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ABSTRACT

Recent developments at several levels of

statistical turbulence modeling applicable to

aerodynamics are briefly surveyed. Emphasis is on

examples of model improvements for transonic,

two-dimensional flows. Experience with the devel-

opment of these improved models is cited to sug-

gest methods of accelerating the modeling process

necessary to keep abreast of the rapid movement of

computational fluid dynamics into the computation

of complex three-dimensional flows.

NOMENCLATURE

C¢I : modeling coefficient in production

of dissipation rate

Cc2 = modeling coefficient in destruction

term of dissipation rate

C_ = modeling coefficient in eddy

viscosity formulation

D k = diffusion of kinetic energy

Dij = diffusion of Reynolds stress, u_u'i j

k = mean kinetic energy of turbulence

K = yon Karman constant, 0.4

L = characteristic length scale

Pk = production of kinetic energy

Pij_ : production of Reynolds stress, u!u'.lj

Sij : strain rate, g \_--_i + 3x i/

t = time

u = velocity component in streamwise

direction

Ue = velocity at boundary-layer edge

v = velocity component normal to

surface

V = characteristic velocity scale

w : velocity component in transverse

direction

x = coordinate in streamwise direction

()ij : ijth

: space location vector

y : coordinate normal to surface

z = coordinate in transverse direction

B* = modeling coefficient

6* = displacement thickness

6ij = Kronecker delta

E = dissipation rate of kinetic energy

utH'
_ij = dissipation rate of Reynolds stress, i J

= kinematic viscosity of fluid

_t = turbulent eddy viscosity

p : fluid density

Tw = wall shear stress

¢iJ = pressure/rate-of-strain production
of Reynolds stress, u'u'

ij

: specific dissipation rate, c/B*k

_ij = vorticity,

\_--_j- _Xi/, a : (2amnamn)I/2

() = mean or averaged quantity

()' = turbulent fluctuating quantity

()i = vector component in ith direction,

i = I, 2, or 3

tensor

INTRODUCTION

Numerical codes for the computation of fluid

dynamical problems contain several distinct ele-

ments. These include the basic equation set,

grid-generation and nesting techniques for complex

configurations, efficient solution algorithms, and

appropriate boundary condition treatments. In

addition, if the fluid flow is turbulent, the

effects of all the scales of the flow field that

cannot be resolved by the numerical scheme either

in time or space must be modeled. It is through

this "turbulence modeling" that the numerically
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unresolvedphysicsof fluid motionis introduced
into theflow-fieldcomputation.

Thepurposeof this paper,then,is to illus-
trate thecurrentstatusof "turbulencemodeling"
as it is appliedto aerodynamicflow fields, and
to suggestsomemeansof acceleratingprogressin
its development.Thatthe latter is particularly
importantwasrecognizedbytwoNationalAcademy
of Sciences(NAS)groupsthat studiedtherateof
progressof computationalfluid dynamics(CFD)in
generalandturbulencemodelingin particular. In
1983,thecommitteeheadedbyRobertSmeltcon-
cluded,"If thegapbetweenprogressin turbulence
modelinganddevelopmentsin nuunericalalgorithms
andcomputerhardwareis allowedto continue,it
couldseriouslyimpairtheaccuracyandusefulness
of CFDtowardstheendof this century"(Smelt,
1983).Thisviewwasreflectedagainin a yet to
bepublished1986NationalResearchCouncil
Report.Asturbulenceis a featureof almost
everyaerodynamicallyimportantflowfield, this
situationdeservestheseriousattentionof the
CFDcommunity.

Toexaminewhyit is generallyperceivedthat
progressin turbulencemodelinghasbeenrather
slow,it is importantto understand what is

involved in the creation or modification of a

turbulence model. Basic to this understanding is

the knowledge of the actual features of fluid

turbulence and what the models can or cannot be

expected to emulate.

What then is fluid turbulence? Turbulence is

a fluid flow, not a fluid property. And it pos-

sesses many extremely complex characteristics. At

a point in space, even when the gross flow is

steady, the turbulent flow appears to be a chaoti-

cally, or randomly, unsteady event about some mean

value. Over an extended space, however, some

coherence can be observed in the large-scale tur-

bulent motions under certain conditions. The

turbulent flow is always three-dimensional, even

when it exists within a mean motion that is one-

or two-dimensional. This three-dimensionality is

very important, for it provides the degrees of

freedom to allow local vortices to stretch, and in

so doing it transmits energy from larger-scale

motions to those that are smaller. As a conse-

quence, the turbulent flow possess an extremely

large range of scales in time and space, and the

range of scales between the largest, related to

body dimension, and the smallest, where the turbu-

lence dissipates quickly, increases with larger

Reynolds numbers.

For an aircraft, the largest scales are a few

percent of its length and carry most of the

kinetic energy of the turbulence. The smallest

scales, where the turbulence dissipates into heat,

are about one thousandth of the local boundary-

layer thickness, depending somewhat on the

Reynolds number of the flow in question. Turbu-

lence is also very diffusive and promotes mixing

of sensible properties, such as temperature,

chemical constituents, or momentum. For example,

within aircraft engines this is a favorable prop-

erty which enhances the distribution of fuel prior

to combustion. On a surface of an aircraft, how-

ever, this enhanced mixing contributes to

increased drag. Finally, turbulence is dissipa-

tive in that the fluid viscosity can destroy the

motions of the smallest scales and convert their

energy into heat. It has been observed experi-

mentally that the large scales of turbulence are

unique to individual flow situations, whereas the

smaller scales tend to have a universal character.

The range of scales broadens with increased

Reynolds number.

Up to about 15 years ago, the limitations of

available computational power forced all turbu-

lence calculations to be confined to the use of

steady-state, statistical descriptions of the

turbulence. Most of the features described in the

previous paragraph could not be considered in

detail. Turbulence models were applied only to

averaged equations, and the information contained

in the real dynamical features could only be

restored, approximately, through the use of empir-

ical constants that were contained in the statis-

tical model formulations. Then, about 15 years

ago, computers were developed that had sufficient

power to allow the computation of the dynamic

behavior of some very simple flow fields at very

low Reynolds numbers where the range of scales

present is relatively small. Underlying these

computations is the assumption that the Navier-

Stokes equations, together with the energy-

transport equation, constitute the basic equations

for continuum fluid flow. It is further assumed,

without rigorous mathematical proof, that these

three-dimensional nonlinear equations can be

solved accurately in time and space and that the

solutions lie within narrow bounds despite large

numbers of uncertainties that exist in defining

initial and time-dependent boundary conditions.

