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ABSTRACT

Recent developments at several levels of
statistical turbulence modeling applicable to
aerodynamics are briefly surveyed. Emphasis is on
examples of model improvements for transonic,
two-dimensional flows. Experience with the devel-
opment of these improved models is cited to sug-
gest methods of accelerating the modeling process
necessary to keep abreast of the rapid movement of
computational fluid dynamies into the computation
of complex three-dimensional flows.

NOMENCLATURE
Cet = modeling coefficient in production

of dissipation rate

Ceo = modeling coefficient in destruction
term of dissipation rate

C = modeling coefficient in eddy
viscosity formulation

Dy = diffusion of kinetic energy
Dij = diffusion of Reynolds stress, uiuﬁ
k = mean kinetic energy of turbulence
K = von Karman constant, 0.4
L = characteristic length scale
Py = production of kinetic energy
Pij = production of Reyﬂolds stress, uiui
1 aui au .
Sij = strain rate, FACT I 5;%
J i
t = time
u = velocity component in streamwise
direction
U = velocity at boundary-layer edge
v = velocity component normal to
surface
v = characteristic velocity scale
W = velocity component in transverse
direction
X = coordinate in streamwise direction
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X = space location vector
y = coordinate normal to surface
4 = coordinate in transverse direction
g* = modeling coefficient
§* = displacement thickness
sij = Kronecker delta
€ = dissipation rate of kinetic energy
€jj = dissipation rate of Reynolds stress, uiuj
v = kinematic viscosity of fluid
Vi = turbulent eddy viscosity
p = fluid density
1, = wall shear stress
°ij = pressure/rate-of-strain production
of Reynolds stress, uiuj
w = specific dissipation rate, &€/g¥k
Qij = vorticity,
au, au
% (ﬁ - ﬁ-li), Q= (2nmnnmn)1/2
() = mean or averaged quantity
()" = turbulent fluctuating quéntity
() = vector component in ith direction,
i=12,o0r3
()i = 1jth  tensor
INTRODUCTION

Numerical codes for the computation of fluid
dynamical problems contain several distinct ele-
ments. These include the basic equation set,
grid-generation and nesting techniques for complex
configurations, efficient solution algorithms, and
appropriate boundary condition treatments. In
addition, if the fluid flow is turbulent, the
effects of all the scales of the flow field that
cannot be resolved by the numerical scheme either
in time or space must be modeled. It is through
this "turbulence modeling" that the numerically



unresolved physics of fluid motion is introduced
into the flow-field computation.

The purpose of this paper, then, is to illus-
trate the current status of "turbulence modeling"
as it is applied to aerodynamic flow fields, and
to suggest some means of accelerating progress in
its development., That the latter is particularly
important was recognized by two National Academy
of Sciences (NAS) groups that studied the rate of
progress of computational fluid dynamies (CFD) in
general and turbulence modeling in particular. In
1983, the committee headed by Robert Smelt con-
cluded, "If the gap between progress in turbulence
modeling and developments in numerical algorithms
and computer hardware is allowed to continue, it
could seriously impair the accuracy and usefulness
of CFD towards the end of this century" (Smelt,
1983). This view was reflected again in a yet to
be published 1986 National Research Council
Report. As turbulence is a feature of almost
every aerodynamically important flow field, this
situation deserves the serious attention of the
CFD community.

To examine why it is generally perceived that
progress in turbulence modeling has been rather
slow, it is important to understand what is
involved in the creation or modification of a
turbulence model. Basic to this understanding is
the knowledge of the actual features of fluid
turbulence and what the models can or cannot be
expected to emulate.

What then is fluid turbulence? Turbulence is
a fluid flow, not a fluid property. And it pos-
sesses many extremely complex characteristics.
a point in space, even when the gross flow is
steady, the turbulent flow appears to be a chaoti-
cally, or randomly, unsteady event about some mean
value. Over an extended space, however, some
coherence can be observed in the large-scale tur-
bulent motions under certain conditions. The
turbulent flow is always three-dimensional, even
when it exists within a mean motion that is one-
or two-dimensional. This three-dimensionality is
very important, for it provides the degrees of
freedom to allow local vortices to stretch, and in
so doing it transmits energy from larger-scale
motions to those that are smaller. As a conse-
quence, the turbulent flow possess an extremely
large range of scales in time and space, and the
range of scales between the largest, related to
body dimension, and the smallest, where the turbu-
lence dissipates quickly, increases with larger
Reynolds numbers.

At

For an aircraft, the largest scales are a few
percent of its length and carry most of the
kinetic energy of the turbulence. The smallest
scales, where the turbulence dissipates into heat,
are about one thousandth of the local boundary-
layer thickness, depending somewhat on the
Reynolds number of the flow in question. Turbu-
lence is also very diffusive and promotes mixing
of sensible properties, such as temperature,
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chemical constituents, or momentum. For example,
within aircraft engines this is a favorable prop-
erty which enhances the distribution of fuel prior
to combustion. On a surface of an aircraft, how-
ever, this enhanced mixing contributes to
increased drag. Finally, turbulence is dissipa-
tive in that the fluid viscosity can destroy the
motions of the smallest scales and convert their
energy into heat. It has been observed experi-
mentally that the large scales of turbulence are
unique to individual flow situations, whereas the
smaller scales tend to have a universal character.
The range of scales broadens with increased
Reynolds number.

