rtler
vortices. It is not possible to quantify the effect of the G;rtler mode on
the threshold amplitude. However, a phase plane analysis of the Landau equa-
tions shows that the Ggrtler mode significantly reduces the size of the finite
amplitude perturbation required to induce the finite time breakdown of the
equations. 1In that sense, the G;rtler mode has a significant effect on the
subcritical breakdown of the TS waves. However, for a sufficiently low level
of background noise, we should expect that a stationary G;rtler mode could be

set up by slowly increasing the Reynolds number.

Case (b): Here we consider the interaction of TSL with GL. 1Imn this
situation, other modes of instability can occur at lower Reynolds number but
since this situation is relevant to the corresponding external boundary layer
problem we believe it to be of some importance. This is because in this case,
as in Case (c), the TS wave now bifurcates supercritically and the possibility
of stable mixed mode solutions must now be investigated. Here we concentrate
on the interaction of such a mode with a GL vortex. Case (¢) will be con-
cerned with the interaction with a GU vortex.

The parameters 61,62,n1, and n, are all negative and satisfy

§./8

1785 < BI/BZ < “1/“2’ (Bi >0, 1=1,2).

A routine calculation lead to the bifurcation pictures shown in Figures
(12a,b). We see that the mixed mode always bifurcates from the '"pure-mode"

which is the least unstable on the basis of linear theory. This bifurcation
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leaves the pure-mode stable so that at sufficiently large u, both pure
modes are possible stable equilibrium states. However, in the absence of any
finite amplitude background noise we expect that the pure mode which is the
most unstable on the basis of linear theory would be set up when the Reynolds

number 1is gradually increased.

Case (¢): Here we consider the interaction of TSL and GU. For this
case 61,62,n2 are negative whilst ny is positive. The relationship

between the ratios of the coefficlients is:

61/52 < 81/82 < -Tll/nz, (Bi > 0) i-= 1’2)‘

The bifurcation pictures are shown in Figures (13a,b). 1If the G;rtler mode 1is
the most unstable on the basis of linear theory, then there is no secondary
bifurcation and the TS mode 1is never stable. When the TS wave bifurcates
first, then it is initially stable before it suffers a secondary bifurcation
to a stable mixed mode. The mixed mode then meets the "pure" Gortler mode
which changes from being unstable to stable. Thus, for both v > 0 and

v <0 at sufficiently large values of u the only stable state possible
is that corresponding to a finite amplitude G;rtler vortex. Hence, the

Ggrtler mode effectively prevents the finite amplitude growth of the TS wave.

6. CONCLUSIONS
In this paper we have considered the interaction of two types of pertur-

bations in a curved channel flow; these are the travelling nonaxisymmetric
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wave (TS) and the axisymmetric vortical perturbation referred to as the
G;rtler vortices.

By using the Stuart-Watson approach, two coupled equations for the ampli-
tudes of TS and the Ggrtler perturbations were obtained. Coefficients of
these equations have been calculated for their interaction, from Reynolds
number starting at the common critical value Re, for both the perturbations
up to a large enough value which we think covers all the possible inter-
actions. We have, however, concentrated our attention on those interactions
which we think are significant in external flows.

We have seen in the previous section that for R close to Rec the only
possible stable "pure state" to be G;rtler vortices. For a finite range of
Reynolds numbers, a mixed mode 1s possible, but in any experimental investi-
gation of this problem, we expect this range to be too small to be detected.
However, the threshold amplitude effect associated with a finite amplitude TS
.wave remains intact and indeed is augmented by the curvature. In external
flows such as a Blasius boundary layer or an attachment line boundary layer,
this effect, if repeated, would make these flows more sensitive to background
noise.

Consideration of the interaction between a TS perturbation corresponding
to the lower branch of its neutral curve with a Ggrtler perturbation belonging
to the lower branch of its neutral curve, shows that a stable finite amplitude
perturbation of either type can be set up depending on which one is most
linearly unstable. The value of the radius ratios n determines which of
the perturbations is most unstable.

For the interaction of the TS perturbation corresponding to the lower arm

of its neutral stability curve with the Gbrtler perturbation corresponding to
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the upper arm of its neutral stability curve, we find that the Ggrtler vortex
prevents the occurrence of a finite amplitude TS wave far from the neutral
curve. When a TS wave is the most linearly unstable of the two perturbations,
a finite amplitude TS wave develops, the amplitude of which increases as the
Reynolds number increases further from its wvalue on the neutral curve until a
"mixed" mode appears. Here both the TS and G;rtler have finite amplitudes.
As Reynolds number increases further, the mixed mode bifurcates into a stable
G;rtler mode. In the case when the Ggrtler mode 1is the most 1linearly
unstable, only a finite amplifude G;rtler state is possible as the Reynolds
number Iincreases from a value on the neutral curve.