Although these computations can capture all

of the features of real turbulence described ear-

lier, they are extremely costly and have been

confined to studies of the "physics" of turbulence

in idealized flow situations. These studies have

resulted in descriptions of the dynamic mechanisms

that take place in free and wall-bounded turbulent

flows in much greater detail than can be measured

in physical experiments. They also provide infor-

mation on quantities that can only be measured

inaccurately, if at all, for example, static pres-

sure fluctuations or local rates of turbulence

dissipation. Even though these computations deal

with relatively simple flow fields of limited

extent, they fill the capacity of the largest

computers and require many tens of hours of com-

puter time to reach statistically meaningful

results. Some of these computations have yielded

results that will be of inestimable value to the

turbulence modeler, but this approach cannot be

considered an engineering design tool even in the

reasonably near future. The reasons for this are

illustrated in figure I.
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FigureI comparesthecomputerspeedand
memoryrequirementsfor different classesof aero-
dynamiccomputationalmethodswith thecapabil-
ities of somelargeexistingcomputersandof some
that areprojectedfor the near term (Chapman,

1978). For example, application of turbulence

simulation where all the significant scales of

turbulence are resolved for an airfoil (A, fig. I)

would require computer capabilities about 4 orders

of magnitude larger than that labeled "Large Eddy

Simulation." Clearly, such calculations cannot be

considered in the foreseeable future. The regions

labeled Large Eddy Simulation were estimated by

Chapman under the assumption that only the sub-

layer regions of boundary layers need to be

resolved to the small scales and that the the

outer parts of the boundary layers, the regions of

separation, and shedding vortices could be treated

inviscidly (Chapman, 1978).

Even with the major economies afforded by

these assumptions, the abilities to perform time-

accurate simulations of the turbulent flow fields

about aerodynamic bodies lie outside the abilities

of the computers projected in the immediate

future. Chapman's estimates relative to the fully

resolved computational needs, however, show the

importance of the development of good sub-grid

turbulence models to account for turbulence scales

smaller than the grids employed for the bulk of

the flow. In addition, if a good sub-grid model

were developed for the near-wall region of the

boundary layer, the computer requirements could be

reduced further from those shown, and large eddy

simulations of turbulent flow about an airfoil

could be anticipated in the reasonably near

future, not necessarily as a design technique, but

at least as a research tool. The development of

good sub-grid turbulence models for large-eddy

simulations, then, is a research topic that should

be given considerably more emphasis than it has

had in the United States. The French and the

Japanese have recognized this for several years,

and are well ahead of us in this research topic.

Figure I also illustrates that projections of

computer requirements for the solution of turbu-

lent aerodynamic flow fields about aircraft shapes

with the Reynolds-averaged Navier-Stokes equations

are within the capabilities of near future com-

puters. In particular, the current NAS computer

is capable of handling the turbulent flow over a

complete wing with the Navier-Stokes approach and

use of simple algebraic models of turbulence. It

is the turbulence modeling for this class of com-

putation that is the focus of the remainder of

this paper.

STATISTICAL TURBULENCE MODELING

Reynolds-Averaged Equations

Statistical turbulence modeling begins with

the derivation of the equations to represent the

mean or average motions of the turbulent flow.

This process can be illustrated simply by examin-

ing only the single equation representing the

velocity parallel to the surface in an incompres-

sible fluid, the instantaneous u-component equa-

tion of the Navier-Stokes system of equations:

3u @u @u 8u

_-_+ u 7x + v_+w 3z

+ _ _ (i)

For a steady-state turbulent flow, the dependent

variables are then expanded as the sum of their

mean parts plus their turbulent fluctuations,

namely,

u(_,t): _(_)+ u'(_,t) (2)

where _ represents a point in space and t is

time. The overbar indicates an average quantity,

and the prime represents the instantaneous fluctu-

ation. The components of velocity v, normal to

the surface, and w, in the transverse direction,

are expanded similarly. Note that the steady-

state requirement of this example eliminates time

as an independent variable in the mean quantity.

When these velocities are introduced into

equation (I), and the resulting equation is aver-

aged over time, there results the following:

- _u - Bu - @u

u_-_+v_+w _z

o_x+_ T_- v'u' +_# T# - v'u'

+ _z _ - w-T_Tu' (3)

It is noted that only the nonlinear moments of the

fluctuating turbulent velocity components have

survived the averaging process, which has elimi-

nated most of the real physical details of the

turbulence that were described earlier. The cha-

otic time dependence, the phase relationships

between the turbulence velocity components, and

the multitude of turbulence scales are merged into

just three averaged moments of the fluctuating

velocity components. The resulting equation

resembles the original Navier-Stokes equation,

restricted to steady flow, except for the averaged

moments of velocity fluctuations that reside in

positions corresponding to those of the viscous

stress terms and which, consequently, are called

Reynolds stresses, after their original discoverer

(Reynolds, 1895).

Note that these Reynolds stresses constitute

three new dependent variables, whereas no new

additional equations resulted from the averaging

process. Thus, more unknowns are created than
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equations,andtheproblemis notclosed,at this
level, unlesstheReynoldsstressescanbe
expressedin termsof the independentvariables
(whicharethecoordinates)or thedependentvari-
ables(whicharethevelocitycomponents)or both.
If thesix equationsfor theReynoldsstressesare
derivedfrommomentsof theNavier-Stokesequa-
tions, it is foundthat thesenewequationscon-
tainmanymorethansix newhigher-orderterms,
includingthosethat containaveragesof thefluc-
tuatingvelocityderivatives(Chou,1945).The
proliferationof dependentvariablesgreatly
exceedsthenumberof newequationsderived,and
this processcontinuesasmoreandmoreequations
arederived. Thisis calledtheclosureproblem
andis thecentralproblemof statistical turbu-
lencetheorythat forcesthemodelingof the
turbulence.

Levelsof TurbulenceModeling

Theturbulencemodelsrequiredto evaluate
theReynoldsstressesin equation(3) havebeen
expressedat a varietyof levels. Thesewill be
illustrated in this section,beginningwith the
field equationsfor theReynoldsstresses. By
startingwith themorecomplexmodels,it canbe
shownthat someof thesimplermodelsfollowfrom
theimpositionof certainassumptionsontothe
moregeneralmodels.

