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SUMMARY 

A higher  p lan t  growth  system f o r  Controlled Ecological L i f e  Support  System 
(CELSS) appl icat ions is  described. T h e  system permits  independent  movement of 
i n d i v i d u a l  p lan ts  d u r i n g  growth .  Enclosed w i t h i n  v a r i a b l e  geometry  g r o w t h  
chambers ,  t h e  system allocates only the  volume required by t h e  growing plants.  This  
v a r i a b l e  spac ing  system m a i n t a i n s  isolation be tween root  a n d  shoot  envi ronments ,  
providing individual  control f o r  optimum growth. T h e  advantages of the system f o r  
hydroponic  a n d  aeroponic  growth  chambers a r e  discussed. T w o  appl ica t ions  a r e  
presented: (1) the growth of soybeans i n  a Space Station common module, and  (2) in  a 
terrestrial city greenhouse. 

INTRODUCTION 

Manned space missions of extended duration, such as  the exploration of Mars and  
the  asteroid belt, will  requi re  materially closed l i fe  support  systems (Gustan a n d  
Vinopal ,  1982). With increased mission dura t ion  a n d / o r  d i s tance  f r o m  E a r t h ,  the  
practicali ty of food and  oxygen resupply decreases. T h e  al ternat ive,  a regenerat ive 
ecologically based l ife support system, appears necessary for  fu ture  space missions. On 
a low E a r t h  orb i t  (LEO) space s ta t ion,  a Control led Ecological L i f e  Suppor t  System 
(CELSS) could provide an  economical alternative to conventional l i fe  support systems. 

A typical  CELSS design consists of four principle subsystems: human crew, plants, 
waste  processing system, a n d  food  processing system. Lower plants ,  such as  algae,  
cannot  b e  easily processed to  provide human nourishment.  For  this, as  well as  f o r  
psychological  reasons, t h e  inclusion of higher p lan ts  such as legumes, grains ,  a n d  
vegetables in  a CELSS is desirable (Tibbits and Alford, 1982). 

G r o w i n g  higher  plants  i n  space presents several  u n i q u e  problems, however.  For  
example, current  space structure technology and  limited funds  place severe restrictions 
on t h e  volume t h a t  can be made available f o r  p lan t  growth. T h i s  constraint  requires  
m i n i m i z i n g  t h e  size of  a n y  CELSS component.  O n  E a r t h ,  a small  seedl ing  c a n  b e  
allowed t o  occupy the  volume i t  will  require as  a mature  plant. I n  space, economics 
will d ic ta te  squeezing the maximum number of plants into a given volume. Variable  
plant spacing would achieve this goal by using a plant "assembly line". Seedlings occupy 
only the  volume required f o r  ini t ia l  size and  are  gradually moved through a variable 
geometry chamber t o  accommodate growth. A possible scheme f o r  a growth chamber 
would involve a pyramidal configuration with seedlings a t  the apex and  mature plants 
a t  t h e  base. Space savings would be realized by ei ther  nesting separate  growth 
chambers, or by shaping a single growth chamber to f i l l  the given volume. 

C r i t i c a l  to  volume savings envisioned is ach iev ing  maximum control  over  p lan t  
environment .  With increasing knowledge of p lan t  physiology, larger  yields will be 
possible  over  s h o r t e r  g r o w t h  cycles. Atmospheric  conten t  (CO concent ra t ions) ,  

controlled in  separate root and shoot chambers. Stem parallel a i r  f low is desirable in  the 
shoot chamber  t o  reduce temperature  and  diffusion gradients.  Visible radiat ion should 
also be of optimum spectral distribution and intensity. 

a tmospher ic  pressure,  t empera ture ,  a n d  air  veloci ty  wil l  be c a r e f u  T ly  moni tored  a n d  

Control of the root environment is also crucial  to maximum plant production. 
A major  concern is the  cu l ture  medium because the  t rad i t iona l  method of growing 
crops i n  soil  is unsui tab le  f o r  space applications.  Soil is a n  excel lent  medium f o r  
pathogens, loses i ts  s t ructure  over time, a n d  is depleted of nutr ients  in  a f e w  years 
(Resh, 1978). Soil cul ture  also exacts major weight penalties f o r  space applications. 



Alternatives include water cultures a n d  other soil-less substrates such as  vermiculite, 
perlite, pumice and synthetic foams. 