For external flows, an asymptotically self-consistent description of non-
linear TS waves has been given by Smith (1979). Here the disturbance was
described by "Triple Deck" theory and the streamwise scaling for the TS wave
corresponds to lower branch TS waves in our problem. Further it was shown
that lower branch TS waves bifurcate supercritically so we can expect that our
results for the interaction of TSL waves and G;rtler vortices in channel might
have implications to the external flow problem. Of course, the effect of
boundary layer growth might negate the validity of us drawing these con-
clusions, however, we believe that our calculations show what is the 1likely
effect of the possible interactions involving TS waves and Ggrtler vortices.

In a later publication, we will report the numerical simulations of the

interaction in curved channel flow between such perturbations.
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APPENDIX A

Here the nonzero components of the operators of (3.l11) are given explic-
itly in terms of their row-column location, i.e., (1,2) will refer to element

in first row and second column.

L. [9 ,3 ] is a 6x6 matrix:
1 "z’ 90
- (1-n)
1,2) = - Ry T %
aZ
(1,3) = -~
2
Ry
2 9
= (=) zz _ £(r) (1-n)
(1,4) = 2 2 3¢ * 2 r R, %
0 0
2 N2
(1,5) = —&'—“—;—ae +%f(r)(1-n) +-%-“-L %
RO r r RO
R,(1-n)
(2’1) = _0._;.__36
(2)2) = - _‘(1—‘_‘;n)
2
(2,4) = = 2AMY 5 L IO -y KD -
R r r
0
2,2 (1-n)? £(r)
2,5) = (1 -=n)/r" - —__77_-866 - azz + RO = (1 -n) 86
r

(3,1) = R_ 3



(3,3)

(3,6)

(4,4)

(4,5)

(4,6) =

(5,2)

Tl[at] is a

(1,4)

(2,5)

L [32,8 1 is

(1,2)

L]

(1,3)
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-(1 - n)/r

2
_ (-n) _ _ (o)
r2 806 azz * RO(1 n) r

-(1 - n)/r

RO(I-n) .
r ]

(6,3) = 1.

6x 6 matrix:

(1-n)
-2
R, t

(3,6) = Ry(1 =ma.

a 6x6 matrix:
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[d

t

(1,4)

(1,5)

(2,1)

(2,4)

(2,5)

3,0

(3,6)

(4,5)

is

(1,4)

(2,5)

(3,6)
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2 R
2 (1-n) _ 1 f(r)
- ;? R1 r2 866 2 ;f azz + - (1
0 0
(1 -m?d. 2, _am?h,
R2 r2 ] r2 R2 0
0 0
El (1 -n)d
r 0
R
12 2
Ef';f (1 =n) 39
0

T 8°

6% 6 matrix:

Ry

R—z (1 - n)at
0

Rl(l - n)at

-n)
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T [BT] is a 6% 6 matrix:

22
- _ (-n)
(1,4) = 'Ti;_— 3T
(2,5) = (3,6) = Ro(l - n)aT.

N [az,ae] {3()_3} is a 6 component column vector:

1
v v? 1 1,2
(1,1) = -(1 - 'ﬂ) [m‘ Beu - ;— + m {Wazu - uazw} - R—z': {u + uaev}]
0 0

= 1- u__3v y LA
(2,1) (1 'ﬂ) [W ac + RO T aev + - + l—n an]

_ Y aw
(3,1) Ro(l n) = aew + u 5T + wezw.
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APPENDIX B

Here we give the nonlinear terms of 0(63) which form part of the
coupled Landau equations. Note the presence of cubic terms such as

IX(T)I2 X(t), etc. The lower case letters are elements of the vectors given

Each of these elements are

in capitals, e.g., G = (gl,gz,g3,g4,g5,g6)T-

functions of Ce
(i) Z_° (contribution from .Hl) =

(l%l) [2j5a5 + 2c5a;] X(T)lX(T)!zzl

(1-n) * * . . 2~
+ = [c4a5 + cga, + 3,35 + 35a4] X(T)|X(T)| a,

* *
+ [-ik ¢, a, + 21k a_ c_ + j

6 % . < ika,] x(r)lx(r)lzzi2

6

* * ) 2
+ [c4a2 +a,c, + j432 + a432] X(1) |X(1)| a,

* * . 2~
[~1k ¢, a, + 2ik a, ¢, + j,ika] X(1) |X(1)| a

1
+E7 4 26
0

2(1 * . 2 ~
+ <2-n) [0434 + J4a4] X(t) |X(1)| a,
Ror

1 * * . 2 ~
- ;2-[—ik c 3, + 2ik ag ¢, + Jeika,] X(D)[X(1)]” 3,
0

* * . ) 2~
+ [(c433 ta,cq) + (§,a5 4 a433)] X(t) |X(1)| a,



+

+

(1-n)

