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Abstract 

This  paper presents an  empirical s tudy  on estimation and predic- 
tion of faults, prediction of fault detection and correction effort, 
and reliability assessment in the  Software Engineering Laboratory 
environment (SEL). 
Faul t  estimation using empirical relationships and fault prediction 
using curve fitting method are investigated. Relationships between 
debugging efforts (fault detection and correction effort) in different 
test phases are provided, in order to make an early estimate of 
future debugging effort. 
This  s tudy concludes with the fault analysis, application of a relia- 
bility model and analysis of a normalized metric for reliability 
assessment and reliability monitoring during development of 
software. 
Keywords: Faul t  Estimation, Faul t  Prediction, Debugging, Relia- 
bility Assessment and Fault Analysis 
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1. Introduction 
The software 'development process 

Software developers spend a considerable 
is an expensive and complicated process. 

amount of time in monitoring the cost and 
quality of the software with two basic goals, to keep the cost down and quality high. 
Managers often report difficulty in delivering the software for a certain deadline because 
of uncertainity about its performance. It has been observed that it is much easier and 
cheaper to correct a flaw at an early stage than in a later stage [Fischer and Walker 
19791. Therefore, many researchers are stressing requirement level verification to elim- 
inate the bugs that may result from ambiguous or incorrect requirement specifications. 
There are many tools and techniques available to aid programmers and managers during 
the development phases. Various testing techniques are employed to remove defects 
from the software being developed. It has been realized that these tools and techniques 
are not enough to ensure the quality and reliability of the software. Various software 
metrics developed in recent years help monitor the software development throughout its 
life cycle. 

One of the main problems that managers encounter during the testing phase is the 
need to predict the remaining faults in the software so that  they can plan to staff and 
test accordingly. There is no simple solution to this problem. In recent years several 
reliability iiiwdeis have emerged and more modeis are yet io appear jTransaciium 011 

Reliability, August 19791. It is very difficult to apply any model in different environ- 
ments. In some cases, practitioners find i t  difficult and very expensive to collect data in 
order to use a model. What they need is a simple but robust model, which can be 
applied easily and inexpensively to predict and assess the reliability of a software project 
[Iannino et. a1 19841. 

This paper addresses several aspects regarding fault prediction and reliability 
assessment. The objectives of this study were to 

evaluate and compare fault estimation and fault prediction models 

analyze the fault detection and fault correction effort data at different 
phases of the software life cycle 

investigate the possibility of measuring and monitoring software reliability 

The data used in this study were collected from a set of software projects 
developed at NASA/Goddard by Computer Sciences Corporation. These data were col- 
lected by the Software Engineering Laboratory (SEL) using forms and techniques 
described by [Basili, Zelkowitz, McGarry et a1 19771. These projects were written in 
FORTRAN and were developed for IBM mainframes running OS/VS and MVS/TSO. 
The sizes of these projects range from 15 to 168 thousand lines of code. Most of these 
projects are scientific and predominantly ground support software for satellites. These 
software projects were developed in a single environment using a common programming 
pool. In the SEL environment each software life cycle consists of six different phases: 

1 
8 
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Requirement Specification 
Design 
Coding and Unit Testing 
Integration and System Testing 
Acceptance Testing 
0 perat ion 

Fault data collection starts from the middle of the Unit test phase except for a few 
exceptions where the data collection starts towards the end of the Unit test phase. The 
data of interest in this study are described below: 

a. The total number of faults (F) is the total number of faults observed 
during all three test phases. 

b. The size of the software is the total number of lines in the software. 

c. The faults per KLOC is the number of faults observed per one thousand 
lines of code. 

d. The number of components changed per fault is the number of software 
components needed to be changed in order to correct a fault. 

e. The fault detection effort is the effort (in hours) needed to detect the 
cause of a fault. 

f. The fault correction effort is the effort (in hours) needed to implement 
the changes required to correct a fault. 

g. The sources of faults describe the source of each fault. 

