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EQUIVALENT BEAM MODELING USING NUMERICAL REDUCTION
TECHNIQUES

Introduction

The objective of this paper is to develop numerical procedures that can
accomplish model reductions for space trusses. Three techniques will be
developed that -can be implemented using current capabilities within
NASTRAN. The proposed techniques accomplish their model reductions
numerically through use of NASTRAN structural analyses and as such are
termed numerical in contrast to the analytical techniques developed in
References 1-12.

The analytical techniques of Refs. 1-12 can be classified either as substitute
continuum, discrete field, periodic difference, or finite difference
methodologies. They are generally limited to trusses having either pinned or
rigid joints and do not attempt to account for any joint flexibilities. Moreover,
only specific trusses are analyzed to derive the "equivalent beam” properties.
The primary reason for this limitation is the analytic complexity of treating
general truss configurations with arbitrary joint characteristics. These analytic
treatments did reveal, however, that equivalent truss models may require more
degrees of freedom than allotted to the usual finite element beam.

To eliminate the above restrictions, numerical procedures are developed
here that permit reductions of large truss models containing full modeling
detail of the truss and its joints. Three techniques are presented that
accomplish these model reductions with various levels of structural accuracy.
These numerical techniques given in order of increasing accuracy are
designated as equivalent beam, truss element reduction, and post-assembly
reduction methods.

In the equivalent beam method described herein, the mass and stiffness
properties of a simple finite element beam are determined so that the truss
structure can be replaced with this equivalent beam element in all static and
dynamic structural analyses. This approach is attractive in that once the
equivalent beam properties are known, the beam length can be arbitrarily
chosen by the analyst to suit the problem at hand. The approach is limited,
however, to the usual six degrees of freedom describing the translational and
rotational displacements for a beam node.

In the truss element reduction method, the idea of an equivalent structural
element is retained but the number of truss bays to be represented must
generally be chosen apriori. The advantage of this method is the capability to




retain more than the six degrees of freedom alloted to the equivalent beam.
Including warping and shear "degrees of freedom” in the equivalent structural
element is an example of this increased capability.

The final approach does not attempt to derive an equivalent structural
element for the truss. Instead, a procedure is developed that allows the analyst
to identify apriori freedoms that can be reduced out of the model without loss
of structural accuracy. This method thus permits a more accurate description
of the truss than derived using equivalent structural elements while still
allowing significant size reduction of the truss model prior to space station
synthesis, modal extraction, or other static and dynamic analyses.

The numerical procedures discussed above all utilize a transformation of
coordinates at some step in the reduction procedure. This coordinate
transformation defines new “beamlike” degrees of freedom in terms of the
~original rectangular degrees of freedom describing the translational and
rotational displacements of the nodes that are common between truss bays.
The transformation of rectangular to beamlike degrees of freedom is described
in Figures 1 and 2 for triangular trusses. The transformation for square
trusses is similarly described in Figures 1 and 3.

There are two basic advantages arising from these transformations. First,
the new beamlike freedoms are largely uncoupled from each other, and
second, freedoms which can be reduced out through static condensation are
generally more easily recognized.

The utilization of the beamlike transformation for either square or
triangular trusses is discussed in Section 1.0 giving the step by step outlines for
the three numerical reduction procedures. Results obtained using the three
numerical reduction techniques on triangular trusses are given in Section 2.0.
Square trusses are similarly discussed in Section 3.0. A preliminary analysis of
a ten bay Rockwell truss using the numerical reduction techniques is then
given in Section 4.0.

1.0 Step By step Descriptions of the Numerical Reduction Technique

The steps describing the three numerical reduction techniques are given in
this section. The reduction procedures do not necessarily have to follow the
steps as stated below since some of these steps can be combined and executed
more efficiently. The steps as delineated below are given only for discussion
purposes.
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The first three steps in all three numerical reduction techniques are
identical. The first step is to generate a detailed structural model of a single
"repeating element” of the truss. The model should include as much definition
of the joints as deemed necessary for accurate structural modeling. The second
step reduces out all interior degrees of freedom from this single bay element
using static condensation and retains freedoms only at the nodes
interconnecting truss bays. The third step then connects a predetermined
number of these single repeating elements and again reduces out all interior
degrees of freedom. The number of bays selected in this step defines the basic
mesh size to be used in all numerical reduction methods with the exception of
the equivalent beam method. The finite element model resulting from the
above three steps will henceforth be referred to as the basic truss cell. Further
steps for each numerical procedure are described below.

