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EQUIVALENT BEAM MODELING USING NUMERICAL REDUCTION

TECHNIQUES

Introduction

The objective of this paper is to develop numerical procedures that can

accomplish model reductions for space trusses. Three techniques will be

developed that can be implemented using current capabilities within

NASTRAN. The proposed techniques accomplish their model reductions

numerically through use of NASTRAN structural analyses and as such are

termed numerical in contrast to the analytical techniques developed in

References 1-12.

The analytical techniques of Refs. 1-12 can be classified either as substitute

continuum, discrete field, periodic difference, or finite difference

methodologies. They are generally limited to trusses having either pinned or

rigid joints and do not attempt to account for any joint flexibilities. Moreover,

only specific trusses are analyzed to derive the "equivalent beam" properties.

The primary reason for this limitation is the analytic complexity of treating

general truss configurations with arbitrary joint characteristics. These analytic

treatments did reveal, however, that equivalent truss models may require more

degrees of freedom than allotted to the usual finite element beam.

To eliminate the above restrictions, numerical procedures are developed

here that permit reductions of large truss models containing full modeling

detail of the truss and its joints. Three techniques are presented that

accomplish these model reductions with various levels of structural accuracy.

These numerical techniques given in order of increasing accuracy are

designated as equivalent beam, truss element reduction, and post-assembly

reduction methods.

In the equivalent beam method described herein, the mass and stiffness

properties of a simple finite element beam are determined so that the truss

structure can be replaced with this equivalent beam element in all static and

dynamic structural analyses. This approach is attractive in that once the

equivalent beam properties are known, the beam length can be arbitrarily

chosen by the analyst to suit the problem at hand. The approach is limited,

however, to the usual six degrees of freedom describing the translational and

rotational displacements for a beam node.

In the truss element reduction method, the idea of an equivalent structural

element is retained but the number of truss bays to be represented must

generally be chosen apriori. The advantage of this method is the capability to
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retain more than the six degrees of freedom alloted to the equivalent beam.

Including warping and shear "degrees of freedom" in the equivalent structural

element is an example of this increased capability.

The final approach does not attempt to derive an equivalent structural

element for the truss. Instead, a procedure is developed that allows the analyst

to identify apriori freedoms that can be reduced out of the model without loss

of structural accuracy. This method thus permits a more accurate description

of the truss than derived using equivalent structural elements while still

allowing significant size reduction of the truss model prior to space station

synthesis, modal extraction, or other static and dynamic analyses.

The numerical procedures discussed above all utilize a transformation of

coordinates at some step in the reduction procedure. This coordinate

transformation defines new "beamlike" degrees of freedom in terms of the

original rectangular degrees of freedom describing the translational and

rotational displacements of the nodes that are common between truss bays.

The transformation of rectangular to beamlike degrees of freedom is described

in Figures 1 and 2 for triangular trusses. The transformation for square

trusses is similarly described in Figures 1 and 3.

There are two basic advantages arising from these transformations. First,

the new beamlike freedoms are largely uncoupled from each other, and

second, freedoms which can be reduced out through static condensation are

generally more easily recognized.

The utilization of the beamlike transformation for either square or

triangular trusses is discussed in Section 1.0 giving the step by step outlines for

the three numerical reduction procedures. Results obtained using the three

numerical reduction techniques on triangular trusses are given in Section 2.0.

Square trusses are similarly discussed in Section 3.0. A preliminary analysis of

a ten bay Rockwell truss using the numerical reduction techniques is then

given in Section 4.0.

1.0 Step By step Descriptions of the Numerical Reduction Technique

The steps describing the three numerical reduction techniques are given in

this section. The reduction procedures do not necessarily have to follow the

steps as stated below since some of these steps can be combined and executed

more efficiently. The steps as delineated below are given only for discussion

purposes.
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The first three steps in all three numerical reduction techniques are
identical. The first step is to generatea detailed structural model of a single
"repeating element" of the truss. The model should include asmuch definition
of the joints asdeemednecessaryfor accuratestructural modeling. The second
step reducesout all interior degreesof freedom from this single bay element
using static condensation and retains freedoms only at the nodes
interconnecting truss bays. The third step then connects a predetermined
number of thesesingle repeating elements and again reducesout all interior
degreesof freedom.The number of baysselectedin this stepdefines the basic
mesh size to be usedin all numerical reduction methodswith the exceptionof
the equivalent beam method. The finite element model resulting from the
abovethreestepswill henceforthbe referred to asthe basic truss cell. Further
stepsfor eachnumerical procedure are describedbelow.