One of the objectives of this study is to analyze and compare the fault data across 
projects. Since duration of the test phases for each project are not the same, each phase 
was divided into some fractions to facilitate comparisons. The next three sections 
describe the results of this empirical study. 

2. Fault Estimation and Prediction 
Fault estimation and prediction at an early phase is important for software 

developers. In the first case, empirical formulas based on relationships between the total 
number of faults and other variables are used. In the second case, a curve is fitted to a 
part of fault data already collected during early testing phases. These two methods are 
investigated and the results are discussed in 2.1 and 2.2. 

- 2 -  
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2.1 Fault Estimation 
There are many empirical formulas which can be used for this purpose. The objec- 

tive of this section is to find such relationships in the SEL environment. The data used 
in this study are given in Table 2.1. 

Data Source 
Lipow 
Akiyama 
SEL 

1 PROJECT 

Language Formula 
Jovi a1 
Assembly 
FORTRAN 

Fault = 4 + O.0014*Sizc4/* 
Fault = 4.2 + 0.0015*Size4/* 
Fault = 53.38 + 0.000056*Si~e~~* 

~ 

1 .DEA 
2.DEB 
3.sMM 
4 .ERBS 
5.AADs 
6.AADSIM 
7 .AEM 
8.AODS 
9.DARES 
10.DEDET 
11.GLI 
1 2.ISEE C 
13 .MAGSAT 

FAULTS 
219 
270 
29 1 
589 
83 
61 

181 
94 

136 
138 
42 

118 
306 

SIZE 
66848 
68370 
98370 

167775 
15548 
27443 
50601 
30823 
25662 
17121 
26923 
75145 
89181 

SIZE ‘la 

27 13009 
2795680 
4540987 
9253435 
388060 
827768 

187 1596 
966421 
756927 
441271 
806921 

3171028 
3984402 

Table 2.1 
Fault estimation based on lines of code is useful, since an estimate of the total lines 

of code can be available at the beginning of the system test (integration test) phase. 
Based on Halstead’s Software Science the total fault content of a software module is 
considered to be proportional to  S ~ Z C ~ / ~ .  In the following table, the estimating formula 
for the SEL environment is compared with the same for Akiyama and Lipow [Gaf- 
ney841. Figure 1 displays the linear fit of the the same formula listed in Table 2.2 for 
the SEL within 95% confidence interval. 

Table 2.2 
Based on the first two formulas, Gaffney states that the fault content in a software 

module is independent of language level. This statement would be more likely to be true 
if the language level would be the only factor that is different between projects analyzed 
by Lipow and Akiyama. Validity of these two equations has also been questioned by 
[Lipow 19861. Independence of language level is not easy to prove in all environments 
and for all languages. 

- 3 -  
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STUOY OF FAULTS VS SaES..(4/3) 

Figure 1. 

STUDY OF FAULTS VS SIZES 

Figure 2. 

Assuming that the total fault content is proportional to the size of the software, a 

Fault = 8.84 + 0.0032*Size 
linear relationship is obtained for the SEL data, which is 
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and Figure 2 shows the linear fit within 95% confidence interval. 
The number of faults per KLOC given by Gaffney is six times higher than that of 

SEL data (Table 2.3). On the average there are 3.3 faults observed for one thousand 
lines in the SEL environment. This figure is close to the figure for IBM projects [Wals- 
ton and Felix 19771. 

Source 
Akiyama h s e m  bly 
Lipow Jovial 
Walston-Felix Mixed 
SEL 3.3 FORTRAN 

Table 2.3 
In an effort to establish relationships within a project between faults and other 