Up to about 15 years ago, the limitations of
available computational power forced all turbu-
lence calculations to be confined to the use of
steady-state, statistical descriptions of the
turbulence. Most of the features described in the
previous paragraph could not be considered in
detail. Turbulence models were applied only to
averaged equations, and the information contained
in the real dynamical features could only be
restored, approximately, through the use of empir-
ical constants that were contained in the statis-
tical model formulations. Then, about 15 years
ago, computers were developed that had sufficient
power to allow the computation of the dynamic
behavior of some very simple flow fields at very
low Reynolds numbers where the range of scales
present is relatively small. Underlying these
computations is the assumption that the Navier-
Stokes equations, together with the energy-
transport equation, constitute the basic equations
for continuum fluid flow. It is further assumed,
without rigorous mathematical proof, that these
three-dimensional nonlinear equations can be
solved accurately in time and space and that the
solutions lie within narrow bounds despite large
numbers of uncertainties that exist in defining
initial and time-dependent boundary conditions.

Although these computations can capture all
of the features of real turbulence described ear-
lier, they are extremely costly and have been
confined to studies of the "physics" of turbulence
in idealized flow situations. These studies have
resulted in descriptions of the dynamic mechanisms
that take place in free and wall-bounded turbulent
flows in much greater detail than can be measured
in physical experiments. They also provide infor-
mation on quantities that can only be measured
inaccurately, if at all, for example, static pres-
sure fluctuations or local rates of turbulence
dissipation. Even though these computations deal
with relatively simple flow fields of limited
extent, they fill the capacity of the largest
computers and require many tens of hours of com-
puter time to reach statistically meaningful
results. Some of these computations have yielded
results that will be of inestimable value to the
turbulence modeler, but this approach cannot be
considered an engineering design tool even in the
reasonably near future. The reasons for this are
illustrated in figure 1.




Figure 1 compares the computer speed and
memory requirements for different classes of aero-
dynamic computational methods with the capabil-
ities of some large existing computers and of some
that are projected for the near term (Chapman,
1978). For example, application of turbulence
simulation where all the significant scales of
turbulence are resolved for an airfoil (4, fig. 1)
would require computer capabilities about Y4 orders
of magnitude larger than that labeled "Large Eddy
Simulation." Clearly, such calculations cannot be
considered in the foreseeable future. The regions
labeled Large Eddy Simulation were estimated by
Chapman under the assumption that only the sub-
layer regions of boundary layers need to be
resolved to the small scales and that the the
outer parts of the boundary layers, the regions of
separation, and shedding vortices could be treated
inviscidly (Chapman, 1978).

Even with the major economies afforded by
these assumptions, the abilities to perform time-
accurate simulations of the turbulent flow fields
about aerodynamic bodies lie outside the abilities
of the computers projected in the immediate
future. Chapman's estimates relative to the fully
resolved computational needs, however, show the
importance of the development of good sub-grid
turbulence models to account for turbulence scales
smaller than the grids employed for the bulk of
the flow. In addition, if a good sub-grid model
were developed for the near-wall region of the
boundary layer, the computer requirements could be
reduced further from those shown, and large eddy
simulations of turbulent flow about an airfoil
could be anticipated in the reasonably near
future, not necessarily as a design technique, but
at least as a research tool. The development of
good sub-grid turbulence models for large-eddy
simulations, then, is a research topic that should
be given considerably more emphasis than it has
had in the United States. The French and the
Japanese have recognized this for several years,
and are well ahead of us in this research topic.

Figure 1 also illustrates that projections of
computer requirements for the solution of turbu-
lent aerodynamic flow fields about aircraft shapes
with the Reynolds-averaged Navier-Stokes equations
are within the capabilities of near future com-
puters. In particular, the current NAS computer
is capable of handling the turbulent flow over a
complete wing with the Navier-Stokes approach and
use of simple algebraic models of turbulence. It
is the turbulence modeling for this class of com-
putation that is the focus of the remainder of
this paper.

STATISTICAL TURBULENCE MODELING

Reynolds-Averaged Equations

Statistical turbulence modeling begins with
the derivation of the equations to represent the
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mean or average motions of the turbulent flow.
This process can be illustrated simply by examin-
ing only the single equation representing the
velocity parallel to the surface in an incompres-
sible fluid, the instantaneous u-component equa-
tion of the Navier-Stokes system of equations:
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For a steady-state turbulent flow, the dependent
variables are then expanded as the sum of their

mean parts plus their turbulent fluctuations,
namely,

u(x,t) = T(X) + u'(x,t) (2)
where X represents a point in space and t is
time. The overbar indicates an average quantity,

and the prime represents the instantaneous fluctu-
ation. The components of velocity v, normal to
the surface, and w, in the transverse direction,
are expanded similarly. Note that the steady-
state requirement of this example eliminates time
as an independent variable in the mean quantity.

When these velocities are introduced into
equation (1), and the resulting equation is aver-
aged over time, there results the following:
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It is noted that only the nonlinear moments of the
fluctuating turbulent velocity components have
survived the averaging process, which has elimi-
nated most of the real physical details of the
turbulence that were described earlier. The cha-
otic time dependence, the phase relationships
between the turbulence velocity components, and
the multitude of turbulence scales are merged into
Just three averaged moments of the fluctuating
velocity components. The resulting equation
resembles the original Navier-Stokes equation,
restricted to steady flow, except for the averaged
moments of velocity fluctuations that reside in
positions corresponding to those of the viscous
stress terms and which, consequently, are called
Reynolds stresses, after their original discoverer
(Reynolds, 1895).