1.1 Substitute Continuum Beam Method
Additional steps taken for this method are as follows:

i) Construct a truss of one or more basic cells and statically reduce out all
interior freedoms resulting from this construction. The number of cells chosen
requires a number of computer runs in order to demonstrate convergence of
the beam properties derived below.

ii) Transform the degrees of freedom at the end of the truss to the beamlike
degrees of freedom and retain only the usual six freedoms describing the
translational and rotational displacements of a beam.

iii) Equate the (12 x 12) stiffness matrix resulting from this transformation
and reduction to the stiffness matrix for a beam. The following equations are
used to generate the E,G,I,J, and K properties of the beam:

AE/L = K” GA/L = A/J*KM
- 2
Ell = (K55 - L /4*K2__,)

1 L?
K. ~ 12(EIL)

K~'=(GA/L)*

to

1l +uv=(J/A)* (»\E/L)/(2 tKM)




where

A = arbitrarily chosen to be area of longerons
J/A = radius of gyration squared
K = Diagonal terms of the (12 x 12) stiffness matrix

ii
E = elastic modulus
G = shear modulus
v = Poisson’s ratio
K = shear stiffness
= (EL) / (AE/L) * A

L = length of segment used to generate the stiffness matrix

The resultant beam properties produce an element stiffness matrix which
duplicates the stiffness matrix condensed from the explicit model. This
duplication is exact for most truss structure configurations.

The mass of the equivalent beam may be calculated in two different ways.
First, internally, using rigid body mass properties for either a consistent or
lumped mass approach, and second, explicitly, using the (12 x 12) mass
matrix describing the basic truss cell. This second approach has the
disadvantage of fixing the beam length in subsequent analyses. If, however,
mass per unit length is used as the beam property, then all beam properties
are known independent of beam length and, the beam length can be arbitrarily
chosen to suit any static or dynamic analysis at hand. This length
independence property of the equivalent beam gives it a substantial advantage
over the truss element reduction method in parametric studies when the effect
of the length of the truss on system response is being examined. Such
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~ parametric studies are envisioned in the early design stages of the space

station.
1.2 Truss Element Reduction Method
The additional steps taken in this procedure are as follows:

i) Transform the rectangular degrees of freedom of the interconnecting nodes
to the beamlike coordinates.

ii) Eliminate unwanted degrees of freedom either by truncation or by static
condensation. Truncation is accomplished in NASTRAN through single point
constraint (SPC) and is equivalent to setting the displacement for those
selected coordinates to zero. Static condensation is accomplished in
NASTRAN by placing those coordinates in the OMIT set and is equivalent to
setting the forces on those coordinates to zero.

iii) Form the complete truss structure using either NASTRAN image
superelements or NASTRAN general elements (GENEL).

1.3 Post-assembly Reduction Method
The additional steps taken in this procedure are as follows:

i) Connect as many of the basic truss cells as required to define the complete
structure and then transform coordinates. These operations may also be
reversed so that a basic truss cell element can first be transformed then
connected to form the complete truss.

ii) Choose freedoms to be retained for the complete structure. The freedoms
retained generally have been selected by previous analytical studies of the
truss or by analytical insight to the problem at hand. The reduction is then
accomplished using static condensation.




2.0 Reduced Order Model For Triangular Frames and Trusses

The purpose of this section is to apply the three numerical reductions
methods to triangular trusses and frames and to compare the results. The
analyses are conducted only for cantilevered structures having ten and twenty
bays.