variables such as lines of code, number of components changed throughout the develop- 
ment phases, the following observations were made. The number of lines of code do not 
have any relationship with number of faults observed across the development phase. 
However the relationship between the number of faults and the number of components 
changed when compared across projects and aiso with other projects may reveai intri- 
cacy of the faults observed. For example, one could compare the number of components 
changed per fault at a particular quarter in a phase with the average value for several 
projects to determine the status of an on-going project [Doerfinger and Basili 19831. The 
first four projects listed in Table 2.1 were chosen for detailed analysis. Though these 
software projects vary in size, their applications are the same. These software systems 
are Attitude Ground Support Systems that would process telemetry data and provide 
definitive attitude determination and real time control support for satellite missions. 
The data for these projects are given in the Appendix. Table 2.4 table lists the number 
of components changed per fault and the fitted average for the four projects at each 
quarter starting with the System test phase. A plot of these values is given in Figure 3. 
This table and the plot clearly reveal that the project l(DEA) required more than the 
average number of components to be changed per fault after the end of the second quar- 
ter in the System test phase. This information should be helpful to the Software 
Manager after the middle of System test phase for a project like DEA. 

- 5 -  
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Phase 

System 

Accept 

Table 2.4 
The analysis of the results are as follows. Fault estimation based on size is the most 

simple and the easiest to use empirical formula. It has been shown that the fault estima- 
tions based on size of the software is as good as those based on other metrics such as 
size of vocabulary [Halstead 19771. However the formulas can not be generalized for all 
environments. Since the relationships between number of components changed and 
number of faults are reasonably consistent across three out of four projects, the metric 
(number of component changed per fault) could be used as a dynamic variable to moni- 
tor the development of a software project. 

Quarter Project Project Project Project Average 

1 1.68 1.73 1.50 1.36 1.51 
2 1.47 1.41 1.34 1.53 1.54 
3 1.90 1.48 1.33 1 .50 1.57 
4 1.90 1.44 1.68 1.56 1.60 
1 1.89 1.51 1.64 1.59 1.63 
2 1.97 1.53 1.58 1.62 1.65 
3 1.97 1.57 1.63 1.60 1.68 
4 1.92 1.56 1.60 1.60 1.71 

1 (DEX) 2 (DEB) 3 (SMM) 4 (ERBS) (fitted) - 

NUMBW OF CoMpONwTS PER FAUT 
A 

? 
O W  n 

Figure 3. 
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2.2 Fault Prediction 
The main objective of this section is to investigate the approach of curve fitting to  

predict faults for the four projects. In this method a curve is fitted to previous data 
using.non linear regression and then the fitted curve is extrapolated into the future. An 
advantage of this approach is it is not dependent on any specific test phase data so one 
could fit curves at any section of the fault data. Since cumulative fault distributions 
seem to be asymptotic, a N " P  model was chosen. 

The model was fitted to the fault data starting from System test phase and up to 
half of the acceptance test phase. A total of 15 points were used from the data given in 
the Appendix and the rest of the acceptance test faults were extrapolated. Figure 4 
through Figure 7 display the results for the projects 1 through 4 respectively. The 
observed faults are also plotted along with the predicted faults for comparison. The 
fitted models are listed in Table 2.5. 

P 

L O  

Figure 4. 

- 7 -  
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1 Proiect I Prediction Model Eauation 1 

2.DEB 
3.sMM 

I 1.DEA I 282.06 (1 - exD-"*mOL.m I I 
755.51 (1 - exp"oo2saL.v ) 

1150.57 (1 - ex~-'~ooo6s*~ I 

Project 

1.DEA 
2.DEB 
3.SM.M 
4.ERBS 

I 4.EFZBS I 656.46 (1 - exD-'.-L.v I 

Data Used Observed Predicted % of Error 
Fault Fault in Prediction 

System & Part  of Acceptance 108 124 14.8 
System & Part  of Acceptance 205 235 14.6 
System & Part  of Acceptance 122 138 13.1 
System & Part of Acceptance 296 290 2.0 

Table 2.5 

Table 2.6 
Table 2.6 lists the total number of faults observed (starting with the system test 

phase), the predicted faults and the percentage of error in prediction for each project. 