1.1 SubstituteContinuum Beam Method

Additional stepstaken for this method are as follows:

i) Constructa truss of one or more basic cells and statically reduce out all
interior freedomsresulting from this construction. The number of cells chosen
requires a number of computer runs in order to demonstrateconvergenceof
the beam propertiesderived below.

ii) Transform the degrees of freedom at the end of the truss to the beamlike

degrees of freedom and retain only the usual six freedoms describing the

translational and rotational displacements of a beam.

iii) Equate the (12 x 12) stiffness matrix resulting from this transformation

and reduction to the stiffness matrix for a beam. The following equations are

used to generate the E,G,I,J, and K properties of the beam:

AE/L = KII GA/L = A/J* K44

EIIL = (K55- L"I 4 * K,22 )

L2
K-1 = (GA/L)* 1

K22 12 (EI/L)

1 + v = (J/A)* (AE/L}/(2 *K44 )

570



where

A --- arbitrarily chosen to be area of longerons

J/A = radius of gyration squared

K -- Diagonal terms of the (12 x 12) stiffness matrix

ii

E --- elastic modulus

G -- shear modulus

v -- Poisson's ratio

K -- shear stiffness

I = (EI/L) / (A.E/L) * A

L --- length of segment used to generate the stiffness matrix

The resultant beam properties produce an element stiffness matrix which

duplicates the stiffness matrix condensed from the explicit model. This

duplication is exact for most truss structure configurations.

The mass of the equivalent beam may be calculated in two different ways.

First, internally, using rigid body mass properties for either a consistent or

lumped mass approach, and second, explicitly, using the (12 x 12) mass

matrix describing the basic truss cell. This second approach has the

disadvantage .of fixing the beam length in subsequent analyses. If, however,

mass per unit length is used as the beam property, then all beam properties

are known independent of beam length and, the beam length can be arbitrarily

chosen to suit any static or dynamic analysis at hand. This length

independence property of the equivalent beam gives it a substantial advantage

over the truss element reduction method in parametric studies when the effect

of the length of the truss on system response is being examined. Such
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parametric studies are envisioned in the early design stages of the space

station.

1.2 Truss Element Reduction Method

The additional steps taken in this procedure are as follows:

i) Transform the rectangular degrees of freedom of the interconnecting nodes

to the beamlike coordinates.

ii) Eliminate unwanted degrees of freedom either by truncation or by static

condensation. Truncation is accomplished in NASTRAN through single point

constraint (SPC) and is equivalent to setting the displacement for those

selected coordinates to zero. Static condensation is accomplished in

NASTRAN by placing those coordinates in the OM1T set and is equivalent to

setting the forces on those coordinates to zero.

iii) Form the complete truss structure using either NASTRAN image

superelements or NASTRAN general elements (GENEL).

1.3 Post-assembly Reduction Method

The additional steps taken in this procedure are as follows:

i) Connect as many of the basic truss cells as required to define the complete

structure and then transform coordinates. These operations may also be

reversed so that a basic truss cell element can first be transformed then

connected to form the complete truss.

ii) Choose freedoms to be retained for the complete structure. The freedoms

retained generally have been selected by previous analytical studies of the

truss or by analytical insight to the problem at hand. The reduction is then

accomplished using static condensation.
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2.0 ReducedOrder Model For Triangular Frames and Trusses

The purpose of this section is to apply the three numerical reductions
methods to triangular trusses and frames and to compare the results. The
analysesare conductedonly for cantileveredstructureshaving ten and twenty
bays.

Two different triangular frames and one triangular truss are examined (see
Fig.4). Theseare identified asan unbracedVierendeel frame, a double braced
frame, and a double braced truss. A frame is distinguished from a truss by
having rigid asopposedto pinned joints.Geometryand material propertiesare
taken from Noor and Nemeth (Ref 1) in order to compare our results with
theirs. The double braced frame results are also compared with the double
braced truss results in order to bound the effects of joint flexibility on the
modes and frequencies of a triangular structure having non-idealized joints.