T w o  methodologies su i tab le  f o r  var iab le  p lan t  growth  spacing, hydroponics  a n d  
aeroponics,  require a separat ing membrane tha t  is impermeable  to  a i r ,  l ight ,  and  
n u t r i e n t  solut ion.  This  membrane  must main ta in  d i f f e r e n c e s  i n  t h e  root  a n d  shoot 
a tmospheres ,  nor  fos te r  t h e  growth  of 
photosynthetic algae in  the nutrient solution, and prevent the corrosive nutr ient  solution 
f r o m  r e a c h i n g  electronic  moni tor ing  e q u i p m e n t  i n  t h e  shoot a r e a .  T h i s  technica l  
m e m o r a n d u m  describes a system t h a t  is  volume e f f i c i e n t ,  yet  m a i n t a i n s  s e p a r a t i o n  
between root a n d  shoot compartments. T h e  system would be equally useful f o r  space or  
terrestrial locations where protected environment is required or total volume are  limited. 

insure t h a t  l igh t  does not  damage  t h e  roots  

TECHNICAL SECTION: DESIGN CRITERIA 

Condi t ions  cr i t ical  to l imited-volume plant  growth, depicted schematical ly  in  Fig. 1, 
inc lude :  (1) var iable  spacing,  (2)  a soil-less c u l t u r e  m e d i u m  n o t  suscept ible  to 
deterioration or  pathogen growth, and  (3) separate environments for  the root and  shoot 
areas. 

A comprehensive list of the criteria used in the design process to maintain these 
conditions follows: 

V a r i a b l e  plant  s e p a r a t i o n  i n  one  o r  two d imens ions  d u r i n g  g r o w t h  must  be 
possible  while m a i n t a i n i n g  a high  q u a l i t y  seal  be tween root  a n d  shoot  
environments, even during plant movement. 

Flexibi l i ty  in plant  movement is required in case of plant  growth variations or 
death. 

T h e  s tem environment must be nonconstrictive to allow f o r  growth and  must not 
permit violation of the root/shoot separation. 

P r e s e n t  technology, s impl ic i ty ,  a n d  a d a p t a b i l i t y  i n  t h e  design a r e  
des i red .  I n  a d d i t i o n ,  ease of cons t ruc t ion ,  r e l i a b i l i t y ,  a n d  
a m e n a b i l i t y  t o  a u t o m a t i o n  a r e  necessary.  These  c r i t e r i a  a l low f o r  a 
v a r i e t y  of p l a n t  movement  t r a c k  c o n f i g u r a t i o n s  a n d  readi ly-  
constructed functional tests. 

All materials must be biocompatible and  f l ight  approved. They  should not 
adversely affect  the plants or  other system components. Finally,  the materials 
should be rupture-immune, sterile, lightweight and  inexpensive. 

ZIPPERSEAL SYSTEM 

number  of existing and  newly conceived concepts have been reported (Resh, 
a n d  Oleson et a l ,  1985) a n d  were eva lua ted  w i t h  respect to  t h e  c r i t e r i a  l isted 

above.  
criteria. 
design cr i ter ia .  
and  plant holding zipper. 

None  of these examined  concepts  were f o u n d  capable  of sa t i s fy ing  a l l  t h e  
The  zipperseal system described herein has the potential to satisfy all the listed 

Our system consists of two principle parts: the  zipperseal membrane 
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To achieve atmospheric separation a recloseable seal, similar to those used in  food 
storage bags, will be used to  divide the root and  shoot zones. I t  will be oriented along 
the  line of travel followed by a plant as  i t  grows f rom seedling to maturity.  As seen 
in the  cross section in  Fig. 2, the critical sealing component consists of a protruding 
circular  nob which, when sealed, is gripped by a "C" shaped protrusion.  T h e  mated 
components join the two sides of the membrane and  can be either closed or opened by 
the plant  holding-zipper described below. To present the zipper with a large guide area 
a n d  t o  i m p r o v e  t h e  seal  q u a l i t y  a conf igura t ion  of t h e  z ippersea l  t h a t  uses two 
adjacent sealing ridges was chosen for  the present design. 

T h e  p lan t  holding zipper supports the plant using a n  internal  polyfoam material .  
The  rigid outer zipper opens the zipperseal ridges in f ront  of the moved plant-containing 
plug a n d  then  closes the  ridges behind it, maintaining the  seal  between t h e  root a n d  
shoot  zones.  T h e  p o l y u r e t h a n e  plug, centered i n  t h e  zipper ,  s u p p o r t s  t h e  p lan t ,  
maintains the seal between zipper and  stem, and  expands to allow f o r  stem growth. As 
i l lustrated i n  Fig. 3, the  wedge of the zipper's lower half both separates the zipperseal 
r idges  a n d  a n d  guides  t h e m  a r o u n d  the stem. T h e  a r e a s  s u r r o u n d i n g  t h e  wedge 
provide  a seal ing s u r f a c e  by sandwiching the  membrane  between t h e  zipper  
halves, thus maintaining a functional seal during zipperseal r idge separation. Figure 
4 shows a cross-sectional view of t h e  zipper through t h e  widest  par t  of the plug- 
containing wedge. 