Two different triangular frames and one triangular truss are examined (see
Fig.4). These are identified as an unbraced Vierendeel frame, a double braced
frame, and a double braced truss. A frame is distinguished from a truss by
having rigid as opposed to pinned joints. Geometry and material properties are
taken from Noor and Nemeth (Ref 1) in order to compare our results with
theirs. The double braced frame results are also compared with the double
braced truss results in order to bound the effects of joint flexibility on the
modes and frequencies of a triangular structure having non-idealized joints.

The "exact” model descriptions of the cantilevered Vierendeel and double
braced triangular frames are taken to be represented by finite element models
having nodes only at the verticies of the battened triangles. Each node requires
six degrees of freedom so that a total of 18 degrees of freedom are required to
describe the deflections of one end of a frame bay segment. A total of 180

degrees of freedom are thus required to describe the cantilevered deformation
of ten bays.

The primary objective of all three reduction techniques is to significantly
reduce the size of the above models. Tables 1 and 2 give the total number of
freedoms required by each of the three techniques to calculate the modes and
frequencies of the Vierendeel and double-braced structures, respectively.
These tables show that the post-assembly reduction technique allows the
largest possible reduction of the three techniques considered.

Tables 1 and 2 also show the frequencies of cantilevered structures using
various reduction schemes and retained freedoms. These results are also
compared with the exact results of Noor and Nemeth.

No final resolution can be given at this time for the differences between our
exact results and the exact results of Noor and Nemeth. It appears, however,
that the differences may be attributed to the slightly different mass
constructions used. MSC/NASTRAN uses a modified consistent mass approach
(Ref 13) while Noor and Nemeth use the original consistent mass formulation
presented by Archer (Ref 14). Alternatively, differences in modeling detail at
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the ends of the truss may account for the discrepancy. Detailed calculations to
determine which was the more accurate were not performed.

Evaluations of the results for the various reduction schemes are also given in
Tables 1 and 2. In all cases the post-assembly reduction schemes gave
excellent results while the equivalent beam and truss element reduction
schemes gave satisfactory results only for the double-braced structures.
Detailed discussions of the various reduction schemes are given in the
following subsections.

2.1 Post-Assembly Reduction

Freedoms that were retained in the post-assembly reductions were chosen
simply by examining their modal participation in the frequency range of
interest for the unreduced structure. In Table 1, ten, eight, and even four dof
were all shown to adequately represent the Vierendeel frame when these dof
were retained for every bay. A four dof representation at every other bay
length was also shown to adequately represent the Vierendeel structure by
showing a maximum of 5.7% error occurring for the fourth torsion mode.

Table 2 shows the results obtained for the double-braced triangular frame.
One important conclusion that can be drawn from this table is that excellent
results can be obtained for the frame even by considering the joints to be
pinned. This conclusion is not suprising since engineers have successfully
approximated frames as trusses for years. Excellent results are also expected
when the four beamlike coordinates of the truss are retained at multiple bay
lengths.

One important inference can be drawn from being able to use pinned instead
of rigid joints for the double braced frame. The slight change in frequencies
obtained by changing the joint from rigid to pinned is characteristic of a frame
having a large area moment of inertia about its centroid. For in this case, the
primary strain energy of the frame for low frequency modes can be accounted
for by the axial extension or compression of its member elements. As a result
of this energy distribution, moment capability of the individual members can
be neglected and the joints can be considered pinned. In addition, the most
important modeling consideration of a joint for such trusses is to accurately
represent its axial stiffness. This in turn implies that free-play in the rotational
directions can be ignored and that free-play in the axial direction of each
member must be examined carefully to determine its effect on the the truss
modes and frequencies.




In conclusion, significant model size reduction for the Vierendeel and double
braced frames can be obtained by utilizing the post-assembly reduction
technique. The degrees of freedom retained in the reduced models are
generally easy to identify by the analyst either by previous analytical studies or
by insight. Moreover, the geometrical behavior of the modes are easily
recognized when expressed in terms of the beamlike coordinates and do not
require mode shape plots in order to visual response.

