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ABSTRACT

,

The cometary bow wave of P/Glacobini-Zinner

has been analyzed using the complete set of ICE
field and particle observations to determine if
It is a shock. Changes in the magnetic field

and plasma flow velocities from upstream to
downstream have been analyzed to determine the
direction of the normal and the propagation
velocity of the bow wave.. The ve14ctty has

then been compared with the fast magnetosonic
Wave speed upstream to derive the Mach number

and establish whether it is "supersonic", i.e.,
a shock, or "subsonic," i.e., a large amplitude
wave. The various measurements have also been

compared with values derived from a Rankine-
Hugoniot analysis. The results indicate that,
inbound, the bow wave is a shock with M - 1.5.
Outbound, a subsonic mach number is obtained,
however, arguments are presented that the bow
wave Is also likely to be a shock at this
location.

1. INTRODUCTION

The analysis referred to in the title addresses
two basic questions: (1) is the bow wave a
shock? (2) can the observed properties up-and

downstream of the bow wave be reconciled with
the Rankine-Hugontot relations?

The basic approach to answering the first of
these questions is to derive the velocity of
the bow wave in the upstream solar wind and

determine whether the Mach number is > 1 or C
1, i.e., supersonic or subsonic. At this stage
of the analysis, the reconciliation with the

Rankine-Hugontot relations is principally re-
stricted to comparisons between observed and

calculated jumps in the particle density
and magnetic field strength. We use the mathe-
macical formulation to be found In Tidman and
Krall (Ref. 1, p. 11) which is basically a sin-
gle fluid description.

2. ANALYSIS PROCEDURE

The analysis procedure that has been followed is
based upon experience obtained in studying in-

terplanetary shocks and planetary bow shocks
(Ref. 2, 3). The first step is to determine the
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Figure 1. Shock coordinates. The X axis is the
shock normal and the Y axis is in the

direction of the jump in the vector
magnetic field. The other parameters,
which lie in the X-Y plane, are defined

in the text.

normal to the shock surface. As Is customary,
we make use of the coplanarity of the velocity
vectors, \`1, V2, tie magnetic field vectors 81,
T2 , and the normal, 0. A representation of
these vectors appears in Figure 1 in coordin-

ates aligned with, and moving with, the shock.
The principal axes are (1) the normal, ^, where
the symbol, A , indicates a unit vector, (2)

the vector change in the field from upstream to
downstream, pB - 9*2 - Tl , and (3) the ortho-

gonal direction parallel tc the shock, also the

direction of the electric field. The analysis
is based on three dimensional velocity vectors
obtained by the Energetic Particle Anisotropy

Spectrometer (EPAS) (Ref. 4). Three dimensional
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measurements of anlsocropies in the pick ur
ions are used to find a reference system movini

with velocity, V, which renders the distribu-
tions isotropic (Ref, 5).

We use the formulation first introduced by
Abraham-fichrauner (Ref. 6) which involves the
cross products of A V and E-8  as shown in the
figure. Our experience with other shocks in-

dicates that this approach is generally reli-
able even to the case of perpendicular shocks,
i.e., when the angle, 	 a Bn , between n and the

upstream magnetic field, B l , is a 90'. The

computation of a Bn is the second step in our

analysis.

The speed of the bow wave in the solar wind
frame, vs, is calculated using two complemen-
tary methods. The more conventional approach
is based on the conservation of mass and can

he expressed as VS - (142/(N2 - N l )I 6 V • n
where N1, N 2 are the fluid densities up-and
downstream. The other method, which we deve-

loped as an alternative and which depends on
the magnetic field rather than the particle
density, is a condition satisfied by all kinds
of electromagnetic waves. Basically, the wave

velocity equals the ratio of the wave electric
field, in this instance simply D V x 1-2 , to the
transverse magnetic field change associated
with the vave,j D BI. An alternative deriva-
tion of this relation is based on recognizing

that, in the shock frame, the wave is non-pro-

pagating and the electric field is conserved
( et * 0) across the shock. The shock speed
in inertial space, V I , is also calculated by
finding the component of the upstream solar

"wind velocity along n, i.e., V I	 VS + Vi • qi.

Before obtaining the Mach number, it is neces-
sary to derive the phase velocity for the fast
mode of propagation upstream of the bow wave.

The conventional equations were used for the
Alfven speed, C A - B/(4 a ) i/2 , the ion sound

speed, Cs - ( y p/ p )1/2, and the fast mode

speed, C f , which depends on CA , Cs and the
angle of propagation with respect to the mag-

netic field, 8 Bn (Ref. 1, p. 15). The pres-
sure, p, is the sum of the partial pressures

associated with the solar wind electrons, the
solar wind protons and the heavy cometary ions..