- 8 -  
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For the first two projects, the model overestimates by approximately 15 percent, for the 
third project by 13 percent and for the last project the predicted and observed faults 
are close. This method is an alternative to using empirical formulas. There are obvious 
reasons why it may go wrong in some cases. First, it does not consider the intensity of 
test cases; second, calendar time, in reality, is not a true representation of test effort. 
Though several researchers such as [Ellingson 19671, [Coutinho 19731, and [Nathan 19791 
have used a similar approach for fault prediction, a more comprehensive model is sought 
[Shooman 19831. However, this simple approach provides a scenario of the possible out- 
come in the future testing period. In this section only one class of curve was applied, 
but it would be interesting to compare the predicting capabilities of different classes of 
growth curves. 

3. Effort Estimation 
Estimation of effort required to detect and correct faults is as important as estima- 

tion of faults. In order to predict fault detection and correction effort, we need to know 
the predicted faults and also detection and correction effort per fault in each phase. The 
main objective of this section is to investigate the possibility of predicting detection and 
curreciiwn e h r i  per fauit in a iater phase based on the data from the eariier phases. 

Shooman and Bolsky reported, by analyzing a program with 52 faults, that the 
difficulty of debugging is independent of testing phases [Shooman & Bolsky 19751. Later 
Tratchenburg challenged the result by showing that for four medium sized projects, the 

c 

:’” 
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0 4  . , , , , , , , , . . I ,  . , , 

Project 
DEA 
DEB 

first half of testing requires 112 less effort for fault detection and 1/3 more effort for 
fault correction than that for the second half [Tratchenburg 19831. Our results differ 
from both Shooman's and Tratchenburg's results. We find that there is a pattern (see 
following tables) of fault fixing effort (detection effort+correction effort) during the 
phases irrespective of fault detection or fault correction effort. The 1st half represents 
the first half of the testing phases, that is unit test and first half of system test phase 
and 2nd half represents the second half of system test phase and acceptance test phase. 
ks stated before the units of efforts are in hours. 

1st half 2nd half Ratio 
5.16 7.07 0.73 
5.13 5.49 0.93 

Average Effort to Detect B Correct 

I SMM I 41:g.li 5.30 1 W.3: 1 
Table 3.1 

ERBS 10.03 
Wt. Av 0.74 

'Weighted by the number of faults 
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Average Effort per Fault 

DEA 
DEB 
SMM 
ERBS 

Wt .Avg 

IPROJECT I UMT I SYSTEM I ACCEPTANCE I 
4.9 6.9 7.1 
2.7 5.1 6.2 
4.5 6.8 5.1 
4.8 9.1 10.1 
4.7 7.3 7.5 

Table 3.2 
In contrast to the second half, approximately 1/4 less effort is required for both 

fault detection and fault correction in the first half. Also, the average effort required to 
fix a fault in the system test phase is higher than the effort required in the unit test 
phase. The same relationship holds between the effort required in the acceptance test 
phase and the system test phase. Although this proportionality varies across projects, 
we can conclude that the difficulty in debugging is certainly greater in a later phase 
than in earlier phases in the SEL environment. As stated by Tratchenburg, analysis of 
this kind combined with fault estimation can help a’developer to predict the effort 
required for debugging in the rest of the testing period. But the results do not appear to  
be generalizable across environments. 

4. Reliability Assessment 
To measure the reliability of software, there have been many reliability models pro- 

posed [Goel], [Musa], [Jelsinki-Moranda]. These models are mathematical models used to 
assess the reliability of software from specified parameters which are measured from 
observations or experiments on software. Another type of reliability study deals with 
quantitative evaluation of the characteristics of the software which are sensed as associ- 
ated with high reliability or the lack of it. Complexity of the software has been con- 
sidered to be such a characteristic [Thayer et.al.781 which leads to low reliability. 
Difficulty of debugging is considered to be one of the consequences of complexity. In 
this section, we will address the following questions: 

1. Which types of fault are difficult to debug ? 
2. What do we learn from applying a reliability model ? 
3. How can we monitor the reliability of software during its development ? 

The first question is discussed in section 4.1. The second and the third questions are 
discussed in sections 4.2 and 4.3 respectively. 