ADVANTAGES O F  ZIPPERSEAL SYSTEM 

T h e  inherent  advantages of the zipperseal system a r e  modularity,  simplicity, 
a n d  adaptab i l i ty .  T h e  modular  na ture  of the  zipper  a l lows f o r  independent  a n d  
flexible spacing of plants. Plants can be tightly packed despite variations i n  growth, 
saving both space a n d  l ight  energy which would otherwise be wasted. A number of 
options a r e  available f o r  moving the zipper - a simple robot could perform the required 
movement. Simplicity is inherent  in the design since only the  zipper moves relative to 
t h e  membrane .  T h e  large seal ing sur face  ensures  t h a t  a tmospher ic  isolat ion wil l  be 
maintained dur ing  separation of the zipperseal ridges. Teflon T M  (Dupont), f lame 
re ta rdent  thermoplastic poly (ether) urethane, or  a similar f l igh t  approved material  
will be  used f o r  the membrane to assure good support  and  low fr ic t ion.  Such materials 
are  light, tough and relatively inexpensive. Also, these materials a re  readily sterilized. 

A var ie ty  of plants could be grown. Large plants  such as  soybeans o r  potatoes 
would b e  grown individually in  a plug. Alternatively,  several  plants of a grain 
such as  wheat  could be planted in a single plug. With appropriate  treatment of the 
polyurethene no plant tissue damage occurs (Wheeler et al, 1985). 

T h e  overal l  system has  t remendous versati l i ty.  Since t h e  f lex ib le  membrane  a n d  
zipperseal can be formed around a curve or a n y  number of tor tuous paths, many t rack 
c o n f i g u r a t i o n s  a r e  possible. T h e  modular i ty  of t h e  system a l lows  f o r  a range  of 
d e v e l o p m e n t ,  f r o m  a n  exper imenta l  plant growth  u n i t  w i t h  jus t  a f e w  p l a n t s  to  a 
p r o d u c t i o n  u n i t  w i t h  h u n d r e d s  of plants. Since t h e  design is based on  a c u r r e n t  
technology, reclosable storage bag seals, experimentat ion is  feasible  a n d  inexpensive.  
N e i t h e r  t h e  seal  nor  t h e  zipper  movement is  dependent  on g r a v i t y  or t h e  absence of 
gravi ty .  T h u s  ground based experimental  uni ts ,  space based exper imenta l  uni ts ,  a n d  
eventually functional CELSS production systems are all  feasible applications. 
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APPLICATIONS OF SYSTEM 

To examine the potential advantages of the zipperseal system as a par t  of the higher 
plant subsystem of a spaceborne CELSS, a conceptual dcsign has been developed f o r  a 
LEO space station common module. Soybeans were chosen f o r  this application due  to  
their  high nutri t ional value, growth geometry and  convenience f o r  var iable  spacing 
growth chambers. The following factors were considered in the selection of a track 
configuration: best f i t  in a cylindrical volume, ease of control over plant inputs, 
simplicity, and  adaptability to ground based testing. The radial wedge concept, shown 
i n  a common module cross-sectional view i n  Fig.  5, was chosen f o r  s u i t a b i l i t y  to  a 
cyl indrical  volume. T h e  radial  wedge consists of a l inear t rack enclosed by a chamber 
d i s p l a y i n g  w i d t h  and  he ight  increases  a long t h e  length.  T o  maximize  a tmospher ic  
c o n t r o l  a n d  reduce t h e  s p r e a d  of disease,  each  t r a c k  would be enclosed i n  a n  
independent  chamber. Ground testing of the  concepts developed f o r  the radial  wedge 
can be easily accomplished using independent chambers. 

T h e  approximate  c h a m b e r  d imens ions  r e q u i r e d  f o r  t h e  soybean  p l a n t  were  
calculated f r o m  the recommended f ie ld  planting density. These dimensions were then 
m o d i f i e d  s l igh t ly  such t h a t  twelve chambers  would  f i t  i n t o  t h e  4.2 meter  ins ide  
d i a m e t e r  of t h e  common module  (Oleson e t  a l ,  1985). T h e  resu l t ing  c h a m b e r  
characteristics are  shown in Fig. 6. 