Note that these Reynolds stresses constitute
three new dependent variables, whereas no new
additional equations resulted from the averaging
process. Thus, more unknowns are created than



equations, and the problem is not closed, at this
level, unless the Reynolds stresses can be
expressed in terms of the independent variables
(which are the coordinates) or the dependent vari-
ables (which are the velocity components) or both.
If the six equations for the Reynolds stresses are
derived from moments of the Navier-Stokes equa-
tions, it is found that these new equations con-
tain many more than six new higher-order terms,
including those that contain averages of the fluc-
tuating velocity derivatives (Chou, 1945). The
proliferation of dependent variables greatly
exceeds the number of new equations derived, and
this process continues as more and more equations
are derived. This is called the closure problem
and is the central problem of statistical turbu-
lence theory that forces the modeling of the
turbulence.

Levels of Turbulence Modeling

The turbulence models required to evaluate
the Reynolds stresses in equation (3) have been
expressed at a variety of levels. These will be
illustrated in this section, beginning with the
field equations for the Reynolds stresses. By
starting with the more complex models, it can be
shown that some of the simpler models follow from
the imposition of certain assumptions onto the
more general models.

The Reynolds-stress-transport model (RSE) can
be expressed as

D
bt (uiuj) = Pij - Eij + Dij + ¢ij 4)
The terms on the right-hand side of the equation
are divided into four quantities identified with
the physical processes known to occur in a turbu-
lent flow: P;; is the production of the Reynolds
stress tensor; Eij is the dissipation rate of the
Reynolds stress tensor; Dij is the diffusion of
the Reynolds stress; and &5 is the pressure/
rate-of-strain production of the Reynolds stress
tensor. Of these, only the production term Pij
can be expressed in terms of the Reynolds
stresses, the mean velocities, and the coordi-
nates; consequently, it does not need to be
modeled. The other terms are composed of third-
order moments, moments of derivatives, or pressure
fluctuations, all new quantities that have to be
modeled. This level of modeling is called second-
order closure, that is, the closure occurs in the
Reynolds stress equations instead of in the
Reynolds-averaged momentum equations. The equa-
tion for e, the rate of dissipation of the turbu-
lence kinetic energy, used to define the e.. and
the length scales, requires all of its terms to be
modeled. For at least two reasons, the use of
second-order closure is now limited to a few
practitioners: first, the addition of seven addi-
tional field equations increases computation costs
by a factor of about 5 over that of the simplest
models; second, the advantages that result from
the use of the stress-transport equations do not

justify these costs for most problems. Later in
this paper, some examples will be presented for
which the use of the Reynolds-stress-transport
equations indicates some advantages that may merit
application of these equations to certain
problems.

A turbulence model that takes advantage of
the inherent characteristics of the Reynolds-
stress-transport equations, but only adds two
field equations to the system, is called the Alge-
braic Stress Model (Rodi, 1976). Here the stress-
transport equation is rewritten as

D -
5y (E5) - 0uy = Py - iy v oy

u! u' Dk
= —J—lk (E - Dk> (5)

The basic assumption of the method is represented
by the term on the extreme right, where it is
assumed that the convection minus the diffusion of
the Reynolds stresses is proportional to the same
quantities in the turbulence kinetic energy equa-
tion. The Reynolds stresses can be written alge-
braically as

L] (6)

Recall that the production term also contains the
Reynolds stresses, so that equation (6) has to be
solved in an iterative manner. The kinetic energy
and rates of dissipation are found from equations

of the form
Dk
bt = P .- e+ Dy (7)
2
De _ € B e
Dt Ce1 k Pk ceZ kKt De (8)

The next lower level of turbulence modeling
utilizes the eddy-viscosity concept, that is, the
effects of turbulence are expressed in terms of an
effective kinematic viscosity acting on the fluid
rate of strain. The constitutive relations
between stress and strain that have been utilized
are shown in the following equations from Wilcox
and Rubesin (1980)
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Equation (9) accounts for the effects of the
interaction of vorticity and the rates of strain,
which allows experimentally observed anisotropies
to develop in a homogeneous shear flow. Those
effects are neglected in the classic form of
equation (10).

The manner of evaluating the eddy viscosity
distinguishes most of the currently popular turbu-
lence models. In general, the eddy viscosity can
be written as

v = CLV (11)
v
where C, is an empirically established coeffi-
cient or function, V 1is a characteristic velocity
scale, and L 1is a characteristic length scale.

The various eddy-viscosity models are classi-
fied in Table 1; the terminology used in the table
will be used in the discussion of the results to
be shown later.

Table 1 C(lassification of eddy-viscosity models

Two-equation models:

v =\/E, L = L(k,¢)
One-equation models:
v =\/E, L = L(y)
One-half-equation models:
a (t -1 ) = -C, (1 -1 )
39X = max max,0 1 max max,0

Zero-equation models:

x 1/2
V= <;ﬁ> , L = Ky (inner zone)
- - *
= U " C 26 (outer zone)
or V = V(Q), L = L[(yﬂ)max]

The two-equation models utilize the kinetic
energy and dissipation rates found from
equation (7) and from forms of equation (8); thus,
they require the solution of two additional field
equations. This increases computer costs by about
a factor of 3 over computations based on the zero-
equation models shown at the bottom of the table.
The reason for this increased cost is that the
turbulence modeling equations are stiff; as a
result, they require very small mesh dimensions
near the surface when they are modified to allow
their integration to the surface. It will be
shown later that these cost penalties can be
eliminated through the use of wall functions, that
is, algebraic relationships that span the distance
between the surface and the first mesh points
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located well into the regions where the turbulence
dominates the viscous forces.