The electron and heavy ion properties were
measured or inferred from the ICE measurements

(Ref. 7,8). Since no proton measurements are
available, the wave speeds depend on reasonable

assumptions for the proton densities and tem-
perature. We have followed the policy of

varying all the densities and temperatures over
reasonable limits in order to carry out a
formal error analysis and ensure that uncer-

tainties in these quantities would not change

our conclusions. The density, p , is the sum of
the density-mass products for the same three

constituents. In the expression for Ci, y is,
of course, the ratio of specific heats for

which we assume the conventional value of 5/3.

Finally, the Mach number is calculated from M -
Vs/C f . This quantity essentially provides our
definition of a shock, i.e., it is a large
amplitude wave propagating at supersonic
speeds.
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Figure 2. Observations of the inbound bow wave.
Three of the principal pressures (mag-
netic, solar wind electron and solar
wind convective pressures) are shown,
The horizontal bars above Lite data
show the analysis intervals correspond-

ing to the results in Table I.

An example of the data used in the analysis is
shown in Figure 2. The quantities plotted are
actually three of the principal pressures;. the

magnetic pressure, B 2/8 e , the electron pres-

sure, nekTe , and the convective pressure of the
solar wind, ne . pV 2 , where M  is the proton

mass. The changes in these quantities across
the inbound bow wave are shown with the analy-
sis intervals used to obtain the results pre-
sented below indicated at the top of the fi-
gure. Overall, the decrease in convective

pressure and the accompanying increases in
magnetic and internal pressure are evident in

spice of the intense hydromagnetic turbulence
(Ref. 9) that is present.

The large irregularities introduced by the tur-
bulence pose a significant problem by making it
difficult to determine accurately the para-

meters needed in thr_ analysis. In fact, we
have found that a variety of solutions can be

generated by varying the location and/or dura-
tion of the analysis intervals. Other analysis
procedures can also lead to alternative solu-
tions for the same analysis intervals, e.g., we

have compared the analysis described above with
the output of the program recently developed by
Vinas and Scudder (Ref.10). It is, therefore,

important to establish criteria to be met by an
acceptable solution (or solutions). These cri-

teria will be described below as we consider
the results obtained so far.
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TABLE 1.

• n: 0. 1210, -0.1089, -0.6948

• 0Bn c 80,1°	 PERPEND iCULAR

• V s 	I AVXB 21/JAB1 = 189 kmrs

• V s = (N 21N 2 -N 1 )AV 'n ° 189 km/s

•	 1 ' nV 	 = -102 0 V ( = 86 km f s

• CA = 68, C S = 106 km/ S

C  = 125 km/s

•M— 125 =1.5>1.0

• A SHOCK

3. ANALYSIS RESULTS

Table 1 contains the parameters appropriate to
' the inbound crossing of the bow wave, The first

row contains the components of n in solar-eclip-

tic coordinates (% toward the sun, Y parallel
to the ecliptic and positive to the East, and Z
parallel to the north ecliptic pole). One of

our acceptability criteria is that the normal
should have a physically reasonable orienta-
tion. Figure 3 shows the encounter geometry as

seen looking toward the sun along the tail of
Ciacobini-Zinner. It can be seen that the
intercept was basically from south to north so

that a reasonable shock normal should have ny <
0, nz < CI inbound and ny > 0, nz > 0 outbound.
In both cases, n should hive a component point-
ing into the upstream solar wind, so that nx >
0.

The angle, B Bn , is a 80' so that the wave or
shock is nearly perpendicular as anticipated
from the geometry of the trajectory and the
orientation of the interplanetary magnetic
field at the time of the crossing.

The two methods of computing Vs lead to Identi-
cal results of 189 km/s. Although this exalt

agreement is undoubtedly a coincidence in this
case, we generally require acceptable solutions
to yield approximately equal values of Vs. The
inertial speed, VI , 86 km/s, is not zero as

would be expected for a bow wave or standing
shock in an ideal situation. From the analysis

of planetary bow shocks, however, it has been

found that the inertial speed is rarely zero
but that the shocks are non-stationary with

instantaneous speeds of tens of km/s up to
values of 1 100 km/s. This realization forms
the basis of another of our criteria, i.e., VI

need not be zero but should be small (much less
than the solar wind speed).

Figure 3. Encounter	 Trajectory Looking Sun-
ward. Contours corresponding to

a bow shock and plasma tail are
shown schematically along with the
coordinate systen used in the
analysis (upper right). The normals

for the inbound and outbound cros-
sings of the bow wave or shock are
indicated.