F ive  plant  maintainence func t ions  require  e i ther  robotic or manual  access to the 
p l a n t  g r o w t h  chambers:  (1) p lan t ing  (p lac ing  t h e  seedl ing  i n t o  t h e  chamber) ,  (2)  
moving t h e  plants  as requi red  by growth,  ( 3 )  sampling p lan t  t issues f o r  n u t r i e n t  
concentrat ions,  (4) removing dead or  diseased plants f r o m  t h e  chamber  to prevent 
contaminat ion and  eliminate the waste of space, a n d  (5) harvesting (removing the 
mature plant  from the chamber). The  configuration shown in Fig. 5 is f o r  robotic 
access. However, it can, by removing chambers or allowing space between disks, allow 
for  human access as might be required for  experimental f l ight testing. 

Since t h e  funct ions descr ibed above a r e  requi red  i n f r e q u e n t l y ,  a s ingle  mult i -  
funct ional  robot could perform those duties for  several of the disks formed by a set 
of twelve plant growth chambers. A system of interconnecting rails would allow this 
robot complete access to all chambers. A set of outward opening doors on both ends 
of the  chambers  would open into the plane of a disk just  before  the a r r iva l  of the 
robot. Only a brief loss of root/shoot and  chamber/module atmospheric isolation 
would be expected and  negative pressure could assure containment. Thus,  the robot 
could  c a r r y  a zipper w i t h  a new seedl ing i n t o  a c h a m b e r  a n d  s l ide  i t  o n t o  t h e  
membrane, remove mature plants to a food processing facility, and  replace dead plants 
with viable ones. 

P lan ts  requi re  d i f f e r e n t  n u t r i e n t  solut ions a t  d i f f e r e n t  stages f o r  op t imum 
growth (Resh, 1978). This need can be met using a transverse Nutr ient  Flow Technique 
(NFT). T h e  amplified role played by surface tension of l iquids  i n  microgravity makes 
the N F T  method feasible. Figure 7 illustrates a growth chamber using this method. 

T h e  in i t ia l  results f r o m  this  conceptual  design s tudy  indica te  tha t  t h e  zipperseal 
system is feasible in a CELSS plant subsystem application. Init ial  calculations of space 
savings over traditional methods that do not move the plant during growth indicate that 
a t  least three times as many soybean plants can be grown in the same volume. The  
additional factors of increased environmental control, reduced energy consumption, 
a n d  labor r e q u i r e m e n t s  f u r t h e r  mer i t  t h e  deve lopment  of  a z ipperseal  
system. 

m i n i m i z e d  
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TERRESTRIAL USES OF THE ZIPPERSEAL SYSTEM 

Many  a d v a n t a g e s  of t h e  z ippersea l  system, a n d  a wedge shaped  g rowth  a r e a  i n  
particular, also apply to greenhouse production of crops. Space savings gained by this 
sys tem cou ld  f a c i l i t a t e  t he  c i ty  growth of f r u i t s  a n d  vegetab les  i n  ex is t ing  
buildings.  P l a n t  product ion  could occur i n  remote areas ,  or  a r eas  w i t h  poor soil  
and/or  poor climate as well. Both root/shoot separation and  transverse NFT give a high 
degree  of con t ro l  over  p l an t  inputs .  The ne t  result  would  be increased  yields over 
shorter growth periods. A variable pitch lead screw fo r  plant movement,  shown in 
Fig. 8, with human labor used for  other functions would supply all necessary plant 
needs. A configuration fo r  a terrestrial greenhouse is shown in Fig. 9. 

The  use of the zipperseal system can potentially increase yields, and  reduce crop 
cycle time, in  any  application where greenhouse production is feasible. As in space, 
expensive ar t i f ic ia l  lighting is not wasted on empty surfaces. Smaller buildings would 
be r equ i r ed  f o r  t he  same amount  of crop. Less heat,  main tenance  a n d  associated 
costs would follow. Clearly the potential applications of the zipperseal system exist 
on Earth as well as in  space. 

CONCLUSION 

A system has been designed for controlled plant growth. I t  has good potential  
for  use both in  space and on Ear th  because volume, energy, and  labor required in  crop 
production a re  minimized. A conceptual design of a CELSS plant subsystem using this 
system has been devised. A working model can be fabricated very easily, and work is 
unde rway  to  construct and  test this  system f o r  qua l i ty  of seal and  ease of movement,  
a n d  t o  tes t  t h e  r eac t ion  of p l an t s  t o  root movement  a long  a s u r f a c e  a n d  th rough  a 
transverse NFT. 
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