Particular attention should be given to the
model in Table 1 designated as a one-half-equation
model. The "one-half" is used to emphasize the
fact that an ordinary differential equation is
added to the Reynolds-averaged Navier-Stokes
system instead of another partial differential
field equation. In the example shown here, the
subseript 0 under the shear-stress symbol means
an equilibrium value or one given by the zero-
equation models indicated on the lower portion of
the table. The subscript max means the maximum
shear stress at some point within the boundary
layer at the station, x. Thus, the one-half-
equation model accounts for the lag in the devel-
opment of the turbulence that occurs when the mean
motion is modified by the imposition of a large
streamwise pressure gradient. The dependent vari-
able, the maximum shear stress in this case, is
then used to scale the turbulence algebraically
across the entire viscous region at station x.

The zero-equation models (Table 1) represent
the eddy viscosity in two zones, or layers, of the
viscous region. Near the surface, the velocity
scale usually used is the local friction velocity,

rw/p, and the length scale is merely proportional
to the distance from the surface. In the outer
zone, the velocity scale is the velocity at the
edge of the viscous region and the scale depends
on the displacement thickness (Cebeci and Smith,
1974). In those situations where it is difficult
to define these terms, that is, where the inviscid
region has a non-uniform velocity field, the
velocity and length scales have been expressed in
terms of the local vorticity that occurs where the
moment of vorticity is a maximum (Baldwin and
Lomax, 1978). Since all of these quantities are
expressible algebraically in either the dependent
or independent variables of the mean-flow equa-
tions, no additional partial differential equa-
tions for field variables are required and these
are termed zero-equation models.

Difficulties in Applying and Developing
Turbulence Models

In a particular application, the level of
turbulence model that can be considered must
reflect the computational power available and the
solution algorithms to be used. Limited computa-
tional power permits only the simplest of turbu-
lence models to be considered. Also, the turbu-
lence model employed has a strong influence on the
numerical behavior of the algorithms. Not all
algorithms that can solve laminar flows can be
applied to turbulence models, especially those
that use field equations for turbulence quantities
such as the Reynolds stresses, kinetic energy, or
dissipation rate. Iteration processes are
influenced considerably by the stiffness of the
turbulence field equations. Also, algorithms that
require conservative forms have difficulty with



the source and sink terms that are inherent in the
turbulence field equations to reflect the turbu-
lence production and dissipation that occur within
the real turbulent flow. Finally, the turbulence
models also impose constraints on the usable mesh
configurations by requiring very close spacings
between meshes in the vicinity of surfaces.

This strong influence of the turbulence model
on the numerical scheme has made it difficult to
assess the quality of particular turbulence
models, because often a significant part of the
disagreement between computed results and experi-
mental data is numerical, resulting from a pre-
viously verified algorithm's difficulty with the
constraints introduced by a new turbulence model.
Once these numerical difficulties are overcome and
the turbulence models can be applied with confi-
dence, the resulting disagreement with experi-
mental data for a particular flow field can be
ascribed to the limitations of a the particular
turbulence model being employed. At this point,
provided fundamental experimental turbulence data
are available to guide its improvement, it is
possible to remodel the turbulence model to
improve its performance for the complex flow in
question, and to do so in a manner that does not
alter its behavior for simpler flow fields for
which it had already proved successful. Some
examples of this process are shown in the follow-
ing section where the state of the art of statis-
tical turbulence modeling is summarized with a few
selected flow conditions.

APPLICATION OF VARIOUS LEVELS OF TURBULENCE
MODELING

In this section, in order to provide a brief
overview of the state of the art of turbulence
modeling, various levels of turbulence modeling
will be applied to a variety of flow fields of
interest to aerodynamics. Both original models
and the consequence of "remodeling" will be shown
in several examples. Care has been taken in most
of these calculations to eliminate numerical
uncertainties, so that any differences shown
between the computed results and experimental data
can be ascribed to turbulence-model deficiencies.

The first flow to be considered deals with
the effect of large streamwise pressure variations
on the skin friction of an attached turbulent
boundary layer (Kussoy et al., 1978). In
figure 2, a sketch is shown of the experimental
arrangement. The boundary layer being measured
was formed on the inside surface of a tube down-
stream from a supersonic nozzle creating an axi-
symmetric flow at M = 2.3. The pressure distri-
bution impressed upon the boundary layer was
created by a center body that compressed and then
expanded the flow. The resulting pressure
distribution, normalized by the upstream wall
pressure where M = 2.3, is shown in the upper
left corner of this figure. In this example, the
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pressure rise almost doubles its original value
before relaxing. This nondimensional pressure
distribution remained essentially fixed as the
wind-tunnel pressure was altered to obtain a large
range of Reynolds numbers. The skin friction was
measured with a buried wire gauge (Rubesin et al.,
1975). The skin-friction distribution was
achieved with a fixed skin-friction gauge by
moving the centerbody upstream and downstream
about 20 cm along its axis. This provides about
the same distribution of skin friction that would
be achieved with a fixed centerbody and a moving
skin-friction gauge, because the boundary layer
ahead of the pressure rise was close to uniform
thickness.

Measured and calculated skin-friction distri-
butions are shown in figure 2 for four values of
Reynolds number. Five levels of turbulence model-
ing are shown: a zero-equation model by Cebeci
and Smith (1974) in its original form and as sub-
sequently "remodeled" to account better for
streamwise pressure gradients (Cebeci and Smith,
1974); a two-equation model by Wilcox and Rubesin
(1980); and two stress-transport models. One of
the stress-transport models utilizes a length
scale that is prescribed algebraically (Sullivan,
1976), whereas the other uses a field equation for
specific dissipation to create a length scale
(Wilcox and Rubesin, 1980).