The mass and stiffness matricies resulting from the post-assembly reduction
technique are full, however, and must be repeatedly generated for trusses
having different lengths. Such situations would occur in various parametric
studies currently envisioned in the early stages of space station design and an
"equivalent beam” approach would be preferential for such trade studies.

Model size reduction for double braced triangular frames can also be
realized by considering the joints to be pinned. This approximation reduces the
size of the problem by one-half when local member modes can be omitted.
Further reduction can then be obtained using coordinate transformation
followed by static condensation.

2.2 Equivalent Beam and Truss Element Reduction Techniques

The equivalent beam method as defined in this paper is limited to six
degrees of freedom. Any extension in the number of retained degrees of
freedom for an equivalent structural element necessitates use in
MSC/NASTRAN of image super elements. These image super elements can be
defined using the numerical truss element reduction technique as presented in
this paper or they can be defined using the analytical techniques found in
References 1-12. In any event, the 6-dof equivalent beam models are
considered in a class of their own due to their ease of use.

The 6-dof equivalent beams are not applicable for all trusses, however, as
demonstrated in Table 1 for the Vierendeel frame. In fact any 6-dof equivalent
structural element may not be sufficient and additional freedoms may be
required. This conclusion is supported for the Vierendeel frame by the
unsatisfactory 6-dof element reduction results in Table 1 and by the
satisfactory 10-dof analytical results obtained by Noor and Nemeth. It should
be noted that the equivalent beam results for the Vierendeel frame are
reported in Table 1 even though the beam properties did not converge to a
limiting set of values when using successively longer beam segments.

The reason that the 6-dof models are unsatisfactory for the Vierendeel
frame is that the frame behaves in a particularly unbeamlike manner.
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Qualitatively, this difference may be attributed to the fact that the longerons
bend rather than stretch for its fundamental bending modes. The cross sections
of the Vierendeel beam therefore do not rotate for these fundamental modes
as is normally the case for trusses. Moreover, the torsion modes are unusually
coupled with cross-sectional stretching. The 10-dof analytical technique of
Noor and Nemeth can account for these effects as demonstrated in Ref 1.
Alternatively, the truss element reduction technique using additional retained
freedoms can be effectively used as shown in Table 1.

The addition of cross-bracing to the Vierendeel frame increases the shear
stiffness of the structure and, as a result, the structure behaves more like a
beam. The results of Table 2 indicate that satisfactory results for the double
braced frame can be obtained using either the equivalent beam method or the
truss element reduction method.

3.0 Reduced Order Models for Square Cross-section Trusses

The purpose of this section is to apply the three numerical reductions
methods to square cross-section trusses and to compare the results. The
analyses are conducted only for cantilevered structures having ten bays.

The structures analyzed are those defined by Noor in Ref 3. The trusses are
square in cross-section and vary in their bracing schemes. Repeating elements
have single bracing ( two bays per repeating element) and double bracing (
one bay per repeating element) . Each configuration is examined with and
without cross bfacing. The latter configuration is kinematically stable only
when rigid boundary conditions are specified. The advantage of such a
configuration is that the truss may be folded flat for storage in the Shuttle
cargo bay. The disadvantage is that low frequency shear and warping modes
are introduced.

Tables 4 through 6 show the frequencies of the cantilevered structures using
various reduction schemes and retained freedoms. These results are also
compared with the exact results of Noor and Nemeth. Again unexplained

differences appear between our exact results and those of Noor and Andersen
but these are very small.

Evaluations of the results for the various reduction schemes are also given in
Tables 4 through 6. In all cases the post-assembly and element reduction
schemes gave excellent results and accounted for the shear and warping modes
of the unbraced structures. Table S also shows that these shear and warping
modes disappear when cross bracing is introduced and that the reduced order




models need only account for the usual six degrees of freedom of an
equivalent beam node.