TheReynolds-stress-transportmodel(RSE)can
beexpressedas

D (4)
\ i J/ Pij - _ij + Dij + *ij

The terms on the right-hand side of the equation

are divided into four quantities identified with

the physical processes known to occur in a turbu-

lent flow: P== is the production of the Reynoldszj

stress tensor; Eij is the dissipation rate of the

Reynolds stress tensor; Dij is the diffusion of

the Reynolds stress; and ¢iJ is the pressure/

rate-of-strain production of the Reynolds stress

tensor. Of these, only the production term Pij
can be expressed in terms of the Reynolds

stresses, the mean velocities, and the coordi-

nates; consequently, it does not need to be

modeled. The other terms are composed of third-

order moments, moments of derivatives, or pressure

fluctuations, all new quantities that have to be

modeled. This level of modeling is called second-

order closure, that is, the closure occurs in the

Reynolds stress equations instead of in the

Reynolds-averaged momentum equations. The equa-

tion for e, the rate of dissipation of the turbu-

lence kinetic energy, used to define the eli and
the length scales, requires all of its terms_to be

modeled. For at least two reasons, the use of

second-order closure is now limited to a few

practitioners: first, the addition of seven addi-

tional field equations increases computation costs

by a factor of about 5 over that of the simplest

models; second, the advantages that result from

the use of the stress-transport equations do not

justify these costs for most problems. Later in

this paper, some examples will be presented for

which the use of the Reynolds-stress-transport

equations indicates some advantages that may merit

application of these equations to certain

problems.

A turbulence model that takes advantage of

the inherent characteristics of the Reynolds-

stress-transport equations, but only adds two

field equations to the system, is called the Alge-

braic Stress Model (Rodi, 1976). Here the stress-

transport equation is rewritten as

D :P
D_t \ i J/ ij ij ij + _ij

u! u' ): (5)

The basic assumption of the method is represented

by the term on the extreme right, where it is

assumed that the convection minus the diffusion of

the Reynolds stresses is proportional to the same

quantities in the turbulence kinetic energy equa-

tion. The Reynolds stresses can be written alge-

braically as

UIU '

-i-j : Pij ¢ij + _ij

k Pk - c
(6)

Recall that the production term also contains the

Reynolds stresses, so that equation (6) has to be

solved in an iterative manner. The kinetic energy

and rates of dissipation are found from equations

of the form

Dk
: Pk - E + D k (7)D--t

2

DE : C E Pk _ + D (8)D--{ I k - Ce2 k--

The next lower level of turbulence modeling

utilizes the eddy-viscosity concept, that is, the

effects of turbulence are expressed in terms of an

effective kinematic viscosity acting on the fluid

rate of strain. The constitutive relations

between stress and strain that have been utilized

are shown in the following equations from Wilcox

and Rubesin (1980)

-u!u[ : 2 _ I 3uz )I j - 3 6ijk + 2_t ij 3 3x 6ij

+ 8/9k (SimflmJ + Sjm_mi) (9)

(B*_ 2 + 2SmnSmn)

and in that from Boussinesq (1877)

-u[u] : - 5 6ij k + 2_t ij 3 _ 6ij (I0)
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Equation{9) accountsfor theeffectsof the
interactionof vorticity andtheratesof strain,
whichallowsexperimentallyobservedanisotropies
to developin a homogeneousshearflow. Those
effectsareneglectedin theclassicformof
equation(I0).

ThemannerOfevaluatingtheeddyviscosity
distinguishesmostof thecurrentlypopularturbu-
lencemodels.In general,theeddyviscositycan
bewrittenas

= C LV (11)

where C_ is an empirically established coeffi-

cient or function, V is a characteristic velocity

scale, and L is a characteristic length scale.

The various eddy-viscosity models are classi-

fied in Table I; the terminology used in the table

will be used in the discussion of the results to

be shown later.

Table I Classification of eddy-viscosity models

Two-equation models:

V =%_, L = L(k,_)

One-equation models:

V =%_, L = L(y)

One-half-equation models:

3-_ (Tmax - Tmax,O) : -CI (Tmax - Tmax,0)

Zero-equation models:

/ \I/2
fT%

V : [_) , L = Ky (inner zone)
% --

: U e: C 26* (outer zone)

or V : V(_), L : L[(Y_)max]

The two-equation models utilize the kinetic

energy and dissipation rates found from

equation (7) and from forms of equation (8); thus,

they require the solution of two additional field

equations. This increases computer costs by about

a factor of 3 over computations based on the zero-

equation models shown at the bottom of the table.

The reason for this increased cost is that the

turbulence modeling equations are stiff; as a

result, they require very small mesh dimensions

near the surface when they are modified to allow

their integration to the surface. It will be

shown later that these cost penalties can be

eliminated through the use of wall functions, that

is, algebraic relationships that span the distance

between the surface and the first mesh points

located well into the regions where the turbulence

dominates the viscous forces.

Particular attention should be given to the

model in Table I designated as a one-half-equation

model. The "one-half" is used to emphasize the

fact that an ordinary differential equation is

added to the Reynolds-averaged Navier-Stokes

system instead of another partial differential

field equation. In the example shown here, the

subscript O under the shear-stress symbol means

an equilibrium value or one given by the zero-

equation models indicated on the lower portion of

the table. The subscript max means the maximum

shear stress at some point within the boundary

layer at the station, x. Thus, the one-half-

equation model accounts for the lag in the devel-

opment of the turbulence that occurs when the mean

motion is modified by the imposition of a large

streamwise pressure gradient. The dependent vari-

able, the maximum shear stress in this case, is

then used to scale the turbulence algebraically

across the entire viscous region at station x.

The zero-equation models (Table I) represent

the eddy viscosity in two zones, or layers, of the

viscous region. Near the surface, the velocity

scale usually used is the local friction velocity,

,/_-_7_, and the length scale is merely proportional

_oWthe distance from the surface. In the outer

zone, the velocity scale is the velocity at the

edge of the viscous region and the scale depends

on the displacement thickness (Cebeci and Smith,

1974). In those situations where it is difficult

to define these terms, that is, where the inviscid

region has a non-uniform velocity field, the

velocity and length scales have been expressed in

terms of the local vorticity that occurs where the

moment of vorticity is a maximum (Baldwin and

Lomax, 1978). Since all of these quantities are

expressible algebraically in either the dependent

or independent variables of the mean-flow equa-

tions, no additional partial differential equa-

tions for field variables are required and these

are termed zero-equation models.