4.1 Fault Analysis 
Fault Analysis helps in identifying the software development methodology and test 

strategies to prevent and detect faults. Therefore efficient fault categorization has con- 
tinued to be of great interest to both researchers and software developers. One of the 

- 11- 
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goals in this study is to identify the fault sources that are expensive in terms of detec- 
tion and correction efforts. 

SRCERR 

Fault data for the same four projects were analyzed. For each project average effort 
to fix a fault was calculated for each fault source (SRCERR2) in each test phase (Unit, 
System, Acceptance and Total). 

UNIT SYST ACCE TOTAL 

Table 4.1 lists the average effort3 required to detect and correct a fault in each test 
phase and for each fault source. The average effort is weighted by the corresponding 
number of faults in each category and in each project. 

REQUIRE 
FUNSPEC 
DESIGN 
CODE 
PREV. C 

Average Effort per  Fault 

5.00 26.50 1 .00 10.83 
12.00 8.00 8.88 9.59 
6.58 7.28 8.16 7.23 
4.14 7.53 7.32 5.85 
4.50 5.86 6.93 5.44 

T 

I o.80 I OTHER 1 0.75 I 1.00 1 0.00 1 
Table 4.1 

Irrespective of fault sources, the average effort spent to  fix a fault for all four pro- 
jects is 6.14 hours. It is observed that the faults due to incorrect requirements, function 
specification and design require more than average effort. Therefore, faults resulting 
from these three sources are considered the most difficult to debug. 

2Sources of Faults 

REQUIR - Incorrect requirement specification 
FUNSPE - Incorrect function specification 
DESIGN - Incorrect design 
CODE 
PREV. C - Fault resulting from a previous change 
OTHER - None of the above 

'- Incorrect code ( possibly semantic fault ) 

3Average of all four projects 
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4.2 Reliability Models 
Reliability models are at times expensive and difficult to apply. In the past, 

attempts had been made to use the Musa model in the SEL environment [Miller 1980). 
The study showed that  reliability models over predicted remaining faults (under predict- 
ing the reliability) of the systems to an extent to make the models impractical for this 
environment. I t  was argued that the model needed more accurate data on run history 
than it was feasible to collect, since data waa collected in groups of time rather than 
after each fault. In this study, we tried to use the Goel-Okumoto model [Goel & 
Okumoto 19801. This is an NHPP model, which handles group data. Given a history of 
faults observed over time, it can predict the number of faults to be observed by a par- 
ticular time. The model is: 

where 
n(t) is the number of faults observed by time t, 
a 
b 

predicts the maximum number of faults to be observed, 
is the st.egpnes.s of the ClJrve, 

There are several ways this model can be used. One way is to apply the model at 
different times and observe whether there is any improvement in the estimated parame- 
ters. The other way is to compare the reliability measure against past projects and use 
one's own judgement based on one's knowledge about the past projects at that particu- 
lar time. We will look at both approaches. 

Using the first approach, the model was applied to the four projects at different 
times in the test life cycle and comparisons of estimated parameters were made to  
observe any improvements in reliability measurements. Data given in the appendix 
were used and the parameters ("a" and "b") were estimated using the algorithm given 
in [Goel 19821. The results are shown in Table 4.2 through Table 4.6. 

Table 4.2 displays result for only system test data. Table 4.3 and Table 4.4 display 
the results as more points were added. The parameter "a" is observed to increase and 
then decrease. 