Ry

+ 4 [h b
r

Ro(l-n)

R.r

0

r

(1-n)
r

+

+|

+ [-ik
[-im h
+ [b*

6

[-im

475

o

4

*
a

6

b*
4

ik h

h

+

)

ba

h b + b h

472

[-im h

4

5

2

b*
6

(1-n)
+— [

*
+ [b6

i

h b + b

473

* R

4

(l-nl)r [-im h, br + b, im hs]X(T”Y(T)lz;l

0

1
-
R0

[b

6

k h

h

ik

+ 2(1=-n)

2

Rir

0
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* . 2
¢ * 21k ag ¢ + J6ika6] X(1)|X(1)]|

* I~
+bg im b, + goim b, =im b, g, ] X(1)|Y(1)] a

5

+ b, ik g5 + ik a

2~
5 6 k6] X(t) | Y ()| a,

5

* * O
by + by im hy + goimb, ~im b, gs] X(t)|Y ()] a,

5 5

+ a, k. + ag k ] X(T)IY(T)I

h_ + g4b + b& 5 4¥s

+gb, + bg, +ak +ak ] X(T)IY(T)I a,

*
+ +
b5 im h g5 im b

6 6

2~
2(h5b5 + gobe + agko)] X(1)|Y(1)| %,

+ b ik g + k

6 6 ik a6]X(T)|Y(T)|2 a

6

+ g,by + gy +ak +ak ] X(1)|Y(T)| a

4 75 4

h, + beik g, + 1k a k ] X(T)IY(T)I

* 2 ~
[h,b, + g,b, + a,k,] XX 3

-im b5 g6] X(T)IY(T)IZE

3

L
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1 * I~
+ ;z-[bA ik h, + b, 1k g + 1k a/k,] X(0)|¥(1) | a,
0

(1-n)

R r

2~
- [im g,bs = im b4g5] (1) |Y(1)] a,

+

(11) E? e (contribution from _gl) =

+ (1;“) [2 d b* + 2k_b Y(T)|Y(T)|2%1

575 5 5]

- =) * * 2%
=—— [-im dg b, + 2im by d, + kg im b,] Y(O)[Y(1)|7b,

0

d * * P
+[db, + b, d, + kb, + b k] Y(0)[Y()| b,

Ro(l'") * * %
+ ———— [=im d, b, + 2im b_ d_ + k. im b ] Y(x)[Y(T)|"D
T 5°5 5°5 5 5 2
(1-n) * * 2
+ - [d4b5 +dgb, + kb + b4k5] Y(t)|Y(t)| b,
(I-n)R

* * ~
0 [-im d. b, + 2im b_ d  + k. im b Y(T)IY(T)|2b3

+ 5 Pg 5 dg * kgim b]

r

b k %
+ [d4b3 + b,dy + by + b, 3] Y(t)|Y(t)] 3

+ (1=-n [—im d b* + 2im b* d_ + k imbs] X(T)IY(T)IZ’BI

RO r 4 75 4 75 5
2(1-n) * 2
+ 52 [d,b, + kb, ] V(O [Y(1)]| 7D,
R T
0
2(1=n) *

+

% . Pirg
- [hsa5 + ggag * bSJS] Y(1) | %(1)] b,
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(1-n)

Ror

* * I~
[ag im b, + a; im g, + byimi,] Y()[X(x)|B,

. * * * * . . I~
+[ 43y + a4h2 + ga, + a,g, t b234 + b432] Y(1)|X(1)] b2

+

(1-n) R

* * 9w
= O[a imh,_, + a_im gs + imijS] Y(T)IX(T)I b2

5 5 5

+ {=n) [h ar + ah + g*a + a g* +b,j. + b.i,] Y(T)|X(T)'2%
T L74%s 45 4°5 4°5 4-5 54 2

+ [~k h, ar + ar ik h, + g ika, -ik * 0%
6 35 * 3 5 * gglkag -1k ag g] Y(1)[x(1)|%b,