Difficulties in Applying and Developing

Turbulence Models

In a particular application, the level of

turbulence model that can be considered must

reflect the computational power available and the

solution algorithms to be used. Limited computa-

tional power permits only the simplest of turbu-

lence models to be considered. Also, the turbu-

lence model employed has a strong influence on the

numerical behavior of the algorithms. Not all

algorithms that can solve laminar flows can be

applied to turbulence models, especially those

that use field equations for turbulence quantities

such as the Reynolds stresses, kinetic energy, or

dissipation rate. Iteration processes are

influenced considerably by the stiffness of the

turbulence field equations. Also, algorithms that

require conservative forms have difficulty with
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thesourceandsinktermsthat are inherentin the
turbulencefield equationsto reflect theturbu-
lenceproductionanddissipationthat occurwithin
thereal turbulentflow. Finally, theturbulence
modelsalso imposeconstraintsontheusablemesh
configurationsbyrequiringveryclosespacings
betweenmeshesin thevicinity of surfaces.

Thisstronginfluenceof theturbulencemodel
onthenumericalschemehasmadeit difficult to
assessthequalityof particularturbulence
models,becauseoftena significantpartof the
disagreementbetweencomputedresultsandexperi-
mentaldatais numerical,resultingfroma pre-
viouslyverifiedalgorithm'sdifficulty with the
constraintsintroducedbya newturbulencemodel.
Oncethesenumericaldifficulties areovercomeand
theturbulencemodelscanbeappliedwithconfi-
dence,theresultingdisagreementwithexperi-
mentaldatafor a particularflow field canbe
ascribedto thelimitationsof a theparticular
turbulencemodelbeingemployed.At this point,
providedfundamentalexperimentalturbulencedata
areavailableto guideits improvement,it is
possibleto remodeltheturbulencemodelto
improveits performancefor thecomplexflow in
question,andto dosoin a mannerthat doesnot
alter its behaviorfor simplerflow fields for
whichit hadalreadyprovedsuccessful.Some
examplesof this processareshownin thefollow-
ing sectionwherethestateof theart of statis-
tical turbulencemodelingis summarizedwitha few
selectedflowconditions.

APPLICATIONOFVARIOUSLEVELSOFTURBULENCE
MODELING

In this section,in orderto providea brief
overviewof thestateof theart of turbulence
modeling,variouslevelsof turbulencemodeling
will beappliedto a varietyof flow fields of
interest to aerodynamics.Bothoriginalmodels
andtheconsequenceof "remodeling"will beshown
in severalexamples.Carehasbeentakenin most
of thesecalculationsto eliminatenumerical
uncertainties,sothatanydifferencesshown
betweenthecomputedresultsandexperimentaldata
canbeascribedto turbulence-modeldeficiencies.

Thefirst flowto beconsidereddealswith
theeffect of largestreamwisepressurevariations
ontheskin friction of anattachedturbulent
boundarylayer (Kussoyet al., 1978). In
figure 2, a sketchis shownof theexperimental
arrangement.Theboundarylayerbeingmeasured
wasformedontheinsidesurfaceof a tubedown-
streamfroma supersonicnozzlecreatinganaxi-
symmetricflowat M= 2.3. Thepressuredistri-
butionimpressedupontheboundarylayerwas
createdbya centerbodythat compressedandthen
expandedtheflow. Theresultingpressure
distribution, normalizedbytheupstreamwall
pressurewhereM=2.3, is shownin theupper
left cornerof this figure. In this example,the

pressurerise almostdoublesits original value
beforerelaxing. Thisnondimensionalpressure
distributionremainedessentiallyfixedasthe
wind-tunnelpressurewasalteredto obtaina large
rangeof Reynoldsnumbers.Theskin friction was
measuredwitha buriedwiregauge(Rubesinet al.,
1975).Theskin-friction distributionwas
achievedwitha fixed skin-friction gaugeby
movingthecenterbodyupstreamanddownstream
about20cmalongits axis. Thisprovidesabout
thesamedistributionof skin friction that would
beachievedwitha fixedcenterbodyanda moving
skin-friction gauge,becausetheboundarylayer
aheadof thepressurerise wascloseto uniform
thickness.

Measuredandcalculatedskin-friction distri-
butionsareshownin figure2 for fourvaluesof
Reynoldsnumber.Fivelevelsof turbulencemodel-
ing areshown:a zero-equationmodelbyCebeci
andSmith(1974)in its original formandassub-
sequently"remodeled"to accountbetter for
streamwisepressuregradients(CebeciandSmith,
1974);a two-equationmodelbyWilcoxandRubesin
(1980);andtwostress-transportmodels.Oneof
thestress-transportmodelsutilizes a length
scalethat is prescribedalgebraically(Sullivan,
1976),whereastheotherusesa field equationfor
specificdissipationto createa lengthscale
(WilcoxandRubesin,1980).

Withtheexceptionof theoriginal zero-
equationmodelat the lowestReynoldsnumber,
whichtendsto separateprematurely,all the
modelsshowsimilarvariationsrelative to the
experimentaldata. Thecomputedresultsdrift
throughthedatawith increasesin theReynolds
number.Computedresults that arelowat the
lowerReynoldsnumberstendto behighwhenthe
Reynoldsnumbersarehigh. Noonemodelis
clearlysuperiorto theothersovertheentire
Reynolds-numberrange,thoughtheydoseemto
maintaintheir relative positionsto eachother.
Onecanconcludefromthis workthat for an
attachedboundarylayer thereis little advantage
to usingthemorecomplexmodels,but if it were
necessaryto knowtheskin friction in attached
boundarylayersin strongstreamwisepressure
gradientsto a fewpercent,improvementsto all
the levelsof modelswouldberequired.