The modeling assumption of using pinned instead of fixed joints was also
examined for the single bay, double laced frame with cross bracing. Results
are shown in Table 5. Several conclusions may be drawn from the results
tabulated there. First, the primary bending and torsion modes are not affected
by fixing the joint rotation freedoms. Second, many local member modes
which were assumed to be high frequency modes for the pinned structure are
in fact low frequency modes. The reason why the local member modes were
not calculated for the pinned case is due to the fact that only translational
freedoms for nodes only at the ends of each local member were retained. The
local member modes would have appeared had nodes been placed midway
along each member. And third, while the numerical reduction techniques
presented here and Noor’s equivalent beam method can all accurately predict
the primary modes of a truss, they cannot account for local member modes.

In conclusion, the primary modes of the square trusses studied in this
section are almost unaffected by the presence or absence of pins at the joints;
warping and shear modes are of course suppressed by fixing the joints. Also,
when square trusses have no cross bracing, two extra freedoms must be
retained with the usual six beamlike freedoms in order to account for the
warping and shear modes exhibited by such a structure.

4.0 Reduced Order Models for The Rockwell Truss

The purpose of this section is to apply the numerical reductions methods to a
cantilevered Rockwell truss configuration and to examine various modeling
approximations and preload effects on the modes and frequencies. These
analyses were performed to get a preliminary understanding of the behavior or
the truss. The Rockwell Truss is a double bay single laced square deployable
truss. The batten and intermediate joints are fixed while all other joints are
pinned in one direction. Several NASTRAN models of the truss were
constructed using either all bar elements, all rod elements except for bars for
the battens, or all rod elements. Detailed modeling of the joints were not
included in these NASTRAN models of the Rockwell truss. Results of several
NASTRAN analyses are summarized below: The cantilevered frequencies
resulting from four different modeling schemes are presented in Table 7. The
modes are plotted in Figure 5 } Differences in response between
the various element configurations are due primarily to the different mass
representations used. The consistent mass formulation produced a model
having a higher torsional inertia and accounted for the local batten modes.
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These local modes vanish from the solution when the lumped mass approach
was used or when all joints were modeled as pinned. The modeling assumption
of using pinned instead of fixed joints had negligible effect on the calculated
stiffness of the structure.  Table 8 presents the results of the preload study.
The truss was subjected to a 100 pound and 200 pound axial preload and the
first order nonlinear differential stiffness solution was obtained. Table 8 shows
that the change in the frequency is small and varies approximately linearly
with the preload. Large geometry effects under preload were not accounted
for. Table 9 presents the cantilevered frequencies calculated using various
numerical reduction schemes.




Translational degrees I Rotational degrees

of freedom i of freedom
X = T=*X 8 = R *9©
B B
T T
F = T * F M = R * M
B B
-1 -1 T -1 -1 T
T = D * T R = § * R
T T
D =T*T S =R *R
"""""""""" Nomenclature
X,F = Vector of nodal translational displacements and

forces, respectively,at the verticies of of the
lattice cross-section.

X ,F = Vector of beamlike displacements and loadings,
B B respectively, due to translational displacements
and loadings.

QM = Vector of nodal rotational displacements and moments,
respectively

@
<
i

Vector of beamlike rotational displacements and moments,
B B respectively, due to rotatioal degrees of freedom at
the nodes.

| Figure 1. Beamlike Transformation Relations

]
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Figure -2. Beamlike Lattices used in present study.
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TABLE 4
SINGLE BAY DOUBLE-LACED SQUARE TRUSSES

Pinned Joints and No Batten Cross Bracing
10 Bays Cantilevered

Mode Finite Element Model | Post-assembly | element
| reduction ! reduction
Noor Noor BAC ! 8-DOF 8-DOF
Beam theory EXACT EXACT |
1w 0.6060 0.6055 0.6035 0.6035 .6035
1b 0.8335 0.8368 0.8300 0.8286 .8440
2w 3.5742 3.6051 3.5936 3.5936 3.5940
1t 4.1545 4.1542 4.1439 4.1439 4.1439
2b 4.5723 4.6539 4.6192 4.6155 4.6805
3w 9.2143 9.4458 9.4131 9.4131 9.4131
3b 10.9937 11.4168 11.3301 11.3271 11.4420
2t 12.4635 12.4549 12.4144 12.4143 12.4145
le 12.5104 12.5559 12.4478 12.4276 12.8483
4w 16.3566 17.0596 16.9856 16.9856 16.9857
DOF 1-8 1-12 1-12 1-8 1-8
used
Total
DOF 120 120 80 80
Evaluation E E