(1-n)R

0 [ac im h, + a_ im g+ imj b ] Y(T)|x(r)|25
r 5 6 5 6 576 3
2(1-n) * * . 2~
+ ——2-—-——-—-[h4a4 + g8, + b434] Y(1)[X(1)| b1
R r
0
(1-n) [ * * . 2
+ Ror [a4 im h5 + a4im g + imb534] Y(T)IX(T)| bl
! k * + a ikh *ika, -1k *1 ¢ )| x¢0)| %
+-;§-[-i h, a + a,ikh, + g ika, -ik a, g6] T T I
0
! Kk *+a ik h *ika, -1k " o |x0)]%
- ;7 [-i h6 a, + ag 4 + gglika, ag g4] T T 1
0

+h* * * * . b, i IX( Z'S
[ 433 * a4h3 + 8,34 * a,8, + b334 + 433] Y(t) |X(1)] 3°
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FIGURE CAPTIONS

Curved channel with flow in the azimuthal direction. The walls
are parallel to the z-axis. Radius ratio n = Ri/Ro and
channel width d = Ry = Ry

Critical Reynolds number versus (1 -n) for G;rtler and TS
perturbations. At the cross—over point of these curves,

Re_ = 8x 57722 and (1 =n)) = 2.179 x 107>,  This figure
is a schematic adaptation of Figure 1 in Gibson & Cook (1974).

Neutral stability curve for the G;rtler perturbation. Reynolds

number versus axial wave number k.

Neutral stability curve for the Tollmien-Schlichting perturba-

tion. Reynolds number versus azimuthal wavenumber m.

The two neutral stability curves (a) G;rtler neutral stability
curve (b) TS neutral stability curve for no=mn_. For this
case, the critical Reynolds number is identical for the two per-
turbations. GL and GU refer to the lower and upper arms of the
Ggrtler stability curve. TSL and TSU refer to the lower and

upper arms of the Tollmein-Schlichting stability curve.

Reynolds number versus growth rate BI of the Ggrtler pertur—
bation.

Reynolds number versus growth rate B of the TS perturba-

2

tion. Note the negative 8 for part of TSU,

2
Reynolds number versus n for perturbations corresponding to
the two arms GL and GU of the Gortler stability curve interacting
with TSL and TSU:



Figure 9

Figure 10

Figure 11

Figure 12

40

(a) GL interacting with TSL and TSU.
(b) GU interacting with TSL and TSU.

Reynolds number versus 62 f?r perturbations corresponding to
the two arms GL and GU of the Gortler stability curve interacting
with TSL and TSU:

(a) GL interacting with TSL and TSU.

(b) GU interacting with TSL and TSU.

Reynolds number versus UPE

Bifurcation diagrams for the interaction of the Ggrtler and TS

perturbations for Reynolds number at or close to Re, where

nlln2 > 61/82 > 61/62
and
ni > 0, Bi > 0, Gi <0, 1=1,2.

(a) (v > 0). The G;rtler mode is the most linearly unstable
mode in this case. The TS mode is subcritically unstable.
(b) (v < 0). The values of y at P and Q are

respectively

and

Bifurcations diagrams for the interaction of GL and TSL where

n1/n2 > 81/82 > 61/62

and

-



Figure 13

-3

n, <0, Bi > 0, 61 <0,1i-=1,2.

(a) (v < 0). The TS mode is the most linearly unstable mode in
this case. The value of at Q is

(b v > 0. The G;rtler mode is the most linearly unstable

mode in this case. The value of i at P 1is

e -vyY,/8,
P n B,
(1 ";—g—)
2 "1
Bifurcation diagrams for the interaction of GU and TSL where
-n,/n, >8,/8, >8,/6,

and
N >0, n, <0, Bi > 0, Gi< 0, i =1,2.

(a) (v < 0). The TS is the most linearly unstable mode in this

case., The values of 1y at P and Q are respectively:

and

(b)) »>0). The Gortler mode 1is the most linearly unstable

mode in this case.
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LIST OF TABLES

Table 1

Coefficients of the Landau equations are listed for the four possible
interactions under Sections A, B, C, and D. The first three columns list the
Reynolds number R4, wave number k of the Ggrtler and wave number m of the
TS waves respectively. These are values on the neutral stability curves for
the G;rtler and TS perturbations. The remaining columns list the coefficients
of the Landau equations and some of their ratios.