Streamwisecurvatureof a surfacehasa pro-
nouncedeffect onthebehaviorof a boundarylayer
flowingoverit (Bradshaw,1973).This is demon-
stratedin figure 3, whereskin friction and
shape-factordataobtainedona convexsurfacein
anadversepressureareshown(SoandMellor,
1972).Thedataareexpressedin termsof the
streamwisedistributionof theskin-friction coef-
ficient andtheshapefactor of theturbulent
boundarylayerflow. Alsoshownin thefigure are
thecomputedresultsutilizing four turbulence
models(WilcoxandRubesin,1980).Thedashedand
dot-dashedcurvesarebasedona two-equationand
a Reynolds-stresstransportmodelin whichthe
effectsof curvaturehavebeenneglected.These
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skin-friction coefficientcurvesdepartconsider-
ablyfromtheexperimentaldata. Theshapefactor
ona flat platewouldremainat a valueof about
1.4,againshowingcurvatureeffectsthat are
largein affectingtheboundary-layervelocity
profiles. Thesolidanddottedcurvesrepresent
thesamemodelsmodifiedto accountfor thesur-
facecurvaturethroughtheintroductionof a
curvedcoordinatesystem.Themodificationto the
two-equationmodelalsorequiredtheintroduction
of a newcentrifugalforcetermin theturbulent
kinetic energyequation;that termvanishesona
flat surface. Thiswasdonein a ratheradhoc
manner,utilizing someguidancefromthetheform
of theReynolds-stressequationfor v'v---7.Onthe
otherhand,nophysicalmodificationsweremadein
theReynolds-stressmodel.In bothof these
models,thespecificrate-of-dissipationequation
usedto definethelengthscalewasnotaltered
exceptfor thecoordinatemodifications.Figure3
showsthat theeffectsof thestreamwisecurvature
in thesedataarerepresentedverywell bythese
latter computations.

It is verysignificantthat nomodifications
hadto bemadeto theReynolds-stressturbulence
modelto allowit to capturetheeffectsof
streamwisecurvature;it is therebyanexamplein
which,at least in principle, themorecomplex
formof modelinghasa fundamentaladvantage.
Anotherconclusion,however,is that thesimpler
two-equationmodelcanalsobe"remodeled"to give
goodresultsona convexsurface,withoutaltering
its behavior,for casesin whichthestreamwise
curvatureis absent.Acautionarynoteis in
orderhere: concavesurfacesmaynotbecalcu-
lated wellwithanyof thesemodelsbecausethe
modelscompletelyignorethepossibility of the
existenceof Gortlervorticesthat arepresent
oversuchsurfacesandthat canenhancethetrans-
port within theboundarylayer.

Figure4 showstheexperimentaldataand
computedresults for thedistributionof surface
pressureandskin friction in thevicinity of a
normalshockwavein an M= 1.48 airstream.
Thesemeasurementswereobtainedontheinner
surfaceof a circular tubewitha static pressure
tapanda flushhot-wireskin friction gage
(Mateeret al., 1976).Theshock-waveposition
couldbemovedrelative to thefixedgaugesby
increasingor decreasingtheblockageof a down-
streamshockgenerator.

Theexperimentaldataarecomparedwithcom-
putationsutilizing fourdifferent turbulence
models:I) two-equationmodelsfromWilcoxand
Rubesin(1980),JonesandLaunder(1972),and
Chien(1982);and2) a zero-equationmodelfrom
CebeciandSmith(1974),whichdid not incorporate
thepressure-gradientmodificationdiscussedin
connectionwith figure2. All of thesemodels
wereusedin computationsthat extendedto the
surface. It shouldbenotedthat eachof the
modelsperformsquitewell ona flat plateat
uniformpressure.Themodelsof JonesandLaunder

andof Chienareverysimilar, exceptthat the
latter wasmorecloselyfitted to experimental
channeldata.

Whenthesemodelsareappliedto the shock-
waveandboundary-layerinteractionof this exper-
iment,it is foundthat all of themyield excel-
lent surface-pressuredistributions. Theskin-
friction results, however,are far fromsatisfac-
tory for all but theWilcox-Rubesinmodel.
TheChienmodel,whichbehavessowell ona flat
plate, yieldssurprisinglypoorresults in the
vicinity of theshockwave.TheJones-Launderand
Cebeci-Smithmodelsfail to agree,in opposite
ways,with theskin friction, the latter model
indicatinganextensiveregionof separationwhere
noneexistedexperimentally.

Qualitatively,this behavioris consistent
with thebehaviorof theCebeci-Smithmodelin
figure2, whenit wasnotalteredto accountfor
pressuregradients. Froma comparisonof the
different skin-friction resultsbasedonthedif-
ferenttwo-equationmodels,it canbeconcluded
that modelsat thesamelevel that are "cali-
brated"with flat-plate datacanbehavemuchdif-
ferentlywhenappliedto a complexflow. This
suggeststhat in general,thepredictabilityof
anyturbulencemodelshouldbesuspectuntil it is
verified for a varietyof complexflows.

In aneffort to determinewhytheJonesand
LaunderandtheChienturbulencemodelspredicted
suchdifferent skin-friction results, Viegasand
Rubesin(1983)eliminatedthenear-surfacemodel-
ing in theseturbulencemodelsbyapplyingthe
conceptof wall functionsto thecomputations
shownin figure4. Thisconceptrequiresthe
first meshpointoff thesurfaceto lie well
within the fully turbulentflowandtherefore
connecttheflowat this pointto thesurface
conditionswithalgebraicformulas.Forexample,
a wall functionin its simplestformis thecon-
ventional"lawof thewall" appliedto a zero-
equationturbulencemodelona flat platewith
smallstreamwisepressuregradients. Thetwo-
equationmodelsrequiremorecomplexwall func-
tions that accountfor thegrowthof turbulence
kinetic energyin regionsof strongpressuregra-
dients, themeanvaluesof kinetic energyand
dissipationrateswithin thefirst meshvolumeoff
thesurface,andthechangesto the lawof the
wall causedbylocal pressuregradients.

Figure5 showstheresultsof applyingsuch
wall functionsto thetest conditionsdescribedin
figure4. Again,thesurfacepressureis well
predictedwhenthedifferentmodelsusewall func-
tionsat distancesfromthewall shownbythe
correspondingupstreamvaluesof y+ indicatedin
thefigure. Theskin friction resultsshow
clearly that it is the individualnear-walltreat-
mentsof thetwo-equationmodelsbyJonesand
LaunderandbyChienthat causestheir anomalous
behaviorshownin figure4.
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Withwall functions,theresultsgivenbythe
twomodelsareessentiallF_identicalandquite
consistentwith theothertwo-equationmodelby
WilcoxandRubesin.TheCebeci-Smithmodelwith
its wall functionis quite Consistentw_hthe
earlier resultswhereit wascomputedto thesur-
face,exceptin theimmediateregionof thesepa-
rationzonewherethepressuregradientsareSuf-
ficiently highto bringinto questiontheuseof a
usuallawof thewall. It is gratifyingtha_the
wall functionsnotonlycollapsetheresultsof
thedifferent two'equationmodels,but that
resultsagreequitewellwith theexperimental
skin-friction data. Anothersignificantbonusof
theuseof wall functionsis that thecostsof the
computationswerereducedbya'factor of 8 because
of thereducednumberof meshpointsneededto
resolvethenear-wallregionandtheelimination
of muchof thestiffnessof theturbulencemodel-
ing equations._ In this case,accuracyandeconomy
wereachievedtogether.