Note: (b)=bending (t)=torsion (e)=extension (1)=local ;
(E)=Excellent (G)=Good (U)=Unsatisfactory
Each bending listed above represent two bending modes with identical
frequecies.
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TABLE §
SINGLE BAY DOUBLE-LACED SQUARE TRUSSES

With Batten Cross Bracing
10 Bays Cantilevered

Mode Finite Element Model | Post-assembly | elcment
] reduction | reduction

Exact Exact | 6 -DOF | 6-DOF
Pinned Fixed | Pinned ! Pinned
Joints Joints | |

1b 0.790 0.784 0.790 0.799

1t 4.062 4.041 4.062 4.062

2b 4.399 4.285 4.399 4.438

3b 10.779 local 10.789 10.849

2t 12.007 ” 12.006 12.166

le 12.166 ” 12.166 12.197

4b 18.376 ” 18.376 18.457

3t 20.200 ” 20.200 20.200

5b 26.643 ” 26.664 26.716

DOF 1-12 1-24 1-6 1-6

used

Total

DOF 120 240 60 60

Evaluation E E

Note: (b)=bending (t)=torsion (e)=extension (1)=local ;

(E)=Excellent (G)=Good (U)=Unsatisfactory
Each bending listed above represent two bending modes with
identical frequecies.
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TABLE 6
DOUBLE BAY SINGLE-LACED SQUARE TRUSSES

Pinned Joints and No Batten Cross Bracing
10 Bays Cantilevered

Mode Finite Element Mcdel I Post-assembly I element
I reduction | reduction
Noor Noor BAC | 8 -DOF 8 -DOF 8 -DOF
Beam EXACT EXACT I per bay every
theory 2 bays
1w 6658 6655 6603 6602 6603 6603
1b 8339 8341 8229 8229 8230 8229
1t 2.8720 2.8585 2.8585 2.8656 2.8591 2.8586
2w 3.7418 3.7787 3.7514 3.7514 3.7659 3.7527
2b 4.2314 4.2799 4.2314 4.2314 4.2567 4.2341
2t 8.1659 8.5960 8.5542 8.5542 8.7391 8.5697
3w 9.1783 9.3900 9.3251 9.3253 9.5299 9.3446
4b 9.6439 9.8714 9.7668 9.7668 10.0551 9.7990
le 11.7044 11.6173 11.4990 11.4990 11.5355 11.5005
3t 14.3598 14.3663 14.2857 14.2862 15.0779 14.3579
DOF 1-8 1-12 1-12 1-8 1-8 1-8
used every
2 bays
Total
DOF 80 120 120 80 40 80
Evaluation E E E
Note: (b)=bending (t)=torsion (e)=extension (1)=1local :
(E)=Excellent (G)=Good (U)=Unsatisfactory

Each bending listed above represent two bending modes with identi
frequecies.
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TABLE 7(a)

EFFECT OF MODEL VARIATIONS ON CANTILEVERED FREQUENCIES
OF THE ROCKWELL TRUSS

10 Cantilevered Bays

Model 2

(hz)

Model 3
(hz)

Mode Model 1
(hz)
1b(z) 5.361
1b(y) 5.529
1t 22.248
2b(z) 26.734
2b(y) 28.489
local 38.654
local 42.345
2t 53.648

Note: (b)=bending (t)=torsion

(E)=Excellent

TABLE 7(b)

(e)=extension

(1)=1local;

(G)=Good (U)=Unsatisfactory

DESCRIPTION OF THE SELECTED NASTRAN MODELS

== ==meamozs

Description Model 1

Model 3

Model 4

battens bars
longerons rods
batten joints fixed
other joints pinned
mass dist. coupled

Model 2
bars bars
bars rods
fixed fixed
fixed pinned
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