Section A: Interaction of TSL with GL

Section B: TInteraction of TSL with GU

Section C: Interaction of TSU with GL

Section D: Interaction of TSU with GU
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Section A

Section B

Section C

Section D
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TABLE 1

Reynolds
number

Ry 13 m 8y 8y n 8, n, 62 61/62 nI/n2 81/82
.120(6) .855 +656(5) .83(-4) -1.0 =.45(4) 19(-2) -.16 -.36(2) .28(~-1) +27(5) 43(-1)
.800(5) 1.35 .732(5) .20(-3) -1.0 -.15(4) $33(-2) -.12 -.28(2) «35(-1) .13(5) .60(-1)
.700(5) 1.60 «762(5) .26(-3) -1.0 ~.79(3) .39(-2) ~-.89(-1) =-.25(2) .39(-1) .88(4) .68(~1)
+675(5) 1.67 J771(5) +29(-3) -1.0 ~.59(3) 40(=2) ~,79(~1) =.25(2) W41(-1) <75(4) J1(-1)
.625(5) 1.86 .791(5) .35(-3) -1.0 -.17(3) JA4(-2)  =.53(-1) -,23(2) S4(-1) 31(4) .78(-1)
.600(5) 1.98 +803(5) .38(-3) -1.0 .63(2) J46(-2) ~.37(~1) -.21(2) AT(-1)  =a17(8) .83(-1)
.575(5) 2.11 -, .816(5) W43(-3) -1.0 31(3) A48(-2)  =-.18(-1) -,20(2) L51(-1)  =.17(5) .88(-1)
+550(5) 2,27 .830(5) .48(~3) -1.0 .59(3) #51(-2) .53(-2)  -.18(2) «56(~1) .11(6) .94(-1)
480(5) 3.08 .891(5) .73(-3) -1.0 17(8) «54(-2) .12 -.43(2) $24(-1) .14(5) .13
.468(5) 3.44 .911(5) .82(~3) -1.0 .21(4) «53(-2) .17 -425(2) A1(~1) 13(5) .15
+120(6) 12.9 .656(5) 64(~3) -1.0 .25(4) .19(-2) =-,16 -.10(2) .96(-1) -,15(5) .33
«100(5) 11.3 .688(5) T4(=3) -1.0 .22(4) $24(-2) =,15 -.11(2) .90(-1) =.15(5) .30
.750(5) 9.02 .746(5) «91(-3) -1.0 .19(4) .36(-2) -,11 -.12(2) .82(-1) ~-.18(5) «26
.600(5) 7.23 .803(5) .10(-2) -1.0 17(4) A46(=2)  =.37(-1) -.13(2) JT7(=1)  =.46(5) .22
.550(5) 6.47 .830(5) J11(-2) -1.0 .18(4) .51(=2) .53(-2) -,13(2) #75(-1) »33(6) .21
«500(5) 5.52 +868(5) .11(-2) -1.0 .19(4) 54(-2) JTJ4(-1)  -.14(2) .70(-1) +25(5) .20
<470(5) 4,64 .963(5) .10(-2) -1.0 32(4) J40(-2) .30 -.15(2) .66(-1) .11(5) .26
+.120(6) «855 .983(5) 83(~4) -1.0 .15(5) -, 11(-2) +55 -.17(3) .58(-2) .28(5) -.76(-1)
.900(5) 1.18 .100(6) 15(-3) -1,0 .11(5) -.81(-3) «53 -.91(2) 11(-1) .21(5) -.19
.700(5) 1.60 .101(6) +26(-3) -1.0 .79(4) -.63(~4) 49 -.51(2) +20(-1) +16(5) -.42(1)
+650(5) 1.76 .101(6) .31(-3) -1.0 J1(4) .31(-3) .48 -.43(2) $24(-1) .15(5) .10(1)
L470(5) 3.35 .963(5) .80(-3) ~1.0 «33(4) L40(~2) .30 -.28(2) «36(-1) 11(5) .20
+120(6) 12.9 .983(5) 64(-3) 1.0 240(4) -.11(-2) «55 .60(1) ~.17 .73(4) -.58
«100(5) 11.3 »995(5) JT4(=3) 1.0 L42(4) -.96(~3) oS54 .35(1) -.28 JJ7(4) -.77
.800(5) 9.53 .101(6) .87(-3) -1.0 A43(4) -.54(-3) .51 J7(-1) -.27(2) «87(4) -.16(1)
«500(5) 5.52 .985(5) 11(-2) -1.0 .38(4) +28(-2) .37 -.12(2) 87(-1) .10(5) .39
470(5) 4,64 .963(5) .10(-2) -1.0 .32(4) L40(~2) .30 -.15(2) .66(-1) .11(5) .26
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