The "exact" model descriptionsof the cantileveredVierendeel and double
braced triangular frames are taken to be representedby finite element models
havingnodesonly at the verticies of thebattenedtriangles.Each noderequires
six degreesof freedom so that a total of 18 degreesof freedom are required to
describe the deflections of one end of a frame bay segment.A total of 180
degreesof freedom are thus requiredto describe the cantilevereddeformation
of ten bays.

The primary objective of all three reduction techniquesis to significantly
reduce the sizeof the abovemodels.Tables 1 and 2 give the total number of
freedoms required by each of the threetechniquesto calculate the modesand
frequencies of the Vierendeel and double-braced structures, respectively.
These tables show that the post-assembly reduction technique allows the
largest possible reduction of the three techniques considered.

Tables 1 and 2 also show the frequenciesof cantilevered structuresusing
various reduction schemes and retained freedoms. These results are also
compared with the exact results of Noor and Nemeth.

No final resolution can be given at this time for the differencesbetweenour
exact results and the exact resultsof Noor and Nemeth. It appears,however,
that the differences may be attributed to the slightly different mass
constructionsused.MSC/NASTRANusesa modified consistentmassapproach
(Ref 13) while Noor and Nemethusethe original consistentmass formulation
presentedby Archer (Ref 14). Alternatively, differences in modeling detail at
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the ends of the truss may accountfor the discrepancy.Detailed calculationsto
determine which was the more accurate were not performed.

Evaluationsof the results for the various reductionschemesare also given in
Tables 1 and 2. In all cases the post-assembly reduction schemes gave
excellent results while the equivalent beam and truss element reduction
schemes gave satisfactory results only for the double-braced structures.
Detailed discussions of the various reduction schemes are given in the
following subsections.

2.1 Post-AssemblyReduction

Freedomsthat were retained in the post-assemblyreductions were chosen
simply by examining their modal participation in the frequency range of
interest for the unreducedstructure. In Table 1, ten, eight, and even four dof
were all shownto adequatelyrepresent the Vierendeel frame when these dof
were retained for every bay. A four dof representation at every other bay
length was also shown to adequately represent the Vierendeel structure by
showing a maximum of 5.7% error occurring for the fourth torsion mode.

Table 2 showsthe results obtained for the double-braced triangular frame.
One important conclusion that can be drawn from this table is that excellent
results can be obtained for the frame even by considering the joints to be
pinned. This conclusion is not suprising since engineers have successfully
approximatedframes as trussesfor years.Excellent results are also expected
when the four beamlike coordinatesof the truss are retained at multiple bay
lengths.

One important inferencecanbedrawn from being able to use pinned instead
of rigid joints for the double braced frame. The slight change in frequencies
obtainedby changingthe joint from rigid to pinned is characteristic of a frame
havinga largearea moment of inertia about its centroid. For in this case,the
primary strainenergyof the frame for low frequencymodes can be accounted
for by the axial extensionor compressionof its member elements. As a result
of this energydistribution, moment capability of the individual members can
be neglectedand the joints can be consideredpinned. In addition, the most
important modeling considerationof a joint for such trusses is to accurately
representits axial stiffness.This in turn implies that free-play in the rotational
directions can be ignored and that free-play in the axial direction of each
member must be examined carefully to determine its effect on the the truss
modes and frequencies.
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In conclusion,significant model sizereduction for the Vierendeel and double
braced frames can be obtained by utilizing the post-assembly reduction
technique. The degrees of freedom retained in the reduced models are
generallyeasyto identify by the analysteither by previousanalytical studiesor
by insight. Moreover, the geometrical behavior of the modes are easily
recognized when expressedin terms of the beamlike coordinates and do not
require mode shapeplots in order to visual response.

The massand stiffnessmatricies resultingfrom the post-assemblyreduction
technique are full, however, and must be repeatedly generated for trusses
having different lengths. Such situations would occur in various parametric
studies currently envisionedin the early stagesof spacestation design and an
"equivalent beam" approach would be preferential for such trade studies.

Model size reduction for double braced triangular frames can also be
realized by consideringthe joints to bepinned.This approximation reducesthe
size of the problem by one-half when local member modes can be omitted.
Further reduction can then be obtained using coordinate transformation
followed by static condensation.