The values of CA and Cs show that the ion sound

speed is dominant. Their ratio implies an up-

stream 8 - 8 n p/B Z of 2.9. This value, which
is larger than the value near 1.0 that is typi-
cally observed in the solar wind, demonstrates
the influence of the cometary pick-up ions
which have come to dominate the energy density

of the plasma upstream of the bow wave. For
this quasi-perpendicular orientatigln, the2 ^q^t

mode speed is essentially C f	 (CA + Ci

leading to a value of 125 km/s.

Hence, the Mach number, M - 189/125 - 1.5 > 1.0.
The conclusion to be drawn is that the inbound
crossing is, in fact, a shock. Further support

for this conclusion is provided by the Rankine-

HuRoniot solutions, (with 8 - 2.9 and 8 - 80')

which show that the ratios N21N1, B 2 /B l as

observed are consistent with M - 1.6 + 0.1.

The outbound crossing is considered next, the
results showing that it is not easy to obtain

unambiguous results in this case. Table 2

contains the results for an acceptable solution.
As above, we have insisted that ^ have a rea-

sonable orientation (nx > 0, ny > 0, nz > 0 and
demonstrating a reasonable quantitative rela-

r
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TABLE 11 .

• n: 0.4236, 0.1822, 0,8873

• 0Bn : 87.7°	 PERPEND ICULAR

• V s - I 2 Ih0BI °	
73

60kmis	
+I'	 _ 13

• V s • lN 2^N 2 -N 1 )0V^n = 86 kmis

• V 1 ' n 0, V I 60-86 km's

• CA S 32 km/s, CS = 94 km/s

C(a99km's

• M	 99 - 0.73 ± 0.13 < 1.0

• SUBSONIC - A WAVE?

tionship). The wave turns out again to be near-
ly perpendicular with 9 Bn 88'. The two

values of the shock speed are slightly different
with Vs . 73 + 13 km/s, the average value being
low compared to that obtained inbound. Again,
the inertial speed of 60-86 km/s appears within
an acceptable range. In the solar wind up-
stream of the outbound crossing, CA , has de-

creased to 32 km/s principally as a result of a
decrease 'in the field magnitude by a factor of

approximately 2. The sound speed is also re-
duced slightly so that Cf - 99 km/s. However,
even this reduction is not adequate to yield a
Hach number greater than one. Thus, M - 73/99

- 0.73 + 0.13 < 1.0.

Taken at face value, this result implies that

the wave is subsonic and not a shock. However,
we have applied an additional criterion,

not discussed above, which is not fulfilled by

this otherwise acceptable solution.

For both waves and shocks, certain geometric re-
lations between r—Y and S—B must be satis-
fied (Ref.11, p. 98). In particular, for a
perpendicular shock or wave, A—V should be

parallel to n (and perpendicular toeB) as
indicated in the upper half of Figure 4. The
actual relation is presented in the lover half
figure which shows that D VV makes a large angle

of - 72' with respect to n. As a consequence,
the numerators in V s , i.e.^^ • n and E7 x
Ay, are small for a given 4 V. This misorien-
tation is presumably the reason why Vs is low.

The Rank ine-HugonLot solutions (with B = 10 and
9 - 88') lead to jumps in density and field

consistent with H - 1.6 + 0.3, i.e., a mean
value similar to that obtained for the inbound
crossing.

A PROBLEM OUTBOUND:

FOR PERPENDICULAR SHOCK OR WAVE

AV n, oV 1 oB

B, Q B

HOWEVER, RELATIONS ARE:

AV

AB

Figure 4. Relative orientations of the velocity

and magnetic field jumps. The upper
panel shows the orientation antici-
pated for a quasi-perpendicular
shock or wave. The bottom panel
shows the actual orientations of the
vectors used in the analysis presen-
ted in Table 2 and which differ

draAtically from expectation.

We are continuing to analyze the outbound cros-
sing in the hope of identifying the origin of
this misorientation of 17 and D 8. It may be
that time variations are responsible for pro-

ducing this apparent discrepancy. The variabi-
lity of the outbound crossing, which may be the

result of multiple crossings of the bow wave or
a consequence of the high value of 8 x 10, leads
to a relatively long interval of - 20 minutes

between stable upstream and downstream condi-

tions. It may be that the solar wind, specifi-

cally the orientation of B, has changed signi-

ficantly during this interval. Continued analy-
sis should show whether or not it is possible

to obtain an unambiguous result for the out-

bound crossing.
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