- 13- 
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Data Used: System Test  

Project a b Faults Faults Faults 
Observed Predicted Observed 

Before Later 
~~~~ 

DEA 
DEB 
SMM 
ERBS I 378.7 I 0.010 I 181 I 197 I 112 I 

~ 

70.3 0.036 40 30 68 
291.4 0.011 132 159 73 
112.6 0.010 45 67 77 

Table 4.2 

DEA 
DEB 
SMM 
ERBS 

Data Used: System + Halj of Acceptance Test 

141.4 0.013 108 33 - 
271.2 0.010 205 66 - 
141.7 0.010 122 19 - 
375.0 0.010 293 93 - 

Data Used: 1 

Table 4.3 

System + Acceptance Test I Project. I a 1 b I Faults I Faults I Faults I 
Observed Predicted Observed 

I Before I I Later I 

Table 4.4 
As more data were added the estimated parameters look worse. When only accep- 

tance test data were used the model shows improvement of reliability parameters for all 
the projects with one exception. It predicts a large number of remaining faults for pro- 
ject 4 (ERBS). The results are shown in Table 4.5 and 4.6. 

- 14- 
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Data Used: Only Acceptance Test(partia1) 

Data Used: Acceptance Test(fuU) 
Project a b 

j E 1 tn; 1 0.027 
0.026 

SMM 104.9 0.013 
ERBS 242.0 0.011 

Table 4.5 

Before Later 

112 130 

Table 4.6 
Fault detection rate is dependent on complexity and amount of code covered by 

successive test cases. Usually, in the SEL environment, simple tests are performed ini- 
tially and followed by more complex tests. This study confirms the results by [Miller] on 
a different set of projects. Reliability models do not appear to be useful in this environ- 
ment. 

4.3 Reliability Metrics 
One of the important tasks of a software manager is to monitor the quality and 

reliability of the software being developed. Fault data for the past projects in the same 
environment help in the comparison of reliability metrics for an on-going project with 
past projects. Since different projects have different sizes and different duration of test- 
ing time, normalized reliability metrics can be compared at each quarter in each phase. 
One would expect normalized reliability metrics, such a s  fault rate (faults per day) or 
fault density (faults per day per line of code), to be constant and same during the test 
life cycle. This does not seem to be true, even in the same environment and for similar 
applications written in same language. The sizes of the four projects varies from 66K to 
160K. This may have contributed to the variations of the normalized metrics. In this 
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situation, using the fault data for the four representative projects, we present an accept- 
able fault density range at different intervals during the testing phases in order to facili- 
tate reliability monitoring. The following tables summarize the fault densities for the 
projects and the acceptable ranges for the fault density at each interval, where accept- 
able ranges have been calculated using nmean +/- variancen. 

Project 

DEA 

Fault Density 

Acceptance 
25% 50% 75% 100% 
2.47 2.48 2.26 2.08 

25% 
2.33 f 2012 0.85 

1 DEB I 2.89 I 2.75 I 2.56 I 2.22 I 

50% 75% 
3.09 f Za/1 1.30 2.75 f Za/2 0.81 2.28 f Za/2 0.66 

I SMM I 1.05 I 0.97 I 0.94 I 0.82 I 
I ERBS I 0.84 I 0.83 I 0.83 I 0.82 I 

Table X I  

Acceptable Ranges for Fault Density 

UNIT Test Phase 
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SYSTEM Test Phase 1 
25% 50% 

2-03 f Zu/10.58 
75% 

1.96 f Zufi 0.58 1-90 f 2 4 2  0.54 

ACCEPTANCE Test Phase 

25% 50% 
1.81 f Za/2 0.50 1.75 f Z a ~ 0 . 4 9  

75% 
1.64 f Zab 0.44 1.48 f 2 4 2  0.38 

Table XIII 
There are two important observations obtained from analyzing these fault densities 

for different projects. First, the fault density at the end of unit test phase is greater 
than the fault density at the end of the system test phase and the same relationship 
holds for the system test phase and acceptance test phase. Second, the fault density 

change of fault density for project ERBS during the Acceptance test phase is almost 
steady. This is different from other projects though the fault density for this project is 
lower than other projects. This is, in a way, a reflection of increase in fault rate because 
of more complex tests being performed during the second half of the acceptance test. 

It was observed that the faults due to incorrect requirements, function specification 
and design require more than average effort. We also investigated the possibility and cri- 
teria for using a reliability model in the SEL environment and it was found that the reli- 
ability models look worse and wome as more data is added. Finally, we provided a basis 
for comparison of fault distributions in order to monitor reliability of an on-going pro- 
ject. 

mem&Gre-j dur;,cg t h e  scceptacce test phwe .&=;;rs i;T,&,! &ere=& PJGtiC. that the 

5. Conclusion 
In summary, an appropriate estimation formula or a fitted curve may be used to  

predict the number of faults in the future and therefore fault correction effort also can 
be predicted. Faults in software originate from several sources; it has been found that 
the longer the fault stays in the system, the more costly it is to remove. It has been 
observed that the fault resulting from requirement specifications, function specification 
and design require more effort to fix than faults resulting from other sources. This state- 
ment is based on the data for only four projects. Comparison of fault density at 
different intervals may be made with the same metric for other past projects to assure 
the status of the project. Fault densities are observed to decrease from the unit test 
phase to the end of the acceptance test phase. Also within the acceptance test phase the 
fault densities at  an interval is lower than in the previous interval. Both horizontal 
comparison, i.e. comparing with other projects at a particular interval, and vertical 
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comparison, i.e. comparing within the same project at different intervals, were con- 
sidered for the application of a reliability model, but were not effective in this environ- 
ment. 

' 
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Appendix 

Phase 

Unit 

System 

Acceptance 

Prc 
Quarters 
in Phase 

:ct 1 (DEA) 

Elapsed Changed 
Days Faults Components 

20 25 37 
41 76 122 
62 124 236 
83 162 296 

~ 

85 
88 
90 
91 
94 
97 
100 
103 
104 
106 
109 
112 