With the exception of the original zero-
equation model at the lowest Reynolds number,
which tends to separate prematurely, all the
models show similar variations relative to the
experimental data. The computed results drift
through the data with increases in the Reynolds
number. Computed results that are low at the
lower Reynolds numbers tend to be high when the
Reynolds numbers are high. No one model is
clearly superior to the others over the entire
Reynolds-number range, though they do seem to
maintain their relative positions to each other.
One can conclude from this work that for an
attached boundary layer there is little advantage
to using the more complex models, but if it were
necessary to know the skin friction in attached
boundary layers in strong streamwise pressure
gradients to a few percent, improvements to all
the levels of models would be required.

Streamwise curvature of a surface has a pro-
nounced effect on the behavior of a boundary layer
flowing over it (Bradshaw, 1973). This is demon-
strated in figure 3, where skin friction and
shape-factor data obtained on a convex surface in
an adverse pressure are shown (So and Mellor,
1972). The data are expressed in terms of the
streamwise distribution of the skin-friction coef-
ficient and the shape factor of the turbulent
boundary layer flow. Also shown in the figure are
the computed results utilizing four turbulence
models (Wilcox and Rubesin, 1980). The dashed and
dot-dashed curves are based on a two-equation and
a Reynolds-stress transport model in which the
effects of curvature have been neglected. These




skin-friction coefficient curves depart consider-
ably from the experimental data. The shape factor
on a flat plate would remain at a value of about
1.4, again showing curvature effects that are
large in affecting the boundary-layer velocity
profiles. The solid and dotted curves represent
the same models modified to account for the sur-
face curvature through the introduction of a
curved coordinate system. The modification to the
two-equation model also required the introduction
of a new centrifugal force term in the turbulent
kinetic energy equation; that term vanishes on a
flat surface. This was done in a rather ad hoc
manner, utilizing some guidance from the the form
of the Reynolds-stress equation for v'v'., On the
other hand, no physical modifications were made in
the Reynolds-stress model. In both of these
models, the specific rate-of-dissipation equation
used to define the length scale was not altered
except for the coordinate modifications. Figure 3
shows that the effects of the streamwise curvature
in these data are represented very well by these
latter computations.

It is very significant that no modifications
had to be made to the Reynolds-stress turbulence
model to allow it to capture the effects of
streamwise curvature; it is thereby an example in
which, at least in principle, the more complex
form of modeling has a fundamental advantage.
Another conclusion, however, is that the simpler
two-equation model can also be "remodeled" to give
good results on a convex surface, without altering
its behavior, for cases in which the streamwise
curvature is absent. A cautionary note is in
order here: concave surfaces may not be calcu-
lated well with any of these models because the
models completely ignore the possibility of the
existence of Gortler vortices that are present
over such surfaces and that can enhance the trans-
port within the boundary layer.

Figure U4 shows the experimental data and
computed results for the distribution of surface
pressure and skin friction in the vicinity of a
normal shock wave in an M = 1.48 airstream.
These measurements were obtained on the inner
surface of a circular tube with a static pressure
tap and a flush hot-wire skin friction gage
(Mateer et al., 1976). The shock-wave position
could be moved relative to the fixed gauges by
increasing or decreasing the blockage of a down-
stream shock generator.

The experimental data are compared with com-
putations utilizing four different turbulence
models: 1) two-equation models from Wilcox and
Rubesin (1980), Jones and Launder (1972), and
Chien (1982); and 2) a zero-equation model from
Cebeci and Smith (1974), which did not incorporate
the pressure-gradient modification discussed in
connection with figure 2. All of these models
were used in computations that extended to the
surface. It should be noted that each of the
models performs quite well on a flat plate at
uniform pressure. The models of Jones and Launder
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and of Chien are very similar, except that the
latter was more closely fitted to experimental
channel data.

When these models are applied to the shock-
wave and boundary-layer interaction of this exper-
iment, it is found that all of them yield excel-
lent surface-pressure distributions. The skin-
friction results, however, are far from satisfac-
tory for all but the Wilcox-Rubesin model.

The Chien model, which behaves so well on a flat
plate, yields surprisingly poor results in the
vicinity of the shock wave. The Jones-Launder and
Cebeci-Smith models fail to agree, in opposite
ways, with the skin friction, the latter model
indicating an extensive region of separation where
none existed experimentally.

Qualitatively, this behavior is consistent
with the behavior of the Cebeci-Smith model in
figure 2, when it was not altered to account for
pressure gradients. From a comparison of the
different skin-friction results based on the dif-
ferent two-equation models, it can be concluded
that models at the same level that are "cali-
brated" with flat-plate data can behave much dif-
ferently when applied to a complex flow. This
suggests that in general, the predictability of
any turbulence model should be suspect until it is
verified for a variety of complex flows.

In an effort to determine why the Jones and
Launder and the Chien turbulence models predicted
such different skin-friction results, Viegas and
Rubesin (1983) eliminated the near-surface model-
ing in these turbulence models by applying the
concept of wall functions to the computations
shown in figure 4. This concept requires the
first mesh point off the surface to lie well
within the fully turbulent flow and therefore
connect the flow at this point to the surface
conditions with algebraic formulas. For example,
a wall function in its simplest form is the con-
ventional "law of the wall" applied to a zero-
equation turbulence model on a flat plate with
small streamwise pressure gradients. The two-
equation models require more complex wall func-
tions that account for the growth of turbulence
kinetic energy in regions of strong pressure gra-
dients, the mean values of kinetic energy and
dissipation rates within the first mesh volume off
the surface, and the changes to the law of the
wall caused by local pressure gradients.

Figure 5 shows the results of applying such
wall functions to the test conditions described in
figure 4. Again, the surface pressure is well
predicted when the different models use wall func-
tions at distances from the wall shown by the
corresponding upstream values of y+ indicated in
the figure. The skin friction results show
clearly that it is the individual near-wall treat-
ments of the two-equation models by Jones and
Launder and by Chien that causes their anomalous
behavior shown in figure 4.