2.2 Equivalent Beam and Truss ElementReduction Techniques

The equivalent beam method as defined in this paper is limited to six
degrees of freedom. Any extension in the number of retained degrees of
freedom for an equivalent structural element necessitates use in
MSC/NASTRANof imagesuper elements.These imagesuper elementscan be
defined using the numerical truss elementreduction technique as presentedin
this paper or they can be defined using the analytical techniques found in
References 1-12. In any event, the 6-dof equivalent beam models are
consideredin a classof their own due to their easeof use.

The 6-dof equivalent beamsare not applicable for all trusses, however, as
demonstratedin Table 1 for the Vierendeelframe. In fact any 6-dof equivalent
structural element may not be sufficient and additional freedoms may be
required. This conclusion is supported for the Vierendeel frame by the
unsatisfactory 6-dof element reduction results in Table 1 and by the
satisfactory 10-dof analytical resultsobtained by Noor and Nemeth. It should
be noted that the equivalent beam results for the Vierendeel frame are
reported in Table 1 even though the beam properties did not converge to a
limiting set of values when using successivelylonger beam segments.

The reason that the 6-dof modelsare unsatisfactory for the Vierendeel
frame is that the frame behaves in a particularly unbeamlike manner.
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Qualitatively, this difference may be attributed to the fact that the longerons

bend rather than stretch for its fundamental bending modes. The cross sections

of the Vierendeel beam therefore do not rotate for these fundamental modes

as is normally the case for trusses. Moreover, the torsion modes are unusually

coupled with cross-sectional stretching. The 10-dof analytical technique of

Noor and Nemeth can account for these effects as demonstrated in Ref 1.

Alternatively, the truss element reduction technique using additional retained

freedoms can be effectively used as shown in Table 1.

The addition of cross-bracing to the Vierendeel frame increases the shear

stiffness of the structure and, as a result, the structure behaves more like a

beam. The results of Table 2 indicate that satisfactory results for the double

braced frame can be obtained using either the equivalent beam method or the

truss element reduction method.

3.0 Reduced Order Models for Square Cross-section Trusses

The purpose of this section is to apply the three numerical reductions

methods to square cross-section trusses and to compare the results. The

analyses are conducted only for cantilevered structures having ten bays.

The structures analyzed are those defined by Noor in Ref 3. The trusses are

square in cross-section and vary in their bracing schemes. Repeating elements

have single bracing ( two bays per repeating element) and double bracing (

one bay per repeating element) . Each configuration is examined with and

without cross bracing. The latter configuration is kinematically stable only

when rigid boundary conditions are specified. The advantage of such a

configuration is that the truss may be folded flat for storage in the Shuttle

cargo bay. The disadvantage is that low frequency shear and warping modes

are introduced.

Tables 4 through 6 show the frequencies of the cantilevered structures using

various reduction schemes and retained freedoms. These results are also

compared with the exact results of Noor and Nemeth. Again unexplained

differences appear between our exact results and those of Noor and Andersen

but these are very small.

Evaluations of the results for the various reduction schemes are also given in

Tables 4 through 6. In all cases the post-assembly and element reduction

schemes gave excellent results and accounted for the shear and warping modes

of the unbraced structures. Table 5 also shows that these shear and warping

modes disappear when cross bracing is introduced and that the reduced order
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models need only account for the usual six degrees of freedom of an

equivalent beam node.

The modeling assumption of using pinned instead of fixed joints was also

examined for the single bay, double laced frame with cross bracing. Results

are shown in Table 5. Several conclusions may be drawn from the results

tabulated there. First, the primary bending and torsion modes are not affected

by fixing the joint rotation freedoms. Second, many local member modes

which were assumed to be high frequency modes for the pinned structure are

in fact low frequency modes. The reason why the local member modes were

not calculated for the pinned case is due to the fact that only translational

freedoms for nodes only at the ends of each local member were retained. The

local member modes would have appeared had nodes been placed midway

along each member. And third, while the numerical reduction techniques

presented here and Noor's equivalent beam method can all accurately predict

the primary modes of a truss, they cannot account for local member modes.