Figure6 showstheresultsof improvementsto
twod_fferentlevelsof turbulencemodelsapplied
to thecomputationof a shock-waveandboundary-
layer interactionin transonicflow. Theexper_-
mentaldatausedinthis comparisonarefrom
Johnsonet al. (1982)andtheyweremeasuredonan

axisymmetriccircular-arcbumpindicatedschemati-
cally in figure 6. Thefree-_treamMachnumberof
theexamplesshownhereis M=0.8_6 andthe
unit Reynoldsnumberis 13.1 × 106V/m.

Theupperpartof figure6 showsthedistri-
butionsof surfacepressuremeasuredin theexper-
imentandcomputedfromfour turbulentmodels.
Theabscissabeginsat mid-chordof thebumpand
continuesabouta half-chorddownstreamafter its
trailing edge. Thelowerpart of thefigureShows
thedistribution of skin friction fromtwoof the
computationsandtheexperimentalpo'intS_ofsepa-
rationandattachment,astheywereindicatedby
anoil-film technique.Thfsdemonstratesthat
therewasa ratherextensiveregionof separated
flow in this experiment.

Thecomputedsurfacepressuresbasedonthe
zero-equationturbulencemodelof CebeciandSmith
(!974)arerepresentedbythedashedline. These
results indieatethat this modelpredictsa shock-
wavepositionthat_iswell downstreamof its mea_
suredlocation. Thecomputationsalsoshowmuch
higherpressurein theregionof separationthan
dothedata. Thedottedline representsthecom-
putedresultsobtainedwith thehalf-equation
modelof JohnsonandKing(1985).Thelatter
modelaccountsfor thehistoryof thedevelopment
of maximumshearstressin thestreamwisedirec-
tion throughtheuseof anordinarydifferential
equation.Thismaximumshearstressis thenused
to scaleanalgebraicmodel,similar to that of
CebeciandSmith,at eachstation. Althoughthese
experimentaldata,for a rangeof Machand
Reynoldsnumbers,wereusedto evaluatethe lag
constantsusedin this model,theresultingagree-
mentof thecomputedresultswith theshapeof the

entire pressuredistribution for thi§ particul_'r
CaseiS remarkable]WithOutaltering themodeling
coefficients',goodrest_Itshavebeenobtainedby
JohnsonandKingin comparisonswithothe_
two-dimensionaldataUnderwidelydifferent flow
conditions(Simpsonet al._i 1981).In addition,
this modelis economicalto Use,for it requires
verylittle morecomputertimethandoth_stan-
dardzero-equat{onmodels]"

Whena two-equationmodelis_appliedto this
flow, thedot-dashedline (fig. 6) resultsfor the
predictedpressuredistribution. Althoughit
performsbetter thanthezero-equationmodel,_he
pressuredistribution calculatedwith thetwo-
equationmodelalsoshowsa shock-wavelocation
that is downstreamof theexperimentalposi'tion',
andthepressureis Overpredic_edto someextent
in th_regionof separation.Wh'@nimprovedwall
functions(Viegaset al , 1985;Rubesinand
Viegas,1985)areappliedto thLsJones-Launder
model,thecalculatedpressuredistributionis
considerablyimproved,givingresultsequivalent
to theJohnson-Kingmodelexceptat theupstream
foot of the shockwave.It shouldbenotedthat
thefo_msof thewall functionsOrtheO_iginal
modelwerenotalteredto fit theseparticular
pressuredata. Theuseof wall functionswith the
JoneS-Laundermodelalsoimprovestheprediction
of the locationof separationandreattachmentas
is seenin theskin-friction coefficientfigure.

In conclusion,figure 6 showsthat twoturbu-
lencemodelsareavailablethat cangivegood
surface-pressuredistributionresults_ina tran-
sonicflowoveranairfoil-like body.For two-
dimensionalflowswitha closedseparationregion,
the_modelof choiceis the_Johnson-Kingmodel_For
accuracyandeconomyof application. It is not
clearat present,however,howor_if this model
canbeextendedto three-dimensionalflows. The
two-equationmodelis directly extendableto three
dimensions;however,it requiressomeadditional
modelingregardingthedegree6f_isotropyof the
eddyviscosity,andthewail-functionapproachin
its presentformis constrainedto noskewingof
themean-vei0cityVectorwithin_hefirst mesh
volume'offthesurface. _- _

Figure7 shows_the:resultsoEapplyingsev-
eral levels_f turbulencemodeling(Coakley,1986)
to thepredictionof the lift anddragof an
RAE2822airfoil for threetest Machn_mbers_nd
anglesof attack(Cooket al., 1979).Thecom-
putationsareshownherein lift-drag formto
allowcomparisonof theresultsrelative to a
constantlift-drag ratio asshownbythelines
passingthroughthethreestarreddatap0ints.
Coakley(1986)usedsix different turbulence
models:twozero-equationmodels,that of Cebecl
andSmithandof BaldwinandLomax;theJohnson-
Kinghalf-equationmodel;andthreeversionsof
the two-equationmodel,Chien'sandtwooriginated
byCoakley.ThesymbolsusedFortheresults
foundfromthesemodelsare indicatedonthe
figure.
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Thecomparisonof theexperimentaldataand
thecomputedresultscanbeobservedfromtwo
pointsof view. First, a smallvectordistance
betweentheexperimentalandcomputedpoints
reflects goodagreementbetweentheexperimental
dataandcomputationfor bothI) surface-pressure
distributionsandshock-wavelocations,and
2) skin-friction distributions. Second,the
alignmentwith theconstantL/Dline suggeststhat
a particularmodelcanyield a result that happens
to providegoodL/D,althoughin reality it misses
thedetails.