With wall functions, the.results given by the
two models are essentially. identical and quite
consistent with the other two-equation model .by
Wilcox and Rubesin. The Cebeci-Smith model with
its wall function is quite consistent with the
earlier results where it was computed to the sur-
face, except in the immediate region of the sepa-
ration zone where the pressure gradients are suf-
ficiently high to bring into question the use of a
usual law of the wall. It is gratifying that the
wall functions not only collapse the results of
the different two-equatior models, but that
results agreé quite well with the experimental
skin=friction data. Another significant bonus of
the use of wall functions is that the costs of the
computations were reduced by a‘factor of 8 because
of the reduced number of mesh points needed to
resolve the near-wall region and the elimination
of much of the stiffness of the turbulence model-
ing equaEions; In this case, accuracy and economy
were achieved together.

Figure 6 shows ‘the results of improvements to
two different levels of turbulence models applied
to the computation of a shock-wave and boundary-
layer interaction in transonic flow. - The ‘éxperi-
mental data used in this comparison are from
Johnson et al. (1982) and they were measured on an
axisymmetric-circular-arc bump indicated schemati-
cally in figure 6. The free-stream Mach number of
the examples shown here is M = 0.876 and the
unit Reynolds number is ~13.1 x 106°/m. -

The upper part of figure 6 shows the distri-
butions of surface pressure measured in the exper-
iment and computed from four turbulent models.
The abscissa begins at mid-chord of the bump and
continues about a half-chord downstream after its
trailing edge. The lower part of the figure shows
the distribution of skin friction from two of the
computations and the experimental points’ of sepa-
ration and attachment, as they were indicated by
an oil-film technique. This demonstrates that
there was a rather extensive region of separated
flow in this experiment. -

The computed surface pressures based: on the
zero-equation turbulence model of Cebeci and Smith
(1974) are represented by the dashed line. These
results indieate that this model predicts a shock-
wave position that is well. downstream of its mea-
sured location. The computations also show much
higher pressure in the region of separation than
do the data. The dotted line represents the com-
puted results obtained with the half-equation
model of Johnson and King (1985). The latter
model ‘accounts for the history of the development
of maximum shear stress in the streamwise direc-
tion through the use of an ordinary differential
equation. This maximum shear stress is then used
to scale an algebraic model, similar to that of
Cebeci and Smith, at each station. Although these
experimental data, for a range of Mach and
Reynolds numbers, were used to evaluate the lag
constants used in this model, the resulting agree-
ment of the computed results with the shape of the

entire pressure distribution for this partlculér
case is remarkable. ' Without alterlng the modeling
coefficients, good results have been obtalned by
Johnson arnd Klng in comparlsons with other
two-dimensional data under widely different flow
conditions (Simpson et al., 1981). In addition,
this model isleconomicalbto use, for it requires
very little more computer time than do thé stan=
dard zero-equation models.

When a two-equation model is-applied to this
flow, the dot-dashed line (fig. 6) results for-the
predicted pressure distribution. Although it
performs better than: the zero-equation model,: the
pressure distribution.calculated with the two-

- equation model also shows a shock-wave location
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‘foot of the shock wave.

that is downstream of the experimental-position,
and the pressure is overpredicted to some extént
in the region of separation. Whén improved wall
functions (Viegas et al., 1985; Rubesin:and :
Viegas, 1985) are applied to this Jones-Launder
model, the calculated pressure distribution is
considerably improved, giving results equivalent
to the Johnson-King model except at the upstream
‘It should be noted that
the fofms of the wall functions or ‘the original
model were not altered to fit these particular
pressure data. Theé use of wall functions with the
Jones-Launder model also improves the predictidn
of the location of separation and reattachment as
is seen in the skin-friction coefficient figure.

In tonclusion, figure 6 shows that two turbu-
lence models -are available. that can give good
surface-pressure.-distribution results‘in a tran-
sonic flow over an airfoil-like ‘body. TFor two-
dimensional flows with a closed separation region,
the ‘model of choice is the Johnson-King model ifor
accuracy and economy-of application. 1t is not
clear at present, however, how or:-if: this model
can be extended to three-dimensional flows. The
two-equation model is directly extendable to three
dimensions; however, it requires some additional
modeling regarding the degree Of ‘isotropy of the
eddy viscosity, and the wall-function approach in
its present form is constrained to no skewing of
the mean-velocity vector thhln the flrst mesh
volume off the Surface

F1gure 7 shows the:results of applying sev-
eral levels of .turbulénce modeling (Coakley, 1986)
to the prediction of the lift and drag of an
RAE 2822 airfoil for three test Mach numbers. and
angles of attack (Cook et al., 1979). The com-
putations are shown here in lift-drag form to
allow comparison of the results relative to a
constant lift-drag ratio as shown by the lines
passing through the three starred data p01nts
Coakley (1986) used six different turbulence
models: two zero-equation models, that of Cebeci
and Smith and of Baldwin and Lomax; the Johnson-
King half-equation model; and three versions of
the two-equation model, Chien's and two originated
by Coakley. The symbols used for the results
found from these models are indicated on the
figure.




The comparison of the experimental data and
the computed results can be observed from two
points of view. First, a small vector distance
between the experimental and computed points
reflects good agreement between the experimental
data and computation for both 1) surface-pressure
distributions and shock-wave locations, and
2) skin-friction distributions. Second, the
alignment with the constant L/D line suggests that
a particular model can yield a result that happens
to provide good L/D, although in reality it misses
the details.