In conclusion, the primary modes of the square trusses studied in this

section are almost unaffected by the presence or absence of pins at the joints;

warping and shear modes are of course suppressed by fixing the joints. Also,

when square trusses have no cross bracing, two extra freedoms must be

retained with the usual six beamlike freedoms in order to account for the

warping and shear modes exhibited by such a structure.

4.0 Reduced Order Models for The Rockwell Truss

The purpose of this section is to apply the numerical reductions methods to a

cantilevered Rockwell truss configuration and to examine various modeling

approximations and preload effects on the modes and frequencies. These

analyses were performed to get a preliminary understanding of the behavior or

the truss. The Rockwell Truss is a double bay single laced square deployable

truss. The batten and intermediate joints are fixed while all other joints are

pinned in one direction. Several NASTRAN models of the truss were

constructed using either all bar elements, all rod elements except for bars for

the battens, or all rod elements. Detailed modeling of the joints were not

included in these NASTRAN models of the Rockwell truss. Results of several

NASTRAN analyses are summarized below: The cantilevered frequencies

resulting from four different modeling schemes are presented in Table 7. The

modes are plotted in Figure 5 _ Differences in response between

the various element configurations are due primarily to the different mass

representations used. The consistent mass formulation produced a model

having a higher torsional inertia and accounted for the local batten modes.
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These local modesvanish from the solution when the lumped mass approach

was used or when all joints were modeled as pinned. The modeling assumption

of using pinned instead of fixed joints had negligible effect on the calculated

stiffness of the structure. Table 8 presents the results of the preload study.

The truss was subjected to a 100 pound and 200 pound axial preload and the

first order nonlinear differential stiffness solution was obtained. Table 8 shows

that the change in the frequency is small and varies approximately linearly

with the preload. Large geometry effects under preload were not accounted

for. Table 9 presents the cantilevered frequencies calculated using various

numerical reduction schemes.
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Translational degrees I Rotational degrees
of freedom I of freedom

...................................x v,x ....- .........
B B

T T
F = T * F M = R * M

B B

-I -I T -I -I T
T -- D * T R = S * R

T T
D =T*T S =R* R

Nomenclature

X,F = Vector of nodal translational displacements and
forces, respectively,at the verticies of of the
lattice cross-sectxon.

X ,F = Vector of beamlike displacements and loadings,
B B respectively, due to translational displacements

and loadings.

O,M = Vector of nodal rotational displacements and moments,
respectively

,M = Vector of be amlike rotational displacements and moments,
B B respectively, due to rotatioal degrees of freedom at

the nodes.

Figure I. Beamlike Transformation Relations
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I,.-_ b---_ • :,

|" "1"""!

b) Double-laced girder

C. Sec.
Area Length

Longerom I A£ L

Battens A b b

Diagonals Ad d

E - 6.895 x 1010 N/m 2

G = Z652 x 1010 N/m 2

Pf = Pb =Pd = 2768 Kg

L = 0.75 m

b = 0.75 m

Moments of Torsional

inertia Constant

l£2, 1£3 J£

Ib2. Ib3 Jb

Id2' ld3 • Jd

Material

Densio/

P£

Pb

Pd

Designation

A£ = 3.0 x 10 -5 m2

A b = A d = 1.5 x 10 .5 m 2

122 = 1£3 = I£ = 6.0 x 10 .9 m4

Ib2 = 11)3 = Id2 = Id3 = 6.5 x 10 "10 m 4

J£ = 1.2 x 10 .8 m4

Jb = Jd = 1.3 x 10 -9 m4

Figure 2. Beamlike Lattices used in present study.
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TABLE 4

SINGLE BAY IXXJBLE-_ SQUARE TRUSSES

Pinned Joints and No Batten Cross Bracing
10 Bays Cantilevered

z m _ _ _m z slm1_P-_".lr_mR_sma

IVlode Finite Element M_del I Post-assembly I element
I reduction I reduction

..........................................................................