~~~ 

167 
178 
178 323 
178 
182 
185 330 
187 
193 
193 355 
195 
201 
202 372 

119 
127 
131 
135 
143 
152 
159 
167 
171 
175 
183 
191 

210 
215 
220 406 
225 
240 
256 480 
259 
261 
263 493 
268 
270 
270 504 

Table A.l 

A - 1  
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x t  2 (DEB) 
Days Faults Components 

Elapsed Changed 
Phase 

Unit 

System 

Acceptance 

Pr 
Quarters 
in Phase 

1 
2 
3 
4 

1 

2 

3 

4 

1 2 2 
3 10 10 
4 12 12 
6 14 22 

13 31 
20 32 
23 37 62 
27 40 
34 62 
41 81 117 
48 99 
55 112 
59 119 178 
62 123 
69 134 
77 146 213 

84 157 
91 165 
94 174 265 
98 176 

105 189 
112 197 302 
119 204 
126 209 
129 211 332 
133 213 
140 215 
147 219 342 

Table A.2 

A -  2 
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'Ct 3 (SMM) 
Phase 

Unit I- 
System 

Acceptance 

P R  
Quarters 
in Phase 

1 
2 
3 
4 

1 

2 

3 

4 

Days Faults Components 
Elapsed Changed 

42 45 63 
84 100 149 

126 127 192 
168 169 243 

174 176 
180 180 
184 185 267 
187 185 
193 186 
200 190 274 
206 193 
212 196 
216 198 283 
219 198 
225 202 
232 214 319 

245 
258 
265 
27 1 
285 
298 
311 
325 
331 
338 
351 
365 

224 
24 1 
244 366 
244 
248 
257 387 
268 
275 
281 426 
281 
285 
291 

Table A.3 

A - 3  
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Phase 

Unit 

System 

9cc ep t anc e 

Pm 
Quarters 
in Phase 

1 
2 
3 
4 

1 

2 

3 

4 

!ct 4 (ERBS) 

Elapsed Changed 
Days Faults Components 

Table A.4 

A - 4  

4-27 

68 0 0 
136 6 8 
204 120 154 
272 293 383 

280 310 
289 342 
293 343 451 
297 355 
306 379 
314 400 547 
323 407 
33 1 415 
335 423 578 
340 440 
348 458 
357 475 . 667 

363 491 
370 502 
373 507 725 
377 514 
383 522 
390 532 773 
397 544 
403 555 
407 562 815 
410 568 
417 578 
424 589 855 