The cases represented by the three Mach num-
bers correspond, with increasing Mach number, to
unseparated subcritical flow, unseparated super-
critical flow, and separated supercritical flow,
respectively. Except for two cases at M = 0.73,
the computed results yield values of lift and drag
that are higher than the measurements. At all
three Mach numbers, the Johnson-King model lies
closest to the data, even at the severest flow
with separation. The other models generally
become poorer as the flow becomes more complex.
The g-w2 model of Coakley, while second-best
overall in agreeing with the experimental results,
yields a much poorer lift-drag slope than do the
other models when separation takes place.

The earlier conclusion that the Johnson-King
model is the model of choice for two-dimensional
transonic flows is further supported by these
data. For those interested only in the ratio of
lift to drag, the simplest models of Cebeci-Smith
and Baldwin-Lomax are reasonably adequate. These
conclusions, however, are subject to the caveat
that these data resulted from flows that were
entirely attached or flows that separated and then
reattached on the airfoil. Cases with massive
separation may favor other turbulence models.

The next few figures will show the perfor-
mance of various turbulence models for three-
dimensional flows. Although the first two
examples are strictly two-dimensional from a
mathematical viewpoint, that is, axisymmetric flow
or flow over an infinitely long, swept-back air-
foil, the flows exhibit the skewing of the veloc-
ity vector parallel to the surface that is char-
acteristic of three-dimensional boundary-layer
flows.

Figure 8 describes skin-friction results
obtained on the surface of a circular cylinder
whose axis was mounted colinear with that of a
low-speed wind tunnel (Higuchi and Rubesin, 1981;
Driver and Hebbar, 1985). The particular feature
of this experiment was that the cylinder was seg-
mented so that a central portion of the cylinder
could be rotated to introduce a shear-driven cross
flow (see sketch in fig. 8). In the stationary
region ahead of the rotating segment, the boundary
layer develops the four Reynolds stresses,

u'u', v'v', w'w', and u'v', which are characteris-
tic of two-dimensional flow. Over the spinning
portion, the additional Reynoids stresses,

u'w' and VT;T, are activated, and it is the latter
stress that causes the mean-velocity vector to
skew in a three-dimensional boundary layer. In
the experiment, the relaxation of the Reynolds
stresses back to their two-dimensional character
is studied on the downstream stationary cylinder.

Figure 8 shows the development of the axial
and cross-flow skin friction with distance along
the stationary downstream cylinder. The experi-
mental data were measured with a variety of tech-
niques: buried hot-wire gauges, surface fences
(Higuchi, 1983), and momentum integral balances.
Computed results based on three levels of turbu-
lence modeling are also shown. These include the
zero-equation Agquilar (1976) model which is an
extension to three dimensions of the Cebeci-Smith
model, and the two-equation and Reynolds-stress-
transport models of Wilcox and Rubesin. Note that
both the zero-equation and the two-equation models
utilize the additional assumption that the eddy
viscosity is a scalar quantity that acts equally
on the axial and cross-flow strains. Generally,
all the models capture the behavior of the relaxa-
tion of the skin friction in both directions. Of
the three models, however, the Reynolds-stress-
transport model yields the best agreement with the
data, except for the short region at the beginning
of the stationary cylinder where the relaxation
process is occurring very rapidly. Since this
flow remains attached, it is believed the short-
comings of the zero-equation and two-equation
models, both of which are eddy-viscosity models,
are caused by the the scalar eddy-viscosity
assumptions and not by problems of length scale.

Figure 9 shows oil-film streaks on the sur-
face of flow over a transonic wing, swept back at
an angle of 32° in an airstream at M = 0.74
and Rec = 4.7 x 10° (Mateer and Brosh, 1983).

The airfoil shape is a NACA 0012 at zerc angle of
attack. The wing spans the wind tunnel, but the
experiment is unique in that the side walls of the
wind tunnel were contoured to follow the expected
inviscid flow, thereby causing the model to behave
as one of infinite length where surface pressures
are essentially uniform in the spanwise direction.
Also shown on the figure are the surface stream-
lines as computed by three levels of models.

Line 1 refers to a Reynolds-stress-transport
model; line 2 to a two-equation model; and lines 3
and U4 refer to a mixing-length model. These
models are identical to those shown in the pre-
vious figure for the spinning cylinder experiment.

Two results for the mixing-length model are
shown to demonstrate the influence of the location
of transition, which can be specified in this
turbulence model. In the other models the loca-
tion of transition is established by stability
criteria built into the models. The mixing-length
model shows an increased deviation. from the oil-
flow data as transition is moved downstream. As
with the spinning cylinder, the Reynolds-stress-
transport model gives slightly better results as



represented by the oil-flow pattern near the suc-
tion peak.

Figure 10 also shows a comparison of experi-
mental and computed surface skin-friction lines
for a three-dimensional flow (Horstman et al.,
1985). In this case, the test body consists of a
cylinder followed by skewed flare. The airstream
conditions are M = 3 and the length Reynolds
number of the boundary layer just upstream of the
flare is 18  10°, The flare is a 60° total-angle
cone tilted to an angle of attack of 23°. The
computations for this flow were based on the
Jones-Launder two-equation turbulence model with
boundary conditions supplied by wall functions
(Viegas and Rubesin, 1983). The use of wall func-
tions was critical to reduce the cost of these
computations.