ThecasesrepresentedbythethreeMachnum-
berscorrespond,with increasingMachnumber,to
unseparatedsubcritical flow, unseparatedsuper-
critical flow, andseparatedsupercriticalflow,
respectively.Exceptfor twocasesat M= 0.73,
thecomputedresultsyield valuesof lift anddrag
that arehigherthanthemeasurements.Atall
threeMachnumbers,theJohnson-Kingmodellies
closestto thedata,evenat theseverestflow
withseparation.Theothermodelsgenerally
becomepooreras theflowbecomesmorecomplex.
The q-_2 modelof Coakley,whilesecond-best
overall in agreeingwith theexperimentalresults,
yieldsa muchpoorerlift-drag slopethandothe
othermodelswhenseparationtakesplace.

Theearlier conclusionthat theJohnson-King
modelis themodelof choicefor two-dimensional
transonicflowsis furthersupportedbythese
data. Forthoseinterestedonly in theratio of
lift to drag,thesimplestmodelsof Cebeci-Smith
andBaldwin-Lomaxarereasonablyadequate.These
conclusions,however,aresubjectto thecaveat
that thesedataresultedfromflowsthat were
entirelyattachedor flowsthat separatedandthen
reattachedontheairfoil. Caseswithmassive
separationmayfavorotherturbulencemodels.

Thenext fewfigureswill showtheperfor-
manceof variousturbulencemodelsfor three-
dimensionalflows. Althoughthefirst two
examplesarestrictly two-dimensionalfroma
mathematicalviewpoint,that is, axisymmetricflow
or flowoveraninfinitely long,swept-backair-
foil, theflowsexhibit theskewingof theveloc-
ity vectorparallel to thesurfacethat is char-
acteristic of three-dimensionalboundary-layer
flows.

Figure8 describesskin-friction results
obtainedon thesurfaceof a circularcylinder
whoseaxiswasmountedcolinearwith that of a
low-speedwindtunnel(HiguchiandRubesin,1981;
DriverandHebbar,1985).Theparticularfeature
of this experimentwasthat thecylinderwasseg-
mentedsothat a centralportionof thecylinder
couldbe rotatedto introducea shear-drivencross
flow (seesketchin fig. 8). In thestationary
regionaheadof therotatingsegment,theboundary
layerdevelopsthefour Reynoldsstresses,
U'Ut tV, WI , , -, v , w , andu v', whicharecharacteris-
tic of two-dimensionalflow. Overthespinning
portion, theadditionalReynoldsstresses,

u'w' andv'w', areactivated,andit is the latter
stressthat causesthemean-velocityvectorto
skewin a three-dimensionalboundarylayer. In
theexperiment,therelaxationof theReynolds
stressesbackto their two-dimensionalcharacter
is studiedonthedownstreamstationarycylinder.

Figure8 showsthedevelopmentof theaxial
andcross-flowskin friction withdistancealong
thestationarydownstreamcylinder. Theexperi-
mentaldataweremeasuredwitha varietyof tech-
niques: buriedhot-wiregauges,surfacefences
(Higuchi,1983),andmomentumintegralbalances.
Computedresultsbasedonthreelevelsof turbu-
lencemodelingarealsoshown.Theseincludethe
zero-equationAquilar(1976)modelwhichis an
extensionto threedimensionsof theCebeci-Smith
model,andthetwo-equationandReynolds-stress-
transportmodelsof WilcoxandRubesin.Notethat
boththezero-equationandthetwo-equationmodels
utilize theadditionalassumptionthat theeddy
viscosityis a scalarquantitythat actsequally
ontheaxial andcross-flowstrains. Generally,
all themodelscapturethebehaviorof therelaxa-
tion of theskin friction in bothdirections. Of
the threemodels,however,theReynolds-stress-
transportmodelyields thebestagreementwith the
data,exceptfor theshort regionat thebeginning
of thestationarycylinderwheretherelaxation
processis occurringveryrapidly. Sincethis
flow remainsattached,it is believedtheshort-
comingsof thezero-equationandtwo-equation
models,bothof whichareeddy-viscositymodels,
arecausedbythethescalareddy-viscosity
assumptionsandnot byproblemsof lengthscale.

Figure9 showsoil-film streaksonthesur-
faceof flowovera transonicwing,sweptbackat
anangleof 32° in an airstream at M = 0.74

and Rec = 4.7 × 106 (Mateer and Brosh, 1983).

The airfoil shape is a NACA 0012 at zero angle of

attack. The wing spans the wind tunnel, but the

experiment is unique in that the side walls of the

wind tunnel were contoured to follow the expected

inviscid flow, thereby causing the model to behave

as one of infinite length where surface pressures

are essentially uniform in the spanwise direction.

Also shown on the figure are the surface stream-

lines as computed by three levels of models.

Line I refers to a Reynolds-stress-transport

model; line 2 to a two-equation model; and lines 3

and 4 refer to a mixing-length model. These

models are identical to those shown in the pre-

vious figure for the spinning cylinder experiment.

Two results for the mixing-length model are

shown to demonstrate the influence of the location

of transition, which can be specified in this

turbulence model. In the other models the loca-

tion of transition is established by stability

criteria built into the models. The mixing-length

model shows an increased deviation from the oil-

flow data as transition is moved downstream. As

with the spinning cylinder, the Reynolds-stress-

transport model gives slightly better results as
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representedbytheoil-flow patternnearthesuc-
tion peak.

Figure10alsoshowsa comparisonof experi-
mentalandcomputedsurfaceskin-friction lines
for a three-dimensionalflow (Horstmanet al.,
1985). In this case,thetest bodyconsistsof a
cylinderfollowedbyskewedflare. Theairstream
conditionsare M=3 andthelengthReynolds
numberof theboundarylayerjust upstreamof the
flare is 18× 106.Theflare is a 60° total-angle
conetilted to anangleof attackof 23°. The
computationsfor this flowwerebasedonthe
Jones-Laundertwo-equationturbulencemodelwith
boundaryconditionssuppliedbywall functions
(ViegasandRubesin,1983).Theuseof wall func-
tionswascritical to reducethecostof these
computations.