Noor Noor BAC I 8-DOF 8-DOF

Beam theory EXACT EXACT I

lw 0.6060 0.6055 0.6035 0.6035 .6035

lb 0.8335 0.8368 0.8300 0.8286 .8440

2w 3.5742 3.6051 3.5936 3.5936 3.5940
It 4.1545 4.1542 4.1439 4.1439 4.1439

2b 4.5723 4.6539 4.6192 4.6155 4.6805

3w 9.2143 9.4458 9.4131 9.4131 9.4131

3b 10.9937 11.4168 11.3301 11.3271 11.4420
2t 12.4635 12.4549 12.4144 12.4143 12.4145

le 12.5104 12.5559 12.4478 12.4276 12.8483

4w 16.3566 17.0596 16.9856 16.9856 16.9857

Evaluation

Note: (b)ffibending (t)ffitorsion
(E)ffiExcellent (G)=Good

Each bending listed above

frequecies,

E E

(e)=extension (1)=local ;

(U)=Unsatisfactory

represent tx_ bending modes with identical
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TABLE 5

SINGLE BAY IX)UBLE-LACF33 SQUAPE TRUSSES

With Batten Cross Bracing
10 Bays Cantilevered

Mode Finite Element Model I Post-assembly I element
I reduction I reduction

..............................................................

Exact Exact I 6-DOF I 6-DOF

Pinned Fixed I Pinned I Pinned

Joints Joints I I
..............................................................

0.784 0.790 0.7990 790

4 062

4 399
10 779

12 007

12 166

18 376
20.200

26.643

4.041 4.062 4.062

4.285 4.399 4.438
local 10.789 10.849

" 12.006 12.166

" 12.166 12.197

" 18.376 18.45'7
" 20.200 20.200

lb
It

2b

3b
2t

le

4b

3t
5b

Note: (b)=bending (t)=torsion
(E)=Excellent (G)--Good

Each bending listed above

identical frequecies.

(e)=extension (1)=local ;

(U)=Unsatisfactory

represent two bending modes with
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TABLE 6

DOUBLEBAY SINGLE-LACEDSQUARETRUSSES

Pinned Joints and No Batten Cross Bracing
10 Bays Cantilevered

Mode Finite Element Model I Post-assembly
] reduction

I element

I reduction

Noor Noor BAC I 8-DOF 8-DOF 8-EOF

Beam EXACT EXACT I per bay every

theory 2 bays
.......................................................................

lw .6658 .6655 .6603 .6602

lb .8339 .8341 .8229 .8229

It 2.8720 2.8585 2.8585 2.8656
2w 3.7418 3.7787 3.7514 3.7514

2b 4.2314 4.2799 4.2314 4.2314

2t 8.1659 8.5960 8.5542 8.5542

3w 9.1783 9.3900 9.3251 9.3253
4b 9.6439 9.8714 9.7668 9.7668

le 11.7044 11.6173 11.4990 11.4990

3t 14.3598 14.3663 14.2857 14.2862

6603

8230
2 8591

3 7659

4 2567

8 7391
9.5299

10.0551

11.5355
15.0779

.6603

.8229

2.8586

3.7527
4.2341

8.5697

9.3446
9.7990

11.5005

14.3579

Note : (b)=bending (t)=torsion (e)=extension (1)=local ;

(E)=Excellent (G)--Good (U)=Unsatisfactory

Each bending listed above represent two bending modes with
frequecies.

identi
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TABLE7(a)

EFFECTOFIVI)DELVARIATIONSON CANTILEWEREDFREQUENCIES
OF THE R_LL TRUSS

10 Cantilevered Bays

Mode Model 1 Model 2 Model 3 Model 4
(hz) (hz) (hz) (hz)

.........................................................

361 5.390 5.359 5.360
529 5.556 5.527 5.527

248 24.248 21.020 21.014

734 26.854 26.839 26.843
489 28.502 28.597 28.574

654 ............

345 ............
648 55.396 51.113 55.414

lb(z) 5
lb(y) 5
It 22

2b(z) 26

2b(y) 28
local 38

local 42
2t 53

Note: (b)=bending (t)=torsion (e)=extension (1)=local;

(E)=Excellent (G)--Good (U)=Unsatisfactory

TABLE 7(b)

DESCRIPTION OF THE SELECTED NASTRAN IVlDDELS

Description Model 1 Model 2 Model 3 Model 4

battens bars bars bars rods

longerons rods bars rods rods

batten joints fixed fixed fixed pinned

other joints pinned fixed pinned pinned
mass dist. coupled consistent lumped consistent
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