The oil-flow lines on the left of this figure
show that for these conditions the shock wave
generated by the flare is sufficiently strong to
cause the boundary layer on the cylinder to sepa-
rate well upstream of the cylinder-flare junction
and to reattach about halfway up the flare. Con-
siderable amounts of turning of the near-surface
flow takes place within this separation zone and
in the immediate region after reattachment. The
computed surface shear lines show the general
character of measured oil streaks; however, the
details are off to quite an extent. The computed
upstream separation location is only about one-
half its experimental distance from the flare
Junction. The poor behavior of the computations
is also reflected in a generally smaller upstream
movement in the computed results in the vicinity
of the flare. Although the reattachment region is
predicted fairly well, the flow direction on the
cylinder downstream of the flare also departs from
the experimental data.

How these differences are felt quantitatively
is shown in a comparison of the computations with
the experimentally measured surface pressures in
figure 11, where the surface pressures on the
windward ray are plotted along the cylinder,
flare, and afterbody. The smaller predicted sepa-
ration zone is again evident in this figure.

These quantitative results of the computations
show the position of the maximum pressure to be a
bit upstream of the measured location and to yield
a smaller value than measured. These results
suggest that the computed side force and pressure
drag are low. Recently, Brown et al. (1987) made
measurements of mean flow and the Reynolds
stresses under these same flow conditions. These
data have not yet been analyzed with the view of
improving the turbulence modeling; however, this
activity is under way and should lead to a
remodeling of the turbulence model that will
result in computations that are considerably
improved over those shown here.
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CONCLUDING REMARKS

Certain observations can be drawn from this
brief survey of recent developments in statistical
turbulence modeling applicable to aerodynamics.
For attached boundary layers upstream of pressure
gradients, all levels of turbulence modeling give
about the same results. This is not surprising
because the attached flat-plate boundary layer has
been used universally to "calibrate" these models.
Under severe pressure gradients, however, many
popular models still yield results that differ
from experimental skin-friction data by as much
40% when the Reynolds numbers are about 100 x 10
or larger. This is a turbulence modeling topic
that requires additional attention.

%S

The manner of modeling streamwise curvature
effects is also still an open question. The sim-
plest zero-equation models use an ad hoc correc-
tion method recommended by Bradshaw (1973). On a
convex surface, the two-equation models account
for curvature by either increasing the rate of
production of dissipation (Ha and Lakshminarayana,
1980), by diminishing the rate of destruction of
dissipation (Launder et al., 1977), or by letting
the dissipation rate alone and altering the rate
of production of kinetic energy by introducing the
work of centrifugal forces (Wilcox and Rubesin,
1980; Pulliam et al. 1985). The full Reynolds-
transport model, on the other hand, requires no
changes other than the introduction of curved
coordinates (Wilcox and Rubesin, 1980). This
variety of approaches for the introduction of the
effects of surface curvature into the zero- and
two-equation turbulence models illustrates the
fact that these models are merely such gross
approximations to the physical turbulence that
there is no unique way of modeling a particular
phenomenon. Consequently, a model can only be
gauged by its success or failure in its applica-
tion to a particular flow field or to a range of
flow fields. There is no a priori way of asses-
sing the accuracy and breadth of application of
turbulence models other than by comparison with
experimental data. From such comparisons, it is
generally observed that the higher levels of tur-
bulence models tend to have broader ranges of
application, but that for a given application they
are likely to be less accurate than simpler models
that have been fitted to the particular applica-
tion. The simple, or low-level, models, tunough
computationally economical, need a data base for
every class of flow likely to be encountered, and
their use places an enormous burden on the numbers
of experiments required. Without such a data
base, the simple models are not much sounder than
intelligent guesses. It is this burden on experi-
ment that stimulates the search for more general
models that are sufficiently accurate for a vari-
ety of applications even though they may cost more
to compute. The user must gauge these trade-offs
in deciding which models he will employ.




With respect to the rate of progress in tur-
bulence modeling, the development of the Johnson-
King model is a good example. From the time of
the first experiment on airfoils in which Johnson
was measuring turbulence quantities (Johnson and
Bachalo, 1980) to the recent successful tests of
the model he and a colleague developed (Johnson
and King, 1985), 6 years elapsed. Much of this
time was spent by Johnson in analyzing his data
with a variety of borrowed computer codes, some of
which were in development and were extremely dif-
ficult and time-consuming to operate. During this
period, he also performed an additional experiment
on the axisymmetric bump model that was used to
complement the original airfoil data. This short
history demonstrates that turbulence modeling is
composed of a variety of activities that encompass
analysis of the modeling equations, experimenta-
tion, the use of and modification of complex com-
puter codes, and, most important, a dedication to
do the necessary labor to improve an existing
model.

When one or two individuals attempt this, the
level of effort required is bound to take consid-
erable elapsed time. Something as relatively
direct as developing wall functions for compres-
sible flows, utilizing the experimental work of
others and making small modifications to existing
computer codes (Viegas and Rubesin, 1983; Viegas
et al., 1985), took a little longer than 2
years. Because of its dependence on a variety of
disciplines, turbulence modeling is a slow process
and its development can be accelerated only by an
increased level of the coordinated efforts of
dedicated people possessing a variety of
complementary talents in analysis,
experimentation, and computational-code develop-
ment. This is especially required now as the CFD
community begins to emphasize complex three-
dimensional flow fields and requires improved
turbulence models for such flows.
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Fig. 7 Lift-drag relationships for an RAE 2822

airfoil.
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Fig. 8 Skin friction in the relaxation zone
downstream of transversely sheared boundary layer.

Fig. 9 Comparison of experimental and computed
surface flow lines on a swept, infinitely long
wing-NASA 0012 at zero angle of attack.
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Fig. 10 Comparison of experiment and computation
for a three-dimensional shock wave, turbulent
boundary layer interaction.
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Fig. 11 Surface pressure distribution on the
upwind ray of a skewed flare.
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