Theoil-flow linesontheleft of this figure
showthat for theseconditionstheshockwave
generatedbytheflare is sufficiently strongto
causetheboundarylayeronthecylinderto sepa-
rate wellupstreamof thecylinder-flarejunction
andto reattachabouthalfwayuptheflare. Con-
siderableamountsof turningof thenear-surface
flow takesplacewithinthis separationzoneand
in the immediateregionafter reattachment.The
computedsurfaceshearlines showthegeneral
characterof measuredoil streaks;however,the
detailsareoff to quiteanextent. Thecomputed
upstreamseparationlocationis onlyaboutone-
half its experimentaldistancefromtheflare
junction. Thepoorbehaviorof thecomputations
is also reflectedin a generallysmallerupstream
movementin thecomputedresultsin thevicinity
of theflare. Althoughthereattachmentregionis
predictedfairly wet1,theflowdirectiononthe
cylinderdownstreamof theflare alsodepartsfrom
theexperimentaldata.

Howthesedifferencesarefelt quantitatively
is shownin a comparisonof thecomputationswith
theexperimentallymeasuredsurfacepressuresin
figure 11,wherethesurfacepressuresonthe
windwardrayareplottedalongthecylinder,
flare, andafterbody.Thesmallerpredictedsepa-
rationzoneis againevidentin this figure.
Thesequantitativeresultsof thecomputations
showthepositionof themaximumpressureto bea
bit upstreamof themeasuredlocationandto yield
a smallervaluethanmeasured.Theseresults
suggestthat thecomputedsideforceandpressure
dragare low. Recently,Brownet al. (1987)made
measurementsof meanflowandtheReynolds
stressesunderthesesameflowconditions.These
datahavenotyet beenanalyzedwith theviewof
improvingtheturbulencemodeling;however,this
activity is underwayandshouldleadto a
remodelingof the turbulencemodelthat will
result in computationsthat areconsiderably
improvedoverthoseshownhere.

CONCLUDINGREMARKS

Certainobservationscanbedrawnfromthis
brief surveyof recentdevelopmentsin statistical
turbulencemodelingapplicableto aerodynamics.
Forattachedboundarylayersupstreamof pressure
gradients,all levelsof turbulencemodelinggive
aboutthesameresults. This is notsurprising
becausetheattachedflat-plate boundarylayerhas
beenuseduniversallyto "calibrate"thesemodels.
Underseverepressuregradients,however,many
popularmodelsstill yield resultsthat differ
fromexperimentalskin-friction databyasmuch_s
40%whentheReynoldsnumbersareabout1OO× 10v
or larger. Thisis a turbulencemodelingtopic
that requiresadditionalattention.

Themannerof modelingstreamwisecurvature
effects is alsostill anopenquestion.Thesim-
plest zero-equationmodelsuseanadhoccorrec-
tion methodrecommendedbyBradshaw(1973). Ona
convexsurface,thetwo-equationmodelsaccount
for curvaturebyeither increasingtherate of
productionof dissipation(HaandLakshminarayana,
1980),bydiminishingtherateof destructionof
dissipation(Launderet al., 1977),or by letting
thedissipationrate aloneandaltering therate
of productionof kinetic energyby introducingthe
workof centrifugalforces(WilcoxandRubesin,
1980;Pulliamet al. 1985).Thefull Reynolds-
transportmodel,ontheotherhand,requiresno
changesotherthanthe introductionof curved
coordinates(WilcoxandRubesin,1980).This
varietyof approachesfor the introductionof the
effectsof surfacecurvatureinto thezero-and
two-equationturbulencemodelsillustrates the
fact that thesemodelsaremerelysuchgross
approximationsto thephysicalturbulencethat
thereis nouniquewayof modelinga particular
phenomenon.Consequently,a modelcanonlybe
gaugedbyits successor failure in its applica-
tion to a particularflow field or to a rangeof
flowfields. Thereis noa priori wayof asses-
singtheaccuracyandbreadthof applicationof
turbulencemodelsotherthanbycomparisonwith
experimentaldata. Fromsuchcomparisons,it is
generallyobservedthat thehigherlevelsof tur-
bulencemodelstendto havebroaderrangesof
application,but that for a givenapplicationthey
are likely to belessaccuratethansimplermodels
that havebeenfitted to theparticularapplica-
tion. Thesimple,or low-level,models,though
computationallyeconomical,needa databasefor
everyclassof flow likely to beencountered,and
their useplacesanenormousburdenonthenumbers
of experimentsrequired. Withoutsucha data
base,thesimplemodelsarenotmuchsounderthan
intelligent guesses.It is this burdenonexperi-
mentthat stimulatesthesearchfor moregeneral
modelsthat aresufficiently accuratefor a vari-
ety of applicationseventhoughtheymaycostmore
to compute.Theusermustgaugethesetrade-offs
in decidingwhichmodelshewill employ.
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Withrespectto therate of progressin tur-
bulencemodeling,thedevelopmentof theJohnson-
Kingmodelis a goodexample.Fromthetimeof
thefirst experimentonairfoils in whichJohnson
wasmeasuringturbulencequantities(Johnsonand
Bachalo,1980)to therecentsuccessfultestsof
themodelheanda colleaguedeveloped(Johnson
andKing,1985),6 yearselapsed.Muchof this
timewasspentbyJohnsonin analyzinghis data
witha varietyof borrowedcomputercodes,someof
whichwerein developmentandwereextremelydif-
ficult andtime-consumingto operate. Duringthis
period,healsoperformedanadditionalexperiment
ontheaxisymmetricbumpmodelthat wasusedto
complementtheoriginalairfoil data. Thisshort
historydemonstratesthat turbulencemodelingis
composedof a varietyof activities that encompass
analysisof themodelingequations,experimenta-
tion, theuseof andmodificationof complexcom-
putercodes,and,mostimportant,a dedicationto
dothenecessarylaborto improveanexisting
model.

Whenoneor twoindividualsattemptthis, the
levelof effort requiredis boundto takeconsid-
erableelapsedtime. Somethingasrelatively
directas developing wall functions for compres-

sible flows, utilizing the experimental work of

others and making small modifications to existing

computer codes (Viegas and Rubesin, 1983; Viegas

et al., 1985), took a little longer than 2

years. Because of its dependence on a variety of

disciplines, turbulence modeling is a slow process

and its development can be accelerated only by an

increased level of the coordinated efforts of

dedicated people possessing a variety of

complementary talents in analysis,

experimentation, and computational-code develop-

ment. This is especially required now as the CFD

community begins to emphasize complex three-

dimensional flow fields and requires improved

turbulence models for such flows.
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