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Three-dlmenslonal nonlinear flnlte-element heat transfer and structural

analyses were performed for the first stage hlgh-pressure fuel turbopump blade

of the space shuttle main engine (SSME). Dlrectionally solidified (DS)

MAR-M 246 material properties were considered for the analyses. Analytical

conditions were based on a typical test stand engine cycle. Blade temperature

and stress-straln histories were calculated using MARC flnlte-element computer

code (ref. l). This study was undertaken to assess the structural response of

an SSME turbine blade and to gain greater understanding of blade damage mecha-

nisms, convective cooling effects, and the thermal-mechanlcal effects.

Hot-gas path components for reusable space propulsion systems operate

under extreme gas pressure and temperature. These operating conditions subject

the high pressure stage turbine nozzles and blades to severe thermal transients

that can result in large Inelastlc strains and rapid crack initiation.

Advances in casting techniques have allowed the development of dlrectlonally
solidified and single crystal alloys for h_gh temperature components in space

propulsion vehicles. Mechanical anlsotropy exhibited by these alloys have to

be taken into account in the analytical studies. To improve the durability and

accuracy of turbine blades and other hot section components, an accurate knowl-

edge of the temperature and stress-straln histories at the critical location

for crack initiation is required (fig. l).

Experimental measurements of gas temperature profiles in the SSME turbo-
pumps are difficult to obtain because of the high gas temperature and severe

thermal transients. Turbine blade temperatures are primarily a function of hot

gas flow and cooling. The temperature field is determined by the heat transfer

from the hot gas to the blade. This heat transfer and its variations are

determined by knowledge of the gas film coefficients. Also, the time-

temperature history profile at the start transient, steady state, and cutoff

is obtained through a combination of analytical and experimental results which

is due to the complex flow phenomena through an accelerating turbine.

Temperature-dependent properties for the MAR-M 246 _ Hf alloy were mainly
provided by Rockwell International Corporation. These elastic properties are

summarized in table I. Mean thermal coefficient of expansion data were con

verted to instantaneous values for MARC input. Longitudinal stress-straln

properties, summarized in table IT, were used for elastlc-plastlc region. The

mission used for this analysis is shown in figures 2 and 3 in terms of inlet

temperature, gas pressure, and revolutions per minute (RPM). This cycle is
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applicable to a factory test of the engine; it is also reasonably representa-

tlve of a flight mission except for the foreshortened steady-state operating
time. The major factor inducing fatigue cracking is the transient thermal

stresses caused by the sharp ignition and shutoff transients, lhe finite-
element model of the blade in figure 4 was constructed of a three-dlmenslonal

elght-node Isoparametrlc brick element. The model consisted of 1-25 elements

with 1575 nodes and 4660 unsuppressed degrees of freedom.

Heat transfer coefficients at the blade airfoil (figs. 5(a) and (b)) were

predicted by running a boundary layer analys_s using a modified version of the

STAN5 boundary layer code (refs. 2 and 3). Thermal environment experienced by

the platform and shank were obtained from reference 4. Details regarding pre-
diction of heat transfer coefficients at the stagnation region for the airfoil

are available in reference 5. Transient results were obtained by scaling

steady-state heat transfer coefficients based on transient flow and tempera-

ture. Predicted high temperature locations were evaluated for the two tempera-

ture spikes shown in figure 2.

The thermal response predicted from the flnlte-element analysis showed

that the leading and trailing edges of the airfoil base are the hottest 1oca-

tlons. Temperature distributions showed a cordwlse variation at the first

ignition spike and a spanwlse variation thereafter into the cycle. A uniform

temperature distribution was dominant at most of the airfoil surface during

cruise except near the base at the platform junction where a mixture of cold

and hot gas is present. The coldest spot was always at the blade root because

of cooler boundary conditions. Blade temperature is shown in figures 6

through 8.

Elastic-plastlc analyses have been conducted for the HPFTB blade wlth MARC

code. Plastic strain calculations were based on Incremental plasticity theory

using Von Mises Yield criterion, the normality rule and a kinematic hardening

model. The materlal elastlc-plastlc behavior was specified by the yield

strengths and work hardening properties in the longitudinal direction; trans-

verse properties were not available. Creep analyses were not performed at the

present time because of inadequate knowledge of the creep characteristics for

anlsotroplc blade material.

Incremental loading included centrifugal and gas pressure loads and metal

temperature distributions as calculated from the heat transfer analysis. The

same increments were used for the heat transfer and the elastlc-plastlc struc-

tural analysis. Approximately two million words of core storage on the CRAY-

XMP computer were needed to run the problem. Analysis required about 4 hours

of central processor unit (CPU) time on the CRAY system. The dlrectlonality

of the elastic materlal properties causes anlsotroplc constraints. Lekhnltskll

(ref. 6) has derived the generalized elastic strain equations for an anlso-

tropic body with a transverse plane of Isotropy. This anlsotroplc stress-

strain law was incorporated in MARC user subroutine HOOKLW.

The colder airfoil base temperatures induce tensile thermal stresses at

the critical leading edge location that are additive to the centrlfugal

stresses. A noticeable discrepancy is seen in the compressive strain region

where the reduction in elastlc analysis points resulted in failure to capture
some of the cycle fluctuation due to transient thermal effects during the rapid

engine cooldown. The CPU time for the elastic flnlte-element analyses amounted

to 5 percent of that required for one cycle of the nonlinear flnlte-element
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analysis. The critical location for crack initiation is at the leading edge

near the base. Results of both elastic and inelastic structural analyses indi-

cated the reglon of the flnlte-element model with the largest total strain
range was coincident wlth the observed crack initiation site.

Radial stress distributions as calculated at the gausslan integration

points closest to the suction and pressure surfaces are presented in figures 9

through II. The stresses primarily reflect the centrifugal and thermal Ioad-

Ings. It is apparent that the analysis would not show a low-cycle fatigue

problem if transient thermal effects were not considered.
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TABLE I. - DS MAR-M 246 PHYSICAL PROPERTIES

Temperature,
°C

21
93

204
316
42"/
538
649
760
671

Modulus of elasticity,
GPa

Longitudinal

131
120
125
124
119
114
109
103

97

Transverse

183
179
1"/5
1"/3
166
162
156
149
142

Means coefficient of
thermal expansion,

percent/°C

0.00113
.00130
.00133
.OO141
.00148
.00149
.00156
.00160

1ABLE II. - DS MAR-M246 STRESS-

STRAIN PROPERIIES

(LONGITUDINAL)

Plastlc straln.
percent

0.1
.2
.4
.6
.8

1.0

Stress, MPa

21 "C 649 "C 816 "C

800 808 875
830 855 g30
850 895 965
g55 930 970
865 945 975
870 960 980
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Figure 1. - SSME hlgh-pressure fuel
turbopump first stage turbine blade.
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Figure 2. - Turbine inlet gas temperature for HPFTP.
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(a) Turbine inlet pressure. (b) Blade rotational speed.

Figure 3. - Mission cycle used for analysis.
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Figure 4. - HPFTP flrst-stage turbine blade MARC

Model. (1575 nodes, I025 elements)
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Figure 5. - Distribution of heat transfer coefficients.
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Figure 6. - Temperature contours at first ignition
spike.
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Figure 7. Temperature at second ignition spike.
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Figure 8. - Temperature contours during cruise.
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Figure 9. - Radial stresses at first ignition

spike.
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Figure I0. - Radial stresses at second ignition
splke.
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Figure II. - Radial stresses during cruise.
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